A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators.
A broadly expressed type D cyclin. Experiments using KNOCKOUT MICE suggest a role for cyclin D3 in LYMPHOCYTE development.
Protein kinases that control cell cycle progression in all eukaryotes and require physical association with CYCLINS to achieve full enzymatic activity. Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events.
A cyclin D subtype which is regulated by GATA4 TRANSCRIPTION FACTOR. Experiments using KNOCKOUT MICE suggest a role for cyclin D2 in granulosa cell proliferation and gonadal development.
A cyclin subtype that has specificity for CDC2 PROTEIN KINASE and CYCLIN-DEPENDENT KINASE 2. It plays a role in progression of the CELL CYCLE through G1/S and G2/M phase transitions.
A cyclin subtype that is specific for CYCLIN-DEPENDENT KINASE 4 and CYCLIN-DEPENDENT KINASE 6. Unlike most cyclins, cyclin D expression is not cyclical, but rather it is expressed in response to proliferative signals. Cyclin D may therefore play a role in cellular responses to mitogenic signals.
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
A 50-kDa protein that complexes with CYCLIN-DEPENDENT KINASE 2 in the late G1 phase of the cell cycle.
A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 5; cyclin G associated kinase, and PROTEIN PHOSPHATASE 2.
The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors.
Protein encoded by the bcl-1 gene which plays a critical role in regulating the cell cycle. Overexpression of cyclin D1 is the result of bcl-1 rearrangement, a t(11;14) translocation, and is implicated in various neoplasms.
A widely-expressed cyclin A subtype that functions during the G1/S and G2/M transitions of the CELL CYCLE.
Cyclin-dependent kinase 4 is a key regulator of G1 PHASE of the CELL CYCLE. It partners with CYCLIN D to phosphorylate RETINOBLASTOMA PROTEIN. CDK4 activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P16.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A key regulator of CELL CYCLE progression. It partners with CYCLIN E to regulate entry into S PHASE and also interacts with CYCLIN A to phosphorylate RETINOBLASTOMA PROTEIN. Its activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P27 and CYCLIN-DEPENDENT KINASE INHIBITOR P21.
Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.
Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.
A cyclin B subtype that colocalizes with MICROTUBULES during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.
A cyclin G subtype that is constitutively expressed throughout the cell cycle. Cyclin G1 is considered a major transcriptional target of TUMOR SUPPRESSOR PROTEIN P53 and is highly induced in response to DNA damage.
A family of cell cycle-dependent kinases that are related in structure to CDC28 PROTEIN KINASE; S CEREVISIAE; and the CDC2 PROTEIN KINASE found in mammalian species.
Product of the retinoblastoma tumor suppressor gene. It is a nuclear phosphoprotein hypothesized to normally act as an inhibitor of cell proliferation. Rb protein is absent in retinoblastoma cell lines. It also has been shown to form complexes with the adenovirus E1A protein, the SV40 T antigen, and the human papilloma virus E7 protein.
A cyclin A subtype primarily found in male GERM CELLS. It may play a role in the passage of SPERMATOCYTES into meiosis I.
Cyclin-dependent kinase 6 associates with CYCLIN D and phosphorylates RETINOBLASTOMA PROTEIN during G1 PHASE of the CELL CYCLE. It helps regulate the transition to S PHASE and its kinase activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P18.
A protein kinase encoded by the Saccharomyces cerevisiae CDC28 gene and required for progression from the G1 PHASE to the S PHASE in the CELL CYCLE.
A cyclin-dependent kinase inhibitor that coordinates the activation of CYCLIN and CYCLIN-DEPENDENT KINASES during the CELL CYCLE. It interacts with active CYCLIN D complexed to CYCLIN-DEPENDENT KINASE 4 in proliferating cells, while in arrested cells it binds and inhibits CYCLIN E complexed to CYCLIN-DEPENDENT KINASE 2.
A group of cell cycle proteins that negatively regulate the activity of CYCLIN/CYCLIN-DEPENDENT KINASE complexes. They inhibit CELL CYCLE progression and help control CELL PROLIFERATION following GENOTOXIC STRESS as well as during CELL DIFFERENTIATION.
A cyclin B subtype that colocalizes with GOLGI APPARATUS during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.
Complexes of enzymes that catalyze the covalent attachment of UBIQUITIN to other proteins by forming a peptide bond between the C-terminal GLYCINE of UBIQUITIN and the alpha-amino groups of LYSINE residues in the protein. The complexes play an important role in mediating the selective-degradation of short-lived and abnormal proteins. The complex of enzymes can be broken down into three components that involve activation of ubiquitin (UBIQUITIN-ACTIVATING ENZYMES), conjugation of ubiquitin to the ligase complex (UBIQUITIN-CONJUGATING ENZYMES), and ligation of ubiquitin to the substrate protein (UBIQUITIN-PROTEIN LIGASES).
An E3 ubiquitin ligase primarily involved in regulation of the metaphase-to-anaphase transition during MITOSIS through ubiquitination of specific CELL CYCLE PROTEINS. Enzyme activity is tightly regulated through subunits and cofactors, which modulate activation, inhibition, and substrate specificity. The anaphase-promoting complex, or APC-C, is also involved in tissue differentiation in the PLACENTA, CRYSTALLINE LENS, and SKELETAL MUSCLE, and in regulation of postmitotic NEURONAL PLASTICITY and excitability.
Proteins coded by oncogenes. They include proteins resulting from the fusion of an oncogene and another gene (ONCOGENE PROTEINS, FUSION).
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Cdh1 is an activator of the anaphase-promoting complex-cyclosome, and is involved in substrate recognition. It associates with the complex in late MITOSIS from anaphase through G1 to regulate activity of CYCLIN-DEPENDENT KINASES and to prevent premature DNA replication.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3.
The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point.
The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Proteins found in any species of fungus.
Highly conserved proteins that specifically bind to and activate the anaphase-promoting complex-cyclosome, promoting ubiquitination and proteolysis of cell-cycle-regulatory proteins. Cdc20 is essential for anaphase-promoting complex activity, initiation of anaphase, and cyclin proteolysis during mitosis.
Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development.
A cyclin subtype that binds to the CYCLIN-DEPENDENT KINASE 3 and CYCLIN-DEPENDENT KINASE 8. Cyclin C plays a dual role as a transcriptional regulator and a G1 phase CELL CYCLE regulator.
An aspect of protein kinase (EC 2.7.1.37) in which serine residues in protamines and histones are phosphorylated in the presence of ATP.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.
A highly conserved subunit of the anaphase-promoting complex (APC-C) containing multiple 34-amino-acid tetratricopeptide repeats. These domains, also found in Apc3, Apc6, and Apc7, have been shown to mediate protein-protein interactions, suggesting that Apc8 may assist in coordinating the juxtaposition of the catalytic and substrate recognition module subunits relative to coactivators and APC-C inhibitors.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A class in the phylum MOLLUSCA comprised of mussels; clams; OYSTERS; COCKLES; and SCALLOPS. They are characterized by a bilaterally symmetrical hinged shell and a muscular foot used for burrowing and anchoring.
The process by which the CELL NUCLEUS is divided.
A family of basic helix-loop-helix transcription factors that control expression of a variety of GENES involved in CELL CYCLE regulation. E2F transcription factors typically form heterodimeric complexes with TRANSCRIPTION FACTOR DP1 or transcription factor DP2, and they have N-terminal DNA binding and dimerization domains. E2F transcription factors can act as mediators of transcriptional repression or transcriptional activation.
An order of fungi in the phylum Ascomycota that multiply by budding. They include the telomorphic ascomycetous yeasts which are found in a very wide range of habitats.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A family of proteins that share the F-BOX MOTIF and are involved in protein-protein interactions. They play an important role in process of protein ubiquition by associating with a variety of substrates and then associating into SCF UBIQUITIN LIGASE complexes. They are held in the ubiquitin-ligase complex via binding to SKP DOMAIN PROTEINS.
Regulatory signaling systems that control the progression through the CELL CYCLE. They ensure that the cell has completed, in the correct order and without mistakes, all the processes required to replicate the GENOME and CYTOPLASM, and divide them equally between two daughter cells. If cells sense they have not completed these processes or that the environment does not have the nutrients and growth hormones in place to proceed, then the cells are restrained (or "arrested") until the processes are completed and growth conditions are suitable.
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
The process by which a DNA molecule is duplicated.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6.
Genes that code for proteins that regulate the CELL DIVISION CYCLE. These genes form a regulatory network that culminates in the onset of MITOSIS by activating the p34cdc2 protein (PROTEIN P34CDC2).
Nuclear antigen with a role in DNA synthesis, DNA repair, and cell cycle progression. PCNA is required for the coordinated synthesis of both leading and lagging strands at the replication fork during DNA replication. PCNA expression correlates with the proliferation activity of several malignant and non-malignant cell types.
A cyclin-dependent kinase that forms a complex with CYCLIN C and is active during the G1 PHASE of the CELL CYCLE. It plays a role in the transition from G1 to S PHASE and in transcriptional regulation.
A quiescent state of cells during G1 PHASE.
A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes.
A family of proteins that are structurally-related to Ubiquitin. Ubiquitins and ubiquitin-like proteins participate in diverse cellular functions, such as protein degradation and HEAT-SHOCK RESPONSE, by conjugation to other proteins.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
A family of structurally-related proteins that were originally identified by their ability to complex with cyclin proteins (CYCLINS). They share a common domain that binds specifically to F-BOX MOTIFS. They take part in SKP CULLIN F-BOX PROTEIN LIGASES, where they can bind to a variety of F-BOX PROTEINS.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Established cell cultures that have the potential to propagate indefinitely.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Protein kinase that drives both the mitotic and meiotic cycles in all eukaryotic organisms. In meiosis it induces immature oocytes to undergo meiotic maturation. In mitosis it has a role in the G2/M phase transition. Once activated by CYCLINS; MPF directly phosphorylates some of the proteins involved in nuclear envelope breakdown, chromosome condensation, spindle assembly, and the degradation of cyclins. The catalytic subunit of MPF is PROTEIN P34CDC2.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
A ubiquitously expressed regulatory protein that contains a retinoblastoma protein binding domain and an AT-rich interactive domain. The protein may play a role in recruiting HISTONE DEACETYLASES to the site of RETINOBLASTOMA PROTEIN-containing transcriptional repressor complexes.
Regulatory signaling systems that control the progression of the CELL CYCLE through the G1 PHASE and allow transition to S PHASE when the cells are ready to undergo DNA REPLICATION. DNA DAMAGE, or the deficiencies in specific cellular components or nutrients may cause the cells to halt before progressing through G1 phase.
A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.
An E2F transcription factor that interacts directly with RETINOBLASTOMA PROTEIN and CYCLIN A and activates GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis. E2F1 is involved in DNA REPAIR and APOPTOSIS.
Together with the Apc11 subunit, forms the catalytic core of the E3 ubiquitin ligase anaphase-promoting complex (APC-C). Its N-terminus has cullin domains which associate with the RING FINGER DOMAINS of Apc11. Apc2 also interacts with the E2 ubiquitin ligases involved in APC-C ubiquitination reactions.
A transcription factor that possesses DNA-binding and E2F-binding domains but lacks a transcriptional activation domain. It is a binding partner for E2F TRANSCRIPTION FACTORS and enhances the DNA binding and transactivation function of the DP-E2F complex.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
An E2F transcription factor that represses GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis. E2F5 recruits chromatin remodeling factors indirectly to target gene promoters through RETINOBLASTOMA LIKE PROTEIN P130.
A subclass of dual specificity phosphatases that play a role in the progression of the CELL CYCLE. They dephosphorylate and activate CYCLIN-DEPENDENT KINASES.
A product of the p16 tumor suppressor gene (GENES, P16). It is also called INK4 or INK4A because it is the prototype member of the INK4 CYCLIN-DEPENDENT KINASE INHIBITORS. This protein is produced from the alpha mRNA transcript of the p16 gene. The other gene product, produced from the alternatively spliced beta transcript, is TUMOR SUPPRESSOR PROTEIN P14ARF. Both p16 gene products have tumor suppressor functions.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Securin is involved in the control of the metaphase-anaphase transition during MITOSIS. It promotes the onset of anaphase by blocking SEPARASE function and preventing proteolysis of cohesin and separation of sister CHROMATIDS. Overexpression of securin is associated with NEOPLASTIC CELL TRANSFORMATION and tumor formation.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
A highly evolutionarily conserved subunit of the anaphase-promoting complex (APC-C) containing multiple 34-amino-acid tetratricopeptide repeats. These domains, also found in Apc subunits 6, 7, and 8, have been shown to mediate protein-protein interactions, suggesting that Apc3 may assist in coordinating the juxtaposition of the catalytic and substrate recognition module subunits relative to co-activators and APC-C inhibitors.
Hormones produced by invertebrates, usually insects, mollusks, annelids, and helminths.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The functional hereditary units of FUNGI.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 9. Unlike traditional cyclins, which regulate the CELL CYCLE, type T cyclins appear to regulate transcription and are components of positive transcriptional elongation factor B.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
A cell line derived from cultured tumor cells.
A CELL CYCLE and tumor growth marker which can be readily detected using IMMUNOCYTOCHEMISTRY methods. Ki-67 is a nuclear antigen present only in the nuclei of cycling cells.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
The B-cell leukemia/lymphoma-1 genes, associated with various neoplasms when overexpressed. Overexpression results from the t(11;14) translocation, which is characteristic of mantle zone-derived B-cell lymphomas. The human c-bcl-1 gene is located at 11q13 on the long arm of chromosome 11.
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
A negative regulator of the CELL CYCLE that undergoes PHOSPHORYLATION by CYCLIN-DEPENDENT KINASES. It contains a conserved pocket region that binds E2F4 TRANSCRIPTION FACTOR and interacts with viral ONCOPROTEINS such as POLYOMAVIRUS TUMOR ANTIGENS; ADENOVIRUS E1A PROTEINS; and PAPILLOMAVIRUS E7 PROTEINS.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
A mixture of flavonoids extracted from seeds of the MILK THISTLE, Silybum marianum. It consists primarily of silybin and its isomers, silicristin and silidianin. Silymarin displays antioxidant and membrane stabilizing activity. It protects various tissues and organs against chemical injury, and shows potential as an antihepatoxic agent.
A circumscribed stable malformation of the skin and occasionally of the oral mucosa, which is not due to external causes and therefore presumed to be of hereditary origin.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
A negative regulator of the CELL CYCLE that undergoes PHOSPHORYLATION by CYCLIN-DEPENDENT KINASES. RBL2 contains a conserved pocket region that binds E2F4 TRANSCRIPTION FACTOR and E2F5 TRANSCRIPTION FACTOR. RBL2 also interacts with viral ONCOPROTEINS such as POLYOMAVIRUS TUMOR ANTIGENS; ADENOVIRUS E1A PROTEINS; and PAPILLOMAVIRUS E7 PROTEINS.
An INK4 cyclin-dependent kinase inhibitor containing five ANKYRIN-LIKE REPEATS. Aberrant expression of this protein has been associated with deregulated EPITHELIAL CELL growth, organ enlargement, and a variety of NEOPLASMS.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Transport proteins that carry specific substances in the blood or across cell membranes.
Elements of limited time intervals, contributing to particular results or situations.
An E2F transcription factor that interacts directly with RETINOBLASTOMA PROTEIN and CYCLIN A. E2F3 regulates GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
A subset of ubiquitin protein ligases that are formed by the association of a SKP DOMAIN PROTEIN, a CULLIN DOMAIN PROTEIN and a F-BOX DOMAIN PROTEIN.
An E2F transcription factor that interacts directly with RETINOBLASTOMA PROTEIN and CYCLIN A. E2F2 activates GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A class of enzymes that form a thioester bond to UBIQUITIN with the assistance of UBIQUITIN-ACTIVATING ENZYMES. They transfer ubiquitin to the LYSINE of a substrate protein with the assistance of UBIQUITIN-PROTEIN LIGASES.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER.

Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. (1/5371)

The cyclin-dependent kinase inhibitor p21waf1/Cip1 is a downstream effector of the p53-dependent cell growth arrest. We report herein that p21 was cleaved by caspase-3/CPP32 at the site of DHVD112L during the DNA damage-induced apoptosis of cancer cells. The cleaved p21 fragment could no more arrest the cells in G1 phase nor suppress the cells undergoing apoptosis because it failed to bind to the proliferating cell nuclear antigen (PCNA) and lost its capability to localize in the nucleus. Thus, caspase-3-mediated cleavage and inactivation of p21 protein may convert cancer cells from growth arrest to undergoing apoptosis, leading to the acceleration of chemotherapy-induced apoptotic process in cancer cells.  (+info)

Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. (2/5371)

The death mediator caspase acts as the dominant regulator during cell death induction. The CPP32 subfamily, including caspase 3 (CPP32/Yama/Apopain), is essential for the cell death signaling. We recently reported that activation of caspase 3 is regulated by complex formation with p21 or ILP. In the present study, we investigated the binding domain with p21 and ILP to further characterize the caspase 3 inactivation machinery. Our results show that caspase 3 contains p21 binding domain in the N-terminus and ILP binding domain in the active site. Further, the caspase 3 binding domain in p21 was independent of the Cdk- or PCNA-binding domain. We also found caspase 3 protection by p21 from the p3-site cleavage serineproteinase contributes to the suppression machinery. Here, we propose the caspase 3 inactivation system by p21 and ILP as new essential system in the regulation of cell death.  (+info)

Activation of telomerase and its association with G1-phase of the cell cycle during UVB-induced skin tumorigenesis in SKH-1 hairless mouse. (3/5371)

Telomerase is a ribonucleoprotein enzyme that adds hexanucleotide repeats TTAGGG to the ends of chromosomes. Telomerase activation is known to play a crucial role in cell-immortalization and carcinogenesis. Telomerase is shown to have a correlation with cell cycle progression, which is controlled by the regulation of cyclins, cyclin dependent kinases (cdks) and cyclin dependent kinase inhibitors (cdkis). Abnormal expression of these regulatory molecules may cause alterations in cell cycle with uncontrolled cell growth, a universal feature of neoplasia. Skin cancer is the most prevalent form of cancer in humans and the solar UV radiation is its major cause. Here, we investigated modulation in telomerase activity and protein expression of cell cycle regulatory molecules during the development of UVB-induced tumors in SKH-1 hairless mice. The mice were exposed to 180 mjoules/cm2 UVB radiation, thrice weekly for 24 weeks. The animals were sacrificed at 4 week intervals and the studies were performed in epidermis. Telomerase activity was barely detectable in the epidermis of non-irradiated mouse. UVB exposure resulted in a progressive increase in telomerase activity starting from the 4th week of exposure. The increased telomerase activity either persisted or further increased with the increased exposure. In papillomas and carcinomas the enzyme activity was comparable and was 45-fold higher than in the epidermis of control mice. Western blot analysis showed an upregulation in the protein expression of cyclin D1 and cyclin E and their regulatory subunits cdk4 and cdk2 during the course of UVB exposure and in papillomas and carcinomas. The protein expression of cdk6 and ckis viz. p16/Ink4A, p21/Waf1 and p27/Kip1 did not show any significant change in UVB exposed skin, but significant upregulation was observed both in papillomas and carcinomas. The results suggest that telomerase activation may be involved in UVB-induced tumorigenesis in mouse skin and that increased telomerase activity may be associated with G1 phase of the cell cycle.  (+info)

Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. (4/5371)

The D-type cyclins and their major kinase partners CDK4 and CDK6 regulate G0-G1-S progression by contributing to the phosphorylation and inactivation of the retinoblastoma gene product, pRB. Assembly of active cyclin D-CDK complexes in response to mitogenic signals is negatively regulated by INK4 family members. Here we show that although all four INK4 proteins associate with CDK4 and CDK6 in vitro, only p16(INK4a) can form stable, binary complexes with both CDK4 and CDK6 in proliferating cells. The other INK4 family members form stable complexes with CDK6 but associate only transiently with CDK4. Conversely, CDK4 stably associates with both p21(CIP1) and p27(KIP1) in cyclin-containing complexes, suggesting that CDK4 is in equilibrium between INK4 and p21(CIP1)- or p27(KIP1)-bound states. In agreement with this hypothesis, overexpression of p21(CIP1) in 293 cells, where CDK4 is bound to p16(INK4a), stimulates the formation of ternary cyclin D-CDK4-p21(CIP1) complexes. These data suggest that members of the p21 family of proteins promote the association of D-type cyclins with CDKs by counteracting the effects of INK4 molecules.  (+info)

Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. (5/5371)

Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  (+info)

Induced expression of p16(INK4a) inhibits both CDK4- and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. (6/5371)

To investigate the mode of action of the p16(INK4a) tumor suppressor protein, we have established U2-OS cells in which the expression of p16(INK4a) can be regulated by addition or removal of isopropyl-beta-D-thiogalactopyranoside. As expected, induction of p16(INK4a) results in a G1 cell cycle arrest by inhibiting phosphorylation of the retinoblastoma protein (pRb) by the cyclin-dependent kinases CDK4 and CDK6. However, induction of p16(INK4a) also causes marked inhibition of CDK2 activity. In the case of cyclin E-CDK2, this is brought about by reassortment of cyclin, CDK, and CDK-inhibitor complexes, particularly those involving p27(KIP1). Size fractionation of the cellular lysates reveals that a substantial proportion of CDK4 participates in active kinase complexes of around 200 kDa. Upon induction of p16(INK4a), this complex is partly dissociated, and the majority of CDK4 is found in lower-molecular-weight fractions consistent with the formation of a binary complex with p16(INK4a). Sequestration of CDK4 by p16(INK4a) allows cyclin D1 to associate increasingly with CDK2, without affecting its interactions with the CIP/KIP inhibitors. Thus, upon the induction of p16(INK4a), p27(KIP1) appears to switch its allegiance from CDK4 to CDK2, and the accompanying reassortment of components leads to the inhibition of cyclin E-CDK2 by p27(KIP1) and p21(CIP1). Significantly, p16(INK4a) itself does not appear to form higher-order complexes, and the overwhelming majority remains either free or forms binary associations with CDK4 and CDK6.  (+info)

Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. (7/5371)

The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1 cyclin-cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21(Sdi1,Cip1,Waf1), which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16(Ink4a), suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E- and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by +info)

Functions of cyclin A1 in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. (8/5371)

Human cyclin A1, a newly discovered cyclin, is expressed in testis and is thought to function in the meiotic cell cycle. Here, we show that the expression of human cyclin A1 and cyclin A1-associated kinase activities was regulated during the mitotic cell cycle. In the osteosarcoma cell line MG63, cyclin A1 mRNA and protein were present at very low levels in cells at the G0 phase. They increased during the progression of the cell cycle and reached the highest levels in the S and G2/M phases. Furthermore, the cyclin A1-associated histone H1 kinase activity peaked at the G2/M phase. We report that cyclin A1 could bind to important cell cycle regulators: the Rb family of proteins, the transcription factor E2F-1, and the p21 family of proteins. The in vitro interaction of cyclin A1 with E2F-1 was greatly enhanced when cyclin A1 was complexed with CDK2. Associations of cyclin A1 with Rb and E2F-1 were observed in vivo in several cell lines. When cyclin A1 was coexpressed with CDK2 in sf9 insect cells, the CDK2-cyclin A1 complex had kinase activities for histone H1, E2F-1, and the Rb family of proteins. Our results suggest that the Rb family of proteins and E2F-1 may be important targets for phosphorylation by the cyclin A1-associated kinase. Cyclin A1 may function in the mitotic cell cycle in certain cells.  (+info)

Cyclins are a family of regulatory proteins that play a crucial role in the cell cycle, which is the series of events that take place as a cell grows, divides, and produces two daughter cells. They are called cyclins because their levels fluctuate or cycle during the different stages of the cell cycle.

Cyclins function as subunits of serine/threonine protein kinase complexes, forming an active enzyme that adds phosphate groups to other proteins, thereby modifying their activity. This post-translational modification is a critical mechanism for controlling various cellular processes, including the regulation of the cell cycle.

There are several types of cyclins (A, B, D, and E), each of which is active during specific phases of the cell cycle:

1. Cyclin D: Expressed in the G1 phase, it helps to initiate the cell cycle by activating cyclin-dependent kinases (CDKs) that promote progression through the G1 restriction point.
2. Cyclin E: Active during late G1 and early S phases, it forms a complex with CDK2 to regulate the transition from G1 to S phase, where DNA replication occurs.
3. Cyclin A: Expressed in the S and G2 phases, it associates with both CDK2 and CDK1 to control the progression through the S and G2 phases and entry into mitosis (M phase).
4. Cyclin B: Active during late G2 and M phases, it partners with CDK1 to regulate the onset of mitosis by controlling the breakdown of the nuclear envelope, chromosome condensation, and spindle formation.

The activity of cyclins is tightly controlled through several mechanisms, including transcriptional regulation, protein degradation, and phosphorylation/dephosphorylation events. Dysregulation of cyclin expression or function can lead to uncontrolled cell growth and proliferation, which are hallmarks of cancer.

Cyclin D3 is a type of cyclin protein that regulates the cell cycle, particularly during the G1 phase. It forms a complex with and acts as a regulatory subunit of CDK4 or CDK6, which are cyclin-dependent kinases. This complex plays a crucial role in phosphorylating and inactivating the retinoblastoma protein (pRb), leading to the release of E2F transcription factors that promote the expression of genes required for DNA replication and cell cycle progression into the S phase.

Cyclin D3 is primarily expressed in activated lymphocytes and is essential for normal immune function, as well as in certain tissues during development. Alterations in CYCLIN D3 gene expression or function have been implicated in several types of cancer, such as leukemias and lymphomas, due to their role in uncontrolled cell proliferation.

Cyclin-dependent kinases (CDKs) are a family of serine/threonine protein kinases that play crucial roles in regulating the cell cycle, transcription, and other cellular processes. They are activated by binding to cyclin proteins, which accumulate and degrade at specific stages of the cell cycle. The activation of CDKs leads to phosphorylation of various downstream target proteins, resulting in the promotion or inhibition of different cell cycle events. Dysregulation of CDKs has been implicated in several human diseases, including cancer, and they are considered important targets for drug development.

Cyclin D2 is a type of cyclin protein that regulates the cell cycle, particularly in the G1 phase. It forms a complex with and acts as a regulatory subunit of cyclin-dependent kinase 4 (CDK4) or CDK6, promoting the transition from G1 to S phase of the cell cycle. The expression of cyclin D2 is regulated by various growth factors, hormones, and oncogenes, and its dysregulation has been implicated in the development of several types of cancer.

Cyclin A is a type of cyclin protein that regulates the progression of the cell cycle, particularly through the G1 and S phases. It forms a complex with and acts as a regulatory subunit for cyclin-dependent kinases (CDKs), specifically CDK2 and CDK1. The activation of Cyclin A-CDK complexes leads to phosphorylation of various target proteins, which in turn regulates DNA replication and the transition to mitosis.

Cyclin A levels rise during the late G1 phase and peak during the S phase, after which they decline rapidly during the G2 phase. Any abnormalities in Cyclin A regulation or expression can contribute to uncontrolled cell growth and cancer development.

Cyclin D is a type of cyclin protein that plays a crucial role in the regulation of the cell cycle, which is the process by which cells grow and divide. Specifically, Cyclin D is involved in the G1 phase of the cell cycle and works in conjunction with its partner enzyme, cyclin-dependent kinase 4 (CDK4) or CDK6, to phosphorylate and regulate the activity of several key proteins that control the transition from G1 to S phase.

There are several different types of Cyclin D proteins, including Cyclin D1, Cyclin D2, and Cyclin D3, which are encoded by different genes but share similar structures and functions. Overexpression or dysregulation of Cyclin D has been implicated in the development of various human cancers, as it can lead to uncontrolled cell growth and division. Therefore, understanding the role of Cyclin D in the cell cycle and its regulation is important for developing potential cancer therapies.

Cyclin B is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. Cyclin B binds and activates cyclin-dependent kinase 1 (CDK1), forming the complex known as M-phase promoting factor (MPF). This complex triggers the events leading to cell division, such as chromosome condensation, nuclear envelope breakdown, and spindle formation. The levels of cyclin B increase during the G2 phase and are degraded by the anaphase-promoting complex/cyclosome (APC/C) at the onset of anaphase, allowing the cell cycle to progress into the next phase.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

Cyclin E is a type of cyclin protein that plays a crucial role in the regulation of the cell cycle, particularly during the G1 phase and the transition to the S phase. It functions as a regulatory subunit of the Cyclin-dependent kinase 2 (CDK2) complex, which is responsible for promoting the progression of the cell cycle.

Cyclin E is synthesized during the late G1 phase of the cell cycle and accumulates to high levels until it forms a complex with CDK2. The Cyclin E-CDK2 complex then phosphorylates several target proteins, leading to the activation of various downstream pathways that promote DNA replication and cell cycle progression.

The regulation of Cyclin E expression and activity is tightly controlled through multiple mechanisms, including transcriptional regulation, protein stability, and proteasomal degradation. Dysregulation of Cyclin E has been implicated in various human cancers, including breast, ovarian, and lung cancer, due to its role in promoting uncontrolled cell proliferation and genomic instability.

Cyclin G is a type of protein that belongs to the cyclin family, which are involved in the regulation of the cell cycle. The human Cyclin G gene encodes two isoforms, Cyclin G1 and Cyclin G2, which share a similar structure but have different functions.

Cyclin G1 is known to play a role in the negative regulation of the cell cycle, particularly during the G1 phase. It interacts with several proteins, including CDKs (cyclin-dependent kinases), to regulate the activity of various transcription factors and other signaling pathways that control cell growth and division.

Cyclin G2, on the other hand, has been implicated in the regulation of DNA damage response and apoptosis (programmed cell death). It interacts with CDKs and other proteins to modulate the activity of various signaling pathways involved in these processes.

Overall, Cyclin G plays important roles in regulating cell cycle progression, DNA damage response, and apoptosis, and its dysregulation has been linked to several human diseases, including cancer.

The G1 phase, or Gap 1 phase, is the first phase of the cell cycle, during which the cell grows in size and synthesizes mRNA and proteins in preparation for subsequent steps leading to mitosis. During this phase, the cell also checks its growth and makes sure that it is large enough to proceed through the cell cycle. If the cell is not large enough, it will arrest in the G1 phase until it has grown sufficiently. The G1 phase is followed by the S phase, during which DNA replication occurs.

Cyclin D1 is a type of cyclin protein that plays a crucial role in the regulation of the cell cycle, which is the process by which cells divide and grow. Specifically, Cyclin D1 is involved in the transition from the G1 phase to the S phase of the cell cycle. It does this by forming a complex with and acting as a regulatory subunit of cyclin-dependent kinase 4 (CDK4) or CDK6, which phosphorylates and inactivates the retinoblastoma protein (pRb). This allows the E2F transcription factors to be released and activate the transcription of genes required for DNA replication and cell cycle progression.

Overexpression of Cyclin D1 has been implicated in the development of various types of cancer, as it can lead to uncontrolled cell growth and division. Therefore, Cyclin D1 is an important target for cancer therapy, and inhibitors of CDK4/6 have been developed to treat certain types of cancer that overexpress Cyclin D1.

Cyclin A2 is a type of cyclin protein that regulates the cell cycle, which is the series of events that cells undergo as they grow and divide. Specifically, Cyclin A2 plays a role in the progression from the G1 phase to the S phase (DNA synthesis phase) and from the G2 phase to the M phase (mitosis phase) of the cell cycle. It does this by binding to and activating cyclin-dependent kinases (CDKs), which are enzymes that help regulate the cell cycle.

Cyclin A2 is expressed at various points during the cell cycle, but its levels peak during the S and G2 phases. The protein is degraded during mitosis, ensuring that it is not present in excess during the next cell cycle. Dysregulation of Cyclin A2 has been implicated in the development of cancer, as uncontrolled cell growth and division are hallmarks of this disease.

Cyclin-Dependent Kinase 4 (CDK4) is a type of enzyme, specifically a serine/threonine protein kinase, that plays a crucial role in the regulation of the cell cycle. The cell cycle is the series of events that take place in a cell leading to its division and duplication. CDK4, when activated by binding to cyclin D, helps to promote the transition from the G1 phase to the S phase of the cell cycle. This transition is a critical point in the regulation of cell growth and division, and dysregulation of this process can lead to uncontrolled cell growth and cancer. CDK4 inhibitors are used in the treatment of certain types of cancer, such as breast and lung cancer, to block the activity of CDK4 and prevent tumor cell proliferation.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

Mitosis is a type of cell division in which the genetic material of a single cell, called the mother cell, is equally distributed into two identical daughter cells. It's a fundamental process that occurs in multicellular organisms for growth, maintenance, and repair, as well as in unicellular organisms for reproduction.

The process of mitosis can be broken down into several stages: prophase, prometaphase, metaphase, anaphase, and telophase. During prophase, the chromosomes condense and become visible, and the nuclear envelope breaks down. In prometaphase, the nuclear membrane is completely disassembled, and the mitotic spindle fibers attach to the chromosomes at their centromeres.

During metaphase, the chromosomes align at the metaphase plate, an imaginary line equidistant from the two spindle poles. In anaphase, sister chromatids are pulled apart by the spindle fibers and move toward opposite poles of the cell. Finally, in telophase, new nuclear envelopes form around each set of chromosomes, and the chromosomes decondense and become less visible.

Mitosis is followed by cytokinesis, a process that divides the cytoplasm of the mother cell into two separate daughter cells. The result of mitosis and cytokinesis is two genetically identical cells, each with the same number and kind of chromosomes as the original parent cell.

Cyclin-Dependent Kinase 2 (CDK2) is a type of enzyme that plays a crucial role in the regulation of the cell cycle, which is the process by which cells grow and divide. CDK2 is activated when it binds to a regulatory subunit called a cyclin.

During the cell cycle, CDK2 helps to control the progression from the G1 phase to the S phase, where DNA replication occurs. Specifically, CDK2 phosphorylates various target proteins that are involved in the regulation of DNA replication and the initiation of mitosis, which is the process of cell division.

CDK2 activity is tightly regulated through a variety of mechanisms, including phosphorylation, dephosphorylation, and protein degradation. Dysregulation of CDK2 activity has been implicated in various human diseases, including cancer. Therefore, CDK2 is an important target for the development of therapies aimed at treating these diseases.

In the context of cell biology, "S phase" refers to the part of the cell cycle during which DNA replication occurs. The "S" stands for synthesis, reflecting the active DNA synthesis that takes place during this phase. It is preceded by G1 phase (gap 1) and followed by G2 phase (gap 2), with mitosis (M phase) being the final stage of the cell cycle.

During S phase, the cell's DNA content effectively doubles as each chromosome is replicated to ensure that the two resulting daughter cells will have the same genetic material as the parent cell. This process is carefully regulated and coordinated with other events in the cell cycle to maintain genomic stability.

CDC2 protein kinase, also known as cell division cycle 2 or CDK1, is a type of enzyme that plays a crucial role in the regulation of the cell cycle. The cell cycle is the series of events that cells undergo as they grow, replicate their DNA, and divide into two daughter cells.

CDC2 protein kinase is a member of the cyclin-dependent kinase (CDK) family, which are serine/threonine protein kinases that are activated by binding to regulatory subunits called cyclins. CDC2 protein kinase is primarily associated with the regulation of the G2 phase and the entry into mitosis, the stage of the cell cycle where nuclear and cytoplasmic division occur.

CDC2 protein kinase functions by phosphorylating various target proteins, which alters their activity and contributes to the coordination of the different events that occur during the cell cycle. The activity of CDC2 protein kinase is tightly regulated through a variety of mechanisms, including phosphorylation and dephosphorylation, as well as the binding and destruction of cyclin subunits.

Dysregulation of CDC2 protein kinase has been implicated in various human diseases, including cancer, where uncontrolled cell division can lead to the formation of tumors. Therefore, understanding the regulation and function of CDC2 protein kinase is an important area of research in molecular biology and medicine.

Cyclin B1 is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. It forms a complex with and acts as a regulatory subunit of cyclin-dependent kinase 1 (CDK1), also known as CDC2. During the G2 phase, Cyclin B1 levels accumulate and upon reaching a certain threshold, it binds to CDK1 to form the maturation promoting factor (MPF). The activation of MPF triggers the onset of mitosis by promoting nuclear envelope breakdown, chromosome condensation, and other events required for cell division. After the completion of mitosis, Cyclin B1 is degraded by the ubiquitin-proteasome system, allowing the cell cycle to progress back into G1 phase.

Cyclin G1 is a type of protein that belongs to the cyclin family, which are involved in the regulation of the cell cycle. The cell cycle is the series of events that take place as a cell grows, copies its DNA, and divides into two daughter cells.

Cyclin G1 regulates the cell cycle by interacting with various cyclin-dependent kinases (CDKs), which are enzymes that help control the progression of the cell cycle. Specifically, Cyclin G1 has been shown to inhibit the activity of CDK1 and CDK2, which play important roles in regulating the transition from the G1 phase to the S phase of the cell cycle.

Cyclin G1 has also been implicated in other cellular processes, including DNA damage repair, apoptosis (programmed cell death), and tumor suppression. Dysregulation of Cyclin G1 has been linked to various types of cancer, making it a potential target for cancer therapy.

CDC2 and CDC28 are members of the Serine/Threonine protein kinase family, which play crucial roles in the regulation of the cell cycle. These kinases were originally identified in yeast (CDC28) and humans (CDC2), but they are highly conserved across eukaryotes.

CDC2-CDC28 Kinases function as a part of larger complexes, often associated with cyclins, to control different phases of the cell cycle by phosphorylating specific substrates at key regulatory points. The activity of CDC2-CDC28 Kinases is tightly regulated through various mechanisms, including phosphorylation, dephosphorylation, and protein binding interactions.

During the G2 phase of the cell cycle, CDC2-CDC28 Kinases are inactivated by phosphorylation at specific residues (Tyr15 and Thr14). As the cell approaches mitosis, a family of phosphatases called Cdc25 removes these inhibitory phosphates, leading to activation of the kinase. Activated CDC2-CDC28 Kinases then initiate mitotic processes such as chromosome condensation and nuclear envelope breakdown.

In summary, CDC2-CDC28 Kinases are essential regulators of the eukaryotic cell cycle, controlling various aspects of cell division through phosphorylation of specific substrates. Their activity is tightly regulated to ensure proper progression through the cell cycle and prevent uncontrolled cell growth, which can lead to diseases such as cancer.

Retinoblastoma Protein (pRb or RB1) is a tumor suppressor protein that plays a critical role in regulating the cell cycle and preventing uncontrolled cell growth. It is encoded by the RB1 gene, located on chromosome 13. The retinoblastoma protein functions as a regulatory checkpoint in the cell cycle, preventing cells from progressing into the S phase (DNA synthesis phase) until certain conditions are met.

When pRb is in its active state, it binds to and inhibits the activity of E2F transcription factors, which promote the expression of genes required for DNA replication and cell cycle progression. Phosphorylation of pRb by cyclin-dependent kinases (CDKs) leads to the release of E2F factors, allowing them to activate their target genes and drive the cell into S phase.

Mutations in the RB1 gene can result in the production of a nonfunctional or reduced amount of pRb protein, leading to uncontrolled cell growth and an increased risk of developing retinoblastoma, a rare form of eye cancer, as well as other types of tumors.

Cyclin A1 is a type of cyclin protein that regulates the cell cycle, particularly during the S and G2 phases. It forms a complex with and acts as a regulatory subunit of cyclin-dependent kinase 2 (CDK2), helping to control the transition from the G1 phase to the S phase and from the S phase to the G2 phase. Cyclin A1 is expressed in various tissues, including ovary, testis, bone marrow, and lymphoid cells. Overexpression or dysregulation of cyclin A1 has been implicated in several types of cancer, making it a potential target for cancer therapy.

Cyclin-Dependent Kinase 6 (CDK6) is a type of enzyme known as a protein kinase, which adds phosphate groups to other proteins in the cell. CDK6 is primarily involved in regulating the cell cycle, the process by which cells divide and grow.

CDK6 functions by binding to cyclin proteins, forming active complexes that help drive the progression of the cell cycle from one phase to the next. Specifically, CDK6 plays a crucial role in the transition from the G1 phase to the S phase of the cell cycle, where DNA replication occurs.

CDK6 activity is tightly regulated by various mechanisms, including phosphorylation and dephosphorylation, as well as by binding to inhibitory proteins such as p16INK4a and p21CIP1. Dysregulation of CDK6 has been implicated in the development of several types of cancer, making it a potential target for cancer therapy.

CDC28 protein kinase in Saccharomyces cerevisiae (Baker's yeast) is a crucial cell cycle regulator, specifically a cyclin-dependent kinase (CDK). It plays a pivotal role in controlling the G1 to S phase transition during the cell division cycle. CDC28 forms complexes with various cyclins, such as G1 cyclins CLN1, CLN2, and CLN3, and S phase cyclin CLB5, to regulate different stages of the cell cycle. The activity of CDC28 is tightly controlled through phosphorylation, dephosphorylation, and proteolysis of the cyclin subunits. Inhibition or mutation of CDC28 can lead to cell cycle arrest and various developmental defects in yeast.

Cyclin-Dependent Kinase Inhibitor p27, also known as CDKN1B or p27Kip1, is a protein that regulates the cell cycle. It inhibits the activity of certain cyclin-dependent kinases (CDKs), which are enzymes that play key roles in regulating the progression of the cell cycle.

The cell cycle is a series of events that cells undergo as they grow and divide. Cyclins and CDKs help to control the different stages of the cell cycle by activating and deactivating various proteins at specific times. The p27 protein acts as a brake on the cell cycle, preventing cells from dividing too quickly or abnormally.

When p27 binds to a CDK-cyclin complex, it prevents the complex from phosphorylating its target proteins, which are necessary for the progression of the cell cycle. By inhibiting CDK activity, p27 helps to ensure that cells divide only when the proper conditions are met.

Mutations in the CDKN1B gene, which encodes p27, have been associated with several types of cancer, including breast, lung, and prostate cancer. These mutations can lead to decreased levels of p27 or impaired function, allowing cells to divide uncontrollably and form tumors.

Cyclin-dependent kinase inhibitor proteins (CDKIs) are a family of regulatory proteins that play a crucial role in the control of the cell cycle. They function by binding to and inhibiting the activity of cyclin-dependent kinases (CDKs), which are serine/threonine protein kinases that help drive the progression of the cell cycle.

There are two main families of CDKIs: the Ink4 family and the Cip/Kip family. The Ink4 family members, including p16INK4a, p15INK4b, p18INK4c, and p19INK4d, specifically inhibit CDK4 and CDK6, preventing their association with cyclin D and thus blocking the transition from G1 to S phase of the cell cycle. The Cip/Kip family members, including p21CIP1, p27KIP1, and p57KIP2, inhibit a broader range of CDKs, including CDK1, CDK2, CDK4, and CDK6, and can regulate multiple stages of the cell cycle.

CDKIs play important roles in various biological processes, such as cell growth, differentiation, and apoptosis. Dysregulation of CDKI function has been implicated in several human diseases, including cancer, where loss or mutation of CDKIs can lead to uncontrolled cell proliferation and tumorigenesis. Therefore, CDKIs are attractive targets for the development of anti-cancer therapies.

Cyclin B2 is a type of cyclin protein that regulates the cell cycle, particularly at the G2 phase and the beginning of mitosis. It forms a complex with and acts as a regulatory subunit of cyclin-dependent kinase 1 (CDK1), which plays a crucial role in the transition from G2 phase to mitosis. The expression and activity of Cyclin B2 are tightly regulated during the cell cycle, and its dysregulation can lead to abnormal cell division and contribute to the development of cancer.

Ubiquitin-Protein Ligase Complexes, also known as E3 ubiquitin ligases, are a group of enzymes that play a crucial role in the ubiquitination process. Ubiquitination is a post-translational modification where ubiquitin molecules are attached to specific target proteins, marking them for degradation by the proteasome or altering their function, localization, or interaction with other proteins.

The ubiquitination process involves three main steps:

1. Ubiquitin activation: Ubiquitin is activated by an E1 ubiquitin-activating enzyme in an ATP-dependent reaction.
2. Ubiquitin conjugation: The activated ubiquitin is then transferred to an E2 ubiquitin-conjugating enzyme.
3. Ubiquitin ligation: Finally, the E2 ubiquitin-conjugating enzyme interacts with a specific E3 ubiquitin ligase complex, which facilitates the transfer and ligation of ubiquitin to the target protein.

Ubiquitin-Protein Ligase Complexes are responsible for recognizing and binding to specific substrate proteins, ensuring that ubiquitination occurs on the correct targets. They can be divided into three main categories based on their structural features and mechanisms of action:

1. Really Interesting New Gene (RING) finger E3 ligases: These E3 ligases contain a RING finger domain, which directly interacts with both the E2 ubiquitin-conjugating enzyme and the substrate protein. They facilitate the transfer of ubiquitin from the E2 to the target protein by bringing them into close proximity.
2. Homologous to E6-AP C terminus (HECT) E3 ligases: These E3 ligases contain a HECT domain, which interacts with the E2 ubiquitin-conjugating enzyme and forms a thioester bond with ubiquitin before transferring it to the substrate protein.
3. RING-between-RING (RBR) E3 ligases: These E3 ligases contain both RING finger and HECT-like domains, which allow them to function similarly to both RING finger and HECT E3 ligases. They first form a thioester bond with ubiquitin using their RING1 domain before transferring it to the substrate protein via their RING2 domain.

Dysregulation of Ubiquitin-Protein Ligase Complexes has been implicated in various diseases, including cancer and neurodegenerative disorders. Understanding their mechanisms and functions can provide valuable insights into disease pathogenesis and potential therapeutic strategies.

The Anaphase-Promoting Complex/Cyclosome (APC/C) is a large E3 ubiquitin ligase complex that plays a crucial role in the regulation of the cell cycle. It is responsible for targeting specific proteins for degradation by the proteasome, which is a multi-subunit protein complex that mediates the controlled breakdown of ubiquitinated proteins.

During anaphase, the final stage of mitosis, the APC/C becomes active and triggers the degradation of several key regulatory proteins, including securin and cyclin B. The destruction of these proteins allows for the separation of chromosomes and the completion of cell division.

The APC/C is composed of multiple subunits, including a catalytic core that binds to ubiquitin-conjugating enzymes (E2s) and several coactivators that regulate its activity. The activation of the APC/C requires the binding of one of two coactivators, Cdc20 or CDH1, which recognize specific substrates for degradation.

Dysregulation of the APC/C has been implicated in various human diseases, including cancer and neurodegenerative disorders. Therefore, understanding the mechanisms that regulate its activity is an important area of research with potential therapeutic implications.

Oncogene proteins are derived from oncogenes, which are genes that have the potential to cause cancer. Normally, these genes help regulate cell growth and division, but when they become altered or mutated, they can become overactive and lead to uncontrolled cell growth and division, which is a hallmark of cancer. Oncogene proteins can contribute to tumor formation and progression by promoting processes such as cell proliferation, survival, angiogenesis, and metastasis. Examples of oncogene proteins include HER2/neu, EGFR, and BCR-ABL.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

Cdh1 proteins are part of the anaphase-promoting complex/cyclosome (APC/C), which is a multi-subunit E3 ubiquitin ligase that plays a critical role in regulating the cell cycle. Cdh1, specifically, is a regulatory subunit of the APC/C and is essential for the proper progression through the cell cycle.

Cdh1 binds to and activates the APC/C in late mitosis and early G1 phase, targeting specific proteins for ubiquitination and subsequent degradation by the proteasome. This helps to ensure that key events of the cell cycle, such as chromosome segregation and mitotic exit, occur in a timely and orderly fashion.

Cdh1 has been shown to regulate the degradation of several important cell cycle regulators, including cyclins A and B, securin, and aurora kinase A. By targeting these proteins for destruction, Cdh1 helps to prevent premature entry into mitosis and ensures that cells do not exit mitosis until all chromosomes have been properly aligned and segregated.

Mutations in the genes encoding Cdh1 and other components of the APC/C have been implicated in a variety of human cancers, highlighting the importance of this complex in maintaining genomic stability.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Cyclin-dependent kinase inhibitor p21, also known as CDKN1A or p21/WAF1/CIP1, is a protein that regulates the cell cycle. It inhibits the activity of cyclin-dependent kinases (CDKs), which are enzymes that play crucial roles in controlling the progression of the cell cycle.

The binding of p21 to CDKs prevents the phosphorylation and activation of downstream targets, leading to cell cycle arrest. This protein is transcriptionally activated by tumor suppressor protein p53 in response to DNA damage or other stress signals, and it functions as an important mediator of p53-dependent growth arrest.

By inhibiting CDKs, p21 helps to ensure that cells do not proceed through the cell cycle until damaged DNA has been repaired, thereby preventing the propagation of potentially harmful mutations. Additionally, p21 has been implicated in other cellular processes such as apoptosis, differentiation, and senescence. Dysregulation of p21 has been associated with various human diseases, including cancer.

The G2 phase, also known as the "gap 2 phase," is a stage in the cell cycle that occurs after DNA replication (S phase) and before cell division (mitosis). During this phase, the cell prepares for mitosis by completing the synthesis of proteins and organelles needed for chromosome separation. The cell also checks for any errors or damage to the DNA before entering mitosis. This phase is a critical point in the cell cycle where proper regulation ensures the faithful transmission of genetic information from one generation of cells to the next. If significant DNA damage is detected during G2, the cell may undergo programmed cell death (apoptosis) instead of dividing.

Anaphase is a stage in the cell division process called mitosis, where sister chromatids (the two copies of each chromosome formed during DNA replication) separate at the centromeres and move toward opposite poles of the cell. This separation is facilitated by the attachment of microtubules from the spindle apparatus to the kinetochores, protein structures located on the centromeres of each sister chromatid. Anaphase is followed by telophase, during which the nuclear membrane reforms around each set of separated chromosomes, and cytokinesis, the division of the cytoplasm to form two separate daughter cells.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

CDC20 proteins are a type of regulatory protein that play a crucial role in the cell cycle, which is the process by which cells grow and divide. Specifically, CDC20 proteins are involved in the transition from metaphase to anaphase during mitosis, the phase of the cell cycle where chromosomes are separated and distributed to two daughter cells.

CDC20 proteins function as part of a larger complex called the anaphase-promoting complex/cyclosome (APC/C), which targets specific proteins for degradation by the proteasome. During metaphase, CDC20 binds to the APC/C and helps to activate it, leading to the degradation of securin and cyclin B, two proteins that are essential for maintaining the proper attachment of chromosomes to the spindle apparatus.

Once these proteins are degraded, the sister chromatids can be separated and moved to opposite poles of the cell, allowing for the completion of mitosis and the formation of two genetically identical daughter cells. In addition to their role in mitosis, CDC20 proteins have also been implicated in other cellular processes, including meiosis, DNA damage repair, and apoptosis.

Tumor suppressor proteins are a type of regulatory protein that helps control the cell cycle and prevent cells from dividing and growing in an uncontrolled manner. They work to inhibit tumor growth by preventing the formation of tumors or slowing down their progression. These proteins can repair damaged DNA, regulate gene expression, and initiate programmed cell death (apoptosis) if the damage is too severe for repair.

Mutations in tumor suppressor genes, which provide the code for these proteins, can lead to a decrease or loss of function in the resulting protein. This can result in uncontrolled cell growth and division, leading to the formation of tumors and cancer. Examples of tumor suppressor proteins include p53, Rb (retinoblastoma), and BRCA1/2.

Cyclin C is a type of cyclin protein that plays a crucial role in the regulation of the cell cycle, which is the process by which cells grow and divide. Specifically, Cyclin C is involved in the transition from the G1 phase to the S phase of the cell cycle, during which DNA replication occurs.

Cyclin C forms a complex with cyclin-dependent kinase 8 (CDK8) and other regulatory subunits to form the CDK8 module, which is part of the mediator complex that regulates gene transcription. The activity of Cyclin C/CDK8 is regulated by various mechanisms, including phosphorylation and degradation, to ensure proper control of the cell cycle and prevent uncontrolled cell growth and division.

Mutations in the gene encoding Cyclin C have been associated with certain types of cancer, highlighting its importance in maintaining genomic stability and preventing tumorigenesis.

I'm sorry for any confusion, but "Protamine Kinase" is not a widely recognized or established term in medical or biological sciences. Protamines are small, arginine-rich proteins found in the sperm cells of many organisms, and they play a crucial role in the packaging and protection of DNA during spermatogenesis.

Kinases, on the other hand, are enzymes that catalyze the transfer of phosphate groups from ATP to specific amino acids in proteins, thereby modulating their function, localization, or stability.

A search of scientific literature reveals only a few instances where "protamine kinase" is mentioned, usually in the context of potential regulatory mechanisms during sperm maturation or fertilization. However, there is no widely accepted or well-characterized enzyme known as "protamine kinase." Therefore, it would be challenging to provide a concise and accurate medical definition for this term.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Gene expression regulation in fungi refers to the complex cellular processes that control the production of proteins and other functional gene products in response to various internal and external stimuli. This regulation is crucial for normal growth, development, and adaptation of fungal cells to changing environmental conditions.

In fungi, gene expression is regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational modifications. Key regulatory mechanisms include:

1. Transcription factors (TFs): These proteins bind to specific DNA sequences in the promoter regions of target genes and either activate or repress their transcription. Fungi have a diverse array of TFs that respond to various signals, such as nutrient availability, stress, developmental cues, and quorum sensing.
2. Chromatin remodeling: The organization and compaction of DNA into chromatin can influence gene expression. Fungi utilize ATP-dependent chromatin remodeling complexes and histone modifying enzymes to alter chromatin structure, thereby facilitating or inhibiting the access of transcriptional machinery to genes.
3. Non-coding RNAs: Small non-coding RNAs (sncRNAs) play a role in post-transcriptional regulation of gene expression in fungi. These sncRNAs can guide RNA-induced transcriptional silencing (RITS) complexes to specific target loci, leading to the repression of gene expression through histone modifications and DNA methylation.
4. Alternative splicing: Fungi employ alternative splicing mechanisms to generate multiple mRNA isoforms from a single gene, thereby increasing proteome diversity. This process can be regulated by RNA-binding proteins that recognize specific sequence motifs in pre-mRNAs and promote or inhibit splicing events.
5. Protein stability and activity: Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and sumoylation, can influence their stability, localization, and activity. These PTMs play a crucial role in regulating various cellular processes, including signal transduction, stress response, and cell cycle progression.

Understanding the complex interplay between these regulatory mechanisms is essential for elucidating the molecular basis of fungal development, pathogenesis, and drug resistance. This knowledge can be harnessed to develop novel strategies for combating fungal infections and improving agricultural productivity.

APC8 (Anaphase-Promoting Complex-Cyclosome) subunit, also known as APC5 or CDC27, is a crucial component of the anaphase-promoting complex/cyclosome (APC/C), which is a multi-subunit E3 ubiquitin ligase that plays a critical role in regulating the cell cycle. Specifically, APC8 is one of the essential subunits that make up the core structure of the APC/C and is involved in its recognition and binding to specific substrates.

APC/C targets various proteins for ubiquitination and subsequent degradation by the 26S proteasome, thereby controlling different stages of mitosis and meiosis. During anaphase, APC/C-mediated degradation of securin and cyclin B leads to sister chromatid separation and exit from mitosis.

APC8 is a highly conserved protein found in many eukaryotes, including yeast, flies, and humans. Mutations in the gene encoding APC8 have been associated with various human diseases, such as cancer and developmental disorders.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Bivalvia is a class of mollusks, also known as "pelecypods," that have a laterally compressed body and two shells or valves. These valves are hinged together on one side and can be opened and closed to allow the animal to feed or withdraw into its shell for protection.

Bivalves include clams, oysters, mussels, scallops, and numerous other species. They are characterized by their simple body structure, which consists of a muscular foot used for burrowing or anchoring, a soft mantle that secretes the shell, and gills that serve both as respiratory organs and feeding structures.

Bivalves play an important role in aquatic ecosystems as filter feeders, helping to maintain water quality by removing particles and organic matter from the water column. They are also commercially important as a source of food for humans and other animals, and their shells have been used historically for various purposes such as tools, jewelry, and building materials.

Cell nucleus division, also known as nuclear division, is the process by which the genetic material within the cell nucleus, referred to as chromosomes, is separated into two equal sets in preparation for cell division. This process results in the formation of two daughter nuclei, each with a complete set of chromosomes.

There are two types of nuclear division: mitosis and meiosis.

Mitosis is the type of nuclear division that occurs in somatic cells (cells other than sex cells) during growth, repair, and maintenance of tissues. It results in the formation of two genetically identical daughter nuclei. The process of mitosis can be divided into several stages: prophase, prometaphase, metaphase, anaphase, and telophase.

Meiosis, on the other hand, is the type of nuclear division that occurs in sex cells (sperm and egg cells) during sexual reproduction. It results in the formation of four genetically unique daughter nuclei, each with half the number of chromosomes as the parent cell. Meiosis consists of two consecutive divisions: meiosis I and meiosis II.

Both types of nuclear division are essential for the growth, development, and reproduction of living organisms.

E2F transcription factors are a family of proteins that play crucial roles in the regulation of the cell cycle, DNA repair, and apoptosis (programmed cell death). These factors bind to specific DNA sequences called E2F responsive elements, located in the promoter regions of target genes. They can act as either transcriptional activators or repressors, depending on which E2F family member is involved, the presence of co-factors, and the phase of the cell cycle.

The E2F family consists of eight members, divided into two groups based on their functions: activator E2Fs (E2F1, E2F2, and E2F3a) and repressor E2Fs (E2F3b, E2F4, E2F5, E2F6, and E2F7). Activator E2Fs promote the expression of genes required for cell cycle progression, DNA replication, and repair. Repressor E2Fs, on the other hand, inhibit the transcription of these same genes as well as genes involved in differentiation and apoptosis.

Dysregulation of E2F transcription factors has been implicated in various human diseases, including cancer. Overexpression or hyperactivation of activator E2Fs can lead to uncontrolled cell proliferation and tumorigenesis, while loss of function or inhibition of repressor E2Fs can result in impaired differentiation and increased susceptibility to malignancies. Therefore, understanding the roles and regulation of E2F transcription factors is essential for developing novel therapeutic strategies against cancer and other diseases associated with cell cycle dysregulation.

Saccharomycetales is an order of fungi that are commonly known as "true yeasts." They are characterized by their single-celled growth and ability to reproduce through budding or fission. These organisms are widely distributed in nature and can be found in a variety of environments, including soil, water, and on the surfaces of plants and animals.

Many species of Saccharomycetales are used in industrial processes, such as the production of bread, beer, and wine. They are also used in biotechnology to produce various enzymes, vaccines, and other products. Some species of Saccharomycetales can cause diseases in humans and animals, particularly in individuals with weakened immune systems. These infections, known as candidiasis or thrush, can affect various parts of the body, including the skin, mouth, and genital area.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

F-box proteins are a family of proteins that are characterized by the presence of an F-box domain, which is a motif of about 40-50 amino acids. This domain is responsible for binding to Skp1, a component of the SCF (Skp1-Cul1-F-box protein) E3 ubiquitin ligase complex. The F-box proteins serve as the substrate recognition subunit of this complex and are involved in targeting specific proteins for ubiquitination and subsequent degradation by the 26S proteasome.

There are multiple types of F-box proteins, including FBXW (also known as β-TrCP), FBXL, and FBLX, each with different substrate specificities. These proteins play important roles in various cellular processes such as cell cycle regulation, signal transduction, and DNA damage response by controlling the stability of key regulatory proteins.

Abnormal regulation of F-box proteins has been implicated in several human diseases, including cancer, developmental disorders, and neurodegenerative diseases.

Cell cycle checkpoints are control mechanisms that regulate the cell cycle and ensure the accurate and timely progression through different phases of the cell cycle. These checkpoints monitor specific cellular events, such as DNA replication and damage, chromosome separation, and proper attachment of the mitotic spindle to the chromosomes. If any of these events fail to occur properly or are delayed, the cell cycle checkpoints trigger a response that can halt the cell cycle until the problem is resolved. This helps to prevent cells with damaged or incomplete genomes from dividing and potentially becoming cancerous.

There are three main types of cell cycle checkpoints:

1. G1 Checkpoint: Also known as the restriction point, this checkpoint controls the transition from the G1 phase to the S phase of the cell cycle. It monitors the availability of nutrients, growth factors, and the integrity of the genome before allowing the cell to proceed into DNA replication.
2. G2 Checkpoint: This checkpoint regulates the transition from the G2 phase to the M phase of the cell cycle. It checks for completion of DNA replication and absence of DNA damage before allowing the cell to enter mitosis.
3. Mitotic (M) Checkpoint: Also known as the spindle assembly checkpoint, this checkpoint ensures that all chromosomes are properly attached to the mitotic spindle before anaphase begins. It prevents the separation of sister chromatids until all kinetochores are correctly attached and tension is established between them.

Cell cycle checkpoints play a crucial role in maintaining genomic stability, preventing tumorigenesis, and ensuring proper cell division. Dysregulation of these checkpoints can lead to various diseases, including cancer.

Proto-oncogene proteins are normal cellular proteins that play crucial roles in various cellular processes, such as signal transduction, cell cycle regulation, and apoptosis (programmed cell death). They are involved in the regulation of cell growth, differentiation, and survival under physiological conditions.

When proto-oncogene proteins undergo mutations or aberrations in their expression levels, they can transform into oncogenic forms, leading to uncontrolled cell growth and division. These altered proteins are then referred to as oncogene products or oncoproteins. Oncogenic mutations can occur due to various factors, including genetic predisposition, environmental exposures, and aging.

Examples of proto-oncogene proteins include:

1. Ras proteins: Involved in signal transduction pathways that regulate cell growth and differentiation. Activating mutations in Ras genes are found in various human cancers.
2. Myc proteins: Regulate gene expression related to cell cycle progression, apoptosis, and metabolism. Overexpression of Myc proteins is associated with several types of cancer.
3. EGFR (Epidermal Growth Factor Receptor): A transmembrane receptor tyrosine kinase that regulates cell proliferation, survival, and differentiation. Mutations or overexpression of EGFR are linked to various malignancies, such as lung cancer and glioblastoma.
4. Src family kinases: Intracellular tyrosine kinases that regulate signal transduction pathways involved in cell proliferation, survival, and migration. Dysregulation of Src family kinases is implicated in several types of cancer.
5. Abl kinases: Cytoplasmic tyrosine kinases that regulate various cellular processes, including cell growth, differentiation, and stress responses. Aberrant activation of Abl kinases, as seen in chronic myelogenous leukemia (CML), leads to uncontrolled cell proliferation.

Understanding the roles of proto-oncogene proteins and their dysregulation in cancer development is essential for developing targeted cancer therapies that aim to inhibit or modulate these aberrant signaling pathways.

DNA replication is the biological process by which DNA makes an identical copy of itself during cell division. It is a fundamental mechanism that allows genetic information to be passed down from one generation of cells to the next. During DNA replication, each strand of the double helix serves as a template for the synthesis of a new complementary strand. This results in the creation of two identical DNA molecules. The enzymes responsible for DNA replication include helicase, which unwinds the double helix, and polymerase, which adds nucleotides to the growing strands.

Medical Definition:
Microtubule-associated proteins (MAPs) are a diverse group of proteins that bind to microtubules, which are key components of the cytoskeleton in eukaryotic cells. MAPs play crucial roles in regulating microtubule dynamics and stability, as well as in mediating interactions between microtubules and other cellular structures. They can be classified into several categories based on their functions, including:

1. Microtubule stabilizers: These MAPs promote the assembly of microtubules and protect them from disassembly by enhancing their stability. Examples include tau proteins and MAP2.
2. Microtubule dynamics regulators: These MAPs modulate the rate of microtubule polymerization and depolymerization, allowing for dynamic reorganization of the cytoskeleton during cell division and other processes. Examples include stathmin and XMAP215.
3. Microtubule motor proteins: These MAPs use energy from ATP hydrolysis to move along microtubules, transporting various cargoes within the cell. Examples include kinesin and dynein.
4. Adapter proteins: These MAPs facilitate interactions between microtubules and other cellular structures, such as membranes, organelles, or signaling molecules. Examples include MAP4 and CLASPs.

Dysregulation of MAPs has been implicated in several diseases, including neurodegenerative disorders like Alzheimer's disease (where tau proteins form abnormal aggregates called neurofibrillary tangles) and cancer (where altered microtubule dynamics can contribute to uncontrolled cell division).

Ligases are a group of enzymes that catalyze the formation of a covalent bond between two molecules, usually involving the joining of two nucleotides in a DNA or RNA strand. They play a crucial role in various biological processes such as DNA replication, repair, and recombination. In DNA ligases, the enzyme seals nicks or breaks in the phosphodiester backbone of the DNA molecule by catalyzing the formation of an ester bond between the 3'-hydroxyl group and the 5'-phosphate group of adjacent nucleotides. This process is essential for maintaining genomic integrity and stability.

I'm happy to help! However, I believe there may be a slight mistake in your question. The abbreviation "cdc" is not typically associated with genetics or genes in the context of medical definitions.

If you meant to ask for a definition of "genes," here it is:

Genes are segments of DNA (deoxyribonucleic acid) that contain the instructions for the development, function, and reproduction of all living organisms. They are the basic units of heredity, passed down from one generation to the next. Genes encode specific proteins or RNA molecules that play critical roles in the structure, function, and regulation of the body's cells, tissues, and organs.

If you had a different term in mind, please let me know, and I will be happy to provide a definition for it!

Proliferating Cell Nuclear Antigen (PCNA) is a protein that plays an essential role in the process of DNA replication and repair in eukaryotic cells. It functions as a cofactor for DNA polymerase delta, enhancing its activity during DNA synthesis. PCNA forms a sliding clamp around DNA, allowing it to move along the template and coordinate the actions of various enzymes involved in DNA metabolism.

PCNA is often used as a marker for cell proliferation because its levels increase in cells that are actively dividing or have been stimulated to enter the cell cycle. Immunostaining techniques can be used to detect PCNA and determine the proliferative status of tissues or cultures. In this context, 'proliferating' refers to the rapid multiplication of cells through cell division.

Cyclin-Dependent Kinase 3 (CDK3) is a type of enzyme, specifically a serine/threonine protein kinase, that plays a crucial role in the regulation of the cell cycle. CDK3 functions by binding to specific regulatory subunits known as cyclins, forming active complexes that phosphorylate various target proteins involved in cell cycle progression and transcriptional regulation.

CDK3 is primarily active during the G1 phase and the early S phase of the cell cycle. It forms a complex with cyclin C to regulate the transition from the G1 phase to the S phase, where CDK3 helps initiate DNA replication by phosphorylating key proteins involved in this process.

CDK3 is also known to play a role in neuronal differentiation and development, as well as in tumorigenesis when dysregulated or overexpressed. Inhibition of CDK3 activity has been explored as a potential therapeutic strategy for treating certain types of cancer.

G0 phase, also known as the resting phase or quiescent stage, is a part of the cell cycle in which cells are not actively preparing to divide. In this phase, cells are metabolically active and can carry out their normal functions, but they are not synthesizing DNA or dividing. Cells in G0 phase have left the cell cycle and may remain in this phase for an indefinite period of time, until they receive signals to re-enter the cell cycle and begin preparing for division again.

It's important to note that not all cells go through the G0 phase. Some cells, such as stem cells and certain types of immune cells, may spend most of their time in G0 phase and only enter the cell cycle when they are needed to replace damaged or dying cells. Other cells, such as those lining the digestive tract, continuously divide and do not have a G0 phase.

Ubiquitin-protein ligases, also known as E3 ubiquitin ligases, are a group of enzymes that play a crucial role in the ubiquitination process. Ubiquitination is a post-translational modification where ubiquitin molecules are attached to specific target proteins, marking them for degradation by the proteasome or for other regulatory functions.

Ubiquitin-protein ligases catalyze the final step in this process by binding to both the ubiquitin protein and the target protein, facilitating the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to the target protein. There are several different types of ubiquitin-protein ligases, each with their own specificity for particular target proteins and regulatory functions.

Ubiquitin-protein ligases have been implicated in various cellular processes such as protein degradation, DNA repair, signal transduction, and regulation of the cell cycle. Dysregulation of ubiquitination has been associated with several diseases, including cancer, neurodegenerative disorders, and inflammatory responses. Therefore, understanding the function and regulation of ubiquitin-protein ligases is an important area of research in biology and medicine.

Ubiquitin is a small protein that is present in most tissues in the body. It plays a critical role in regulating many important cellular processes, such as protein degradation and DNA repair. Ubiquitin can attach to other proteins in a process called ubiquitination, which can target the protein for degradation or modify its function.

Ubiquitination involves a series of enzymatic reactions that ultimately result in the attachment of ubiquitin molecules to specific lysine residues on the target protein. The addition of a single ubiquitin molecule is called monoubiquitination, while the addition of multiple ubiquitin molecules is called polyubiquitination.

Polyubiquitination can serve as a signal for proteasomal degradation, where the target protein is broken down into its component amino acids by the 26S proteasome complex. Monoubiquitination and other forms of ubiquitination can also regulate various cellular processes, such as endocytosis, DNA repair, and gene expression.

Dysregulation of ubiquitin-mediated protein degradation has been implicated in a variety of diseases, including cancer, neurodegenerative disorders, and inflammatory conditions.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Metaphase is a phase in the cell division process (mitosis or meiosis) where the chromosomes align in the middle of the cell, also known as the metaphase plate or equatorial plane. During this stage, each chromosome consists of two sister chromatids attached to each other by a protein complex called the centromere. The spindle fibers from opposite poles of the cell attach to the centromeres of each chromosome, and through a process called congression, they align the chromosomes in the middle of the cell. This alignment allows for accurate segregation of genetic material during the subsequent anaphase stage.

Interphase is a phase in the cell cycle during which the cell primarily performs its functions of growth and DNA replication. It is the longest phase of the cell cycle, consisting of G1 phase (during which the cell grows and prepares for DNA replication), S phase (during which DNA replication occurs), and G2 phase (during which the cell grows further and prepares for mitosis). During interphase, the chromosomes are in their relaxed, extended form and are not visible under the microscope. Interphase is followed by mitosis, during which the chromosomes condense and separate to form two genetically identical daughter cells.

S-phase kinase-associated proteins (Skp2) are a group of proteins that are associated with the S-phase kinase, which is a type of enzyme that helps to regulate the cell cycle. Specifically, Skp2 is involved in the ubiquitination and degradation of certain proteins that play a role in controlling the progression of the cell cycle.

Skp2 is a member of the F-box protein family, which are components of the Skp1-Cul1-F-box (SCF) complex, a type of E3 ubiquitin ligase. The SCF complex recognizes and binds to specific proteins, tagging them for ubiquitination and subsequent degradation by the proteasome.

One of the key targets of Skp2 is the tumor suppressor protein p27, which inhibits the activity of cyclin-dependent kinases (CDKs) and helps to regulate the transition from the G1 phase to the S phase of the cell cycle. By targeting p27 for degradation, Skp2 promotes the progression of the cell cycle and has been implicated in the development of various types of cancer.

Overall, Skp2 plays a critical role in regulating the cell cycle and has important implications for the development and treatment of various diseases, including cancer.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Maturation-Promoting Factor (MPF) is not a medical term per se, but it is commonly used in the field of cell biology and cancer research. MPF refers to a complex of two proteins that play a crucial role in regulating the cell cycle, specifically during the transition from the G2 phase to mitosis (M phase).

MPF is composed of a cyclin-dependent kinase (CDK1) and a regulatory subunit called cyclin B. During the late G2 phase, the levels of cyclin B increase, which leads to the activation of CDK1. Once activated, MPF triggers a series of events that promote mitosis, including chromosome condensation, nuclear envelope breakdown, and spindle formation.

In summary, Maturation-Promoting Factor (MPF) is a protein complex made up of CDK1 and cyclin B, which regulates the transition from the G2 phase to mitosis during the cell cycle.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

"Xenopus" is not a medical term, but it is a genus of highly invasive aquatic frogs native to sub-Saharan Africa. They are often used in scientific research, particularly in developmental biology and genetics. The most commonly studied species is Xenopus laevis, also known as the African clawed frog.

In a medical context, Xenopus might be mentioned when discussing their use in research or as a model organism to study various biological processes or diseases.

Retinoblastoma-Binding Protein 1 (RBP1) is not a medical term itself, but it is a protein that has been studied in the context of cancer research, including retinoblastoma. According to scientific and medical literature, RBP1 is a protein that binds to the retinoblastoma protein (pRb), which is a tumor suppressor protein. The binding of RBP1 to pRb can influence the activity of this tumor suppressor and contribute to the regulation of the cell cycle and cell growth.

In the case of retinoblastoma, mutations in the RB1 gene, which encodes for the pRb protein, have been identified as a cause of this rare eye cancer in children. However, the role of RBP1 in retinoblastoma or other cancers is not well-defined and requires further research to fully understand its implications in disease development and potential therapeutic targets.

The G1 phase cell cycle checkpoint is a point in the cell cycle where the cell checks and regulates its progression from the G1 phase to the S phase. During this checkpoint, the cell evaluates various factors such as availability of nutrients, growth factors, and the absence of DNA damage to determine whether it should proceed with DNA replication or undergo cellular senescence, differentiation, or apoptosis (programmed cell death). The G1 phase checkpoint is controlled by a complex network of signaling pathways, including the p53 and Rb tumor suppressor proteins.

The spindle apparatus is a microtubule-based structure that plays a crucial role in the process of cell division, specifically during mitosis and meiosis. It consists of three main components:

1. The spindle poles: These are organized structures composed of microtubules and associated proteins that serve as the anchoring points for the spindle fibers. In animal cells, these poles are typically formed by centrosomes, while in plant cells, they form around nucleation sites called microtubule-organizing centers (MTOCs).
2. The spindle fibers: These are dynamic arrays of microtubules that extend between the two spindle poles. They can be categorized into three types: kinetochore fibers, which connect to the kinetochores on chromosomes; astral fibers, which radiate from the spindle poles and help position the spindle within the cell; and interpolar fibers, which lie between the two spindle poles and contribute to their separation during anaphase.
3. Regulatory proteins: Various motor proteins, such as dynein and kinesin, as well as non-motor proteins like tubulin and septins, are involved in the assembly, maintenance, and dynamics of the spindle apparatus. These proteins help to generate forces that move chromosomes, position the spindle, and ultimately segregate genetic material between two daughter cells during cell division.

The spindle apparatus is essential for ensuring accurate chromosome separation and maintaining genomic stability during cell division. Dysfunction of the spindle apparatus can lead to various abnormalities, including aneuploidy (abnormal number of chromosomes) and chromosomal instability, which have been implicated in several diseases, such as cancer and developmental disorders.

E2F1 is a member of the E2F family of transcription factors, which are involved in the regulation of cell cycle progression and apoptosis (programmed cell death). Specifically, E2F1 plays a role as a transcriptional activator, binding to specific DNA sequences and promoting the expression of genes required for the G1/S transition of the cell cycle.

In more detail, E2F1 forms a complex with a retinoblastoma protein (pRb) in the G0 and early G1 phases of the cell cycle. When pRb is phosphorylated by cyclin-dependent kinases during the late G1 phase, E2F1 is released and can then bind to its target DNA sequences and activate transcription of genes involved in DNA replication and cell cycle progression.

However, if E2F1 is overexpressed or activated inappropriately, it can also promote apoptosis, making it a key player in both cell proliferation and cell death pathways. Dysregulation of E2F1 has been implicated in the development of various human cancers, including breast, lung, and prostate cancer.

APC2 (Anaphase-Promoting Complex Subunit 2) is a regulatory subunit of the multi-subunit E3 ubiquitin ligase complex known as the Anaphase-Promoting Complex/Cyclosome (APC/C). The APC/C plays a critical role in regulating cell division by targeting specific proteins for degradation via the ubiquitin-proteasome pathway.

The APC/C is responsible for marking proteins with ubiquitin molecules, which signals their recognition and destruction by the 26S proteasome. This process is essential for proper progression through the cell cycle, including the regulation of mitotic exit and the onset of anaphase during cell division.

APC2, along with APC1 (also known as CDC27), forms the core structural scaffold of the APC/C complex. The APC2 subunit is involved in binding both the ubiquitin-conjugating enzyme and the ubiquitin-protein ligase components of the complex, thereby facilitating the transfer of ubiquitin molecules to target proteins.

The activity of the APC/C is tightly regulated throughout the cell cycle by various cofactors that bind to and modulate its function. The binding of these cofactors determines the substrate specificity of the complex, allowing it to target different proteins at distinct stages of the cell cycle.

In summary, APC2 is a crucial subunit of the APC/C complex, which plays an essential role in regulating the cell cycle through targeted protein degradation via the ubiquitin-proteasome pathway.

Transcription factor DP1 (TFDP1) is not a specific medical term, but it is a term used in molecular biology and genetics. TFDP1 is a protein that functions as a transcription factor, which means it helps regulate the expression of genes by binding to specific DNA sequences and controlling the rate of transcription of those genes into messenger RNA (mRNA).

TFDP1 typically forms a complex with another transcription factor called E2F, and this complex plays a critical role in regulating the cell cycle and promoting cell division. TFDP1 can act as both a transcriptional activator and repressor, depending on which E2F family member it binds to and the specific context of the cell.

Mutations or dysregulation of TFDP1 have been implicated in various human diseases, including cancer. For example, overexpression of TFDP1 has been observed in several types of cancer, such as breast, lung, and prostate cancer, and is often associated with poor clinical outcomes. Therefore, understanding the role of TFDP1 in gene regulation and cellular processes may provide insights into the development of new therapeutic strategies for treating human diseases.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

E2F5 is a member of the E2F family of transcription factors, which are involved in the regulation of cell cycle progression and differentiation. E2F5 can function as both a transcriptional activator and repressor, depending on whether it forms a complex with a retinoblastoma protein or not. When bound to a retinoblastoma protein, E2F5 acts as a transcriptional repressor, preventing the expression of genes required for cell cycle progression. However, when E2F5 is not bound to a retinoblastoma protein, it can act as a transcriptional activator and promote the expression of genes involved in differentiation and development.

E2F5 has been shown to play important roles in various biological processes, including cell growth, apoptosis, and tumor suppression. Mutations or dysregulation of E2F5 have been implicated in several human diseases, including cancer. Therefore, understanding the function and regulation of E2F5 is crucial for developing new therapeutic strategies to treat these diseases.

CDC25 phosphatases are a group of enzymes that play crucial roles in the regulation of the cell cycle, which is the series of events that cells undergo as they grow and divide. Specifically, CDC25 phosphatases function to remove inhibitory phosphates from certain cyclin-dependent kinases (CDKs), thereby activating them and allowing the cell cycle to progress.

There are three main types of CDC25 phosphatases in humans, known as CDC25A, CDC25B, and CDC25C. These enzymes are named after the original yeast homolog, called Cdc25, which was discovered to be essential for cell cycle progression.

CDC25 phosphatases are tightly regulated during the cell cycle, with their activity being controlled by various mechanisms such as phosphorylation, protein-protein interactions, and subcellular localization. Dysregulation of CDC25 phosphatases has been implicated in several human diseases, including cancer, where they can contribute to uncontrolled cell growth and division. Therefore, understanding the functions and regulation of CDC25 phosphatases is an important area of research in molecular biology and medicine.

Cyclin-Dependent Kinase Inhibitor p16, also known as CDKN2A or INK4a, is a protein that regulates the cell cycle. It functions as an inhibitor of cyclin-dependent kinases (CDKs) 4 and 6, which are enzymes that play a crucial role in regulating the progression of the cell cycle.

The p16 protein is produced in response to various signals, including DNA damage and oncogene activation, and its main function is to prevent the phosphorylation and activation of the retinoblastoma protein (pRb) by CDK4/6. When pRb is not phosphorylated, it binds to and inhibits the E2F transcription factor, which results in the suppression of genes required for cell cycle progression.

Therefore, p16 acts as a tumor suppressor protein by preventing the uncontrolled proliferation of cells that can lead to cancer. Mutations or deletions in the CDKN2A gene, which encodes the p16 protein, have been found in many types of human cancers, including lung, breast, and head and neck cancers.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

"Xenopus proteins" refer to the proteins that are expressed or isolated from the Xenopus species, which are primarily used as model organisms in biological and biomedical research. The most commonly used Xenopus species for research are the African clawed frogs, Xenopus laevis and Xenopus tropicalis. These proteins play crucial roles in various cellular processes and functions, and they serve as valuable tools to study different aspects of molecular biology, developmental biology, genetics, and biochemistry.

Some examples of Xenopus proteins that are widely studied include:

1. Xenopus Histones: These are the proteins that package DNA into nucleosomes, which are the fundamental units of chromatin in eukaryotic cells. They play a significant role in gene regulation and epigenetic modifications.
2. Xenopus Cyclins and Cyclin-dependent kinases (CDKs): These proteins regulate the cell cycle and control cell division, differentiation, and apoptosis.
3. Xenopus Transcription factors: These proteins bind to specific DNA sequences and regulate gene expression during development and in response to various stimuli.
4. Xenopus Signaling molecules: These proteins are involved in intracellular signaling pathways that control various cellular processes, such as cell growth, differentiation, migration, and survival.
5. Xenopus Cytoskeletal proteins: These proteins provide structural support to the cells and regulate their shape, motility, and organization.
6. Xenopus Enzymes: These proteins catalyze various biochemical reactions in the cell, such as metabolic pathways, DNA replication, transcription, and translation.

Overall, Xenopus proteins are essential tools for understanding fundamental biological processes and have contributed significantly to our current knowledge of molecular biology, genetics, and developmental biology.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Securin is not a medical term, but rather a biological concept related to cell division. It's a protein that plays a crucial role in the regulation of chromosome separation during cell division (mitosis).

During mitosis, sister chromatids (identical copies of a chromosome) are held together by cohesin proteins until it's time for them to separate and move to opposite ends of the cell. Securin is one of the proteins that helps regulate this process. Specifically, securin inhibits an enzyme called separase, which is responsible for cleaving the cohesin rings that hold sister chromatids together.

Once the cell is ready to separate its chromosomes, a protease called separase is activated and degrades securin. This allows separase to cleave the cohesin rings, leading to the separation of sister chromatids and the continuation of mitosis. If securin function is disrupted, it can lead to errors in chromosome segregation, which can contribute to genomic instability and diseases like cancer.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

APC3 (Anaphase-Promoting Complex-Cyclosome) subunit, also known as CDC27 or ANAPC4, is a component of the anaphase-promoting complex/cyclosome (APC/C), which is a multi-subunit E3 ubiquitin ligase that plays a critical role in regulating the cell cycle. Specifically, APC3 is a part of the core subcomplex of the APC/C and helps to mediate the ubiquitination and subsequent degradation of key regulatory proteins involved in mitosis and meiosis, such as securin and cyclin B. This allows for the proper progression of these cell cycle stages and ensures faithful chromosome segregation. Mutations in APC3 have been implicated in various human cancers, highlighting its importance in maintaining genomic stability.

Invertebrate hormones refer to the chemical messengers that regulate various physiological processes in invertebrate animals, which include insects, mollusks, worms, and other animals without a backbone. These hormones are produced by specialized endocrine cells or glands and released into the bloodstream to target organs, where they elicit specific responses that help control growth, development, reproduction, metabolism, and behavior.

Examples of invertebrate hormones include:

1. Ecdysteroids: These are steroid hormones found in arthropods such as insects and crustaceans. They regulate molting (ecdysis) and metamorphosis by stimulating the growth and differentiation of new cuticle layers.
2. Juvenile hormone (JH): This is a sesquiterpenoid hormone produced by the corpora allata glands in insects. JH plays a crucial role in maintaining the juvenile stage, regulating reproduction, and controlling diapause (a period of suspended development during unfavorable conditions).
3. Neuropeptides: These are short chains of amino acids that act as hormones or neurotransmitters in invertebrates. They regulate various functions such as feeding behavior, growth, reproduction, and circadian rhythms. Examples include the neuropeptide F (NPF), which controls food intake and energy balance, and the insulin-like peptides (ILPs) that modulate metabolism and growth.
4. Molluscan cardioactive peptides: These are neuropeptides found in mollusks that regulate heart function by controlling heart rate and contractility. An example is FMRFamide, which has been identified in various mollusk species and influences several physiological processes, including feeding behavior, muscle contraction, and reproduction.
5. Vertebrate-like hormones: Some invertebrates produce hormones that are structurally and functionally similar to those found in vertebrates. For example, some annelids (segmented worms) and cephalopods (squid and octopus) have insulin-like peptides that regulate metabolism and growth, while certain echinoderms (starfish and sea urchins) produce steroid hormones that control reproduction.

In summary, invertebrates utilize various types of hormones to regulate their physiological functions, including neuropeptides, cardioactive peptides, insulin-like peptides, and vertebrate-like hormones. These hormones play crucial roles in controlling growth, development, reproduction, feeding behavior, and other essential processes that maintain homeostasis and ensure survival. Understanding the mechanisms of hormone action in invertebrates can provide valuable insights into the evolution of hormonal systems and their functions across different animal taxa.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Fungal genes refer to the genetic material present in fungi, which are eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The genetic material of fungi is composed of DNA, just like in other eukaryotes, and is organized into chromosomes located in the nucleus of the cell.

Fungal genes are segments of DNA that contain the information necessary to produce proteins and RNA molecules required for various cellular functions. These genes are transcribed into messenger RNA (mRNA) molecules, which are then translated into proteins by ribosomes in the cytoplasm.

Fungal genomes have been sequenced for many species, revealing a diverse range of genes that encode proteins involved in various cellular processes such as metabolism, signaling, and regulation. Comparative genomic analyses have also provided insights into the evolutionary relationships among different fungal lineages and have helped to identify unique genetic features that distinguish fungi from other eukaryotes.

Understanding fungal genes and their functions is essential for advancing our knowledge of fungal biology, as well as for developing new strategies to control fungal pathogens that can cause diseases in humans, animals, and plants.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

Cyclin T is a type of cyclin protein that is encoded by the CCNT2 gene in humans. Cyclins are a family of regulatory proteins that play a crucial role in the cell cycle, which is the series of events that cells undergo as they grow and divide. Specifically, cyclin T is a component of the CDK9/cyclin T complex, also known as positive transcription elongation factor b (P-TEFb), which plays a key role in regulating gene expression by controlling the elongation phase of RNA polymerase II-mediated transcription.

Cyclin T is expressed at various stages of the cell cycle and has been shown to interact with several other proteins involved in cell cycle regulation, including the retinoblastoma protein (pRb) and the E2F family of transcription factors. Dysregulation of cyclin T expression or activity has been implicated in several human diseases, including cancer.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

The Ki-67 antigen is a cellular protein that is expressed in all active phases of the cell cycle (G1, S, G2, and M), but not in the resting phase (G0). It is often used as a marker for cell proliferation and can be found in high concentrations in rapidly dividing cells. Immunohistochemical staining for Ki-67 can help to determine the growth fraction of a group of cells, which can be useful in the diagnosis and prognosis of various malignancies, including cancer. The level of Ki-67 expression is often associated with the aggressiveness of the tumor and its response to treatment.

A precipitin test is a type of immunodiagnostic test used to detect and measure the presence of specific antibodies or antigens in a patient's serum. The test is based on the principle of antigen-antibody interaction, where the addition of an antigen to a solution containing its corresponding antibody results in the formation of an insoluble immune complex known as a precipitin.

In this test, a small amount of the patient's serum is added to a solution containing a known antigen or antibody. If the patient has antibodies or antigens that correspond to the added reagent, they will bind and form a visible precipitate. The size and density of the precipitate can be used to quantify the amount of antibody or antigen present in the sample.

Precipitin tests are commonly used in the diagnosis of various infectious diseases, autoimmune disorders, and allergies. They can also be used in forensic science to identify biological samples. However, they have largely been replaced by more modern immunological techniques such as enzyme-linked immunosorbent assays (ELISAs) and radioimmunoassays (RIAs).

BCL-1 (B-cell leukemia/lymphoma 1) is not a gene itself but rather a chromosomal translocation that results in the formation of an abnormal fusion gene. The BCL-1 translocation, also known as t(14;18)(q32;q21), is most commonly found in follicular lymphoma, a type of slow-growing non-Hodgkin lymphoma.

The BCL-1 translocation involves the juxtaposition of the BCL-2 gene, which is located on chromosome 18, with the IGH (immunoglobulin heavy chain) gene, which is located on chromosome 14. This translocation results in the overexpression of the BCL-2 protein, which inhibits apoptosis or programmed cell death. The overexpression of BCL-2 leads to the accumulation of cancer cells and contributes to the development and progression of follicular lymphoma.

It is important to note that while BCL-1 is a chromosomal translocation, it can also refer to the protein encoded by the BCL-2 gene when it is overexpressed due to the t(14;18) translocation. In this context, BCL-1 is considered a proto-oncogene because its overexpression promotes cancer development and progression.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

Retinoblastoma-like protein p107, also known as RBL1 or p107, is a tumor suppressor protein that belongs to the family of "pocket proteins." This protein is encoded by the RBL1 gene in humans. It plays a crucial role in regulating the cell cycle and preventing uncontrolled cell growth, which can lead to cancer.

The p107 protein is structurally similar to the retinoblastoma protein (pRb) and functions in a related manner. Both proteins interact with E2F transcription factors to control the expression of genes required for DNA replication and cell division. When the p107 protein is phosphorylated by cyclin-dependent kinases during the G1 phase of the cell cycle, it releases E2F transcription factors, allowing them to activate the transcription of target genes necessary for S phase entry and DNA replication.

Retinoblastoma-like protein p107 is often inactivated or mutated in various human cancers, including retinoblastoma, small cell lung cancer, and certain types of sarcomas. Loss of p107 function can lead to uncontrolled cell growth and tumor formation. However, it's important to note that the role of p107 in cancer development is complex and may depend on its interactions with other proteins and signaling pathways.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Silymarin is not a medical term itself, but it's the active compound found in the milk thistle plant (Silybum marianum). Medically, silymarin is often referred to as a standardized extract from the seeds of the milk thistle plant. It is a complex mixture of flavonolignans, mainly consisting of silybin, isosilybin, silychristin, and silydianin.

Silymarin has been reported to have various biological activities, including antioxidant, anti-inflammatory, and hepatoprotective effects. It is commonly used in complementary and alternative medicine for the treatment of liver diseases such as hepatitis, cirrhosis, and toxic liver damage due to alcohol or drug abuse. However, its clinical efficacy remains a subject of ongoing research and debate among medical professionals.

A nevus, also known as a mole, is a benign growth or mark on the skin that is usually brown or black. It can be raised or flat and can appear anywhere on the body. Nevi are made up of cells called melanocytes, which produce the pigment melanin. Most nevi develop in childhood or adolescence, but they can also appear later in life. Some people have many nevi, while others have few or none.

There are several types of nevi, including:

* Common nevi: These are the most common type of mole and are usually small, round, and brown or black. They can be flat or raised and can appear anywhere on the body.
* Atypical nevi: These moles are larger than common nevi and have irregular borders and color. They may be flat or raised and can appear anywhere on the body, but are most commonly found on the trunk and extremities. Atypical nevi are more likely to develop into melanoma, a type of skin cancer, than common nevi.
* Congenital nevi: These moles are present at birth and can vary in size from small to large. They are more likely to develop into melanoma than moles that develop later in life.
* Spitz nevi: These are rare, benign growths that typically appear in children and adolescents. They are usually pink or red and dome-shaped.

It is important to monitor nevi for changes in size, shape, color, and texture, as these can be signs of melanoma. If you notice any changes in a mole, or if you have a new mole that is unusual or bleeding, it is important to see a healthcare provider for further evaluation.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Retinoblastoma-like protein p130, also known as RBL2 or p130, is a tumor suppressor protein that belongs to the family of retinoblastoma proteins (pRb, p107, and p130). It is encoded by the RBL2 gene located on chromosome 12q13. This protein plays crucial roles in regulating the cell cycle, differentiation, and apoptosis.

The primary function of p130 is to negatively control the transition from the G1 phase to the S phase of the cell cycle. It does so by forming a complex with E2F4 or E2F5 transcription factors, which results in the repression of genes required for DNA replication and cell cycle progression. The activity of p130 is regulated through phosphorylation by cyclin-dependent kinases (CDKs) during the cell cycle. When p130 is hypophosphorylated, it can bind to E2F4/E2F5 and repress target gene transcription; however, when p130 gets phosphorylated by CDKs, it releases from E2F4/E2F5, leading to the activation of cell cycle-promoting genes.

Retinoblastoma-like protein p130 is often inactivated or downregulated in various human cancers, including retinoblastoma, lung cancer, breast cancer, and others. This loss of function contributes to uncontrolled cell growth and tumorigenesis. Therefore, understanding the role of p130 in cell cycle regulation and its dysfunction in cancer provides valuable insights into potential therapeutic targets for cancer treatment.

Cyclin-Dependent Kinase Inhibitor p18, also known as CDKN2C or INK4c, is a protein that regulates the cell cycle. It inhibits the activity of cyclin-dependent kinases (CDKs), specifically the CDK4 and CDK6 proteins, which play crucial roles in regulating the progression of the cell cycle.

The p18 protein functions as a tumor suppressor by preventing the phosphorylation and activation of the retinoblastoma protein (pRb) by CDK4/6. When pRb is not phosphorylated, it remains bound to E2F transcription factors, inhibiting their ability to promote the expression of genes required for cell cycle progression.

Mutations or deletions in the CDKN2C gene can lead to uncontrolled cell growth and contribute to tumor development, making p18 an important factor in cancer biology and potential therapeutic target.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

E2F3 is a member of the E2F family of transcription factors, which are involved in the regulation of cell cycle progression and apoptosis (programmed cell death). Specifically, E2F3 can function as either an activator or a repressor of transcription, depending on whether it forms a complex with a retinoblastoma protein (pRb) or not.

When E2F3 is bound to pRb, it acts as a transcriptional repressor and helps to keep cells in a quiescent state by preventing the expression of genes required for DNA replication and cell cycle progression. However, when pRb is phosphorylated and inactivated by cyclin-dependent kinases during the G1 phase of the cell cycle, E2F3 is released and can then function as a transcriptional activator.

Activation of E2F3 leads to the expression of genes required for DNA replication and entry into the S phase of the cell cycle. In addition to its role in regulating the cell cycle, E2F3 has also been implicated in the development and progression of various types of cancer, including breast, lung, and prostate cancer. Dysregulation of E2F3 activity can contribute to uncontrolled cell growth and tumor formation.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

A nonmammalian embryo refers to the developing organism in animals other than mammals, from the fertilized egg (zygote) stage until hatching or birth. In nonmammalian species, the developmental stages and terminology differ from those used in mammals. The term "embryo" is generally applied to the developing organism up until a specific stage of development that is characterized by the formation of major organs and structures. After this point, the developing organism is referred to as a "larva," "juvenile," or other species-specific terminology.

The study of nonmammalian embryos has played an important role in our understanding of developmental biology and evolutionary developmental biology (evo-devo). By comparing the developmental processes across different animal groups, researchers can gain insights into the evolutionary origins and diversification of body plans and structures. Additionally, nonmammalian embryos are often used as model systems for studying basic biological processes, such as cell division, gene regulation, and pattern formation.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

SKP (S-phase kinase associated protein) Cullin F-box protein ligases, also known as SCF complexes, are a type of E3 ubiquitin ligase that play a crucial role in the ubiquitination and subsequent degradation of proteins. These complexes are composed of several subunits: SKP1, Cul1 (Cullin 1), Rbx1 (Ring-box 1), and an F-box protein. The F-box protein is a variable component that determines the substrate specificity of the SCF complex.

The ubiquitination process mediated by SCF complexes involves the sequential transfer of ubiquitin molecules to a target protein, leading to its degradation by the 26S proteasome. This pathway is essential for various cellular processes, including cell cycle regulation, signal transduction, and DNA damage response.

Dysregulation of SCF complexes has been implicated in several diseases, such as cancer and neurodegenerative disorders, making them potential targets for therapeutic intervention.

E2F2 is a member of the E2F family of transcription factors, which are involved in the regulation of cell cycle progression and differentiation. Specifically, E2F2 forms a complex with a retinoblastoma protein (pRb) to regulate the expression of genes required for DNA replication and cell cycle progression. When pRb is phosphorylated and inactivated by cyclin-dependent kinases during the G1 phase of the cell cycle, E2F2 is released and can activate the transcription of its target genes, promoting the transition from G1 to S phase. In addition to its role in the cell cycle, E2F2 has also been implicated in the regulation of apoptosis and differentiation in certain contexts.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Ubiquitin-conjugating enzymes (UBCs or E2 enzymes) are a family of enzymes that play a crucial role in the ubiquitination process, which is a post-translational modification of proteins. This process involves the covalent attachment of the protein ubiquitin to specific lysine residues on target proteins, ultimately leading to their degradation by the 26S proteasome.

Ubiquitination is a multi-step process that requires the coordinated action of three types of enzymes: E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 (ubiquitin ligases). Ubiquitin-conjugating enzymes are responsible for transferring ubiquitin from the E1 enzyme to the target protein, which is facilitated by an E3 ubiquitin ligase. The human genome encodes around 40 different UBCs, each with unique substrate specificities and functions in various cellular processes, such as protein degradation, DNA repair, and signal transduction.

Ubiquitination is a highly regulated process that can be reversed by the action of deubiquitinating enzymes (DUBs), which remove ubiquitin molecules from target proteins. Dysregulation of the ubiquitination pathway has been implicated in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Tumor suppressor protein p53, also known as p53 or tumor protein p53, is a nuclear phosphoprotein that plays a crucial role in preventing cancer development and maintaining genomic stability. It does so by regulating the cell cycle and acting as a transcription factor for various genes involved in apoptosis (programmed cell death), DNA repair, and cell senescence (permanent cell growth arrest).

In response to cellular stress, such as DNA damage or oncogene activation, p53 becomes activated and accumulates in the nucleus. Activated p53 can then bind to specific DNA sequences and promote the transcription of target genes that help prevent the proliferation of potentially cancerous cells. These targets include genes involved in cell cycle arrest (e.g., CDKN1A/p21), apoptosis (e.g., BAX, PUMA), and DNA repair (e.g., GADD45).

Mutations in the TP53 gene, which encodes p53, are among the most common genetic alterations found in human cancers. These mutations often lead to a loss or reduction of p53's tumor suppressive functions, allowing cancer cells to proliferate uncontrollably and evade apoptosis. As a result, p53 has been referred to as "the guardian of the genome" due to its essential role in preventing tumorigenesis.

... D / CDK4, Cyclin D / CDK6, and Cyclin E / CDK2 - regulates transition from G1 to S phase. G2/M cyclins - essential for ... The rise in presence of G1/S cyclins is paralleled by a rise in S cyclins. G1 cyclins do not behave like the other cyclins, in ... G1 cyclins, G1/S cyclins, S cyclins, and M cyclins. This division is useful when talking about most cell cycles, but it is not ... Note that the cyclins are now classified according to their conserved cyclin box structure, and not all these cyclins alter in ...
Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which ... Cyclin-T2 is a protein that in humans is encoded by the CCNT2 gene. The protein encoded by this gene belongs to the highly ... This cyclin and its kinase partner CDK9 were found to be subunits of the transcription elongation factor p-TEFb. The p-TEFb ... "Entrez Gene: CCNT2 cyclin T2". Simone C, Bagella L, Bellan C, Giordano A (Jun 2002). "Physical interaction between pRb and cdk9 ...
Cyclin-O is a protein that in humans is encoded by the CCNO gene. Cyclin O has been shown to interact with RPA2 and PCNA. ... "Entrez Gene: CCNO cyclin O". Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O ... Hirst R, Gosden R, Miller D (June 2006). "The cyclin-like uracil DNA glycosylase (UDG) of murine oocytes and its relationship ... Muller SJ, Caradonna S (January 1993). "Cell cycle regulation of a human cyclin-like gene encoding uracil-DNA glycosylase". The ...
Cyclins function as activating subunits of enzymatic complex together with cyclin-dependent kinases (CDKs). Different cyclins ... Cyclin-A1 interacts with: CDC20, Cyclin-dependent kinase 2, E2F1, GNB2L1, GPS2, MYBL2, and Retinoblastoma protein. GRCh38: ... "Cyclin A1 directly interacts with B-myb and cyclin A1/cdk2 phosphorylate B-myb at functionally important serine and threonine ... "Cyclin A1 directly interacts with B-myb and cyclin A1/cdk2 phosphorylate B-myb at functionally important serine and threonine ...
... is a member of the cyclin family, specifically the B-type cyclins. The B-type cyclins, B1 and B2, associate with ... Cyclin B1 co-localizes with microtubules, whereas cyclin B2 is primarily associated with the Golgi region. Cyclin B2 also binds ... Cyclin B2 has been shown to interact with TGF beta receptor 2. Cyclin B GRCh38: Ensembl release 89: ENSG00000157456 - Ensembl, ... "Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero". Proc. Natl. Acad. Sci. U.S.A. ...
... is a member of the cyclin family. Cyclin B is a mitotic cyclin. The amount of cyclin B (which binds to Cdk1) and the ... Because cyclin B is necessary for cells to enter mitosis and therefore necessary for cell division, cyclin B levels are often ... The fact that cyclin B is often disregulated in cancer cells makes cyclin B an attractive biomarker. Many studies have been ... Cyclin+B at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Drosophila Cyclin B - The Interactive Fly ( ...
"Entrez Gene: CCNE1 cyclin E1". Shanahan F, Seghezzi W, Parry D, Mahony D, Lees E (February 1999). "Cyclin E associates with ... Mumberg D, Wick M, Bürger C, Haas K, Funk M, Müller R (1997). "Cyclin ET, a new splice variant of human cyclin E with a unique ... Cyclin E1 has been shown to interact with: CDC25A, CDKN1B, CUL3 Cdk1, Cyclin-dependent kinase 2, HERC5, P21, Retinoblastoma- ... Lew DJ, Dulić V, Reed SI (October 1991). "Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast ...
Other than Rb, viral cyclin D-Cdk6 complex also targets p27Kip, a Cdk inhibitor of cyclin E and A. In addition, viral cyclin D- ... The phosphorylation of Rb by cyclin A-Cdk2, cyclin B-Cdk1, and cyclin E-Cdk2 are unaffected. The C terminus has a stretch of 21 ... In mice and humans, two more cyclin D proteins have been identified. The three homologues, called cyclin D1, cyclin D2, and ... among which is cyclin D. In this way, cyclin D is synthesized as long as the growth factor is present. Cyclin D levels in ...
Cyclins function as regulators of cyclin-dependent kinases. Different cyclins exhibit distinct expression and degradation ... Brooks AR, Shiffman D, Chan CS, Brooks EE, Milner PG (Apr 1996). "Functional analysis of the human cyclin D2 and cyclin D3 ... "The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2". The ... G1/S-specific cyclin-D2 is a protein that in humans is encoded by the CCND2 gene. The protein encoded by this gene belongs to ...
Cyclins function as regulators of CDKs (cyclin-dependent kinase). Different cyclins exhibit distinct expression and degradation ... cyclin D1 is translocated to the IgH promoter leading to cyclin D1 overexpression. Chromosomal translocation of the cyclin D1 ... Cyclin D1 is a protein that in humans is encoded by the CCND1 gene. The CCND1 gene encodes the cyclin D1 protein. The human ... Cyclin D1 and the mechanisms it regulates have the potential to be a therapeutic target for cancer drugs: Cyclin D1 has been ...
"Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 ... "Entrez Gene: CCNK cyclin K". Baek K, Brown RS, Birrane G, Ladias JA (February 2007). "Crystal structure of human cyclin K, a ... Cyclin K also interacts with HIV nef protein. In the presence of overexpressed Nef protein, Cyclin k and CDK9 binding is ... Cyclin K is indispensable for Leukemia growth. SETD1A, is also known to bind Cyclin K through its FLOS domain. The interaction ...
"Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction". EMBO J. 19 (6): 1378-88. doi: ... G2/mitotic-specific cyclin-B1 is a protein that in humans is encoded by the CCNB1 gene. Cyclin B1 is a regulatory protein ... Like all cyclins, levels of cyclin B1 oscillate over the course of the cell cycle. Just prior to mitosis, a large amount of ... Cyclin B1 can reside in the nucleus or the cytoplasm which can have an effect on the malignant potential of cyclin B1 when ...
... is a protein that in humans is encoded by the CCNE2 gene. It is a G1 cyclin that binds Cdk2 and is inhibited by p27( ... Gudas JM, Payton M, Thukral S, Chen E, Bass M, Robinson MO, Coats S (January 1999). "Cyclin E2, a novel G1 cyclin that binds ... Zariwala, M.; Liu, J.; Xiong, Y. (1998-11-26). "Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is ...
Like all cyclin family members, cyclin E forms complexes with cyclin-dependent kinases. In particular, Cyclin E binds with CDK2 ... Cyclin E is a member of the cyclin family. Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S ... Cyclin E/CDK2 plays a critical role in the G1 phase and in the G1-S phase transition. Cyclin E/CDK2 phosphorylates ... Dysregulation of cyclin E occurs in 18-22% of the breast cancers. Cyclin E is a prognostic marker in breast cancer, its altered ...
Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns that ... Cyclin-T1 is a protein that in humans is encoded by the CCNT1 gene. The protein encoded by this gene belongs to the highly ... This cyclin tightly associates with CDK9 kinase, and was found to be a major subunit of the transcription elongation factor p- ... This cyclin and its kinase partner were also found to be involved in the phosphorylation and regulation of the carboxy-terminal ...
Cyclin-A2 is a protein that in humans is encoded by the CCNA2 gene. It is one of the two types of cyclin A: cyclin A1 is ... Cyclin A2 belongs to the cyclin family, whose members regulate cell cycle progression by interacting with CDK kinases. Cyclin ... The cyclin A2-CDK2 complex eventually phosphorylates E2F, turning off cyclin A2 transcription. E2F promotes cyclin A2 ... Cyclin A2 is synthesized at the onset of S phase and localizes to the nucleus, where the cyclin A2-CDK2 complex is implicated ...
... has been shown to interact with P53, Cyclin-dependent kinase 7 and MNAT1. GRCh38: Ensembl release 89: ENSG00000134480 ... Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which ... Cyclin-H is a protein that in humans is encoded by the CCNH gene. The protein encoded by this gene belongs to the highly ... This cyclin forms a complex with CDK7 kinase and ring finger protein MAT1. The kinase complex is able to phosphorylate CDK2 and ...
... remains associated with CDK1 from late S into late G2 phase when it is replaced by cyclin B. Cyclin A/CDK1 is thought ... Cyclin A is the only cyclin that regulates multiple steps of the cell cycle. Cyclin A can regulate multiple cell cycle steps ... Cyclin A2 is expressed in dividing somatic cells. Cyclin A, along with the other members of the cyclin family, regulates cell ... P21 is a CDK inhibitor that binds to several cyclin/CDK complexes, including cyclin A-CDK2/1 and cyclin D/CDK4, and blocks the ...
Cyclin-dependent kinase 4, Cyclin-dependent kinase 6, EIF3K, and Retinoic acid receptor alpha. Cyclin Cyclin D GRCh38: Ensembl ... Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which ... Brooks AR, Shiffman D, Chan CS, Brooks EE, Milner PG (1996). "Functional analysis of the human cyclin D2 and cyclin D3 ... G1/S-specific cyclin-D3 is a protein that in humans is encoded by the CCND3 gene. The protein encoded by this gene belongs to ...
CDK6; cyclin D1, cyclin D2, cyclin D3 CDK7; cyclin H CDK8; cyclin C CDK9; cyclin T1, cyclin T2a, cyclin T2b, cyclin K CDK10 ... cyclin A, cyclin B CDK2; cyclin A, cyclin E CDK3; cyclin C CDK4; cyclin D1, cyclin D2, cyclin D3 CDK5; CDK5R1, CDK5R2. See also ... Furthermore, cyclin binding determines the specificity of the cyclin-CDK complex for particular substrates. Cyclins can ... Viruses can encode proteins with sequence homology to cyclins. One much-studied example is K-cyclin (or v-cyclin) from Kaposi ...
E2F.2FpRb complexes Hyperphosphorylation cdc25 Maturation promoting factor CDK cyclin A cyclin B cyclin D cyclin E Wee (cell ... "Cyclin F regulates the nuclear localization of cyclin B1 through a cyclin-cyclin interaction". EMBO J. 19 (6): 1378-1388. doi: ... Cyclin binding alters access to the active site of Cdk1, allowing for Cdk1 activity; furthermore, cyclins impart specificity to ... Furthermore, cyclins can target Cdk1 to particular subcellular locations. In addition to regulation by cyclins, Cdk1 is ...
"Entrez Gene: CDK10 cyclin-dependent kinase (CDC2-like) 10". Kasten M, Giordano A (Apr 2001). "Cdk10, a Cdc2-related kinase, ... Cyclin-dependent kinase 10 has been shown to interact with ETS2. GRCh38: Ensembl release 89: ENSG00000185324 - Ensembl, May ...
A Cyclin-dependent kinase 6 interacts with: CDKN2C, Cyclin D1, Cyclin D3, P16, PPM1B, and PPP2CA. Cell cycle Cyclin-dependent ... It is regulated by cyclins, more specifically by Cyclin D proteins and Cyclin-dependent kinase inhibitor proteins. The protein ... 2003). "Expression of Cyclin-Dependent Kinase 6, but Not Cyclin-Dependent Kinase 4, Alters Morphology of Cultured Mouse ... Kozar K, Sicinski P (March 2005). "Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes". Cell Cycle. ...
... has been shown to interact with: BRCA1, CDK2AP1, CDKN1B CDKN3, CEBPA, Cyclin A1, Cyclin E1, Flap ... "Entrez Gene: CDK2 cyclin-dependent kinase 2". Echalier A, Endicott JA, Noble ME (March 2010). "Recent developments in cyclin- ... This protein associates with and is regulated by the regulatory subunits of the complex including cyclin E or A. Cyclin E binds ... Lacy S, Whyte P (May 1997). "Identification of a p130 domain mediating interactions with cyclin A/cdk 2 and cyclin E/cdk 2 ...
... has been shown to interact with: Androgen receptor, Cyclin H, GTF2H1, MNAT1, P53, SUPT5H, and XPB. ... Cyclin-dependent kinase 7, or cell division protein kinase 7, is an enzyme that in humans is encoded by the CDK7 gene. The ... The growth suppressor p53 has been shown to interact with cyclin H both in vitro and in vivo. Addition of wild type p53 was ... "Entrez Gene: CDK7 cyclin-dependent kinase 7 (MO15 homolog, Xenopus laevis, cdk-activating kinase)". Patel H, Abduljabbar R, Lai ...
"OMIM Entry - * 123831 - CYCLIN-DEPENDENT KINASE 5; CDK5". omim.org. Retrieved 2020-11-02. Tsai, Li-Huei. Cyclin Dependent ... Cyclin-dependent kinase 5 is a protein, and more specifically an enzyme, that is encoded by the Cdk5 gene. It was discovered 15 ... Cyclin-Dependent+Kinase+5 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) CDK5 human gene location in ... Cyclin Dependent Kinase 5. Springer. 19 August 2008. ISBN 978-0-387-78886-9. Patrick GN, Zukerberg L, Nikolic M, de la Monte S ...
During G2 phase, cyclin A is degraded, while cyclin B is synthesized and cyclin B-Cdk1 complexes form. Not only are cyclin B- ... cyclin-dependent kinase (CDK), with a regulatory subunit, cyclin. Once cyclin-dependent kinases bind to cyclin, the formed ... Cyclin Cyclin-dependent kinase Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 2005 Nov;30(11 ... cyclin D1-Cdk4 and cyclin D1-Cdk6 phosphorylate pRB, followed by additional phosphorylation from the cyclin E-Cdk2 CDKC. Once ...
"Entrez Gene: CDK4 cyclin-dependent kinase 4". "CDK4 - Cyclin-dependent kinase 4 - Homo sapiens (Human) - CDK4 gene & protein". ... Component of the ternary complex, cyclin D/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 ... 1993). "Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent ... 1995). "Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C". Proc. Natl. Acad. ...
... or CDK9 is a cyclin-dependent kinase associated with P-TEFb. The protein encoded by this gene is a ... This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found ... Cyclin-Dependent+Kinase+9 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Drosophila Cyclin dependent ... "Entrez Gene: CDK9 cyclin-dependent kinase 9 (CDC2-related kinase)". MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, ...
"Entrez Gene: CDK3 cyclin-dependent kinase 3". Bullrich F, MacLachlan TK, Sang N, et al. (1995). "Chromosomal mapping of members ... 2002). "ik3-1/Cables is a substrate for cyclin-dependent kinase 3 (cdk 3)". Eur. J. Biochem. 268 (23): 6076-82. doi:10.1046/j. ... Ren S, Rollins BJ (2004). "Cyclin C/cdk3 promotes Rb-dependent G0 exit". Cell. 117 (2): 239-51. doi:10.1016/S0092-8674(04)00300 ... CDK3 can phosphorylate histone H1 and interacts with an unknown type of cyclin. GRCh38: Ensembl release 89: ENSG00000250506 - ...
Cyclin D / CDK4, Cyclin D / CDK6, and Cyclin E / CDK2 - regulates transition from G1 to S phase. G2/M cyclins - essential for ... The rise in presence of G1/S cyclins is paralleled by a rise in S cyclins. G1 cyclins do not behave like the other cyclins, in ... G1 cyclins, G1/S cyclins, S cyclins, and M cyclins. This division is useful when talking about most cell cycles, but it is not ... Note that the cyclins are now classified according to their conserved cyclin box structure, and not all these cyclins alter in ...
The model is based on a bicyclic phosphorylation-dephosphorylation cascade involving cyclin and cdc2 kinase. By constructing ... The model is based on a bicyclic phosphorylation-dephosphorylation cascade involving cyclin and cdc2 kinase. By constructing ...
Conserved Protein Domain Family CYCLIN_CCNH_rpt1, CCNH, also called MO15-associated protein, p34, or p37, is normally ... associated with the cyclin-dependent kinase cdk7, the catalytic subunit of the CDK-activating kinase (CAK) enzymatic complex ... first cyclin box found in cyclin-H (CCNH) and similar proteins. CCNH, also called MO15-associated protein, p34, or p37, is ... CCNH contains two cyclin boxes. This model corresponds to the first one. The cyclin box is a protein binding domain. ...
Free download of Cyclin Font. Released in 2000 by Apostrophic Lab and licensed for personal and commercial-use. Click now to ...
... regulates expression of cyclin D1. Furthermore, the group showed that many cancer patients encode a form of cyclin D1 that ... Protien Cyclin D1 governs microRNA processing in breast cancer. Date:. November 29, 2013. Source:. Thomas Jefferson University ... Cyclin D1, a protein that helps push a replicating cell through the cell cycle also mediates the processing and generation of ... Because the cyclin D1 gene has been implicated in a variety of other human cancers these findings may have broad implications ...
The Cyclin D-Cdk4,6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and ... Cyclin D-dependent kinases, INK4 inhibitors and cancer Biochim Biophys Acta. 2002 Mar 14;1602(1):73-87. doi: 10.1016/s0304-419x ... The Cyclin D-Cdk4,6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and ... vast majority of human tumors by genetic and epigenetic alterations that target at least some of its key members such as Cyclin ...
Neither DmCdc2, DmCdc2c (alias DmCdk2), cyclin A, nor cyclin B co-sedimented with cyclin C. They were present in complexes in ... Because analysis of the same embryos with cyclin A and cyclin B antisera revealed mitotic destruction of these cyclins, it ... Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II. A number of cyclins ... Cyclin C: Biological Overview , References Gene name - Cyclin C Synonyms - Cytological map position - 88D6-88D6 Function - ...
Learn about Cyclin A at online-medical-dictionary.org ... Cyclin, Type A. Cyclins, Type A. E1A p60. Type A Cyclin. Type A ... A cyclin subtype that has specificity for CDC2 PROTEIN KINASE and CYCLIN-DEPENDENT KINASE 2. It plays a role in progression of ... Cyclin A. Synonyms. Adenovirus E1A Associated Protein p60. Adenovirus E1A-Associated Protein p60. ...
David Bartels lab contains the insert Cyclin D2 and is published in Cell. 2009 Aug 21. 138(4):673-84. This plasmid is ... Plasmid pMSCV Cyclin D2 long-wt from Dr. ... pMSCV Cyclin D2 long-wt was a gift from David Bartel (Addgene ...
View mouse Cdk15 Chr1:59296029-59391656 with: phenotypes, sequences, polymorphisms, proteins, references, function
View mouse Cdk9 Chr2:32595796-32603088 with: phenotypes, sequences, polymorphisms, proteins, references, function, expression
Cyclin D1 from Neuroscience News features breaking science news from research labs, scientists and colleges around the world. ...
Protein target information for Cyclin 1 (Plasmodium falciparum 3D7). Find diseases associated with this biological target and ...
View Mouse Monoclonal anti-Cyclin H Antibody (1B8) (H00000902-M01). Validated Applications: WB, ELISA, ICC/IF, IHC. Validated ... Reviews for Cyclin H Antibody (H00000902-M01) (0) There are no reviews for Cyclin H Antibody (H00000902-M01). By submitting a ... Blogs on Cyclin H. There are no specific blogs for Cyclin H, but you can read our latest blog posts. ... Diseases for Cyclin H Antibody (H00000902-M01). Discover more about diseases related to Cyclin H Antibody (H00000902-M01). ...
The worlds first wiki where authorship really matters. Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts.
STRUCTURE OF HUMAN THR160-PHOSPHO CDK2-CYCLIN A COMPLEXED WITH A BISANILINOPYRIMIDINE INHIBITOR ... Dissecting the Determinants of Cyclin-Dependent Kinase 2 and Cyclin-Dependent Kinase 4 Inhibitor Selectivity.. Pratt, D.J., ... Cyclin dependent kinases are a key family of kinases involved in cell cycle regulation and are an attractive target for cancer ... Cyclin dependent kinases are a key family of kinases involved in cell cycle regulation and are an attractive target for cancer ...
Structure of human Thr160-phospho CDK2/cyclin A complexed with the inhibitor NU6086 ... Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor.. Davies, T.G., Bentley, J., Arris, C.E., ... Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. Iterative ... Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. Iterative ...
Regulation of cyclin-substrate docking by a G1 arrest signaling pathway and the Cdk inhibitor Far1. Curr Biol. 2014 Jun 16; 24( ... "Cyclins" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical Subject Headings) ... Ishidate T, Elewa A, Kim S, Mello CC, Shirayama M. Divide and differentiate: CDK/Cyclins and the art of development. Cell Cycle ... Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood. 2009 Feb 19; ...
Cyclin I is an atypical cyclin because it is most abundant in postmitotic cells. We previously showed that cyclin I does not ... we investigated the mechanism by which cyclin I safeguards against apoptosis and found that cyclin I bound and activated cyclin ... or p35/cyclin I (lanes 4, 8). (. B. ) To compare the kinase kinetics by which cyclin I-Cdk5 phosphorylates tau in comparison ... Cyclin I-Cdk5 showed phosphorylation kinetics similar to those of p35-Cdk5. Phosphorylation of tau was already evident after 5 ...
The expression of Cyclin D1 mRNA was detected by qRT-PCR. The expression of Cyclin D1 protein was detected by enzyme-linked ... Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1.. Author: Gao J, Qin Y, ... Based on our previous miRNA sequence results, bioinformatic analysis was used to predict miR-4755-5p targeting Cyclin D1. ... The relative miR-4755-5p expression showed a negative correlation with Cyclin D1 expression. Subsequently, in human osteoblasts ...
With kids bikes from balance bikes, first pedal bikes, hybrid bikes to mountain & road bikes, Rutland Cycling has a huge choice of Frog bikes available.
Rabbit Monoclonal Cyclin D1 antibody [RM241]. Validated in WB, IHC-P. Tested in Human. ... Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which ... This cyclin forms a complex with and functions as a regulatory subunit of CDK4 or CDK6, whose activity is required for cell ... There are currently no references for Cyclin D1 antibody [RM241] (GTX33611). Be the first to share your publications with this ...
In this study, we evaluated cyclin D1, D2 and D3 protein expression in AL amyloidosis, and compared cyclin D positivity to ... Cyclin D dysregulation has been proposed to be a common mechanism in PC disorders, as in multiple myeloma; the majority of ... patients have dysregulated cyclin D expression.6 This has not been extensively investigated in AL amyloidosis. ...
The cyclin-dependent kinase inhibitor AT7519 accelerates neutrophil apoptosis in sepsis-related acute respiratory distress ... The cyclin-dependent kinase inhibitor AT7519 accelerates neutrophil apoptosis in sepsis-related acute respiratory distress ... While the cyclin-dependent kinase inhibitor AT7519 induces neutrophil apoptosis to promote inflammation resolution in ... highlighting cyclin-dependent kinase inhibitors as potential novel therapeutic agents. ...
ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement ...
Expression profile analysis revealed sik1 as part of a genetic network that controls the cell cycle, where the cyclin-dependent ...
... cyclin D3, inhibition of CDK6 or cyclin D3 induces apoptosis. The mechanisms underlying the prosurvival function of cyclin D3- ... were directly phosphorylated and inhibited by cyclin D3-CDK6, suggesting that cyclin D3-CDK6 may have a unique role in glucose ... Inhibitors of the cyclin-dependent kinases CDK4 and CDK6 induce cell-cycle arrest in RB1-proficient tumors and have had ... Major finding: Cyclin D3-CDK6 inhibits the glycolytic enzymes PFK1 and PKM2 to prevent T-ALL cell apoptosis. ...
Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. In Cyclin A2-depleted normal ... Cyclin A2 modulates EMT via beta-catenin and phospholipase C pathways. Cheung, C. T.; Bendris, N.; Paul, C.; Hamieh, A.; Anouar ... We have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) ... Our findings will broaden our knowledge on how Cyclin A2 contributes to EMT and metastasis. ...
Cyclin-dependent kinase 5, Munc18a and Munc18-interacting protein 1/X11α protein up-regulation in Alzheimers disease. ... Cyclin-dependent kinase 5 and its activator p35 disrupt Munc18a-syntaxin 1 binding, thereby promoting synaptic vesicle fusion ... Jacobs, E.H, Williams, R.J, & Francis, P.T. (2006). Cyclin-dependent kinase 5, Munc18a and Munc18-interacting protein 1/X11α ... We investigated protein levels of the signaling pathway: p35, cyclin-dependent kinase 5, Munc18a, syntaxin 1A and 1B, Munc18- ...
We then studied the effect of Dox on the p34cdc2/cyclin B1 complex because it plays a key role in regulating G2/M phase ... In contrast, Dox treatment was found to induced cyclin B1 accumulation as a result of stimulating its synthesis and inhibiting ... Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in ... Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in ...
  • Cyclins, when bound with the dependent kinases, such as the p34/cdc2/cdk1 protein, form the maturation-promoting factor. (wikipedia.org)
  • Cyclins function as regulators of CDK kinases. (novusbio.com)
  • Cyclin dependent kinases are a key family of kinases involved in cell cycle regulation and are an attractive target for cancer chemotherapy. (rcsb.org)
  • Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. (rcsb.org)
  • A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. (umassmed.edu)
  • Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. (umassmed.edu)
  • Inhibitors of the cyclin-dependent kinases CDK4 and CDK6 induce cell-cycle arrest in RB1-proficient tumors and have had promising results in several tumor types. (aacrjournals.org)
  • Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. (escholarship.org)
  • Cyclin D1 antibody is a regulatory subunit of certain protein kinases thought to advance the G1 phase of the cell cycle. (micro-shop.pl)
  • The eukaryotic cell cycle comprises a series of events, whose ordering and correct progression depends on the oscillating activity of cyclin-dependent kinases (Cdks), which safeguard timely duplication and segregation of the genome. (unimi.it)
  • Regulation of the DNA damage response by cyclin-dependent kinases / C. Trovesi, N. Manfrini, M. Falcettoni, M.P. Longhese. (unimi.it)
  • Cyclin dependent kinases (CDKs) phosphorylate several substrates such as transcription factors and cytoskeletal proteins, which leads to the transition of the cell into the next cell cycle phase. (onkoview.com)
  • Protein kinases that control cell cycle progression in all eukaryotes and require physical association with CYCLINS to achieve full enzymatic activity. (bvsalud.org)
  • Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events. (bvsalud.org)
  • Cyclin is a family of proteins that controls the progression of a cell through the cell cycle by activating cyclin-dependent kinase (CDK) enzymes or group of enzymes required for synthesis of cell cycle. (wikipedia.org)
  • For example, the amino-terminal regions of S and M cyclins contain short destruction-box motifs that target these proteins for proteolysis in mitosis. (wikipedia.org)
  • The work supports the idea that cancer-causing proteins like cyclin D1 may drive cancer progression in part via miRNA biogenesis. (sciencedaily.com)
  • In addition, levels of the prosurvival proteins Bcl-2 and Bcl-XL were reduced in podocytes and neurons from cyclin I-deficient mice, and restoration of Bcl-2 or Bcl-XL expression prevented injury-induced apoptosis. (jci.org)
  • Taken together, these data suggest that a cyclin I-Cdk5 complex forms a critical antiapoptotic factor in terminally differentiated cells that functions via MAPK signaling to modulate levels of the prosurvival proteins Bcl-2 and Bcl-XL. (jci.org)
  • 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule-associated proteins (MAPs) might be responsible for this interaction. (rupress.org)
  • Cyclins are a family of proteins that control how cells proceed through the multi-step cycle of cell division. (medlineplus.gov)
  • A cyclin forms a complex with Cdk, which begins to activate but the complete activation requires phosphorylation, as well. (wikipedia.org)
  • The model is based on a bicyclic phosphorylation-dephosphorylation cascade involving cyclin and cdc2 kinase. (ebi.ac.uk)
  • Bhaduri S, Valk E, Winters MJ, Gruessner B, Loog M, Pryciak PM. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry. (umassmed.edu)
  • Cyclin I-Cdk5 showed phosphorylation kinetics similar to those of p35-Cdk5. (jci.org)
  • In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. (duke.edu)
  • thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation. (duke.edu)
  • CCNH, also called MO15-associated protein, p34, or p37, is normally associated with the cyclin-dependent kinase cdk7, the catalytic subunit of the CDK-activating kinase (CAK) enzymatic complex. (nih.gov)
  • Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin C) , two subunits of the conserved Mediator (MED) complex, have been linked to diverse human diseases such as cancer. (sdbonline.org)
  • Assay of the mutants with a cyclin-dependent kinase 4-selective bisanilinopyrimidine shows that the K89T mutation is primarily responsible for the selectivity of this compound. (rcsb.org)
  • Use of the cyclin-dependent kinase 2-selective 6-cyclohexylmethoxy-2-(4'-sulfamoylanilino)purine (NU6102) shows that K89T has no role in the selectivity, while the remaining three mutations have a cumulative influence. (rcsb.org)
  • Here, we investigated the mechanism by which cyclin I safeguards against apoptosis and found that cyclin I bound and activated cyclin-dependent kinase 5 (Cdk5) in isolated mouse podocytes and neurons. (jci.org)
  • While the cyclin-dependent kinase inhibitor AT7519 induces neutrophil apoptosis to promote inflammation resolution in preclinical models of lung inflammation, its potential efficacy in ARDS has not been examined. (bmj.com)
  • We demonstrate the first pharmacological compound to induce neutrophil apoptosis in sepsis-related ARDS, highlighting cyclin-dependent kinase inhibitors as potential novel therapeutic agents. (bmj.com)
  • Cyclin-dependent kinase 5 and its activator p35 disrupt Munc18a-syntaxin 1 binding, thereby promoting synaptic vesicle fusion during exocytosis. (eur.nl)
  • We investigated protein levels of the signaling pathway: p35, cyclin-dependent kinase 5, Munc18a, syntaxin 1A and 1B, Munc18-interacting protein 1 and Munc18-interacting protein 2 in Alzheimer's disease cortex and found that this pathway was up-regulated in the Alzheimer's disease parietal and occipital cortex. (eur.nl)
  • Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. (aspetjournals.org)
  • Our results suggest that anthracycline-induced cytotoxicity is cell cycle dependent and is mediated, at least in part, by disturbance of the regulation of p34cdc2/cyclin B1 complex, thus leading to G2/M phase arrest. (aspetjournals.org)
  • In these compartments cyclin A-Cdk complexes are expressed at particularly high levels which may render stem cells dependent on cyclin A. INTRODUCTION Replication of genetic material during cell division in Metazoan organisms is thought to be driven by cyclin A. Cyclin A was the first cyclin cloned in any organism (Swenson et al. (immune-source.com)
  • Start is triggered by the cyclin- dependent kinase Cdc28 and three rate-limiting activators, the G1 cyclins Cln1, Cln2 and Cln3 (ref. 3). (uky.edu)
  • Importantly, CDKs are inhibited by specific cyclin dependent kinase inhibitors. (onkoview.com)
  • DHA-enriched fish oil upregulates cyclin-dependent kinase inhibitor 2A (P16 INK ) expression and downregulates telomerase activity without modulating effects of PPARγ Pro12Ala polymorphism in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. (bvsalud.org)
  • The oscillations of the cyclins, namely fluctuations in cyclin gene expression and destruction by the ubiquitin mediated proteasome pathway, induce oscillations in Cdk activity to drive the cell cycle. (wikipedia.org)
  • Dr. Pestell and colleagues developed transgenic mice that could induce cyclin D1 expression in the breast and examined cells with cyclin D1 gene deleted. (sciencedaily.com)
  • Because the cyclin D1 gene has been implicated in a variety of other human cancers these findings may have broad implications for processing of non coding RNA in human tumorigenesis. (sciencedaily.com)
  • The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. (novusbio.com)
  • 1983 Subsequently cyclin A genes have been found in all multicellular organisms including humans (Pines and Hunter 1990 While only a single cyclin A gene is present in the genomes of and cultured fibroblasts XI-006 or other cell types blocked DNA synthesis consistent with the essential function for cyclin A in DNA replication (Girard et al. (immune-source.com)
  • RESULTS Generation and Characterization of Conditional Cyclin A2 Knockout Mice To obtain a conditional cyclin A2 allele we inserted sites into the first and seventh intron of the murine cyclin A2 gene (Physique 1A). (immune-source.com)
  • The gene-targeting construct was launched into embryonal stem (ES) cells and heterozygous cyclin A2f/+ (Af denotes XI-006 the "floxed" allele) ES were obtained through homologous recombination (Figures 1A and 1B). (immune-source.com)
  • The CCND2 gene provides instructions for making a protein called cyclin D2. (medlineplus.gov)
  • The molecular consequence of translocation is overexpression of the protein cyclin D1 (coded by the PRAD1 gene located close to the breakpoint). (medscape.com)
  • Cyclins themselves have no enzymatic activity but have binding sites for some substrates and target the Cdks to specific subcellular locations. (wikipedia.org)
  • CDKs are activated by cyclins, which are expressed in distinct phases during the cell cycle. (onkoview.com)
  • S cyclins bind to Cdk and the complex directly induces DNA replication. (wikipedia.org)
  • In addition to its role in regulating the cell cycle, cyclin D1 induces Dicer and thereby promotes the maturation of miRNA," says lead researcher Richard Pestell, M.D., Ph.D., Director of the Kimmel Cancer Center at Thomas Jefferson University and Chair of the Department of Cancer Biology. (sciencedaily.com)
  • However, in T-cell acute lymphoblastic leukemia (T-ALL), which predominately expresses CDK6 and the activating cyclin, cyclin D3, inhibition of CDK6 or cyclin D3 induces apoptosis. (aacrjournals.org)
  • Functionally, miR-193b induces a G1 cell cycle arrest and cell death in neuroblastoma cell lines by reducing the expression of MYCN , Cyclin D1 and MCL-1 , three important oncogenes in neuroblastoma of which inhibition has shown promising results in preclinical testing. (oncotarget.com)
  • In the current study, the group sought to investigate the mechanism by which cyclin D1 regulates the biogenesis of non coding miRNA. (sciencedaily.com)
  • High levels of cyclin D3 and CDK6 may predict response to CDK4/6 inhibitors in multiple tumor types. (aacrjournals.org)
  • Together, these findings elucidate a prosurvival role for cyclin D3-CDK6 in metabolism, in addition to its role in cell-cycle progression, and suggest that high levels of cyclin D3 and CDK6 may predict response to CDK4/6 inhibitors. (aacrjournals.org)
  • Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. (escholarship.org)
  • F-box protein specificity for g1 cyclins is dictated by subcellular localization. (umassmed.edu)
  • Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. (escholarship.org)
  • We previously showed that cyclin I does not regulate proliferation, but rather controls survival of podocytes, terminally differentiated epithelial cells that are essential for the structural and functional integrity of kidney glomeruli. (jci.org)
  • Further, the results of miR-4755-5p mimic transfection confirmed that under the action of NaF, miR-4755-5p overexpression reduced Cyclin D1 protein expression within osteoblasts and further inhibited cell proliferation and activation. (fluoridealert.org)
  • cyclin A function was essential for proliferation of hematopoietic and embryonal stem cells. (immune-source.com)
  • 1997 In the work explained below we decided to revisit the requirement for cyclin A function in cell proliferation using conditional cyclin A knockout mice. (immune-source.com)
  • EP12] shows some positive staining reaction in B-cell chromic lymphocytic leukemia proliferation not seen with other Cyclin D1 clones. (micro-shop.pl)
  • Cyclin D2's role in the cell division cycle makes it a key controller of the rate of cell growth and division (proliferation) in the body. (medlineplus.gov)
  • The resulting buildup of cyclin D2 in cells triggers them to continue dividing when they otherwise would not have, leading to abnormal cell proliferation. (medlineplus.gov)
  • It is less clear how a buildup of cyclin D2 contributes to polydactyly, although the extra digits are probably related to abnormal cell proliferation in the developing hands and feet. (medlineplus.gov)
  • We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. (cdc.gov)
  • Immunocytochemistry/ Immunofluorescence: Cyclin H Antibody (1B8) [H00000902-M01] - Analysis of monoclonal antibody to CCNH on HeLa cell. (novusbio.com)
  • Immunohistochemistry-Paraffin: Cyclin H Antibody (1B8) [H00000902-M01] - Analysis of monoclonal antibody to CCNH on formalin-fixed paraffin-embedded human testis. (novusbio.com)
  • Western Blot: Cyclin H Antibody (1B8) [H00000902-M01] - CCNH monoclonal antibody (M01), clone 1B8 Analysis of CCNH expression in HeLa. (novusbio.com)
  • Sandwich ELISA: Cyclin H Antibody (1B8) [H00000902-M01] - Detection limit for recombinant GST tagged CCNH is approximately 1ng/ml as a capture antibody. (novusbio.com)
  • WB analysis of HeLa cell lysate using GTX33611 Cyclin D1 antibody [RM241]. (genetex.com)
  • IHC-P analysis of human tonsil tissue using GTX33611 Cyclin D1 antibody [RM241]. (genetex.com)
  • There are currently no references for Cyclin D1 antibody [RM241] (GTX33611) . (genetex.com)
  • This rabbit monoclonal antibody recognizes a protein of 36 kDa, identified as Cyclin D1 antibody (also known as Bcl-1 or PRAD-1). (micro-shop.pl)
  • Cyclin D1 Antibody / Ccnd1, supplied by NSJ Bioreagents, used in various techniques. (bioz.com)
  • The more aggressive basal-like subtype of breast cancers, however, exhibited lower levels of cyclin D1 and Dicer, which would in turn globally reduce the level of mature miRNA. (sciencedaily.com)
  • 1986 and injection of anti-cyclin A2 antibodies into cultured fibroblasts or inhibiting cyclin A2 function by p21Cip1 during the G2 phase blocked G2?M phase progression (Furuno et al. (immune-source.com)
  • Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. (rupress.org)
  • The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. (cdc.gov)
  • The Cyclin D-Cdk4,6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. (nih.gov)
  • This pathway is deregulated in the vast majority of human tumors by genetic and epigenetic alterations that target at least some of its key members such as Cyclin D1, Cdk4, INK4a and INK4b, pRb etc. (nih.gov)
  • Pope PA, Bhaduri S, Pryciak PM. Regulation of cyclin-substrate docking by a G1 arrest signaling pathway and the Cdk inhibitor Far1. (umassmed.edu)
  • Components of the canonical wingless (WNT) pathway, including WNT8b, WNT10a, WNT10b, frizzled 1 and 2 and TCF4 were upregulated at the messenger RNA and protein levels following Cyclin A2 depletion. (cnrs.fr)
  • The cyclin D2 protein is regulated by a chemical signaling pathway called the PI3K-AKT-mTOR pathway. (medlineplus.gov)
  • This cyclin forms a complex with CDK7 kinase and ring finger protein MAT1. (novusbio.com)
  • Scholars@Duke publication: Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. (duke.edu)
  • Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. (duke.edu)
  • We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. (duke.edu)
  • We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. (duke.edu)
  • They found that patients with the luminal A subtype of breast cancer had increased levels of expression of both cyclin D1 and Dicer. (sciencedaily.com)
  • A widely-expressed cyclin A subtype that functions during the G1/S and G2/M transitions of the CELL CYCLE. (uams.edu)
  • Expression of cyclins detected immunocytochemically in individual cells in relation to cellular DNA content (cell cycle phase), or in relation to initiation and termination of DNA replication during S-phase, can be measured by flow cytometry. (wikipedia.org)
  • In prior work, they showed that cyclin D1 regulates the non coding genome, and that the non-coding genome, in turn, regulates expression of cyclin D1. (sciencedaily.com)
  • Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. (novusbio.com)
  • The expression of Cyclin D1 mRNA was detected by qRT-PCR. (fluoridealert.org)
  • The expression of Cyclin D1 protein was detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. (fluoridealert.org)
  • In the fluoride-exposed population, the results showed that with the increase in UF content, the expression of miR-4755-5p decreased gradually, while the mRNA transcription and protein expression of Cyclin D1 increased gradually. (fluoridealert.org)
  • The relative miR-4755-5p expression showed a negative correlation with Cyclin D1 expression. (fluoridealert.org)
  • Subsequently, in human osteoblasts treated with sodium fluoride (NaF), the results also showed that NaF caused low expression of miR-4755-5p and increased expression of Cyclin D1 . (fluoridealert.org)
  • The results demonstrate that fluoride exposure induced the downregulation of miR-4755-5p and downregulated miR-4755-5p promoted fluoride-induced osteoblast activation by increasing Cyclin D1 protein expression. (fluoridealert.org)
  • the majority of patients have dysregulated cyclin D expression. (bmj.com)
  • In this study, we evaluated cyclin D1, D2 and D3 protein expression in AL amyloidosis, and compared cyclin D positivity to other conventional laboratory parameters as a diagnostic tool and as a potential biomarker for minimal residual disease. (bmj.com)
  • Moreover, in breast cancer cells, which express CDK4 instead of CDK6, palbociclib induced cell-cycle arrest instead of apoptosis, further indicating that expression of cyclin D3 and CDK6 in T-ALL cells promotes apoptosis in response to palbociclib. (aacrjournals.org)
  • Additionally, 16 of 18 nonleukemic cancer cell lines exhibiting high expression of cyclin D3 and CDK6 underwent apoptosis in response to palbociclib, and, in melanoma patient-derived xenografts, high cyclin D3 and CDK6 expression was associated with tumor regression after CDK4/6 inhibition. (aacrjournals.org)
  • Fibroblasts were isolated from cyclin A1-/-A2f/f embryos cultured and transduced with Cre-expressing viruses thereby ablating all cyclin A expression (Figures 1D and S1A). (immune-source.com)
  • Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo. (laboratorynotes.com)
  • Cell changes in the cell cycle like the assembly of mitotic spindles and alignment of sister-chromatids along the spindles are induced by M cyclin- Cdk complexes. (wikipedia.org)
  • It has been suggested that once cells pass Start, Cln proteolysis is triggered by the mitotic cyclins Clb1, 2, 3 and 4 (ref. 6). (uky.edu)
  • There are several different cyclins that are active in different parts of the cell cycle and that cause the Cdk to phosphorylate different substrates. (wikipedia.org)
  • A ) HEK293 cells were transfected with HA-Cdk5, then cotransfected with either myc-p35 or myc-cyclin I. Following an IP to the myc epitope tag on either p35 or cyclin I, in vitro kinase assays were performed using either histone H1 (HH1) or tau as substrates. (jci.org)
  • The mechanisms underlying the prosurvival function of cyclin D3-CDK6 have not been elucidated, prompting Wang and colleagues to search for substrates that may promote cancer cell survival. (aacrjournals.org)
  • However analyses of cell cycle progression using propidium iodide and anti-BrdU staining revealed that ablation of cyclin A2 increased the portion of cells in S and G2/M phases with concomitant decrease in the G1 populace (Figures 2C and 2D). (immune-source.com)
  • The levels of S cyclins remain high, not only throughout S phase, but through G2 and early mitosis as well to promote early events in mitosis. (wikipedia.org)
  • M cyclin concentrations rise as the cell begins to enter mitosis and the concentrations peak at metaphase. (wikipedia.org)
  • The destruction of M cyclins during metaphase and anaphase, after the Spindle Assembly Checkpoint is satisfied, causes the exit of mitosis and cytokinesis. (wikipedia.org)
  • 1992 In addition cyclin A2 was postulated to play a role in access of cells into mitosis (Swenson et al. (immune-source.com)
  • Activation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. (duke.edu)
  • In contrast, Dox treatment was found to induced cyclin B1 accumulation as a result of stimulating its synthesis and inhibiting its degradation. (aspetjournals.org)
  • Cyclin accumulation in G1 is driven in part by the cell-cycle-regulated transcription of CLN1 and CLN2, which peaks at Start. (uky.edu)
  • In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. (duke.edu)
  • Cyclin D1, when used in tandem with CD5, CD10 and CD23 may aid in the diagnosis for mantle cell lymphoma. (micro-shop.pl)
  • Cdk5 activity was reduced in glomeruli and brain lysates from cyclin I-deficient mice, and inhibition of Cdk5 increased in vitro the susceptibility to apoptosis in response to cellular damage. (jci.org)
  • Cyclin D3-CDK6 inhibits the glycolytic enzymes PFK1 and PKM2 to prevent T-ALL cell apoptosis. (aacrjournals.org)
  • CCNH contains two cyclin boxes. (nih.gov)
  • Our findings will broaden our knowledge on how Cyclin A2 contributes to EMT and metastasis. (cnrs.fr)
  • 6-phosphofructokinase (PFK1) and pyruvate kinase M2 (PKM2), enzymes that catalyze irreversible, rate-limiting steps in glycolysis, were directly phosphorylated and inhibited by cyclin D3-CDK6, suggesting that cyclin D3-CDK6 may have a unique role in glucose metabolism. (aacrjournals.org)
  • This cyclin forms a complex with and functions as a regulatory subunit of CDK4 or CDK6, whose activity is required for cell cycle G1/S transition. (genetex.com)
  • In Cyclin A2-depleted normal murine mammary gland (NMuMG) cells expressing RasV12, we found that beta-catenin was liberated from the cell membrane and cell-cell junctions and underwent nuclear translocation and activation. (cnrs.fr)
  • The first of which is the conserved cyclin box, outside of which cyclins are divergent. (wikipedia.org)
  • Cyclins were originally discovered by R. Timothy Hunt in 1982 while studying the cell cycle of sea urchins. (wikipedia.org)
  • Cyclins were originally named because their concentration varies in a cyclical fashion during the cell cycle. (wikipedia.org)
  • Note that the cyclins are now classified according to their conserved cyclin box structure, and not all these cyclins alter in level through the cell cycle. (wikipedia.org)
  • Cyclins can be divided into four classes based on their behaviour in the cell cycle of vertebrate somatic cells and yeast cells: G1 cyclins, G1/S cyclins, S cyclins, and M cyclins. (wikipedia.org)
  • The cyclins also promote other activities to progress the cell cycle, such as centrosome duplication in vertebrates or spindle pole body in yeast. (wikipedia.org)
  • G1 cyclins do not behave like the other cyclins, in that the concentrations increase gradually (with no oscillation), throughout the cell cycle based on cell growth and the external growth-regulatory signals. (wikipedia.org)
  • The presence of G cyclins coordinate cell growth with the entry to a new cell cycle. (wikipedia.org)
  • Cyclin A the first cyclin ever cloned is regarded as an essential component of the cell cycle engine. (immune-source.com)
  • 1997 These studies have led to the current model that this "core" components of the cell cycle machinery (cyclins A and B) symbolize XI-006 absolutely essential elements of the cell cycle engine (Hochegger et al. (immune-source.com)
  • Analyses of Cyclin A-null Fibroblasts We next derived fibroblasts from conditional cyclin A2 knockout embryos and cultured them culture (Physique 2A) and normally re-entered the cell cycle from quiescence (Physique 2B). (immune-source.com)
  • Bandyopadhyay S, Bhaduri S, ?rd M, Davey NE, Loog M, Pryciak PM. Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency In?Vivo. (umassmed.edu)
  • Physique 1 Generation of Cyclin A2f/f Mice In order to verify that deletion of the "floxed" cyclin A2 sequences resulted in a functionally null allele we crossed cyclin A2f/f mice with a "deleter" Meox2-Cre strain (Tallquist and Soriano 2000 and generated cyclin A2? (immune-source.com)
  • Hence deletion of the "floxed" cyclin A2 sequences converts the conditional cyclin A2 allele into a functionally null allele. (immune-source.com)
  • Each of the known mutations changes a single protein building block (amino acid) in the cyclin D2 protein. (medlineplus.gov)
  • De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. (medlineplus.gov)
  • Kaposi sarcoma herpesvirus (KSHV) encodes a D-type cyclin (ORF72) that binds CDK6 and is likely to contribute to KSHV-related cancers. (wikipedia.org)
  • The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. (aacrjournals.org)
  • Simultaneously, luciferase reporter assays verified that Cyclin D1 was the miR-4755-5p direct target. (fluoridealert.org)
  • Using antisense RNA, Dr. Pestell's group was the first to show that cyclin D1 drives mammary tumor growth in vivo. (sciencedaily.com)
  • However, all members of the cyclin family are similar in 100 amino acids that make up the cyclin box. (wikipedia.org)
  • The researchers noticed that cells lacking cyclin D1 produced less of the miRNA-processing protein, Dicer, and therefore had reduced levels of mature miRNA. (sciencedaily.com)
  • The group also examined cells lacking Dicer, and noted many similarities between Dicer-lacking and cyclin D1-lacking cells, in addition to failure of miRNA processing, suggesting a deeper connection between these two processes. (sciencedaily.com)
  • Cyclin I is an atypical cyclin because it is most abundant in postmitotic cells. (jci.org)
  • B ) To compare the kinase kinetics by which cyclin I-Cdk5 phosphorylates tau in comparison with p35-Cdk5, a time-course experiment was performed in HEK293 cells cotransfected with myc-p35 and HA-Cdk5 or myc-cyclin I and HA-Cdk5. (jci.org)
  • Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. (cnrs.fr)
  • Cyclin A2f/+ ES cells were then injected into mouse blastocysts and homozygous cyclin A2f/f animals were generated using standard procedures (Geng et al. (immune-source.com)
  • We found that cells lacking all A-type cyclins proliferated normally in culture (Physique XI-006 2A) and joined the S phase from G0. (immune-source.com)
  • Tsunekawa Y, Kikkawa T, Osumi N. Asymmetric inheritance of Cyclin D2 maintains proliferative neural stem/progenitor cells: a critical event in brain development and evolution. (medlineplus.gov)
  • This cyclin and its kinase partner are components of TFIIH, as well as RNA polymerase II protein complexes. (novusbio.com)
  • Furthermore, we found that levels of phosphorylated MEK1/2 and ERK1/2 were decreased in cyclin I-deficient podocytes and that inhibition of MEK1/2 restored Bcl2 and Bcl-XL protein levels. (jci.org)
  • Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α. (laboratorynotes.com)
  • The Cdk- G1/S cyclin complex begins to induce the initial processes of DNA replication, primarily by arresting systems that prevent S phase Cdk activity in G1. (wikipedia.org)
  • Cyclins" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (umassmed.edu)
  • 2003 Cyclin A2f/f mice were viable and phenotypically normal (data not shown) consistent with our expectation that this "floxed" cyclin A2 allele is usually functionally wild-type. (immune-source.com)
  • Fibroblasts To rule out the possible contribution from cyclin A1 we crossed cyclin A2f/f mice with cyclin A1-null animals (Liu et al. (immune-source.com)
  • 2005 and generated cyclin A1-/-A2f/f mice. (immune-source.com)
  • A subset of cyclins may also function as transcriptional regulators. (umassmed.edu)
  • Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1. (fluoridealert.org)
  • Studies show that Cyclin D1 is also expressed in invasive breast cancer. (micro-shop.pl)
  • Cyclin D1 E3p5s Xp Rabbit Mab, supplied by Cell Signaling Technology Inc, used in various techniques. (bioz.com)