Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis.
Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins.
A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015)
A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The principal alkaloid of ipecac, from the ground roots of Uragoga (or Cephaelis) ipecacuanha or U. acuminata, of the Rubiaceae. It is used as an amebicide in many different preparations and may cause serious cardiac, hepatic, or renal damage and violent diarrhea and vomiting. Emetine inhibits protein synthesis in EUKARYOTIC CELLS but not PROKARYOTIC CELLS.
Established cell cultures that have the potential to propagate indefinitely.
The rate dynamics in chemical or physical systems.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
An essential branched-chain amino acid important for hemoglobin formation.
An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.
An anti-inflammatory 9-fluoro-glucocorticoid.
An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system.
Antibiotic produced by Streptomyces pactum used as an antineoplastic agent. It is also used as a tool in biochemistry because it inhibits certain steps in protein synthesis.
Elements of limited time intervals, contributing to particular results or situations.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Compounds that inhibit cell production of DNA or RNA.
The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
Tritium is an isotope of hydrogen (specifically, hydrogen-3) that contains one proton and two neutrons in its nucleus, making it radioactive with a half-life of about 12.3 years, and is used in various applications including nuclear research, illumination, and dating techniques due to its low energy beta decay.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106)
A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.
Uridine is a nucleoside, specifically a derivative of pyrimidine, that is composed of a uracil molecule joined to a ribose sugar molecule through a β-N1 glycosidic bond, and has significant roles in RNA synthesis, energy transfer, and cell signaling.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE).
Cyclic peptides extracted from carpophores of various mushroom species. They are potent inhibitors of RNA polymerases in most eukaryotic species, blocking the production of mRNA and protein synthesis. These peptides are important in the study of transcription. Alpha-amanitin is the main toxin from the species Amanitia phalloides, poisonous if ingested by humans or animals.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Used as a support for ion-exchange chromatography.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed)
A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine.
The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules.
A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule.
A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS.
A cytotoxic member of the CYTOCHALASINS.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
A sulfur-containing essential L-amino acid that is important in many body functions.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Drugs that are chemically similar to naturally occurring metabolites, but differ enough to interfere with normal metabolic pathways. (From AMA Drug Evaluations Annual, 1994, p2033)
A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.
An organothiophosphate insecticide.
Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.

Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. (1/5972)

To maintain the integrity of the vascular barrier, endothelial cells (EC) are resistant to cell death. The molecular basis of this resistance may be explained by the function of antiapoptotic genes such as bcl family members. Overexpression of Bcl-2 or Bcl-XL protects EC from tumor necrosis factor (TNF)-mediated apoptosis. In addition, Bcl-2 or Bcl-XL inhibits activation of NF-kappaB and thus upregulation of proinflammatory genes. Bcl-2-mediated inhibition of NF-kappaB in EC occurs upstream of IkappaBalpha degradation without affecting p65-mediated transactivation. Overexpression of bcl genes in EC does not affect other transcription factors. Using deletion mutants of Bcl-2, the NF-kappaB inhibitory function of Bcl-2 was mapped to bcl homology domains BH2 and BH4, whereas all BH domains were required for the antiapoptotic function. These data suggest that Bcl-2 and Bcl-XL belong to a cytoprotective response that counteracts proapoptotic and proinflammatory insults and restores the physiological anti-inflammatory phenotype to the EC. By inhibiting NF-kappaB without sensitizing the cells (as with IkappaBalpha) to TNF-mediated apoptosis, Bcl-2 and Bcl-XL are prime candidates for genetic engineering of EC in pathological conditions where EC loss and unfettered activation are undesirable.  (+info)

NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. (2/5972)

A mutation in NMD3 was found to be lethal in the absence of XRN1, which encodes the major cytoplasmic exoribonuclease responsible for mRNA turnover. Molecular genetic analysis of NMD3 revealed that it is an essential gene required for stable 60S ribosomal subunits. Cells bearing a temperature-sensitive allele of NMD3 had decreased levels of 60S subunits at the nonpermissive temperature which resulted in the formation of half-mer polysomes. Pulse-chase analysis of rRNA biogenesis indicated that 25S rRNA was made and processed with kinetics similar to wild-type kinetics. However, the mature RNA was rapidly degraded, with a half-life of 4 min. Nmd3p fractionated as a cytoplasmic protein and sedimented in the position of free 60S subunits in sucrose gradients. These results suggest that Nmd3p is a cytoplasmic factor required for a late cytoplasmic assembly step of the 60S subunit but is not a ribosomal protein. Putative orthologs of Nmd3p exist in Drosophila, in nematodes, and in archaebacteria but not in eubacteria. The Nmd3 protein sequence does not contain readily recognizable motifs of known function. However, these proteins all have an amino-terminal domain containing four repeats of Cx2C, reminiscent of zinc-binding proteins, implicated in nucleic acid binding or protein oligomerization.  (+info)

delta-Aminolevulinate synthetases in the liver cytosol fraction and mitochondria of mice treated with allylisopropylacetamide and 3,5-dicarbethoxyl-1,4-dihydrocollidine. (3/5972)

Hepatic delta-aminolevulinate (ALA) synthetase was induced in mice by the administration of allylisopropylacetamide (AIA) and 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC). In both cases, a significant amount of ALA synthetase accumulated in the liver cytosol fraction as well as in the mitochondria. The apparent molecular weight of the cytosol ALA synthetase was estimated to be 320,000 by gel filtration, but when the cytosol ALA synthetase was subjected to sucrose density gradient centrifugation, it showed a molecular weight of 110,000. In the mitochondria, there were two different sizes of ALA synthetase with molecular weights of 150,000 and 110,000, respectively; the larger enzyme was predominant in DDC-treated mice, whereas in AIA-treated mice and normal mice the enzyme existed mostly in the smaller form. When hemin was injected into mice pretreated with DDC, the molecular size of the mitochondrial ALA synthetase changed from 150,000 to 110,000. The half-life of ALA synthetase in the liver cytosol fraction was about 30 min in both the AIA-treated and DDC-treated mice. The half-life of the mitochondrial ALA synthetase in AIA-treated mice and normal mice was about 60 min, but in DDC-treated mice the half-life was as long as 150 min. The data suggest that the cytosol ALA synthetase of mouse liver is a protein complex with properties very similar to those of the cytosol ALA synthetase of rat liver, which has been shown to be composed of the enzyme active protein and two catalytically inactive binding proteins, and that ALA synthetase may be transferred from the liver cytosol fraction to the mitochondria with a size of about 150,000 daltons, followed by its conversion to enzyme with a molecular weight of 110,000 within the mitochondria. The process of intramitochondrial enzyme degradation seems to be affected in DDC-treated animals.  (+info)

Microvessels from Alzheimer's disease brains kill neurons in vitro. (4/5972)

Understanding the pathogenesis of Alzheimer's disease is of widespread interest because it is an increasingly prevalent disorder that is progressive, fatal, and currently untreatable. The dementia of Alzheimer's disease is caused by neuronal cell death. We demonstrate for the first time that blood vessels isolated from the brains of Alzheimer's disease patients can directly kill neurons in vitro. Either direct co-culture of Alzheimer's disease microvessels with neurons or incubation of cultured neurons with conditioned medium from microvessels results in neuronal cell death. In contrast, vessels from elderly nondemented donors are significantly (P<0.001) less lethal and brain vessels from younger donors are not neurotoxic. Neuronal killing by either direct co-culture with Alzheimer's disease microvessels or conditioned medium is dose- and time-dependent. Neuronal death can occur by either apoptotic or necrotic mechanisms. The microvessel factor is neurospecific, killing primary cortical neurons, cerebellar granule neurons, and differentiated PC-12 cells, but not non-neuronal cell types or undifferentiated PC-12 cells. Appearance of the neurotoxic factor is decreased by blocking microvessel protein synthesis with cycloheximide. The neurotoxic factor is soluble and likely a protein, because its activity is heat labile and trypsin sensitive. These findings implicate a novel mechanism of vascular-mediated neuronal cell death in Alzheimer's disease.  (+info)

Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. (5/5972)

Thrombospondin-1 is an extracellular matrix protein that inhibits endothelial cell proliferation, migration, and angiogenesis. This study was performed to investigate the role of thrombospondin-1 in ischemic retinal neovascularization. In a murine model of retinal neovascularization, thrombospondin-1 mRNA was increased from postnatal day 13 (P13), with a threefold peak response observed on P15, corresponding to the time of development of retinal neovascularization. Prominent expression of thrombospondin-1 was observed in neovascular cells, specifically, cells adjacent to the area of nonperfusion. It has been suggested that vascular endothelial growth factor (VEGF) plays a major role in ischemia-induced retinal neovascularization of this model, so we studied the effects of VEGF on thrombospondin-1 expression. In bovine retinal microcapillary endothelial cells, VEGF induced a biphasic response of thrombospondin-1 expression; VEGF decreased thrombospondin-1 mRNA 0.41-fold after 4 hours, whereas it increased, with a threefold peak response, after 24 hours. VEGF-induced endothelial cell proliferation was completely inhibited by exogenous thrombospondin-1 and increased by 37.5% with anti-thrombospondin-1 antibody. The present findings suggest that, in the ischemic retina, retinal neovascular cells increase thrombospondin-1 expression, and VEGF may stimulate endogenous thrombospondin-1 induction, which inhibits endothelial cell growth. VEGF-mediated thrombospondin-1 induction in ischemia-induced angiogenesis may be a negative feedback mechanism.  (+info)

5'-Nucleotidase activity of mouse peritoneal macrophages. II. Cellular distribution and effects of endocytosis. (6/5972)

The diazonium salt of sulfanilic acid (DASA) can inactivate about 80% of the total 5'-nucleotidase of viable macrophages. The remaining 20% can be inactivated if the cells are first lysed in detergent, and presumably represents an intracellular pool of 5'-nucleotidase. The bulk of this pool may represent cytoplasmic vesicles derived from plasma membrane by endocytosis. This internal compartment is expanded up to threefold immediately after the cells have ingested a large latex load. This is consistent with previous observations on the internalization of 5'-nucleotidase in latex phagosomes. In latex-filled cells this intracellular pool of enzyme is inactivated over a few hours, and the cells then slowly increase their enzyme activity to nearly normal levels. However, 24 h after latex ingestion the metabolism of 5'-nucleotidase in these recovered cells is abnormal, as the rate of enzyme degradation is about twice the normal rate, and the DASA-insensitive enzyme pool in these cells is strikingly diminished. This may reflect effects of the accumulated indigestible particles on the fate of incoming pinocytic vesicles or on newly synthesized plasma membrane precursor. Another endocytic stimulus, concanavalin A, also reduces the total cell 5'-nucleotidase activity. This effect, which is time and temperature dependent, can be prevented by the competitive sugar alpha-methyl mannose. The concanavalin A inhibition can be reversed in the absence of new protein synthesis or in cells cultivated in serum-free conditions. It is not known whether the effect of concanavalin A on 5'-nucleotidase depends upon the interiorizaiton of plasma membrane or is strictly associated with events at the cell surface.  (+info)

CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo. (7/5972)

cAMP activated insertion of the cystic fibrosis transmembrane conductance regulator (CFTR) channels from endosomes to the apical plasma membrane has been hypothesized to regulate surface expression and CFTR function although the physiologic relevance of this remains unclear. We previously identified a subpopulation of small intestinal villus epithelial cells or CFTR high expressor (CHE) cells possessing very high levels of apical membrane CFTR in association with a prominent subapical vesicular pool of CFTR. We have examined the subcellular redistribution of CFTR in duodenal CHE cells in vivo in response to the cAMP activated secretagogue vasoactive intestinal peptide (VIP). Using anti-CFTR antibodies against the C terminus of rodent CFTR and indirect immunofluorescence, we show by quantitative confocal microscopy that CFTR rapidly redistributes from the cytoplasm to the apical surface upon cAMP stimulation by VIP and returns to the cytoplasm upon removal of VIP stimulation of intracellular cAMP levels. Using ultrastructural and confocal immunofluorescence examination in the presence or absence of cycloheximide, we also show that redistribution was not dependent on new protein synthesis, changes in endocytosis, or rearrangement of the apical cytoskeleton. These observations suggest that physiologic cAMP activated apical membrane insertion and recycling of CFTR channels in normal CFTR expressing epithelia contributes to the in vivo regulation of CFTR mediated anion transport.  (+info)

Expression of atrC - encoding a novel member of the ATP binding cassette transporter family in Aspergillus nidulans - is sensitive to cycloheximide. (8/5972)

A new member of the ABC superfamily of transmembrane proteins in Aspergillus nidulans has been cloned and characterized. The topology of conserved motifs subgroups AtrC in the P-glycoprotein cluster of ABC permeases, the members of this subfamily, are known to participate in multidrug resistance (MDR) in diverse organisms. Alignment results display significant amino acid similarity to AfuMDR1 and AflMDR1 from Aspergillus fumigatus and flavus, respectively. Northern analysis reveals that atrC mRNA levels are 10-fold increased in response to cycloheximide. Evidence for the existence of eight additional hitherto unpublished ABC transporter proteins in A. nidulans is provided.  (+info)

Cycloheximide is an antibiotic that is primarily used in laboratory settings to inhibit protein synthesis in eukaryotic cells. It is derived from the actinobacteria species Streptomyces griseus. In medical terms, it is not used as a therapeutic drug in humans due to its significant side effects, including liver toxicity and potential neurotoxicity. However, it remains a valuable tool in research for studying protein function and cellular processes.

The antibiotic works by binding to the 60S subunit of the ribosome, thereby preventing the transfer RNA (tRNA) from delivering amino acids to the growing polypeptide chain during translation. This inhibition of protein synthesis can be lethal to cells, making cycloheximide a useful tool in studying cellular responses to protein depletion or misregulation.

In summary, while cycloheximide has significant research applications due to its ability to inhibit protein synthesis in eukaryotic cells, it is not used as a therapeutic drug in humans because of its toxic side effects.

Protein synthesis inhibitors are a class of medications or chemical substances that interfere with the process of protein synthesis in cells. Protein synthesis is the biological process by which cells create proteins, essential components for the structure, function, and regulation of tissues and organs. This process involves two main stages: transcription and translation.

Translation is the stage where the genetic information encoded in messenger RNA (mRNA) is translated into a specific sequence of amino acids, resulting in a protein molecule. Protein synthesis inhibitors work by targeting various components of the translation machinery, such as ribosomes, transfer RNAs (tRNAs), or translation factors, thereby preventing or disrupting the formation of new proteins.

These inhibitors have clinical applications in treating various conditions, including bacterial and viral infections, cancer, and autoimmune disorders. Some examples of protein synthesis inhibitors include:

1. Antibiotics: Certain antibiotics, like tetracyclines, macrolides, aminoglycosides, and chloramphenicol, target bacterial ribosomes and inhibit their ability to synthesize proteins, thereby killing or inhibiting the growth of bacteria.
2. Antiviral drugs: Protein synthesis inhibitors are used to treat viral infections by targeting various stages of the viral replication cycle, including protein synthesis. For example, ribavirin is an antiviral drug that can inhibit viral RNA-dependent RNA polymerase and mRNA capping, which are essential for viral protein synthesis.
3. Cancer therapeutics: Some chemotherapeutic agents target rapidly dividing cancer cells by interfering with their protein synthesis machinery. For instance, puromycin is an aminonucleoside antibiotic that can be incorporated into elongating polypeptide chains during translation, causing premature termination and inhibiting overall protein synthesis in cancer cells.
4. Immunosuppressive drugs: Protein synthesis inhibitors are also used as immunosuppressants to treat autoimmune disorders and prevent organ rejection after transplantation. For example, tacrolimus and cyclosporine bind to and inhibit the activity of calcineurin, a protein phosphatase that plays a crucial role in T-cell activation and cytokine production.

In summary, protein synthesis inhibitors are valuable tools for treating various diseases, including bacterial and viral infections, cancer, and autoimmune disorders. By targeting the protein synthesis machinery of pathogens or abnormal cells, these drugs can selectively inhibit their growth and proliferation while minimizing harm to normal cells.

Dactinomycin is an antineoplastic antibiotic, which means it is used to treat cancer. It is specifically used to treat certain types of testicular cancer, Wilms' tumor (a type of kidney cancer that occurs in children), and some gestational trophoblastic tumors (a type of tumor that can develop in the uterus after pregnancy). Dactinomycin works by interfering with the DNA in cancer cells, which prevents them from dividing and growing. It is often used in combination with other chemotherapy drugs as part of a treatment regimen.

Dactinomycin is administered intravenously (through an IV) and its use is usually limited to hospitals or specialized cancer treatment centers due to the need for careful monitoring during administration. Common side effects include nausea, vomiting, and hair loss. More serious side effects can include bone marrow suppression, which can lead to an increased risk of infection, and tissue damage at the site where the drug is injected. Dactinomycin can also cause severe allergic reactions in some people.

It's important to note that dactinomycin should only be used under the supervision of a qualified healthcare professional, as its use requires careful monitoring and management of potential side effects.

Puromycin is an antibiotic and antiviral protein synthesis inhibitor. It works by being incorporated into the growing peptide chain during translation, causing premature termination and release of the incomplete polypeptide. This results in the inhibition of protein synthesis and ultimately leads to cell death. In research, puromycin is often used as a selective agent in cell culture to kill cells that have not been transfected with a plasmid containing a resistance gene for puromycin.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Emetine is a medication that is derived from the plant ipecacuanha. It is an alkaloid that has been used in the treatment of certain parasitic infections, particularly those caused by intestinal amoebae. Emetine works by inhibiting protein synthesis in the parasites, which helps to eliminate them from the body.

Emetine is administered orally or by injection and is typically used as a last resort when other treatments have failed. It can cause significant side effects, including nausea, vomiting, and diarrhea, as well as more serious complications such as heart rhythm abnormalities and muscle weakness. As a result, its use is generally restricted to cases where the benefits of treatment outweigh the risks.

It's important to note that emetine should only be used under the close supervision of a healthcare provider, and its use carries a number of precautions and contraindications. It is not recommended for use in pregnant women or people with certain medical conditions, such as heart disease or kidney disease.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Leucine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through the diet. It is one of the three branched-chain amino acids (BCAAs), along with isoleucine and valine. Leucine is critical for protein synthesis and muscle growth, and it helps to regulate blood sugar levels, promote wound healing, and produce growth hormones.

Leucine is found in various food sources such as meat, dairy products, eggs, and certain plant-based proteins like soy and beans. It is also available as a dietary supplement for those looking to increase their intake for athletic performance or muscle recovery purposes. However, it's important to consult with a healthcare professional before starting any new supplement regimen.

Enzyme induction is a process by which the activity or expression of an enzyme is increased in response to some stimulus, such as a drug, hormone, or other environmental factor. This can occur through several mechanisms, including increasing the transcription of the enzyme's gene, stabilizing the mRNA that encodes the enzyme, or increasing the translation of the mRNA into protein.

In some cases, enzyme induction can be a beneficial process, such as when it helps the body to metabolize and clear drugs more quickly. However, in other cases, enzyme induction can have negative consequences, such as when it leads to the increased metabolism of important endogenous compounds or the activation of harmful procarcinogens.

Enzyme induction is an important concept in pharmacology and toxicology, as it can affect the efficacy and safety of drugs and other xenobiotics. It is also relevant to the study of drug interactions, as the induction of one enzyme by a drug can lead to altered metabolism and effects of another drug that is metabolized by the same enzyme.

Dexamethasone is a type of corticosteroid medication, which is a synthetic version of a natural hormone produced by the adrenal glands. It is often used to reduce inflammation and suppress the immune system in a variety of medical conditions, including allergies, asthma, rheumatoid arthritis, and certain skin conditions.

Dexamethasone works by binding to specific receptors in cells, which triggers a range of anti-inflammatory effects. These include reducing the production of chemicals that cause inflammation, suppressing the activity of immune cells, and stabilizing cell membranes.

In addition to its anti-inflammatory effects, dexamethasone can also be used to treat other medical conditions, such as certain types of cancer, brain swelling, and adrenal insufficiency. It is available in a variety of forms, including tablets, liquids, creams, and injectable solutions.

Like all medications, dexamethasone can have side effects, particularly if used for long periods of time or at high doses. These may include mood changes, increased appetite, weight gain, acne, thinning skin, easy bruising, and an increased risk of infections. It is important to follow the instructions of a healthcare provider when taking dexamethasone to minimize the risk of side effects.

Anisomycin is an antibiotic derived from the bacterium Streptomyces griseolus. It is a potent inhibitor of protein synthesis and has been found to have antitumor, antiviral, and immunosuppressive properties. In medicine, it has been used experimentally in the treatment of some types of cancer, but its use is limited due to its significant side effects, including neurotoxicity.

In a medical or scientific context, 'anisomycin' refers specifically to this antibiotic compound and not to any general concept related to aniso- (meaning "unequal" or "asymmetrical") or -mycin (suffix indicating a bacterial antibiotic).

Pactamycin is an antitumor antibiotic that is produced by the bacterium Streptomyces pactum. It works by inhibiting protein synthesis in cells, which can ultimately lead to cell death. Pactamycin has been studied for its potential use in treating various types of cancer, although it is not currently approved for clinical use in humans.

In addition to its antitumor activity, pactamycin has also been found to have antibacterial and antiviral properties. However, its use as a therapeutic agent is limited by its toxicity, which can cause side effects such as hearing loss, kidney damage, and bone marrow suppression.

It's important to note that pactamycin is primarily used in research settings to study its mechanisms of action and potential therapeutic uses. It should only be handled by trained professionals in a controlled laboratory environment.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Nucleic acid synthesis inhibitors are a class of antimicrobial, antiviral, or antitumor agents that block the synthesis of nucleic acids (DNA or RNA) by interfering with enzymes involved in their replication. These drugs can target various stages of nucleic acid synthesis, including DNA transcription, replication, and repair, as well as RNA transcription and processing.

Examples of nucleic acid synthesis inhibitors include:

1. Antibiotics like quinolones (e.g., ciprofloxacin), rifamycins (e.g., rifampin), and trimethoprim, which target bacterial DNA gyrase, RNA polymerase, or dihydrofolate reductase, respectively.
2. Antiviral drugs like reverse transcriptase inhibitors (e.g., zidovudine, lamivudine) and integrase strand transfer inhibitors (e.g., raltegravir), which target HIV replication by interfering with viral enzymes required for DNA synthesis.
3. Antitumor drugs like antimetabolites (e.g., methotrexate, 5-fluorouracil) and topoisomerase inhibitors (e.g., etoposide, doxorubicin), which interfere with DNA replication and repair in cancer cells.

These drugs have been widely used for treating various bacterial and viral infections, as well as cancers, due to their ability to selectively inhibit the growth of target cells without affecting normal cellular functions significantly. However, they may also cause side effects related to their mechanism of action or off-target effects on non-target cells.

I couldn't find a medical definition for "Depression, Chemical" as it is not a recognized medical term. However, I can provide you with information about chemical imbalances in the brain that are associated with depression.

Major depressive disorder (MDD), commonly referred to as depression, is believed to be caused by a combination of genetic, environmental, and physiological factors. While there is no definitive evidence that depression is solely caused by a "chemical imbalance," neurotransmitter irregularities in the brain are associated with depressive symptoms. Neurotransmitters are chemical messengers that transmit signals in the brain and other parts of the body. Some of the primary neurotransmitters involved in mood regulation include serotonin, norepinephrine, and dopamine.

In depression, it is thought that there may be alterations in the functioning of these neurotransmitter systems, leading to an imbalance. For example:

1. Serotonin: Low levels of serotonin are associated with depressive symptoms. Selective serotonin reuptake inhibitors (SSRIs), a common class of antidepressants, work by increasing the availability of serotonin in the synapse (the space between neurons) to improve communication between brain cells.
2. Norepinephrine: Imbalances in norepinephrine levels can contribute to depressive symptoms and anxiety. Norepinephrine reuptake inhibitors (NRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs) are medications that target norepinephrine to help alleviate depression.
3. Dopamine: Deficiencies in dopamine can lead to depressive symptoms, anhedonia (the inability to feel pleasure), and motivation loss. Some antidepressants, like bupropion, work by increasing dopamine levels in the brain.

In summary, while "Chemical Depression" is not a recognized medical term, chemical imbalances in neurotransmitter systems are associated with depressive symptoms. However, depression is a complex disorder that cannot be solely attributed to a single cause or a simple chemical imbalance. It is essential to consider multiple factors when diagnosing and treating depression.

Tritium is not a medical term, but it is a term used in the field of nuclear physics and chemistry. Tritium (symbol: T or 3H) is a radioactive isotope of hydrogen with two neutrons and one proton in its nucleus. It is also known as heavy hydrogen or superheavy hydrogen.

Tritium has a half-life of about 12.3 years, which means that it decays by emitting a low-energy beta particle (an electron) to become helium-3. Due to its radioactive nature and relatively short half-life, tritium is used in various applications, including nuclear weapons, fusion reactors, luminous paints, and medical research.

In the context of medicine, tritium may be used as a radioactive tracer in some scientific studies or medical research, but it is not a term commonly used to describe a medical condition or treatment.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

RNA (Ribonucleic Acid) is a single-stranded, linear polymer of ribonucleotides. It is a nucleic acid present in the cells of all living organisms and some viruses. RNAs play crucial roles in various biological processes such as protein synthesis, gene regulation, and cellular signaling. There are several types of RNA including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). These RNAs differ in their structure, function, and location within the cell.

Chloramphenicol is an antibiotic medication that is used to treat a variety of bacterial infections. It works by inhibiting the ability of bacteria to synthesize proteins, which essential for their growth and survival. This helps to stop the spread of the infection and allows the body's immune system to clear the bacteria from the body.

Chloramphenicol is a broad-spectrum antibiotic, which means that it is effective against many different types of bacteria. It is often used to treat serious infections that have not responded to other antibiotics. However, because of its potential for serious side effects, including bone marrow suppression and gray baby syndrome, chloramphenicol is usually reserved for use in cases where other antibiotics are not effective or are contraindicated.

Chloramphenicol can be given by mouth, injection, or applied directly to the skin in the form of an ointment or cream. It is important to take or use chloramphenicol exactly as directed by a healthcare provider, and to complete the full course of treatment even if symptoms improve before all of the medication has been taken. This helps to ensure that the infection is fully treated and reduces the risk of antibiotic resistance.

Tetradecanoylphorbol acetate (TPA) is defined as a pharmacological agent that is a derivative of the phorbol ester family. It is a potent tumor promoter and activator of protein kinase C (PKC), a group of enzymes that play a role in various cellular processes such as signal transduction, proliferation, and differentiation. TPA has been widely used in research to study PKC-mediated signaling pathways and its role in cancer development and progression. It is also used in topical treatments for skin conditions such as psoriasis.

Uridine is a nucleoside that consists of a pyrimidine base (uracil) linked to a pentose sugar (ribose). It is a component of RNA, where it pairs with adenine. Uridine can also be found in various foods such as beer, broccoli, yeast, and meat. In the body, uridine can be synthesized from orotate or from the breakdown of RNA. It has several functions, including acting as a building block for RNA, contributing to energy metabolism, and regulating cell growth and differentiation. Uridine is also available as a dietary supplement and has been studied for its potential benefits in various health conditions.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Colchicine is a medication that is primarily used to treat gout, a type of arthritis characterized by sudden and severe attacks of pain, swelling, redness, and tenderness in the joints. It works by reducing inflammation and preventing the formation of uric acid crystals that cause gout symptoms.

Colchicine is also used to treat familial Mediterranean fever (FMF), a genetic disorder that causes recurrent fevers and inflammation in the abdomen, chest, and joints. It can help prevent FMF attacks and reduce their severity.

The medication comes in the form of tablets or capsules that are taken by mouth. Common side effects of colchicine include diarrhea, nausea, vomiting, and abdominal pain. In rare cases, it can cause more serious side effects such as muscle weakness, nerve damage, and bone marrow suppression.

It is important to follow the dosage instructions carefully when taking colchicine, as taking too much of the medication can be toxic. People with certain health conditions, such as liver or kidney disease, may need to take a lower dose or avoid using colchicine altogether.

Amanitins are a type of bicyclic octapeptide toxin found in several species of mushrooms belonging to the Amanita genus, including the death cap (Amanita phalloides) and the destroying angel (Amanita virosa). These toxins are part of the group of compounds known as amatoxins.

Amanitins are highly toxic to humans and other animals, affecting the liver and kidneys in particular. They work by inhibiting RNA polymerase II, an enzyme that plays a crucial role in gene expression by transcribing DNA into messenger RNA (mRNA). This interference with protein synthesis can lead to severe damage to cells and tissues, potentially resulting in organ failure and death if left untreated.

Symptoms of amanitin poisoning typically appear in two phases. The first phase, which occurs within 6-24 hours after ingestion, includes gastrointestinal distress such as vomiting, diarrhea, and abdominal pain. This initial phase may subside for a short period, giving a false sense of recovery. However, the second phase, which can occur 3-7 days later, is characterized by liver and kidney damage, with symptoms such as jaundice, disorientation, seizures, coma, and ultimately, multiple organ failure if not treated promptly and effectively.

Treatment for amanitin poisoning usually involves supportive care, such as fluid replacement and addressing any complications that arise. In some cases, medications like silibinin (from milk thistle) or activated charcoal may be used to help reduce the absorption and toxicity of the amanitins. Additionally, liver transplantation might be considered in severe cases where organ failure is imminent. Prevention is key when it comes to amanitin poisoning, as there is no antidote available. Being able to identify and avoid potentially deadly mushrooms is essential for foragers and those who enjoy gathering wild fungi.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

DEAE-Dextran is a water-soluble polymer that is often used in biochemistry and molecular biology research. The acronym "DEAE" stands for diethylaminoethyl, which is a type of charged group that can bind to and interact with negatively charged molecules such as DNA. Dextran is a type of sugar polymer that makes the DEAE groups more soluble in water.

In research settings, DEAE-Dextran is commonly used to precipitate DNA or to create complexes with DNA that can be used for various purposes, such as transfection (the process of introducing genetic material into cells). The positive charge of the DEAE groups allows them to interact strongly with the negative charges on the DNA molecule, forming a stable complex that can be taken up by cells.

It's important to note that DEAE-Dextran is not used in clinical medicine, but rather as a research tool in laboratory settings.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

I apologize for the confusion, but "Bucladesine" is not a recognized medical term or a medication in current use in medicine. It's possible that there may be some mistake or typo in the spelling. If you have any more context about where you encountered this term, I might be able to provide a more accurate and helpful response.

Ornithine decarboxylase (ODC) is a medical/biochemical term that refers to an enzyme (EC involved in the metabolism of amino acids, particularly ornithine. This enzyme catalyzes the decarboxylation of ornithine to form putrescine, which is a precursor for the synthesis of polyamines, such as spermidine and spermine. Polyamines play crucial roles in various cellular processes, including cell growth, differentiation, and gene expression.

Ornithine decarboxylase is a rate-limiting enzyme in polyamine biosynthesis, meaning that its activity regulates the overall production of these molecules. The regulation of ODC activity is tightly controlled at multiple levels, including transcription, translation, and post-translational modifications. Dysregulation of ODC activity has been implicated in several pathological conditions, such as cancer, neurodegenerative disorders, and inflammatory diseases.

Inhibitors of ornithine decarboxylase have been explored as potential therapeutic agents for various diseases, including cancer, due to their ability to suppress polyamine synthesis and cell proliferation. However, the use of ODC inhibitors in clinical settings has faced challenges related to toxicity and limited efficacy.

Peptide biosynthesis is the process by which cells synthesize peptides, short chains of amino acids. This process is mediated by enzymes called peptide synthetases, which catalyze the formation of peptide bonds between individual amino acids to create a longer chain. Peptide biosynthesis typically occurs through one of two pathways: ribosomal or non-ribosomal.

Ribosomal peptide biosynthesis involves the use of the cell's translational machinery, including the ribosome and transfer RNAs (tRNAs), to synthesize peptides from a messenger RNA (mRNA) template. This process is highly regulated and typically results in the production of small, linear peptides that are further modified by enzymes to create bioactive molecules such as hormones or neurotransmitters.

Non-ribosomal peptide biosynthesis (NRPS), on the other hand, is a more complex process that involves large multifunctional enzyme complexes called non-ribosomal peptide synthetases (NRPSs). These enzymes are capable of synthesizing a wide variety of structurally diverse peptides, including cyclic and branched peptides, as well as those containing non-proteinogenic amino acids. NRPSs typically consist of multiple modules, each responsible for adding a single amino acid to the growing peptide chain. The modular nature of NRPS systems allows for great diversity in the types of peptides that can be synthesized, making them important sources of bioactive molecules with potential therapeutic applications.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Deoxyadenosine is a chemical compound that is a component of DNA, one of the nucleic acids that make up the genetic material of living organisms. Specifically, deoxyadenosine is a nucleoside, which is a molecule consisting of a sugar (in this case, deoxyribose) bonded to a nitrogenous base (in this case, adenine).

Deoxyribonucleosides like deoxyadenosine are the building blocks of DNA, along with phosphate groups. In DNA, deoxyadenosine pairs with thymidine via hydrogen bonds to form one of the four rungs in the twisted ladder structure of the double helix.

It is important to note that there is a similar compound called adenosine, which contains an extra oxygen atom on the sugar molecule (making it a ribonucleoside) and is a component of RNA, another nucleic acid involved in protein synthesis and other cellular processes.

Polyribosomes, also known as polysomes, are clusters of ribosomes that are translating the same mRNA molecule simultaneously. They can be found in the cytoplasm of eukaryotic cells and are responsible for the synthesis of proteins. The mRNA molecule serves as a template for the translation process, with multiple ribosomes moving along it and producing multiple copies of the same protein. This allows for efficient and rapid production of large quantities of a single protein. Polyribosomes can be found in high numbers in cells that are actively synthesizing proteins, such as secretory cells or cells undergoing growth and division.

Cytochalasin B is a fungal metabolite that inhibits actin polymerization in cells, which can disrupt the cytoskeleton and affect various cellular processes such as cell division and motility. It is often used in research to study actin dynamics and cell shape.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

In the context of pharmacology, "half-life" refers to the time it takes for the concentration or amount of a drug in the body to be reduced by half during its elimination phase. This is typically influenced by factors such as metabolism and excretion rates of the drug. It's a key factor in determining dosage intervals and therapeutic effectiveness of medications, as well as potential side effects or toxicity risks.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Antimetabolites are a class of drugs that interfere with the normal metabolic processes of cells, particularly those involved in DNA replication and cell division. They are commonly used as chemotherapeutic agents to treat various types of cancer because many cancer cells divide more rapidly than normal cells. Antimetabolites work by mimicking natural substances needed for cell growth and division, such as nucleotides or amino acids, and getting incorporated into the growing cells' DNA or protein structures, which ultimately leads to the termination of cell division and death of the cancer cells. Examples of antimetabolites include methotrexate, 5-fluorouracil, and capecitabine.

Aminoisobutyric acids are a type of compounds that contain an amino group (-NH2) and an isobutyric acid group. Isobutyric acid is a type of short-chain fatty acid with the chemical formula (CH3)2CHCO2H. Aminoisobutyric acids can be found in some natural sources, such as certain types of bacteria, and they can also be synthesized in the laboratory for use in research and other applications.

There are several different isomers of aminoisobutyric acid, depending on the position of the amino group relative to the carbon chain. The most common isomer is 2-aminoisobutyric acid, also known as 2-methylalanine or 2-methylpropionic acid. This compound is a naturally occurring amino acid that is found in some proteins and is used in research to study protein structure and function.

Other isomers of aminoisobutyric acid include 3-aminoisobutyric acid, which is also known as tert-leucine or 2-methylbutyric acid, and 4-aminoisobutyric acid, which is also known as neopentylamine or 2,2-dimethylpropionic acid. These compounds are less common than 2-aminoisobutyric acid and have different chemical properties and uses.

In general, aminoisobutyric acids are used in research to study a variety of biological processes, including protein folding, enzyme function, and cell signaling. They can also be used as building blocks for the synthesis of other chemicals and materials.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Ribosomes are complex macromolecular structures composed of ribonucleic acid (RNA) and proteins that play a crucial role in protein synthesis within cells. They serve as the site for translation, where messenger RNA (mRNA) is translated into a specific sequence of amino acids to create a polypeptide chain, which eventually folds into a functional protein.

Ribosomes consist of two subunits: a smaller subunit and a larger subunit. These subunits are composed of ribosomal RNA (rRNA) molecules and proteins. In eukaryotic cells, the smaller subunit is denoted as the 40S subunit, while the larger subunit is referred to as the 60S subunit. In prokaryotic cells, these subunits are named the 30S and 50S subunits, respectively. The ribosome's overall structure resembles a "doughnut" or a "cotton reel," with grooves and binding sites for various factors involved in protein synthesis.

Ribosomes can be found floating freely within the cytoplasm of cells or attached to the endoplasmic reticulum (ER) membrane, forming part of the rough ER. Membrane-bound ribosomes are responsible for synthesizing proteins that will be transported across the ER and ultimately secreted from the cell or inserted into the membrane. In contrast, cytoplasmic ribosomes synthesize proteins destined for use within the cytoplasm or organelles.

In summary, ribosomes are essential components of cells that facilitate protein synthesis by translating mRNA into functional polypeptide chains. They can be found in various cellular locations and exist as either free-floating entities or membrane-bound structures.

Disulfoton is a type of organophosphate pesticide that is used to control a variety of insects in agricultural settings. It functions as a cholinesterase inhibitor, disrupting the normal functioning of the nervous system in insects and leading to their death. However, disulfoton can also have toxic effects on humans and other mammals if ingested, inhaled, or absorbed through the skin. Therefore, it is important to use appropriate safety measures when handling this chemical.

The medical definition of Disulfoton is:

A colorless to light brown oily liquid organophosphate insecticide and acaricide. It is used for control of soil-inhabiting pests on a wide variety of crops, including corn, soybeans, potatoes, and ornamentals. Disulfoton is also used as a termiticide and a molluscicide. It acts by inhibition of cholinesterase. Exposure may occur through ingestion, inhalation, or skin absorption. Symptoms of exposure include nausea, vomiting, diarrhea, abdominal cramps, headache, dizziness, and tightness in the chest. Severe exposure can lead to respiratory failure, convulsions, unconsciousness, and death. Disulfoton is considered a highly toxic compound.

Culture techniques are methods used in microbiology to grow and multiply microorganisms, such as bacteria, fungi, or viruses, in a controlled laboratory environment. These techniques allow for the isolation, identification, and study of specific microorganisms, which is essential for diagnostic purposes, research, and development of medical treatments.

The most common culture technique involves inoculating a sterile growth medium with a sample suspected to contain microorganisms. The growth medium can be solid or liquid and contains nutrients that support the growth of the microorganisms. Common solid growth media include agar plates, while liquid growth media are used for broth cultures.

Once inoculated, the growth medium is incubated at a temperature that favors the growth of the microorganisms being studied. During incubation, the microorganisms multiply and form visible colonies on the solid growth medium or turbid growth in the liquid growth medium. The size, shape, color, and other characteristics of the colonies can provide important clues about the identity of the microorganism.

Other culture techniques include selective and differential media, which are designed to inhibit the growth of certain types of microorganisms while promoting the growth of others, allowing for the isolation and identification of specific pathogens. Enrichment cultures involve adding specific nutrients or factors to a sample to promote the growth of a particular type of microorganism.

Overall, culture techniques are essential tools in microbiology and play a critical role in medical diagnostics, research, and public health.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

... was reported in 1946 by Alma Joslyn Whiffen-Barksdale at the Upjohn Company. Cycloheximide can be used as an ... Cycloheximide has also been used to make isolation of bacteria from environmental samples easier. Cycloheximide has been used ... Cycloheximide is a naturally occurring fungicide produced by the bacterium Streptomyces griseus. Cycloheximide exerts its ... it should be cultured in a medium free of cycloheximide. Acetoxycycloheximide Cycloheximide chase Müller, Franz; Ackermann, ...
Disadvantages Some disadvantages to conducting cycloheximide chase assays include the toxic nature of cycloheximide. When used ... Cycloheximide chases can be used with a wide variety of model systems and can be implemented to study almost any protein ... For this reason, cycloheximide chases do not typically last for more than 12 hours. This presents a limitation if the turnover ... Cycloheximide is relatively inexpensive compound compared to other drugs and it is effective when used in low doses for short ...
Sisler, Hugh D.; Siegel, Malcolm R. (1967). "Cycloheximide and Other Glutarimide Antibiotics". Mechanism of Action. pp. 283-307 ... and cycloheximide, a potent inhibitor of protein synthesis. Glutarimide - Sigma-Aldrich Paris, G.; Berlinguet, L.; Gaudry, R.; ...
It is also cycloheximide resistant. C. punctatus can reproduce both in sexual and asexual forms. The teleomorph phase is ...
This species is sensitive to cycloheximide. As this species may be slow to emerge from clinical materials, specimens in which ...
Cycloheximide Mahy, Brian W J (2001). A dictionary of virology (3. ed.). San Diego, Calif. [u.a.]: Academic Press. pp. 2. ISBN ... It can be considered as the acetylated analogue of cycloheximide. It is a potent protein synthesis inhibitor in animal cells ...
... also grows on 0.01% cycloheximide. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, ...
... produces acetoxycycloheximide, aciphenol, albanoursin and cycloheximide. List of Streptomyces species LPSN ...
Yagisawa F; Nishida K; Okano Y; Minoda A; Tanaka K; Kuroiwa T (2004). "Isolation of cycloheximide-resistant mutants of ...
... is resistant to the antifungal agent cycloheximide. However the growth of this species is inhibited by ...
Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin". Nat Chem Biol. 6 (3): 209-217. doi: ... One toxic inhibitor of eukaryotic translation elongation is the glutarimide antibiotic cycloheximide (CHX), which has been co- ...
March 2010). "Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin". Nature Chemical Biology. 6 ...
These include anisomycin, cycloheximide, chloramphenicol, tetracycline, streptomycin, erythromycin, and puromycin. Prokaryotic ...
Adding cycloheximide can inhibit the growth of bacterivores without affecting some bacterial species, but it has also been ... Tremaine, Sarah C. Mills, Aaron L. (1987). "Inadequacy of the Eucaryote Inhibitor Cycloheximide in Studies of Protozoan Grazing ... "Cycloheximide: Aspects of Inhibition of Protein Synthesis in Mammalian Cells". Science. 146 (3650): 1474-1476. Bibcode:1964Sci ...
List of mycologists Cycloheximide Achlya bisexualis "Alma Whiffen Barksdale (1916-1981)". Smithsonian Institution Archives. ... While there, she discovered the chemical cycloheximide (trade name Actidione), an anti-fungal and anti-bacterial agent produced ... Alma Joslyn Whiffen-Barksdale (October 25, 1916 - July 5, 1981) was an American mycologist who discovered cycloheximide. She ...
It has been shown to adapt to famous antibiotics like cycloheximide, trichodermin and amphotericin B. Cells adapted to ... Shearer G, Jr; Sypherd, PS (March 1988). "Cycloheximide efflux in antibiotic-adapted cells of the fungus Mucor racemosus". ... cycloheximide particularly have been observed to be 40-times more resistant than non-adapted cells to the drug. These adapted ...
This is commonly performed with cycloheximide but other chemicals can be employed. It is also possible to forgo translation ... RNA-ribosome complexes Cycloheximide Nucleases Phenol/Chloroform Reverse transcriptase dNTPs Sequencing method-cDNA library. ... The other elongating regions can be detected by adding antibiotics like cycloheximide that inhibit translocation, ...
"Conservative segregation of parental histones during replication in the presence of cycloheximide". Proc Natl Acad Sci USA. 76 ...
Abe Fumiyoshi; Hiraki Toshiki (2009). "Mechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in ...
Like many other dermatophytes, M. nanum is tolerant of the antifungal agent cycloheximide. In addition, M. nanum also exhibits ...
Treatment with cycloheximide, a non-specific protein synthesis inhibitor, enhances parthenote development in swine presumably ... "Effects of Cycloheximide on Parthenogenetic Development of Pig Oocytes Activated by Ultrasound Treatment". Journal of ...
1988). "Human adrenodoxin: cloning of three cDNAs and cycloheximide enhancement in JEG-3 cells". J. Biol. Chem. 263 (7): 3240-4 ...
Finally, it was also shown that this delay occurred even with short pulses of cycloheximide, confirming that an unstable ... It was later shown that treatment with the protein synthesis inhibitor cycloheximide delayed Start in yeast, indicating that ... "Inhibition of DNA synthesis in synchronized Chinese hamster cells treated in G1 with cycloheximide". Experimental Cell Research ...
Baliga BS, Pronczuk AW, Munro HN (August 1969). "Mechanism of cycloheximide inhibition of protein synthesis in a cell-free ... Obrig TG, Culp WJ, McKeehan WL, Hardesty B (January 1971). "The mechanism by which cycloheximide and related glutarimide ...
... rubrum cultures can be isolated on both cycloheximide-containing media and cycloheximide-free media. The latter are ... In primary outgrowth on Sabouraud dextrose agar with cycloheximide and antibacterials, contaminating organisms may cause ...
CLS growth is essentially unaffected by antibiotic treatment with chloramphenicol, as well as by cycloheximide. After 5 days of ...
Unlike in the case of dimorphic pathogenic fungi, growth of C. bertholletiae is inhibited by cycloheximide. As a member of the ...
Both S. hyalinum and N. dimidiatum are resistant to treatment by griseofulvin and susceptible to cycloheximide. It is sensitive ...
... grows in a range of media including in the presence of the antifungal agent, cycloheximide. Colonies of ...
MC916-C4, a cycloheximide-producing strain, by Umezawa et al. Subsequent testing has shown its capabilities as an anticancer ...
Cycloheximide was reported in 1946 by Alma Joslyn Whiffen-Barksdale at the Upjohn Company. Cycloheximide can be used as an ... Cycloheximide has also been used to make isolation of bacteria from environmental samples easier. Cycloheximide has been used ... Cycloheximide is a naturally occurring fungicide produced by the bacterium Streptomyces griseus. Cycloheximide exerts its ... it should be cultured in a medium free of cycloheximide. Acetoxycycloheximide Cycloheximide chase Müller, Franz; Ackermann, ...
... and Cycloheximide (CHI) etc., have shown that cycloheximide is a versatile candidate for studies on inhibition of protein ... 6). Cycloheximide has been found to delay senescence and inhibit flower opening in Dianthus, Hemerocallis, Gladiolus and Iris ( ... The effect of cycloheximide in delaying the senescence does not seem to be due to improvement of water balance of cut Nerine ... Cycloheximide has been shown to rapidly reduce the rate of transpiration and water uptake in Iris tepals which apparently was ...
View our 46 GSK-3 beta products for your research including GSK-3 beta Primary Antibodies, Small Molecules, ELISAs, and Proteins and Enzymes.
Cycloheximide. References[edit]. .mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw- ...
... plus cycloheximide (CHX) can permit PI penetration while the cell body continues to exclude the nucleic acid stain (Figure 1a ...
Cycloheximide / pharmacology * Lidocaine / pharmacology * Optic Nerve / growth & development* * Protein Synthesis Inhibitors / ...
Cycloheximide (CHX), long recognized for its ability to inhibit protein synthesis, has been widely employed in studies of cell ... N2 - Cycloheximide (CHX), long recognized for its ability to inhibit protein synthesis, has been widely employed in studies of ... AB - Cycloheximide (CHX), long recognized for its ability to inhibit protein synthesis, has been widely employed in studies of ... abstract = "Cycloheximide (CHX), long recognized for its ability to inhibit protein synthesis, has been widely employed in ...
Cycloheximide and disulfoton are positive in the photoclastogencity assay but do not absorb UV irradiation: another example of ... Follow-up testing showed that neither cycloheximide nor disulfoton was positive in the 3T3-NRU assay, the standard in vitro ... The results showed that cycloheximide, disulfoton and tetracycline were clastogenic in CHO cells following UVR exposure (solar- ... These data suggest that both cycloheximide and disulfoton are pseudophotoclastogens, like zinc oxide. Together, these data ...
involved_in cellular response to cycloheximide IEA Inferred from Electronic Annotation. more info ...
Cycloheximide (CHX) (Sigma) was dissolved in ethanol (EtOH).. The MTT assay was performed for drug sensitivity assays using ...
60 μm cycloheximide for 30 min, and protein synthesis measured ± 60 μm cycloheximide for an additional 30 min. This experiment ... For cycloheximide (60 μm; performed in WT), CA1 MPEP (10 μm), U0126 (5 μm), and rapamycin (20 nm) experiments, slices were ... 3), but was eliminated by cycloheximide (supplemental Fig. S1, available at as supplemental material). ... cycloheximide (EMD Biosciences), U0126, and SL 327 were reconstituted according to manufacturers instructions and either used ...
What effect does Cycloheximide have when added to media? • Prevents rapidly growing environmental molds from overgrowing ... Fungal Culture Media • Mycosel/Mycobiotic agar • Selective SABS agar with chloramphenicol and cycloheximide • Used for ... sensitive to cycloheximide - • Mucoid colonies due to capsule polysaccharide formation • Urease enzyme + Inositol assimilation ... Can inhibit bacterial growth by adding chloramphenicol and cycloheximide • Can add blood to agar to nurture systemic fungi • ...
Cycloheximide-treated McCoy cells are commonly used to culture chlamydia. Different McCoy cell lines exist and some have ...
Cycloheximide was obtained from MedChem Express (Princeton, NJ, USA).. 2.3. Cell Culture. HCT116 cells were kindly provided by ... Cycloheximide (CHX) Reversed 125I Seeds Radiation-Induced Cytoplasmic Vacuolization. As we know, protein synthesis is required ... Cycloheximide reversed 125I seeds radiation-induced cell death and cytoplasmic vacuolization. HCT116 cells were pretreated with ... We found cycloheximide reversed 125I seeds radiation-induced cytoplasmic vacuolization (Figure 6). These unique morphological ...
... of the nucleotidic and amino acidic sequences of the smORFs and is sensitive to the ribosome-stalling drug cycloheximide, ... Cycloheximide, Actinomycin D and NMDI14 were purchased from Sigma.. 4.2. Plasmids and dsRNAs. The pri-miR-155 and pri-miR-497 ... Since WT pri-miR-8 is sensitive to cycloheximide, this also suggests a link between ribosome and pri-miRNA processing. To date ... cells transfected with the WT pri-miR-497 were treated with the translation inhibitor cycloheximide (CHX). CHX treatment for 1h ...
Categories: Cycloheximide Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, CopyrightRestricted 4 ...
cycloheximide. KO. knock out. Cdc25C. cell division cycle 25C. CDK. cyclin-dependent kinase. ATM. ataxia telangiectasia mutated ... Cycloheximide or Chk2 inhibitor pretreatment abrogated not only activation of Chk2 but also G2/M arrest and apoptosis mediated ...
Cycloheximide. Sigma-Aldrich. Catalogue number: 66-81-9. Chemical compound, drug. MG-132. Sigma-Aldrich. Catalogue number: ... We first performed a cycloheximide-chase experiment using HCT116p53+/+ cells. As shown in Figure 3A and B, knockdown of SPIN1 ... A) HCT116p53+/+ cells transfected with scramble or SPIN1 siRNA for 48 hr, were treated with 100 μg/ml of cycloheximide (CHX), ... HCT116p53+/+ cells transfected with pcDNA or Flag-SPIN1 for 48 hr were treated with 100 μg/ml of cycloheximide and harvested at ...
Cycloheximide (Cicloheximide) 6. DNA (Deoxyribonucleic Acid) 7. Aphidicolin 8. Vidarabine (Vira-A) ...
I grew them on AOAC plates (a Lactobacillus medium) supplemented with cycloheximide. Propagated the lacto in liquid AOAC at ~ ...
Medium without cycloheximide (Sabouraud glucose agar, Littman oxgall medium, or inhibitory mold agar) isolates yeasts and ... Medium with cycloheximide (dermatophyte test medium [DTM], Mycosel, or Mycobiotic) selects for dermatophytes ...
Upon addition of cycloheximide, WT-TRPM4 decayed with a half-life of ̴ 20 hours, while loss-of-expression variants showed a ̴ ... Upon addition of cycloheximide, WT-TRPM4 decayed with a half-life of ~20 h, while loss-of-expression variants showed a ~30% ... protein turnover of WT-TRPM4 and TRPM4 variants overexpressed in HEK293 cells was analyzed using cycloheximide, an inhibitor of ... protein turnover of WT-TRPM4 and TRPM4 variants overexpressed in HEK293 cells was analyzed using cycloheximide, an inhibitor of ...
Cycloheximide-treated McCoy cells are commonly used to culture chlamydia. Different McCoy cell lines exist and some have ...
Cyclohexamide. Sigma. Catalog No: C7698-1G.. Molecular biology reagent. RNAse Inhibitor. New England BioLabs. Catalog No: ... 0.02 mg/mL cycloheximide, 0.012M MgCl2, RNAse inhibitors, Heparin, 0.5 mM DTT). Tissue lysates were centrifuged at 10k-rcf for ... cyclohexamide, 0.5 mM DTT) three times and then eluted with 350 µL of buffer RLT (Qiagen RNeasy kit). Input and ...
Culturing is performed routinely with Sabouraud agar and the addition of cycloheximide and chloramphenicol. These substances ...
Cycloheximide. Retinoblastoma Protein. Proto-Oncogene Proteins c-myc. Proto-Oncogene Proteins c-jun. Proto-Oncogene Proteins c- ... Cycloheximide/pharmacology. G1 Phase/physiology*. Human. Microinjections. Protein p53/physiology*. Proto-Oncogene Proteins c- ...
Cycloheximide treatment of both homozygous EC clones resulted in a 13-fold increase in the F3 mRNA level, whereas no ... derived from each BLK or HOM clone following 3 hours treatment with 100 μM cycloheximide (CHX) or vehicle. Relative mRNA ... iPSCs differentiated into ECs and VSMCs were treated with 100 μM cycloheximide (Roche) or ethanol vehicle for 3 hours before ... cells were treated with the ribosomal inhibitor cycloheximide to test whether the variant mRNA transcript could be rescued from ...
  • Translation is halted via the addition of cycloheximide, and the DNA/RNA in the cell is then nuclease treated. (
  • Upon addition of cycloheximide, WT-TRPM4 decayed with a half-life of ~20 h, while loss-of-expression variants showed a ~30% increase in degradation rate, with a half-life close to 12 h. (
  • Culturing is performed routinely with Sabouraud agar and the addition of cycloheximide and chloramphenicol. (
  • We isolated P. orbiculare on a peptone-glucose-yeast extract medium containing chloramphenicol and cycloheximide, and overlaid with olive oil. (
  • Cycloheximide or Chk2 inhibitor pretreatment abrogated not only activation of Chk2 but also G 2 /M arrest and apoptosis mediated by DIM. (
  • In consequence, protein turnover of WT-TRPM4 and TRPM4 variants overexpressed in HEK293 cells was analyzed using cycloheximide, an inhibitor of protein biosynthesis. (
  • Cycloheximide is a protein synthesis inhibitor in eukaryotic cells. (
  • Cycloheximide exerts its effects by interfering with the translocation step in protein synthesis (movement of two tRNA molecules and mRNA in relation to the ribosome), thus blocking eukaryotic translational elongation. (
  • Cycloheximide is widely used in biomedical research to inhibit protein synthesis in eukaryotic cells studied in vitro (i.e. outside of organisms). (
  • Mitochondrial protein synthesis is resistant to inhibition by cycloheximide. (
  • Cycloheximide, an active antibiotic against many yeast and fungi, inhibits protein synthesis. (
  • Sur 35 échantillons de boue cultivés sur de la gélose de Sabouraud avec du cycloheximide et du chloramphénicol, 326 colonies fongiques appartenant à sept espèces ont été isolées. (
  • A study was conducted to determine the effects of pretreatment at varying concentrations of Cycloheximide (CHI) on senescence and postharvest performance in Nerine sarniensis . (
  • The present study was undertaken to investigate the effects of pretreatment with different concentrations of Cycloheximide (CHI) before transfer to Distilled Water (DW) or Sucrose (0.15 M) on senescence with the ultimate aim to gain an insight into the mechanism of senescence and to improve its postharvest performance. (
  • Cycloheximide has been used to isolate dermatophytes and inhibit the growth of fungi in brewing test media. (
  • In general, GoldBio's Molecular Grade cycloheximide is suitable for most experiments. (
  • The translational elongation freezing properties of cycloheximide are also used for ribosome profiling / translational profiling. (
  • Treating cells with cycloheximide in a time-course experiment followed by western blotting of the cell lysates for the protein of interest can show differences in protein half-life. (
  • To explore this further, four coded compounds ( aminotriazole , propantheline bromide , cycloheximide and disulfoton ) were evaluated for their potential response in a photoclastogenicity assay in cultured Chinese hamster ovary (CHO) cells . (
  • The results showed that cycloheximide , disulfoton and tetracycline were clastogenic in CHO cells following UVR exposure (solar-simulated light at 700 mJ/cm(2)) but not in the absence of UVR. (
  • It can be grown on any of these cell lines treated with cycloheximide: McCoy, HEp-2, HeLa, or buffalo green monkey cells. (
  • Cycloheximide has also been used to make isolation of bacteria from environmental samples easier. (
  • The following represents susceptibility data for a few commonly targeted fungi: Candida albicans: 12.5 μg/ml Mycosphaerella graminicola: 47.2 μg/ml - 85.4 μg/ml Saccharomyces cerevisiae: 0.05 μg/ml - 1.6 μg/ml Neoscytalidium dimidiatum is an Athlete's foot like infection resistant to most antifungals but is rather sensitive to cycloheximide, so, it should be cultured in a medium free of cycloheximide. (
  • The presence of keratinophilic fungi occur abundantly in the keratinophilic fungi was confirmed by sludge environment and the influence of en lowpower microscopic examination. (
  • Because cycloheximide rapidly breaks down in a basic environment, decontamination of work surfaces and containers can be achieved by washing with a non-harmful alkali solution such as soapy water or aqueous sodium bicarbonate. (
  • I grew them on AOAC plates (a Lactobacillus medium) supplemented with cycloheximide. (
  • cycloheximide 0.5 g/L were added to the Also, Sharquie, Al-Rubyae and Al-Rawi medium. (
  • The fact that cycloheximide delays tepal senescence demonstrates the synthesis of particular proteins probably enzymes, responsible for degradation of cellular constituents, executes the cell death programme in flower tepals. (
  • Anti-apoptotic actions of cycloheximide: Blockade of programmed cell death or induction of programmed cell life? (
  • Dive into the research topics of 'Anti-apoptotic actions of cycloheximide: Blockade of programmed cell death or induction of programmed cell life? (
  • Due to significant toxic side effects, including DNA damage, teratogenesis, and other reproductive effects (including birth defects and toxicity to sperm), cycloheximide is generally used only in in vitro research applications, and is not suitable for human use as a therapeutic compound. (
  • Agin V, Chichery R, Maubert E, Chichery M-P (2003) Time-dependent effects of cycloheximide on long-term memory in the cuttlefish. (
  • 3. When nuclear division was reversibly suppressed by cycloheximide, each of the primary and secondary spermatocytes sprouted frequently 2-4 flagella. (
  • Cyclohex99 is the most pure form of cycloheximide available. (
  • Cycloheximide can be used to study cellular processes and inhibit yeast growth. (
  • Cycloheximide can be used as an experimental tool in molecular biology to determine the half-life of a protein. (
  • Cycloheximide treatment provides the ability to observe the half-life of a protein without confounding contributions from transcription or translation. (
  • The following represents susceptibility data for a few commonly targeted fungi: Candida albicans: 12.5 μg/ml Mycosphaerella graminicola: 47.2 μg/ml - 85.4 μg/ml Saccharomyces cerevisiae: 0.05 μg/ml - 1.6 μg/ml Neoscytalidium dimidiatum is an Athlete's foot like infection resistant to most antifungals but is rather sensitive to cycloheximide, so, it should be cultured in a medium free of cycloheximide. (
  • The glutarimide antibiotic cycloheximide was added to the culture medium used for incubating the cells after infection. (
  • The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis in reticulocyte ribosomes. (
  • A through I. In a study of 194 cervical and urethral specimens from women, cycloheximide treatment of McCoy cells was found to be more efficient than 5-iodo-2-deoxyuridine treatment for the isolation of C. trachomatis. (
  • It can be grown on any of these cell lines treated with cycloheximide: McCoy, HEp-2, HeLa, or buffalo green monkey cells. (
  • We isolated P. orbiculare on a peptone-glucose-yeast extract medium containing chloramphenicol and cycloheximide, and overlaid with olive oil. (
  • Cycloheximide has been used to isolate dermatophytes and inhibit the growth of fungi in brewing test media. (
  • The cycloheximide-resistant isolate was strongly keratinolytic and identified as a Chrysosporium anamorph of Nannizziopsis vriesii ( 1 , 2 ). (
  • Mitochondrial protein synthesis is resistant to inhibition by cycloheximide. (
  • 15. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. (
  • Cycloheximide and disulfoton are positive in the photoclastogencity assay but do not absorb UV irradiation: another example of pseudophotoclastogenicity? (
  • Follow-up testing showed that neither cycloheximide nor disulfoton was positive in the 3T3-NRU assay, the standard in vitro regulatory test for phototoxicity , a result consistent with their inability to absorb UVR. (
  • Administration of cycloheximide inhibits the rise in N-acetyltransferase and N-acetylserotonin, but not melatonin. (
  • Recovery of enzymatic activity in vivo, which occurred within 24 h of low-dose MDMA treatment, appeared not to involve synthesis of new enzyme protein, because the return of enzymatic activity was not prevented by prior cycloheximide. (
  • The TGF-beta 1-mediated l-proline uptake was inhibited by cycloheximide or actinomycin D. Kinetic studies indicated that TGF-beta 1-induced l-proline transport was mediated by an increase in transport capacity independent of any changes in the affinity for l-proline. (
  • Cycloheximide chase experiments were performed to detect the half-life of SNAIL1. (
  • Regulation of TCDD-induced degradation of Ah receptor by cycloheximide. (
  • Cycloheximide alone produced superinduction of H 1 receptor mRNA and augmented the fenoterol-induced increase in H 1 receptor mRNA. (
  • However, the fact that PDGF alpha-receptor mRNA could not be detected by Northern blot analysis, even after cycloheximide treatment, suggests a difference in steady-state PDGF alpha-receptor mRNA expression levels between normal and malignant mesothelial cell lines, which is likely to be caused by a post-transcriptional mechanism. (
  • Cycloheximide treatment provides the ability to observe the half-life of a protein without confounding contributions from transcription or translation. (
  • Unexpectedly, 5-methoxytryptophol increases after cycloheximide treatment. (
  • Cycloheximide exerts its effects by interfering with the translocation step in protein synthesis (movement of two tRNA molecules and mRNA in relation to the ribosome), thus blocking eukaryotic translational elongation. (
  • Cycloheximide can be used as an experimental tool in molecular biology to determine the half-life of a protein. (
  • The degradation of 5-LO correlates with increased activity of caspase-8 and -6 and can be prevented by the protein synthesis inhibitor cycloheximide. (
  • These data suggest that both cycloheximide and disulfoton are pseudophotoclastogens, like zinc oxide . (
  • Genetic Toxicity Evaluation of Cycloheximide in Salmonella/E.coli Mutagenicity Test or Ames Test. (