Protein kinases that control cell cycle progression in all eukaryotes and require physical association with CYCLINS to achieve full enzymatic activity. Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events.
A key regulator of CELL CYCLE progression. It partners with CYCLIN E to regulate entry into S PHASE and also interacts with CYCLIN A to phosphorylate RETINOBLASTOMA PROTEIN. Its activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P27 and CYCLIN-DEPENDENT KINASE INHIBITOR P21.
Protein encoded by the bcl-1 gene which plays a critical role in regulating the cell cycle. Overexpression of cyclin D1 is the result of bcl-1 rearrangement, a t(11;14) translocation, and is implicated in various neoplasms.
A cyclin subtype that has specificity for CDC2 PROTEIN KINASE and CYCLIN-DEPENDENT KINASE 2. It plays a role in progression of the CELL CYCLE through G1/S and G2/M phase transitions.
A 50-kDa protein that complexes with CYCLIN-DEPENDENT KINASE 2 in the late G1 phase of the cell cycle.
A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators.
Cyclin-dependent kinase 4 is a key regulator of G1 PHASE of the CELL CYCLE. It partners with CYCLIN D to phosphorylate RETINOBLASTOMA PROTEIN. CDK4 activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P16.
A cyclin-dependent kinase inhibitor that coordinates the activation of CYCLIN and CYCLIN-DEPENDENT KINASES during the CELL CYCLE. It interacts with active CYCLIN D complexed to CYCLIN-DEPENDENT KINASE 4 in proliferating cells, while in arrested cells it binds and inhibits CYCLIN E complexed to CYCLIN-DEPENDENT KINASE 2.
A family of cell cycle-dependent kinases that are related in structure to CDC28 PROTEIN KINASE; S CEREVISIAE; and the CDC2 PROTEIN KINASE found in mammalian species.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3.
A serine-threonine kinase that plays important roles in CELL DIFFERENTIATION; CELL MIGRATION; and CELL DEATH of NERVE CELLS. It is closely related to other CYCLIN-DEPENDENT KINASES but does not seem to participate in CELL CYCLE regulation.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
A cyclin subtype that binds to the CYCLIN-DEPENDENT KINASE 3 and CYCLIN-DEPENDENT KINASE 8. Cyclin C plays a dual role as a transcriptional regulator and a G1 phase CELL CYCLE regulator.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.
A cyclin subtype that is specific for CYCLIN-DEPENDENT KINASE 4 and CYCLIN-DEPENDENT KINASE 6. Unlike most cyclins, cyclin D expression is not cyclical, but rather it is expressed in response to proliferative signals. Cyclin D may therefore play a role in cellular responses to mitogenic signals.
The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors.
A product of the p16 tumor suppressor gene (GENES, P16). It is also called INK4 or INK4A because it is the prototype member of the INK4 CYCLIN-DEPENDENT KINASE INHIBITORS. This protein is produced from the alpha mRNA transcript of the p16 gene. The other gene product, produced from the alternatively spliced beta transcript, is TUMOR SUPPRESSOR PROTEIN P14ARF. Both p16 gene products have tumor suppressor functions.
A group of cell cycle proteins that negatively regulate the activity of CYCLIN/CYCLIN-DEPENDENT KINASE complexes. They inhibit CELL CYCLE progression and help control CELL PROLIFERATION following GENOTOXIC STRESS as well as during CELL DIFFERENTIATION.
A broadly expressed type D cyclin. Experiments using KNOCKOUT MICE suggest a role for cyclin D3 in LYMPHOCYTE development.
A cyclin B subtype that colocalizes with MICROTUBULES during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.
Product of the retinoblastoma tumor suppressor gene. It is a nuclear phosphoprotein hypothesized to normally act as an inhibitor of cell proliferation. Rb protein is absent in retinoblastoma cell lines. It also has been shown to form complexes with the adenovirus E1A protein, the SV40 T antigen, and the human papilloma virus E7 protein.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Cyclin-dependent kinase 6 associates with CYCLIN D and phosphorylates RETINOBLASTOMA PROTEIN during G1 PHASE of the CELL CYCLE. It helps regulate the transition to S PHASE and its kinase activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P18.
A potent inhibitor of CYCLIN-DEPENDENT KINASES in G1 PHASE and S PHASE. In humans, aberrant expression of p57 is associated with various NEOPLASMS as well as with BECKWITH-WIEDEMANN SYNDROME.
Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development.
Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.
Agents that inhibit PROTEIN KINASES.
A cyclin D subtype which is regulated by GATA4 TRANSCRIPTION FACTOR. Experiments using KNOCKOUT MICE suggest a role for cyclin D2 in granulosa cell proliferation and gonadal development.
A cyclin A subtype primarily found in male GERM CELLS. It may play a role in the passage of SPERMATOCYTES into meiosis I.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
An E2F transcription factor that interacts directly with RETINOBLASTOMA PROTEIN and CYCLIN A and activates GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis. E2F1 is involved in DNA REPAIR and APOPTOSIS.
A widely-expressed cyclin A subtype that functions during the G1/S and G2/M transitions of the CELL CYCLE.
Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.
A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 5; cyclin G associated kinase, and PROTEIN PHOSPHATASE 2.
A cell line derived from cultured tumor cells.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A cyclin G subtype that is constitutively expressed throughout the cell cycle. Cyclin G1 is considered a major transcriptional target of TUMOR SUPPRESSOR PROTEIN P53 and is highly induced in response to DNA damage.
An intracellular signaling system involving the MAP kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade.
A transcription factor that possesses DNA-binding and E2F-binding domains but lacks a transcriptional activation domain. It is a binding partner for E2F TRANSCRIPTION FACTORS and enhances the DNA binding and transactivation function of the DP-E2F complex.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point.
A family of basic helix-loop-helix transcription factors that control expression of a variety of GENES involved in CELL CYCLE regulation. E2F transcription factors typically form heterodimeric complexes with TRANSCRIPTION FACTOR DP1 or transcription factor DP2, and they have N-terminal DNA binding and dimerization domains. E2F transcription factors can act as mediators of transcriptional repression or transcriptional activation.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277)
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Nuclear antigen with a role in DNA synthesis, DNA repair, and cell cycle progression. PCNA is required for the coordinated synthesis of both leading and lagging strands at the replication fork during DNA replication. PCNA expression correlates with the proliferation activity of several malignant and non-malignant cell types.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Established cell cultures that have the potential to propagate indefinitely.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Transport proteins that carry specific substances in the blood or across cell membranes.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
A PROTEIN-TYROSINE KINASE family that was originally identified by homology to the Rous sarcoma virus ONCOGENE PROTEIN PP60(V-SRC). They interact with a variety of cell-surface receptors and participate in intracellular signal transduction pathways. Oncogenic forms of src-family kinases can occur through altered regulation or expression of the endogenous protein and by virally encoded src (v-src) genes.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
Substances that inhibit or prevent the proliferation of NEOPLASMS.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens.
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
A cyclin B subtype that colocalizes with GOLGI APPARATUS during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.
A proline-directed serine/threonine protein kinase which mediates signal transduction from the cell surface to the nucleus. Activation of the enzyme by phosphorylation leads to its translocation into the nucleus where it acts upon specific transcription factors. p40 MAPK and p41 MAPK are isoforms.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 9. Unlike traditional cyclins, which regulate the CELL CYCLE, type T cyclins appear to regulate transcription and are components of positive transcriptional elongation factor B.
A serine-threonine protein kinase family whose members are components in protein kinase cascades activated by diverse stimuli. These MAPK kinases phosphorylate MITOGEN-ACTIVATED PROTEIN KINASES and are themselves phosphorylated by MAP KINASE KINASE KINASES. JNK kinases (also known as SAPK kinases) are a subfamily.
A family of serine-threonine kinases that bind to and are activated by MONOMERIC GTP-BINDING PROTEINS such as RAC GTP-BINDING PROTEINS and CDC42 GTP-BINDING PROTEIN. They are intracellular signaling kinases that play a role the regulation of cytoskeletal organization.
A 44-kDa extracellular signal-regulated MAP kinase that may play a role the initiation and regulation of MEIOSIS; MITOSIS; and postmitotic functions in differentiated cells. It phosphorylates a number of TRANSCRIPTION FACTORS; and MICROTUBULE-ASSOCIATED PROTEINS.
A subgroup of mitogen-activated protein kinases that activate TRANSCRIPTION FACTOR AP-1 via the phosphorylation of C-JUN PROTEINS. They are components of intracellular signaling pathways that regulate CELL PROLIFERATION; APOPTOSIS; and CELL DIFFERENTIATION.
Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors.
A cyclin subtype that is found as a component of a heterotrimeric complex containing cyclin-dependent kinase 7 and CDK-activating kinase assembly factor. The complex plays a role in cellular proliferation by phosphorylating several CYCLIN DEPENDENT KINASES at specific regulatory threonine sites.
An unusual cyclin subtype that is found highly expressed in terminally differentiated cells. Unlike conventional cyclins increased expression of cyclin G2 is believed to cause a withdrawal of cells from the CELL CYCLE.
The rate dynamics in chemical or physical systems.
A multifunctional calcium-calmodulin-dependent protein kinase subtype that occurs as an oligomeric protein comprised of twelve subunits. It differs from other enzyme subtypes in that it lacks a phosphorylatable activation domain that can respond to CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASE KINASE.
Mitogen-activated protein kinase kinase kinases (MAPKKKs) are serine-threonine protein kinases that initiate protein kinase signaling cascades. They phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES; (MAPKKs) which in turn phosphorylate MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs).
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A ubiquitous casein kinase that is comprised of two distinct catalytic subunits and dimeric regulatory subunit. Casein kinase II has been shown to phosphorylate a large number of substrates, many of which are proteins involved in the regulation of gene expression.
A dsRNA-activated cAMP-independent protein serine/threonine kinase that is induced by interferon. In the presence of dsRNA and ATP, the kinase autophosphorylates on several serine and threonine residues. The phosphorylated enzyme catalyzes the phosphorylation of the alpha subunit of EUKARYOTIC INITIATION FACTOR-2, leading to the inhibition of protein synthesis.
Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A family of protein serine/threonine kinases which act as intracellular signalling intermediates. Ribosomal protein S6 kinases are activated through phosphorylation in response to a variety of HORMONES and INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS. Phosphorylation of RIBOSOMAL PROTEIN S6 by enzymes in this class results in increased expression of 5' top MRNAs. Although specific for RIBOSOMAL PROTEIN S6 members of this class of kinases can act on a number of substrates within the cell. The immunosuppressant SIROLIMUS inhibits the activation of ribosomal protein S6 kinases.
A superfamily of PROTEIN-SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES).
An abundant 43-kDa mitogen-activated protein kinase kinase subtype with specificity for MITOGEN-ACTIVATED PROTEIN KINASE 1 and MITOGEN-ACTIVATED PROTEIN KINASE 3.
Elements of limited time intervals, contributing to particular results or situations.
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS.
A group of protein-serine-threonine kinases that was originally identified as being responsible for the PHOSPHORYLATION of CASEINS. They are ubiquitous enzymes that have a preference for acidic proteins. Casein kinases play a role in SIGNAL TRANSDUCTION by phosphorylating a variety of regulatory cytoplasmic and regulatory nuclear proteins.
A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids.
ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40.
A glycogen synthase kinase that was originally described as a key enzyme involved in glycogen metabolism. It regulates a diverse array of functions such as CELL DIVISION, microtubule function and APOPTOSIS.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
A class of cellular receptors that have an intrinsic PROTEIN-TYROSINE KINASE activity.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21.
A mitogen-activated protein kinase kinase with specificity for JNK MITOGEN-ACTIVATED PROTEIN KINASES; P38 MITOGEN-ACTIVATED PROTEIN KINASES and the RETINOID X RECEPTORS. It takes part in a SIGNAL TRANSDUCTION pathway that is activated in response to cellular stress.
A group of phenyl benzopyrans named for having structures like FLAVONES.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A group of enzymes that transfers a phosphate group onto an alcohol group acceptor. EC 2.7.1.
A protein serine-threonine kinase that catalyzes the PHOSPHORYLATION of I KAPPA B PROTEINS. This enzyme also activates the transcription factor NF-KAPPA B and is composed of alpha and beta catalytic subunits, which are protein kinases and gamma, a regulatory subunit.
A protein-serine-threonine kinase that is activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. It plays a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells.
An E2F transcription factor that represses GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis. E2F4 recruits chromatin remodeling factors indirectly to target gene PROMOTER REGIONS through RETINOBLASTOMA LIKE PROTEIN P130 and RETINOBLASTOMA LIKE PROTEIN P107.
Proteins prepared by recombinant DNA technology.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
An enzyme that catalyzes the conversion of phosphatidylinositol (PHOSPHATIDYLINOSITOLS) to phosphatidylinositol 4-phosphate, the first committed step in the biosynthesis of phosphatidylinositol 4,5-bisphosphate.
A family of highly conserved serine-threonine kinases that are involved in the regulation of MITOSIS. They are involved in many aspects of cell division, including centrosome duplication, SPINDLE APPARATUS formation, chromosome alignment, attachment to the spindle, checkpoint activation, and CYTOKINESIS.
A group of intracellular-signaling serine threonine kinases that bind to RHO GTP-BINDING PROTEINS. They were originally found to mediate the effects of rhoA GTP-BINDING PROTEIN on the formation of STRESS FIBERS and FOCAL ADHESIONS. Rho-associated kinases have specificity for a variety of substrates including MYOSIN-LIGHT-CHAIN PHOSPHATASE and LIM KINASES.
A cytoplasmic serine threonine kinase involved in regulating CELL DIFFERENTIATION and CELLULAR PROLIFERATION. Overexpression of this enzyme has been shown to promote PHOSPHORYLATION of BCL-2 PROTO-ONCOGENE PROTEINS and chemoresistance in human acute leukemia cells.
The process by which a DNA molecule is duplicated.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Cell regulatory signaling system that controls progression through S PHASE and stabilizes the replication forks during conditions that could affect the fidelity of DNA REPLICATION, such as DNA DAMAGE or depletion of nucleotide pools.
A ubiquitously expressed protein kinase that is involved in a variety of cellular SIGNAL PATHWAYS. Its activity is regulated by a variety of signaling protein tyrosine kinase.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Proteins coded by oncogenes. They include proteins resulting from the fusion of an oncogene and another gene (ONCOGENE PROTEINS, FUSION).
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
Intracellular signaling protein kinases that play a signaling role in the regulation of cellular energy metabolism. Their activity largely depends upon the concentration of cellular AMP which is increased under conditions of low energy or metabolic stress. AMP-activated protein kinases modify enzymes involved in LIPID METABOLISM, which in turn provide substrates needed to convert AMP into ATP.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
A cyclin subtype that is found abundantly in post-mitotic tissues. In contrast to the classical cyclins, its level does not fluctuate during the cell cycle.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
The relationship between the dose of an administered drug and the response of the organism to the drug.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
An enzyme of the transferase class that uses ATP to catalyze the phosphorylation of diacylglycerol to a phosphatidate. EC 2.7.1.107.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
A ubiquitously expressed regulatory protein that contains a retinoblastoma protein binding domain and an AT-rich interactive domain. The protein may play a role in recruiting HISTONE DEACETYLASES to the site of RETINOBLASTOMA PROTEIN-containing transcriptional repressor complexes.
A non-receptor protein tyrosine kinase that is localized to FOCAL ADHESIONS and is a central component of integrin-mediated SIGNAL TRANSDUCTION PATHWAYS. Focal adhesion kinase 1 interacts with PAXILLIN and undergoes PHOSPHORYLATION in response to adhesion of cell surface integrins to the EXTRACELLULAR MATRIX. Phosphorylated p125FAK protein binds to a variety of SH2 DOMAIN and SH3 DOMAIN containing proteins and helps regulate CELL ADHESION and CELL MIGRATION.
Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
A Janus kinase subtype that is involved in signaling from GROWTH HORMONE RECEPTORS; PROLACTIN RECEPTORS; and a variety of CYTOKINE RECEPTORS such as ERYTHROPOIETIN RECEPTORS and INTERLEUKIN RECEPTORS. Dysregulation of Janus kinase 2 due to GENETIC TRANSLOCATIONS have been associated with a variety of MYELOPROLIFERATIVE DISORDERS.
A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.
An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction.
A family of non-receptor, PROLINE-rich protein-tyrosine kinases.
A family of ribosomal protein S6 kinases that are structurally distinguished from RIBOSOMAL PROTEIN S6 KINASES, 70-KDA by their apparent molecular size and the fact they contain two functional kinase domains. Although considered RIBOSOMAL PROTEIN S6 KINASES, members of this family are activated via the MAP KINASE SIGNALING SYSTEM and have been shown to act on a diverse array of substrates that are involved in cellular regulation such as RIBOSOMAL PROTEIN S6 and CAMP RESPONSE ELEMENT-BINDING PROTEIN.
A serine threonine kinase that controls a wide range of growth-related cellular processes. The protein is referred to as the target of RAPAMYCIN due to the discovery that SIROLIMUS (commonly known as rapamycin) forms an inhibitory complex with TACROLIMUS BINDING PROTEIN 1A that blocks the action of its enzymatic activity.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A protein kinase C subtype that was originally characterized as a CALCIUM-independent, serine-threonine kinase that is activated by PHORBOL ESTERS and DIACYLGLYCEROLS. It is targeted to specific cellular compartments in response to extracellular signals that activate G-PROTEIN-COUPLED RECEPTORS; TYROSINE KINASE RECEPTORS; and intracellular protein tyrosine kinase.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
A 44 kDa mitogen-activated protein kinase kinase with specificity for MITOGEN-ACTIVATED PROTEIN KINASE 1 and MITOGEN-ACTIVATED PROTEIN KINASE 3.
Derivatives of the steroid androstane having two double bonds at any site in any of the rings.
A 195-kDa MAP kinase kinase kinase with broad specificity for MAP KINASE KINASES. It is found localized in the CYTOSKELETON and can activate a variety of MAP kinase-dependent pathways.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
The B-cell leukemia/lymphoma-1 genes, associated with various neoplasms when overexpressed. Overexpression results from the t(11;14) translocation, which is characteristic of mantle zone-derived B-cell lymphomas. The human c-bcl-1 gene is located at 11q13 on the long arm of chromosome 11.
Tumors or cancer of the human BREAST.
PKC beta encodes two proteins (PKCB1 and PKCBII) generated by alternative splicing of C-terminal exons. It is widely distributed with wide-ranging roles in processes such as B-cell receptor regulation, oxidative stress-induced apoptosis, androgen receptor-dependent transcriptional regulation, insulin signaling, and endothelial cell proliferation.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A group of cyclic GMP-dependent enzymes that catalyze the phosphorylation of SERINE or THREONINE residues of proteins.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes
A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992)
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Tumor suppressor genes located on human chromosome 9 in the region 9p21. This gene is either deleted or mutated in a wide range of malignancies. (From Segen, Current Med Talk, 1995) Two alternatively spliced gene products are encoded by p16: CYCLIN-DEPENDENT KINASE INHIBITOR P16 and TUMOR SUPPRESSOR PROTEIN P14ARF.
A c-jun amino-terminal kinase that is activated by environmental stress and pro-inflammatory cytokines. Several isoforms of the protein with molecular sizes of 43 and 48 KD exist due to multiple ALTERNATIVE SPLICING.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3.
A casein kinase that was originally described as a monomeric enzyme with a molecular weight of 30-40 kDa. Several ISOENZYMES of casein kinase I have been found which are encoded by separate genes. Many of the casein kinase I isoenzymes have been shown to play distinctive roles in intracellular SIGNAL TRANSDUCTION.
Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.
A mitogen-activated protein kinase kinase with specificity for P38 MITOGEN-ACTIVATED PROTEIN KINASES.
A protein kinase encoded by the Saccharomyces cerevisiae CDC28 gene and required for progression from the G1 PHASE to the S PHASE in the CELL CYCLE.

Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase. (1/252)

Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of the human transcription elongation factor P-TEFb, consisting of Cdk9 and cyclin T1, to the HIV-1 promoter via cooperative binding to the nascent HIV-1 transactivation response RNA element. The Cdk9 kinase activity has been shown to be essential for P-TEFb to hyperphosphorylate the carboxy-terminal domain (CTD) of RNA polymerase II and mediate Tat transactivation. Recent reports have shown that Tat can also interact with the multisubunit transcription factor TFIIH complex and increase the phosphorylation of CTD by the Cdk-activating kinase (CAK) complex associated with the core TFIIH. These observations have led to the proposal that TFIIH and P-TEFb may act sequentially and in a concerted manner to promote phosphorylation of CTD and increase polymerase processivity. Here, we show that under conditions in which a specific and efficient interaction between Tat and P-TEFb is observed, only a weak interaction between Tat and TFIIH that is independent of critical amino acid residues in the Tat transactivation domain can be detected. Furthermore, immunodepletion of CAK under high-salt conditions, which allow CAK to be dissociated from core-TFIIH, has no effect on either basal HIV-1 transcription or Tat activation of polymerase elongation in vitro. Therefore, unlike the P-TEFb kinase activity that is essential for Tat activation of HIV-1 transcriptional elongation, the CAK kinase associated with TFIIH appears to be dispensable for Tat function.  (+info)

The transcriptional inhibitors, actinomycin D and alpha-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. (2/252)

Actinomycin D and alpha-amanitin are commonly used to inhibit transcription. Unexpectedly, however, the transcription of the human immunodeficiency virus (HIV-1) long terminal repeats (LTR) is shown to be activated at the level of elongation, in human and murine cells exposed to these drugs, whereas the Rous sarcoma virus LTR, the human cytomegalovirus immediate early gene (CMV), and the HSP70 promoters are repressed. Activation of the HIV LTR is independent of the NFkappaB and TAR sequences and coincides with an enhanced average phosphorylation of the C-terminal domain (CTD) from the largest subunit of RNA polymerase II. Both the HIV-1 LTR activation and the bulk CTD phosphorylation enhancement are prevented by several CTD kinase inhibitors, including 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole. The efficacies of the various compounds to block CTD phosphorylation and transcription in vivo correlate with their capacities to inhibit the CDK9/PITALRE kinase in vitro. Hence, the positive transcription elongation factor, P-TEFb, is likely to contribute to the average CTD phosphorylation in vivo and to the activation of the HIV-1 LTR induced by actinomycin D.  (+info)

Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate. (3/252)

The human immunodeficiency virus type 1 transcriptional regulator Tat increases the efficiency of elongation, and complexes containing the cellular kinase CDK9 have been implicated in this process. CDK9 is part of the Tat-associated kinase TAK and of the elongation factor P-TEFb (positive transcription elongation factor-b), which consists minimally of CDK9 and cyclin T. TAK and P-TEFb are both able to phosphorylate the carboxy-terminal domain (CTD) of RNA polymerase II, but their relationships to one another and to the stimulation of elongation by Tat are not well characterized. Here we demonstrate that human cyclin T1 (but not cyclin T2) interacts with the activation domain of Tat and is a component of TAK as well as of P-TEFb. Rodent (mouse and Chinese hamster) cyclin T1 is defective in Tat binding and transactivation, but hamster CDK9 interacts with human cyclin T1 to give active TAK in hybrid cells containing human chromosome 12. Although TAK is phosphorylated on both serine and threonine residues, it specifically phosphorylates serine 5 in the CTD heptamer. TAK is found in the nuclear and cytoplasmic fractions of human cells as a large complex (approximately 950 kDa). Magnesium or zinc ions are required for the association of Tat with the kinase. We suggest a model in which Tat first interacts with P-TEFb to form the TAK complex that engages with TAR RNA and the elongating transcription complex, resulting in hyperphosphorylation of the CTD on serine 5 residues.  (+info)

Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo. (4/252)

The CDK9 kinase in association with Cyclin T is a component of the transcription positive-acting complex pTEFb which facilitates the transition from abortive to productive transcription elongation by phosphorylating the carboxyl-terminal domain of RNA polymerase II. The Cyclin T1/CDK9 complex is implicated in Tat transactivation, and it has been suggested that Tat functions by recruiting this complex to RNAPII through cooperative binding to RNA. Here, we demonstrate that targeted recruitment of Cyclin T1/CDK9 kinase complex to specific promoters, through fusion to a DNA-binding domain of either Cyclin T1 or CDK9 kinase, stimulates transcription in vivo. Transcriptional enhancement was dependent on active CDK9, as a catalytically inactive form had no transcriptional effect. We determined that, unlike conventional activators, DNA-bound CDK9 does not activate enhancerless TATA-promoters unless TBP is overexpressed, suggesting that CDK9 acts in vivo at a step subsequent to TFIID recruitment DNA-bound. Finally, we determined that CDK9-mediated transcriptional activation is mediated by preferentially stimulating productive transcription elongation.  (+info)

B cell antigen receptor-mediated activation of cyclin-dependent retinoblastoma protein kinases and inhibition by co-cross-linking with Fc gamma receptors. (5/252)

Cross-linking the B cell Ag receptor (BCR) to surface Fc receptors for IgG (Fc gamma R) inhibits G1-to-S progression; the mechanism by which this occurs is not completely known. We investigated the regulation of three key cell cycle regulatory components by BCR-Fc gamma R co-cross-linking: G1-cyclins, cyclin-dependent kinases (Cdks), and the retinoblastoma gene product (Rb). Rb functions to suppress G1-to-S progression in mammalian cells. Rb undergoes cell-cycle-dependent phosphorylation, leading to its inactivation and thereby promoting S phase entry. We demonstrate in this paper for the first time that BCR-induced Rb phosphorylation is abrogated by co-cross-linking with Fc gamma R. The activation of Cdk4/6- and Cdk2-dependent Rb protein kinases is concomitantly blocked. Fc gamma R-mediated inhibition of Cdk2 activity results in part from an apparent failure to express Cdk2 protein. By contrast, inhibition of Cdk4/6 activities is not due to suppression of Cdk4/6 or cyclins D2/D3 expression or inhibition of Cdk-activating kinase activity. Cdk4- and Cdk6-immune complexes recovered from B cells following BCR-Fc gamma R co-cross-linking are devoid of coprecipitated D-type cyclins, indicating that inhibition of their Rb protein kinase activities is due in part to the absence of bound D-type cyclin. Thus, BCR-derived activation signals that up-regulate D-type cyclin and Cdk4/6 protein expression remain intact; however, Fc gamma R-mediated signals block cyclin D-Cdk4/6 assembly or stabilization. These results suggest that assembly or stabilization of D-type cyclin holoenzyme complexes 1) is an important step in the activation of Cdk4/6 by BCR signals, and 2) suffice in providing a mechanism to account for inhibition of BCR-stimulated Rb protein phosphorylation by Fc gamma R.  (+info)

Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. (6/252)

Important progress in the understanding of elongation control by RNA polymerase II (RNAPII) has come from the recent identification of the positive transcription elongation factor b (P-TEFb) and the demonstration that this factor is a protein kinase that phosphorylates the carboxyl-terminal domain (CTD) of the RNAPII largest subunit. The P-TEFb complex isolated from mammalian cells contains a catalytic subunit (CDK9), a cyclin subunit (cyclin T1 or cyclin T2), and additional, yet unidentified, polypeptides of unknown function. To identify additional factors involved in P-TEFb function we performed a yeast two-hybrid screen using CDK9 as bait and found that cyclin K interacts with CDK9 in vivo. Biochemical analyses indicate that cyclin K functions as a regulatory subunit of CDK9. The CDK9-cyclin K complex phosphorylated the CTD of RNAPII and functionally substituted for P-TEFb comprised of CDK9 and cyclin T in in vitro transcription reactions.  (+info)

Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. (7/252)

Tat activation of HIV-1 transcription is mediated by human transcription elongation factor P-TEFb, which interacts with Tat and phosphorylates the C-terminal domain of RNA polymerase II. The catalytic subunit of the P-TEFb complex, Cdk9, has been shown to interact with cyclin T and several other proteins of unknown identity. Consequently, the exact subunit composition of active P-TEFb has not been determined. Here we report the affinity purification and identification of the Cdk9-associated proteins. In addition to forming a heterodimer with cyclin T1, Cdk9 interacted with the molecular chaperone Hsp70 or a kinase-specific chaperone complex, Hsp90/Cdc37, to form two separate chaperone-Cdk9 complexes. Although the Cdk9/cyclin T1 dimer was exceptionally stable and produced slowly in the cell, free and unprotected Cdk9 appeared to be degraded rapidly. Several lines of evidence indicate the heterodimer of Cdk9/cyclin T1 to be the mature, active form of P-TEFb responsible for phosphorylation of the C-terminal domain of RNA polymerase II interaction with the Tat activation domain, and mediation of Tat activation of HIV-1 transcription. Pharmacological inactivation of Hsp90/Cdc37 function by geldanamycin revealed an essential role for the chaperone-Cdk9 complexes in generation of Cdk9/cyclin T1. Our data suggest a previously unrecognized chaperone-dependent pathway involving the sequential actions of Hsp70 and Hsp90/Cdc37 in the stabilization/folding of Cdk9 as well as the assembly of an active Cdk9/cyclin T1 complex responsible for P-TEFb-mediated Tat transactivation.  (+info)

Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation. (8/252)

B-Myb is a transcription factor belonging to the myb family, whose activity has been associated with augmented DNA synthesis and cell cycle progression. We showed recently that B-Myb autoregulates its own expression through promoter transactivation. We report in this study that CDK9, the cyclin T associated kinase, which phosphorylates and activates RNA-Polymerase II, suppresses B-Myb autoregulation through direct interaction with the carboxyl-terminus of the B-Myb protein. Down-regulation of the transactivating ability of B-Myb is independent of the kinase activity of CDK9, because a kinase deficient mutant (dn-CDK9) also represses B-myb gene autoregulation. Overexpression of CDK9 did not result in suppression of p53-dependent transactivation or inhibition of the basal activity of the promoters tested so far, demonstrating that CDK9 is a B-Myb-specific repressor. Rather, transfection of the dominant negative dn-CDK9 construct inhibited the basal activity of the reporter genes, confirming an essential role for CDK9 in gene transcription. In addition, Cyclin T1 restores B-Myb transactivating activity when co-transfected along with CDK9, suggesting that the down-regulatory effect observed on B-Myb is specifically due to CDK9 alone. Thus, our data suggest that CDK9 is involved in the negative regulation of activated transcription mediated by certain transcription factors, such as B-Myb. This may indicate the existence of a feedback loop, mediated by the different activities of CDK9, which links basal with activated transcription.  (+info)

There are different types of Breast Neoplasms such as:

1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.

2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.

3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.

4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.

5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.

Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.

Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.

It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.

Explanation: Neoplastic cell transformation is a complex process that involves multiple steps and can occur as a result of genetic mutations, environmental factors, or a combination of both. The process typically begins with a series of subtle changes in the DNA of individual cells, which can lead to the loss of normal cellular functions and the acquisition of abnormal growth and reproduction patterns.

Over time, these transformed cells can accumulate further mutations that allow them to survive and proliferate despite adverse conditions. As the transformed cells continue to divide and grow, they can eventually form a tumor, which is a mass of abnormal cells that can invade and damage surrounding tissues.

In some cases, cancer cells can also break away from the primary tumor and travel through the bloodstream or lymphatic system to other parts of the body, where they can establish new tumors. This process, known as metastasis, is a major cause of death in many types of cancer.

It's worth noting that not all transformed cells will become cancerous. Some forms of cellular transformation, such as those that occur during embryonic development or tissue regeneration, are normal and necessary for the proper functioning of the body. However, when these transformations occur in adult tissues, they can be a sign of cancer.

See also: Cancer, Tumor

Word count: 190

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.

Types of Neoplasms

There are many different types of neoplasms, including:

1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.

Causes and Risk Factors of Neoplasms

The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:

1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.

Signs and Symptoms of Neoplasms

The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:

1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.

Diagnosis and Treatment of Neoplasms

The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.

The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:

1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.

Prevention of Neoplasms

While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:

1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.

It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.

There are several types of lung neoplasms, including:

1. Adenocarcinoma: This is the most common type of lung cancer, accounting for approximately 40% of all lung cancers. It is a malignant tumor that originates in the glands of the respiratory tract and can be found in any part of the lung.
2. Squamous cell carcinoma: This type of lung cancer accounts for approximately 25% of all lung cancers and is more common in men than women. It is a malignant tumor that originates in the squamous cells lining the airways of the lungs.
3. Small cell lung cancer (SCLC): This is a highly aggressive form of lung cancer that accounts for approximately 15% of all lung cancers. It is often found in the central parts of the lungs and can spread quickly to other parts of the body.
4. Large cell carcinoma: This is a rare type of lung cancer that accounts for only about 5% of all lung cancers. It is a malignant tumor that originates in the large cells of the respiratory tract and can be found in any part of the lung.
5. Bronchioalveolar carcinoma (BAC): This is a rare type of lung cancer that originates in the cells lining the airways and alveoli of the lungs. It is more common in women than men and tends to affect older individuals.
6. Lymphangioleiomyomatosis (LAM): This is a rare, progressive, and often fatal lung disease that primarily affects women of childbearing age. It is characterized by the growth of smooth muscle-like cells in the lungs and can lead to cysts, lung collapse, and respiratory failure.
7. Hamartoma: This is a benign tumor that originates in the tissue of the lungs and is usually found in children. It is characterized by an overgrowth of normal lung tissue and can be treated with surgery.
8. Secondary lung cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
9. Metastatic cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
10. Mesothelioma: This is a rare and aggressive form of cancer that originates in the lining of the lungs or abdomen. It is caused by asbestos exposure and can be treated with surgery, chemotherapy, and radiation therapy.

Lung diseases can also be classified based on their cause, such as:

1. Infectious diseases: These are caused by bacteria, viruses, or other microorganisms and can include pneumonia, tuberculosis, and bronchitis.
2. Autoimmune diseases: These are caused by an overactive immune system and can include conditions such as sarcoidosis and idiopathic pulmonary fibrosis.
3. Genetic diseases: These are caused by inherited mutations in genes that affect the lungs and can include cystic fibrosis and primary ciliary dyskinesia.
4. Environmental diseases: These are caused by exposure to harmful substances such as tobacco smoke, air pollution, and asbestos.
5. Radiological diseases: These are caused by exposure to ionizing radiation and can include conditions such as radiographic breast cancer and lung cancer.
6. Vascular diseases: These are caused by problems with the blood vessels in the lungs and can include conditions such as pulmonary embolism and pulmonary hypertension.
7. Tumors: These can be benign or malignant and can include conditions such as lung metastases and lung cancer.
8. Trauma: This can include injuries to the chest or lungs caused by accidents or other forms of trauma.
9. Congenital diseases: These are present at birth and can include conditions such as bronchopulmonary foregut malformations and congenital cystic adenomatoid malformation.

Each type of lung disease has its own set of symptoms, diagnosis, and treatment options. It is important to seek medical attention if you experience any persistent or severe respiratory symptoms, as early diagnosis and treatment can improve outcomes and quality of life.

The prognosis for mantle-cell lymphoma is generally poor, with a five-year survival rate of approximately 40%. Treatment options include chemotherapy, immunotherapy, and autologous stem-cell transplantation. The disease often recurs after initial therapy, and subsequent treatments may be less effective.

Mantle-cell lymphoma can be difficult to distinguish from other types of non-Hodgkin lymphoma, such as follicular lymphoma or diffuse large B-cell lymphoma, and a correct diagnosis is important for determining appropriate treatment.

Slide: Mantle Cell Lymphoma (Image courtesy of Nephron/Wikimedia Commons)

1. Tumor size and location: Larger tumors that have spread to nearby tissues or organs are generally considered more invasive than smaller tumors that are confined to the original site.
2. Cellular growth patterns: The way in which cancer cells grow and divide can also contribute to the overall invasiveness of a neoplasm. For example, cells that grow in a disorganized or chaotic manner may be more likely to invade surrounding tissues.
3. Mitotic index: The mitotic index is a measure of how quickly the cancer cells are dividing. A higher mitotic index is generally associated with more aggressive and invasive cancers.
4. Necrosis: Necrosis, or the death of cells, can be an indication of the level of invasiveness of a neoplasm. The presence of significant necrosis in a tumor is often a sign that the cancer has invaded surrounding tissues and organs.
5. Lymphovascular invasion: Cancer cells that have invaded lymphatic vessels or blood vessels are considered more invasive than those that have not.
6. Perineural invasion: Cancer cells that have invaded nerve fibers are also considered more invasive.
7. Histological grade: The histological grade of a neoplasm is a measure of how abnormal the cancer cells look under a microscope. Higher-grade cancers are generally considered more aggressive and invasive than lower-grade cancers.
8. Immunohistochemical markers: Certain immunohistochemical markers, such as Ki-67, can be used to evaluate the proliferative activity of cancer cells. Higher levels of these markers are generally associated with more aggressive and invasive cancers.

Overall, the degree of neoplasm invasiveness is an important factor in determining the likelihood of the cancer spreading to other parts of the body (metastasizing) and in determining the appropriate treatment strategy for the patient.

There are several types of colonic neoplasms, including:

1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.

Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.

Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.

Malignant prostatic neoplasms are cancerous tumors that can be aggressive and spread to other parts of the body (metastasize). The most common type of malignant prostatic neoplasm is adenocarcinoma of the prostate, which accounts for approximately 95% of all prostate cancers. Other types of malignant prostatic neoplasms include sarcomas and small cell carcinomas.

Prostatic neoplasms can be diagnosed through a variety of tests such as digital rectal examination (DRE), prostate-specific antigen (PSA) test, imaging studies (ultrasound, CT scan or MRI), and biopsy. Treatment options for prostatic neoplasms depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health. Treatment options can include active surveillance, surgery (robotic-assisted laparoscopic prostatectomy or open prostatectomy), radiation therapy (external beam radiation therapy or brachytherapy), and hormone therapy.

In summary, Prostatic Neoplasms are tumors that occur in the prostate gland, which can be benign or malignant. The most common types of malignant prostatic neoplasms are adenocarcinoma of the prostate, and other types include sarcomas and small cell carcinomas. Diagnosis is done through a variety of tests, and treatment options depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health.

SCC typically appears as a firm, flat, or raised bump on the skin, and may be pink, red, or scaly. The cancer cells are usually well-differentiated, meaning they resemble normal squamous cells, but they can grow rapidly and invade surrounding tissues if left untreated.

SCC is more common in fair-skinned individuals and those who spend a lot of time in the sun, as UV radiation can damage the skin cells and increase the risk of cancer. The cancer can also spread to other parts of the body, such as lymph nodes or organs, and can be life-threatening if not treated promptly and effectively.

Treatment for SCC usually involves surgery to remove the cancerous tissue, and may also include radiation therapy or chemotherapy to kill any remaining cancer cells. Early detection and treatment are important to improve outcomes for patients with SCC.

Adenocarcinoma is a term used to describe a variety of different types of cancer that arise in glandular tissue, including:

1. Colorectal adenocarcinoma (cancer of the colon or rectum)
2. Breast adenocarcinoma (cancer of the breast)
3. Prostate adenocarcinoma (cancer of the prostate gland)
4. Pancreatic adenocarcinoma (cancer of the pancreas)
5. Lung adenocarcinoma (cancer of the lung)
6. Thyroid adenocarcinoma (cancer of the thyroid gland)
7. Skin adenocarcinoma (cancer of the skin)

The symptoms of adenocarcinoma depend on the location of the cancer and can include:

1. Blood in the stool or urine
2. Abdominal pain or discomfort
3. Changes in bowel habits
4. Unusual vaginal bleeding (in the case of endometrial adenocarcinoma)
5. A lump or thickening in the breast or elsewhere
6. Weight loss
7. Fatigue
8. Coughing up blood (in the case of lung adenocarcinoma)

The diagnosis of adenocarcinoma is typically made through a combination of imaging tests, such as CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a sample of tissue from the affected area and examining it under a microscope for cancer cells.

Treatment options for adenocarcinoma depend on the location of the cancer and can include:

1. Surgery to remove the tumor
2. Chemotherapy, which involves using drugs to kill cancer cells
3. Radiation therapy, which involves using high-energy X-rays or other particles to kill cancer cells
4. Targeted therapy, which involves using drugs that target specific molecules on cancer cells to kill them
5. Immunotherapy, which involves using drugs that stimulate the immune system to fight cancer cells.

The prognosis for adenocarcinoma is generally good if the cancer is detected and treated early, but it can be more challenging to treat if the cancer has spread to other parts of the body.

... or CDK9 is a cyclin-dependent kinase associated with P-TEFb. The protein encoded by this gene is a ... "Entrez Gene: CDK9 cyclin-dependent kinase 9 (CDC2-related kinase)". MacLachlan TK, Sang N, De Luca A, Puri PL, Levrero M, ... Cyclin-Dependent+Kinase+9 at the US National Library of Medicine Medical Subject Headings (MeSH) Drosophila Cyclin dependent ... Singh R, Bhardwaj VK, Das P, Purohit R (November 2019). "Natural analogues inhibiting selective cyclin-dependent kinase protein ...
CDK6; cyclin D1, cyclin D2, cyclin D3 CDK7; cyclin H CDK8; cyclin C CDK9; cyclin T1, cyclin T2a, cyclin T2b, cyclin K CDK10 ... cyclin A, cyclin B CDK2; cyclin A, cyclin E CDK3; cyclin C CDK4; cyclin D1, cyclin D2, cyclin D3 CDK5; CDK5R1, CDK5R2. See also ... A cyclin-dependent kinase inhibitor (CKI) is a protein that interacts with a cyclin-CDK complex to block kinase activity, ... Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell ...
These cyclins may regulate transcription through their association with and activation of cyclin-dependent kinases (CDKs) ... "Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9". Journal of Molecular Biology. 366 (2 ... "Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 ... a positive regulator of cyclin-dependent kinase 9". Journal of Molecular Biology. 366 (2): 563-73. doi:10.1016/j.jmb.2006.11. ...
... like other cyclin-dependent kinases, contains a T-loop, which, in the absence of an interacting cyclin, prevents substrate ... Cyclin-dependent kinase 1 also known as CDK1 or cell division cycle protein 2 homolog is a highly conserved protein that ... De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (June 1993). "Crystal structure of cyclin-dependent kinase 2 ... Overview of all the structural information available in the PDB for UniProt: P06493 (Cyclin-dependent kinase 1) at the PDBe-KB ...
"Entrez Gene: CDK10 cyclin-dependent kinase (CDC2-like) 10". Kasten M, Giordano A (Apr 2001). "Cdk10, a Cdc2-related kinase, ... Cyclin-dependent kinase 10 has been shown to interact with ETS2. GRCh38: Ensembl release 89: ENSG00000185324 - Ensembl, May ... This kinase has been shown to play a role in cellular proliferation. Its function is limited to cell cycle G2-M phase. At least ... Cell division protein kinase 10 is an enzyme that in humans is encoded by the CDK10 gene. The protein encoded by this gene ...
Cyclin D1, Cyclin D3, P16, PPM1B, and PPP2CA. Cell cycle Cyclin-dependent kinase Cyclin-dependent kinase 4 Mitosis The ... 2003). "Expression of Cyclin-Dependent Kinase 6, but Not Cyclin-Dependent Kinase 4, Alters Morphology of Cultured Mouse ... "Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by ... It is regulated by cyclins, more specifically by Cyclin D proteins and Cyclin-dependent kinase inhibitor proteins. The protein ...
... has been shown to interact with: BRCA1, CDK2AP1, CDKN1B CDKN3, CEBPA, Cyclin A1, Cyclin E1, Flap ... CDK2 cyclin-dependent kinase 2". Echalier A, Endicott JA, Noble ME (March 2010). "Recent developments in cyclin-dependent ... Cyclin-dependent kinase 2, also known as cell division protein kinase 2, or Cdk2, is an enzyme that in humans is encoded by the ... The protein encoded by this gene is a member of the cyclin-dependent kinase family of Ser/Thr protein kinases. This protein ...
"Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by ... Cyclin-dependent kinase 7, or cell division protein kinase 7, is an enzyme that in humans is encoded by the CDK7 gene. The ... Cyclin-dependent kinase 7 has been shown to interact with: Androgen receptor, Cyclin H, GTF2H1, MNAT1, P53, SUPT5H, and XPB. ... "Entrez Gene: CDK7 cyclin-dependent kinase 7 (MO15 homolog, Xenopus laevis, cdk-activating kinase)". Patel H, Abduljabbar R, Lai ...
"Entrez Gene: CDK4 cyclin-dependent kinase 4". "CDK4 - Cyclin-dependent kinase 4 - Homo sapiens (Human) - CDK4 gene & protein". ... 1995). "Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C". Proc. Natl. Acad. ... "The nuclear protein p34SEI-1 regulates the kinase activity of cyclin-dependent kinase 4 in a concentration-dependent manner". ... Cyclin-dependent kinase 4 also known as cell division protein kinase 4 is an enzyme that in humans is encoded by the CDK4 gene ...
"Entrez Gene: CDK3 cyclin-dependent kinase 3". Bullrich F, MacLachlan TK, Sang N, et al. (1995). "Chromosomal mapping of members ... 2002). "ik3-1/Cables is a substrate for cyclin-dependent kinase 3 (cdk 3)". Eur. J. Biochem. 268 (23): 6076-82. doi:10.1046/j. ... Meikrantz W, Schlegel R (1996). "Suppression of apoptosis by dominant negative mutants of cyclin-dependent protein kinases". J ... Ren S, Rollins BJ (2004). "Cyclin C/cdk3 promotes Rb-dependent G0 exit". Cell. 117 (2): 239-51. doi:10.1016/S0092-8674(04)00300 ...
"Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C". Proceedings of the National ... The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK8 and cyclin C associate ... "Entrez Gene: CDK8 cyclin-dependent kinase 8". Nemet J, Jelicic B, Rubelj I, Sopta M (Feb 2014). "The two faces of Cdk8, a ... Cyclin-dependent kinase 8 has been shown to interact with: CCNC CREB binding protein CRSP3 MED1 MED12 MED14 MED16 MED17 MED21 ...
... is a tight-binding inhibitor of several G1 cyclin/Cdk complexes and a negative regulator ... Cyclin-dependent kinase inhibitor 1C (p57, Kip2), also known as CDKN1C, is a protein which in humans is encoded by the CDKN1C ... "Entrez Gene: CDKN1C cyclin-dependent kinase inhibitor 1C (p57, Kip2)". Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, ... Cyclin-dependent kinase inhibitor 1C has been shown to interact with: LIMK1, MYBL2, MyoD, and PCNA. ENSG00000129757 GRCh38: ...
... cyclin-dependent kinase (CDK), with a regulatory subunit, cyclin. Once cyclin-dependent kinases bind to cyclin, the formed ... Cyclin Cyclin-dependent kinase Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 2005 Nov;30(11 ... A cyclin-dependent kinase complex (CDKC, cyclin-CDK) is a protein complex formed by the association of an inactive catalytic ... As previously mentioned, in yeast, only one cyclin-dependent kinase (CDK) is associated with several different cyclins. However ...
... a Potent Inhibitor of Cyclin Dependent Kinases (CDKs), Janus Kinase 2 (JAK2), and Fms-like Tyrosine Kinase-3 (FLT3) for the ... It crosses the blood brain barrier and acts by depleting Myc through the inhibition of cyclin-dependent kinase 9 (CDK9). It is ... Blachly JS, Byrd JC, Grever M (April 2016). "Cyclin-dependent kinase inhibitors for the treatment of chronic lymphocytic ... Discovery of Kinase Spectrum Selective Macrocycle (16E)-14-Methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)] ...
... is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes ... TANK-binding kinase-1 (TBK1) and TRAF2-associated kinase (T2K)). The fact that RELA can be modified by a collection of kinases ... including glycogen-synthase kinase-3β (GSK3β), AKT/phosphatidylinositol 3-kinase (PI3K) and NF-κB activating kinase (NAK, i.e. ... ribosomal subunit kinase-1 (RSK1) also has the ability to phosphorylate RELA at serine 536 in a p53-dependent manner. A couple ...
Regulation of transcription initiation and elongation by EBNA 2 is done part through cyclin-dependent kinase 9 (CDK9) dependent ... 70 (9): 6020-8. doi:10.1128/JVI.70.9.6020-6028.1996. PMC 190622. PMID 8709224. Palermo RD, Webb HM, Gunnell A, West MJ (August ... 71 (9): 6611-8. doi:10.1128/JVI.71.9.6611-6618.1997. PMC 191939. PMID 9261383. Zimber-Strobl U, Kremmer E, Grässer F, Marschall ...
p16 inhibits cyclin dependent kinases 4 and 6 (CDK4 and CDK6) and thereby activates the retinoblastoma (Rb) family of proteins ... "CDKN2A cyclin dependent kinase inhibitor 2A [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2016-10-11. ... CDKN2A, also known as cyclin-dependent kinase inhibitor 2A, is a gene which in humans is located at chromosome 9, band p21.3. ... "CDKN2A - Cyclin-dependent kinase inhibitor 2A - Homo sapiens (Human) - CDKN2A gene & protein". www.uniprot.org. Retrieved 2016- ...
... a cyclin-dependent kinase inhibitor, is dependent on p53 signaling". PLOS ONE. 8 (3): e59588. Bibcode:2013PLoSO...859588D. doi: ... Fu W, Ma L, Chu B, Wang X, Bui MM, Gemmer J, Altiok S, Pledger WJ (Jun 2011). "The cyclin-dependent kinase inhibitor SCH 727965 ... Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. Dinaciclib ( ... Apoptosis of osteosarcoma cultures can be induced by the combination of the cyclin-dependent kinase inhibitor SCH727965 and a ...
... cyclin-dependent kinase 9 MeSH D12.776.930.977.249.500 - hepatocyte nuclear factor 3-alpha MeSH D12.776.930.977.249.750 - ...
... pyrimidine Is a Potent Inhibitor of Cyclin-Dependent Protein Kinases 1, 2, and 9, Which Demonstrates Antitumor Effects in Human ... "The Development of a Selective Cyclin-Dependent Kinase Inhibitor That Shows Antitumor Activity". Cancer Research. 69 (15): 6208 ... unmet medical need with the invention of highly selective and bioavailable inhibitors of the Cyclin Dependent Kinases including ... Miyatake-Ondozabal, Hideki; Barrett, Anthony G. M. (3 December 2010). "Total Synthesis of TAK-Kinase Inhibitor LL-Z1640-2 via ...
... cyclin-dependent kinase inhibitor p27 MeSH D12.776.624.776.355.700 - cyclin-dependent kinase inhibitor p57 See List of MeSH ... cyclin-dependent kinase 5 MeSH D12.776.167.200.067.900 - cyclin-dependent kinase 9 MeSH D12.776.167.200.580.500 - cdc2 protein ... cyclin-dependent kinase inhibitor p15 MeSH D12.776.624.776.355.200 - cyclin-dependent kinase inhibitor p16 MeSH D12.776.624.776 ... cyclin-dependent kinase inhibitor p18 MeSH D12.776.624.776.355.400 - cyclin-dependent kinase inhibitor p19 MeSH D12.776.624.776 ...
... is a gene that provides instructions for making a protein called cyclin-dependent kinase-like 5 also known as serine/ ... "Preclinical Program for Cyclin-Dependent Kinase-Like 5 (CDKL5) Deficiency". Amicus Therapeutics Press Release. 6 July 2016. ... G40.42 Cyclin-dependent kinase Rett syndrome West syndrome CDKL5 deficiency disorder GRCh38: Ensembl release 89: ... The CDKL5 protein acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of ...
... by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication". The Journal of Biological Chemistry. 276 (24): ... "CDK2 cyclin dependent kinase 2 [Homo sapiens (human)]". Gene - NCBI. Retrieved 1 December 2019. Hinchcliffe EH, Li C, Thompson ... This link between the cell cycle and the centrosome cycle is mediated by cyclin-dependent kinase 2 (Cdk2). Cdk2 is a protein ... Matsumoto Y, Hayashi K, Nishida E (April 1999). "Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in ...
"Regulation of Munc-18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings". The Journal of Biological ... Syntaxins bind synaptotagmin in a calcium-dependent fashion and interact with voltage dependent calcium and potassium channels ... Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Südhof TC (June 1995). "Ca(2+)-dependent and -independent activities of neural ... Beckman ML, Bernstein EM, Quick MW (August 1998). "Protein kinase C regulates the interaction between a GABA transporter and ...
... by cyclin-dependent kinase 1/cyclin B". The Journal of Biological Chemistry. 278 (51): 51372-9. doi:10.1074/jbc.M303956200. ... "Hamartin and tuberin interaction with the G2/M cyclin-dependent kinase CDK1 and its regulatory cyclins A and B". Journal of ... Tsc1 functions as a facilitator of Hsp90 in chaperoning the kinase and non-kinase clients including Tsc2, therefore preventing ... interacts with polo-like kinase 1 in a phosphorylation-dependent manner". Human Molecular Genetics. 15 (2): 287-97. doi:10.1093 ...
De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997). "Inhibition of cyclin-dependent kinases by purine ... Doree M, Galas S (1994). "The cyclin-dependent protein kinases and the control of cell division". FASEB J. 8 (14): 1114-1121. ... Seliciclib (roscovitine or CYC202) is an experimental drug candidate in the family of pharmacological cyclin-dependent kinase ( ... Schang LM, Rosenberg A, Schaffer PA (2000). "Roscovitine, a specific inhibitor of cellular cyclin-dependent kinases, inhibits ...
"The nuclear protein p34SEI-1 regulates the kinase activity of cyclin-dependent kinase 4 in a concentration-dependent manner". ... p21 p53 Cyclin-dependent kinase Cyclin D GRCh38: Ensembl release 89: ENSG00000147889 - Ensembl, May 2017 GRCm38: Ensembl ... "Entrez Gene: CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)". Nobori T, Miura K, Wu DJ, Lois A, ... p16 is an inhibitor of cyclin-dependent kinases (CDK). It slows down the cell cycle by prohibiting progression from G1 phase to ...
"The nuclear protein p34SEI-1 regulates the kinase activity of cyclin-dependent kinase 4 in a concentration-dependent manner". ... "The nuclear protein p34SEI-1 regulates the kinase activity of cyclin-dependent kinase 4 in a concentration-dependent manner". ... SERTAD1 has been shown to interact with: CREB-binding protein, Cyclin-dependent kinase 4, and P16. GRCh38: Ensembl release 89: ... 43 (14): 4394-9. doi:10.1021/bi035601s. PMID 15065884. Li J, Muscarella P, Joo SH, Knobloch TJ, Melvin WS, Weghorst CM, Tsai MD ...
Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination". The Journal of Biological Chemistry ... October 2005). "Cdk5-dependent regulation of glucose-stimulated insulin secretion". Nature Medicine. 11 (10): 1104-8. doi: ... From this relationship, it has been hypothesized that the regulatory genes CDKAL1 and GIP(glucose-dependent insulinotropic ... 121 (9): 3598-608. doi:10.1172/JCI58056. PMC 3163968. PMID 21841312. Human CDKAL1 genome location and CDKAL1 gene details page ...
Malumbres M, Ortega S, Barbacid M. «Genetic analysis of mammalian cyclin-dependent kinases and their inhibitors.» Biol Chem ... Toll-like Receptor-4 (TLR4) Down-regulates MicroRNA-107, Increasing Macrophage Adhesion via Cyclin-dependent Kinase 6.» J Biol ... Increasing Macrophage Adhesion via Cyclin-dependent Kinase 6." (2011) His scientific career has been awarded with prizes such ... "Genetic analysis of mammalian cyclin-dependent kinases and their inhibitors." (2000). "Toll-like Receptor-4 (TLR4) Down- ...
... has also been shown to directly inhibits CDK6 (Cyclin-dependent kinase 6) expression and decreases the level of ... Voltage-dependent L-type calcium channel subunit beta-2), TSSK6 (Testis-Specific Serine Kinase 6), NT5DC2 (Cytosolic 5'- ... It was observed that miR-137 expression is lost in Ras-dependent pancreatic cancer, and that restoration of its expression ... Serine/threonine-protein kinase D3). Neault et al. recently identified miR-137 as a senescence effector miRNA induced by ...
Two key classes of regulatory molecules, cyclins and cyclin-dependent kinases (CDKs), determine a cell's progress through the ... cyclin A, DNA polymerase, thymidine kinase, etc. Cyclin E thus produced binds to CDK2, forming the cyclin E-CDK2 complex, which ... Nigg EA (June 1995). "Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle". BioEssays. 17 (6): 471-80 ... October 2003). "Targets of the cyclin-dependent kinase Cdk1". Nature. 425 (6960): 859-64. Bibcode:2003Natur.425..859U. doi: ...
... but their genetic information cannot be organized and separated into chromosomes due to inhibition of cyclin-dependent kinase ... doi:10.1016/S0955-0674(05)80007-9. PMID 8448030. Storti RV, Rich A (July 1976). "Chick cytoplasmic actin and muscle actin have ... doi:10.1016/0092-8674(83)90340-9. PMID 6432334. S2CID 23746956. Herman IM (February 1993). "Actin isoforms". Current Opinion in ...
15-deoxy-Δ12,14-PGJ2 forms an adduct with the IKK-β subunit of IκB kinase thereby inhibiting the kinases activity thereby ... DP2 and DP1 are G protein-coupled receptors, with the DP2 receptor coupled to Gi alpha subunit-dependent depression of cellular ... Cyclin D1, Cdk4, and Insulin-like growth factor 1; and e) regulating agents such as HSP70, GPR78, Gadd153, Ubiquitin B, and ... It (they) regulates signaling by: a) inhibiting the STAT3-Janus kinase pathway to block cellular pro-inflammatory responses; b ...
7SK associates with and inhibits the cyclin dependent kinase activity of P-TEFb through the action of the RNA binding proteins ... Yik JH, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q (October 2003). "Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA ... Yang Z, Zhu Q, Luo K, Zhou Q (November 2001). "The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control ... July 2003). "MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner". Molecular and ...
"Hsc70 regulates accumulation of cyclin D1 and cyclin D1-dependent protein kinase". Molecular and Cellular Biology. 23 (5): 1764 ... For example, Hsc70 regulates the nuclear accumulation of cyclin D1, which is a key player in G1 to S phase cell cycle ... Hsp70 member proteins, including Hsp72, inhibit apoptosis by acting on the caspase-dependent pathway and against apoptosis- ... 3 (9): 839-43. doi:10.1038/ncb0901-839. PMID 11533664. S2CID 21164493. Zhang B, Rong R, Li H, Peng X, Xiong L, Wang Y, Yu X, ...
Hennigan RF, Stambrook PJ (August 2001). "Dominant negative c-jun inhibits activation of the cyclin D1 and cyclin E kinase ... AP-1 functions are heavily dependent on the specific Fos and Jun subunits contributing to AP-1 dimers. The outcome of AP-1 ... Navas TA, Baldwin DT, Stewart TA (November 1999). "RIP2 is a Raf1-activated mitogen-activated protein kinase kinase". The ... Manicassamy S, Gupta S, Huang Z, Sun Z (June 2006). "Protein kinase C-theta-mediated signals enhance CD4+ T cell survival by up ...
... cyclin - cyclin A - cyclin B - cyclin E - cyclin-dependent kinase - cycloleucine - cyclosporin - cyclosporine - cystatin - ... ribosomal protein S6 kinase - ribosome - RNA - RNA virus - RNA-binding protein - RNA-directed DNA polymerase - rod outer ... CDC28 protein kinase - cell - cell adhesion molecule - cell biology - cell cycle protein - cell membrane - cell membrane ... kinase - kinesin - kinetic energy - kinetic exclusion assay - kinetics - knock-out mouse - Krebs cycle lactalbumin - lactic ...
... phosphoinositide 3-kinase (PI3K) which leads to tumor progression. Although CUX1 is mutated at a lower rate compared to other ... Cux transcription factor by cyclin A-Cdk1 modulates its DNA binding activity in G(2)". J. Biol. Chem. 276 (49): 45780-90. doi: ... attachment region upstream of the T cell receptor beta gene enhancer binds Cux/CDP and SATB1 and modulates enhancer-dependent ... phosphoinositide-3-kinase interacting protein 1), resulted in higher activity of the growth promoting enzyme, ...
Nguyen VQ, Co C, Li JJ (June 2001). "Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms". Nature. ... the pre-replication complex only occurs during late M phase and early G1 phase of the cell cycle when cyclin-dependent kinase ( ... The singular archaeal ORC protein recognizes the AT-rich tracts and binds DNA in an ATP-dependent fashion. Eukaryotes typically ... "DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1". EMBO Reports. 7 (11): 1134- ...
It, combined with the Ras pathway, downregulate cyclin D1, a cyclin-dependent kinase, if they are not stimulated by the ... The overexpression of kinase activity in these cells aids in their proliferation. These are known as hormone-dependent breast ... In the presence of mitogens, sufficient cyclin D1 can be produced. This process cascades onwards, producing other cyclins which ... The protein kinase domain found on mitogenic receptors is often hyperactivated in cancer cells, remaining turned on even in the ...
"Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G1". ... 9 (2): 191-7. doi:10.1038/nm822. PMID 12539042. S2CID 26145639. Smidt KC, Hansen LL, Søgaard TM, Petersen LK, Knudsen UB, ...
Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which ... Simone C, Giordano A (2007). "Abrogation of signal-dependent activation of the cdk9/cyclin T2a complex in human RD ... This cyclin and its kinase partner CDK9 were found to be subunits of the transcription elongation factor p-TEFb. The p-TEFb ... "MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner". Mol. Cell. Biol. 23 (14): 4859-69 ...
... using cyclins and other proteins. As TFIIB has a similar structure to cyclin A it has been suggested that depleted levels of ... It has been suggested that the general transcription factor TFIIH could act as the kinase for this phosphorylation although ... "New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor ... This is thought to be due to similarity TFIIB has to cyclin A. In order to undergo replication, viruses often stop host cells ...
... in which 3 paralogues of subunits of the cyclin-dependent kinase module have evolved by 3 independent gene duplication events ... Xu W, Ji JY (2011). "Dysregulation of CDK8 and Cyclin C in tumorigenesis". J Genet Genomics. 38 (10): 439-52. doi:10.1016/j.jgg ... Mediator can be divided into 4 main parts: The head, middle, tail, and the transiently associated CDK8 kinase module. Mediator ... Clark AD, Oldenbroek M, Boyer TG (2015). "Mediator kinase module and human tumorigenesis". Crit Rev Biochem Mol Biol. 50 (5): ...
... which is required for the function of metaphase cyclin-dependent kinases (M-Cdks). In essence, Activation of the Anaphase- ... Metaphase ends with the destruction of B cyclin. B cyclin is marked with ubiquitin which flags it for destruction by ... Hickson GR, Echard A, O'Farrell PH (February 2006). "Rho-kinase controls cell shape changes during cytokinesis". Current ... promoting complex (APC) causes the APC to cleave the M-phase cyclin and the inhibitory protein securin which activates the ...
"Distinct roles for cyclin-dependent kinases in cell cycle control." Science 262.5142 (1993): 2050-2054. Harlow, E. D., et al. " ... "p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5." (1994): 419-423. Meyerson, Matthew, et al. "A family ... Tsai, L (1994). "p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5". Nature. 371: 419-23. doi:10.1038/ ... van den Heuvel, S (1993). "Distinct roles for cyclin-dependent kinases in cell cycle control". Science. 262: 2050-4. doi: ...
TGF-β signaling induces transcription of the cyclin-dependent kinase (CDK) inhibitors p15Ink4B or p21Cip1, which, as a ... c-Jun N-terminal kinase (JNK) is a MAP kinase activated by extracellular stress signals such as gamma-radiation, ultraviolet ... EVI1 does not bind other MAP kinases such as p38 or ERK. Among the many other observed defects, EVI1−/− mouse embryos have been ... Together, these two systems disrupt tyrosine kinase signaling and hematopoietic gene transcription. Despite the extensively ...
... it travels to the nucleus via phosphorylation at the Thr-108 position via the mitogenic cyclin dependent kinase (CDK2).[ ... interacts with kinases including serine/threonine protein kinase (PKR). Further studies will need to be performed to better ... E4orf4 partners mainly with protein phosphatase 2A (PP2A) and Src kinases to induce cell death. Modeling of this protein ... This includes presence of cytoplasmic vacuoles, double-membrane vesicles, and a dose-dependent decrease in ATP levels. Melanoma ...
SKP2 targets p27Kip-1, an inhibitor of cyclin-dependent kinases (CDKs). CDKs2/4 partner with the cyclins E/D, respectively, ... This is achieved by continuous control of cyclins or CDKs levels through ubiquitination and degradation. When cyclin E is ... The level of cyclins, as the name suggests, are high only at certain time point during cell cycle. ... Moreover, ubiquitination can also act to turn on/off the kinase activity of a protein. The critical role of phosphorylation is ...
"Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis". Nature. 560 (7717): 192-197. Bibcode:2018Natur.560.. ... 154 (9): 4623-9. PMID 7722314. Holaday B, Pompeu M, Evans T, et al. (1993). "Correlates of Leishmania-specific Immunity in the ... 111 (1): 64-9. doi:10.1046/j.1365-2249.1998.00468.x. PMC 1904865. PMID 9472662. Elshafie A, Ahlin E, Mathsson L, et al. (2007 ... 92 (1): 324-9. doi:10.1172/JCI116570. PMC 293600. PMID 8326000. Medeiros I, Castelo A, Salomão R (1998). "Presence of ...
"Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors". J. ... Alvocidib (INN; also known as flavopiridol) is a flavonoid alkaloid CDK9 kinase inhibitor under clinical development by Tolero ... Protein kinase inhibitors, Orphan drugs, All stub articles, Antineoplastic and immunomodulating drug stubs). ... 276 (34): 31793-9. doi:10.1074/jbc.M102306200. PMID 11431468. Cheng B, Li T, Rahl PB, Adamson TE, Loudas NB, Guo J, Varzavand K ...
This protein belongs to a kinase family that includes serine/arginine-rich protein-specific kinases and cyclin-dependent ... kinases (CDKs). This protein is regarded as a CDK-like kinase (Clk) with homology to mitogen-activated protein kinases (MAPKs ... Serine/threonine-protein kinase PRP4 homolog is an enzyme that in humans is encoded by the PRPF4B gene. Pre-mRNA splicing ... 2002). "Mammalian PRP4 Kinase Copurifies and Interacts with Components of Both the U5 snRNP and the N-CoR Deacetylase Complexes ...
Accumulation of cyclin B increases the activity of the cyclin dependent kinase Cdk1 human homolog Cdc2 as cells prepare to ... The cell cycle is driven by proteins called cyclin dependent kinases that associate with cyclin regulatory proteins at ... Chk1 is an effector protein kinase that maintains mitotic cyclin in an inactive state and is phosphorylated by rad3 between S ... pathways which activate the Chk2 and Chk1 kinases, respectively. These kinases act upstream of Cdc25 and Wee1, the direct ...
Tyrosine kinases are enzymes that add phosphates to tyrosine residues, and are the opposing enzymes to PTPs. PTPs are known to ... cyclin D1 and c-myc. Expression of ful-length PTPkappa in melanoma cells that normally lack its expression results in reduced ... soluble version of the receptor-like protein tyrosine phosphatase kappa stimulates neurite outgrowth via a Grb2/MEK1-dependent ... "Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases". Genome Biol. 7 (1): R5. doi: ...
... phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase ... "Recruitment of phosphatidylinositol 3-kinase to CD28 inhibits HIV transcription by a Tat-dependent mechanism". J. Immunol. 169 ... A dose-dependent response was not observed, raising questions about the robustness of the findings. Genes,+tat at the US ... of cellular CDK9 and cyclin T1, and hence increases the production of full-length viral RNA. Tat protein also associates with ...
... such as Cyclin D1, Cyclin A, Mdm-2, and Gadd45α, as well as the transcription factor c-myc, which is directly controlled by ... This PER/CRY complex moves into the nucleus upon phosphorylation by CK1-epsilon (casein kinase 1 epsilon) and inhibits the CLK/ ... Ceriani MF, Darlington TK, Staknis D, Más P, Petti AA, Weitz CJ, Kay SA (July 1999). "Light-dependent sequestration of TIMELESS ... Hao H, Allen DL, Hardin PE (July 1997). "A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster". ...
The cyclin-dependent kinase inhibitor p21 is induced by both p53-dependent and p53-independent mechanisms and can arrest the ... ISBN 978-1-58829-500-2.[page needed] Gartel AL, Tyner AL (June 2002). "The role of the cyclin-dependent kinase inhibitor p21 in ... cell cycle at the G1/S and G2/M checkpoints by deactivating cyclin/cyclin-dependent kinase complexes. The SOS response is the ... In one of the earliest steps, the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on ...
Cyclin-dependent kinase (CDK) 9 associates mainly with cyclin T1 and forms the positive transcription elongation factor b (p- ... Targeting cyclin-dependent kinase 9 in cancer therapy Yi-Li Shen # 1 , Yan-Mao Wang # 1 , Ya-Xin Zhang 1 , Shen-Jie Ma 1 , Le- ... Targeting cyclin-dependent kinase 9 in cancer therapy Yi-Li Shen et al. Acta Pharmacol Sin. 2022 Jul. ... Cyclin-dependent kinase (CDK) 9 associates mainly with cyclin T1 and forms the positive transcription elongation factor b (p- ...
Cyclin-dependent Kinase 9 as a Potential Target for Anti-TNF-resistant Inflammatory Bowel Disease.. Omer, Omer S; Hertweck, ... we investigate the effect of cyclin-dependent kinase 9 (CDK9) inhibitors on cytokine production and gene expression in colonic ... cyclin T), a transcriptional elongation factor downstream of T-bet. METHODS:. Using an adaptive immune-mediated colitis model, ... Colite Doenças Inflamatórias Intestinais Colite/tratamento farmacológico Quinase 9 Dependente de Ciclina Citocinas/metabolismo ...
SEs are susceptible to inhibition by their key components, such as bromodomain protein 4 and cyclin-dependent kinase 7, ... In addition, cyclin-dependent protein kinases (CDKs) are protein-serine/threonine kinases that play an essential role in ... Cyclin-dependent kinase 7 inhibitor THZ2 inhibits the growth of human gastric cancer in vitro and in vivo. Am. J. Transl. Res. ... Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19, 1108- ...
Cyclin-Dependent Kinase Inhibitor p16. Protein p53. Tumor Suppressor Protein p53. Transcription Factor, Sp1. Sp1 Transcription ...
The interaction between Tat and P-TEFb, which is a cellular protein complex composed of cyclin … ... Cyclin-Dependent Kinase 9 / genetics Actions. * Search in PubMed * Search in MeSH ... Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. Ivanov D, Kwak YT, Nee E ... Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression. Romano G, Kasten M, De Falco ...
4. The cyclin-dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult ... The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral ... Downregulation of cyclin-dependent kinase inhibitor; p57(kip2), is involved in the cell cycle progression of vascular smooth ... 6. The cyclin kinase inhibitor p57kip2 regulates TGF-beta-induced compensatory tubular hypertrophy: effect of the ...
Cyclin-Dependent Kinase Inhibitor Proteins/genetics; Genome-Wide Association Study; Genotype; Humans; Polymorphism, Single ... MeSH Terms: Atherosclerosis/genetics*; Chromosomes, Human, Pair 9*; ...
Name: cyclin dependent kinase 9 (CDC2-related kinase). Synonyms: PITALRE. Type: Gene ...
The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly ... Cyclins function as regulators of CDK kinases. Different cyclins exhibit distinct expression and degradation patterns which ... This cyclin tightly associates with CDK9 kinase, and was found to be a major subunit of the transcription elongation factor p- ... This cyclin and its kinase partner were also found to be involved in the phosphorylation and regulation of the carboxy-terminal ...
Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006. 24(11):1770-83. 10.Platt, V.M., Szoka, Jr ... and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol. 1999. 19(3):1981-9. 75. ... Treatment of aHSCs with quercetin and gallic acid inhibited cell viability in a dose- and time-dependent manner. Results ... Additionally, quercetin limited aHSC proliferation by inducing a G1 arrest as evidenced by decreased expression of cyclin D1、D2 ...
9-Trisubstituted purines have various and potent biological activities, despite high concentrations of competing endogenous ... Recent advances in cyclin-dependent kinase inhibition. Purine-based derivatives as anti-cancer agents. Roles and perspectives ... and screened the compounds for inhibition of cyclin-dependent kinase (CDK) activity and human leukemic cell growth. Lead ... Inhibition of FLT3-ITD Kinase in Acute Myeloid Leukemia by New Imidazo[1,2-b]pyridazine Derivatives Identified by Scaffold ...
Cyclin-Dependent Kinases [D08.811.913.696.620.682.700.646.500]. *Cyclin-Dependent Kinase 2 [D08.811.913.696.620.682.700.646. ... Its activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P27 and CYCLIN-DEPENDENT KINASE INHIBITOR P21. ... "Cyclin-Dependent Kinase 2" by people in Harvard Catalyst Profiles by year, and whether "Cyclin-Dependent Kinase 2" was a major ... Cyclin-Dependent Kinase 2 [D08.811.913.696.620.682.700.200.323]. *Proline-Directed Protein Kinases [D08.811.913.696.620.682. ...
Cyclin-Dependent Kinase 5 [D08.811.913.696.620.682.700.646.500.500.500] * Cyclin-Dependent Kinase 9 [D08.811.913.696.620.682. ... Cyclin-Dependent Kinases [D12.776.167.200] * CDC2-CDC28 Kinases [D12.776.167.200.067] * CDC2 Protein Kinase [D12.776.167.200. ... Cyclin-Dependent Kinases [D12.776.476.563.646.500] * CDC2-CDC28 Kinases [D12.776.476.563.646.500.500] * CDC2 Protein Kinase [ ... 2006; see CDK9 PROTEIN KINASE 2004-2005, CDK9 KINASE (now CYCLIN-DEPENDENT KINASE 9) was indexed under CYCLIN-DEPENDENT KINASES ...
In a normal cell, proteasomes break down proteins that inhibit the cell cycle, such as cyclin-dependent kinase inhibitors (CKI ... Kinase Inhibitors. Functions of Kinases. The kinases include a large number of enzymes that regulate the activity of other ... Kinase inhibitors are drugs that can block the damaged kinases and prevent the growth of the cancer cells.. ... Kinase Inhibitors: Kinases are enzymes that add phosphate groups onto proteins. Because they control many cellular processes, ...
... cdk2/cyclin A, cdk2/cyclin E, cdk4/cyclin D1 and cdk5-p35 respectively. Selective over a range of other protein kinases (IC50 & ... Purvalanol B is a cyclin-dependent kinase inhibitor. IC50 values are 6, 6, 9, > 10,000, and 6 nM for cdc2/cyclin B, ... Purvalanol B is a cyclin-dependent kinase inhibitor. IC50 values are 6, 6, 9, > 10,000, and 6 nM for cdc2/cyclin B, cdk2/cyclin ... cdk2/cyclin A, cdk2/cyclin E, cdk4/cyclin D1 and cdk5-p35 respectively. Selective over a range of other protein kinases (IC50 ...
cyclin dependent kinase 14 [Source:HGN.... CDK9. 1025. CDK9. cyclin dependent kinase 9 [Source:HGNC.... ...
The Development of a Selective Cyclin-Dependent Kinase Inhibitor That Shows Antitumor Activity, Cancer Research, Vol:69, ISSN: ... pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human ... cyclin H and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor- positive breast cancer, Clinical Cancer ... oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERα-positive breast cancer, ...
cyclin dependent kinase like 5 To use the sharing features on this page, please enable JavaScript.. ... which is essential for the proteins kinase function. Mutations in the kinase domain disrupt the ability of CDKL5 to add ... The CDKL5 protein acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of ... Research has shown that mutations affecting parts of the protein other than the kinase domain tend to cause less severe signs ...
Cyclin-Dependent Kinase 5 [D08.811.913.696.620.682.700.646.500.500.500] * Cyclin-Dependent Kinase 9 [D08.811.913.696.620.682. ... Cyclin-Dependent Kinases [D12.776.167.200] * CDC2-CDC28 Kinases [D12.776.167.200.067] * CDC2 Protein Kinase [D12.776.167.200. ... Cyclin-Dependent Kinases [D12.776.476.563.646.500] * CDC2-CDC28 Kinases [D12.776.476.563.646.500.500] * CDC2 Protein Kinase [ ... 2006; see CDK9 PROTEIN KINASE 2004-2005, CDK9 KINASE (now CYCLIN-DEPENDENT KINASE 9) was indexed under CYCLIN-DEPENDENT KINASES ...
Cyclin T - Preferred Concept UI. M0533338. Scope note. A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 9 ... Cyclin T1. Cyclin T2. Cyclin T3. Cyclin, Type T. Cyclins, Type T. Type T Cyclin. Type T Cyclins. ... A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 9. Unlike traditional cyclins, which regulate the CELL ... Cyclin, Type T Cyclins, Type T Type T Cyclin Type T Cyclins ... Cyclin-Dependent Kinase 9 [D12.776.930.955.500.500] Cyclin- ...
Cyclin-dependent kinase 5 activity regulates pain signaling. Proc Natl Acad Sci U S A. 2006 Jan 17;103(3): 791-796. ... Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential ... Tumor necrosis factor-alpha regulates cyclin-dependent kinase 5 activity during pain signaling through transcriptional ... Activation of cyclin-dependent 5 mediates orofacial mechanical hyperalgesia. Mol Pain. 2013 Dec 21;9: 66. ...
Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P- ... The CDK9/cyclin-K complex has also a kinase activity towards CTD of RNAP II and can substitute for CDK9/cyclin-T P-TEFb in ... The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. CDK family members are highly ... This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found ...
TG02 is a multi-kinase inhibitor, mainly inhibiting cyclin-dependent kinase 9 (CDK9), thus diminishing RNA polymerase II ... TG02-induced cytotoxicity was blocked by the overexpression of phosphorylated CDK9, suggesting a CDK9-dependent cell killing. ...
Cyclin-dependent kinase 16. 3 Select filter option. Cyclin-dependent kinase 2. 3 Select filter option. Cyclin-dependent kinase ... Cyclin-dependent kinase 2 (P24941). 3 Select filter option. Cyclin-dependent kinase 4 (P11802). 3 Select filter option. Cyclin- ... Cyclin-dependent kinase 17. 4 Select filter option. Cyclin-dependent kinase 9. 4 Select filter option. CAMK group. 3 Select ... Cyclin-dependent kinase-like 5 (O76039). 8 Select filter option. Cyclin-dependent kinase 17 (Q00537). 4 Select filter option. ...
2013) Inhibition of NF-κB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes pro-survival stimuli to ... 2013) Inhibition of NF-κB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes pro-survival stimuli to ... Investigating the potential of novel cyclin dependent kinase inhibitors as a novel therapeutic agents in the treatment of ... Michie, A. M. , McCaig, A. M., Nakagawa, R. and Vukovic, M. (2010) Death-associated protein kinase (DAPK) and signal ...
... by cyclin-dependent kinase 1/cyclin B. The Journal of biological chemistry, 278 51, 51372-9 ... Hamartin, the tuberous sclerosis complex 1 gene product, interacts with polo-like kinase 1 in a phosphorylation-dependent ... Estrogen activates pyruvate kinase M2 and increases the growth of TSC2-deficient cells. PloS one, 15 2, e0228894 ... Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. The Journal of ...
4 C25859 P22455 Cyclin-Dependent Kinase 3 C25865 Q00526 Cyclin-Dependent Kinase-Like 2 C25874 Q92772 Cyclin-Dependent Kinase 4 ... Cyclin-Dependent Kinase Inhibitor 1 C17783 P38936 Cyclin-Dependent Kinase 4 Inhibitor B C17784 P42772 Cyclin-Dependent Kinase 5 ... Kinase Kinase Kinase 14 C26487 Q99558 Mitogen-Activated Protein Kinase Kinase Kinase 7 C26488 O43318 TGF-Beta-Activated Kinase ... Q16543 Cell Division Control Protein 42 Homolog C25817 P60953 Cyclin-Dependent Kinase 10 C25841 Q15131 Cyclin-Dependent Kinase ...
... cyclin-dependent kinase 4 (CDK4), cyclinD1, matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) through the ...
  • This is a Phase 1 dose-escalation and confirmation study of PRT2527, a Cyclin-dependent Kinase 9 (CDK9) inhibitor, in participants with advanced solid tumors. (clinicaltrials.gov)
  • 13. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. (nih.gov)
  • 16. Flavopiridol, a novel cyclin-dependent kinase inhibitor, in clinical development. (nih.gov)
  • Purvalanol B is a cyclin-dependent kinase inhibitor. (adooq.com)
  • CGP60474 is a potent inhibitor of cyclin-dependent kinase (CDK). (adooq.com)
  • TG003 is a potent, specific, reversible, and ATP competitive inhibitor of Cdc2 like kinase(Clk). (adooq.com)
  • TG02 is a multi-kinase inhibitor, mainly inhibiting cyclin-dependent kinase 9 (CDK9), thus diminishing RNA polymerase II activation to suppress the expressions of anti-apoptotic proteins such as Mcl-1and Survivin. (nih.gov)
  • Gene polymorphisms of cyclin-dependent kinase inhibitor and matrix metalloproteinase-9 in Sudanese patients with esophageal squamous cell carcinoma. (cdc.gov)
  • E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. (nih.gov)
  • Moreover, pretreatment of cells with curcumin, an activation of AP-1 (activator protein-1) inhibitor, inhibited silica -induced cell cycle alteration, the decreased expression of E2F-4 and overexpression of cyclin D1 and CDK4. (cdc.gov)
  • Phosphorylation by protein kinases is a major post-translational modification in cell signaling. (oncotarget.com)
  • Higher eukaryotes encode for 518 putative protein kinases and many of them are expressed in cells at the same time [ 1 ]. (oncotarget.com)
  • In this study, we evaluate the effect of targeting the transactivation function of T-bet using inhibitors of P-TEFb (CDK9- cyclin T ), a transcriptional elongation factor downstream of T-bet. (bvsalud.org)
  • Using an adaptive immune-mediated colitis model, human colonic lymphocytes from patients with IBD and multiple large clinical datasets, we investigate the effect of cyclin-dependent kinase 9 (CDK9) inhibitors on cytokine production and gene expression in colonic CD4+ T cells and link these genetic modules to clinical response in patients with IBD. (bvsalud.org)
  • 1. Inhibitors of cyclin-dependent kinase modulators for cancer therapy. (nih.gov)
  • 15. Dual action of the inhibitors of cyclin-dependent kinases: targeting of the cell-cycle progression and activation of wild-type p53 protein. (nih.gov)
  • 17. [Research on cyclin-dependent kinase inhibitors: state of the art and perspective]. (nih.gov)
  • 18. The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. (nih.gov)
  • 20. Cyclin-dependent kinase inhibitors. (nih.gov)
  • Alternatively, the activity of kinases can be inhibited by chemical inhibitors of varying specificity [ 5 ]. (oncotarget.com)
  • Synthesis and Structure-Activity relationships of cyclin-dependent kinase 11 inhibitors based on a diaminothiazole scaffold. (harvard.edu)
  • Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. (unibas.ch)
  • While there are hundreds of kinases, only three amino acids, serine, threonine, and tyrosine, undergo modification by kinases in eukaryotes [ 2 ]. (oncotarget.com)
  • 6. Small molecule modulators of cyclin-dependent kinases for cancer therapy. (nih.gov)
  • 9. Small-molecule cyclin-dependent kinase modulators. (nih.gov)
  • 10. Novel small molecule cyclin-dependent kinases modulators in human clinical trials. (nih.gov)
  • This is the third announcement from AstraZeneca this side of the New Year focusing on oncology, after a preclinical partnership with Horizon and the acquisition of a small molecule cyclin-dependent kinase 9 (CDK9) programme ​ to target cancer cells. (biopharma-reporter.com)
  • Transcriptional cyclin-dependent kinases regulate all phases of transcription. (oncotarget.com)
  • A multifunctional CDC2 kinase-related kinase that plays roles in transcriptional elongation, CELL DIFFERENTIATION , and APOPTOSIS . (nih.gov)
  • Unlike traditional cyclins, which regulate the CELL CYCLE, type T cyclins appear to regulate transcription and are components of positive transcriptional elongation factor B. (bvsalud.org)
  • Tumor necrosis factor-alpha regulates cyclin-dependent kinase 5 activity during pain signaling through transcriptional activation of p35. (nih.gov)
  • Human myt1 is a cell cycle-regulated kinase that inhibits cdc2 but not cdk2 activity. (nih.gov)
  • Different cyclins exhibit distinct expression and degradation patterns which contribute to the temporal coordination of each mitotic event. (abnova.com)
  • Cyclins Cln1-3 are triggers for G1 and G1/S, while among B-type cyclins Clb5 and Clb6 drive S phase, Clb3 and Clb4 are specific for early mitotic events, and Clb1 and Clb2 complete the progression to mitosis. (eu.org)
  • Spt5 is phosphorylated within its C-terminal domain (CTD) by cyclin-dependent kinase 9 (Cdk9), catalytic component of positive transcription elongation factor b (P-TEFb). (inrs.ca)
  • Mer Tyrosine Kinase (MERTK) modulates liver fibrosis progression and hepatocellular carcinoma development. (cdc.gov)
  • Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. (nih.gov)
  • Cyclin-dependent kinase 2 (CDK2) is a kinase involved in the regulation of cell cycle, being responsible for triggering DNA synthesis. (unito.it)
  • The protein encoded by this gene is a member of the cyclin-dependent protein kinase (CDK) family. (abnova.com)
  • The protein encoded by this gene belongs to the highly conserved cyclin family, whose members are characterized by a dramatic periodicity in protein abundance through the cell cycle. (abnova.com)
  • A miR-151 binding site polymorphism in the 3'-untranslated region of the cyclin E1 gene associated with nasopharyngeal carcinoma. (cdc.gov)
  • This kinase was found to be a component of the multiprotein complex TAK/P-TEFb, which is an elongation factor for RNA polymerase II-directed transcription and functions by phosphorylating the C-terminal domain of the largest subunit of RNA polymerase II. (abnova.com)
  • This cyclin tightly associates with CDK9 kinase, and was found to be a major subunit of the transcription elongation factor p-TEFb. (abnova.com)
  • The kinase complex containing this cyclin and the elongation factor can interact with, and act as a cofactor of human immunodeficiency virus type 1 (HIV-1) Tat protein, and was shown to be both necessary and sufficient for full activation of viral transcription. (abnova.com)
  • Member of the cyclin-dependent kinase pair (CDK9/cyclin-T) complex, also called positive transcription elongation factor b (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNAP II) POLR2A, SUPT5H and RDBP. (nih.gov)
  • Since Spt5 is a unique target of Cdk9, and Rtf1 is the only known pSpt5-binding factor, the Plus3/pSpt5 interaction is thought to be a key Cdk9-dependent event regulating RNAPII elongation. (inrs.ca)
  • Our results elucidate unexpected complexity underlying Cdk9-dependent pathways that regulate transcription elongation. (inrs.ca)
  • Given the large number of kinases and their limited specificity, protein phosphorylation apparently undergoes several layers of regulation. (oncotarget.com)
  • Recruitment of kinases and control of their activity substantially contribute to the regulation of protein phosphorylation in vivo [ 4 ]. (oncotarget.com)
  • The question of the number of kinases that can participate in phosphorylation of a target site in vivo is difficult to answer. (oncotarget.com)
  • This cyclin and its kinase partner were also found to be involved in the phosphorylation and regulation of the carboxy-terminal domain (CTD) of the largest RNA polymerase II subunit. (abnova.com)
  • Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1. (nih.gov)
  • Cyclin-dependent kinases (Cdks) coordinate hundreds of molecular events during the cell cycle via Ser/Thr phosphorylation. (eu.org)
  • Docking motifs control the timing of cell cycle events by enabling preferential interaction and phosphorylation of substrates by a specific cyclin/Cdk complex. (eu.org)
  • Inhibition of DNA binding by the phosphorylation of poly ADP-ribose polymerase protein catalysed by protein kinase C. Biochem Biophys Res Commun 187 , 730-736. (nih.gov)
  • Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. (nih.gov)
  • Roles of the ERK, JNK/AP-1/cyclin D1-CDK4 pathway in silica -induced cell cycle changes in human embryo lung fibroblast cells. (cdc.gov)
  • The cell cycle alternations were accompanied with overexpression of cyclin D1 and CDK4 (cyclin-dependent kinase 4) in a time-dependent manner. (cdc.gov)
  • Furthermore, both antisense cyclin D1 and antisense CDK4 can block silica -induced cell cycle changes. (cdc.gov)
  • These results suggest that silica exposure can induce cell cycle changes, which may be mediated through ERK, JNK/AP-1/cyclin D1-CDK4-dependent pathway. (cdc.gov)
  • Kinases are enzymes that add phosphate groups onto proteins. (cancerquest.org)
  • The CDKL5 protein acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of oxygen and phosphorus atoms (a phosphate group) at specific positions. (medlineplus.gov)
  • Mutations in the kinase domain disrupt the ability of CDKL5 to add phosphate groups to other proteins. (medlineplus.gov)
  • Cyclins use the conserved hydrophobic pocket (hp) to bind docking motifs on partner proteins. (eu.org)
  • Cyclin-dependent kinase 9 (CDK9) has been implicated in the regulation of promoter-proximal pausing of RNA polymerase II and more recently in transcription termination. (oncotarget.com)
  • SEs are susceptible to inhibition by their key components, such as bromodomain protein 4 and cyclin-dependent kinase 7, providing new opportunities for antitumor therapy. (nature.com)
  • Here we analyzed the cellular phosphoproteome upon inhibition of CDK9 by combining analog-sensitive kinase technology with quantitative phosphoproteomics in Raji B-cells. (oncotarget.com)
  • Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. (uc.edu)
  • Protein kinase involved in the regulation of transcription. (nih.gov)
  • Limited evidence suggests that these mechanisms have parallels in mammalian cyclin-Cdk regulation. (eu.org)
  • With cell cycle progression, different cyclins bind to Cdks to control their function by providing docking sites for substrates and also by modulating Cdk active site specificity. (eu.org)
  • The sequential attachment of different cyclins to Cdks represents the periodic driving force that ensures a controlled progression through the cell cycle. (eu.org)
  • These polymorphically expressed genes may be positively (or inversely) associated with susceptibility to cancer and several other diseases because of their important role in the detoxification (or activation) of xenobiotics and environmental chemicals (9, 10). (cdc.gov)
  • Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2-mediated activation of forkhead box O1. (harvard.edu)
  • Activation of cyclin-dependent 5 mediates orofacial mechanical hyperalgesia. (nih.gov)
  • This protein forms a complex with and is regulated by its regulatory subunit cyclin T or cyclin K. HIV-1 Tat protein was found to interact with this protein and cyclin T, which suggested a possible involvement of this protein in AIDS. (abnova.com)
  • Here a single Cdk, Cdk1, associates with different cyclins to mediate all major cell cycle transitions. (eu.org)
  • Additionally, quercetin limited aHSC proliferation by inducing a G1 arrest as evidenced by decreased expression of cyclin D1、D2、A、B1、E. Moreover quercetin and gallic acid induced aHSC apoptosis via Fas/Fas ligand-mediated extrinsic pathway. (ncl.edu.tw)
  • Recently, several studies have reported that based on their biological activities, lncRNAs are highly associated with various diseases including cancer [ 9 , 10 ]. (genominfo.org)
  • Cyclins may use additional surfaces to dock substrates, as with the mammalian Cyclin D-specific ( DOC_CYCLIN_D_Helix_1 ) and the budding yeast Cln2-specific leucine- and proline-rich LP ( DOC_CYCLIN_yCln2_LP_2 ) motifs. (eu.org)
  • TG02-induced cytotoxicity was blocked by the overexpression of phosphorylated CDK9, suggesting a CDK9-dependent cell killing. (nih.gov)
  • These changes were blocked by overexpression of dominant-negative mutants of ERK (extracellular signal-regulated protein kinase) or the JNK (stress-activated c-Jun NH(2)-terminal kinase), respectively. (cdc.gov)
  • Cyclin-dependent kinases (Cdks) are central regulatory enzymes of the eukaryotic cell cycle. (eu.org)
  • Estrogen activates pyruvate kinase M2 and increases the growth of TSC2-deficient cells. (uc.edu)
  • 8. Preclinical and clinical development of cyclin-dependent kinase modulators. (nih.gov)
  • 14. Cyclin-dependent kinase modulators studied at the NCI: pre-clinical and clinical studies. (nih.gov)
  • Journal of cancer research and clinical oncology 2013 Sep 139 (9): 1433-47. (cdc.gov)
  • 3. Cyclin-dependent kinase modulators: a novel class of cell cycle regulators for cancer therapy. (nih.gov)
  • 11. Drugging cell cycle kinases in cancer therapy. (nih.gov)
  • Treatment of aHSCs with quercetin and gallic acid inhibited cell viability in a dose- and time-dependent manner. (ncl.edu.tw)
  • Matrix metalloproteinase-9 polymorphisms and renal cell carcinoma in a Japanese population. (cdc.gov)
  • Matrix metalloproteinase 1, 3, and 9 polymorphisms and esophageal squamous cell carcinoma risk. (cdc.gov)
  • Cyclin-Dependent Kinase 2" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (harvard.edu)
  • 7. Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies. (nih.gov)
  • Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. (nih.gov)
  • Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. (nih.gov)
  • Recruitment of p300/CBP in p53-dependent signal pathways. (nih.gov)
  • Cyclin-dependent Kinase 9 as a Potential Target for Anti-TNF-resistant Inflammatory Bowel Disease. (bvsalud.org)
  • Kinases can be removed by genetic knockout or by RNA interference-mediated downregulation. (oncotarget.com)
  • This type of mutation occurs most often in a region of the protein called the kinase domain, which is essential for the protein's kinase function. (medlineplus.gov)
  • 4. Cyclin-dependent kinases as targets for cancer therapy. (nih.gov)
  • A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 9. (bvsalud.org)
  • It partners with CYCLIN E to regulate entry into S PHASE and also interacts with CYCLIN A to phosphorylate RETINOBLASTOMA PROTEIN. (harvard.edu)