Cyclic Nucleotide Phosphodiesterases, Type 1
3',5'-Cyclic-AMP Phosphodiesterases
Cyclic Nucleotide Phosphodiesterases, Type 4
Cyclic Nucleotide Phosphodiesterases, Type 3
Cyclic Nucleotide Phosphodiesterases, Type 2
Phosphoric Diester Hydrolases
2',3'-Cyclic-Nucleotide Phosphodiesterases
Nucleotides, Cyclic
Phosphodiesterase Inhibitors
3',5'-Cyclic-GMP Phosphodiesterases
Cyclic Nucleotide Phosphodiesterases, Type 5
Cyclic GMP
Cyclic Nucleotide Phosphodiesterases, Type 7
Cyclic AMP
1-Methyl-3-isobutylxanthine
Purinones
Isoenzymes
Molecular Sequence Data
Calmodulin
Amino Acid Sequence
Cyclic Nucleotide Phosphodiesterases, Type 6
Nucleotides
Dibutyryl Cyclic GMP
Theophylline
Phosphodiesterase I
Cyclic Nucleotide-Gated Cation Channels
Phosphorus-Oxygen Lyases
Milrinone
Bucladesine
Pyrrolidinones
Adenine Nucleotides
Cyclic AMP-Dependent Protein Kinases
Cyclic GMP-Dependent Protein Kinases
Adenylate Cyclase
Second Messenger Systems
Papaverine
Cyclic IMP
Base Sequence
Colforsin
Guanylate Cyclase
Cloning, Molecular
Polymorphism, Single Nucleotide
8-Bromo Cyclic Adenosine Monophosphate
Calcium
Guanine Nucleotides
Cattle
Isoproterenol
Binding Sites
Catalytic Domain
Signal Transduction
Vinca Alkaloids
Cyclic P-Oxides
Enzyme Activation
Substrate Specificity
Characterization of TbPDE2A, a novel cyclic nucleotide-specific phosphodiesterase from the protozoan parasite Trypanosoma brucei. (1/68)
This study reports the identification and characterization of a cAMP-specific phosphodiesterase from the parasitic hemoflagellate Trypanosoma brucei. TbPDE2A is a class I phosphodiesterase. Its catalytic domain exhibits 30-40% sequence identity with those of all 11 mammalian phosphodiesterase (PDE) families, as well as with PDE2 from Saccharomyces cerevisiae, dunce from Drosophila melanogaster, and regA from Dictyostelium discoideum. The overall structure of TbPDE2A resembles that of human PDE11A in that its N-terminal region contains a single GAF domain. This domain is very similar to those of the mammalian PDE2, -5, -6, -10, and -11, where it constitutes a potential cGMP binding site. TbPDE2A can be expressed in S. cerevisiae, and it complements an S. cerevisiae PDE deletion strain. Recombinant TbPDE2A is specific for cAMP, with a K(m) of approximately 2 micrometer. It is entirely resistant to the nonselective PDE inhibitor 3-isobutyl-1-methylxanthine, but it is sensitive to trequinsin, dipyridamole, sildenafil, and ethaverine with IC(50) values of 5.4, 5.9, 9.4, and 14.2 micrometer, respectively. All four compounds inhibit proliferation of bloodstream form trypanosomes in culture, indicating that TbPDE2A is an essential enzyme. (+info)Cyclic GMP regulation of the L-type Ca(2+) channel current in human atrial myocytes. (2/68)
1. The regulation of the L-type Ca(2+) current (I(Ca)) by intracellular cGMP was investigated in human atrial myocytes using the whole-cell patch-clamp technique. 2. Intracellular application of 0.5 microM cGMP produced a strong stimulation of basal I(Ca) (+64 +/- 5 %, n = 60), whereas a 10-fold higher cGMP concentration induced a 2-fold smaller increase (+36 +/- 8 %, n = 35). 3. The biphasic response of I(Ca) to cGMP was not mimicked by the cGMP-dependent protein kinase (PKG) activator 8-bromoguanosine 3',5' cyclic monophosphate (8-bromo-cGMP, 0.5 or 5 microM), and was not affected by the PKG inhibitor KT 5823 (100 nM). 4. In contrast, cGMP stimulation of I(Ca) was abolished by intracellular perfusion with PKI (10 microM), a selective inhibitor of the cAMP-dependent protein kinase (PKA). 5. Selective inhibition of the cGMP-inhibited phosphodiesterase (PDE3) by extracellular cilostamide (100 nM) strongly enhanced basal I(Ca) in control conditions (+78 +/- 13 %, n = 7) but had only a marginal effect in the presence of intracellular cGMP (+22 +/- 7 % in addition to 0.5 microM cGMP, n = 11; +20 +/- 22 % in addition to 5 microM cGMP, n = 7). 6. Application of erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA, 30 microM), a selective inhibitor of the cGMP-stimulated phosphodiesterase (PDE2), fully reversed the secondary inhibitory effect of 5 microM cGMP on I(Ca) (+99 +/- 16 % stimulation, n = 7). 7. Altogether, these data indicate that intracellular cGMP regulates basal I(Ca) in human atrial myocytes in a similar manner to NO donors. The effect of cGMP involves modulation of the cAMP level and PKA activity via opposite actions of the nucleotide on PDE2 and PDE3. (+info)Local response of L-type Ca(2+) current to nitric oxide in frog ventricular myocytes. (3/68)
1. The regulation of L-type Ca(2+) current (I(Ca)) by the two nitric oxide (NO) donors sodium nitroprusside (SNP, 1 microM to 1 mM) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP, 3 or 10 microM) was investigated in frog ventricular myocytes using double voltage clamp and double-barrelled microperfusion techniques. 2. SNP and SNAP depressed the isoprenaline (ISO, 10-100 nM)- or forskolin (FSK, 1 microM)-mediated stimulation of I(Ca) via cGMP activation of the cGMP-stimulated phosphodiesterase (PDE2). Complete inhibition of the ISO (100 nM) response was observed at 1 mM SNP. 3. When SNP was applied locally, i.e. to one-half of the cell, and ISO to the whole cell, the response of I(Ca) to ISO was strongly antagonized in the cell half exposed to SNP (up to 100 % inhibition at 1 mM SNP) but a relatively small depression was observed in the other half of the cell (only 20 % inhibition at 1 mM SNP). 4. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO, 1 mM) reversed the local effect of SNAP (3 microM) on FSK-stimulated I(Ca) when applied to the same side as the NO donor, but had no effect when applied to the other side of the cell. 5. A local application of erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, 30 microM), a selective inhibitor of PDE2, fully reversed the local effect of SNP (100 microM) or SNAP (10 microM) on I(Ca) but had no effect on the distant response. 6. When EHNA was applied on the distant side, with SNP (1 mM) and ISO (100 nM) applied locally, the distant effect of SNP was fully reversed. 7. Our results demonstrate that in frog ventricular myocytes stimulation of guanylyl cyclase by NO leads to a strong local depletion of cAMP near the L-type Ca(2+) channels due to activation of PDE2, but only to a modest reduction of cAMP in the rest of the cell. This may be explained by the existence of a tight microdomain between L-type Ca(2+) channels and PDE2. (+info)NO-cGMP pathway increases the hyperpolarisation-activated current, I(f), and heart rate during adrenergic stimulation. (4/68)
OBJECTIVES: The role of the nitric oxide (NO)-cGMP pathway in the autonomic modulation of cardiac pacemaking is controversial and may involve an interplay between the L-type calcium current, I(CaL), and the hyperpolarisation activated current, I(f). We tested the hypothesis that following adrenergic stimulation, the NO-cGMP pathway stimulates phosphodiesterase 2 (PDE2) to reduce cAMP dependent stimulation of I(f) and heart rate (HR). METHODS: In the presence of norepinephrine (NE, 1 microM), the effects of the NO donor sodium nitroprusside (SNP) were evaluated in sinoatrial node (SAN)/atria preparations and isolated SAN cells from adult guinea pigs. RESULTS: Contrary to our hypothesis, SNP (10 and 100 microM, n=5) or the membrane permeable cGMP analogue, 8Br-cGMP (0.5 mM, n=6) transiently increased HR by 5+/-1, 12+/-1 and 12+/-2 beats/min, respectively. The guanylyl cyclase inhibitor 1H-(1,2,4)-oxadiazolo-(4,3-a)-quinoxalin-1-one (ODQ, 10 microM, n=5) abolished the increase in HR to SNP (100 microM) as did the I(f) blockers caesium chloride (2 mM, n=7) and 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)-pyrimidinium chloride (ZD7288, 1 microM, n=7). Addition of SNP (10 microM) also transiently increased I(f) in SAN cells (n=5). After inhibition of PDE2 with erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA, 10 microM, n=5), the increase in HR to SNP in the presence of NE was significantly augmented and maintained. RT-PCR analysis confirmed the presence of PDE2 in addition to cGMP inhibited PDE3 mRNA in central SAN tissue. CONCLUSIONS: These results suggest that during adrenergic stimulation, activation of the NO-cGMP pathway does not decrease HR, but has a transient stimulatory effect that is I(f) dependent, and is limited in magnitude and duration by stimulation of PDE2. (+info)The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei. (5/68)
Chemotherapy of human sleeping sickness, a fatal disease caused by the protozoan parasite Trypanosoma brucei, is in a dismal state, and the identification and characterization of new drug targets is an urgent prerequisite for an improvement of the dramatic situation in the field. Over the last several years, inhibitors of cyclic nucleotide-specific phosphodiesterases have proven to be highly successful drug candidates for an assortment of clinical conditions. Their potential as antiparasitic drugs has not been explored so far. This study reports the characterization of a cAMP-specific phosphodiesterase from T. brucei, TbPDE2C. This enzyme is a class I phosphodiesterase, and it is a member of a small enzyme family in T. brucei, TbPDE2. Inhibitors of this enzyme block the proliferation of bloodstream form trypanosomes in culture. RNA interference experiments demonstrated that the TbPDE2 family, and in particular TbPDE2C, are essential for maintaining intracellular cAMP concentrations within a physiological range. Bloodstream form trypanosomes are exquisitely sensitive to elevated concentrations of intracellular cAMP, and a disruption of TbPDE2C function quickly leads to the disruption of nuclear and cellular cell division, and to cell death. TbPDE2C might represent a novel drug target for the development of new and effective trypanocidal drugs. (+info)Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei. (6/68)
Here we report the cloning, expression, and characterization of a cAMP-specific phosphodiesterase (PDE) from Trypanosoma brucei (TbPDE2B). Using a bioinformatic approach, two different expressed sequence tag clones were identified and used to isolate the complete sequence of two identical PDE genes arranged in tandem. Each gene consists of 2,793 bases that predict a protein of 930 aa with a molecular mass of 103.2 kDa. Two GAF (for cGMP binding and stimulated PDEs, Anabaena adenylyl cyclases, and Escherichia coli FhlA) domains, similar to those contained in many signaling molecules including mammalian PDE2, PDE5, PDE6, PDE10, and PDE11, were located N-terminal to a consensus PDE catalytic domain. The catalytic domain is homologous to the catalytic domain of all 11 mammalian PDEs, the Dictyostelium discoideum RegA, and a probable PDE from Caenorhabditis elegans. It is most similar to the T. brucei PDE2A (89% identity). TbPDE2B has substrate specificity for cAMP with a K(m) of 2.4 microM. cGMP is not hydrolyzed by TbPDE2B nor does this cyclic nucleotide modulate cAMP PDE activity. The nonselective PDE inhibitors 3-isobutyl-1-methylxanthine, papaverine and pentoxifyline are poor inhibitors of TbPDE2B. Similarly, PDE inhibitors selective for the mammalian PDE families 2, 3, 5, and 6 (erythro-9-[3-(2-hydroxynonyl)]-adenine, enoximone, zaprinast, and sildenafil) were also unable to inhibit this enzyme. However, dipyridamole was a reasonably good inhibitor of this enzyme with an IC50 of 27 microM. cAMP plays key roles in cell growth and differentiation in this parasite, and PDEs are responsible for the hydrolysis of this important second messenger. Therefore, parasite PDEs, including this one, have the potential to be attractive targets for selective drug design. (+info)Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. (7/68)
Stimulation of N-methyl-D-aspartate (NMDA) receptors on neurons activates both cAMP and cGMP signaling pathways. Experiments were carried out to determine which phosphodiesterase (PDE) families are involved in the hydrolysis of the cyclic nucleotides formed via this mechanism, using primary neuronal cultures prepared from rat cerebral cortex and hippocampus. The nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) potentiated the ability of NMDA to increase cAMP and cGMP. However, among the family-selective inhibitors, only the PDE4 inhibitor rolipram enhanced the ability of NMDA to increase cAMP in the neurons. In contrast, only the PDE2 inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) enhanced the ability of NMDA to increase cGMP. Neither adenosine nor an adenosine deaminase inhibitor mimicked the effect of EHNA; this suggests that EHNA's inhibition of PDE2, not its effects on adenosine metabolism, mediates its effects on NMDA-stimulated cGMP concentrations. The PDE inhibitor-augmented effects of NMDA on cAMP and cGMP formation were antagonized by 5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate (MK-801), verifying NMDA receptor mediation. In contrast, only NMDA-mediated cGMP formation was affected by altering either nitric oxide signaling or guanylyl cyclase; this suggests that NMDA-induced changes in cAMP are not secondary to altered cGMP concentrations. Overall, the present findings indicate that cAMP and cGMP formed in neurons as a result of NMDA receptor stimulation are hydrolyzed by PDE4 and PDE2, respectively. Selective inhibitors of the two PDE families will differentially affect the functional consequences of activation of these two signaling pathways by NMDA receptor stimulation. (+info)Attenuation of cAMP accumulation in adult rat cardiac fibroblasts by IL-1beta and NO: role of cGMP-stimulated PDE2. (8/68)
Treatment of cultured adult rat cardiac fibroblasts with interleukin-1beta (IL-1beta) induces the inducible nitric oxide synthase (iNOS) expression, increases nitric oxide (NO) and cGMP production, and attenuates cAMP accumulation in response to isoproterenol by ~50%. Reduced cAMP accumulation is due to NO production: the effect is mimicked by NO donors and prevented by N(G)-monomethyl-L-arginine, an NOS inhibitor. Effects of NO are not restricted to the beta-adrenergic response; the response to forskolin is similarly diminished. NO donors only slightly (12%) decrease forskolin-stimulated adenylyl cyclase (AC) activity in cardiac fibroblast plasma membranes, suggesting that the main effect of NO is not a direct one on AC. An inhibitor of soluble guanylyl cyclase inhibits the effects of IL-1beta and NO donors; inhibition of cGMP-dependent protein kinase is without effect. 3-Isobutyl-1-methylxanthine, a nonspecific phosphodiesterase (PDE) inhibitor, and erythro-9-(2-hydroxy-3-nonyl)adenine, a specific inhibitor of the cGMP-stimulated PDE (PDE2), completely restore cAMP accumulation in sodium nitroprusside-treated fibroblasts and largely reverse the attenuated response in IL-1beta-treated fibroblasts. Although NO reportedly acts by reducing AC activity in some cells, in cardiac fibroblasts NO production decreases cAMP accumulation largely by the cGMP-mediated activation of PDE2. (+info)Cyclic Nucleotide Phosphodiesterases, Type 1 (PDE1) are a family of enzymes that break down cyclic nucleotides, such as cyclic AMP (cAMP) and cyclic GMP (cGMP), into their corresponding monophosphates. These enzymes play a crucial role in regulating various cellular processes, including muscle contraction, neurotransmission, and immune function. In the medical field, PDE1 inhibitors are being investigated as potential treatments for a variety of conditions, including heart failure, erectile dysfunction, and neurological disorders. These inhibitors work by increasing the levels of cAMP or cGMP in the cell, leading to the activation of downstream signaling pathways that promote beneficial effects. However, PDE1 inhibitors can also have side effects, such as headache, flushing, and gastrointestinal symptoms, and their use may be limited by potential drug interactions and other safety concerns. Therefore, further research is needed to fully understand the therapeutic potential and safety profile of PDE1 inhibitors in the medical field.
3',5'-Cyclic-AMP phosphodiesterases (PDEs) are a family of enzymes that play a crucial role in regulating the levels of cyclic AMP (cAMP) in the body. cAMP is a signaling molecule that is involved in a wide range of cellular processes, including cell growth, differentiation, and metabolism. PDEs are responsible for breaking down cAMP into inactive products, thereby regulating the levels of this signaling molecule in the body. There are 11 different subtypes of PDEs, each with its own specific substrate specificity and tissue distribution. In the medical field, PDEs are of particular interest because they are involved in the regulation of many different physiological processes, including the cardiovascular system, the nervous system, and the immune system. In addition, PDEs are the targets of many drugs, including some used to treat conditions such as erectile dysfunction, asthma, and heart failure.
Cyclic Nucleotide Phosphodiesterases, Type 4 (PDE4) are a family of enzymes that break down cyclic AMP (cAMP) and cyclic GMP (cGMP) in the body. These enzymes play a crucial role in regulating various cellular processes, including inflammation, immune response, and muscle contraction. PDE4 enzymes are found in a variety of tissues, including the lungs, heart, and immune cells. They are also present in the brain, where they play a role in regulating mood and cognition. In the medical field, PDE4 inhibitors are used to treat a variety of conditions, including asthma, chronic obstructive pulmonary disease (COPD), psoriasis, and depression. These drugs work by inhibiting the activity of PDE4 enzymes, leading to an accumulation of cAMP and cGMP in the cell. This, in turn, can result in a range of therapeutic effects, depending on the tissue and condition being treated.
Cyclic Nucleotide Phosphodiesterases, Type 3 (PDE3) are a family of enzymes that play a crucial role in regulating the levels of cyclic AMP (cAMP) and cyclic GMP (cGMP) in the body. These enzymes are found in a variety of tissues, including the heart, blood vessels, and immune system. PDE3 enzymes are responsible for breaking down cAMP and cGMP, which are important signaling molecules that regulate a wide range of cellular processes, including muscle contraction, blood vessel dilation, and immune cell activation. By breaking down these molecules, PDE3 enzymes help to maintain the appropriate balance of cAMP and cGMP in the body. In the medical field, PDE3 inhibitors are often used to treat conditions such as heart failure, high blood pressure, and asthma. These drugs work by blocking the activity of PDE3 enzymes, which leads to increased levels of cAMP and cGMP in the body. This, in turn, can help to improve blood flow, relax blood vessels, and reduce inflammation, among other effects. Overall, PDE3 enzymes play a critical role in regulating the levels of cAMP and cGMP in the body, and PDE3 inhibitors are an important class of drugs used to treat a variety of medical conditions.
Cyclic Nucleotide Phosphodiesterases, Type 2 (PDE2) are a family of enzymes that break down cyclic nucleotides, such as cyclic AMP (cAMP) and cyclic GMP (cGMP), into their corresponding monophosphates. These enzymes play a crucial role in regulating various cellular processes, including signal transduction, gene expression, and metabolism. In the medical field, PDE2 inhibitors are being investigated as potential therapeutic agents for a variety of diseases, including Parkinson's disease, Alzheimer's disease, and schizophrenia. These inhibitors work by increasing the levels of cAMP and cGMP in the cell, which can lead to the activation of downstream signaling pathways and the modulation of various cellular processes. PDE2 inhibitors have also been shown to have anti-inflammatory and anti-cancer effects, and are being studied as potential treatments for inflammatory diseases and cancer. However, more research is needed to fully understand the therapeutic potential of PDE2 inhibitors and to develop safe and effective drugs for these indications.
Phosphoric diester hydrolases are a group of enzymes that catalyze the hydrolysis of phosphoric diesters, which are esters of phosphoric acid. These enzymes are involved in a variety of biological processes, including the breakdown of nucleic acids, the metabolism of lipids, and the regulation of signaling pathways. In the medical field, phosphoric diester hydrolases are important for the proper functioning of the body. For example, they are involved in the breakdown of nucleic acids, which are the building blocks of DNA and RNA. This process is essential for the replication and repair of DNA, as well as the production of proteins from genetic information. Phosphoric diester hydrolases are also involved in the metabolism of lipids, which are a type of fat that is stored in the body. These enzymes help to break down lipids into smaller molecules that can be used for energy or stored for later use. In addition, phosphoric diester hydrolases play a role in the regulation of signaling pathways, which are the communication networks that allow cells to respond to changes in their environment. These enzymes help to control the activity of signaling molecules, which can affect a wide range of cellular processes, including cell growth, differentiation, and death. Overall, phosphoric diester hydrolases are important enzymes that play a variety of roles in the body. They are involved in the breakdown of nucleic acids, the metabolism of lipids, and the regulation of signaling pathways, and are essential for the proper functioning of the body.
2',3'-Cyclic-Nucleotide Phosphodiesterases (CNP) are a family of enzymes that play a crucial role in regulating the levels of cyclic nucleotides, such as cyclic AMP (cAMP) and cyclic GMP (cGMP), in the body. These enzymes are responsible for breaking down cyclic nucleotides into their corresponding monophosphates, which are then further degraded into inorganic phosphate and ribose or guanine. Cyclic nucleotides are important signaling molecules that regulate a wide range of cellular processes, including gene expression, cell growth and differentiation, and ion channel activity. CNP enzymes are involved in the regulation of these processes by controlling the levels of cyclic nucleotides in the cell. There are several different types of CNP enzymes, including 2',3'-Cyclic-Nucleotide 3'-Phosphodiesterase (CNP), 2',3'-Cyclic-Nucleotide 5'-Phosphodiesterase (CNPB), and 2',3'-Cyclic-Nucleotide 5'-Phosphodiesterase (CNPA). These enzymes are found in a variety of tissues and cells throughout the body, including the brain, heart, and immune system. Abnormalities in the function of CNP enzymes have been linked to a number of diseases and disorders, including hypertension, heart failure, and certain types of cancer. As such, CNP enzymes are an important area of research in the field of medicine, with potential therapeutic applications in the treatment of these conditions.
In the medical field, "Nucleotides, Cyclic" refers to a class of molecules that are composed of a cyclic structure containing a nitrogenous base, a pentose sugar, and a phosphate group. These molecules are important components of DNA and RNA, which are the genetic material of all living organisms. Cyclic nucleotides are a subclass of nucleotides that have a cyclic structure formed by the condensation of the sugar and phosphate groups. They are involved in various cellular signaling pathways and have been implicated in the regulation of a wide range of physiological processes, including blood pressure, heart rate, and immune function. Examples of cyclic nucleotides include cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). These molecules are synthesized from their respective nucleoside triphosphates (ATP and GTP) by the action of enzymes called adenylate cyclase and guanylate cyclase, respectively.
3',5'-Cyclic-GMP Phosphodiesterases (cGMP-PDEs) are a family of enzymes that play a crucial role in regulating the levels of cyclic guanosine monophosphate (cGMP) in the body. cGMP is a second messenger molecule that is involved in a wide range of cellular processes, including smooth muscle relaxation, neurotransmission, and immune cell function. cGMP-PDEs are responsible for breaking down cGMP into guanosine monophosphate (GMP), thereby terminating the signaling effects of cGMP. There are 11 different subtypes of cGMP-PDEs, each with different tissue distribution and substrate specificity. In the medical field, cGMP-PDEs are of particular interest because they are targeted by a class of drugs called phosphodiesterase inhibitors (PDE inhibitors). PDE inhibitors are used to treat a variety of conditions, including erectile dysfunction, pulmonary hypertension, and glaucoma. By inhibiting cGMP-PDEs, PDE inhibitors increase the levels of cGMP in the body, leading to the desired therapeutic effects.
Cyclic Nucleotide Phosphodiesterases, Type 5 (PDE5) are a group of enzymes that break down cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) in the body. These enzymes play a crucial role in regulating various physiological processes, including blood flow, smooth muscle contraction, and neurotransmission. In the context of sexual function, PDE5 inhibitors are a class of drugs that work by blocking the action of PDE5, thereby increasing levels of cGMP in the penis. This leads to improved blood flow to the penis and helps to achieve and maintain an erection during sexual activity. PDE5 inhibitors are commonly used to treat erectile dysfunction (ED) and are also being studied for other conditions, such as pulmonary hypertension and vision loss.
Cyclic GMP (cGMP) is a signaling molecule that plays a crucial role in regulating various physiological processes in the body, including smooth muscle contraction, neurotransmission, and blood pressure regulation. It is synthesized from guanosine triphosphate (GTP) by the enzyme guanylate cyclase and is degraded by the enzyme phosphodiesterase. In the medical field, cGMP is often studied in the context of its role in the regulation of blood vessels and the cardiovascular system. For example, cGMP is involved in the dilation of blood vessels, which helps to lower blood pressure and improve blood flow. It is also involved in the regulation of heart rate and contractility. Abnormal levels of cGMP can lead to a variety of medical conditions, including hypertension, heart failure, and erectile dysfunction. In these cases, medications that either increase or decrease cGMP levels may be used to treat the underlying condition.
Cyclic Nucleotide Phosphodiesterases, Type 7 (PDE7) are a family of enzymes that break down cyclic nucleotides, such as cyclic AMP (cAMP) and cyclic GMP (cGMP), in the body. These enzymes play a crucial role in regulating various cellular processes, including cell growth, differentiation, and apoptosis. In the medical field, PDE7 inhibitors are being studied as potential therapeutic agents for a variety of diseases, including cancer, inflammatory disorders, and neurological disorders. These inhibitors work by blocking the activity of PDE7 enzymes, leading to an accumulation of cyclic nucleotides in the cell and activation of downstream signaling pathways. PDE7 inhibitors have shown promise in preclinical studies for the treatment of various types of cancer, including breast cancer, prostate cancer, and lung cancer. They have also been shown to have anti-inflammatory effects and may have potential as treatments for inflammatory disorders such as psoriasis and rheumatoid arthritis. Additionally, PDE7 inhibitors have been shown to have neuroprotective effects and may have potential as treatments for neurological disorders such as Alzheimer's disease and Parkinson's disease.
Cyclic AMP (cAMP) is a signaling molecule that plays a crucial role in many cellular processes, including metabolism, gene expression, and cell proliferation. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase, and its levels are regulated by various hormones and neurotransmitters. In the medical field, cAMP is often studied in the context of its role in regulating cellular signaling pathways. For example, cAMP is involved in the regulation of the immune system, where it helps to activate immune cells and promote inflammation. It is also involved in the regulation of the cardiovascular system, where it helps to regulate heart rate and blood pressure. In addition, cAMP is often used as a tool in research to study cellular signaling pathways. For example, it is commonly used to activate or inhibit specific signaling pathways in cells, allowing researchers to study the effects of these pathways on cellular function.
Rolipram is a medication that belongs to a class of drugs called phosphodiesterase type 4 (PDE4) inhibitors. It is primarily used to treat asthma and chronic obstructive pulmonary disease (COPD) by relaxing the muscles in the airways and improving breathing. Rolipram may also be used to treat other conditions, such as psoriasis and inflammatory bowel disease, by reducing inflammation in the body. It is usually taken by mouth in the form of tablets or capsules.
1-Methyl-3-isobutylxanthine, also known as IBMX, is a chemical compound that belongs to the xanthine family. It is a selective inhibitor of the enzyme phosphodiesterase type 4 (PDE4), which is involved in the breakdown of cyclic AMP (cAMP) in cells. In the medical field, IBMX is used as a research tool to study the effects of PDE4 inhibition on various physiological processes, including inflammation, pain, and airway smooth muscle contraction. It has also been investigated as a potential treatment for a variety of conditions, including asthma, chronic obstructive pulmonary disease (COPD), and psoriasis. However, IBMX is not currently approved for use as a therapeutic agent in humans, as it can have significant side effects, including nausea, vomiting, diarrhea, and increased heart rate. Additionally, prolonged use of IBMX can lead to the development of tolerance and dependence.
Purinones are a class of organic compounds that are derived from purine, a nitrogen-containing heterocyclic base found in nucleic acids such as DNA and RNA. Purinones are important in the field of medicine because they are involved in various biological processes, including energy metabolism, cell signaling, and immune function. One of the most well-known purinones is adenosine, which is a signaling molecule that plays a role in regulating blood flow, inflammation, and neurotransmission. Adenosine is also a precursor to ATP, the primary energy currency of cells. Other purinones include hypoxanthine, xanthine, and uric acid, which are involved in the metabolism of purines and the production of uric acid, a waste product that is excreted by the kidneys. High levels of uric acid in the blood can lead to gout, a painful joint condition. Purinones are also used in the development of drugs for a variety of medical conditions, including cancer, cardiovascular disease, and inflammatory disorders. For example, the drug allopurinol is used to lower uric acid levels in people with gout, while the drug caffeine is a purine derivative that is used to stimulate the central nervous system.
In the medical field, isoenzymes refer to different forms of enzymes that have the same chemical structure and catalytic activity, but differ in their amino acid sequence. These differences can arise due to genetic variations or post-translational modifications, such as phosphorylation or glycosylation. Isoenzymes are often used in medical diagnosis and treatment because they can provide information about the function and health of specific organs or tissues. For example, the presence of certain isoenzymes in the blood can indicate liver or kidney disease, while changes in the levels of specific isoenzymes in the brain can be indicative of neurological disorders. In addition, isoenzymes can be used as biomarkers for certain diseases or conditions, and can be targeted for therapeutic intervention. For example, drugs that inhibit specific isoenzymes can be used to treat certain types of cancer or heart disease.
Calmodulin is a small, calcium-binding protein that plays a crucial role in regulating various cellular processes in the body. It is found in all eukaryotic cells and is involved in a wide range of physiological functions, including muscle contraction, neurotransmitter release, and gene expression. Calmodulin is a tetramer, meaning that it is composed of four identical subunits, each of which contains two EF-hand calcium-binding domains. When calcium ions bind to these domains, the structure of calmodulin changes, allowing it to interact with and regulate the activity of various target proteins. In the medical field, calmodulin is often studied in the context of various diseases and disorders, including cardiovascular disease, cancer, and neurological disorders. For example, abnormal levels of calmodulin have been associated with the development of certain types of cancer, and calmodulin inhibitors have been investigated as potential therapeutic agents for treating these diseases. Additionally, calmodulin has been implicated in the pathogenesis of various neurological disorders, including Alzheimer's disease and Parkinson's disease.
Cyclic Nucleotide Phosphodiesterases, Type 6 (PDE6) are a family of enzymes that are responsible for breaking down cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), in the retina of the eye. These enzymes play a crucial role in regulating the transmission of visual signals from the retina to the brain. PDE6 is a heterodimeric enzyme composed of two subunits, alpha and beta, which are encoded by different genes. The alpha subunit contains the catalytic site of the enzyme, while the beta subunit is involved in the regulation of the enzyme's activity. Mutations in the genes encoding PDE6 can cause a group of inherited eye disorders known as cone-rod dystrophies, which affect the photoreceptor cells in the retina responsible for color vision and night vision. These disorders are characterized by progressive vision loss and can lead to blindness in affected individuals.
In the medical field, nucleotides are the building blocks of nucleic acids, which are the genetic material of cells. Nucleotides are composed of three components: a nitrogenous base, a pentose sugar, and a phosphate group. There are four nitrogenous bases in DNA: adenine (A), thymine (T), cytosine (C), and guanine (G). There are also four nitrogenous bases in RNA: adenine (A), uracil (U), cytosine (C), and guanine (G). The sequence of these nitrogenous bases determines the genetic information encoded in DNA and RNA.
Dibutyryl cyclic guanosine monophosphate (db-cGMP) is a synthetic analog of cyclic guanosine monophosphate (cGMP), a signaling molecule that plays a crucial role in various physiological processes, including smooth muscle relaxation, neurotransmission, and immune cell function. Db-cGMP is a stable, long-lasting form of cGMP that can be used in research to study the effects of cGMP on cellular signaling pathways. It is often used as a tool to investigate the function of cGMP-dependent protein kinases (PKG) and other signaling proteins that are activated by cGMP. In the medical field, db-cGMP has been studied as a potential therapeutic agent for a variety of conditions, including erectile dysfunction, hypertension, and glaucoma. It has also been used in research to investigate the role of cGMP in various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.
Theophylline is a medication that is used to treat a variety of respiratory conditions, including asthma, chronic obstructive pulmonary disease (COPD), and bronchitis. It works by relaxing the muscles in the airways, making it easier to breathe. Theophylline is available in both oral and inhaled forms, and it is usually taken on a regular basis to prevent symptoms from occurring. It is important to note that theophylline can have side effects, including nausea, vomiting, and an irregular heartbeat, and it should only be taken under the supervision of a healthcare provider.
Phosphodiesterase I (PDE1) is an enzyme that breaks down cyclic nucleotides, such as cyclic AMP (cAMP) and cyclic GMP (cGMP), into their corresponding monophosphates. These cyclic nucleotides are important signaling molecules in the body that regulate various cellular processes, including muscle contraction, neurotransmission, and gene expression. PDE1 is primarily found in the brain and smooth muscle tissue, where it plays a role in regulating the levels of cAMP and cGMP. In the brain, PDE1 is involved in the regulation of learning, memory, and mood. In smooth muscle tissue, PDE1 is involved in the regulation of blood pressure and heart rate. Inhibition of PDE1 has been shown to have therapeutic potential in the treatment of various conditions, including hypertension, heart failure, and cognitive disorders. However, the use of PDE1 inhibitors can also have side effects, such as headache, nausea, and dizziness.
Cyclic Nucleotide-Gated Cation Channels (CNGCs) are a family of ion channels that are activated by the binding of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). These channels are found in a variety of cell types, including photoreceptor cells in the retina, olfactory sensory neurons, and neurons in the brain and spinal cord. CNGCs are responsible for mediating a number of physiological processes, including the transduction of light in the retina, the detection of odorants in the nose, and the regulation of neuronal excitability. They are also involved in a number of diseases, including retinitis pigmentosa, olfactory loss, and certain types of epilepsy. CNGCs are composed of five subunits, each of which contains a pore-forming region and a cyclic nucleotide-binding domain. When cyclic nucleotides bind to the cyclic nucleotide-binding domain, it causes a conformational change in the channel that opens the pore and allows cations to flow through. The flow of cations generates an electrical signal that can be detected by the cell.
Phosphorus-Oxygen Lyases are a group of enzymes that catalyze the transfer of a phosphate group from a donor molecule to an acceptor molecule, with the release of oxygen. These enzymes are involved in various metabolic pathways, including the breakdown of certain amino acids and the synthesis of nucleotides. In the medical field, phosphorus-oxygen lyases are of interest because they play a role in the metabolism of certain drugs and toxins, and may be involved in the development of certain diseases. For example, some phosphorus-oxygen lyases are involved in the metabolism of alcohol, and their activity may be altered in individuals with alcohol use disorder. Additionally, some phosphorus-oxygen lyases are involved in the metabolism of certain drugs, and their activity may be affected by the use of these drugs.
Milrinone is a medication that is used to treat heart failure and to improve blood flow in the body. It is a type of medication called a phosphodiesterase inhibitor, which works by relaxing the muscles in blood vessels and increasing the strength of heart contractions. Milrinone is usually given as an intravenous infusion, and it can be used to treat both acute and chronic heart failure. It is also sometimes used to treat low blood pressure during surgery.
Bucladesine is a medication that is used to treat certain types of cancer, including lung cancer and pancreatic cancer. It works by slowing the growth of cancer cells and preventing them from dividing and multiplying. Bucladesine is usually given as an injection into a vein, and it is typically administered in a hospital setting. It is important to note that bucladesine is not a cure for cancer, but it can help to slow the progression of the disease and improve the quality of life for people who are living with cancer.
Pyrrolidinones are a class of organic compounds that contain a five-membered ring with four carbon atoms and one nitrogen atom. They are commonly used in the medical field as intermediates in the synthesis of various drugs and as active ingredients in some medications. One example of a drug that contains a pyrrolidinone moiety is metformin, which is used to treat type 2 diabetes. Metformin is a biguanide, which is a class of drugs that work by reducing the amount of glucose produced by the liver and improving the body's sensitivity to insulin. Pyrrolidinones are also used as chelating agents, which are compounds that bind to metal ions and help to remove them from the body. One example of a pyrrolidinone chelating agent is dimercaprol, which is used to treat heavy metal poisoning, such as from mercury or lead. In addition to their use in medicine, pyrrolidinones have a wide range of other applications, including as solvents, plasticizers, and corrosion inhibitors.
Adenine nucleotides are a type of nucleotide that contains the nitrogenous base adenine (A) and a sugar-phosphate backbone. They are important molecules in the cell and play a crucial role in various biological processes, including energy metabolism and DNA synthesis. There are three types of adenine nucleotides: adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP). AMP is the simplest form of adenine nucleotide, with only one phosphate group attached to the sugar. ADP has two phosphate groups attached to the sugar, while ATP has three phosphate groups. ATP is often referred to as the "energy currency" of the cell because it stores and releases energy through the transfer of phosphate groups. When ATP is broken down, one of its phosphate groups is released, releasing energy that can be used by the cell for various processes. When ATP is synthesized, energy is required to attach a new phosphate group to the molecule. Adenine nucleotides are involved in many cellular processes, including muscle contraction, nerve impulse transmission, and the synthesis of proteins and nucleic acids. They are also important in the regulation of gene expression and the maintenance of cellular homeostasis.
Cyclic AMP-dependent protein kinases (also known as cAMP-dependent protein kinases or PKA) are a family of enzymes that play a crucial role in regulating various cellular processes in the body. These enzymes are activated by the presence of cyclic AMP (cAMP), a second messenger molecule that is produced in response to various stimuli, such as hormones, neurotransmitters, and growth factors. PKA is a heterotetrameric enzyme composed of two regulatory subunits and two catalytic subunits. The regulatory subunits bind to cAMP and prevent the catalytic subunits from phosphorylating their target proteins. When cAMP levels rise, the regulatory subunits are activated and release the catalytic subunits, allowing them to phosphorylate their target proteins. PKA is involved in a wide range of cellular processes, including metabolism, gene expression, cell proliferation, and differentiation. It phosphorylates various proteins, including enzymes, transcription factors, and ion channels, leading to changes in their activity and function. In the medical field, PKA plays a critical role in various diseases and disorders, including cancer, diabetes, and cardiovascular disease. For example, PKA is involved in the regulation of insulin secretion in pancreatic beta cells, and its dysfunction has been implicated in the development of type 2 diabetes. PKA is also involved in the regulation of blood pressure and heart function, and its dysfunction has been linked to the development of hypertension and heart disease.
Cyclic GMP-dependent protein kinases (PKG) are a family of enzymes that play a crucial role in regulating various cellular processes, including smooth muscle contraction, neurotransmitter release, and gene expression. These enzymes are activated by the second messenger molecule cyclic guanosine monophosphate (cGMP), which is produced in response to various stimuli such as nitric oxide (NO) and other signaling molecules. PKG is a serine/threonine kinase that phosphorylates target proteins on specific amino acid residues, leading to changes in their activity or localization. The activity of PKG is tightly regulated by its subcellular localization, substrate availability, and the concentration of cGMP. In the medical field, PKG is of great interest due to its role in various diseases, including cardiovascular disease, hypertension, and erectile dysfunction. PKG inhibitors have been developed as potential therapeutic agents for these conditions, and ongoing research is exploring the potential of PKG activators as novel treatments for various diseases.
Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP), a second messenger molecule that plays a crucial role in many cellular signaling pathways. In the medical field, adenylate cyclase is often studied in the context of its role in regulating various physiological processes, including heart rate, blood pressure, and glucose metabolism. It is also involved in the regulation of hormone signaling, particularly in the endocrine system, where hormones such as adrenaline and thyroid hormones bind to specific receptors on the cell surface and activate adenylate cyclase, leading to the production of cAMP and the activation of downstream signaling pathways. Abnormalities in adenylate cyclase activity have been implicated in a number of diseases, including diabetes, hypertension, and certain forms of heart disease. As such, understanding the regulation and function of adenylate cyclase is an important area of research in the medical field.
Papaverine is a medication that is used to treat a variety of medical conditions, including erectile dysfunction, Raynaud's disease, and glaucoma. It is a vasodilator, which means that it helps to widen blood vessels and improve blood flow. Papaverine is usually administered intravenously or intramuscularly, and it can cause side effects such as headache, nausea, and dizziness. It is important to note that papaverine should only be used under the supervision of a healthcare professional.
I'm sorry, but I'm not aware of any medical term or abbreviation called "Cyclic IMP." It's possible that you may have misspelled the term or that it is a term used in a specific medical field or specialty that I am not familiar with. If you could provide more context or information about where you heard or saw this term, I may be able to provide a more accurate answer.
Colforsin is a synthetic decapeptide that mimics the action of adenosine, a naturally occurring molecule that plays a role in regulating various physiological processes in the body. It is used in the medical field as a bronchodilator, which means it helps to relax and widen the airways in the lungs, making it easier to breathe. Colforsin is typically administered as an aerosol or nebulizer solution and is used to treat conditions such as asthma, chronic obstructive pulmonary disease (COPD), and bronchitis. It works by activating adenosine receptors in the lungs, which leads to the release of calcium from the cells lining the airways, causing them to relax and open up.
Guanylate cyclase is an enzyme that plays a crucial role in the regulation of various physiological processes in the body, including blood pressure, smooth muscle contraction, and immune function. It is a membrane-bound protein that catalyzes the conversion of guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP), a second messenger molecule that regulates the activity of various proteins in the cell. In the cardiovascular system, guanylate cyclase is activated by nitric oxide (NO), a signaling molecule that is released by endothelial cells in response to various stimuli, such as shear stress or the presence of certain hormones. Activation of guanylate cyclase by NO leads to an increase in cGMP levels, which in turn causes relaxation of smooth muscle cells in blood vessels, leading to vasodilation and a decrease in blood pressure. Guanylate cyclase is also involved in the regulation of immune function, as it is activated by various immune cells and cytokines. Activation of guanylate cyclase by immune cells leads to the production of cGMP, which regulates the activity of immune cells and helps to maintain immune homeostasis. In addition, guanylate cyclase is involved in the regulation of various other physiological processes, such as neurotransmission, vision, and hearing. It is a key enzyme in the regulation of these processes and plays a crucial role in maintaining normal physiological function.
8-Bromo Cyclic Adenosine Monophosphate (8-Br-cAMP) is a synthetic analog of cyclic adenosine monophosphate (cAMP), a signaling molecule that plays a crucial role in various cellular processes, including cell growth, differentiation, and metabolism. In the medical field, 8-Br-cAMP is used as a tool to study the effects of cAMP on cellular signaling pathways. It is often used in cell culture experiments to increase intracellular cAMP levels and investigate the downstream effects on gene expression, protein synthesis, and cellular behavior. 8-Br-cAMP is also used in some clinical applications, such as the treatment of certain types of cancer. It has been shown to inhibit the growth of some cancer cells by blocking the activity of certain enzymes involved in cell proliferation. However, more research is needed to fully understand the potential therapeutic applications of 8-Br-cAMP in medicine.
Calcium is a chemical element with the symbol Ca and atomic number 20. It is a vital mineral for the human body and is essential for many bodily functions, including bone health, muscle function, nerve transmission, and blood clotting. In the medical field, calcium is often used to diagnose and treat conditions related to calcium deficiency or excess. For example, low levels of calcium in the blood (hypocalcemia) can cause muscle cramps, numbness, and tingling, while high levels (hypercalcemia) can lead to kidney stones, bone loss, and other complications. Calcium supplements are often prescribed to people who are at risk of developing calcium deficiency, such as older adults, vegetarians, and people with certain medical conditions. However, it is important to note that excessive calcium intake can also be harmful, and it is important to follow recommended dosages and consult with a healthcare provider before taking any supplements.
Guanine nucleotides are a type of nucleotide that contains the nitrogenous base guanine. They are important components of DNA and RNA, which are the genetic material of all living organisms. In DNA, guanine nucleotides are paired with cytosine nucleotides to form the base pair G-C, which is one of the four possible base pairs in DNA. In RNA, guanine nucleotides are paired with uracil nucleotides to form the base pair G-U. Guanine nucleotides play a crucial role in the structure and function of DNA and RNA, and are involved in many important biological processes, including gene expression, DNA replication, and protein synthesis.
Isoproterenol is a synthetic beta-adrenergic agonist that is used in the medical field as a medication. It is a drug that mimics the effects of adrenaline (epinephrine) and can be used to treat a variety of conditions, including asthma, heart failure, and bradycardia (a slow heart rate). Isoproterenol works by binding to beta-adrenergic receptors on the surface of cells, which triggers a cascade of events that can lead to increased heart rate, relaxation of smooth muscle, and dilation of blood vessels. This can help to improve blood flow and oxygen delivery to the body's tissues, and can also help to reduce inflammation and bronchoconstriction (narrowing of the airways). Isoproterenol is available in a variety of forms, including tablets, inhalers, and intravenous solutions. It is typically administered as a short-acting medication, although longer-acting formulations are also available. Side effects of isoproterenol can include tremors, palpitations, and increased heart rate, and the drug may interact with other medications that affect the heart or blood vessels.
Xanthines are a group of compounds that include caffeine, theophylline, and theobromine. They are naturally occurring alkaloids found in plants such as coffee, tea, and cocoa. In the medical field, xanthines are used as bronchodilators to treat conditions such as asthma and chronic obstructive pulmonary disease (COPD). They work by relaxing the muscles in the airways, allowing air to flow more easily. Xanthines can also be used to treat heart rhythm disorders and to prevent blood clots. However, they can have side effects such as nausea, vomiting, and increased heart rate, and may interact with other medications.
Vinca alkaloids are a group of naturally occurring compounds derived from the Madagascar periwinkle plant (Vinca rosea). They are used in the treatment of various types of cancer, including leukemia, lymphoma, and solid tumors such as breast, ovarian, and lung cancer. Vinca alkaloids work by binding to microtubules, which are essential components of the cell's cytoskeleton. By binding to microtubules, vinca alkaloids prevent the formation of new microtubules and stabilize existing ones, leading to cell death. The most commonly used vinca alkaloids in cancer treatment are vinblastine and vincristine. These drugs are typically administered intravenously and can cause a range of side effects, including nausea, vomiting, hair loss, and peripheral neuropathy (numbness or tingling in the hands and feet). However, they are often effective in controlling the growth of cancer cells and can be used in combination with other chemotherapy drugs to improve treatment outcomes.
In the medical field, cyclic P-oxides refer to a class of organic compounds that contain a ring of atoms with a double bond between two oxygen atoms and a single bond between one of the oxygen atoms and a phosphorus atom. These compounds are also known as phosphorus oxides or phosphorus ylides. Cyclic P-oxides are often used as intermediates in organic synthesis reactions, particularly in the synthesis of heterocyclic compounds such as pyrroles, furans, and thiophenes. They can also be used as reagents in organic reactions, such as in the Staudinger reduction, which is a method for converting aldehydes and ketones into primary amines. In addition to their use in organic synthesis, cyclic P-oxides have also been studied for their potential medicinal applications. For example, some cyclic P-oxides have been shown to have antitumor activity, and they are being investigated as potential treatments for cancer. Other cyclic P-oxides have been studied for their potential to treat neurological disorders, such as Alzheimer's disease and Parkinson's disease.
Cyclic nucleotide phosphodiesterase
EHNA
TNF inhibitor
Oligodendrocyte
Neuronal calcium sensor-1
PDE8B
Pentoxifylline
CNP
CGMP-specific phosphodiesterase type 5
Phosphodiesterase
Emoxypine
PDE1C
Phosphodiesterase inhibitor
PDE4A
Phosphodiesterase 2
Cyclic di-AMP
Bucladesine
Benjamin Weiss (scientist)
Caffeine-induced anxiety disorder
P19 cell
Phosphodiesterase 3
CGAS-STING cytosolic DNA sensing pathway
List of MeSH codes (D08)
PDE6B
Discovery and development of phosphodiesterase 5 inhibitors
Pharmacology of antidepressants
Phosphodiesterase-4 inhibitor
List of EC numbers (EC 3)
PDE5 inhibitor
Myelin basic protein
Erection-stimulating, anti-diabetic and antioxidant properties of Hunteria umbellata and Cylicodiscus gabunensis water...
Calsequestrin | Profiles RNS
Pesquisa | Biblioteca Virtual em Saúde - Hanseníase
TOP
Calbindin-binding protein, Mouse Monoclonal Antibody
Prime Drugstore: Buy citalopram 10mg online uk quality pills!
Neurologic Effects of Caffeine: Overview, Consumption of Caffeine, Physiologic Effects of Caffeine
Christopher Moran - Research output
- Research Profiles at Washington University School of Medicine
Indian Institute of Science
Furthermore, NF-155 was nearly completely eliminated from lipid raft fractions isolated about sucrose gradients (Fig - BET...
MRP4 transporter - Transporters - Solvo Biotechnology
Erectile Dysfunction Medication: Phosphodiesterase-5 Enzyme Inhibitors, Vasodilators, Androgens
November 2021 - Functional selection of protease inhibitory antibodies
Phospho-Calmodulin 1/2/3 (Thr79, Ser81) Polyclonal Antibody (PA5-104932)
...
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
DeCS 2008 - Changed terms
Cardiovascular and other pharmacological approaches of phosphodiesterase enzyme inhibitors
Detection of Tickborne Relapsing Fever Spirochete, Austin, Texas, USA - Volume 24, Number 11-November 2018 - Emerging...
MeSH Browser
Mar��a Javier Ram��rez Gil. Curriculum. Universidad de Navarra
National Eligibility Test : CSIR - NET Dec 2015 questions with Answer keys (Life Sciences) | PharmaTutor
Nonspecific1
- The histopathological diagnoses in total group were as follows: (borderline tuberculoid (BT) = 52, tuberculoid (TT) = 8, borderline lepromatous (BL) = 8, borderline borderline (BB) = 3, nonspecific inflammation = 3, healed/fibrosed = 4, and axonopathy = 2). (bvsalud.org)
Inhibitors3
- Since caffeine is a non-specific phosphodiesterase inhibitor, we investigated the effects of several PDE inhibitors on the formation of sunburn cells in mouse skin after an acute exposure to ultraviolet light B (UVB). (nih.gov)
- 6. Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors. (nih.gov)
- Exposure of hybrid cells for 3-7 days to PGE1, which results in activation of adenylate cyclase, or exposure to various cyclic nucleotide phosphodiesterase inhibitors, markedly increases the number of synapses formed. (nih.gov)
CGMP1
- Since PDE2 hydrolyzes cyclic nucleotides, mainly cGMP, the effects of EHNA hydrochloride on epidermal apoptosis following UVB exposure may be mediated, in part, by increased cGMP signaling. (nih.gov)
Intracellular4
- The vasodilatory and antiplatelet actions of cilostazol are due mainly to the inhibition of phosphodiesterase 3 (PDE3) and subsequent elevation of intracellular cAMP levels. (nih.gov)
- 5. Development of human and rabbit vaginal smooth muscle cell cultures: effects of vasoactive agents on intracellular levels of cyclic nucleotides. (nih.gov)
- 16. Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitation-associated protein tyrosine phosphorylation. (nih.gov)
- Receptor-mediated increases in intracellular cyclic AMP or cyclic GMP levels had no immediate effect on K+-dependent 45Ca2+ uptake by cells or on acetylcholine secretion from cells. (nih.gov)
4.172
- Aunque las enzimas de tipo 2 se clasifican como fosfodiesterasas 3',5' AMP cíclico (EC 3.1.4.17), los miembros de esta clase tienen una especificidad adicional para el GMP CÍCLICO. (bvsalud.org)
- Although the type 2 enzymes are classified as 3',5'-cyclic-AMP phosphodiesterases (EC 3.1.4.17), members of this class have additional specificity for CYCLIC GMP . (bvsalud.org)
Subfamily2
- A cyclic nucleotide phosphodiesterase subfamily that is activated by the binding of CYCLIC GMP to an allosteric domain found on the enzyme. (bvsalud.org)
- The subfamily is expressed in a broad variety of tissues and may play a role in mediating cross-talk between CYCLIC GMP and CYCLIC CMP pathways. (bvsalud.org)
Adenylate cyclase1
- These results show that cell lines with or without defects in synapse formation can be generated and that voltage-sensitive Ca2+ channel activity can be regulated by a receptor-mediated reaction which is coupled to activation of adenylate cyclase, or by inhibition of adenlyate clyclase, or by inhibition of cyclic nucleotide phosphodies-terase. (nih.gov)
Adenosine2
Regulation1
- 9. Type 5 phosphodiesterase regulation of human sperm motility. (nih.gov)
Inhibits2
Calcium1
- 19. Effect of sildenafil on cyclic nucleotide phosphodiesterase activity, vascular tone and calcium signaling in rat pulmonary artery. (nih.gov)
Secretion1
- The effects of putative neurotransmitters or hormones on intra-cellular cyclic AMP or cyclic GMP levels, voltage-sensitive Ca2+ channel activity, and acetylcholine secretion were determined. (nih.gov)
Dependent1
- Over fifty members of this family exist, most of which bind specifically to regulatory subunits of CYCLIC-AMP-DEPENDENT PROTEIN KINASE TYPE II such as CAMP PROTEIN KINASE RIIALPHA or CAMP PROTEIN KINASE RIIBETA. (nih.gov)
Caffeine2
- Moreover, this dose is 5-10 times higher than the dose necessary to stimulate the caudate nucleus (extrapyramidal motor system) and the neural structures regulating the sleep-wake cycle, the 2 functions that are most sensitive to caffeine. (medscape.com)
- 2] However, caffeine was considered in one study as a potential drug of abuse and has even been described as a model drug of abuse. (medscape.com)
Family1
- This study is a family-based genetic association analysis examining the myelin-associated glycoprotein (MAG) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) genes in schizophrenia. (nih.gov)
Levels1
- ADPKD-omics": determinants of cyclic AMP levels in renal epithelial cells. (nih.gov)
Effects1
- A functional evaluation based on the effects of the single nucleotide variant (SNV) associated with PB leprosy on the specific immune response was also performed. (bvsalud.org)
Functional1
- However, prolonged exposure of hybrid cells to PGE1 results both in an increase in cellular cyclic AMP and the gradual acquisition by cells of functional voltage-sensitive Ca2+ channels. (nih.gov)
Diabetes4
- The growing epidemic of obesity-associated type 2 diabetes represents one of the major threats to human health in the 21st century. (nih.gov)
- To gain insight into the pathophysiology of type 2 diabetes and to develop new treatment protocols, it is essential to characterize the molecular components and signaling networks critical for beta-cell function and glucose and energy homeostasis. (nih.gov)
- During the past few years, NIH researchers have used gene targeting and transgenic techniques to develop novel mouse models to study the molecular basis of type 2 diabetes and glucose and energy homeostasis. (nih.gov)
- Its overexpression in agouti mice results in uniform yellow coat color, OBESITY, and metabolic defects similar to type II diabetes in humans. (nih.gov)
Human2
Single1
- About 246 families of primarily European-Caucasian origin were genotyped for MAG rs2301600, rs720308, rs720309, rs756796, and CNP rs2070106 single nucleotide polymorphisms (SNPs). (nih.gov)
Mice1
- We transected the dorsal two-thirds of the spinal cords of wild-type mice at vertebral level Th8/9, leaving only the fibers in the ventral funiculus intact. (medscape.com)
Program1
- The FBAT program (v1.7.2) and Transmit were used to analyze individual SNPs and haplotypes, respectively. (nih.gov)
Cells1
- f) TUNEL staining of apoptotic cells in wild-type animals subjected to SCI and treated i.p. with antibodies to CD95L and/or TNF. (medscape.com)
Study1
- Case-control association study of the 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) gene and schizophrenia in the Han Chinese population. (nih.gov)
Cell1
- 11. Mammalian sperm phosphodiesterases and their involvement in receptor-mediated cell signaling important for capacitation. (nih.gov)
Major1
- The 2 major coffee types are arabica (Coffea arabica) and robusta (Coffea canephora). (medscape.com)