Limbless REPTILES of the suborder Serpentes.
Bites by snakes. Bite by a venomous snake is characterized by stinging pain at the wound puncture. The venom injected at the site of the bite is capable of producing a deleterious effect on the blood or on the nervous system. (Webster's 3d ed; from Dorland, 27th ed, at snake, venomous)
Solutions or mixtures of toxic and nontoxic substances elaborated by snake (Ophidia) salivary glands for the purpose of killing prey or disabling predators and delivered by grooved or hollow fangs. They usually contain enzymes, toxins, and other factors.
The largest family of snakes, comprising five subfamilies: Colubrinae, Natricinae, Homalopsinae, Lycodontinae, and Xenodontinae. They show a great diversity of eating habits, some eating almost anything, others having a specialized diet. They can be oviparous, ovoviviparous, or viviparous. The majority of North American snakes are colubrines. Among the colubrids are king snakes, water moccasins, water snakes, and garter snakes. Some genera are poisonous. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, pp321-29)
A family of extremely venomous snakes, comprising coral snakes, cobras, mambas, kraits, and sea snakes. They are widely distributed, being found in the southern United States, South America, Africa, southern Asia, Australia, and the Pacific Islands. The elapids include three subfamilies: Elapinae, Hydrophiinae, and Lauticaudinae. Like the viperids, they have venom fangs in the front part of the upper jaw. The mambas of Africa are the most dangerous of all snakes by virtue of their size, speed, and highly toxic venom. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p329-33)
Antisera used to counteract poisoning by animal VENOMS, especially SNAKE VENOMS.
A genus of poisonous snakes of the VIPERIDAE family. About 50 species are known and all are found in tropical America and southern South America. Bothrops atrox is the fer-de-lance and B. jararaca is the jararaca. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p336)
Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized.
A family of snakes comprising three subfamilies: Azemiopinae (the mountain viper, the sole member of this subfamily), Viperinae (true vipers), and Crotalinae (pit vipers). They are widespread throughout the world, being found in the United States, Central and South America, Europe, Asia and Africa. Their venoms act on the blood (hemotoxic) as compared to the venom of elapids which act on the nervous system (neurotoxic). (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, pp333-36)
A family of snakes comprising the boas, anacondas, and pythons. They occupy a variety of habitats through the tropics and subtropics and are arboreal, aquatic or fossorial (burrowing). Some are oviparous, others ovoviviparous. Contrary to popular opinion, they do not crush the bones of their victims: their coils exert enough pressure to stop a prey's breathing, thus suffocating it. There are five subfamilies: Boinae, Bolyerinae, Erycinae, Pythoninae, and Tropidophiinae. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p315-320)
Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized.
A genus of snakes of the family VIPERIDAE, one of the pit vipers, so-called from the pit hollowing out the maxillary bone, opening between the eye and the nostril. They are distinctively American serpents. Most of the 25 recognized species are found in the southwestern United States and northern Mexico. Several species are found as far north as Canada and east of the Mississippi, including southern Appalachia. They are named for the jointed rattle (Greek krotalon) at the tip of their tail. (Goin, Goin, and Zug: Introduction to Herpetology, 3d ed; Moore: Poisonous Snakes of the World, 1980, p335)
Proteins obtained from species of REPTILES.
Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins.
A genus of venomous snakes of the subfamily Crotalinae. Twelve species of this genus are found in North and Central America and Asia. Agkistrodon contortrix is the copperhead, A. piscivorus, the cottonmouth. The former is named for its russet or orange-brown color, the latter for the white interior of its mouth. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p336; Moore, Poisonous Snakes of the World, 1980, p75)
A genus of snakes of the family VIPERIDAE. About 30 species are currently recognized, found in southeast Asia and adjacent island chains. The Okinawa habu frequently enters dwellings in search of rats and mice; the Chinese habu is often found in suburban and agricultural areas. They are quite irritable. (Moore: Poisonous Snakes of the World, 1980, p136)
A genus of poisonous snakes of the subfamily Elapinae of the family ELAPIDAE. They comprise the kraits. Twelve species are recognized and all inhabit southeast Asia. They are considered extremely dangerous. (Moore: Poisonous Snakes of the World, 1980, p120)
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
*Medical Definition:* 'Lizards' are not typically defined in the field of medicine, as they are a type of reptile and not a medical condition or healthcare-related concept; however, certain lizard species such as the Gila monster and beaded lizards possess venomous bites, which can lead to medical emergencies like envenomation requiring medical attention.
Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept.
Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES.
Cold-blooded, air-breathing VERTEBRATES belonging to the class Reptilia, usually covered with external scales or bony plates.
A proteolytic enzyme obtained from the venom of fer-de-lance (Bothrops atrox). It is used as a plasma clotting agent for fibrinogen and for the detection of fibrinogen degradation products. The presence of heparin does not interfere with the clotting test. Hemocoagulase is a mixture containing batroxobin and factor X activator. EC 3.4.21.-.
Proteases which use a metal, normally ZINC, in the catalytic mechanism. This group of enzymes is inactivated by metal CHELATORS.
An enzyme that catalyzes the oxidative deamination of L-amino acids to KETO ACIDS with the generation of AMMONIA and HYDROGEN PEROXIDE. L-amino acid oxidase is widely distributed in and is thought to contribute to the toxicity of SNAKE VENOMS.
A family of polypeptides purified from snake venoms, which contain the arginine-glycine-aspartic acid (RGD) sequence. The RGD tripeptide binds to integrin receptors and thus competitively inhibits normal integrin-ligand interactions. Disintegrins thus block adhesive functions and act as platelet aggregation inhibitors.
Toxins, contained in cobra (Naja) venom that block cholinergic receptors; two specific proteins have been described, the small (short, Type I) and the large (long, Type II) which also exist in other Elapid venoms.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Poisonous animal secretions forming fluid mixtures of many different enzymes, toxins, and other substances. These substances are produced in specialized glands and secreted through specialized delivery systems (nematocysts, spines, fangs, etc.) for disabling prey or predator.
Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
'Zoo animals' are various species of captive wild animals, housed and displayed in a facility for the purpose of public education, conservation, research, and recreation.
Compounds that inhibit or block the activity of a PHOSPHOLIPASE A2 enzyme.
A genus of snakes of the family VIPERIDAE. It is distributed in West Pakistan, most of India, Burma, Ceylon, Thailand, southeast China, Taiwan, and a few islands of Indonesia. It hisses loudly when disturbed and strikes with great force and speed. Very prolific, it gives birth to 20-60 young. This viper is the leading cause of snakebite in India and Burma. (Moore: Poisonous Snakes of the World, 1980, p127)
A specific complex of toxic proteins from the venom of Crotalus durissus terrificus (South American rattlesnake). It can be separated into a phospholipase A and crotapotin fragment; the latter consists of three different amino acid chains, potentiates the enzyme, and is specifically neurotoxic.
Instinctual behavior pattern in which food is obtained by killing and consuming other species.
A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-.

I'm sorry for any confusion, but "snakes" is not a medical term. It refers to a group of legless reptiles that can be found on every continent except Antarctica. If you have any questions about snakes in a different context, please provide more information and I'll do my best to help!

A snake bite is a traumatic injury resulting from the puncture or laceration of skin by the fangs of a snake, often accompanied by envenomation. Envenomation occurs when the snake injects venom into the victim's body through its fangs. The severity and type of symptoms depend on various factors such as the species of snake, the amount of venom injected, the location of the bite, and the individual's sensitivity to the venom. Symptoms can range from localized pain, swelling, and redness to systemic effects like coagulopathy, neurotoxicity, or cardiotoxicity, which may lead to severe complications or even death if not treated promptly and appropriately.

Snake venoms are complex mixtures of bioactive compounds produced by specialized glands in snakes. They primarily consist of proteins and peptides, including enzymes, neurotoxins, hemotoxins, cytotoxins, and cardiotoxins. These toxins can cause a variety of pharmacological effects on the victim's body, such as disruption of the nervous system, blood coagulation, muscle function, and cell membrane integrity, ultimately leading to tissue damage and potentially death. The composition of snake venoms varies widely among different species, making each species' venom unique in its toxicity profile.

Colubridae is a family of snakes that includes a large majority of the world's snake species. It is a diverse group, with members ranging from relatively small and harmless species to large and potentially dangerous ones. Some colubrids have evolved specialized adaptations for specific hunting strategies or defense mechanisms.

Colubridae species are found worldwide, except in Antarctica, and they inhabit various environments such as forests, grasslands, deserts, and wetlands. Many colubrids are constrictors, meaning they kill their prey by wrapping their bodies around it and squeezing until the prey can no longer breathe.

It is worth noting that some colubrid species were previously classified under other families such as Natricidae or Dipsadidae, but recent genetic studies have led to a reclassification of these snakes into Colubridae.

Some examples of colubrids include rat snakes, gopher snakes, racers, whip snakes, and tree snakes. The family also includes some well-known species like the king cobra (Ophiophagus hannah) and the black mamba (Dendroaspis polylepis), which are among the longest and most venomous snakes in the world. However, it is important to note that not all colubrids are venomous, and those that are typically pose little threat to humans due to their mild venom or shy nature.

Elapidae is a family of venomous snakes, also known as elapids. This family includes many well-known species such as cobras, mambas, death adders, and sea snakes. Elapids are characterized by their fixed fangs, which are located at the front of the upper jaw and deliver venom through a hollow canal. The venom of these snakes is typically neurotoxic, causing paralysis and respiratory failure in prey or attackers.

Elapids are found throughout the world, with the greatest diversity occurring in tropical regions. They vary widely in size, from small species like the death adders that measure only a few inches long, to large species like the king cobra, which can reach lengths of up to 18 feet (5.5 meters).

Elapids are generally shy and avoid confrontations with humans whenever possible. However, they will defend themselves aggressively if threatened or cornered. Bites from elapid snakes can be medically significant and may require antivenom treatment.

Antivenins, also known as antivenoms, are medications created specifically to counteract venomous bites or stings from various creatures such as snakes, spiders, scorpions, and marine animals. They contain antibodies that bind to and neutralize the toxic proteins present in venom. Antivenins are usually made by immunizing large animals (like horses) with small amounts of venom over time, which prompts the animal's immune system to produce antibodies against the venom. The antibody-rich serum is then collected from the immunized animal and purified for use as an antivenin.

When administered to a victim who has been envenomated, antivenins work by binding to the venom molecules, preventing them from causing further damage to the body's tissues and organs. This helps minimize the severity of symptoms and can save lives in life-threatening situations. It is essential to seek immediate medical attention if bitten or stung by a venomous creature, as antivenins should be administered as soon as possible for optimal effectiveness.

"Bothrops" is a genus of venomous snakes commonly known as lancehead vipers, found primarily in Central and South America. The name "Bothrops" comes from the Greek words "bothros," meaning pit, and "ops," meaning face, referring to the deep pits on the sides of their heads that help them detect heat and locate prey. These snakes are known for their aggressive behavior and potent venom, which can cause severe pain, swelling, tissue damage, and potentially life-threatening systemic effects if left untreated.

The genus "Bothrops" includes over 30 species of pit vipers, many of which are considered medically important due to their ability to inflict serious envenomations in humans. Some notable examples include Bothrops asper (the terciopelo or fer-de-lance), Bothrops atrox (the common lancehead), and Bothrops jararaca (the jararaca).

If you encounter a snake of this genus, it is essential to seek medical attention immediately if bitten, as the venom can cause significant harm if not treated promptly.

Crotalid venoms are the toxic secretions produced by the members of the Crotalinae subfamily, also known as pit vipers. This group includes rattlesnakes, cottonmouths (or water moccasins), and copperheads, which are native to the Americas, as well as Old World vipers found in Asia and Europe, such as gaboon vipers and saw-scaled vipers.

Crotalid venoms are complex mixtures of various bioactive molecules, including enzymes, proteins, peptides, and other low molecular weight components. They typically contain a variety of pharmacologically active components, such as hemotoxic and neurotoxic agents, which can cause extensive local tissue damage, coagulopathy, cardiovascular dysfunction, and neuromuscular disorders in the victim.

The composition of crotalid venoms can vary significantly between different species and even among individual specimens within the same species. This variability is influenced by factors such as geographic location, age, sex, diet, and environmental conditions. As a result, the clinical manifestations of crotalid envenomation can be highly variable, ranging from mild local reactions to severe systemic effects that may require intensive medical treatment and supportive care.

Crotalid venoms have been the subject of extensive research in recent years due to their potential therapeutic applications. For example, certain components of crotalid venoms have shown promise as drugs for treating various medical conditions, such as cardiovascular diseases, pain, and inflammation. However, further studies are needed to fully understand the mechanisms of action of these venom components and to develop safe and effective therapies based on them.

Viperidae is not a term that has a medical definition per se, but it is a term used in the field of biology and zoology. Viperidae is the family name for a group of venomous snakes commonly known as vipers. This family includes various types of pit vipers, adders, and rattlesnakes.

While Viperidae itself may not have direct medical relevance, understanding the biology and behavior of these creatures is important in the context of medical fields such as toxicology and emergency medicine. Knowledge about the venomous properties of viper snakes and their potential to cause harm to humans is crucial for appropriate treatment and management of snakebites.

Boidae is a family of snakes, also known as boas. This family includes many different species of large, non-venomous snakes found in various parts of the world, particularly in Central and South America, Africa, and Asia. Boas are known for their strong bodies and muscular tails, which they use to constrict their prey before swallowing it whole. Some well-known members of this family include the anaconda, the python, and the boa constrictor.

Elapid venoms are the toxic secretions produced by elapid snakes, a family of venomous snakes that includes cobras, mambas, kraits, and coral snakes. These venoms are primarily composed of neurotoxins, which can cause paralysis and respiratory failure in prey or predators.

Elapid venoms work by targeting the nervous system, disrupting communication between the brain and muscles. This results in muscle weakness, paralysis, and eventually respiratory failure if left untreated. Some elapid venoms also contain hemotoxins, which can cause tissue damage, bleeding, and other systemic effects.

The severity of envenomation by an elapid snake depends on several factors, including the species of snake, the amount of venom injected, the location of the bite, and the size and health of the victim. Prompt medical treatment is essential in cases of elapid envenomation, as the effects of the venom can progress rapidly and lead to serious complications or death if left untreated.

'Crotalus' is a genus of venomous snakes commonly known as rattlesnakes. These snakes are native to the Americas, ranging from southern Canada to Argentina. They are characterized by the distinctive rattle on the end of their tails, which they use to warn potential predators before striking. The venom of Crotalus species is hemotoxic, meaning that it causes damage to blood vessels and tissue.

Some examples of species in this genus include the Western diamondback rattlesnake (Crotalus atrox), the timber rattlesnake (Crotalus horridus), and the sidewinder (Crotalus cerastes). It is important to note that all rattlesnakes are potentially dangerous and should be treated with caution. If you encounter a rattlesnake in the wild, it is best to leave it alone and avoid approaching it.

I'm sorry for any confusion, but the term "Reptilian Proteins" does not have a specific or established medical or scientific meaning. The term "reptilian" generally refers to characteristics of reptiles, and proteins are complex molecules that perform various functions within all living organisms, including reptiles. However, there isn't a recognized category or classification called "Reptilian Proteins" in the field of medicine or biology. If you have any questions about specific reptile-related proteins or reptile physiology, I would be happy to try and help with those!

"Viper venoms" refer to the toxic secretions produced by members of the Viperidae family of snakes, which include pit vipers (such as rattlesnakes, copperheads, and cottonmouths) and true vipers (like adders, vipers, and gaboon vipers). These venoms are complex mixtures of proteins, enzymes, and other bioactive molecules that can cause a wide range of symptoms in prey or predators, including local tissue damage, pain, swelling, bleeding, and potentially life-threatening systemic effects such as coagulopathy, cardiovascular shock, and respiratory failure.

The composition of viper venoms varies widely between different species and even among individuals within the same species. However, many viper venoms contain a variety of enzymes (such as phospholipases A2, metalloproteinases, and serine proteases) that can cause tissue damage and disrupt vital physiological processes in the victim. Additionally, some viper venoms contain neurotoxins that can affect the nervous system and cause paralysis or other neurological symptoms.

Understanding the composition and mechanisms of action of viper venoms is important for developing effective treatments for venomous snakebites, as well as for gaining insights into the evolution and ecology of these fascinating and diverse creatures.

'Agkistrodon' is a genus of venomous snakes commonly known as pit vipers, found predominantly in North America and parts of Asia. This genus includes several species, among them the copperhead (A. contortrix), cottonmouth or water moccasin (A. piscivorus), and the cantil (A. bilineatus). These snakes are characterized by their triangular heads, heat-sensing pits between the eyes and nostrils, and elliptical pupils. They deliver venom through hollow fangs and can cause significant harm to humans if they bite.

It is important to note that 'Agkistrodon' species are often misidentified due to their similarities with other pit vipers. Accurate identification of a snakebite victim is crucial for proper medical treatment, so seeking professional help from herpetologists or medical professionals is highly recommended in such situations.

"Trimeresurus" is a genus of venomous pit vipers found primarily in Asia. Commonly known as "Asian pit vipers" or " temple pit vipers," these snakes are characterized by the presence of a heat-sensing pit organ between the eye and the nostril, which they use to detect the body heat of their prey. They are responsible for causing serious bites and occasionally fatal accidents in human beings.

It's important to note that "Trimeresurus" is a taxonomic term used in the field of biology, specifically in systematics and classification of organisms. It does not have a direct medical definition, but it refers to a group of snakes with medical significance due to their venomous nature.

'Bungarus' is a genus of venomous elapid snakes commonly known as kraits, which are native to South and Southeast Asia. The term 'Bungarus' comes from the natural history classification system used in biology, specifically in the field of herpetology (the study of amphibians and reptiles).

Kraits are known for their highly potent neurotoxic venom, which can cause respiratory failure and death if left untreated. They are typically nocturnal and have a distinctive pattern of alternating black, white, and yellow bands. Some of the more well-known species in this genus include the banded krait (Bungarus fasciatus) and the Malayan krait (Bungarus candidus).

It's worth noting that 'Bungarus' is not a medical term per se, but rather a taxonomic designation used by biologists to classify a group of related organisms. However, understanding the properties and behaviors of venomous snakes like kraits can be important for medical professionals who may encounter patients who have been bitten or envenomated by these creatures.

Cobra venoms are a type of snake venom that is produced by cobras, which are members of the genus Naja in the family Elapidae. These venoms are complex mixtures of proteins and other molecules that have evolved to help the snake immobilize and digest its prey.

Cobra venoms typically contain a variety of toxic components, including neurotoxins, hemotoxins, and cytotoxins. Neurotoxins target the nervous system and can cause paralysis and respiratory failure. Hemotoxins damage blood vessels and tissues, leading to internal bleeding and organ damage. Cytotoxins destroy cells and can cause tissue necrosis.

The specific composition of cobra venoms can vary widely between different species of cobras, as well as between individual snakes of the same species. Some cobras have venoms that are primarily neurotoxic, while others have venoms that are more hemotoxic or cytotoxic. The potency and effects of cobra venoms can also be influenced by factors such as the age and size of the snake, as well as the temperature and pH of the environment.

Cobra bites can be extremely dangerous and even fatal to humans, depending on the species of cobra, the amount of venom injected, and the location of the bite. Immediate medical attention is required in the event of a cobra bite, including the administration of antivenom therapy to neutralize the effects of the venom.

I apologize for any confusion, but "lizards" is not a term used in medical definition. Lizards are a group of scaled reptiles constituting the order Squamata, characterized by having skin covered with overlapping scales, external ears, and movable eyelids. They are found worldwide in a variety of habitats, ranging from desert to tropical environments. If you have any questions related to medical terminology or health concerns, I'd be happy to help!

Neurotoxins are substances that are poisonous or destructive to nerve cells (neurons) and the nervous system. They can cause damage by destroying neurons, disrupting communication between neurons, or interfering with the normal functioning of the nervous system. Neurotoxins can be produced naturally by certain organisms, such as bacteria, plants, and animals, or they can be synthetic compounds created in a laboratory. Examples of neurotoxins include botulinum toxin (found in botulism), tetrodotoxin (found in pufferfish), and heavy metals like lead and mercury. Neurotoxic effects can range from mild symptoms such as headaches, muscle weakness, and tremors, to more severe symptoms such as paralysis, seizures, and cognitive impairment. Long-term exposure to neurotoxins can lead to chronic neurological conditions and other health problems.

Phospholipase A2 (PLA2) is a type of enzyme that catalyzes the hydrolysis of the sn-2 ester bond in glycerophospholipids, releasing free fatty acids, such as arachidonic acid, and lysophospholipids. These products are important precursors for the biosynthesis of various signaling molecules, including eicosanoids, platelet-activating factor (PAF), and lipoxins, which play crucial roles in inflammation, immunity, and other cellular processes.

Phospholipases A2 are classified into several groups based on their structure, mechanism of action, and cellular localization. The secreted PLA2s (sPLA2s) are found in extracellular fluids and are characterized by a low molecular weight, while the calcium-dependent cytosolic PLA2s (cPLA2s) are larger proteins that reside within cells.

Abnormal regulation or activity of Phospholipase A2 has been implicated in various pathological conditions, such as inflammation, neurodegenerative diseases, and cancer. Therefore, understanding the biology and function of these enzymes is essential for developing novel therapeutic strategies to target these disorders.

I'm sorry for any confusion, but "Reptiles" is not a medical term. It is a term used in biology to describe a class of cold-blooded, scaly-skinned animals that include snakes, lizards, alligators, crocodiles, turtles, and tortoises. They are characterized by having lungs for breathing, laying eggs on land, and having a three-chambered heart. If you have any medical questions or terms, I'd be happy to help clarify those!

Batroxobin is a serine protease enzyme that is isolated from the venom of Bothrops atrox, also known as the South American fer-de-lance snake. It has thrombin-like activity and can induce fibrinogen to form fibrin, which is an important step in blood clotting. Batroxobin is used medically as a defibrinating agent to treat conditions such as snake envenomation, cerebral infarction, and arterial thrombosis. It may also be used for research purposes to study hemostasis and coagulation.

Metalloproteases are a group of enzymes that require a metal ion as a cofactor for their enzymatic activity. They are also known as matrix metalloproteinases (MMPs) or extracellular proteinases, and they play important roles in various biological processes such as tissue remodeling, wound healing, and cell migration. These enzymes are capable of degrading various types of extracellular matrix proteins, including collagens, gelatins, and proteoglycans. The metal ion cofactor is usually zinc, although other ions such as calcium or cobalt can also be involved. Metalloproteases are implicated in several diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Inhibitors of metalloproteases have been developed for therapeutic purposes.

L-amino acid oxidase (LAAO) is an enzyme that belongs to the family of flavin monooxygenases. It catalyzes the oxidative deamination of L-amino acids into corresponding α-keto acids, ammonia, and hydrogen peroxide. The reaction takes place in the presence of molecular oxygen and FAD (flavin adenine dinucleotide) as a cofactor.

LAAO is found in various organisms, including mammals, reptiles, fish, insects, bacteria, and plants. In some species, LAAO plays a role in the metabolism of amino acids, while in others, it functions as a part of the immune system or contributes to the development of venoms and toxins.

In humans, LAAO is primarily located in the peroxisomes of liver, kidney, and intestinal cells, where it participates in the catabolism of amino acids. In addition, LAAO has been found to have potential roles in several pathological conditions, such as neurodegenerative disorders, atherosclerosis, and cancer, due to its ability to generate hydrogen peroxide and induce oxidative stress.

Disintegrins are a group of small, cysteine-rich proteins that are derived from the venom of certain snakes, such as vipers and pit vipers. They are named for their ability to disrupt the integrin-mediated adhesion of cells, which is an important process in many physiological and pathological processes, including hemostasis, inflammation, and cancer metastasis.

Disintegrins contain a conserved RGD (Arg-Gly-Asp) or KTS (Lys-Thr-Ser) sequence that allows them to bind specifically to integrin receptors on the surface of cells. This binding can cause various effects, such as inhibiting cell adhesion, migration, and proliferation, or promoting apoptosis (programmed cell death).

Due to their potent biological activities, disintegrins have been studied for their potential therapeutic applications in various diseases, including thrombosis, cancer, and inflammation. However, further research is needed to fully understand their mechanisms of action and safety profiles before they can be used clinically.

Cobra neurotoxin proteins refer to a group of toxic proteins found in the venom of cobra snakes. These toxins primarily affect the nervous system and cause paralysis, which can lead to respiratory failure and death in prey or envenomed individuals. Cobra neurotoxins are classified as phospholipases A2 (PLA2) enzymes, which are capable of hydrolyzing membrane phospholipids and inducing various biological effects.

The two main types of cobra neurotoxin proteins are:

1. Short-chain neurotoxins: These toxins consist of 60-74 amino acid residues, with four disulfide bridges that stabilize their structure. They primarily interact with the nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction, causing muscle paralysis by preventing the binding of acetylcholine to its receptors.
2. Long-chain neurotoxins: These toxins contain 110-120 amino acid residues and have five disulfide bridges. They can be further divided into two subcategories:

a. Cardiotoxins: Although they primarily affect the heart, causing cardiac arrhythmias and decreased contractility, these toxins can also interact with nAChRs and contribute to neuromuscular paralysis.

b. Cytotoxins: These toxins mainly cause damage to various cell types by forming pores in the cell membrane, leading to cell lysis and death. They have minimal effects on the nervous system.

Understanding cobra neurotoxin proteins is essential for developing effective antivenoms and treatments for cobra envenomation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Venom is a complex mixture of toxic compounds produced by certain animals, such as snakes, spiders, scorpions, and marine creatures like cone snails and stonefish. These toxic substances are specifically designed to cause damage to the tissues or interfere with the normal physiological processes of other organisms, which can lead to harmful or even lethal effects.

Venoms typically contain a variety of components, including enzymes, peptides, proteins, and small molecules, each with specific functions that contribute to the overall toxicity of the mixture. Some of these components may cause localized damage, such as tissue necrosis or inflammation, while others can have systemic effects, impacting various organs and bodily functions.

The study of venoms, known as toxinology, has important implications for understanding the evolution of animal behavior, developing new therapeutics, and advancing medical treatments for envenomation (the process of being poisoned by venom). Additionally, venoms have been used in traditional medicine for centuries, and ongoing research continues to uncover novel compounds with potential applications in modern pharmacology.

Phospholipases A are a group of enzymes that hydrolyze phospholipids into fatty acids and lysophospholipids by cleaving the ester bond at the sn-1 or sn-2 position of the glycerol backbone. There are three main types of Phospholipases A:

* Phospholipase A1 (PLA1): This enzyme specifically hydrolyzes the ester bond at the sn-1 position, releasing a free fatty acid and a lysophospholipid.
* Phospholipase A2 (PLA2): This enzyme specifically hydrolyzes the ester bond at the sn-2 position, releasing a free fatty acid (often arachidonic acid, which is a precursor for eicosanoids) and a lysophospholipid.
* Phospholipase A/B (PLA/B): This enzyme has both PLA1 and PLA2 activity and can hydrolyze the ester bond at either the sn-1 or sn-2 position.

Phospholipases A play important roles in various biological processes, including cell signaling, membrane remodeling, and host defense. They are also involved in several diseases, such as atherosclerosis, neurodegenerative disorders, and cancer.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Animals, Zoo" is not a medical term. However, it generally refers to a collection of various species of wild animals kept in enclosures or exhibits for the public to view and learn about. These animals are usually obtained from different parts of the world and live in environments that attempt to simulate their natural habitats. Zoos play an essential role in conservation efforts, education, and research. They provide a unique opportunity for people to connect with wildlife and understand the importance of preserving and protecting endangered species and their ecosystems.

Phospholipase A2 (PLA2) inhibitors are substances that inhibit or block the activity of phospholipase A2, an enzyme that plays a role in inflammation. Phospholipase A2 is responsible for the breakdown of certain types of fat molecules called phospholipids, which are found in cell membranes. This breakdown releases fatty acids, including arachidonic acid, which can be further metabolized to produce pro-inflammatory signaling molecules called eicosanoids.

By inhibiting the activity of phospholipase A2, PLA2 inhibitors can help reduce the production of these inflammatory mediators and potentially decrease inflammation in the body. These inhibitors have been studied for their potential therapeutic benefits in a variety of conditions associated with inflammation, such as rheumatoid arthritis, pancreatitis, and atherosclerosis. However, more research is needed to fully understand their safety and efficacy.

Russell's Viper is not a medical condition or term. It is a type of venomous snake, scientifically known as Daboia russelii, found in parts of Asia. The bite of this viper can cause severe symptoms such as pain, swelling, bleeding, tissue damage, and potentially life-threatening systemic effects like kidney failure, blood clotting problems, and cardiac arrest. Medical personnel should be notified immediately in case of a snakebite, and appropriate antivenom therapy should be initiated as soon as possible to reduce the risk of complications or mortality.

Crotoxin is a type of protein toxin found in the venom of the South American rattlesnake, Crotalus durissus terrificus. It is a heterodimeric presynaptic neurotoxin composed of two subunits, an acidic subunit (CA) and a basic subunit (CB), which work together to inhibit the release of neurotransmitters from nerve endings. Crotoxin has been extensively studied for its potential therapeutic applications in various medical conditions, including inflammation, pain, and cancer. However, it is also highly toxic and can cause serious harm if ingested or introduced into the body through a snake bite.

In the context of mental health and psychology, "predatory behavior" is not a term that is commonly used as a medical diagnosis or condition. However, it generally refers to aggressive or exploitative behavior towards others with the intention of taking advantage of them for personal gain or pleasure. This could include various types of harmful behaviors such as sexual harassment, assault, stalking, bullying, or financial exploitation.

In some cases, predatory behavior may be associated with certain mental health conditions, such as antisocial personality disorder or psychopathy, which are characterized by a disregard for the rights and feelings of others. However, it's important to note that not all individuals who engage in predatory behavior have a mental health condition, and many people who do may not necessarily exhibit these behaviors.

If you or someone else is experiencing harm or exploitation, it's important to seek help from a trusted authority figure, such as a healthcare provider, law enforcement officer, or social worker.

Phospholipases are a group of enzymes that catalyze the hydrolysis of phospholipids, which are major components of cell membranes. Phospholipases cleave specific ester bonds in phospholipids, releasing free fatty acids and other lipophilic molecules. Based on the site of action, phospholipases are classified into four types:

1. Phospholipase A1 (PLA1): This enzyme hydrolyzes the ester bond at the sn-1 position of a glycerophospholipid, releasing a free fatty acid and a lysophospholipid.
2. Phospholipase A2 (PLA2): PLA2 cleaves the ester bond at the sn-2 position of a glycerophospholipid, releasing a free fatty acid (often arachidonic acid) and a lysophospholipid. Arachidonic acid is a precursor for eicosanoids, which are signaling molecules involved in inflammation and other physiological processes.
3. Phospholipase C (PLC): PLC hydrolyzes the phosphodiester bond in the headgroup of a glycerophospholipid, releasing diacylglycerol (DAG) and a soluble head group, such as inositol trisphosphate (IP3). DAG acts as a secondary messenger in intracellular signaling pathways, while IP3 mediates the release of calcium ions from intracellular stores.
4. Phospholipase D (PLD): PLD cleaves the phosphoester bond between the headgroup and the glycerol moiety of a glycerophospholipid, releasing phosphatidic acid (PA) and a free head group. PA is an important signaling molecule involved in various cellular processes, including membrane trafficking, cytoskeletal reorganization, and cell survival.

Phospholipases have diverse roles in normal physiology and pathophysiological conditions, such as inflammation, immunity, and neurotransmission. Dysregulation of phospholipase activity can contribute to the development of various diseases, including cancer, cardiovascular disease, and neurological disorders.

No FAQ available that match "cover snakes"

No images available that match "cover snakes"