The gourd plant family of the order Violales, subclass Dilleniidae, class Magnoliopsida. It is sometimes placed in its own order, Cucurbitales. 'Melon' generally refers to CUCUMIS; CITRULLUS; or MOMORDICA.
A plant species of the family CUCURBITACEAE, order Violales, subclass Dilleniidae known for the melon fruits with reticulated (net) surface including cantaloupes, honeydew, casaba, and Persian melons.
A plant genus of the family CUCURBITACEAE, order Violales, subclass Dilleniidae, which includes pumpkin, gourd and squash.
A creeping annual plant species of the CUCURBITACEAE family. It has a rough succulent, trailing stem and hairy leaves with three to five pointed lobes.
A plant genus of the family CUCURBITACEAE. It is a source of momordin.
A plant species of the family CUCURBITACEAE. It is a source of ribosome-inactivating proteins and triterpene glycosides.
A plant species of the family CUCURBITACEAE that is a source of TRICHOSANTHIN (a ribosomal inhibitory protein).
A plant family of the order Solanales, subclass Asteridae. Among the most important are POTATOES; TOMATOES; CAPSICUM (green and red peppers); TOBACCO; and BELLADONNA.
A plant genus of the family CUCURBITACEAE known for the edible fruit.
The capacity of an organism to defend itself against pathological processes or the agents of those processes. This most often involves innate immunity whereby the organism responds to pathogens in a generic way. The term disease resistance is used most frequently when referring to plants.
Cultivated plants or agricultural produce such as grain, vegetables, or fruit. (From American Heritage Dictionary, 1982)
Genes bearing close resemblance to known genes at different loci, but rendered non-functional by additions or deletions in structure that prevent normal transcription or translation. When lacking introns and containing a poly-A segment near the downstream end (as a result of reverse copying from processed nuclear RNA into double-stranded DNA), they are called processed genes.
Triterpenes are a class of naturally occurring compounds consisting of six isoprene units arranged to form a 30-carbon skeleton, often found in plants and some animals, with various bioactivities including anti-inflammatory, antiviral, and cytotoxic properties.
Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals.
The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
Diseases of plants.
Deoxyribonucleic acid that makes up the genetic material of plants.
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
The relationships of groups of organisms as reflected by their genetic makeup.
The genetic complement of a plant (PLANTS) as represented in its DNA.
The functional hereditary units of PLANTS.
Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.
Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.

Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. (1/164)

A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase. Despite the presence of a C-terminal propeptide, APRX was found in the apoplast. APRX protein and mRNA were found in the root, hypocotyls, and cotyledons. In situ hybridization showed that the APRX-encoding gene was expressed in many different tissues. The strongest expression was observed in root epidermis and in some cells of the stele, in differentiating tracheary elements of hypocotyl, in the lower and upper epidermis, in the palisade parenchyma of cotyledons, and in lateral and adventitious root primordia. In the hypocotyl hook there was an asymmetric expression, with the inner part containing more transcripts than the outer part. Treatment with 2,3,5-triiodobenzoic acid reduced the expression of the APRX-encoding gene in the lower part of the hypocotyl. Our observations suggest that APRX could be involved in lignin formation and that the transcription of its gene was related to auxin level.  (+info)

Crystal structure of a ribonuclease from the seeds of bitter gourd (Momordica charantia) at 1.75 A resolution. (2/164)

The ribonuclease MC1 (RNase MC1) from seeds of bitter gourd (Momordica charantia) consists of 190 amino acid residues with four disulfide bridges and belongs to the RNase T(2) family, including fungal RNases typified by RNase Rh from Rhizopus niveus and RNase T(2) from Aspergillus oryzae. The crystal structure of RNase MC1 has been determined at 1.75 A resolution with an R-factor of 19.7% using the single isomorphous replacement method. RNase MC1 structurally belongs to the (alpha+beta) class of proteins, having ten helices (six alpha-helices and four 3(10)-helices) and eight beta-strands. When the structures of RNase MC1 and RNase Rh are superposed, the close agreement between the alpha-carbon positions for the total structure is obvious: the root mean square deviations calculated only for structurally related 151 alpha-carbon atoms of RNase MC1 and RNase Rh molecules was 1.76 A. Furthermore, the conformation of the catalytic residues His-46, Glu-105, and His-109 in RNase Rh can be easily superposed with that of the possible catalytic residues His-34, Glu-84, and His-88 in RNase MC1. This observation strongly indicates that RNase MC1 from a plant origin catalyzes RNA degradation in a similar manner as fungal RNases.  (+info)

Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. (3/164)

Plants are able to respond to herbivore damage with de novo biosynthesis of an herbivore-characteristic blend of volatiles. The signal transduction initiating volatile biosynthesis may involve the activation of the octadecanoid pathway, as exemplified by the transient increase of endogenous jasmonic acid (JA) in leaves of lima bean (Phaseolus lunatus) after treatment with the macromolecular elicitor cellulysin. Within this pathway lima bean possesses at least two different biologically active signals that trigger different biosynthetic activities. Early intermediates of the pathway, especially 12-oxo-phytodienoic acid (PDA), are able to induce the biosynthesis of the diterpenoid-derived 4,8, 12-trimethyltrideca-1,3,7,11-tetraene. High concentrations of PDA result in more complex patterns of additional volatiles. JA, the last compound in the sequence, lacks the ability to induce diterpenoid-derived compounds, but is highly effective at triggering the biosynthesis of other volatiles. The phytotoxin coronatine and amino acid conjugates of linolenic acid (e.g. linolenoyl-L-glutamine) mimic the action of PDA, but coronatine does not increase the level of endogenous JA. The structural analog of coronatine, the isoleucine conjugate of 1-oxo-indanoyl-4-carboxylic acid, effectively mimics the action of JA, but does not increase the level of endogenous JA. The differential induction of volatiles resembles previous findings on signal transduction in mechanically stimulated tendrils of Bryonia dioica.  (+info)

Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. (4/164)

Direct support for the concept that RNA molecules circulate throughout the plant, via the phloem, is provided through the characterisation of mRNA from phloem sap of mature pumpkin (Cucurbita maxima) leaves and stems. One of these mRNAs, CmNACP, is a member of the NAC domain gene family, some of whose members have been shown to be involved in apical meristem development. In situ RT-PCR analysis revealed the presence of CmNACP RNA in the companion cell-sieve element complex of leaf, stem and root phloem. Longitudinal and transverse sections showed continuity of transcript distribution between meristems and sieve elements of the protophloem, suggesting CmNACP mRNA transport over long distances and accumulation in vegetative, root and floral meristems. In situ hybridization studies conducted on CmNACP confirmed the results obtained using in situ RT-PCR. Phloem transport of CmNACP mRNA was proved directly by heterograft studies between pumpkin and cucumber plants, in which CmNACP transcripts were shown to accumulate in cucumber scion phloem and apical tissues. Similar experiments were conducted with 7 additional phloem-related transcripts. Collectively, these studies established the existence of a system for the delivery of specific mRNA transcripts from the body of the plant to the shoot apex. These findings provide insight into the presence of a novel mechanism likely used by higher plants to integrate developmental and physiological processes on a whole-plant basis.  (+info)

Conservative mutation Met8 --> Leu affects the folding process and structural stability of squash trypsin inhibitor CMTI-I. (5/164)

Protein molecules can accommodate a large number of mutations without noticeable effects on their stability and folding kinetics. On the other hand, some mutations can have quite strong effects on protein conformational properties. Such mutations either destabilize secondary structures, e.g., alpha-helices, are incompatible with close packing of protein hydrophobic cores, or lead to disruption of some specific interactions such as disulfide cross links, salt bridges, hydrogen bonds, or aromatic-aromatic contacts. The Met8 --> Leu mutation in CMTI-I results in significant destabilization of the protein structure. This effect could hardly be expected since the mutation is highly conservative, and the side chain of residue 8 is situated on the protein surface. We show that the protein destabilization is caused by rearrangement of a hydrophobic cluster formed by side chains of residues 8, Ile6, and Leu17 that leads to partial breaking of a hydrogen bond formed by the amide group of Leu17 with water and to a reduction of a hydrophobic surface buried within the cluster. The mutation perturbs also the protein folding. In aerobic conditions the reduced wild-type protein folds effectively into its native structure, whereas more then 75% of the mutant molecules are trapped in various misfolded species. The main conclusion of this work is that conservative mutations of hydrophobic residues can destabilize a protein structure even if these residues are situated on the protein surface and partially accessible to water. Structural rearrangement of small hydrophobic clusters formed by such residues can lead to local changes in protein hydration, and consequently, can affect considerably protein stability and folding process.  (+info)

Expression and mutational analysis of amino acid residues involved in catalytic activity in a ribonuclease MC1 from the seeds of bitter gourd. (6/164)

The ribonuclease MC1 (RNase MC1) from seeds of bitter gourd (Momordica charantia) consists of 190 amino acids and belongs to the RNase T2 family, including fungal RNases typified by RNase Rh from Rhizopus niveus. We expressed RNase MC1 in Escherichia coli cells and made use of site-directed mutagenesis to identify essential amino acid residues for catalytic activity. Mutations of His34 and His88 to Ala completely abolished the enzymatic activity, and considerable decreases in the enzymatic activity were observed in cases of mutations of His83, Glu84, and Lys87, when yeast RNA was used as a substrate. Kinetic parameters for the enzymatic activity of the mutants of His83, Glu84, and Lys87 were analyzed using a dinucleoside monophosphate CpU. Km values for the mutants were approximately like that for wild-type, while k(cat) values were decreased by about 6 to 25-fold. These results suggest that His34, His83, Glu84, Lys87, and His88 in RNase MC1 may be involved in the catalytic function. These observation suggests that RNase MC1 from a plant catalyzes RNA degradation in a similar manner to that of fungal RNases.  (+info)

Purification and characterization of a novel pumpkin short-chain acyl-coenzyme A oxidase with structural similarity to acyl-coenzyme A dehydrogenases. (7/164)

A novel pumpkin (Cucurbita pepo) short-chain acyl-coenzyme A (CoA) oxidase (ACOX) was purified to homogeneity by hydrophobic-interaction, hydroxyapatite, affinity, and anion-exchange chromatography. The purified enzyme is a tetrameric protein, consisting of apparently identical 47-kD subunits. The protein structure of this oxidase differs from other plant and mammalian ACOXs, but is similar to the protein structure of mammalian mitochondrial acyl-CoA dehydrogenase (ACDH) and the recently identified plant mitochondrial ACDH. Subcellular organelle separation by sucrose density gradient centrifugation revealed that the enzyme is localized in glyoxysomes, whereas no immunoreactive bands of similar molecular weight were detected in mitochondrial fractions. The enzyme selectively catalyzes the oxidation of CoA esters of fatty acids with 4 to 10 carbon atoms, and exhibits the highest activity on C-6 fatty acids. Apparently, the enzyme has no activity on CoA esters of branched-chain or dicarboxylic fatty acids. The enzyme is slightly inhibited by high concentrations of substrate and it is not inhibited by Triton X-100 at concentrations up to 0.5% (v/v). The characteristics of this novel ACOX enzyme are discussed in relation to other ACOXs and ACDHs.  (+info)

Identification of phloem involved in assimilate loading in leaves by the activity of the galactinol synthase promoter. (8/164)

The definition of "minor" veins in leaves is arbitrary and of uncertain biological significance. Generally, the term refers to the smallest vein classes in the leaf, believed to function in phloem loading. We found that a galactinol synthase promoter, cloned from melon (Cucumis melo), directs expression of the gusA gene to the smallest veins of mature Arabidopsis and cultivated tobacco (Nicotiana tabacum) leaves. This expression pattern is consistent with the role of galactinol synthase in sugar synthesis and phloem loading in cucurbits. The expression pattern in tobacco is especially noteworthy since galactinol is not synthesized in the leaves of this plant. Also, we unexpectedly found that expression in tobacco is limited to two of three companion cells in class-V veins, which are the most extensive in the leaf. Thus, the "minor" vein system is defined and regulated at the genetic level, and there is heterogeneity of response to this system by different companion cells of the same vein.  (+info)

Cucurbitaceae is the scientific name for the gourd family of plants, which includes a variety of vegetables and fruits such as cucumbers, melons, squashes, and pumpkins. These plants are characterized by their trailing or climbing growth habits and their large, fleshy fruits that have hard seeds enclosed in a protective coat. The fruits of these plants are often used as food sources, while other parts of the plant may also have various uses such as medicinal or ornamental purposes.

'Cucumis melo' is the scientific name for a group of plants that include cantaloupes, honeydew melons, and other types of muskmelons. These are all part of the Cucurbitaceae family, which also includes cucumbers, squashes, and gourds.

The term 'Cucumis melo' is used to refer to the species as a whole, while specific varieties or cultivars within the species are given more descriptive names, such as 'Cucumis melo' var. cantalupensis for cantaloupes and 'Cucumis melo' var. inodorus for honeydew melons.

These fruits are popular for their juicy and sweet flesh, and they are often consumed fresh or used in a variety of dishes, such as salads, smoothies, and desserts. They are also rich in nutrients, including vitamins A and C, potassium, and fiber.

'Cucurbita' is a genus of herbaceous vines in the gourd family, Cucurbitaceae. This genus includes several species of plants that are commonly known as squashes or gourds, such as pumpkins, zucchinis, and acorn squashes. The fruits of these plants are widely cultivated and consumed for their nutritional value and versatility in cooking.

The name 'Cucurbita' comes from the Latin word for "gourd" or "pumpkin." Plants in this genus are native to the Americas, with some species originating in Mexico and Central America and others in the southern United States. They have been cultivated by humans for thousands of years and are an important part of many traditional diets around the world.

In a medical context, 'Cucurbita' may be mentioned in relation to the use of certain species as traditional remedies or in nutritional studies. For example, pumpkin seeds have been used in traditional medicine to treat parasitic infections, and some research suggests that they may have anti-inflammatory and antioxidant properties. However, it is important to note that the scientific evidence for these potential health benefits is still limited, and more research is needed before any firm conclusions can be drawn.

'Cucumis sativus' is the scientific name for the vegetable we commonly know as a cucumber. It belongs to the family Cucurbitaceae and is believed to have originated in South Asia. Cucumbers are widely consumed raw in salads, pickled, or used in various culinary applications. They have a high water content and contain various nutrients such as vitamin K, vitamin C, and potassium.

"Momordica" is a genus of plants in the family Cucurbitaceae, also known as the gourd family. It includes several species of tropical and subtropical vines that are native to Africa, Asia, and South America. The most well-known species is Momordica charantia, which is commonly known as bitter melon or bitter gourd. This plant has a long history of use in traditional medicine to treat various health conditions such as diabetes, fever, and digestive disorders. However, it's important to note that the scientific evidence supporting these claims is limited, and more research is needed before any firm conclusions can be drawn about its medicinal properties.

"Momordica charantia" is the scientific name for a plant also known as bitter melon or bitter gourd. It's a tropical and subtropical vine that belongs to the Cucurbitaceae family, which includes cucumbers, melons, and squashes. The fruit of the plant is used in various culinary traditions, and it has a distinctively bitter taste. In traditional medicine, different parts of the Momordica charantia plant have been used for their perceived medicinal properties, such as potential antidiabetic, anti-inflammatory, and antimicrobial effects. However, it's essential to note that while some preliminary research shows promise, more rigorous studies are needed to confirm these benefits and understand the potential risks associated with its use.

Trichosanthes is a genus of plants in the cucumber family (Cucurbitaceae) that includes several species with medicinal uses. One of the most well-known species is Trichosanthes kirilowii, also known as Chinese cucumber or Gua Lou. The dried fruit of this plant has been used in traditional Chinese medicine for centuries to treat various ailments such as lung disorders, fever, and inflammation. It contains various bioactive compounds including trichosanthin, which has been studied for its potential anti-viral, anti-tumor, and immunomodulatory effects. However, it's important to note that the use of Trichosanthes or any other herbal medicine should be done under the guidance of a healthcare professional, as they can interact with other medications and have potential side effects.

"Solanaceae" is not a medical term but a taxonomic category in biology, referring to the Nightshade family of plants. This family includes several plants that have economic and medicinal importance, as well as some that are toxic or poisonous. Some common examples of plants in this family include:

- Solanum lycopersicum (tomato)
- Solanum tuberosum (potato)
- Capsicum annuum (bell pepper and chili pepper)
- Nicotiana tabacum (tobacco)
- Atropa belladonna (deadly nightshade)
- Hyoscyamus niger (henbane)

While Solanaceae isn't a medical term itself, certain plants within this family have medical significance. For instance, some alkaloids found in these plants can be used as medications or pharmaceutical precursors, such as atropine and scopolamine from Atropa belladonna, hyoscine from Hyoscyamus niger, and capsaicin from Capsicum species. However, it's important to note that many of these plants also contain toxic compounds, so they must be handled with care and used only under professional supervision.

"Citrullus" is a genus of plants that includes watermelon and several other species of vine-like fruits. The name "Citrullus" comes from the Latin word for watermelon, "citrullus lanatus." Watermelons are the most well-known member of this genus and are popular for their juicy, sweet red or pink flesh, which is high in vitamins A and C and contains a high amount of lycopene. Other species in the Citrullus genus include citron melon (Citrullus lanatus var. citroides) and colocynth (Citrullus colocynthis), also known as bitter apple.

Disease resistance, in a medical context, refers to the inherent or acquired ability of an organism to withstand or limit infection by a pathogen, such as bacteria, viruses, fungi, or parasites. This resistance can be due to various factors including the presence of physical barriers (e.g., intact skin), chemical barriers (e.g., stomach acid), and immune responses that recognize and eliminate the pathogen.

Inherited disease resistance is often determined by genetics, where certain genetic variations can make an individual more or less susceptible to a particular infection. For example, some people are naturally resistant to certain diseases due to genetic factors that prevent the pathogen from infecting their cells or replicating within them.

Acquired disease resistance can occur through exposure to a pathogen, which triggers an immune response that confers immunity or resistance to future infections by the same pathogen. This is the basis of vaccination, where a weakened or dead form of a pathogen is introduced into the body to stimulate an immune response without causing disease.

Overall, disease resistance is an important factor in maintaining health and preventing the spread of infectious diseases.

Agricultural crops refer to plants that are grown and harvested for the purpose of human or animal consumption, fiber production, or other uses such as biofuels. These crops can include grains, fruits, vegetables, nuts, seeds, and legumes, among others. They are typically cultivated using various farming practices, including traditional row cropping, companion planting, permaculture, and organic farming methods. The choice of crop and farming method depends on factors such as the local climate, soil conditions, and market demand. Proper management of agricultural crops is essential for ensuring food security, promoting sustainable agriculture, and protecting the environment.

Pseudogenes are defined in medical and genetics terminology as non-functional segments of DNA that resemble functional genes, such as protein-coding genes or RNA genes, but have lost their ability to be expressed or produce a functional product. They are often characterized by the presence of mutations, such as frameshifts, premature stop codons, or deletions, that prevent them from being transcribed or translated into functional proteins or RNAs.

Pseudogenes can arise through various mechanisms, including gene duplication followed by degenerative mutations, retrotransposition of processed mRNA, and the insertion of transposable elements. While they were once considered "genomic fossils" with no biological relevance, recent research has shown that pseudogenes may play important roles in regulating gene expression, modulating protein function, and contributing to disease processes.

It's worth noting that there is ongoing debate in the scientific community about the precise definition and functional significance of pseudogenes, as some may still retain residual functions or regulatory potential.

Triterpenes are a type of natural compound that are composed of six isoprene units and have the molecular formula C30H48. They are synthesized through the mevalonate pathway in plants, fungi, and some insects, and can be found in a wide variety of natural sources, including fruits, vegetables, and medicinal plants.

Triterpenes have diverse structures and biological activities, including anti-inflammatory, antiviral, and cytotoxic effects. Some triterpenes are also used in traditional medicine, such as glycyrrhizin from licorice root and betulinic acid from the bark of birch trees.

Triterpenes can be further classified into various subgroups based on their carbon skeletons, including squalene, lanostane, dammarane, and ursane derivatives. Some triterpenes are also modified through various biochemical reactions to form saponins, steroids, and other compounds with important biological activities.

Medicinal plants are defined as those plants that contain naturally occurring chemical compounds which can be used for therapeutic purposes, either directly or indirectly. These plants have been used for centuries in various traditional systems of medicine, such as Ayurveda, Chinese medicine, and Native American medicine, to prevent or treat various health conditions.

Medicinal plants contain a wide variety of bioactive compounds, including alkaloids, flavonoids, tannins, terpenes, and saponins, among others. These compounds have been found to possess various pharmacological properties, such as anti-inflammatory, analgesic, antimicrobial, antioxidant, and anticancer activities.

Medicinal plants can be used in various forms, including whole plant material, extracts, essential oils, and isolated compounds. They can be administered through different routes, such as oral, topical, or respiratory, depending on the desired therapeutic effect.

It is important to note that while medicinal plants have been used safely and effectively for centuries, they should be used with caution and under the guidance of a healthcare professional. Some medicinal plants can interact with prescription medications or have adverse effects if used inappropriately.

I'm sorry for any confusion, but "fruit" is not a medical term per se. It is a common term used to describe the part of a plant that develops from the ovary after flowering and contains seeds. However, in a nutritional or dietary context, "fruits" are often referred to as foods that are typically sweet and juicy, and come from plants' flowers. They are rich in fiber, vitamins, and minerals, making them an essential part of a healthy diet. But in a strict medical sense, there isn't a specific definition for "fruit."

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

DNA, or deoxyribonucleic acid, is the genetic material present in the cells of all living organisms, including plants. In plants, DNA is located in the nucleus of a cell, as well as in chloroplasts and mitochondria. Plant DNA contains the instructions for the development, growth, and function of the plant, and is passed down from one generation to the next through the process of reproduction.

The structure of DNA is a double helix, formed by two strands of nucleotides that are linked together by hydrogen bonds. Each nucleotide contains a sugar molecule (deoxyribose), a phosphate group, and a nitrogenous base. There are four types of nitrogenous bases in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine pairs with thymine, and guanine pairs with cytosine, forming the rungs of the ladder that make up the double helix.

The genetic information in DNA is encoded in the sequence of these nitrogenous bases. Large sequences of bases form genes, which provide the instructions for the production of proteins. The process of gene expression involves transcribing the DNA sequence into a complementary RNA molecule, which is then translated into a protein.

Plant DNA is similar to animal DNA in many ways, but there are also some differences. For example, plant DNA contains a higher proportion of repetitive sequences and transposable elements, which are mobile genetic elements that can move around the genome and cause mutations. Additionally, plant cells have cell walls and chloroplasts, which are not present in animal cells, and these structures contain their own DNA.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

A plant genome refers to the complete set of genetic material or DNA present in the cells of a plant. It contains all the hereditary information necessary for the development and functioning of the plant, including its structural and functional characteristics. The plant genome includes both coding regions that contain instructions for producing proteins and non-coding regions that have various regulatory functions.

The plant genome is composed of several types of DNA molecules, including chromosomes, which are located in the nucleus of the cell. Each chromosome contains one or more genes, which are segments of DNA that code for specific proteins or RNA molecules. Plants typically have multiple sets of chromosomes, with each set containing a complete copy of the genome.

The study of plant genomes is an active area of research in modern biology, with important applications in areas such as crop improvement, evolutionary biology, and medical research. Advances in DNA sequencing technologies have made it possible to determine the complete sequences of many plant genomes, providing valuable insights into their structure, function, and evolution.

A gene in plants, like in other organisms, is a hereditary unit that carries genetic information from one generation to the next. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes in plants determine various traits such as flower color, plant height, resistance to diseases, and many others. They are responsible for encoding proteins and RNA molecules that play crucial roles in the growth, development, and reproduction of plants. Plant genes can be manipulated through traditional breeding methods or genetic engineering techniques to improve crop yield, enhance disease resistance, and increase nutritional value.

Introns are non-coding sequences of DNA that are present within the genes of eukaryotic organisms, including plants, animals, and humans. Introns are removed during the process of RNA splicing, in which the initial RNA transcript is cut and reconnected to form a mature, functional RNA molecule.

After the intron sequences are removed, the remaining coding sequences, known as exons, are joined together to create a continuous stretch of genetic information that can be translated into a protein or used to produce non-coding RNAs with specific functions. The removal of introns allows for greater flexibility in gene expression and regulation, enabling the generation of multiple proteins from a single gene through alternative splicing.

In summary, introns are non-coding DNA sequences within genes that are removed during RNA processing to create functional RNA molecules or proteins.

A genetic locus (plural: loci) is a specific location on a chromosome where a particular gene or DNA sequence is found. It is the precise position where a specific genetic element, such as a gene or marker, is located on a chromsomere. This location is defined in terms of its relationship to other genetic markers and features on the same chromosome. Genetic loci can be used in linkage and association studies to identify the inheritance patterns and potential relationships between genes and various traits or diseases.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

No FAQ available that match "cucurbitaceae"

No images available that match "cucurbitaceae"