Cyclin E
Cyclin D1
Cyclin A
Cyclin B
Cyclin B1
Cyclin D3
Cyclin D2
Cyclin A1
Cyclin-Dependent Kinase 2
Cyclin D
Cyclins
Cyclin-Dependent Kinases
Cyclin A2
CDC2-CDC28 Kinases
Cyclin G1
Cyclin G
G1 Phase
Cell Cycle
Cyclin-Dependent Kinase Inhibitor p27
S Phase
Cyclin-Dependent Kinase 4
Cell Cycle Proteins
Cyclin C
Retinoblastoma Protein
Cyclin B2
Oncogene Proteins
Cyclin T
F-Box Proteins
Cyclin G2
Cyclin H
Protein-Serine-Threonine Kinases
CDC2 Protein Kinase
Cyclin-Dependent Kinase Inhibitor p21
E2F Transcription Factors
Phosphorylation
Tumor Suppressor Proteins
Cell Division
Mitosis
Cyclin-Dependent Kinase 6
Microtubule-Associated Proteins
Cyclin I
Retinoblastoma-Binding Protein 1
E2F1 Transcription Factor
Transcription Factor DP1
G2 Phase
Retinoblastoma-Like Protein p107
Genes, bcl-1
Tumor Cells, Cultured
Proliferating Cell Nuclear Antigen
Nuclear Proteins
RNA, Messenger
SKP Cullin F-Box Protein Ligases
Blotting, Western
Gene Expression Regulation, Neoplastic
cdc25 Phosphatases
Tumor Suppressor Protein p53
Immunohistochemistry
Molecular Sequence Data
Transcription Factors
Proto-Oncogene Proteins
S-Phase Kinase-Associated Proteins
DNA-Binding Proteins
Down-Regulation
Transfection
Protamine Kinase
Cell Nucleus
Cyclin-Dependent Kinase Inhibitor p16
Ubiquitin-Protein Ligases
3T3 Cells
Xenopus Proteins
Protein Binding
Apoptosis
Gene Expression Regulation
Cyclin-Dependent Kinase 3
Fibroblasts
Centrosome
Cells, Cultured
Signal Transduction
Mutation
Proto-Oncogene Proteins c-myc
RNA, Small Interfering
E2F4 Transcription Factor
Protein Kinases
HeLa Cells
Amino Acid Sequence
Transcription, Genetic
Cyclin-Dependent Kinase Inhibitor Proteins
Promoter Regions, Genetic
Enzyme Inhibitors
Base Sequence
Carrier Proteins
Threonine
Ki-67 Antigen
Reverse Transcriptase Polymerase Chain Reaction
Enzyme Activation
Cullin Proteins
Precipitin Tests
Models, Biological
Proteasome Endopeptidase Complex
Recombinant Fusion Proteins
Cyclin-Dependent Kinase Inhibitor p57
Ubiquitins
Phosphothreonine
Retinoblastoma-Like Protein p130
Gene Expression
Up-Regulation
Drosophila Proteins
Immunoblotting
Flow Cytometry
Purines
Cell Transformation, Neoplastic
Neoplasm Proteins
Xenopus
NIH 3T3 Cells
Cell Cycle Checkpoints
Protein Isoforms
Trans-Activators
Tumor Markers, Biological
RNA Interference
DNA Primers
CDC28 Protein Kinase, S cerevisiae
DNA
Cdh1 Proteins
Interphase
Protein Processing, Post-Translational
Chromosomal Instability
Bromodeoxyuridine
Maturation-Promoting Factor
The role of RBF in the introduction of G1 regulation during Drosophila embryogenesis. (1/1162)
The first appearance of G1 during Drosophila embryogenesis, at cell cycle 17, is accompanied by the down-regulation of E2F-dependent transcription. Mutant alleles of rbf were generated and analyzed to determine the role of RBF in this process. Embryos lacking both maternal and zygotic RBF products show constitutive expression of PCNA and RNR2, two E2F-regulated genes, indicating that RBF is required for their transcriptional repression. Despite the ubiquitous expression of E2F target genes, most epidermal cells enter G1 normally. Rather than pausing in G1 until the appropriate time for cell cycle progression, many of these cells enter an ectopic S-phase. These results indicate that the repression of E2F target genes by RBF is necessary for the maintenance but not the initiation of a G1 phase. The phenotype of RBF-deficient embryos suggests that rbf has a function that is complementary to the roles of dacapo and fizzy-related in the introduction of G1 during Drosophila embryogenesis. (+info)Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. (2/1162)
The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1 cyclin-cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21(Sdi1,Cip1,Waf1), which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16(Ink4a), suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E- and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by +info)Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice. (3/1162)
The response of the uterine epithelium to female sex steroid hormones provides an excellent model to study cell proliferation in vivo since both stimulation and inhibition of cell proliferation can be studied. Thus, when administered to ovariectomized adult mice 17beta-estradiol (E2) stimulates a synchronized wave of DNA synthesis and cell division in the epithelial cells, while pretreatment with progesterone (P4) completely inhibits this E2-induced cell proliferation. Using a simple method to isolate the uterine epithelium with high purity, we have shown that E2 treatment induces a relocalization of cyclin D1 and, to a lesser extent, cdk4 from the cytoplasm into the nucleus and results in the orderly activation of cyclin E- and cyclin A-cdk2 kinases and hyperphosphorylation of pRb and p107. P4 pretreatment did not alter overall levels of cyclin D1, cdk4, or cdk6 nor their associated kinase activities but instead inhibited the E2-induced nuclear localization of cyclin D1 to below the control level and, to a lesser extent, nuclear cdk4 levels, with a consequent inhibition of pRb and p107 phosphorylation. In addition, it abrogated E2-induced cyclin E-cdk2 activation by dephosphorylation of cdk2, followed by inhibition of cyclin A expression and consequently of cyclin A-cdk2 kinase activity and further inhibition of phosphorylation of pRb and p107. P4 is used therapeutically to oppose the effect of E2 during hormone replacement therapy and in the treatment of uterine adenocarcinoma. This study showing a novel mechanism of cell cycle inhibition by P4 may provide the basis for the development of new antiestrogens. (+info)Growth-inhibitory effect of cyclic GMP- and cyclic AMP-dependent vasodilators on rat vascular smooth muscle cells: effect on cell cycle and cyclin expression. (4/1162)
1. The possibility that the antiproliferative effect of cyclic GMP- and cyclic AMP-dependent vasodilators involves an impaired progression of vascular smooth muscle cells (VSMC) through the cell cycle and expression of cyclins, which in association with the cyclin-dependent kinases control the transition between the distinct phases of the cell cycle, was examined. 2. FCS (10%) stimulated the transition of quiescent VSMC from the G0/G1 to the S phase (maximum within 18-24 h and then to the G2/M phase (maximum within 22-28 h). Sodium nitroprusside and 8-Br-cyclic GMP, as well as forskolin and 8-Br-cyclic AMP markedly reduced the percentage of cells in the S phase after FCS stimulation. 3. FCS stimulated the low basal protein expression of cyclin D1 (maximum within 8-24 h) and E (maximum within 8-38 h) and of cyclin A (maximum within 14-30 h). The stimulatory effect of FCS on cyclin D1 and A expression was inhibited, but that of cyclin E was only minimally affected by the vasodilators. 4. FCS increased the low basal level of cyclin D1 mRNA after a lag phase of 2 h and that of cyclin A after 12 h. The vasodilators significantly reduced the FCS-stimulated expression of cyclin D1 and A mRNA. 5. These findings indicate that cyclic GMP- and cyclic AMP-dependent vasodilators inhibit the proliferation of VSMC by preventing the progression of the cell cycle from the G0/G1 into the S phase, an effect which can be attributed to the impaired expression of cyclin D1 and A. (+info)Heparin inhibits proliferation of myometrial and leiomyomal smooth muscle cells through the induction of alpha-smooth muscle actin, calponin h1 and p27. (5/1162)
Mast cells are widely distributed in human tissues, including the human uterus. However, the function of mast cells in uterine smooth muscle has not been clearly established. Mast cells possess secretory granules containing such substances as heparin, serotonin, histamine and many cytokines. To help establish the role of mast cells in the human myometrium, the action of heparin was investigated using smooth muscle cells (SMC) from normal myometrium and from leiomyoma. The proliferation of cultured myometrial and leiomyomal SMC was inhibited by heparin treatment. Flow cytometric analysis showed that the population in the G1 phase of the cell cycle increased under heparin treatment. Western blotting analysis showed that markers of SMC differentiation such as alpha-smooth muscle actin (alpha-SMA), calponin h1 and cyclin-dependent kinase inhibitor p27 were induced by heparin, whereas cell-cycle-related gene products from the G1 phase of the cell cycle, such as cyclin E and cdk2, were not changed. Taken together, these results indicate that heparin inhibits the proliferation of myometrial and leiomyomal SMC through the induction of alpha-SMA, calponin h1 and p27. We suggest that heparin from mast cells may induce differentiation in uterine SMC and may influence tissue remodelling and reconstruction during physiological and pathophysiological events. (+info)Impact of 9-(2-phosphonylmethoxyethyl)adenine on (deoxy)ribonucleotide metabolism and nucleic acid synthesis in tumor cells. (6/1162)
Following exposure to 9-(2-phosphonylmethoxyethyl)adenine (an inhibitor of the cellular DNA polymerases alpha, delta and epsilon), human erythroleukemia K562, human T-lymphoid CEM and murine leukemia L1210 cells markedly accumulated in the S phase of the cell cycle. In contrast to DNA replication, RNA synthesis (transcription) and protein synthesis (mRNA translation) were not affected by 9-(2-phosphonylmethoxyethyl)-adenine. The ribonucleoside triphosphate pools were slightly elevated, while the intracellular levels of all four deoxyribonucleoside triphosphates were 1.5-4-fold increased in 9-(2-phosphonylmethoxyethyl)adenine-treated K562, CEM and L1210 cells. The effect of 9-(2-phosphonylmethoxyethyl)adenine on de novo (thymidylate synthase-mediated) and salvage (thymidine kinase-mediated) dTTP synthesis was investigated using radio-labelled nucleoside precursors. The amount of thymidylate synthase-derived dTTP in the acid soluble pool was 2-4-fold higher in PMEA-treated than in untreated K562 cells, which is in accord with the 3-4-fold expansion of the global dTTP level in the presence of 9-(2-phosphonylmethoxyethyl)adenine. Strikingly, 2-derived dTTP accumulated to a much higher extent (i.e. 16-40-fold) in the soluble dTTP pool upon 9-(2-phosphonylmethoxyethyl)adenine treatment. In keeping with this finding, a markedly increased thymidine kinase activity could be demonstrated in extracts of 9-(2-phosphonylmethoxyethyl)adenine-treated K562 cell cultures. Also, in the presence of 200 microM 9-(2-phosphonylmethoxyethyl)adenine, 14-fold less thymidylate synthase-derived but only 3-fold less thymidine kinase-derived dTTP was incorporated into the DNA of the K562 cells. These data show that thymidine incorporation may be inappropriate as a cell proliferation marker in the presence of DNA synthesis inhibitors such as 9-(2-phosphonylmethoxyethyl)adenine. Our findings indicate that 9-(2-phosphonylmethoxyethyl)adenine causes a peculiar pattern of (deoxy)ribonucleotide metabolism deregulation in drug-treated tumor cells, as a result of the metabolic block imposed by the drug on the S phase of the cell cycle. (+info)Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27(Kip1). (7/1162)
Proliferation and apoptosis are increased in many types of inflammatory diseases. A role for the cyclin kinase inhibitor p27(Kip1) (p27) in limiting proliferation has been shown. In this study, we show that p27(-/-) mesangial cells and fibroblasts have strikingly elevated rates of apoptosis, not proliferation, when deprived of growth factors. Apoptosis was rescued by restoration of p27 expression. Cyclin A-cyclin-dependent kinase 2 (CDK2) activity, but not cyclin E-CDK2 activity, was increased in serum-starved p27(-/-) cells, and decreasing CDK2 activity, either pharmacologically (Roscovitine) or by a dominant-negative mutant, inhibited apoptosis. Our results show that a new biological function for the CDK inhibitor p27 is protection of cells from apoptosis by constraining CDK2 activity. These results suggest that CDK inhibitors are necessary for coordinating the cell cycle and cell-death programs so that cell viability is maintained during exit from the cell cycle. (+info)Retardation of cell proliferation after expression of p202 accompanies an increase in p21(WAF1/CIP1). (8/1162)
p202 is an IFN-inducible, primarily nuclear, phosphoprotein (52-kDa) whose constitutive overexpression in transfected cells inhibits colony formation. To investigate the molecular mechanism(s) by which expression of p202 protein impairs colony formation, we established stable cell lines that inducibly express p202. Using this cell model, we demonstrate that the induced expression of p202 in asynchronous cultures of these cells was accompanied by: (a) an increase in steady-state levels of p21(WAF1/CIP1/SDI1) (p21) mRNA and protein; (b) a decrease in Cdk2 protein kinase activity; and (c) an increase in the functional form of retinoblastoma protein (pRb). Transient transfection of a p202-encoding plasmid in Saos-2 cells, which do not harbor a wild-type p53 protein, resulted in an increase in p21 protein, which indicated that p202 could regulate expression of p21 protein independent of p53 protein. Moreover, we demonstrate that expression of p202 in these cells increased cell doubling time without accumulation of cells in a particular phase of the cell cycle. Taken together, these results are consistent with the possibility that p202 protein contributes to the cell growth retardation activity of the IFNs, at least in part, by modulating p21 protein levels. (+info)Cyclin E is a protein that plays a crucial role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin E is synthesized in the late G1 phase of the cell cycle and is degraded as the cell enters the S phase, where DNA replication occurs. Cyclin E functions by binding to and activating the cyclin-dependent kinase (CDK) 2, which is a key regulator of the G1/S transition. The cyclin E-CDK2 complex phosphorylates several target proteins, including the retinoblastoma protein (Rb), which is a tumor suppressor that inhibits cell cycle progression. When cyclin E-CDK2 is activated, it phosphorylates Rb, releasing it from its inhibitory complex and allowing the cell to progress into the S phase. Abnormal expression or activity of cyclin E has been implicated in the development of several types of cancer, including breast, ovarian, and cervical cancer. In these cancers, high levels of cyclin E can lead to uncontrolled cell proliferation and the formation of tumors. Therefore, cyclin E is an important target for cancer therapy, and several drugs that target cyclin E or its downstream targets are currently being developed for the treatment of cancer.
Cyclin D1 is a protein that plays a critical role in regulating the progression of the cell cycle from the G1 phase to the S phase. It is encoded by the CCND1 gene and is expressed in a variety of tissues, including epithelial cells, fibroblasts, and leukocytes. In the cell cycle, cyclin D1 binds to and activates cyclin-dependent kinases (CDKs), particularly CDK4 and CDK6. This complex then phosphorylates retinoblastoma protein (Rb), which releases the transcription factor E2F from its inhibition. E2F then activates the transcription of genes required for DNA synthesis and cell proliferation. Abnormal expression or activity of cyclin D1 has been implicated in the development of various types of cancer, including breast, prostate, and lung cancer. Overexpression of cyclin D1 can lead to uncontrolled cell proliferation and the formation of tumors. Conversely, loss of cyclin D1 function has been associated with cell cycle arrest and the development of cancer.
Cyclin A is a protein that plays a crucial role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin A is synthesized in the S phase of the cell cycle, when the cell is preparing to divide, and is degraded as the cell enters the G2 phase, before it actually divides. Cyclin A forms a complex with the cyclin-dependent kinase (CDK) 2, which is a key regulator of the cell cycle. This complex phosphorylates a variety of target proteins, including the retinoblastoma protein (Rb), which is a tumor suppressor that prevents cells from dividing unless they have completed the necessary DNA replication and repair processes. When Cyclin A and CDK2 are activated, they promote the progression of the cell cycle from the S phase to the G2 phase, and ultimately to mitosis, the process by which the cell divides into two daughter cells. Dysregulation of Cyclin A expression or activity has been implicated in a variety of diseases, including cancer, where it can contribute to uncontrolled cell proliferation and tumor growth.
Cyclin B is a protein that plays a crucial role in regulating the progression of the cell cycle, particularly during the M phase (mitosis). It is synthesized and degraded in a tightly regulated manner, with its levels increasing just before the onset of mitosis and decreasing afterwards. Cyclin B forms a complex with the cyclin-dependent kinase (CDK) 1, which is also known as Cdk1. This complex is responsible for phosphorylating various target proteins, including the nuclear envelope, kinetochores, and microtubules, which are essential for the proper progression of mitosis. Disruptions in the regulation of cyclin B and CDK1 activity can lead to various diseases, including cancer. For example, overexpression of cyclin B or mutations in CDK1 can result in uncontrolled cell proliferation and the development of tumors. Conversely, loss of cyclin B function can lead to cell cycle arrest and genomic instability, which can also contribute to cancer development.
Cyclin B1 is a protein that plays a crucial role in regulating the progression of the cell cycle, particularly during the M phase (mitosis). It is synthesized and degraded in a tightly regulated manner, with its levels increasing just before the onset of mitosis and decreasing afterwards. Cyclin B1 forms a complex with the cyclin-dependent kinase (CDK) 1, which is a key regulator of cell division. This complex phosphorylates various target proteins, including the nuclear envelope, microtubules, and other cell cycle regulators, to promote the progression of mitosis. Mutations in the gene encoding cyclin B1 have been implicated in several human diseases, including cancer. In particular, overexpression of cyclin B1 has been observed in many types of cancer, and it has been proposed that this contributes to uncontrolled cell proliferation and tumor growth.
Cyclin D3 is a protein that plays a role in regulating the progression of the cell cycle, which is the process by which cells grow and divide. It is a type of cyclin, which are proteins that are involved in regulating the cell cycle by interacting with cyclin-dependent kinases (CDKs). Cyclin D3 is expressed primarily in cells that are actively dividing, such as those in the skin, bone marrow, and breast. It helps to promote the progression of the cell cycle from the G1 phase (the first phase of the cell cycle) to the S phase (the second phase), where DNA replication occurs. Abnormal expression of cyclin D3 has been linked to the development of certain types of cancer, including breast, prostate, and colon cancer.
Cyclin D2 is a protein that plays a role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin D2 is expressed at high levels in cells that are actively dividing, and it helps to promote the progression of the cell cycle from the G1 phase (the first phase of interphase) to the S phase (the second phase of interphase), where DNA replication occurs. In the medical field, cyclin D2 is often studied in the context of cancer. Abnormal expression or activity of cyclin D2 has been linked to the development and progression of various types of cancer, including breast cancer, ovarian cancer, and prostate cancer. In these cases, cyclin D2 may contribute to uncontrolled cell growth and division, leading to the formation of tumors. Cyclin D2 is also being studied as a potential therapeutic target in cancer treatment. Researchers are exploring the use of drugs that inhibit the activity of cyclin D2 as a way to slow or stop the growth of cancer cells.
Cyclin A1 is a protein that plays a role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin A1 is synthesized in response to cell growth signals and helps to coordinate the progression of the cell cycle through the different stages, including DNA replication and cell division. It is expressed primarily in cells that are actively dividing, such as those in the liver, kidney, and testes. In the medical field, cyclin A1 is often studied in the context of cancer, as its overexpression has been linked to the development and progression of certain types of tumors.
Cyclin-dependent kinase 2 (CDK2) is an enzyme that plays a critical role in cell cycle regulation. It is a member of the cyclin-dependent kinase (CDK) family of proteins, which are involved in the control of cell division and progression through the cell cycle. CDK2 is activated by binding to cyclin A, a regulatory protein that is expressed during the S phase of the cell cycle. Once activated, CDK2 phosphorylates a variety of target proteins, including the retinoblastoma protein (Rb), which is a key regulator of the cell cycle. Phosphorylation of Rb leads to its inactivation and the release of the transcription factor E2F, which promotes the transcription of genes required for DNA replication and cell division. CDK2 is also involved in the regulation of other cellular processes, including DNA repair, apoptosis, and differentiation. Dysregulation of CDK2 activity has been implicated in a number of diseases, including cancer, where it is often overexpressed or mutated. As such, CDK2 is a target for the development of new cancer therapies.
Cyclin D is a protein that plays a critical role in regulating the progression of the cell cycle, which is the process by which cells divide and replicate. Cyclin D is synthesized in response to growth signals and helps to promote the transition of cells from the G1 phase (interphase) to the S phase (synthesis phase) of the cell cycle. During the S phase, the cell replicates its DNA in preparation for cell division. Cyclin D is often overexpressed in cancer cells, leading to uncontrolled cell proliferation and the development of tumors. In addition, mutations in the genes that encode cyclin D or its regulatory proteins can also contribute to the development of cancer. Cyclin D is a target for several cancer therapies, including targeted therapies that block the activity of cyclin D or its downstream signaling pathways. Understanding the role of cyclin D in the cell cycle and its role in cancer is an active area of research in the medical field.
Cyclins are a family of proteins that play a critical role in regulating the progression of the cell cycle in eukaryotic cells. They are synthesized and degraded in a cyclic manner, hence their name, and their levels fluctuate throughout the cell cycle. Cyclins interact with cyclin-dependent kinases (CDKs) to form cyclin-CDK complexes, which are responsible for phosphorylating target proteins and regulating cell cycle progression. Different cyclins are associated with different stages of the cell cycle, and their activity is tightly regulated by various mechanisms, including post-translational modifications and proteolysis. Dysregulation of cyclin expression or activity has been implicated in a variety of diseases, including cancer, where it is often associated with uncontrolled cell proliferation and tumor growth. Therefore, understanding the mechanisms that regulate cyclin expression and activity is important for developing new therapeutic strategies for cancer and other diseases.
Cyclin-dependent kinases (CDKs) are a family of protein kinases that play a critical role in regulating cell cycle progression in eukaryotic cells. They are activated by binding to specific regulatory proteins called cyclins, which are synthesized and degraded in a cyclic manner throughout the cell cycle. CDKs phosphorylate target proteins, including other kinases and transcription factors, to promote or inhibit cell cycle progression at specific points. Dysregulation of CDK activity has been implicated in a variety of diseases, including cancer, and is a target for therapeutic intervention.
Cyclin A2 is a protein that plays a role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin A2 is synthesized in response to cell growth signals and helps to coordinate the progression of the cell cycle through its interaction with cyclin-dependent kinases (CDKs). Specifically, Cyclin A2 forms a complex with CDK2, which is a key regulator of the G1/S transition, the point at which cells move from the G1 phase (resting phase) to the S phase (synthesis phase) of the cell cycle. This complex helps to phosphorylate and activate other proteins involved in the cell cycle, allowing cells to progress through the G1/S transition and enter the S phase. Cyclin A2 is also involved in the regulation of DNA replication and mitosis, the process by which cells divide into two daughter cells.
CDC2-CDC28 kinases are a family of protein kinases that play a critical role in regulating cell cycle progression in eukaryotic cells. These kinases are named after the two genes that were originally identified in yeast, CDC2 and CDC28. CDC2-CDC28 kinases are involved in several key events during the cell cycle, including the initiation of DNA replication, the progression through the G1, S, G2, and M phases, and the regulation of mitosis. They are also involved in the regulation of cell growth, differentiation, and apoptosis. Inactivation of CDC2-CDC28 kinases can lead to cell cycle arrest, which can have both positive and negative effects on cell function. For example, cell cycle arrest can prevent the proliferation of cancer cells, but it can also lead to cell death in cells that are unable to repair damaged DNA. In the medical field, CDC2-CDC28 kinases are of interest as potential therapeutic targets for the treatment of various diseases, including cancer, as well as for the development of new drugs to regulate cell cycle progression and cell growth.
Cyclin G1 is a protein that plays a role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin G1 is expressed at low levels in most cells, but its levels increase during the G1 phase of the cell cycle, which is the phase when the cell prepares for DNA replication. Cyclin G1 works by binding to and activating an enzyme called cyclin-dependent kinase 4 (CDK4), which in turn phosphorylates and inactivates the retinoblastoma protein (Rb). This inactivation of Rb allows the cell to progress through the G1 phase and enter the S phase, where DNA replication occurs. Dysregulation of cyclin G1 expression or activity has been implicated in the development of various types of cancer.
Cyclin G is a protein that plays a role in regulating the cell cycle, which is the process by which cells divide and grow. It is a type of cyclin, which are proteins that are involved in regulating the progression of the cell cycle through different phases. Cyclin G is expressed at low levels in most cells, but its levels increase during certain stages of the cell cycle, particularly during the G1 phase, which is the first phase of the cell cycle. Cyclin G is thought to help regulate the progression of the cell cycle by interacting with and activating cyclin-dependent kinases (CDKs), which are enzymes that control the progression of the cell cycle. Dysregulation of cyclin G expression or function has been implicated in the development of various types of cancer.
The cell cycle is the series of events that a cell undergoes from the time it is born until it divides into two daughter cells. It is a highly regulated process that is essential for the growth, development, and repair of tissues in the body. The cell cycle consists of four main phases: interphase, prophase, metaphase, and anaphase. During interphase, the cell grows and replicates its DNA in preparation for cell division. In prophase, the chromatin condenses into visible chromosomes, and the nuclear envelope breaks down. In metaphase, the chromosomes align at the center of the cell, and in anaphase, the sister chromatids separate and move to opposite poles of the cell. The cell cycle is tightly regulated by a complex network of proteins that ensure that the cell only divides when it is ready and that the daughter cells receive an equal share of genetic material. Disruptions in the cell cycle can lead to a variety of medical conditions, including cancer.
Cyclin-dependent kinase inhibitor p27 (p27Kip1) is a protein that plays a role in regulating cell cycle progression. It is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors, which also includes p21 and p57. In the cell cycle, the progression from one phase to the next is tightly regulated by a series of events that involve the activity of cyclin-dependent kinases (CDKs). CDKs are enzymes that are activated by binding to specific cyclins, which are proteins that are synthesized and degraded in a cyclic manner throughout the cell cycle. When CDKs are activated, they phosphorylate target proteins, which can either promote or inhibit cell cycle progression. p27Kip1 acts as a CDK inhibitor by binding to and inhibiting the activity of CDKs. It is primarily expressed in cells that are in a non-dividing state, such as terminally differentiated cells and quiescent cells. In these cells, p27Kip1 helps to maintain the cell in a non-dividing state by inhibiting the activity of CDKs, which prevents the cell from entering the cell cycle. In contrast, p27Kip1 is downregulated or lost in many types of cancer cells, where it is often associated with increased cell proliferation and tumor growth. This suggests that p27Kip1 may play a role in the development and progression of cancer.
Cyclin-dependent kinase 4 (CDK4) is a protein that plays a critical role in regulating the cell cycle, which is the process by which cells divide and replicate. CDK4 is a member of the cyclin-dependent kinase (CDK) family of proteins, which are involved in regulating various cellular processes, including cell division, DNA replication, and transcription. CDK4 is activated by binding to cyclin D, a regulatory protein that is produced in response to growth signals. Once activated, CDK4 phosphorylates a number of target proteins, including the retinoblastoma protein (Rb), which is a key regulator of the cell cycle. Phosphorylation of Rb leads to its inactivation, allowing the cell to progress through the cell cycle and divide. Abnormal regulation of CDK4 activity has been implicated in a number of diseases, including cancer. For example, mutations in the CDK4 gene or overexpression of CDK4 have been found in various types of cancer, including breast, prostate, and lung cancer. In these cases, CDK4 may contribute to uncontrolled cell division and the development of tumors. In the medical field, CDK4 inhibitors are being developed as potential treatments for cancer. These drugs work by blocking the activity of CDK4, thereby inhibiting the growth and proliferation of cancer cells. Some CDK4 inhibitors have already been approved for use in certain types of cancer, and others are currently being tested in clinical trials.
Cell cycle proteins are a group of proteins that play a crucial role in regulating the progression of the cell cycle. The cell cycle is a series of events that a cell goes through in order to divide and produce two daughter cells. It consists of four main phases: G1 (Gap 1), S (Synthesis), G2 (Gap 2), and M (Mitosis). Cell cycle proteins are involved in regulating the progression of each phase of the cell cycle, ensuring that the cell divides correctly and that the daughter cells have the correct number of chromosomes. Some of the key cell cycle proteins include cyclins, cyclin-dependent kinases (CDKs), and checkpoint proteins. Cyclins are proteins that are synthesized and degraded in a cyclic manner throughout the cell cycle. They bind to CDKs, which are enzymes that regulate cell cycle progression by phosphorylating target proteins. The activity of CDKs is tightly regulated by cyclins, ensuring that the cell cycle progresses in a controlled manner. Checkpoint proteins are proteins that monitor the cell cycle and ensure that the cell does not proceed to the next phase until all the necessary conditions are met. If any errors are detected, checkpoint proteins can halt the cell cycle and activate repair mechanisms to correct the problem. Overall, cell cycle proteins play a critical role in maintaining the integrity of the cell cycle and ensuring that cells divide correctly. Disruptions in the regulation of cell cycle proteins can lead to a variety of diseases, including cancer.
Cyclin C is a protein that plays a role in regulating the cell cycle, which is the process by which cells divide and grow. It is a member of the cyclin family of proteins, which are involved in regulating the progression of the cell cycle through different phases. Cyclin C is primarily expressed in the brain and is involved in the regulation of neural development and function. It has also been implicated in the development of certain types of cancer, including breast cancer and glioblastoma. In the medical field, cyclin C is studied as a potential target for the development of new treatments for these and other diseases.
Retinoblastoma protein (pRb) is a tumor suppressor protein that plays a critical role in regulating cell cycle progression and preventing the development of cancer. It is encoded by the RB1 gene, which is located on chromosome 13. In normal cells, pRb functions as a regulator of the cell cycle by binding to and inhibiting the activity of the E2F family of transcription factors. When cells are damaged or under stress, pRb is phosphorylated, which leads to its release from E2F and allows the cell to proceed through the cell cycle and divide. However, in cells with a mutated RB1 gene, pRb is unable to function properly, leading to uncontrolled cell division and the formation of tumors. Retinoblastoma is a type of eye cancer that occurs almost exclusively in children and is caused by mutations in the RB1 gene. Other types of cancer, such as osteosarcoma and small cell lung cancer, can also be associated with mutations in the RB1 gene.
Cyclin B2 is a protein that plays a crucial role in regulating the progression of the cell cycle, particularly during the G2/M phase. It is a member of the cyclin family of proteins, which are involved in regulating the cell cycle by interacting with cyclin-dependent kinases (CDKs). Cyclin B2 is synthesized and degraded in a tightly regulated manner during the cell cycle. It is synthesized during the G2 phase and accumulates in the cell until the onset of mitosis, at which point it binds to and activates CDK1, forming the cyclin B1/CDK1 complex. This complex is essential for the initiation of mitosis and the proper progression of the cell through the M phase. Disruptions in the regulation of cyclin B2 expression or activity have been implicated in a variety of diseases, including cancer. For example, overexpression of cyclin B2 has been observed in several types of cancer, and it has been suggested that this may contribute to the uncontrolled proliferation of cancer cells. Conversely, loss of cyclin B2 function has been associated with defects in cell cycle progression and may contribute to the development of certain types of cancer.
Oncogenes are genes that have the potential to cause cancer when they are mutated or expressed at high levels. Oncogenes are also known as proto-oncogenes, and they are involved in regulating cell growth and division. When oncogenes are mutated or expressed at high levels, they can cause uncontrolled cell growth and division, leading to the development of cancer. Oncogene proteins are the proteins that are produced by oncogenes. These proteins can play a variety of roles in the development and progression of cancer, including promoting cell growth and division, inhibiting cell death, and contributing to the formation of tumors.
Cyclin T is a protein that plays a role in regulating the progression of the cell cycle. It is a subunit of the cyclin-dependent kinase 9 (CDK9) complex, which is involved in the transcription of RNA. Cyclin T is essential for the activation of the transcription factor elongation factor 2 (EF2), which is responsible for the synthesis of proteins. In the context of the medical field, cyclin T has been implicated in the regulation of various cellular processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of cyclin T has been associated with several diseases, including cancer, viral infections, and neurological disorders.
F-box proteins are a family of proteins that play a role in the regulation of protein degradation in cells. They are involved in the ubiquitin-proteasome pathway, which is the primary mechanism by which cells degrade and recycle proteins. F-box proteins are characterized by an F-box domain, which is a protein-protein interaction module that binds to other proteins, often through their ubiquitin modification. F-box proteins are often components of larger protein complexes, such as the SCF (Skp1-Cullin-F-box) complex, which is involved in the degradation of specific target proteins. Dysregulation of F-box proteins has been implicated in a number of diseases, including cancer, neurodegenerative disorders, and developmental disorders.
Cyclin G2 is a protein that plays a role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin G2 is involved in the transition from the G1 phase (the first stage of the cell cycle) to the S phase (the stage where DNA replication occurs). It is also involved in the regulation of the G2/M transition, which is the stage where the cell prepares to divide. In the medical field, Cyclin G2 has been implicated in the development of certain types of cancer, including breast cancer and ovarian cancer. It is also being studied as a potential target for cancer therapy.
Cyclin H is a protein that plays a role in the regulation of cell division. It is a component of the cyclin-dependent kinase (CDK) complex, which is responsible for phosphorylating target proteins and regulating the progression of the cell cycle. Cyclin H is involved in the transition from the G1 phase to the S phase of the cell cycle, where DNA replication occurs. It is also involved in the regulation of DNA repair and the maintenance of genomic stability. Mutations in the gene encoding cyclin H have been associated with an increased risk of certain types of cancer, including colorectal and ovarian cancer.
Protein-Serine-Threonine Kinases (PSTKs) are a family of enzymes that play a crucial role in regulating various cellular processes, including cell growth, differentiation, metabolism, and apoptosis. These enzymes phosphorylate specific amino acids, such as serine and threonine, on target proteins, thereby altering their activity, stability, or localization within the cell. PSTKs are involved in a wide range of diseases, including cancer, diabetes, cardiovascular disease, and neurodegenerative disorders. Therefore, understanding the function and regulation of PSTKs is important for developing new therapeutic strategies for these diseases.
CDC2 Protein Kinase is a type of enzyme that plays a crucial role in cell division and the regulation of the cell cycle. It is a serine/threonine protein kinase that is activated during the G2 phase of the cell cycle and is responsible for the initiation of mitosis. CDC2 is also involved in the regulation of DNA replication and the maintenance of genomic stability. In the medical field, CDC2 Protein Kinase is often studied in the context of cancer research, as its dysregulation has been linked to the development and progression of various types of cancer.
Cyclin-dependent kinase inhibitor p21 (p21) is a protein that plays a role in regulating the cell cycle, which is the process by which cells divide and grow. It is encoded by the CDKN1A gene and is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. In the cell cycle, the progression from one phase to the next is controlled by a series of checkpoints that ensure that the cell is ready to proceed. One of the key regulators of these checkpoints is the cyclin-dependent kinase (CDK) family of enzymes. CDKs are activated by binding to cyclins, which are proteins that are synthesized and degraded in a cyclic manner throughout the cell cycle. p21 acts as a CDK inhibitor by binding to and inhibiting the activity of cyclin-CDK complexes. This prevents the complexes from phosphorylating target proteins that are required for the progression of the cell cycle. As a result, p21 helps to prevent the cell from dividing when it is not ready, and it plays a role in preventing the development of cancer. In addition to its role in regulating the cell cycle, p21 has been implicated in a number of other cellular processes, including DNA repair, senescence, and apoptosis (programmed cell death). It is also involved in the response of cells to various stressors, such as DNA damage, oxidative stress, and hypoxia.
E2F transcription factors are a family of proteins that play a critical role in regulating the cell cycle and controlling cell proliferation. They are named for their ability to bind to the E2 promoter region of genes that are involved in cell cycle progression. There are six known E2F transcription factors in humans, which are classified into three groups: E2F1-3, DP1-3, and E4F1. E2F1-3 are primarily involved in regulating cell cycle progression, while DP1-3 are required for the formation of stable E2F-DP complexes that are necessary for transcriptional activation. E4F1 is a transcriptional repressor that is involved in regulating DNA repair and cell death. E2F transcription factors are activated by the binding of cyclin-dependent kinases (CDKs) to cyclins, which occur during the G1 phase of the cell cycle. Once activated, E2F transcription factors bind to specific DNA sequences and promote the transcription of genes involved in cell cycle progression, such as those encoding cyclins and other cell cycle regulators. Abnormal regulation of E2F transcription factors has been implicated in a variety of human diseases, including cancer. For example, overexpression of E2F1 has been associated with the development of several types of cancer, including breast, lung, and ovarian cancer. Conversely, loss of E2F1 function has been shown to inhibit tumor growth and improve the efficacy of cancer therapies.
Tumor suppressor proteins are a group of proteins that play a crucial role in regulating cell growth and preventing the development of cancer. These proteins act as brakes on the cell cycle, preventing cells from dividing and multiplying uncontrollably. They also help to repair damaged DNA and prevent the formation of tumors. Tumor suppressor proteins are encoded by genes that are located on specific chromosomes. When these genes are functioning properly, they produce proteins that help to regulate cell growth and prevent the development of cancer. However, when these genes are mutated or damaged, the proteins they produce may not function properly, leading to uncontrolled cell growth and the development of cancer. There are many different tumor suppressor proteins, each with its own specific function. Some of the most well-known tumor suppressor proteins include p53, BRCA1, and BRCA2. These proteins are involved in regulating cell cycle checkpoints, repairing damaged DNA, and preventing the formation of tumors. In summary, tumor suppressor proteins are a group of proteins that play a critical role in regulating cell growth and preventing the development of cancer. When these proteins are functioning properly, they help to maintain the normal balance of cell growth and division, but when they are mutated or damaged, they can contribute to the development of cancer.
Cell division is the process by which a single cell divides into two or more daughter cells. This process is essential for the growth, development, and repair of tissues in the body. There are two main types of cell division: mitosis and meiosis. Mitosis is the process by which somatic cells (non-reproductive cells) divide to produce two identical daughter cells with the same number of chromosomes as the parent cell. This process is essential for the growth and repair of tissues in the body. Meiosis, on the other hand, is the process by which germ cells (reproductive cells) divide to produce four genetically diverse daughter cells with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction. Abnormalities in cell division can lead to a variety of medical conditions, including cancer. In cancer, cells divide uncontrollably and form tumors, which can invade nearby tissues and spread to other parts of the body.
Cyclin-dependent kinase 6 (CDK6) is an enzyme that plays a critical role in cell cycle regulation. It is a member of the cyclin-dependent kinase (CDK) family, which are regulatory enzymes that control the progression of cells through the different phases of the cell cycle. CDK6 is activated by binding to cyclin D, a regulatory protein that is expressed during the G1 phase of the cell cycle. Once activated, CDK6 phosphorylates a number of target proteins, including the retinoblastoma protein (Rb), which is a key regulator of the G1/S transition. Phosphorylation of Rb leads to its inactivation, allowing the cell to progress through the G1 phase and enter the S phase of the cell cycle. CDK6 is also involved in the regulation of other cellular processes, including DNA replication, transcription, and cell proliferation. Dysregulation of CDK6 activity has been implicated in the development of a number of human diseases, including cancer. For example, overexpression of CDK6 has been observed in many types of cancer, and it is thought to contribute to the uncontrolled cell proliferation that characterizes these diseases.
Cell proliferation refers to the process of cell division and growth, which is essential for the maintenance and repair of tissues in the body. In the medical field, cell proliferation is often studied in the context of cancer, where uncontrolled cell proliferation can lead to the formation of tumors and the spread of cancer cells to other parts of the body. In normal cells, cell proliferation is tightly regulated by a complex network of signaling pathways and feedback mechanisms that ensure that cells divide only when necessary and that they stop dividing when they have reached their full capacity. However, in cancer cells, these regulatory mechanisms can become disrupted, leading to uncontrolled cell proliferation and the formation of tumors. In addition to cancer, cell proliferation is also important in other medical conditions, such as wound healing, tissue regeneration, and the development of embryos. Understanding the mechanisms that regulate cell proliferation is therefore critical for developing new treatments for cancer and other diseases.
Microtubule-associated proteins (MAPs) are a group of proteins that bind to microtubules, which are important components of the cytoskeleton in cells. These proteins play a crucial role in regulating the dynamics of microtubules, including their assembly, disassembly, and stability. MAPs are involved in a wide range of cellular processes, including cell division, intracellular transport, and the maintenance of cell shape. They can also play a role in the development of diseases such as cancer, where the abnormal regulation of microtubules and MAPs can contribute to the growth and spread of tumors. There are many different types of MAPs, each with its own specific functions and mechanisms of action. Some MAPs are involved in regulating the dynamics of microtubules, while others are involved in the transport of molecules along microtubules. Some MAPs are also involved in the organization and function of the mitotic spindle, which is essential for the proper segregation of chromosomes during cell division. Overall, MAPs are important regulators of microtubule dynamics and play a crucial role in many cellular processes. Understanding the function of these proteins is important for developing new treatments for diseases that are associated with abnormal microtubule regulation.
A cell line, tumor is a type of cell culture that is derived from a cancerous tumor. These cell lines are grown in a laboratory setting and are used for research purposes, such as studying the biology of cancer and testing potential new treatments. They are typically immortalized, meaning that they can continue to divide and grow indefinitely, and they often exhibit the characteristics of the original tumor from which they were derived, such as specific genetic mutations or protein expression patterns. Cell lines, tumor are an important tool in cancer research and have been used to develop many of the treatments that are currently available for cancer patients.
Cyclin I is a protein that plays a role in regulating the cell cycle, which is the process by which cells grow, divide, and replicate their genetic material. Cyclin I is a type of cyclin, which are proteins that bind to and activate cyclin-dependent kinases (CDKs), enzymes that control the progression of the cell cycle. Cyclin I is involved in the G1 phase of the cell cycle, which is the first phase of the cycle and is characterized by cell growth and preparation for DNA replication. During the G1 phase, cyclin I helps to activate CDK4 and CDK6, which in turn phosphorylate and activate other proteins that are necessary for the progression of the cell cycle. Disruptions in the regulation of cyclin I and CDKs can lead to uncontrolled cell growth and the development of cancer.
Retinoblastoma-Binding Protein 1 (RBBP1) is a protein that plays a role in the regulation of gene expression. It is encoded by the RBBP1 gene and is found in the nucleus of cells. RBBP1 is a component of the Retinoblastoma protein (pRb) pathway, which is involved in the regulation of the cell cycle and the prevention of uncontrolled cell growth. In the context of retinoblastoma, a type of eye cancer that occurs in children, RBBP1 is thought to play a role in the development and progression of the disease.
E2F1 transcription factor is a protein that plays a crucial role in regulating the cell cycle and cell proliferation. It is a member of the E2F family of transcription factors, which are involved in controlling the expression of genes that are necessary for cell cycle progression and DNA replication. E2F1 is activated during the G1 phase of the cell cycle, when the cell is preparing to divide. It binds to specific DNA sequences in the promoter regions of target genes, such as those involved in DNA replication and cell cycle progression, and promotes their transcription. In this way, E2F1 helps to coordinate the various events that occur during the cell cycle and ensure that the cell divides properly. Abnormal regulation of E2F1 has been implicated in a number of diseases, including cancer. For example, overexpression of E2F1 has been observed in many types of cancer, and it is thought to contribute to the uncontrolled proliferation of cancer cells. Conversely, loss of E2F1 function has been associated with impaired cell cycle progression and reduced cell proliferation, which may contribute to the development of certain types of cancer. Overall, E2F1 transcription factor plays a critical role in regulating the cell cycle and cell proliferation, and its dysregulation has been implicated in a number of diseases, including cancer.
Transcription factor DP1 is a protein that plays a role in regulating gene expression. It is a member of the basic helix-loop-helix (bHLH) family of transcription factors, which are proteins that bind to specific DNA sequences and help to control the transcription of genes. DP1 is encoded by the "DPF1" gene, which is located on chromosome 12 in humans. DP1 is involved in the development and differentiation of various cell types, including neurons, muscle cells, and immune cells. It has been implicated in a number of different diseases, including cancer, neurological disorders, and autoimmune diseases. For example, mutations in the "DPF1" gene have been associated with an increased risk of developing certain types of cancer, such as breast cancer and ovarian cancer. Additionally, DP1 has been shown to play a role in the development of multiple sclerosis, an autoimmune disorder that affects the central nervous system.
Retinoblastoma-like protein p107 (p107) is a protein that plays a role in regulating cell cycle progression and cell differentiation. It is a member of the retinoblastoma protein family, which includes other proteins such as pRb and p130. Like other members of this family, p107 is involved in the regulation of the G1/S transition of the cell cycle, which is the process by which cells prepare to divide. It does this by binding to specific DNA sequences and inhibiting the activity of proteins that promote cell cycle progression. In addition to its role in cell cycle regulation, p107 has also been implicated in the regulation of cell differentiation and the development of certain types of cancer.
Proliferating Cell Nuclear Antigen (PCNA) is a protein that plays a crucial role in DNA replication and repair in cells. It is also known as Replication Factor C (RFC) subunit 4 or proliferating cell nuclear antigen-like 1 (PCNA-like 1). PCNA is a highly conserved protein that is found in all eukaryotic cells. It is a homotrimeric protein, meaning that it is composed of three identical subunits. Each subunit has a central channel that can bind to DNA, and it is this channel that is responsible for the interaction of PCNA with other proteins involved in DNA replication and repair. During DNA replication, PCNA forms a complex with other proteins, including DNA polymerase δ and the replication factor C (RFC) complex. This complex is responsible for unwinding the DNA double helix, synthesizing new DNA strands, and ensuring that the newly synthesized strands are correctly paired with the template strands. PCNA is also involved in DNA repair processes, particularly in the repair of DNA damage caused by ultraviolet (UV) radiation. In this context, PCNA interacts with other proteins, such as the X-ray repair cross-complementing protein 1 (XRCC1), to facilitate the repair of DNA damage. Overall, PCNA is a critical protein in the maintenance of genomic stability and the prevention of DNA damage-induced diseases, such as cancer.
Nuclear proteins are proteins that are found within the nucleus of a cell. The nucleus is the control center of the cell, where genetic material is stored and regulated. Nuclear proteins play a crucial role in many cellular processes, including DNA replication, transcription, and gene regulation. There are many different types of nuclear proteins, each with its own specific function. Some nuclear proteins are involved in the structure and organization of the nucleus itself, while others are involved in the regulation of gene expression. Nuclear proteins can also interact with other proteins, DNA, and RNA molecules to carry out their functions. In the medical field, nuclear proteins are often studied in the context of diseases such as cancer, where changes in the expression or function of nuclear proteins can contribute to the development and progression of the disease. Additionally, nuclear proteins are important targets for drug development, as they can be targeted to treat a variety of diseases.
In the medical field, RNA, Messenger (mRNA) refers to a type of RNA molecule that carries genetic information from DNA in the nucleus of a cell to the ribosomes, where proteins are synthesized. During the process of transcription, the DNA sequence of a gene is copied into a complementary RNA sequence called messenger RNA (mRNA). This mRNA molecule then leaves the nucleus and travels to the cytoplasm of the cell, where it binds to ribosomes and serves as a template for the synthesis of a specific protein. The sequence of nucleotides in the mRNA molecule determines the sequence of amino acids in the protein that is synthesized. Therefore, changes in the sequence of nucleotides in the mRNA molecule can result in changes in the amino acid sequence of the protein, which can affect the function of the protein and potentially lead to disease. mRNA molecules are often used in medical research and therapy as a way to introduce new genetic information into cells. For example, mRNA vaccines work by introducing a small piece of mRNA that encodes for a specific protein, which triggers an immune response in the body.
SKP Cullin F-Box Protein Ligases, also known as SCF (Skp1-Cullin-F-box) complexes, are a family of E3 ubiquitin ligases that play a crucial role in regulating the turnover of proteins in cells. These complexes are composed of four main components: Skp1, Cullin, Rbx1, and an F-box protein. The F-box protein is responsible for recognizing and binding to specific target proteins, while the Skp1, Cullin, and Rbx1 components form a scaffold that facilitates the transfer of ubiquitin to the target protein, leading to its degradation by the proteasome. SCF complexes are involved in a wide range of cellular processes, including cell cycle regulation, transcriptional regulation, and signal transduction. Dysregulation of SCF complexes has been implicated in various diseases, including cancer, neurodegenerative disorders, and developmental disorders. In the medical field, understanding the function and regulation of SCF complexes is important for developing new therapeutic strategies for these diseases.
Blotting, Western is a laboratory technique used to detect specific proteins in a sample by transferring proteins from a gel to a membrane and then incubating the membrane with a specific antibody that binds to the protein of interest. The antibody is then detected using an enzyme or fluorescent label, which produces a visible signal that can be quantified. This technique is commonly used in molecular biology and biochemistry to study protein expression, localization, and function. It is also used in medical research to diagnose diseases and monitor treatment responses.
In the medical field, a cell line refers to a group of cells that have been derived from a single parent cell and have the ability to divide and grow indefinitely in culture. These cells are typically grown in a laboratory setting and are used for research purposes, such as studying the effects of drugs or investigating the underlying mechanisms of diseases. Cell lines are often derived from cancerous cells, as these cells tend to divide and grow more rapidly than normal cells. However, they can also be derived from normal cells, such as fibroblasts or epithelial cells. Cell lines are characterized by their unique genetic makeup, which can be used to identify them and compare them to other cell lines. Because cell lines can be grown in large quantities and are relatively easy to maintain, they are a valuable tool in medical research. They allow researchers to study the effects of drugs and other treatments on specific cell types, and to investigate the underlying mechanisms of diseases at the cellular level.
CDC25 phosphatases are a family of enzymes that play a critical role in regulating cell cycle progression in eukaryotic cells. These enzymes are named after the cell division cycle 25 (CDC25) gene family, which encodes for the phosphatases. CDC25 phosphatases are responsible for dephosphorylating tyrosine residues on cyclin-dependent kinases (CDKs), which are key regulators of cell cycle progression. By removing phosphate groups from CDKs, CDC25 phosphatases activate these enzymes, allowing them to phosphorylate and activate other proteins involved in cell cycle progression. In addition to their role in cell cycle regulation, CDC25 phosphatases have also been implicated in a variety of other cellular processes, including DNA repair, apoptosis, and cancer development. Dysregulation of CDC25 phosphatase activity has been linked to several types of cancer, including breast, ovarian, and colorectal cancer. Overall, CDC25 phosphatases are important regulators of cell cycle progression and have important implications for human health and disease.
Tumor suppressor protein p53 is a protein that plays a crucial role in regulating cell growth and preventing the development of cancer. It is encoded by the TP53 gene and is one of the most commonly mutated genes in human cancer. The p53 protein acts as a "guardian of the genome" by detecting DNA damage and initiating a series of cellular responses to repair the damage or trigger programmed cell death (apoptosis) if the damage is too severe. This helps to prevent the accumulation of mutations in the DNA that can lead to the development of cancer. In addition to its role in preventing cancer, p53 also plays a role in regulating cell cycle progression, DNA repair, and the response to cellular stress. Mutations in the TP53 gene can lead to the production of a non-functional or mutated p53 protein, which can result in the loss of these important functions and contribute to the development of cancer. Overall, the p53 protein is a critical regulator of cell growth and survival, and its dysfunction is a common feature of many types of cancer.
Transcription factors are proteins that regulate gene expression by binding to specific DNA sequences and controlling the transcription of genetic information from DNA to RNA. They play a crucial role in the development and function of cells and tissues in the body. In the medical field, transcription factors are often studied as potential targets for the treatment of diseases such as cancer, where their activity is often dysregulated. For example, some transcription factors are overexpressed in certain types of cancer cells, and inhibiting their activity may help to slow or stop the growth of these cells. Transcription factors are also important in the development of stem cells, which have the ability to differentiate into a wide variety of cell types. By understanding how transcription factors regulate gene expression in stem cells, researchers may be able to develop new therapies for diseases such as diabetes and heart disease. Overall, transcription factors are a critical component of gene regulation and have important implications for the development and treatment of many diseases.
Proto-oncogenes are normal genes that are involved in regulating cell growth and division. When these genes are mutated or overexpressed, they can become oncogenes, which can lead to the development of cancer. Proto-oncogenes are also known as proto-oncogene proteins.
S-phase kinase-associated proteins (SKAPs) are a family of proteins that play a role in regulating the progression of the cell cycle, specifically during the S phase (DNA synthesis phase). They are involved in the regulation of DNA replication and repair, and are also implicated in the development of certain types of cancer. SKAPs are activated by the cyclin-dependent kinase (CDK) complex, which is a key regulator of the cell cycle. Dysregulation of SKAPs has been linked to various cellular processes, including cell proliferation, apoptosis, and differentiation.
Breast neoplasms refer to abnormal growths or tumors in the breast tissue. These growths can be benign (non-cancerous) or malignant (cancerous). Benign breast neoplasms are usually not life-threatening, but they can cause discomfort or cosmetic concerns. Malignant breast neoplasms, on the other hand, can spread to other parts of the body and are considered a serious health threat. Some common types of breast neoplasms include fibroadenomas, ductal carcinoma in situ (DCIS), invasive ductal carcinoma, and invasive lobular carcinoma.
DNA-binding proteins are a class of proteins that interact with DNA molecules to regulate gene expression. These proteins recognize specific DNA sequences and bind to them, thereby affecting the transcription of genes into messenger RNA (mRNA) and ultimately the production of proteins. DNA-binding proteins play a crucial role in many biological processes, including cell division, differentiation, and development. They can act as activators or repressors of gene expression, depending on the specific DNA sequence they bind to and the cellular context in which they are expressed. Examples of DNA-binding proteins include transcription factors, histones, and non-histone chromosomal proteins. Transcription factors are proteins that bind to specific DNA sequences and regulate the transcription of genes by recruiting RNA polymerase and other factors to the promoter region of a gene. Histones are proteins that package DNA into chromatin, and non-histone chromosomal proteins help to organize and regulate chromatin structure. DNA-binding proteins are important targets for drug discovery and development, as they play a central role in many diseases, including cancer, genetic disorders, and infectious diseases.
Protamine kinase is an enzyme that is involved in the regulation of blood clotting. It is responsible for converting protamine sulfate, a substance that is used to neutralize the anticoagulant effects of heparin, into protamine. Protamine sulfate is often used in conjunction with heparin during medical procedures, such as surgery or catheterization, to prevent excessive bleeding. Protamine kinase helps to ensure that the appropriate amount of protamine is present to neutralize the heparin, preventing the formation of blood clots.
The cell nucleus is a membrane-bound organelle found in eukaryotic cells that contains the cell's genetic material, or DNA. It is typically located in the center of the cell and is surrounded by a double membrane called the nuclear envelope. The nucleus is responsible for regulating gene expression and controlling the cell's activities. It contains a dense, irregularly shaped mass of chromatin, which is made up of DNA and associated proteins. The nucleus also contains a small body called the nucleolus, which is responsible for producing ribosomes, the cellular structures that synthesize proteins.
Cyclin-dependent kinase inhibitor p16, also known as CDKN2A or p16INK4a, is a protein that plays a crucial role in regulating the cell cycle and preventing uncontrolled cell growth. It is encoded by the CDKN2A gene and is a member of the cyclin-dependent kinase inhibitor (CKI) family. In normal cells, p16 is expressed in response to DNA damage and acts as a brake on the cell cycle by inhibiting the activity of cyclin-dependent kinases (CDKs), which are enzymes that control cell cycle progression. When cells are damaged, p16 is activated and binds to CDK4 and CDK6, preventing them from phosphorylating and activating the retinoblastoma protein (Rb), which is a key regulator of the cell cycle. However, in many types of cancer, the CDKN2A gene is mutated or deleted, leading to a loss of p16 expression and allowing cells to bypass the cell cycle checkpoint controlled by p16. This can result in uncontrolled cell growth and the development of tumors. Therefore, p16 is considered a tumor suppressor gene, and its loss of function is associated with an increased risk of developing various types of cancer, including melanoma, lung cancer, and pancreatic cancer. In addition, p16 is also used as a diagnostic and prognostic marker in cancer, as its expression levels can be used to predict the aggressiveness of tumors and the response to treatment.
Ubiquitin-protein ligases, also known as E3 ligases, are a class of enzymes that play a crucial role in the process of protein degradation in cells. These enzymes are responsible for recognizing specific target proteins and tagging them with ubiquitin, a small protein that serves as a signal for degradation by the proteasome, a large protein complex that breaks down proteins in the cell. In the medical field, ubiquitin-protein ligases are of great interest because they are involved in a wide range of cellular processes, including cell cycle regulation, DNA repair, and the regulation of immune responses. Dysregulation of these enzymes has been implicated in a number of diseases, including cancer, neurodegenerative disorders, and autoimmune diseases. For example, some E3 ligases have been shown to play a role in the development of certain types of cancer by promoting the degradation of tumor suppressor proteins or by stabilizing oncogenic proteins. In addition, mutations in certain E3 ligases have been linked to neurodegenerative diseases such as Huntington's disease and Parkinson's disease. Overall, understanding the function and regulation of ubiquitin-protein ligases is an important area of research in the medical field, as it may lead to the development of new therapeutic strategies for a variety of diseases.
3T3 cells are a type of mouse fibroblast cell line that are commonly used in biomedical research. They are derived from the mouse embryo and are known for their ability to grow and divide indefinitely in culture. 3T3 cells are often used as a model system for studying cell growth, differentiation, and other cellular processes. They are also used in the development of new drugs and therapies, as well as in the testing of cosmetic and other products for safety and efficacy.
Xenopus proteins are proteins that are found in the African clawed frog, Xenopus laevis. These proteins have been widely used in the field of molecular biology and genetics as model systems for studying gene expression, development, and other biological processes. Xenopus proteins have been used in a variety of research applications, including the study of gene regulation, cell signaling, and the development of new drugs. They have also been used to study the mechanisms of diseases such as cancer, neurodegenerative disorders, and infectious diseases. In the medical field, Xenopus proteins have been used to develop new treatments for a variety of diseases, including cancer and genetic disorders. They have also been used to study the effects of drugs and other compounds on biological processes, which can help to identify potential new treatments for diseases. Overall, Xenopus proteins are important tools in the field of molecular biology and genetics, and have contributed significantly to our understanding of many biological processes and diseases.
Apoptosis is a programmed cell death process that occurs naturally in the body. It is a vital mechanism for maintaining tissue homeostasis and eliminating damaged or unwanted cells. During apoptosis, cells undergo a series of changes that ultimately lead to their death and removal from the body. These changes include chromatin condensation, DNA fragmentation, and the formation of apoptotic bodies, which are engulfed by neighboring cells or removed by immune cells. Apoptosis plays a critical role in many physiological processes, including embryonic development, tissue repair, and immune function. However, when apoptosis is disrupted or dysregulated, it can contribute to the development of various diseases, including cancer, autoimmune disorders, and neurodegenerative diseases.
Cyclin-dependent kinase 3 (CDK3) is an enzyme that plays a critical role in cell cycle regulation. It is a member of the cyclin-dependent kinase (CDK) family, which are a group of enzymes that regulate cell cycle progression by phosphorylating target proteins. CDK3 is activated by binding to cyclin A, a regulatory protein that is expressed during the S phase of the cell cycle. Once activated, CDK3 phosphorylates a variety of target proteins, including the retinoblastoma protein (Rb), which is a key regulator of the cell cycle. CDK3 is also involved in the regulation of gene expression and the maintenance of genomic stability. Dysregulation of CDK3 activity has been implicated in a number of diseases, including cancer.
In the medical field, the centrosome is a cellular organelle that plays a crucial role in cell division and the organization of microtubules. It is composed of two centrioles surrounded by a protein matrix called the pericentriolar material (PCM). The centrosome is responsible for organizing the microtubules that make up the mitotic spindle, which is essential for the separation of chromosomes during cell division. The centrosome also plays a role in the organization of the cytoskeleton, which provides structural support for the cell and helps to maintain its shape. Abnormalities in the structure or function of the centrosome can lead to a variety of diseases, including cancer. For example, mutations in genes that regulate centrosome function have been linked to the development of certain types of cancer, such as ovarian cancer and glioblastoma.
In the medical field, "Cells, Cultured" refers to cells that have been grown and maintained in a controlled environment outside of their natural biological context, typically in a laboratory setting. This process is known as cell culture and involves the isolation of cells from a tissue or organism, followed by their growth and proliferation in a nutrient-rich medium. Cultured cells can be derived from a variety of sources, including human or animal tissues, and can be used for a wide range of applications in medicine and research. For example, cultured cells can be used to study the behavior and function of specific cell types, to develop new drugs and therapies, and to test the safety and efficacy of medical products. Cultured cells can be grown in various types of containers, such as flasks or Petri dishes, and can be maintained at different temperatures and humidity levels to optimize their growth and survival. The medium used to culture cells typically contains a combination of nutrients, growth factors, and other substances that support cell growth and proliferation. Overall, the use of cultured cells has revolutionized medical research and has led to many important discoveries and advancements in the field of medicine.
Proto-oncogene proteins c-myc is a family of proteins that play a role in regulating cell growth and division. They are also known as myc proteins. The c-myc protein is encoded by the MYC gene, which is located on chromosome 8. The c-myc protein is a transcription factor, which means that it helps to regulate the expression of other genes. When the c-myc protein is overexpressed or mutated, it can contribute to the development of cancer. In normal cells, the c-myc protein helps to control the cell cycle and prevent uncontrolled cell growth. However, in cancer cells, the c-myc protein may be overactive or mutated, leading to uncontrolled cell growth and the formation of tumors.
RNA, Small Interfering (siRNA) is a type of non-coding RNA molecule that plays a role in gene regulation. siRNA is approximately 21-25 nucleotides in length and is derived from double-stranded RNA (dsRNA) molecules. In the medical field, siRNA is used as a tool for gene silencing, which involves inhibiting the expression of specific genes. This is achieved by introducing siRNA molecules that are complementary to the target mRNA sequence, leading to the degradation of the mRNA and subsequent inhibition of protein synthesis. siRNA has potential applications in the treatment of various diseases, including cancer, viral infections, and genetic disorders. It is also used in research to study gene function and regulation. However, the use of siRNA in medicine is still in its early stages, and there are several challenges that need to be addressed before it can be widely used in clinical practice.
E2F4 Transcription Factor is a protein that plays a role in regulating the cell cycle and cell proliferation. It is a member of the E2F family of transcription factors, which are involved in controlling the expression of genes that are necessary for cell division and growth. E2F4 is activated by the binding of other proteins, such as Cyclin E, and it in turn regulates the expression of genes that are necessary for the progression of the cell cycle. Dysregulation of E2F4 has been implicated in the development of various types of cancer, including breast, ovarian, and prostate cancer.
Protein kinases are enzymes that catalyze the transfer of a phosphate group from ATP (adenosine triphosphate) to specific amino acid residues on proteins. This process, known as phosphorylation, can alter the activity, localization, or stability of the target protein, and is a key mechanism for regulating many cellular processes, including cell growth, differentiation, metabolism, and signaling pathways. Protein kinases are classified into different families based on their sequence, structure, and substrate specificity. Some of the major families of protein kinases include serine/threonine kinases, tyrosine kinases, and dual-specificity kinases. Each family has its own unique functions and roles in cellular signaling. In the medical field, protein kinases are important targets for the development of drugs for the treatment of various diseases, including cancer, diabetes, and cardiovascular disease. Many cancer drugs target specific protein kinases that are overactive in cancer cells, while drugs for diabetes and cardiovascular disease often target kinases involved in glucose metabolism and blood vessel function, respectively.
In the medical field, an amino acid sequence refers to the linear order of amino acids in a protein molecule. Proteins are made up of chains of amino acids, and the specific sequence of these amino acids determines the protein's structure and function. The amino acid sequence is determined by the genetic code, which is a set of rules that specifies how the sequence of nucleotides in DNA is translated into the sequence of amino acids in a protein. Each amino acid is represented by a three-letter code, and the sequence of these codes is the amino acid sequence of the protein. The amino acid sequence is important because it determines the protein's three-dimensional structure, which in turn determines its function. Small changes in the amino acid sequence can have significant effects on the protein's structure and function, and this can lead to diseases or disorders. For example, mutations in the amino acid sequence of a protein involved in blood clotting can lead to bleeding disorders.
Cyclin-dependent kinase inhibitors (CDKIs) are a group of proteins that regulate the cell cycle by inhibiting the activity of cyclin-dependent kinases (CDKs). CDKs are a family of enzymes that play a critical role in regulating cell cycle progression by phosphorylating target proteins. CDKIs bind to CDKs and prevent them from phosphorylating their target proteins, thereby inhibiting cell cycle progression. CDKIs are important regulators of cell cycle progression and are involved in a variety of cellular processes, including DNA replication, chromosome segregation, and apoptosis. Dysregulation of CDKIs has been implicated in a number of diseases, including cancer, where the overexpression or loss of function of CDKIs can lead to uncontrolled cell proliferation and the development of tumors. CDKIs are classified into two main groups: the INK4 family (p16INK4a, p15INK4b, p18INK4c, and p19INK4d) and the Cip/Kip family (p21Cip1, p27Kip1, and p57Kip2). The INK4 family members are primarily involved in inhibiting CDK4 and CDK6, while the Cip/Kip family members can inhibit multiple CDKs.
In the medical field, a base sequence refers to the specific order of nucleotides (adenine, thymine, cytosine, and guanine) that make up the genetic material (DNA or RNA) of an organism. The base sequence determines the genetic information encoded within the DNA molecule and ultimately determines the traits and characteristics of an individual. The base sequence can be analyzed using various techniques, such as DNA sequencing, to identify genetic variations or mutations that may be associated with certain diseases or conditions.
In the medical field, carrier proteins are proteins that transport molecules across cell membranes or within cells. These proteins bind to specific molecules, such as hormones, nutrients, or waste products, and facilitate their movement across the membrane or within the cell. Carrier proteins play a crucial role in maintaining the proper balance of molecules within cells and between cells. They are involved in a wide range of physiological processes, including nutrient absorption, hormone regulation, and waste elimination. There are several types of carrier proteins, including facilitated diffusion carriers, active transport carriers, and ion channels. Each type of carrier protein has a specific function and mechanism of action. Understanding the role of carrier proteins in the body is important for diagnosing and treating various medical conditions, such as genetic disorders, metabolic disorders, and neurological disorders.
Threonine is an essential amino acid that plays a crucial role in various biological processes in the human body. It is a polar amino acid with a hydroxyl group (-OH) attached to the alpha carbon atom, which makes it hydrophilic and capable of forming hydrogen bonds. In the medical field, threonine is important for several reasons. Firstly, it is a building block of proteins, which are essential for the structure and function of cells and tissues in the body. Secondly, threonine is involved in the metabolism of carbohydrates and lipids, which are important sources of energy for the body. Thirdly, threonine is a precursor for the synthesis of several important molecules, including carnitine, which plays a role in the metabolism of fatty acids. Threonine deficiency can lead to a range of health problems, including muscle wasting, impaired growth and development, and weakened immune function. It is therefore important to ensure that the body receives adequate amounts of threonine through a balanced diet or supplements.
Ki-67 is a protein found in the nuclei of cells that are actively dividing. It is a useful marker for assessing the growth rate of tumors and is often used in conjunction with other markers to help diagnose and predict the behavior of cancer. The Ki-67 antigen is named after the Danish pathologist, Kai Erik Nielsen, who first described it in the 1980s. It is typically measured using immunohistochemistry, a technique that uses antibodies to detect specific proteins in tissue samples.
Cullin proteins are a family of proteins that play a crucial role in the regulation of various cellular processes, including cell division, signal transduction, and protein degradation. They are named after the Cullin subunit, which is a common component of all Cullin-containing protein complexes. Cullin proteins are involved in the ubiquitin-proteasome system, which is responsible for the degradation of proteins that are no longer needed or are damaged. They function as part of a large multi-protein complex called an E3 ubiquitin ligase, which recognizes specific target proteins and marks them for degradation by the proteasome. In addition to their role in protein degradation, Cullin proteins are also involved in other cellular processes, such as the regulation of cell cycle progression, the response to DNA damage, and the control of gene expression. Mutations in Cullin genes have been linked to various human diseases, including cancer, developmental disorders, and neurodegenerative diseases.
The proteasome endopeptidase complex is a large protein complex found in the cells of all eukaryotic organisms. It is responsible for breaking down and recycling damaged or unnecessary proteins within the cell. The proteasome is composed of two main subunits: the 20S core particle, which contains the proteolytic active sites, and the 19S regulatory particle, which recognizes and unfolds target proteins for degradation. The proteasome plays a critical role in maintaining cellular homeostasis and is involved in a wide range of cellular processes, including cell cycle regulation, immune response, and protein quality control. Dysregulation of the proteasome has been implicated in a number of diseases, including cancer, neurodegenerative disorders, and autoimmune diseases.
Recombinant fusion proteins are proteins that are produced by combining two or more genes in a single molecule. These proteins are typically created using genetic engineering techniques, such as recombinant DNA technology, to insert one or more genes into a host organism, such as bacteria or yeast, which then produces the fusion protein. Fusion proteins are often used in medical research and drug development because they can have unique properties that are not present in the individual proteins that make up the fusion. For example, a fusion protein might be designed to have increased stability, improved solubility, or enhanced targeting to specific cells or tissues. Recombinant fusion proteins have a wide range of applications in medicine, including as therapeutic agents, diagnostic tools, and research reagents. Some examples of recombinant fusion proteins used in medicine include antibodies, growth factors, and cytokines.
Cyclin-dependent kinase inhibitor p57 (p57KIP2) is a protein that plays a role in regulating cell cycle progression. It is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors, which also includes p21 and p27. In the cell cycle, the progression from one phase to the next is tightly regulated by a series of proteins, including cyclins and cyclin-dependent kinases (CDKs). Cyclins are proteins that are produced and degraded in a cyclic manner throughout the cell cycle, and they bind to CDKs to activate them. CDKs, in turn, phosphorylate other proteins to regulate cell cycle progression. p57KIP2 acts as a negative regulator of the cell cycle by inhibiting the activity of CDKs. It does this by binding to and inhibiting the activity of cyclin-CDK complexes, particularly those containing cyclin Cdk4 and cyclin Cdk6. These complexes are important for the progression of the cell cycle from the G1 phase to the S phase, where DNA replication occurs. Mutations in the p57KIP2 gene have been associated with various human diseases, including cancer. In some cases, mutations in this gene can lead to the production of a non-functional protein, which can result in uncontrolled cell proliferation and the development of tumors.
Ubiquitins are small, highly conserved proteins that are involved in a variety of cellular processes, including protein degradation, signal transduction, and gene expression. In the medical field, ubiquitins are often studied in the context of diseases such as cancer, neurodegenerative disorders, and autoimmune diseases. One of the key functions of ubiquitins is to mark proteins for degradation by the proteasome, a large protein complex that breaks down and removes damaged or unnecessary proteins from the cell. This process is essential for maintaining cellular homeostasis and regulating the levels of specific proteins in the cell. In addition to their role in protein degradation, ubiquitins are also involved in a number of other cellular processes, including cell cycle regulation, DNA repair, and immune response. Dysregulation of ubiquitin-mediated processes has been implicated in a variety of diseases, including cancer, where it can contribute to the development and progression of tumors. Overall, ubiquitins are an important class of proteins that play a critical role in many cellular processes, and their dysfunction can have significant consequences for human health.
Phosphothreonine is a type of protein modification in which a phosphate group is added to the threonine amino acid residue in a protein. This modification is catalyzed by enzymes called protein kinases, which transfer a phosphate group from ATP (adenosine triphosphate) to the threonine residue. Phosphorylation of threonine residues can regulate the activity of proteins, including enzymes, receptors, and transcription factors, by altering their conformation or interactions with other molecules. Phosphothreonine is an important signaling molecule in many cellular processes, including cell growth, differentiation, and metabolism. Abnormal phosphorylation of threonine residues has been implicated in various diseases, including cancer, diabetes, and neurodegenerative disorders.
Retinoblastoma-like protein p130, also known as RBL1 or p130, is a protein that plays a role in regulating cell growth and division. It is similar to the protein pRb, which is a tumor suppressor that helps prevent the uncontrolled growth of cells. Mutations in the RBL1 gene can lead to the production of abnormal versions of the p130 protein, which may contribute to the development of certain types of cancer. In the medical field, RBL1 is studied as a potential target for the development of new cancer treatments.
Drosophila proteins are proteins that are found in the fruit fly Drosophila melanogaster, which is a widely used model organism in genetics and molecular biology research. These proteins have been studied extensively because they share many similarities with human proteins, making them useful for understanding the function and regulation of human genes and proteins. In the medical field, Drosophila proteins are often used as a model for studying human diseases, particularly those that are caused by genetic mutations. By studying the effects of these mutations on Drosophila proteins, researchers can gain insights into the underlying mechanisms of these diseases and potentially identify new therapeutic targets. Drosophila proteins have also been used to study a wide range of biological processes, including development, aging, and neurobiology. For example, researchers have used Drosophila to study the role of specific genes and proteins in the development of the nervous system, as well as the mechanisms underlying age-related diseases such as Alzheimer's and Parkinson's.
In the medical field, purines are a type of organic compound that are found in many foods and are also produced by the body as a natural byproduct of metabolism. Purines are the building blocks of nucleic acids, which are the genetic material in all living cells. They are also important for the production of energy in the body. Purines are classified into two main types: endogenous purines, which are produced by the body, and exogenous purines, which are obtained from the diet. Foods that are high in purines include red meat, organ meats, seafood, and some types of beans and legumes. In some people, the body may not be able to properly break down and eliminate purines, leading to a buildup of uric acid in the blood. This condition, known as gout, can cause pain and inflammation in the joints. High levels of uric acid in the blood can also lead to the formation of kidney stones and other health problems.
Cell transformation, neoplastic refers to the process by which normal cells in the body undergo genetic changes that cause them to become cancerous or malignant. This process involves the accumulation of mutations in genes that regulate cell growth, division, and death, leading to uncontrolled cell proliferation and the formation of tumors. Neoplastic transformation can occur in any type of cell in the body, and it can be caused by a variety of factors, including exposure to carcinogens, radiation, viruses, and inherited genetic mutations. Once a cell has undergone neoplastic transformation, it can continue to divide and grow uncontrollably, invading nearby tissues and spreading to other parts of the body through the bloodstream or lymphatic system. The diagnosis of neoplastic transformation typically involves a combination of clinical examination, imaging studies, and biopsy. Treatment options for neoplastic transformation depend on the type and stage of cancer, as well as the patient's overall health and preferences. Common treatments include surgery, radiation therapy, chemotherapy, targeted therapy, and immunotherapy.
Neoplasm proteins are proteins that are produced by cancer cells. These proteins are often abnormal and can contribute to the growth and spread of cancer. They can be detected in the blood or other body fluids, and their presence can be used as a diagnostic tool for cancer. Some neoplasm proteins are also being studied as potential targets for cancer treatment.
In the medical field, the cell cycle checkpoints are critical control points in the cell cycle that ensure the proper progression of the cell cycle and prevent errors that could lead to genomic instability and cancer. There are three main cell cycle checkpoints: the G1 checkpoint, the G2 checkpoint, and the M checkpoint (also known as the spindle assembly checkpoint). The G1 checkpoint ensures that the cell has sufficient nutrients and energy to proceed with the cell cycle, and that it has not encountered any DNA damage that could lead to errors in DNA replication. The G2 checkpoint ensures that all DNA replication has been completed correctly and that any DNA damage has been repaired before the cell enters mitosis. The M checkpoint ensures that the chromosomes are properly attached to the spindle fibers before the cell proceeds with cell division. If any errors are detected at these checkpoints, the cell cycle is halted, and the cell attempts to repair the damage before proceeding. If the damage is too severe, the cell may undergo programmed cell death (apoptosis) to prevent the propagation of errors to daughter cells.
Protein isoforms refer to different forms of a protein that are produced by alternative splicing of the same gene. Alternative splicing is a process by which different combinations of exons (coding regions) are selected from the pre-mRNA transcript of a gene, resulting in the production of different protein isoforms with slightly different amino acid sequences. Protein isoforms can have different functions, localization, and stability, and can play distinct roles in cellular processes. For example, the same gene may produce a protein isoform that is expressed in the nucleus and another isoform that is expressed in the cytoplasm. Alternatively, different isoforms of the same protein may have different substrate specificity or binding affinity for other molecules. Dysregulation of alternative splicing can lead to the production of abnormal protein isoforms, which can contribute to the development of various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the mechanisms of alternative splicing and the functional consequences of protein isoforms is an important area of research in the medical field.
In the medical field, "trans-activators" refer to proteins or molecules that activate the transcription of a gene, which is the process by which the information in a gene is used to produce a functional product, such as a protein. Trans-activators can bind to specific DNA sequences near a gene and recruit other proteins, such as RNA polymerase, to initiate transcription. They can also modify the chromatin structure around a gene to make it more accessible to transcription machinery. Trans-activators play important roles in regulating gene expression and are involved in many biological processes, including development, differentiation, and disease.
DNA primers are short, single-stranded DNA molecules that are used in a variety of molecular biology techniques, including polymerase chain reaction (PCR) and DNA sequencing. They are designed to bind to specific regions of a DNA molecule, and are used to initiate the synthesis of new DNA strands. In PCR, DNA primers are used to amplify specific regions of DNA by providing a starting point for the polymerase enzyme to begin synthesizing new DNA strands. The primers are complementary to the target DNA sequence, and are added to the reaction mixture along with the DNA template, nucleotides, and polymerase enzyme. The polymerase enzyme uses the primers as a template to synthesize new DNA strands, which are then extended by the addition of more nucleotides. This process is repeated multiple times, resulting in the amplification of the target DNA sequence. DNA primers are also used in DNA sequencing to identify the order of nucleotides in a DNA molecule. In this application, the primers are designed to bind to specific regions of the DNA molecule, and are used to initiate the synthesis of short DNA fragments. The fragments are then sequenced using a variety of techniques, such as Sanger sequencing or next-generation sequencing. Overall, DNA primers are an important tool in molecular biology, and are used in a wide range of applications to study and manipulate DNA.
CDC28 Protein Kinase, S cerevisiae is a protein that plays a crucial role in regulating cell cycle progression in the yeast Saccharomyces cerevisiae. It is a serine/threonine protein kinase that is activated during the G1 phase of the cell cycle and is responsible for initiating the transition from G1 to S phase. The activity of CDC28 is regulated by a number of factors, including cyclins, cyclin-dependent kinases inhibitors, and other regulatory proteins. Mutations in the CDC28 gene can lead to defects in cell cycle regulation, which can result in a variety of cellular abnormalities and diseases, including cancer.
DNA, or deoxyribonucleic acid, is a molecule that carries genetic information in living organisms. It is composed of four types of nitrogen-containing molecules called nucleotides, which are arranged in a specific sequence to form the genetic code. In the medical field, DNA is often studied as a tool for understanding and diagnosing genetic disorders. Genetic disorders are caused by changes in the DNA sequence that can affect the function of genes, leading to a variety of health problems. By analyzing DNA, doctors and researchers can identify specific genetic mutations that may be responsible for a particular disorder, and develop targeted treatments or therapies to address the underlying cause of the condition. DNA is also used in forensic science to identify individuals based on their unique genetic fingerprint. This is because each person's DNA sequence is unique, and can be used to distinguish one individual from another. DNA analysis is also used in criminal investigations to help solve crimes by linking DNA evidence to suspects or victims.
Cdh1 proteins, also known as cyclin-dependent kinase inhibitor 1 (Cdkn1), are a family of proteins that play a crucial role in regulating cell cycle progression in the cell cycle. They are encoded by the CDC20 gene and are involved in the destruction of cyclin B, which is necessary for the transition from the G2 phase to the M phase of the cell cycle. Cdh1 proteins are also involved in the regulation of other cell cycle-related proteins, such as cyclin A and cyclin E. In the medical field, Cdh1 proteins are often studied in the context of cancer, as mutations or dysregulation of Cdh1 proteins have been linked to the development and progression of various types of cancer.
Chromosomal instability (CIN) is a condition in which cells have an increased tendency to experience errors during cell division, leading to the formation of abnormal chromosomes or aneuploidy. This can result in the production of cells with too many or too few chromosomes, which can lead to a variety of health problems, including cancer. CIN can be caused by a variety of factors, including genetic mutations, exposure to certain chemicals or radiation, and certain viral infections. It is often associated with the development of cancer, as the abnormal chromosomes produced by CIN can lead to the uncontrolled growth and division of cells. There are several different types of CIN, including constitutional chromosomal instability (CCI), which is present from birth and is associated with a higher risk of cancer, and acquired chromosomal instability (ACI), which is caused by environmental factors and is associated with a higher risk of cancer in adulthood. Treatment for CIN depends on the underlying cause and the specific symptoms and health problems associated with the condition. In some cases, treatment may involve medications or other therapies to help manage symptoms or prevent the development of cancer. In other cases, surgery or other interventions may be necessary to remove abnormal cells or tumors.
Bromodeoxyuridine (BrdU) is a synthetic analog of the nucleoside thymidine, which is a building block of DNA. It is commonly used in the medical field as a marker for DNA synthesis and cell proliferation. BrdU is incorporated into newly synthesized DNA during the S phase of the cell cycle, when DNA replication occurs. This makes it possible to detect cells that are actively dividing by staining for BrdU. BrdU staining is often used in immunohistochemistry and flow cytometry to study the proliferation of cells in various tissues and organs, including the brain, bone marrow, and skin. BrdU is also used in some cancer treatments, such as chemotherapy and radiation therapy, to target rapidly dividing cancer cells. By inhibiting DNA synthesis, BrdU can slow down or stop the growth of cancer cells, making them more susceptible to treatment. However, it is important to note that BrdU can also cause DNA damage and has been associated with an increased risk of cancer in some studies. Therefore, its use in medical research and treatment should be carefully monitored and regulated.
Maturation-Promoting Factor (MPF) is a complex of proteins that plays a crucial role in the regulation of cell cycle progression and the initiation of mitosis in eukaryotic cells. It is composed of two subunits: cyclin B and cyclin-dependent kinase (CDK1). During the cell cycle, MPF is synthesized and activated during the G2 phase, and it remains active until the end of mitosis. MPF promotes the progression of the cell cycle by phosphorylating various target proteins, including the nuclear envelope, kinetochores, and other cell cycle regulators. MPF is also involved in the regulation of apoptosis, the process of programmed cell death. When cells are damaged or stressed, MPF can be activated to trigger apoptosis, which helps to eliminate damaged or abnormal cells. In the medical field, MPF is of interest because it plays a critical role in the development and progression of many diseases, including cancer. Abnormal regulation of MPF activity has been linked to the development of various types of cancer, and targeting MPF has been proposed as a potential therapeutic strategy for cancer treatment.
Cyclin
Cyclin T2
Cyclin O
Cyclin A1
Cyclin B2
Cyclin B
Cyclin E1
Cyclin D
Cyclin D2
Cyclin D1
Cyclin K
Cyclin B1
Cyclin E2
Cyclin E
Cyclin T1
Cyclin A2
Cyclin H
Cyclin A
Cyclin D3
Cyclin-dependent kinase
Cyclin-dependent kinase 1
Cyclin-dependent kinase 10
Cyclin-dependent kinase 6
Cyclin-dependent kinase 2
Cyclin-dependent kinase 7
Cyclin-dependent kinase 5
Cyclin-dependent kinase complex
Cyclin-dependent kinase 4
Cyclin-dependent kinase 9
Cyclin-dependent kinase 3
No data available that match "cyclin e"
Kinases9
- Cyclins, when bound with the dependent kinases, such as the p34/cdc2/cdk1 protein, form the maturation-promoting factor. (wikipedia.org)
- Cyclins function as regulators of CDK kinases. (novusbio.com)
- Cyclin dependent kinases are a key family of kinases involved in cell cycle regulation and are an attractive target for cancer chemotherapy. (rcsb.org)
- Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. (rcsb.org)
- A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. (umassmed.edu)
- Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. (umassmed.edu)
- Inhibitors of the cyclin-dependent kinases CDK4 and CDK6 induce cell-cycle arrest in RB1-proficient tumors and have had promising results in several tumor types. (aacrjournals.org)
- Protein kinases that control cell cycle progression in all eukaryotes and require physical association with CYCLINS to achieve full enzymatic activity. (bvsalud.org)
- Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events. (bvsalud.org)
Kinase Inhibitor5
- Cyclin-Dependent Kinase Inhibitor p18" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (childrensmercy.org)
- An INK4 cyclin-dependent kinase inhibitor containing five ANKYRIN-LIKE REPEATS. (childrensmercy.org)
- This graph shows the total number of publications written about "Cyclin-Dependent Kinase Inhibitor p18" by people in this website by year, and whether "Cyclin-Dependent Kinase Inhibitor p18" was a major or minor topic of these publications. (childrensmercy.org)
- Below are the most recent publications written about "Cyclin-Dependent Kinase Inhibitor p18" by people in Profiles. (childrensmercy.org)
- DHA-enriched fish oil upregulates cyclin-dependent kinase inhibitor 2A (P16 INK ) expression and downregulates telomerase activity without modulating effects of PPARγ Pro12Ala polymorphism in type 2 diabetic patients: A randomized, double-blind, placebo-controlled clinical trial. (bvsalud.org)
Protein16
- A cyclin subtype that has specificity for CDC2 PROTEIN KINASE and CYCLIN-DEPENDENT KINASE 2 . (online-medical-dictionary.org)
- The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. (novusbio.com)
- This cyclin forms a complex with CDK7 kinase and ring finger protein MAT1. (novusbio.com)
- This cyclin and its kinase partner are components of TFIIH, as well as RNA polymerase II protein complexes. (novusbio.com)
- The work represents the first successful iterative synthesis of a potent CDK inhibitor based on the structure of fully activated CDK2-cyclin A. Furthermore, the potency of O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine was both predicted and fully rationalized on the basis of protein-ligand interactions. (rcsb.org)
- Furthermore, we found that levels of phosphorylated MEK1/2 and ERK1/2 were decreased in cyclin I-deficient podocytes and that inhibition of MEK1/2 restored Bcl2 and Bcl-XL protein levels. (jci.org)
- F-box protein specificity for g1 cyclins is dictated by subcellular localization. (umassmed.edu)
- Components of the canonical wingless (WNT) pathway, including WNT8b, WNT10a, WNT10b, frizzled 1 and 2 and TCF4 were upregulated at the messenger RNA and protein levels following Cyclin A2 depletion. (cnrs.fr)
- Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. (rupress.org)
- This protein kinase is composed of a catalytic subunit (Cdc2), a regulatory subunit (cyclin B) and a low molecular weight subunit (p13-Suc1). (neobiotechnologies.com)
- Evidence has established that B type cyclins not only act on M phase regulatory subunits of the Cdc2 protein kinase, but also activate the Cdc25A and Cdc25B endogenous tyrosine phosphatase, of which Cdc2 is the physiological substrate. (neobiotechnologies.com)
- Cyclin D1 or PRAD-1 or bcl-1 is one of the key cell cycle regulators, and functions in association with cdk4 and/or cdk6 by phosphorylating the Rb protein. (enquirebio.com)
- The CCND2 gene provides instructions for making a protein called cyclin D2. (medlineplus.gov)
- The cyclin D2 protein is regulated by a chemical signaling pathway called the PI3K-AKT-mTOR pathway. (medlineplus.gov)
- Each of the known mutations changes a single protein building block (amino acid) in the cyclin D2 protein. (medlineplus.gov)
- The molecular consequence of translocation is overexpression of the protein cyclin D1 (coded by the PRAD1 gene located close to the breakpoint). (medscape.com)
Proteins6
- Cyclin is a family of proteins that controls the progression of a cell through the cell cycle by activating cyclin-dependent kinase (CDK) enzymes or group of enzymes required for synthesis of cell cycle. (wikipedia.org)
- For example, the amino-terminal regions of S and M cyclins contain short destruction-box motifs that target these proteins for proteolysis in mitosis. (wikipedia.org)
- In addition, levels of the prosurvival proteins Bcl-2 and Bcl-XL were reduced in podocytes and neurons from cyclin I-deficient mice, and restoration of Bcl-2 or Bcl-XL expression prevented injury-induced apoptosis. (jci.org)
- Taken together, these data suggest that a cyclin I-Cdk5 complex forms a critical antiapoptotic factor in terminally differentiated cells that functions via MAPK signaling to modulate levels of the prosurvival proteins Bcl-2 and Bcl-XL. (jci.org)
- 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule-associated proteins (MAPs) might be responsible for this interaction. (rupress.org)
- Cyclins are a family of proteins that control how cells proceed through the multi-step cycle of cell division. (medlineplus.gov)
Dependent kinase3
- Assay of the mutants with a cyclin-dependent kinase 4-selective bisanilinopyrimidine shows that the K89T mutation is primarily responsible for the selectivity of this compound. (rcsb.org)
- Use of the cyclin-dependent kinase 2-selective 6-cyclohexylmethoxy-2-(4'-sulfamoylanilino)purine (NU6102) shows that K89T has no role in the selectivity, while the remaining three mutations have a cumulative influence. (rcsb.org)
- Here, we investigated the mechanism by which cyclin I safeguards against apoptosis and found that cyclin I bound and activated cyclin-dependent kinase 5 (Cdk5) in isolated mouse podocytes and neurons. (jci.org)
Phosphorylation6
- A cyclin forms a complex with Cdk, which begins to activate but the complete activation requires phosphorylation, as well. (wikipedia.org)
- The model is based on a bicyclic phosphorylation-dephosphorylation cascade involving cyclin and cdc2 kinase. (ebi.ac.uk)
- Cyclin I-Cdk5 showed phosphorylation kinetics similar to those of p35-Cdk5. (jci.org)
- Bhaduri S, Valk E, Winters MJ, Gruessner B, Loog M, Pryciak PM. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry. (umassmed.edu)
- The Cdc/cyclin enzyme is subject to multiple levels of control, of which the regulation of the catalytic subunit by tyrosine phosphorylation is the best understood. (neobiotechnologies.com)
- Tyrosine phosphorylation inhibits the Cdc2/ cyclin B enzyme, and tyrosine dephosphorylation, occurring at the onset of mitosis, directly activates the pre-MPF complex. (neobiotechnologies.com)
Enzymatic activity1
- Cyclins themselves have no enzymatic activity but have binding sites for some substrates and target the Cdks to specific subcellular locations. (wikipedia.org)
Antibody9
- Immunocytochemistry/ Immunofluorescence: Cyclin H Antibody (1B8) [H00000902-M01] - Analysis of monoclonal antibody to CCNH on HeLa cell. (novusbio.com)
- Immunohistochemistry-Paraffin: Cyclin H Antibody (1B8) [H00000902-M01] - Analysis of monoclonal antibody to CCNH on formalin-fixed paraffin-embedded human testis. (novusbio.com)
- Western Blot: Cyclin H Antibody (1B8) [H00000902-M01] - CCNH monoclonal antibody (M01), clone 1B8 Analysis of CCNH expression in HeLa. (novusbio.com)
- Sandwich ELISA: Cyclin H Antibody (1B8) [H00000902-M01] - Detection limit for recombinant GST tagged CCNH is approximately 1ng/ml as a capture antibody. (novusbio.com)
- WB analysis of HeLa cell lysate using GTX33611 Cyclin D1 antibody [RM241]. (genetex.com)
- IHC-P analysis of human tonsil tissue using GTX33611 Cyclin D1 antibody [RM241]. (genetex.com)
- There are currently no references for Cyclin D1 antibody [RM241] (GTX33611) . (genetex.com)
- SDS-PAGE Analysis Purified Cyclin B2 Mouse Monoclonal Antibody (X29.2). (neobiotechnologies.com)
- Cyclin D1 [SP4] Antibody (cGMP). (enquirebio.com)
Proliferation5
- We previously showed that cyclin I does not regulate proliferation, but rather controls survival of podocytes, terminally differentiated epithelial cells that are essential for the structural and functional integrity of kidney glomeruli. (jci.org)
- Cyclin D2's role in the cell division cycle makes it a key controller of the rate of cell growth and division (proliferation) in the body. (medlineplus.gov)
- The resulting buildup of cyclin D2 in cells triggers them to continue dividing when they otherwise would not have, leading to abnormal cell proliferation. (medlineplus.gov)
- It is less clear how a buildup of cyclin D2 contributes to polydactyly, although the extra digits are probably related to abnormal cell proliferation in the developing hands and feet. (medlineplus.gov)
- We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. (cdc.gov)
Signaling pathway1
- Pope PA, Bhaduri S, Pryciak PM. Regulation of cyclin-substrate docking by a G1 arrest signaling pathway and the Cdk inhibitor Far1. (umassmed.edu)
Gene1
- The oscillations of the cyclins, namely fluctuations in cyclin gene expression and destruction by the ubiquitin mediated proteasome pathway, induce oscillations in Cdk activity to drive the cell cycle. (wikipedia.org)
Induce2
- The Cdk- G1/S cyclin complex begins to induce the initial processes of DNA replication, primarily by arresting systems that prevent S phase Cdk activity in G1. (wikipedia.org)
- The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. (cdc.gov)
Antibodies1
- Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. (rupress.org)
Expression5
- Expression of cyclins detected immunocytochemically in individual cells in relation to cellular DNA content (cell cycle phase), or in relation to initiation and termination of DNA replication during S-phase, can be measured by flow cytometry. (wikipedia.org)
- Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. (novusbio.com)
- Moreover, in breast cancer cells, which express CDK4 instead of CDK6, palbociclib induced cell-cycle arrest instead of apoptosis, further indicating that expression of cyclin D3 and CDK6 in T-ALL cells promotes apoptosis in response to palbociclib. (aacrjournals.org)
- Additionally, 16 of 18 nonleukemic cancer cell lines exhibiting high expression of cyclin D3 and CDK6 underwent apoptosis in response to palbociclib, and, in melanoma patient-derived xenografts, high cyclin D3 and CDK6 expression was associated with tumor regression after CDK4/6 inhibition. (aacrjournals.org)
- Functionally, miR-193b induces a G1 cell cycle arrest and cell death in neuroblastoma cell lines by reducing the expression of MYCN , Cyclin D1 and MCL-1 , three important oncogenes in neuroblastoma of which inhibition has shown promising results in preclinical testing. (oncotarget.com)
CDK69
- Kaposi sarcoma herpesvirus (KSHV) encodes a D-type cyclin (ORF72) that binds CDK6 and is likely to contribute to KSHV-related cancers. (wikipedia.org)
- This cyclin forms a complex with and functions as a regulatory subunit of CDK4 or CDK6, whose activity is required for cell cycle G1/S transition. (genetex.com)
- Cyclin D3-CDK6 inhibits the glycolytic enzymes PFK1 and PKM2 to prevent T-ALL cell apoptosis. (aacrjournals.org)
- High levels of cyclin D3 and CDK6 may predict response to CDK4/6 inhibitors in multiple tumor types. (aacrjournals.org)
- However, in T-cell acute lymphoblastic leukemia (T-ALL), which predominately expresses CDK6 and the activating cyclin, cyclin D3, inhibition of CDK6 or cyclin D3 induces apoptosis. (aacrjournals.org)
- The mechanisms underlying the prosurvival function of cyclin D3-CDK6 have not been elucidated, prompting Wang and colleagues to search for substrates that may promote cancer cell survival. (aacrjournals.org)
- 6-phosphofructokinase (PFK1) and pyruvate kinase M2 (PKM2), enzymes that catalyze irreversible, rate-limiting steps in glycolysis, were directly phosphorylated and inhibited by cyclin D3-CDK6, suggesting that cyclin D3-CDK6 may have a unique role in glucose metabolism. (aacrjournals.org)
- Together, these findings elucidate a prosurvival role for cyclin D3-CDK6 in metabolism, in addition to its role in cell-cycle progression, and suggest that high levels of cyclin D3 and CDK6 may predict response to CDK4/6 inhibitors. (aacrjournals.org)
- The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. (aacrjournals.org)
Amino acids1
- However, all members of the cyclin family are similar in 100 amino acids that make up the cyclin box. (wikipedia.org)
Induces1
- S cyclins bind to Cdk and the complex directly induces DNA replication. (wikipedia.org)
Mitotic1
- Cell changes in the cell cycle like the assembly of mitotic spindles and alignment of sister-chromatids along the spindles are induced by M cyclin- Cdk complexes. (wikipedia.org)
Apoptosis1
- Cdk5 activity was reduced in glomeruli and brain lysates from cyclin I-deficient mice, and inhibition of Cdk5 increased in vitro the susceptibility to apoptosis in response to cellular damage. (jci.org)
Transcriptional2
- A subset of cyclins may also function as transcriptional regulators. (umassmed.edu)
- Cyclin K as a direct transcriptional target of the p53 tumor suppressor. (uchicago.edu)
Contributes1
- Our findings will broaden our knowledge on how Cyclin A2 contributes to EMT and metastasis. (cnrs.fr)
BCL11
- Cyclin D1 is also known as BCL1, B Cell Lymphoma #1, CCND1. (enquirebio.com)
Regulation1
- Our results suggest that anthracycline-induced cytotoxicity is cell cycle dependent and is mediated, at least in part, by disturbance of the regulation of p34cdc2/cyclin B1 complex, thus leading to G2/M phase arrest. (aspetjournals.org)
Cells8
- Cyclins can be divided into four classes based on their behaviour in the cell cycle of vertebrate somatic cells and yeast cells: G1 cyclins, G1/S cyclins, S cyclins, and M cyclins. (wikipedia.org)
- Cyclin I is an atypical cyclin because it is most abundant in postmitotic cells. (jci.org)
- A ) HEK293 cells were transfected with HA-Cdk5, then cotransfected with either myc-p35 or myc-cyclin I. Following an IP to the myc epitope tag on either p35 or cyclin I, in vitro kinase assays were performed using either histone H1 (HH1) or tau as substrates. (jci.org)
- B ) To compare the kinase kinetics by which cyclin I-Cdk5 phosphorylates tau in comparison with p35-Cdk5, a time-course experiment was performed in HEK293 cells cotransfected with myc-p35 and HA-Cdk5 or myc-cyclin I and HA-Cdk5. (jci.org)
- Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. (cnrs.fr)
- In Cyclin A2-depleted normal murine mammary gland (NMuMG) cells expressing RasV12, we found that beta-catenin was liberated from the cell membrane and cell-cell junctions and underwent nuclear translocation and activation. (cnrs.fr)
- Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. (aspetjournals.org)
- Tsunekawa Y, Kikkawa T, Osumi N. Asymmetric inheritance of Cyclin D2 maintains proliferative neural stem/progenitor cells: a critical event in brain development and evolution. (medlineplus.gov)
Substrates1
- There are several different cyclins that are active in different parts of the cell cycle and that cause the Cdk to phosphorylate different substrates. (wikipedia.org)
Synthesis1
- In contrast, Dox treatment was found to induced cyclin B1 accumulation as a result of stimulating its synthesis and inhibiting its degradation. (aspetjournals.org)
Contrast1
- In contrast, cyclin I-Cdk5 preferentially phosphorylated tau (lane 6) rather than histone H1 (lane 2). (jci.org)
Complex1
- We then studied the effect of Dox on the p34cdc2/cyclin B1 complex because it plays a key role in regulating G2/M phase transition. (aspetjournals.org)
Distinct1
- The two B type cyclins, cyclin B1 and cyclin B2, have been shown to have distinct tissue distributions. (neobiotechnologies.com)
Levels1
- The levels of S cyclins remain high, not only throughout S phase, but through G2 and early mitosis as well to promote early events in mitosis. (wikipedia.org)
Concentration1
- Cyclins were originally named because their concentration varies in a cyclical fashion during the cell cycle. (wikipedia.org)
Analysis1
- Bandyopadhyay S, Bhaduri S, ?rd M, Davey NE, Loog M, Pryciak PM. Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency In?Vivo. (umassmed.edu)
Structure3
- Note that the cyclins are now classified according to their conserved cyclin box structure, and not all these cyclins alter in level through the cell cycle. (wikipedia.org)
- Cyclins are generally very different from each other in primary structure, or amino acid sequence. (wikipedia.org)
- All cyclins are believed to contain a similar tertiary structure of two compact domains of 5 α helices. (wikipedia.org)
Previously1
- We have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) and metastasis. (cnrs.fr)
Domains1
- Cyclins contain two domains of a similar all-α fold, the first located at the N-terminus and the second at the C-terminus. (wikipedia.org)
Cell growth3
- G1 cyclins do not behave like the other cyclins, in that the concentrations increase gradually (with no oscillation), throughout the cell cycle based on cell growth and the external growth-regulatory signals. (wikipedia.org)
- The presence of G cyclins coordinate cell growth with the entry to a new cell cycle. (wikipedia.org)
- Cyclin D2 helps to regulate a step in the cycle called the G1-S transition, in which the cell moves from the G1 phase, when cell growth occurs, to the S phase, when the cell's DNA is copied (replicated) in preparation for cell division. (medlineplus.gov)