An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP).
A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS.
A 90-amino acid peptide derived from post-translational processing of pro-opiomelanocortin (POMC) in the PITUITARY GLAND and the HYPOTHALAMUS. It is the C-terminal fragment of POMC with lipid-mobilizing activities, such as LIPOLYSIS and steroidogenesis. Depending on the species and the tissue sites, beta-LPH may be further processed to yield active peptides including GAMMA-LIPOTROPIN; BETA-MSH; and ENDORPHINS.
Cell surface proteins that bind corticotropin-releasing hormone with high affinity and trigger intracellular changes which influence the behavior of cells. The corticotropin releasing-hormone receptors on anterior pituitary cells mediate the stimulation of corticotropin release by hypothalamic corticotropin releasing factor. The physiological consequence of activating corticotropin-releasing hormone receptors on central neurons is not well understood.
Cell surface receptors that bind CORTICOTROPIN; (ACTH, adrenocorticotropic hormone) with high affinity and trigger intracellular changes. Pharmacology suggests there may be multiple ACTH receptors. An ACTH receptor has been cloned and belongs to a subfamily of G-protein-coupled receptors. In addition to the adrenal cortex, ACTH receptors are found in the brain and immune systems.
Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects.
A synthetic peptide that is identical to the 24-amino acid segment at the N-terminal of ADRENOCORTICOTROPIC HORMONE. ACTH (1-24), a segment similar in all species, contains the biological activity that stimulates production of CORTICOSTEROIDS in the ADRENAL CORTEX.
One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group.
The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions.
Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs.
The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
Neuropeptides of about 40 amino acids which are structurally similar to CORTICOTROPIN-RELEASING FACTOR. Unlike CRF acting primarily through type 1 CRF RECEPTORS, urocortins signal preferentially through type 2 CRF receptors. Urocortins have wide tissue distribution from fish to mammals, and diverse functions. In mammals, urocortins can suppress food intake, delays gastric emptying, and decreases heat-induced edema.
Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS.
Conditions in which the production of adrenal CORTICOSTEROIDS falls below the requirement of the body. Adrenal insufficiency can be caused by defects in the ADRENAL GLANDS, the PITUITARY GLAND, or the HYPOTHALAMUS.
The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS.
The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION.
A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND.
A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP).
Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE.
Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Structurally, they include polypeptide, protein, and glycoprotein molecules.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
Radioimmunoassay of proteins using antibody coupled to an immunosorbent.
The wide middle zone of the adrenal cortex. This zone produces a series of enzymes that convert PREGNENOLONE to cortisol (HYDROCORTISONE) via 17-ALPHA-HYDROXYPROGESTERONE.
Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively.
A 191-amino acid polypeptide hormone secreted by the human adenohypophysis (PITUITARY GLAND, ANTERIOR), also known as GH or somatotropin. Synthetic growth hormone, termed somatropin, has replaced the natural form in therapeutic usage such as treatment of dwarfism in children with growth hormone deficiency.
A 31-amino acid peptide that is the C-terminal fragment of BETA-LIPOTROPIN. It acts on OPIOID RECEPTORS and is an analgesic. Its first four amino acids at the N-terminal are identical to the tetrapeptide sequence of METHIONINE ENKEPHALIN and LEUCINE ENKEPHALIN.
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE.
An aromatase inhibitor that is used in the treatment of advanced BREAST CANCER.
A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes.
An epileptic syndrome characterized by the triad of infantile spasms, hypsarrhythmia, and arrest of psychomotor development at seizure onset. The majority present between 3-12 months of age, with spasms consisting of combinations of brief flexor or extensor movements of the head, trunk, and limbs. The condition is divided into two forms: cryptogenic (idiopathic) and symptomatic (secondary to a known disease process such as intrauterine infections; nervous system abnormalities; BRAIN DISEASES, METABOLIC, INBORN; prematurity; perinatal asphyxia; TUBEROUS SCLEROSIS; etc.). (From Menkes, Textbook of Child Neurology, 5th ed, pp744-8)
A condition caused by prolonged exposure to excess levels of cortisol (HYDROCORTISONE) or other GLUCOCORTICOIDS from endogenous or exogenous sources. It is characterized by upper body OBESITY; OSTEOPOROSIS; HYPERTENSION; DIABETES MELLITUS; HIRSUTISM; AMENORRHEA; and excess body fluid. Endogenous Cushing syndrome or spontaneous hypercortisolism is divided into two groups, those due to an excess of ADRENOCORTICOTROPIN and those that are ACTH-independent.
An anti-inflammatory 9-fluoro-glucocorticoid.
A naturally occurring glucocorticoid. It has been used in replacement therapy for adrenal insufficiency and as an anti-inflammatory agent. Cortisone itself is inactive. It is converted in the liver to the active metabolite HYDROCORTISONE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p726)
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed)
Hormones secreted by the PITUITARY GLAND including those from the anterior lobe (adenohypophysis), the posterior lobe (neurohypophysis), and the ill-defined intermediate lobe. Structurally, they include small peptides, proteins, and glycoproteins. They are under the regulation of neural signals (NEUROTRANSMITTERS) or neuroendocrine signals (HYPOTHALAMIC HORMONES) from the hypothalamus as well as feedback from their targets such as ADRENAL CORTEX HORMONES; ANDROGENS; ESTROGENS.
Hormones synthesized from amino acids. They are distinguished from INTERCELLULAR SIGNALING PEPTIDES AND PROTEINS in that their actions are systemic.
Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND.
Symptom complex due to ACTH production by non-pituitary neoplasms.
Pathological processes of the ADRENAL GLANDS.
The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions.
Chemical substances which inhibit the function of the endocrine glands, the biosynthesis of their secreted hormones, or the action of hormones upon their specific sites.
Nucleus in the anterior part of the HYPOTHALAMUS.
A condition observed in WOMEN and CHILDREN when there is excess coarse body hair of an adult male distribution pattern, such as facial and chest areas. It is the result of elevated ANDROGENS from the OVARIES, the ADRENAL GLANDS, or exogenous sources. The concept does not include HYPERTRICHOSIS, which is an androgen-independent excessive hair growth.
Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification, such as cleavage, to produce the active functional protein or peptide hormone.
Examinations that evaluate and monitor hormone production in the adrenal cortex.
Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA.
Excision of one or both adrenal glands. (From Dorland, 28th ed)
A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3.
The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE.
A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity.
An inhibitor of the enzyme STEROID 11-BETA-MONOOXYGENASE. It is used as a test of the feedback hypothalamic-pituitary mechanism in the diagnosis of CUSHING SYNDROME.
Compounds, either natural or synthetic, which block development of the growing insect.
Adrenal cortex hormones are steroid hormones produced by the outer portion of the adrenal gland, consisting of glucocorticoids, mineralocorticoids, and androgens, which play crucial roles in various physiological processes such as metabolism regulation, stress response, electrolyte balance, and sexual development and function.
A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ.
Therapeutic use of hormones to alleviate the effects of hormone deficiency.
Cell surface proteins that bind pituitary hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Since many pituitary hormones are also released by neurons as neurotransmitters, these receptors are also found in the nervous system.
Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system.
Tests that evaluate the adrenal glands controlled by pituitary hormones.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Injections into the cerebral ventricles.
Proteins obtained from species in the class of AMPHIBIANS.
A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A synthetic steroid with anabolic properties that are more pronounced than its androgenic effects. It has little progestational activity. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1188)
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
Inflammation of the eyelids.
A group of hydroxycorticosteroids bearing a hydroxy group at the 17-position. Urinary excretion of these compounds is used as an index of adrenal function. They are used systemically in the free alcohol form, but with esterification of the hydroxy groups, topical effectiveness is increased.
A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed)
Peptide hormones produced by NEURONS of various regions in the HYPOTHALAMUS. They are released into the pituitary portal circulation to stimulate or inhibit PITUITARY GLAND functions. VASOPRESSIN and OXYTOCIN, though produced in the hypothalamus, are not included here for they are transported down the AXONS to the POSTERIOR LOBE OF PITUITARY before being released into the portal circulation.
A 13-amino acid peptide derived from proteolytic cleavage of ADRENOCORTICOTROPIC HORMONE, the N-terminal segment of ACTH. ACTH (1-13) is amidated at the C-terminal to form ACTH (1-13)NH2 which in turn is acetylated to form alpha-MSH in the secretory granules. Alpha-MSH stimulates the synthesis and distribution of MELANIN in MELANOCYTES in mammals and MELANOPHORES in lower vertebrates.
The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
A glycoprotein that causes regression of MULLERIAN DUCTS. It is produced by SERTOLI CELLS of the TESTES. In the absence of this hormone, the Mullerian ducts develop into structures of the female reproductive tract. In males, defects of this hormone result in persistent Mullerian duct, a form of MALE PSEUDOHERMAPHRODITISM.
Hormones produced by the GONADS, including both steroid and peptide hormones. The major steroid hormones include ESTRADIOL and PROGESTERONE from the OVARY, and TESTOSTERONE from the TESTIS. The major peptide hormones include ACTIVINS and INHIBINS.
The relationship between the dose of an administered drug and the response of the organism to the drug.
High affinity receptors for THYROID HORMONES, especially TRIIODOTHYRONINE. These receptors are usually found in the nucleus where they regulate DNA transcription. They are encoded by the THRB gene (also known as NR1A2, THRB1, or ERBA2 gene) as several isoforms produced by alternative splicing. Mutations in the THRB gene cause THYROID HORMONE RESISTANCE SYNDROME.
Feeling or emotion of dread, apprehension, and impending disaster but not disabling as with ANXIETY DISORDERS.
A subclass of anhydrides with the general structure of dihydrofurandione. They can be substituted on any carbon atom. They modify and inhibit proteins and enzymes and are used in the acylation of amino- and hydroxyl groups.
Elements of limited time intervals, contributing to particular results or situations.
The rate dynamics in chemical or physical systems.
A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal.
Stress wherein emotional factors predominate.
The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS.
HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis.
A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system.
A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium.
An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1.
A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion.
Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION.
Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Established cell cultures that have the potential to propagate indefinitely.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
High affinity receptors for THYROID HORMONES, especially TRIIODOTHYRONINE. These receptors are usually found in the nucleus where they regulate DNA transcription. They are encoded by the THRA gene (also known as NR1A1, THRA1, ERBA or ERBA1 gene) as several isoforms produced by alternative splicing.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The alpha chain of pituitary glycoprotein hormones (THYROTROPIN; FOLLICLE STIMULATING HORMONE; LUTEINIZING HORMONE) and the placental CHORIONIC GONADOTROPIN. Within a species, the alpha subunits of these four hormones are identical; the distinct functional characteristics of these glycoprotein hormones are determined by the unique beta subunits. Both subunits, the non-covalently bound heterodimers, are required for full biologic activity.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone.
Hormones produced by invertebrates, usually insects, mollusks, annelids, and helminths.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Hormones released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). They include a number of peptides which are formed in the NEURONS in the HYPOTHALAMUS, bound to NEUROPHYSINS, and stored in the nerve terminals in the posterior pituitary. Upon stimulation, these peptides are released into the hypophysial portal vessel blood.
A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones.
A long-acting derivative of cyclic AMP. It is an activator of cyclic AMP-dependent protein kinase, but resistant to degradation by cyclic AMP phosphodiesterase.
Cell surface proteins that bind GROWTH HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. Activation of growth hormone receptors regulates amino acid transport through cell membranes, RNA translation to protein, DNA transcription, and protein and amino acid catabolism in many cell types. Many of these effects are mediated indirectly through stimulation of the release of somatomedins.
The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS.
The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs and stimuli, hormone secretion, sleeping, and feeding.
Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
The functions of the skin in the human and animal body. It includes the pigmentation of the skin.
Hormones produced in the testis.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
The observable response an animal makes to any situation.
The beta subunit of follicle stimulating hormone. It is a 15-kDa glycopolypeptide. Full biological activity of FSH requires the non-covalently bound heterodimers of an alpha and a beta subunit. Mutation of the FSHB gene causes delayed puberty, or infertility.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA.
A parathyroid hormone receptor subtype that recognizes both PARATHYROID HORMONE and PARATHYROID HORMONE-RELATED PROTEIN. It is a G-protein-coupled receptor that is expressed at high levels in BONE and in KIDNEY.
Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration.
A mitochondrial cytochrome P450 enzyme that catalyzes the side-chain cleavage of C27 cholesterol to C21 pregnenolone in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP11A1 gene, catalyzes the breakage between C20 and C22 which is the initial and rate-limiting step in the biosynthesis of various gonadal and adrenal steroid hormones.
Hormones produced by the placenta include CHORIONIC GONADOTROPIN, and PLACENTAL LACTOGEN as well as steroids (ESTROGENS; PROGESTERONE), and neuropeptide hormones similar to those found in the hypothalamus (HYPOTHALAMIC HORMONES).
Peptide hormones secreted into the blood by cells in the ISLETS OF LANGERHANS of the pancreas. The alpha cells secrete glucagon; the beta cells secrete insulin; the delta cells secrete somatostatin; and the PP cells secrete pancreatic polypeptide.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes.
Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells.
The sum of the weight of all the atoms in a molecule.
The surgical removal of one or both ovaries.
Cell surface receptors that bind thyrotropin releasing hormone (TRH) with high affinity and trigger intracellular changes which influence the behavior of cells. Activated TRH receptors in the anterior pituitary stimulate the release of thyrotropin (thyroid stimulating hormone, TSH); TRH receptors on neurons mediate neurotransmission by TRH.
Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA.
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
Cell surface proteins that bind PARATHYROID HORMONE with high affinity and trigger intracellular changes which influence the behavior of cells. Parathyroid hormone receptors on BONE; KIDNEY; and gastrointestinal cells mediate the hormone's role in calcium and phosphate homeostasis.
One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
A disorder with chronic or recurrent colonic symptoms without a clearcut etiology. This condition is characterized by chronic or recurrent ABDOMINAL PAIN, bloating, MUCUS in FECES, and an erratic disturbance of DEFECATION.
A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor.
A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively.
Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN).
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
An inherited autosomal recessive trait, characterized by peripheral resistance to THYROID HORMONES and the resulting elevation in serum levels of THYROXINE and TRIIODOTHYRONINE. This syndrome is caused by mutations of gene THRB encoding the THYROID HORMONE RECEPTORS BETA in target cells. HYPOTHYROIDISM in these patients is partly overcome by the increased thyroid hormone levels.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Azoles of one NITROGEN and two double bonds that have aromatic chemical properties.
Refers to animals in the period of time just after birth.
Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes.
Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015)
The physiological period following the MENOPAUSE, the permanent cessation of the menstrual life.
A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized.
Cell surface proteins that bind FOLLICLE STIMULATING HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells.
Cell surface receptors that bind the hypothalamic hormones regulating pituitary cell differentiation, proliferation, and hormone synthesis and release, including the pituitary-releasing and release-inhibiting hormones. The pituitary hormone-regulating hormones are also released by cells other than hypothalamic neurons, and their receptors also occur on non-pituitary cells, especially brain neurons, where their role is less well understood. Receptors for dopamine, which is a prolactin release-inhibiting hormone as well as a common neurotransmitter, are not included here.
The beta subunit of luteinizing hormone. It is a 15-kDa glycopolypeptide with structure similar to the beta subunit of the placental chorionic gonadatropin (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN) except for the additional 31 amino acids at the C-terminal of CG-beta. Full biological activity of LH requires the non-covalently bound heterodimers of an alpha and a beta subunit. Mutation of the LHB gene causes HYPOGONADISM and infertility.
Compounds that interact with PROGESTERONE RECEPTORS in target tissues to bring about the effects similar to those of PROGESTERONE. Primary actions of progestins, including natural and synthetic steroids, are on the UTERUS and the MAMMARY GLAND in preparation for and in maintenance of PREGNANCY.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8.
Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include, but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON.
The physical activity of a human or an animal as a behavioral phenomenon.
A 28-amino acid, acylated, orexigenic peptide that is a ligand for GROWTH HORMONE SECRETAGOGUE RECEPTORS. Ghrelin is widely expressed but primarily in the stomach in the adults. Ghrelin acts centrally to stimulate growth hormone secretion and food intake, and peripherally to regulate energy homeostasis. Its large precursor protein, known as appetite-regulating hormone or motilin-related peptide, contains ghrelin and obestatin.
The last menstrual period. Permanent cessation of menses (MENSTRUATION) is usually defined after 6 to 12 months of AMENORRHEA in a woman over 45 years of age. In the United States, menopause generally occurs in women between 48 and 55 years of age.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
Humoral factors secreted by the thymus gland. They participate in the development of the lymphoid system and the maturation of the cellular immune response.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Surgical removal or artificial destruction of gonads.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES.
A primary, chronic disease with genetic, psychosocial, and environmental factors influencing its development and manifestations. The disease is often progressive and fatal. It is characterized by impaired control over drinking, preoccupation with the drug alcohol, use of alcohol despite adverse consequences, and distortions in thinking, most notably denial. Each of these symptoms may be continuous or periodic. (Morse & Flavin for the Joint Commission of the National Council on Alcoholism and Drug Dependence and the American Society of Addiction Medicine to Study the Definition and Criteria for the Diagnosis of Alcoholism: in JAMA 1992;268:1012-4)
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.

Potent mast cell degranulation and vascular permeability triggered by urocortin through activation of corticotropin-releasing hormone receptors. (1/1772)

Urocortin (Ucn) is related to corticotropin-releasing hormone (CRH), and both are released in the brain under stress where they stimulate CRH 1 and 2 receptors (CRHR). Outside the brain, they may have proinflammatory actions through activation of mast cells, which are located perivascularly close to nerve endings and degranulate in response to acute psychological stress. Here, we report that a concentration of intradermal Ucn as low as 10 nM induced dose-dependent rat skin mast cell degranulation and increased vascular permeability. This effect appeared to be equipotent to that of calcitonin gene-related peptide and neurotensin. Ucn-induced skin vasodilation was inhibited by pretreatment with the mast cell stabilizer disodium cromoglycate (cromolyn) and was absent in the mast cell-deficient W/Wv mice. The selective nonpeptide CRH receptor 1 antagonist, antalarmin and the nonselective peptide antagonist astressin both reduced vascular permeability triggered by Ucn but not that by Substance P or histamine. In contrast, the peptide antagonist alpha-helical CRH-(9-41) reduced the effect of all three. The vasodilatory effect of Ucn was largely inhibited by pretreatment with H1 receptor antagonists, suggesting that histamine is the major mediator involved in vitro. Neuropeptide depletion of sensory neurons, treatment with the ganglionic blocker hexamethonium, or in situ skin infiltration with the local anesthetic lidocaine did not affect Ucn-induced vascular permeability, indicating that its in situ effect was not mediated through the peripheral nervous system. These results indicate that Ucn is one of the most potent triggers of rat mast cell degranulation and skin vascular permeability. This effect of Ucn may explain stress-induced disorders, such as atopic dermatitis or psoriasis, and may lead to new forms of treatment.  (+info)

Studies of the role of endothelium-dependent nitric oxide release in the sustained vasodilator effects of corticotrophin releasing factor and sauvagine. (2/1772)

1. The mechanisms of the sustained vasodilator actions of corticotrophin-releasing factor (CRF) and sauvagine (SVG) were studied using rings of endothelium de-nuded rat thoracic aorta (RTA) and the isolated perfused rat superior mesenteric arterial vasculature (SMA). 2. SVG was approximately 50 fold more potent than CRF on RTA (EC40: 0.9 +/- 0.2 and 44 +/- 9 nM respectively, P < 0.05), and approximately 10 fold more active in the perfused SMA (ED40: 0.05 +/- 0.02 and 0.6 +/- 0.1 nmol respectively, P < 0.05). Single bolus injections of CRF (100 pmol) or SVG (15 pmol) in the perfused SMA caused reductions in perfusion pressure of 23 +/- 1 and 24 +/- 2% that lasted more than 20 min. 3. Removal of the endothelium in the perfused SMA with deoxycholic acid attenuated the vasodilatation and revealed two phases to the response; a short lasting direct action, and a sustained phase which was fully inhibited. 4. Inhibition of nitric oxide synthase with L-NAME (100 microM) L-NMMA (100 microM) or 2-ethyl-2-thiopseudourea (ETPU, 100 microM) had similar effects on the vasodilator responses to CRF as removal of the endothelium, suggesting a pivotal role for nitric oxide. However the selective guanylate cyclase inhibitor 1H-[l,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ, 10 microM) did not affect the response to CRF. 5. High potassium (60 mM) completely inhibited the vasodilator response to CRF in the perfused SMA, indicating a role for K channels in this response. 6. Compared to other vasodilator agents acting via the release of NO, the actions of CRF and SVG are strikingly long-lasting, suggesting a novel mechanism of prolonged activation of nitric oxide synthase.  (+info)

Effect of central corticotropin-releasing factor on carbon tetrachloride-induced acute liver injury in rats. (3/1772)

Central neuropeptides play important roles in many instances of physiological and pathophysiological regulation mediated through the autonomic nervous system. In regard to the hepatobiliary system, several neuropeptides act in the brain to regulate bile secretion, hepatic blood flow, and hepatic proliferation. Stressors and sympathetic nerve activation are reported to exacerbate experimental liver injury. Some stressors are known to stimulate corticotropin-releasing factor (CRF) synthesis in the central nervous system and induce activation of sympathetic nerves in animal models. The effect of intracisternal CRF on carbon tetrachloride (CCl4)-induced acute liver injury was examined in rats. Intracisternal injection of CRF dose dependently enhanced elevation of the serum alanine aminotransferase (ALT) level induced by CCl4. Elevations of serum aspartate aminotransferase, alkaline phosphatase, and total bilirubin levels by CCl4 were also enhanced by intracisternal CRF injection. Intracisternal injection of CRF also aggravated CCl4-induced hepatic histological changes. Intracisternal CRF injection alone did not modify the serum ALT level. Intravenous administration of CRF did not influence CCl4-induced acute liver injury. The aggravating effect of central CRF on CCl4-induced acute liver injury was abolished by denervation of hepatic plexus with phenol and by denervation of noradrenergic fibers with 6-hydroxydopamine treatment but not by hepatic branch vagotomy or atropine treatment. These results suggest that CRF acts in the brain to exacerbate acute liver injury through the sympathetic-noradrenergic pathways.  (+info)

Corticotropin-releasing factor receptor 1 in mouse spleen: expression after immune stimulation and identification of receptor-bearing cells. (4/1772)

A specific polyclonal Ab against the N-terminal domain of corticotropin-releasing factor (CRF) receptor, type 1 (CRF-R1), was employed to an immunohistochemical analysis of the spleen from naive mice and mice exposed to an immune challenge. Cell types stained with anti-CRF-R1 Ab were identified by their nuclear shapes and colocalization with the cell type-specific markers ER-MP58, ER-MP20, Moma-1, Moma 2, anti-CD3e mAbs, and anti-Ig Ab. Only a few clusters of CRF-R1+ cells were found in spleen sections of naive mice at sites typical for granulopoietic islands. However, a 17-fold increase in the mean number of CRF-R1+ cells was noted within hours following a challenge of acute systemic inflammation induced by i.p. administration of LPS. The majority of these cells were identified as mature neutrophils. CRF-R1 was shown to mediate suppression of the IL-1beta secretion by these cells. However, at later time points a large number of granulocyte-macrophage precursors was strongly labeled with anti-CRF-R1 Ab. Western blot analysis of splenic membranes from animals treated with LPS revealed a m.w. of approximately 70,000 for CRF-R1. Subcellular staining patterns were suggestive for the predominant localization of CRF-R1 on granule membranes. CRF-R1 mRNA was detected in spleen but not in bone marrow and peripheral blood leukocytes from naive mice. Thus, it was indicated that CRF-R1 was not produced constitutively by mature or immature neutrophils. Its production was rather triggered by inflammatory stimuli.  (+info)

Evaluation of hypothalamic-pituitary-adrenal axis in amenorrhoeic women with insulin-dependent diabetes. (5/1772)

Diabetes is associated with a higher incidence of secondary hypogonadotrophic amenorrhoea. In amenorrhoeic women with insulin-dependent diabetes a derangement in hypothalamic-pituitary-ovary axis has been proposed. No data exist on hypothalamic-pituitary-adrenal function in these women. Gonadotrophin releasing hormone (GnRH), corticotrophin releasing hormone (CRH), metoclopramide and thyroid releasing hormone (TRH) tests were performed in 15 diabetic women, eight amenorrhoeic (AD) and seven eumenorrhoeic (ED). Frequent blood samples were taken during 24 h to evaluate cortisol plasma concentrations. There were no differences between the groups in body mass index, duration of diabetes, insulin dose and metabolic control. The AD women had lower plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin, oestradiol, androstenedione and 17-hydroxyprogesterone (17-OHP) than the ED women. The responses of pituitary gonadotrophins to GnRH, and of thyroid stimulating hormone (TSH) to TRH, were similar in both groups. The AD women had a lower prolactin response to TRH and metoclopramide, and lower ACTH and cortisol responses to CRH, than the ED women. Mean cortisol concentrations > 24 h were higher in the amenorrhoeic group. Significant differences in cortisol concentrations from 2400 to 1000 h were found between the two groups. Insulin-dependent diabetes may involve mild chronic hypercortisolism which may affect metabolic control. Stress-induced activation of the hypothalamic-pituitary-adrenal axis would increase hypothalamic secretion of CRH. This would lead directly and perhaps also indirectly by increasing dopaminergic tonus to inhibition of GnRH secretion and hence hypogonadotrophic amenorrhoea. Amenorrhoea associated with metabolically controlled insulin-dependent diabetes is a form of functional hypothalamic amenorrhoea that requires pharmacological and psychological management.  (+info)

Pituitary-adrenal cortical responses to low-dose physostigmine and arginine vasopressin administration in normal women and men. (6/1772)

Animal studies indicate that central cholinergic neurotransmission stimulates CRH secretion, but several human studies suggest that the hypothalamo-pituitary-adrenal cortical (HPA) axis may be activated only by doses of cholinergic agonists that produce noxious side effects and, by inference, a nonspecific stress response. Physostigmine (PHYSO), a reversible cholinesterase inhibitor, was administered to normal women and men at a dose that elevated plasma ACTH1-39, cortisol, and arginine vasopressin (AVP) concentrations but produced few or no side effects. Exogenous AVP also was administered alone and following PHYSO, to determine if it would augment the effect of PHYSO on the HPA axis. Fourteen normal women and 14 normal men matched to the women on age and race underwent four test sessions 5 to 7 days apart: PHYSO (8 micrograms/kg i.v.), AVP (0.08 U/kg i.m.), PHYSO plus AVP, and saline control. Serial blood samples taken before and after pharmacologic challenge were analyzed for ACTH1-39, cortisol, and AVP. PHYSO and AVP administration produced no side effects in about half the subjects and mild side effects in the other half, with no significant female-male differences overall. There also were no significant female-male differences in ACTH1-39 or cortisol responses to AVP. In contrast, the men had significantly greater ACTH1-39 responses to PHYSO administration than did the women. The endogenous AVP response to PHYSO also was significantly greater in the men than in the women, and the ACTH1-39 and AVP responses to PHYSO were significantly correlated in the men (both = +0.70) but not in the women. None of the hormone responses was significantly correlated with the presence or absence of side effects in either group of subjects. These results indicate a greater sensitivity of the HPA axis to low-dose PHYSO in normal men than in normal women, which likely is mediated by increased secretion of AVP. The lack of difference in side effects between the two groups of subjects and the lack of significant correlations between presence or absence of side effects and hormone responses in either group suggest that the increased hormone responses in the men were due to increased responsivity of central cholinergic systems and not to a nonspecific stress response.  (+info)

Peripheral urocortin delays gastric emptying: role of CRF receptor 2. (7/1772)

Urocortin, a new mammalian member of the corticotropin-releasing factor (CRF) family has been proposed to be the endogenous ligand for CRF receptor 2 (CRF-R2). We studied the influence of intravenous urocortin on gastric emptying and the role of CRF-R2 in peptide action and postoperative gastric ileus in conscious rats. The intravenous doses of rat CRF and rat urocortin producing 50% inhibition of gastric emptying were 2.5 and 1.1 microgram/kg, respectively. At these intravenous doses, CRF and urocortin have their actions fully reversed by the CRF-R1/CRF-R2 antagonist astressin at antagonist/agonist ratios of 5:1 and 67:1, respectively. Astressin (12 microgram/kg iv) completely prevented abdominal surgery-induced 54% inhibition of gastric emptying 3 h after surgery while having no effect on basal gastric emptying. The selective nonpeptide CRF-R1 antagonists antalarmin (20 mg/kg ip) and NBI-27914 (400 microgram/kg iv) did not influence intravenous CRF-, urocortin- or surgery-induced gastric stasis. These results as well as earlier ones showing that alpha-helical CRF9-41 (a CRF-R2 more selective antagonist) partly prevented postoperative ileus indicate that peripheral CRF-R2 may be primarily involved in intravenous urocortin-, CRF-, and abdominal surgery-induced gastric stasis.  (+info)

Mechanisms underlying the anti-inflammatory actions of central corticotropin-releasing factor. (8/1772)

Immune activation of hypothalamic corticotropin-releasing factor (CRF) provides a negative feedback mechanism to modulate peripheral inflammatory responses. We investigated whether central CRF attenuates endothelial expression of intercellular adhesion molecule 1 (ICAM-1) and leukocyte recruitment during endotoxemia in rats and determined its mechanisms of action. As measured by intravital microscopy, lipopolysaccharide (LPS) induced a dose-dependent increase in leukocyte rolling, adhesion, and emigration in mesenteric venules, which was associated with upregulation of endothelial ICAM-1 expression. Intracisternal injection of CRF abrogated both the increased expression of ICAM-1 and leukocyte recruitment. Intravenous injection of the specific CRF receptor antagonist astressin did not modify leukocyte-endothelial cell interactions induced by a high dose of LPS but enhanced leukocyte adhesion induced by a low dose. Blockade of endogenous glucocorticoids but not alpha-melanocyte-stimulating hormone (alpha-MSH) receptors reversed the inhibitory action of CRF on leukocyte-endothelial cell interactions during endotoxemia. In conclusion, cerebral CRF blunts endothelial upregulation of ICAM-1 and attenuates the recruitment of leukocytes during endotoxemia. The anti-inflammatory effects of CRF are mediated by adrenocortical activation and additional mechanisms independent of alpha-MSH.  (+info)

Adrenocorticotropic Hormone (ACTH) is a hormone produced and released by the anterior pituitary gland, a small endocrine gland located at the base of the brain. ACTH plays a crucial role in the regulation of the body's stress response and has significant effects on various physiological processes.

The primary function of ACTH is to stimulate the adrenal glands, which are triangular-shaped glands situated on top of the kidneys. The adrenal glands consist of two parts: the outer cortex and the inner medulla. ACTH specifically targets the adrenal cortex, where it binds to specific receptors and initiates a series of biochemical reactions leading to the production and release of steroid hormones, primarily cortisol (a glucocorticoid) and aldosterone (a mineralocorticoid).

Cortisol is involved in various metabolic processes, such as regulating blood sugar levels, modulating the immune response, and helping the body respond to stress. Aldosterone plays a vital role in maintaining electrolyte and fluid balance by promoting sodium reabsorption and potassium excretion in the kidneys.

ACTH release is controlled by the hypothalamus, another part of the brain, which produces corticotropin-releasing hormone (CRH). CRH stimulates the anterior pituitary gland to secrete ACTH, which in turn triggers cortisol production in the adrenal glands. This complex feedback system helps maintain homeostasis and ensures that appropriate amounts of cortisol are released in response to various physiological and psychological stressors.

Disorders related to ACTH can lead to hormonal imbalances, resulting in conditions such as Cushing's syndrome (excessive cortisol production) or Addison's disease (insufficient cortisol production). Proper diagnosis and management of these disorders typically involve assessing the function of the hypothalamic-pituitary-adrenal axis and addressing any underlying issues affecting ACTH secretion.

Corticotropin-Releasing Hormone (CRH) is a hormone that is produced and released by the hypothalamus, a small gland located in the brain. CRH plays a critical role in the body's stress response system.

When the body experiences stress, the hypothalamus releases CRH, which then travels to the pituitary gland, another small gland located at the base of the brain. Once there, CRH stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary gland.

ACTH then travels through the bloodstream to the adrenal glands, which are located on top of the kidneys. ACTH stimulates the adrenal glands to produce and release cortisol, a hormone that helps the body respond to stress by regulating metabolism, immune function, and blood pressure, among other things.

Overall, CRH is an important part of the hypothalamic-pituitary-adrenal (HPA) axis, which regulates many bodily functions related to stress response, mood, and cognition. Dysregulation of the HPA axis and abnormal levels of CRH have been implicated in various psychiatric and medical conditions, including depression, anxiety disorders, post-traumatic stress disorder (PTSD), and Cushing's syndrome.

Beta-lipotropin (β-LPH) is a 91-amino acid polypeptide hormone that is derived from proopiomelanocortin (POMC), along with other bioactive peptides such as adrenocorticotropic hormone (ACTH), melanocyte-stimulating hormones (MSH), and β-endorphin. It is produced and released by the anterior pituitary gland in response to stress or corticotropin-releasing hormone (CRH) stimulation.

β-Lipotropin has been found to have several physiological functions, including the regulation of lipid metabolism, appetite control, and pain perception. It also exhibits opioid activity due to its ability to bind to opioid receptors in the brain, although its potency is much lower compared to other endogenous opioids like β-endorphin.

In addition to its role as a hormone, β-lipotropin has been studied for its potential therapeutic applications, particularly in the treatment of obesity and addiction. However, further research is needed to fully understand its mechanisms and clinical efficacy.

Corticotropin-releasing hormone (CRH) receptors are a type of G protein-coupled receptor found on the surface of cells in various tissues throughout the body. They play a critical role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis, which is responsible for the body's stress response.

There are two main types of CRH receptors: CRH-R1 and CRH-R2. When CRH binds to these receptors, it triggers a series of intracellular signaling events that ultimately lead to the release of adrenocorticotropic hormone (ACTH) from the pituitary gland. ACTH then stimulates the production and release of cortisol, a steroid hormone that helps regulate metabolism, immune function, and stress response.

In addition to their role in the HPA axis, CRH receptors have been implicated in a variety of other physiological processes, including anxiety, depression, addiction, and pain perception. Dysregulation of the CRH system has been associated with several psychiatric and neurological disorders, making CRH receptors an important target for drug development in these areas.

Corticotropin receptors are a type of cell surface receptor that bind to the hormone corticotropin (also known as adrenocorticotropic hormone or ACTH). These receptors are found in various tissues throughout the body, including the adrenal glands.

There are two main types of corticotropin receptors, known as melanocortin receptor 1 (MC1R) and melanocortin receptor 2 (MC2R). MC2R is the primary receptor for corticotropin in the adrenal glands. When corticotropin binds to this receptor, it stimulates the production and release of steroid hormones, such as cortisol, which help regulate metabolism, immune response, and stress response.

Abnormalities in corticotropin receptors have been implicated in several medical conditions, including certain endocrine disorders and skin pigmentation disorders.

Hormones are defined as chemical messengers that are produced by endocrine glands or specialized cells and are transported through the bloodstream to tissues and organs, where they elicit specific responses. They play crucial roles in regulating various physiological processes such as growth, development, metabolism, reproduction, and mood. Examples of hormones include insulin, estrogen, testosterone, adrenaline, and thyroxine.

Cosyntropin is a synthetic form of adrenocorticotropic hormone (ACTH) that is used in medical testing to assess the function of the adrenal glands. ACTH is a hormone produced and released by the pituitary gland that stimulates the production and release of cortisol, a steroid hormone produced by the adrenal glands.

Cosyntropin is typically administered as an injection, and its effects on cortisol production are measured through blood tests taken at various time points after administration. This test, known as a cosyntropin stimulation test or ACTH stimulation test, can help diagnose conditions that affect the adrenal glands, such as Addison's disease or adrenal insufficiency.

It is important to note that while cosyntropin is a synthetic form of ACTH, it is not identical to the natural hormone and may have slightly different effects on the body. Therefore, it should only be used under the supervision of a healthcare professional.

Endorphins are a type of neurotransmitter, which are chemicals that transmit signals in the nervous system and brain. The term "endorphin" comes from "endogenous morphine," reflecting the fact that these substances are produced naturally within the body and have effects similar to opiate drugs like morphine.

Endorphins are released in response to stress or pain, but they also occur naturally during exercise, excitement, laughter, love, and orgasm. They work by interacting with the opiate receptors in the brain to reduce the perception of pain and promote feelings of pleasure and well-being. Endorphins also play a role in regulating various physiological processes, including appetite, mood, and sleep.

In summary, endorphins are natural painkillers and mood elevators produced by the body in response to stress, pain, or enjoyable activities.

Hydrocortisone is a synthetic glucocorticoid, which is a class of steroid hormones. It is identical to the naturally occurring cortisol, a hormone produced by the adrenal gland that helps regulate metabolism and helps your body respond to stress. Hydrocortisone has anti-inflammatory effects and is used to treat various inflammatory conditions such as allergies, skin disorders, and autoimmune diseases. It works by suppressing the immune system's response to reduce swelling, redness, itching, and other symptoms caused by inflammation.

Hydrocortisone is available in different forms, including oral tablets, topical creams, lotions, gels, and ointments, as well as injectable solutions. The specific use and dosage depend on the condition being treated and the individual patient's medical history and current health status.

As with any medication, hydrocortisone can have side effects, especially when used in high doses or for extended periods. Common side effects include increased appetite, weight gain, mood changes, insomnia, and skin thinning. Long-term use of hydrocortisone may also increase the risk of developing osteoporosis, diabetes, cataracts, and other health problems. Therefore, it is essential to follow your healthcare provider's instructions carefully when using this medication.

Thyroid hormones are hormones produced and released by the thyroid gland, a small endocrine gland located in the neck that helps regulate metabolism, growth, and development in the human body. The two main thyroid hormones are triiodothyronine (T3) and thyroxine (T4), which contain iodine atoms. These hormones play a crucial role in various bodily functions, including heart rate, body temperature, digestion, and brain development. They help regulate the rate at which your body uses energy, affects how sensitive your body is to other hormones, and plays a vital role in the development and differentiation of all cells of the human body. Thyroid hormone levels are regulated by the hypothalamus and pituitary gland through a feedback mechanism that helps maintain proper balance.

The adrenal cortex is the outer portion of the adrenal gland, which is located on top of the kidneys. It plays a crucial role in producing hormones that are essential for various bodily functions. The adrenal cortex is divided into three zones:

1. Zona glomerulosa: This outermost zone produces mineralocorticoids, primarily aldosterone. Aldosterone helps regulate sodium and potassium balance and thus influences blood pressure by controlling the amount of fluid in the body.
2. Zona fasciculata: The middle layer is responsible for producing glucocorticoids, with cortisol being the most important one. Cortisol regulates metabolism, helps manage stress responses, and has anti-inflammatory properties. It also plays a role in blood sugar regulation and maintaining the body's response to injury and illness.
3. Zona reticularis: The innermost zone produces androgens, primarily dehydroepiandrosterone (DHEA) and its sulfate form (DHEAS). These androgens are weak compared to those produced by the gonads (ovaries or testes), but they can be converted into more potent androgens or estrogens in peripheral tissues.

Disorders related to the adrenal cortex can lead to hormonal imbalances, affecting various bodily functions. Examples include Addison's disease (insufficient adrenal cortical hormone production) and Cushing's syndrome (excessive glucocorticoid levels).

The pituitary gland is a small, endocrine gland located at the base of the brain, in the sella turcica of the sphenoid bone. It is often called the "master gland" because it controls other glands and makes the hormones that trigger many body functions. The pituitary gland measures about 0.5 cm in height and 1 cm in width, and it weighs approximately 0.5 grams.

The pituitary gland is divided into two main parts: the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis). The anterior lobe is further divided into three zones: the pars distalis, pars intermedia, and pars tuberalis. Each part of the pituitary gland has distinct functions and produces different hormones.

The anterior pituitary gland produces and releases several important hormones, including:

* Growth hormone (GH), which regulates growth and development in children and helps maintain muscle mass and bone strength in adults.
* Thyroid-stimulating hormone (TSH), which controls the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females.
* Prolactin, which stimulates milk production in pregnant and lactating women.

The posterior pituitary gland stores and releases two hormones that are produced by the hypothalamus:

* Antidiuretic hormone (ADH), which helps regulate water balance in the body by controlling urine production.
* Oxytocin, which stimulates uterine contractions during childbirth and milk release during breastfeeding.

Overall, the pituitary gland plays a critical role in maintaining homeostasis and regulating various bodily functions, including growth, development, metabolism, and reproductive function.

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted and released by the anterior pituitary gland. In females, it promotes the growth and development of ovarian follicles in the ovary, which ultimately leads to the maturation and release of an egg (ovulation). In males, FSH stimulates the testes to produce sperm. It works in conjunction with luteinizing hormone (LH) to regulate reproductive processes. The secretion of FSH is controlled by the hypothalamic-pituitary-gonadal axis and its release is influenced by the levels of gonadotropin-releasing hormone (GnRH), estrogen, inhibin, and androgens.

Urocortins are a group of peptides that belong to the corticotropin-releasing hormone (CRH) family. They include urocortin 1, urocortin 2, and urocortin 3, which are encoded by different genes in humans.

Urocortins play important roles in various physiological processes, including the regulation of stress responses, feeding behavior, energy homeostasis, and cardiovascular function. They exert their effects by binding to CRH receptors (CRHR1 and CRHR2) that are widely distributed throughout the body.

Urocortin 1 is a potent stimulator of the hypothalamic-pituitary-adrenal axis, which is responsible for the release of stress hormones such as cortisol. It also has cardiovascular effects, including vasodilation and negative inotropic effects on the heart.

Urocortin 2 and urocortin 3 are primarily expressed in the brain and have been implicated in the regulation of feeding behavior and energy homeostasis. They may act as satiety signals to reduce food intake, and they have also been shown to have anxiolytic effects.

Overall, urocortins play important roles in the regulation of various physiological processes, and dysregulation of their function has been implicated in several pathological conditions, including mood disorders, cardiovascular disease, and metabolic disorders.

Melanocyte-stimulating hormones (MSH) are a group of peptide hormones that originate from the precursor protein proopiomelanocortin (POMC). They play crucial roles in various physiological processes, including pigmentation, energy balance, and appetite regulation.

There are several types of MSH, but the most well-known ones include α-MSH, β-MSH, and γ-MSH. These hormones bind to melanocortin receptors (MCRs), which are found in various tissues throughout the body. The binding of MSH to MCRs triggers a series of intracellular signaling events that ultimately lead to changes in cell behavior.

In the context of skin physiology, α-MSH and β-MSH bind to melanocortin 1 receptor (MC1R) on melanocytes, which are the cells responsible for producing pigment (melanin). This binding stimulates the production and release of eumelanin, a type of melanin that is brown or black in color. As a result, increased levels of MSH can lead to darkening of the skin, also known as hyperpigmentation.

Apart from their role in pigmentation, MSH hormones have been implicated in several other physiological processes. For instance, α-MSH has been shown to suppress appetite and promote weight loss by binding to melanocortin 4 receptor (MC4R) in the hypothalamus, a region of the brain that regulates energy balance. Additionally, MSH hormones have been implicated in inflammation, immune response, and sexual function.

Overall, melanocyte-stimulating hormones are a diverse group of peptide hormones that play important roles in various physiological processes, including pigmentation, energy balance, and appetite regulation.

Luteinizing Hormone (LH) is a glycoprotein hormone, which is primarily produced and released by the anterior pituitary gland. In women, a surge of LH triggers ovulation, the release of an egg from the ovaries during the menstrual cycle. During pregnancy, LH stimulates the corpus luteum to produce progesterone. In men, LH stimulates the testes to produce testosterone. It plays a crucial role in sexual development, reproduction, and maintaining the reproductive system.

Corticosterone is a hormone produced by the adrenal gland in many animals, including humans. It is a type of glucocorticoid steroid hormone that plays an important role in the body's response to stress, immune function, metabolism, and regulation of inflammation. Corticosterone helps to regulate the balance of sodium and potassium in the body and also plays a role in the development and functioning of the nervous system. It is the primary glucocorticoid hormone in rodents, while cortisol is the primary glucocorticoid hormone in humans and other primates.

The adrenal glands are a pair of endocrine glands that are located on top of the kidneys. Each gland has two parts: the outer cortex and the inner medulla. The adrenal cortex produces hormones such as cortisol, aldosterone, and androgens, which regulate metabolism, blood pressure, and other vital functions. The adrenal medulla produces catecholamines, including epinephrine (adrenaline) and norepinephrine (noradrenaline), which help the body respond to stress by increasing heart rate, blood pressure, and alertness.

Adrenal insufficiency is a condition in which the adrenal glands do not produce adequate amounts of certain hormones, primarily cortisol and aldosterone. Cortisol helps regulate metabolism, respond to stress, and suppress inflammation, while aldosterone helps regulate sodium and potassium levels in the body to maintain blood pressure.

Primary adrenal insufficiency, also known as Addison's disease, occurs when there is damage to the adrenal glands themselves, often due to autoimmune disorders, infections, or certain medications. Secondary adrenal insufficiency occurs when the pituitary gland fails to produce enough adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol.

Symptoms of adrenal insufficiency may include fatigue, weakness, weight loss, decreased appetite, nausea, vomiting, diarrhea, abdominal pain, low blood pressure, dizziness, and darkening of the skin. Treatment typically involves replacing the missing hormones with medications taken orally or by injection.

The pituitary-adrenal system, also known as the hypothalamic-pituitary-adrenal (HPA) axis, is a complex set of interactions between the hypothalamus, the pituitary gland, and the adrenal glands. This system plays a crucial role in the body's response to stress through the release of hormones that regulate various physiological processes.

The hypothalamus, located within the brain, receives information from the nervous system about the internal and external environment and responds by releasing corticotropin-releasing hormone (CRH) and vasopressin. These hormones then travel to the anterior pituitary gland, where they stimulate the release of adrenocorticotropic hormone (ACTH).

ACTH is transported through the bloodstream to the adrenal glands, which are located on top of the kidneys. The adrenal glands consist of two parts: the outer cortex and the inner medulla. ACTH specifically targets the adrenal cortex, causing it to release cortisol and other glucocorticoids, as well as androgens such as dehydroepiandrosterone (DHEA).

Cortisol has numerous effects on metabolism, immune function, and cardiovascular regulation. It helps regulate blood sugar levels, suppresses the immune system, and aids in the breakdown of fats, proteins, and carbohydrates to provide energy during stressful situations. DHEA can be converted into male and female sex hormones (androgens and estrogens) in various tissues throughout the body.

The pituitary-adrenal system is tightly regulated through negative feedback mechanisms. High levels of cortisol, for example, inhibit the release of CRH and ACTH from the hypothalamus and pituitary gland, respectively, thereby limiting further cortisol production. Dysregulation of this system has been implicated in several medical conditions, including Cushing's syndrome (overproduction of cortisol) and Addison's disease (underproduction of cortisol).

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

The Hypothalamo-Hypophyseal system, also known as the hypothalamic-pituitary system, is a crucial part of the endocrine system that regulates many bodily functions. It consists of two main components: the hypothalamus and the pituitary gland.

The hypothalamus is a region in the brain that receives information from various parts of the body and integrates them to regulate vital functions such as body temperature, hunger, thirst, sleep, and emotional behavior. It also produces and releases neurohormones that control the secretion of hormones from the pituitary gland.

The pituitary gland is a small gland located at the base of the brain, just below the hypothalamus. It consists of two parts: the anterior pituitary (also called adenohypophysis) and the posterior pituitary (also called neurohypophysis). The anterior pituitary produces and releases several hormones that regulate various bodily functions such as growth, metabolism, reproduction, and stress response. The posterior pituitary stores and releases hormones produced by the hypothalamus, including antidiuretic hormone (ADH) and oxytocin.

The hypothalamo-hypophyseal system works together to maintain homeostasis in the body by regulating various physiological processes through hormonal signaling. Dysfunction of this system can lead to several endocrine disorders, such as diabetes insipidus, pituitary tumors, and hypothalamic-pituitary axis disorders.

The anterior pituitary, also known as the adenohypophysis, is the front portion of the pituitary gland. It is responsible for producing and secreting several important hormones that regulate various bodily functions. These hormones include:

* Growth hormone (GH), which stimulates growth and cell reproduction in bones and other tissues.
* Thyroid-stimulating hormone (TSH), which regulates the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females by controlling the development and release of eggs or sperm.
* Prolactin, which stimulates milk production in pregnant and nursing women.
* Melanocyte-stimulating hormone (MSH), which regulates skin pigmentation and appetite.

The anterior pituitary gland is controlled by the hypothalamus, a small region of the brain located just above it. The hypothalamus produces releasing and inhibiting hormones that regulate the secretion of hormones from the anterior pituitary. These hormones are released into a network of blood vessels called the portal system, which carries them directly to the anterior pituitary gland.

Damage or disease of the anterior pituitary can lead to hormonal imbalances and various medical conditions, such as growth disorders, thyroid dysfunction, adrenal insufficiency, reproductive problems, and diabetes insipidus.

Gonadotropin-Releasing Hormone (GnRH), also known as Luteinizing Hormone-Releasing Hormone (LHRH), is a hormonal peptide consisting of 10 amino acids. It is produced and released by the hypothalamus, an area in the brain that links the nervous system to the endocrine system via the pituitary gland.

GnRH plays a crucial role in regulating reproduction and sexual development through its control of two gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These gonadotropins, in turn, stimulate the gonads (ovaries or testes) to produce sex steroids and eggs or sperm.

GnRH acts on the anterior pituitary gland by binding to its specific receptors, leading to the release of FSH and LH. The hypothalamic-pituitary-gonadal axis is under negative feedback control, meaning that when sex steroid levels are high, they inhibit the release of GnRH, which subsequently decreases FSH and LH secretion.

GnRH agonists and antagonists have clinical applications in various medical conditions, such as infertility treatments, precocious puberty, endometriosis, uterine fibroids, prostate cancer, and hormone-responsive breast cancer.

Pro-opiomelanocortin (POMC) is a precursor protein that gets cleaved into several biologically active peptides in the body. These peptides include adrenocorticotropic hormone (ACTH), beta-lipotropin, and multiple opioid peptides such as beta-endorphin, met-enkephalin, and leu-enkephalin.

ACTH stimulates the release of cortisol from the adrenal gland, while beta-lipotropin has various metabolic functions. The opioid peptides derived from POMC have pain-relieving (analgesic) and rewarding effects in the brain. Dysregulation of the POMC system has been implicated in several medical conditions, including obesity, addiction, and certain types of hormone deficiencies.

Gonadal steroid hormones, also known as gonadal sex steroids, are hormones that are produced and released by the gonads (i.e., ovaries in women and testes in men). These hormones play a critical role in the development and maintenance of secondary sexual characteristics, reproductive function, and overall health.

The three main classes of gonadal steroid hormones are:

1. Androgens: These are male sex hormones that are primarily produced by the testes but also produced in smaller amounts by the ovaries and adrenal glands. The most well-known androgen is testosterone, which plays a key role in the development of male secondary sexual characteristics such as facial hair, deepening of the voice, and increased muscle mass.
2. Estrogens: These are female sex hormones that are primarily produced by the ovaries but also produced in smaller amounts by the adrenal glands. The most well-known estrogen is estradiol, which plays a key role in the development of female secondary sexual characteristics such as breast development and the menstrual cycle.
3. Progestogens: These are hormones that are produced by the ovaries during the second half of the menstrual cycle and play a key role in preparing the uterus for pregnancy. The most well-known progestogen is progesterone, which also plays a role in maintaining pregnancy and regulating the menstrual cycle.

Gonadal steroid hormones can have significant effects on various physiological processes, including bone density, cognitive function, mood, and sexual behavior. Disorders of gonadal steroid hormone production or action can lead to a range of health problems, including infertility, osteoporosis, and sexual dysfunction.

Anterior pituitary hormones are a group of six major hormones that are produced and released by the anterior portion (lobe) of the pituitary gland, a small endocrine gland located at the base of the brain. These hormones play crucial roles in regulating various bodily functions and activities. The six main anterior pituitary hormones are:

1. Growth Hormone (GH): Also known as somatotropin, GH is essential for normal growth and development in children and adolescents. It helps regulate body composition, metabolism, and bone density in adults.
2. Prolactin (PRL): A hormone that stimulates milk production in females after childbirth and is also involved in various reproductive and immune functions in both sexes.
3. Follicle-Stimulating Hormone (FSH): FSH regulates the development, growth, and maturation of follicles in the ovaries (in females) and sperm production in the testes (in males).
4. Luteinizing Hormone (LH): LH plays a key role in triggering ovulation in females and stimulating testosterone production in males.
5. Thyroid-Stimulating Hormone (TSH): TSH regulates the function of the thyroid gland, which is responsible for producing and releasing thyroid hormones that control metabolism and growth.
6. Adrenocorticotropic Hormone (ACTH): ACTH stimulates the adrenal glands to produce cortisol, a steroid hormone involved in stress response, metabolism, and immune function.

These anterior pituitary hormones are regulated by the hypothalamus, which is located above the pituitary gland. The hypothalamus releases releasing and inhibiting factors that control the synthesis and secretion of anterior pituitary hormones, creating a complex feedback system to maintain homeostasis in the body.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

A Radioimmunosorbent Test (RIST) is a type of radioimmunoassay (RIA) that uses a radioactively labeled antigen and an immunosorbent to measure the amount of antibodies in a sample. In this test, the patient's serum or plasma is incubated with a solid-phase immunosorbent, such as beads coated with a specific antigen. After washing to remove unbound proteins, a radioactively labeled antigen is added and allowed to bind to any available antibody binding sites on the immunosorbent. The amount of radioactivity that binds to the immunosorbent is then measured and is proportional to the amount of antibodies present in the sample.

RIST is a sensitive and specific method for measuring antibodies, and it has been widely used in clinical laboratories for the diagnosis of various autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and Sjogren's syndrome. However, due to concerns about radiation exposure and the availability of non-radioactive alternatives, RIST has largely been replaced by enzyme-linked immunosorbent assays (ELISAs) in many clinical settings.

The Zona Fasciculata is a region within the adrenal gland, which is a small gland located on top of the kidneys. It plays an essential role in endocrine function. The adrenal gland is divided into two main parts: the outer cortex and the inner medulla. The cortex itself is further divided into three zones: the Zona Glomerulosa, the Zona Fasciculata, and the Zona Reticularis.

The Zona Fasciculata is the middle layer of the adrenal cortex. It is primarily responsible for producing and releasing steroid hormones, particularly glucocorticoids such as cortisol. Cortisol helps regulate metabolism, immune response, and stress response, among other functions. The Zona Fasciculata contains large, column-shaped cells called fasciculated cells that contain lipid droplets filled with cholesterol esters. These cells convert cholesterol into pregnenolone, which is then converted into cortisol through a series of enzymatic reactions.

In summary, the Zona Fasciculata is a crucial region within the adrenal gland that produces and releases cortisol, a vital glucocorticoid hormone involved in various physiological processes.

Thyroid hormone receptors (THRs) are nuclear receptor proteins that bind to thyroid hormones, triiodothyronine (T3) and thyroxine (T4), and regulate gene transcription in target cells. These receptors play a crucial role in the development, growth, and metabolism of an organism by mediating the actions of thyroid hormones. THRs are encoded by genes THRA and THRB, which give rise to two major isoforms: TRα1 and TRβ1. Additionally, alternative splicing results in other isoforms with distinct tissue distributions and functions. THRs function as heterodimers with retinoid X receptors (RXRs) and bind to thyroid hormone response elements (TREs) in the regulatory regions of target genes. The binding of T3 or T4 to THRs triggers a conformational change, which leads to recruitment of coactivators or corepressors, ultimately resulting in activation or repression of gene transcription.

Human Growth Hormone (HGH), also known as somatotropin, is a peptide hormone produced in the pituitary gland. It plays a crucial role in human development and growth by stimulating the production of another hormone called insulin-like growth factor 1 (IGF-1). IGF-1 promotes the growth and reproduction of cells throughout the body, particularly in bones and other tissues. HGH also helps regulate body composition, body fluids, muscle and bone growth, sugar and fat metabolism, and possibly heart function. It is essential for human development and continues to have important effects throughout life. The secretion of HGH decreases with age, which is thought to contribute to the aging process.

Beta-endorphins are naturally occurring opioid peptides that are produced in the brain and other parts of the body. They are synthesized from a larger precursor protein called proopiomelanocortin (POMC) and consist of 31 amino acids. Beta-endorphins have potent analgesic effects, which means they can reduce the perception of pain. They also play a role in regulating mood, emotions, and various physiological processes such as immune function and hormonal regulation.

Beta-endorphins bind to opioid receptors in the brain and other tissues, leading to a range of effects including pain relief, sedation, euphoria, and reduced anxiety. They are released in response to stress, physical activity, and certain physiological conditions such as pregnancy and lactation. Beta-endorphins have been studied for their potential therapeutic uses in the treatment of pain, addiction, and mood disorders. However, more research is needed to fully understand their mechanisms of action and potential side effects.

The hypothalamus is a small, vital region of the brain that lies just below the thalamus and forms part of the limbic system. It plays a crucial role in many important functions including:

1. Regulation of body temperature, hunger, thirst, fatigue, sleep, and circadian rhythms.
2. Production and regulation of hormones through its connection with the pituitary gland (the hypophysis). It controls the release of various hormones by producing releasing and inhibiting factors that regulate the anterior pituitary's function.
3. Emotional responses, behavior, and memory formation through its connections with the limbic system structures like the amygdala and hippocampus.
4. Autonomic nervous system regulation, which controls involuntary physiological functions such as heart rate, blood pressure, and digestion.
5. Regulation of the immune system by interacting with the autonomic nervous system.

Damage to the hypothalamus can lead to various disorders like diabetes insipidus, growth hormone deficiency, altered temperature regulation, sleep disturbances, and emotional or behavioral changes.

Aminoglutethimide is a medication that is primarily used to treat hormone-sensitive cancers such as breast cancer and prostate cancer. It works by blocking the production of certain hormones in the body, including estrogen and cortisol. Aminoglutethimide is an inhibitor of steroid synthesis, specifically targeting the enzymes involved in the conversion of cholesterol to steroid hormones.

The medication is available in oral form and is typically taken 2-3 times a day. Common side effects include drowsiness, dizziness, dry mouth, skin rash, and changes in appetite or weight. More serious side effects may include liver damage, severe allergic reactions, and changes in heart rhythm.

It's important to note that aminoglutethimide can interact with other medications, so it's crucial to inform your healthcare provider about all the drugs you are currently taking before starting this medication. Additionally, regular monitoring of liver function and hormone levels may be necessary during treatment with aminoglutethimide.

In medical terms, "ether" is an outdated term that was used to refer to a group of compounds known as diethyl ethers. The most common member of this group, and the one most frequently referred to as "ether," is diethyl ether, also known as sulfuric ether or simply ether.

Diethyl ether is a highly volatile, flammable liquid that was once widely used as an anesthetic agent in surgical procedures. It has a characteristic odor and produces a state of unconsciousness when inhaled, allowing patients to undergo surgery without experiencing pain. However, due to its numerous side effects, such as nausea, vomiting, and respiratory depression, as well as the risk of explosion or fire during use, it has largely been replaced by safer and more effective anesthetic agents.

It's worth noting that "ether" also has other meanings in different contexts, including a term used to describe a substance that produces a feeling of detachment from reality or a sense of unreality, as well as a class of organic compounds characterized by the presence of an ether group (-O-, a functional group consisting of an oxygen atom bonded to two alkyl or aryl groups).

Infantile spasms, also known as West syndrome, is a rare but serious type of epilepsy that affects infants typically between 4-8 months of age. The spasms are characterized by sudden, brief, and frequent muscle jerks or contractions, often involving the neck, trunk, and arms. These spasms usually occur in clusters and may cause the infant to bend forward or stretch out. Infantile spasms can be a symptom of various underlying neurological conditions and are often associated with developmental delays and regression. Early recognition and treatment are crucial for improving outcomes.

Cushing syndrome is a hormonal disorder that occurs when your body is exposed to high levels of the hormone cortisol for a long time. This can happen due to various reasons such as taking high doses of corticosteroid medications or tumors that produce cortisol or adrenocorticotropic hormone (ACTH).

The symptoms of Cushing syndrome may include:

* Obesity, particularly around the trunk and upper body
* Thinning of the skin, easy bruising, and purple or red stretch marks on the abdomen, thighs, breasts, and arms
* Weakened bones, leading to fractures
* High blood pressure
* High blood sugar
* Mental changes such as depression, anxiety, and irritability
* Increased fatigue and weakness
* Menstrual irregularities in women
* Decreased fertility in men

Cushing syndrome can be diagnosed through various tests, including urine and blood tests to measure cortisol levels, saliva tests, and imaging tests to locate any tumors. Treatment depends on the cause of the condition but may include surgery, radiation therapy, chemotherapy, or adjusting medication dosages.

Dexamethasone is a type of corticosteroid medication, which is a synthetic version of a natural hormone produced by the adrenal glands. It is often used to reduce inflammation and suppress the immune system in a variety of medical conditions, including allergies, asthma, rheumatoid arthritis, and certain skin conditions.

Dexamethasone works by binding to specific receptors in cells, which triggers a range of anti-inflammatory effects. These include reducing the production of chemicals that cause inflammation, suppressing the activity of immune cells, and stabilizing cell membranes.

In addition to its anti-inflammatory effects, dexamethasone can also be used to treat other medical conditions, such as certain types of cancer, brain swelling, and adrenal insufficiency. It is available in a variety of forms, including tablets, liquids, creams, and injectable solutions.

Like all medications, dexamethasone can have side effects, particularly if used for long periods of time or at high doses. These may include mood changes, increased appetite, weight gain, acne, thinning skin, easy bruising, and an increased risk of infections. It is important to follow the instructions of a healthcare provider when taking dexamethasone to minimize the risk of side effects.

Cortisone is a type of corticosteroid hormone that is produced naturally in the body by the adrenal gland. It is released in response to stress and helps to regulate metabolism, reduce inflammation, and suppress the immune system. Cortisone can also be synthetically produced and is often used as a medication to treat a variety of conditions such as arthritis, asthma, and skin disorders. It works by mimicking the effects of the natural hormone in the body and reducing inflammation and suppressing the immune system. Cortisone can be administered through various routes, including oral, injectable, topical, and inhalational.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Hypophysectomy is a surgical procedure that involves the removal or partial removal of the pituitary gland, also known as the hypophysis. The pituitary gland is a small endocrine gland located at the base of the brain, just above the nasal cavity, and is responsible for producing and secreting several important hormones that regulate various bodily functions.

Hypophysectomy may be performed for therapeutic or diagnostic purposes. In some cases, it may be used to treat pituitary tumors or other conditions that affect the function of the pituitary gland. It may also be performed as a research procedure in animal models to study the effects of pituitary hormone deficiency on various physiological processes.

The surgical approach for hypophysectomy may vary depending on the specific indication and the patient's individual anatomy. In general, however, the procedure involves making an incision in the skull and exposing the pituitary gland through a small opening in the bone. The gland is then carefully dissected and removed or partially removed as necessary.

Potential complications of hypophysectomy include damage to surrounding structures such as the optic nerves, which can lead to vision loss, and cerebrospinal fluid leaks. Additionally, removal of the pituitary gland can result in hormonal imbalances that may require long-term management with hormone replacement therapy.

Pituitary hormones are chemical messengers produced and released by the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is often referred to as the "master gland" because it controls several other endocrine glands and regulates various bodily functions.

There are two main types of pituitary hormones: anterior pituitary hormones and posterior pituitary hormones, which are produced in different parts of the pituitary gland and have distinct functions.

Anterior pituitary hormones include:

1. Growth hormone (GH): regulates growth and metabolism.
2. Thyroid-stimulating hormone (TSH): stimulates the thyroid gland to produce thyroid hormones.
3. Adrenocorticotropic hormone (ACTH): stimulates the adrenal glands to produce cortisol and other steroid hormones.
4. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH): regulate reproductive function in both males and females.
5. Prolactin: stimulates milk production in lactating women.
6. Melanocyte-stimulating hormone (MSH): regulates skin pigmentation and appetite.

Posterior pituitary hormones include:

1. Oxytocin: stimulates uterine contractions during childbirth and milk ejection during lactation.
2. Vasopressin (antidiuretic hormone, ADH): regulates water balance in the body by controlling urine production in the kidneys.

Overall, pituitary hormones play crucial roles in regulating growth, development, metabolism, reproductive function, and various other bodily functions. Abnormalities in pituitary hormone levels can lead to a range of medical conditions, such as dwarfism, acromegaly, Cushing's disease, infertility, and diabetes insipidus.

Peptide hormones are a type of hormone consisting of short chains of amino acids known as peptides. They are produced and released by various endocrine glands and play crucial roles in regulating many physiological processes in the body, including growth and development, metabolism, stress response, and reproductive functions.

Peptide hormones exert their effects by binding to specific receptors on the surface of target cells, which triggers a series of intracellular signaling events that ultimately lead to changes in cell behavior or function. Some examples of peptide hormones include insulin, glucagon, growth hormone, prolactin, oxytocin, and vasopressin.

Peptide hormones are synthesized as larger precursor proteins called prohormones, which are cleaved by enzymes to release the active peptide hormone. They are water-soluble and cannot pass through the cell membrane, so they exert their effects through autocrine, paracrine, or endocrine mechanisms. Autocrine signaling occurs when a cell releases a hormone that binds to receptors on the same cell, while paracrine signaling involves the release of a hormone that acts on nearby cells. Endocrine signaling, on the other hand, involves the release of a hormone into the bloodstream, which then travels to distant target cells to exert its effects.

The median eminence is a small, elevated region located at the base of the hypothalamus in the brain. It plays a crucial role in the regulation of the endocrine system by controlling the release of hormones from the pituitary gland. The median eminence contains numerous specialized blood vessels called portal capillaries that carry hormones and neurotransmitters from the hypothalamus to the anterior pituitary gland.

The median eminence is also the site where several releasing and inhibiting hormones produced in the hypothalamus are secreted into the portal blood vessels, which then transport them to the anterior pituitary gland. These hormones include thyroid-stimulating hormone (TSH) releasing hormone, growth hormone-releasing hormone, prolactin-inhibiting hormone, and gonadotropin-releasing hormone, among others.

Once these hormones reach the anterior pituitary gland, they bind to specific receptors on the surface of target cells, triggering a cascade of intracellular signals that ultimately lead to the synthesis and release of various pituitary hormones. In this way, the median eminence serves as an essential link between the nervous system and the endocrine system, allowing for precise regulation of hormone secretion and overall homeostasis in the body.

Ectopic ACTH syndrome is a medical condition characterized by the excessive production of adrenocorticotropic hormone (ACTH) from a source outside of the pituitary gland, typically from a tumor in another part of the body. The most common sources of ectopic ACTH are small-cell lung carcinomas, but it can also occur with other types of tumors such as thymic carcinoids, pancreatic islet cell tumors, and bronchial carcinoids.

The excessive production of ACTH leads to an overproduction of cortisol from the adrenal glands, resulting in a constellation of symptoms known as Cushing's syndrome. These symptoms can include weight gain, muscle weakness, thinning of the skin, easy bruising, mood changes, and high blood pressure, among others.

Ectopic ACTH syndrome is typically more severe than pituitary-dependent Cushing's syndrome, and it may be more difficult to diagnose and treat due to the underlying tumor causing the excessive ACTH production. Treatment usually involves removing the tumor or controlling its growth, as well as managing the symptoms of Cushing's syndrome with medications that block cortisol production or action.

Adrenal gland diseases refer to a group of medical conditions that affect the function or structure of the adrenal glands. The adrenal glands are small, triangular-shaped glands located on top of each kidney. They are responsible for producing several essential hormones, including cortisol, aldosterone, and adrenaline (epinephrine).

There are various types of adrenal gland diseases, some of which include:

1. Adrenal Insufficiency: A condition where the adrenal glands do not produce enough hormones, particularly cortisol and aldosterone. This can lead to symptoms such as fatigue, weight loss, low blood pressure, and skin hyperpigmentation.
2. Cushing's Syndrome: A condition characterized by an excess of cortisol in the body. It can be caused by a tumor in the pituitary gland or adrenal glands, or it can result from long-term use of steroid medications.
3. Adrenal Cancer: A rare type of cancer that affects the adrenal glands. Symptoms may include abdominal pain, weight loss, and high blood pressure.
4. Pheochromocytoma: A tumor that develops in the adrenal glands and causes an overproduction of adrenaline (epinephrine) and noradrenaline (norepinephrine). Symptoms may include high blood pressure, headaches, sweating, and anxiety.
5. Adrenal Hemorrhage: A condition where bleeding occurs in the adrenal glands, often as a result of severe trauma or infection. This can lead to adrenal insufficiency and other complications.
6. Congenital Adrenal Hyperplasia: An inherited disorder that affects the production of cortisol and other hormones in the adrenal glands. Symptoms may include ambiguous genitalia, precocious puberty, and short stature.

Treatment for adrenal gland diseases varies depending on the specific condition and its severity. Treatment options may include medication, surgery, or radiation therapy.

Physiological stress is a response of the body to a demand or threat that disrupts homeostasis and activates the autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis. This results in the release of stress hormones such as adrenaline, cortisol, and noradrenaline, which prepare the body for a "fight or flight" response. Increased heart rate, rapid breathing, heightened sensory perception, and increased alertness are some of the physiological changes that occur during this response. Chronic stress can have negative effects on various bodily functions, including the immune, cardiovascular, and nervous systems.

Hormone antagonists are substances or drugs that block the action of hormones by binding to their receptors without activating them, thereby preventing the hormones from exerting their effects. They can be classified into two types: receptor antagonists and enzyme inhibitors. Receptor antagonists bind directly to hormone receptors and prevent the hormone from binding, while enzyme inhibitors block the production or breakdown of hormones by inhibiting specific enzymes involved in their metabolism. Hormone antagonists are used in the treatment of various medical conditions, such as cancer, hormonal disorders, and cardiovascular diseases.

The Paraventricular Hypothalamic Nucleus (PVN) is a nucleus in the hypothalamus, which is a part of the brain that regulates various autonomic functions and homeostatic processes. The PVN plays a crucial role in the regulation of neuroendocrine and autonomic responses to stress, as well as the control of fluid and electrolyte balance, cardiovascular function, and energy balance.

The PVN is composed of several subdivisions, including the magnocellular and parvocellular divisions. The magnocellular neurons produce and release two neuropeptides, oxytocin and vasopressin (also known as antidiuretic hormone), into the circulation via the posterior pituitary gland. These neuropeptides play important roles in social behavior, reproduction, and fluid balance.

The parvocellular neurons, on the other hand, project to various brain regions and the pituitary gland, where they release neurotransmitters and neuropeptides that regulate the hypothalamic-pituitary-adrenal (HPA) axis, which is responsible for the stress response. The PVN also contains neurons that produce corticotropin-releasing hormone (CRH), a key neurotransmitter involved in the regulation of the HPA axis and the stress response.

Overall, the Paraventricular Hypothalamic Nucleus is an essential component of the brain's regulatory systems that help maintain homeostasis and respond to stressors. Dysfunction of the PVN has been implicated in various pathological conditions, including hypertension, obesity, and mood disorders.

Hirsutism is a medical condition characterized by excessive hair growth in women in areas where hair growth is typically androgen-dependent, such as the face, chest, lower abdomen, and inner thighs. This hair growth is often thick, dark, and coarse, resembling male-pattern hair growth. Hirsutism can be caused by various factors, including hormonal imbalances, certain medications, and genetic conditions. It's essential to consult a healthcare professional if you experience excessive or unwanted hair growth to determine the underlying cause and develop an appropriate treatment plan.

Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification to become active. These modifications typically include cleavage of the precursor protein by specific enzymes, resulting in the release of the active protein. This process allows for the regulation and control of protein activity within the body. Protein precursors can be found in various biological processes, including the endocrine system where they serve as inactive hormones that can be converted into their active forms when needed.

Adrenal cortex function tests are a group of diagnostic tests that evaluate the proper functioning of the adrenal cortex, which is the outer layer of the adrenal glands. These glands are located on top of each kidney and are responsible for producing several essential hormones. The adrenal cortex produces hormones such as cortisol, aldosterone, and androgens.

There are several types of adrenal cortex function tests, including:

1. Cortisol testing: This test measures the levels of cortisol in the blood or urine to determine if the adrenal glands are producing adequate amounts of this hormone. Cortisol helps regulate metabolism, immune response, and stress response.
2. ACTH (adrenocorticotropic hormone) stimulation test: This test measures the adrenal gland's response to ACTH, a hormone produced by the pituitary gland that stimulates the adrenal glands to produce cortisol. The test involves administering synthetic ACTH and measuring cortisol levels before and after administration.
3. Aldosterone testing: This test measures the levels of aldosterone in the blood or urine to determine if the adrenal glands are producing adequate amounts of this hormone. Aldosterone helps regulate electrolyte balance and blood pressure.
4. Dexamethasone suppression test: This test involves administering dexamethasone, a synthetic corticosteroid, to suppress cortisol production. The test measures cortisol levels before and after administration to determine if the adrenal glands are overproducing cortisol.
5. Androgen testing: This test measures the levels of androgens, such as testosterone and dehydroepiandrosterone (DHEA), in the blood or urine to determine if the adrenal glands are producing excessive amounts of these hormones.

Abnormal results from adrenal cortex function tests may indicate conditions such as Addison's disease, Cushing's syndrome, congenital adrenal hyperplasia, and pheochromocytoma.

Pituitary neoplasms refer to abnormal growths or tumors in the pituitary gland, a small endocrine gland located at the base of the brain. These neoplasms can be benign (non-cancerous) or malignant (cancerous), with most being benign. They can vary in size and may cause various symptoms depending on their location, size, and hormonal activity.

Pituitary neoplasms can produce and secrete excess hormones, leading to a variety of endocrine disorders such as Cushing's disease (caused by excessive ACTH production), acromegaly (caused by excessive GH production), or prolactinoma (caused by excessive PRL production). They can also cause local compression symptoms due to their size, leading to headaches, vision problems, and cranial nerve palsies.

The exact causes of pituitary neoplasms are not fully understood, but genetic factors, radiation exposure, and certain inherited conditions may increase the risk of developing these tumors. Treatment options for pituitary neoplasms include surgical removal, radiation therapy, and medical management with drugs that can help control hormonal imbalances.

Adrenalectomy is a surgical procedure in which one or both adrenal glands are removed. The adrenal glands are small, triangular-shaped glands located on top of each kidney that produce hormones such as cortisol, aldosterone, and adrenaline (epinephrine).

There are several reasons why an adrenalectomy may be necessary. For example, the procedure may be performed to treat tumors or growths on the adrenal glands, such as pheochromocytomas, which can cause high blood pressure and other symptoms. Adrenalectomy may also be recommended for patients with Cushing's syndrome, a condition in which the body is exposed to too much cortisol, or for those with adrenal cancer.

During an adrenalectomy, the surgeon makes an incision in the abdomen or back and removes the affected gland or glands. In some cases, laparoscopic surgery may be used, which involves making several small incisions and using specialized instruments to remove the gland. After the procedure, patients may need to take hormone replacement therapy to compensate for the loss of adrenal gland function.

Triiodothyronine (T3) is a thyroid hormone, specifically the active form of thyroid hormone, that plays a critical role in the regulation of metabolism, growth, and development in the human body. It is produced by the thyroid gland through the iodination and coupling of the amino acid tyrosine with three atoms of iodine. T3 is more potent than its precursor, thyroxine (T4), which has four iodine atoms, as T3 binds more strongly to thyroid hormone receptors and accelerates metabolic processes at the cellular level.

In circulation, about 80% of T3 is bound to plasma proteins, while the remaining 20% is unbound or free, allowing it to enter cells and exert its biological effects. The primary functions of T3 include increasing the rate of metabolic reactions, promoting protein synthesis, enhancing sensitivity to catecholamines (e.g., adrenaline), and supporting normal brain development during fetal growth and early infancy. Imbalances in T3 levels can lead to various medical conditions, such as hypothyroidism or hyperthyroidism, which may require clinical intervention and management.

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is a hormone produced in the hypothalamus and stored in the posterior pituitary gland. It plays a crucial role in regulating water balance and blood pressure in the body.

AVP acts on the kidneys to promote water reabsorption, which helps maintain adequate fluid volume and osmotic balance in the body. It also constricts blood vessels, increasing peripheral vascular resistance and thereby helping to maintain blood pressure. Additionally, AVP has been shown to have effects on cognitive function, mood regulation, and pain perception.

Deficiencies or excesses of AVP can lead to a range of medical conditions, including diabetes insipidus (characterized by excessive thirst and urination), hyponatremia (low sodium levels in the blood), and syndrome of inappropriate antidiuretic hormone secretion (SIADH).

Prolactin is a hormone produced by the pituitary gland, a small gland located at the base of the brain. Its primary function is to stimulate milk production in women after childbirth, a process known as lactation. However, prolactin also plays other roles in the body, including regulating immune responses, metabolism, and behavior. In men, prolactin helps maintain the sexual glands and contributes to paternal behaviors.

Prolactin levels are usually low in both men and non-pregnant women but increase significantly during pregnancy and after childbirth. Various factors can affect prolactin levels, including stress, sleep, exercise, and certain medications. High prolactin levels can lead to medical conditions such as amenorrhea (absence of menstruation), galactorrhea (spontaneous milk production not related to childbirth), infertility, and reduced sexual desire in both men and women.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Thyrotropin, also known as thyroid-stimulating hormone (TSH), is a hormone secreted by the anterior pituitary gland. Its primary function is to regulate the production and release of thyroxine (T4) and triiodothyronine (T3) hormones from the thyroid gland. Thyrotropin binds to receptors on the surface of thyroid follicular cells, stimulating the uptake of iodide and the synthesis and release of T4 and T3. The secretion of thyrotropin is controlled by the hypothalamic-pituitary-thyroid axis: thyrotropin-releasing hormone (TRH) from the hypothalamus stimulates the release of thyrotropin, while T3 and T4 inhibit its release through a negative feedback mechanism.

Metyrapone is a medication that is primarily used in the diagnosis and treatment of Cushing's syndrome, a condition characterized by excessive levels of cortisol hormone in the body. It works as an inhibitor of steroidogenesis, specifically blocking the enzyme 11-beta-hydroxylase, which is involved in the production of cortisol in the adrenal gland.

By inhibiting this enzyme, metyrapone prevents the formation of cortisol and leads to an accumulation of its precursor, 11-deoxycortisol. This can help restore the balance of hormones in the body and alleviate symptoms associated with Cushing's syndrome.

It is important to note that metyrapone should only be used under the supervision of a healthcare professional, as it can have significant side effects and interactions with other medications.

Juvenile hormones (JHs) are a class of sesquiterpenoid compounds that play a crucial role in the regulation of insect development, reproduction, and other physiological processes. They are primarily produced by the corpora allata, a pair of endocrine glands located in the head of insects.

JHs are essential for maintaining the larval or nymphal stage of insects, preventing the expression of adult characteristics during molting. As the concentration of JH decreases in the hemolymph (insect blood), a molt to the next developmental stage occurs, and if the insect has reached its final instar, it will metamorphose into an adult.

In addition to their role in development, JHs also influence various aspects of insect reproductive physiology, such as vitellogenesis (yolk protein synthesis), oocyte maturation, and spermatogenesis. Furthermore, JHs have been implicated in regulating diapause (a period of suspended development during unfavorable environmental conditions) and caste determination in social insects like bees and ants.

Overall, juvenile hormones are vital regulators of growth, development, and reproduction in insects, making them attractive targets for the development of novel pest management strategies.

The adrenal cortex hormones are a group of steroid hormones produced and released by the outer portion (cortex) of the adrenal glands, which are located on top of each kidney. These hormones play crucial roles in regulating various physiological processes, including:

1. Glucose metabolism: Cortisol helps control blood sugar levels by increasing glucose production in the liver and reducing its uptake in peripheral tissues.
2. Protein and fat metabolism: Cortisol promotes protein breakdown and fatty acid mobilization, providing essential building blocks for energy production during stressful situations.
3. Immune response regulation: Cortisol suppresses immune function to prevent overactivation and potential damage to the body during stress.
4. Cardiovascular function: Aldosterone regulates electrolyte balance and blood pressure by promoting sodium reabsorption and potassium excretion in the kidneys.
5. Sex hormone production: The adrenal cortex produces small amounts of sex hormones, such as androgens and estrogens, which contribute to sexual development and function.
6. Growth and development: Cortisol plays a role in normal growth and development by influencing the activity of growth-promoting hormones like insulin-like growth factor 1 (IGF-1).

The main adrenal cortex hormones include:

1. Glucocorticoids: Cortisol is the primary glucocorticoid, responsible for regulating metabolism and stress response.
2. Mineralocorticoids: Aldosterone is the primary mineralocorticoid, involved in electrolyte balance and blood pressure regulation.
3. Androgens: Dehydroepiandrosterone (DHEA) and its sulfate derivative (DHEAS) are the most abundant adrenal androgens, contributing to sexual development and function.
4. Estrogens: Small amounts of estrogens are produced by the adrenal cortex, mainly in women.

Disorders related to impaired adrenal cortex hormone production or regulation can lead to various clinical manifestations, such as Addison's disease (adrenal insufficiency), Cushing's syndrome (hypercortisolism), and congenital adrenal hyperplasia (CAH).

Neurosecretory systems are specialized components of the nervous system that produce and release chemical messengers called neurohormones. These neurohormones are released into the bloodstream and can have endocrine effects on various target organs in the body. The cells that make up neurosecretory systems, known as neurosecretory cells, are found in specific regions of the brain, such as the hypothalamus, and in peripheral nerves.

Neurosecretory systems play a critical role in regulating many physiological processes, including fluid and electrolyte balance, stress responses, growth and development, reproductive functions, and behavior. The neurohormones released by these systems can act synergistically or antagonistically to maintain homeostasis and coordinate the body's response to internal and external stimuli.

Neurosecretory cells are characterized by their ability to synthesize and store neurohormones in secretory granules, which are released upon stimulation. The release of neurohormones can be triggered by a variety of signals, including neural impulses, hormonal changes, and other physiological cues. Once released into the bloodstream, neurohormones can travel to distant target organs, where they bind to specific receptors and elicit a range of responses.

Overall, neurosecretory systems are an essential component of the neuroendocrine system, which plays a critical role in regulating many aspects of human physiology and behavior.

Hormone Replacement Therapy (HRT) is a medical treatment that involves the use of hormones to replace or supplement those that the body is no longer producing or no longer producing in sufficient quantities. It is most commonly used to help manage symptoms associated with menopause and conditions related to hormonal imbalances.

In women, HRT typically involves the use of estrogen and/or progesterone to alleviate hot flashes, night sweats, vaginal dryness, and mood changes that can occur during menopause. In some cases, testosterone may also be prescribed to help improve energy levels, sex drive, and overall sense of well-being.

In men, HRT is often used to treat low testosterone levels (hypogonadism) and related symptoms such as fatigue, decreased muscle mass, and reduced sex drive.

It's important to note that while HRT can be effective in managing certain symptoms, it also carries potential risks, including an increased risk of blood clots, stroke, breast cancer (in women), and cardiovascular disease. Therefore, the decision to undergo HRT should be made carefully and discussed thoroughly with a healthcare provider.

Pituitary hormone receptors are specialized protein molecules found on the surface of target cells in various organs and tissues throughout the body. These receptors selectively bind to specific pituitary hormones, which are released from the pituitary gland, a small endocrine gland located at the base of the brain. The binding of the hormone to its corresponding receptor triggers a series of intracellular signaling events that ultimately lead to physiological responses in the target cells.

There are several types of pituitary hormones, each with its own unique receptors, including:

1. Growth Hormone (GH) Receptors: These receptors are found on many tissues, such as liver, muscle, and bone. The binding of GH to these receptors stimulates the production of insulin-like growth factor 1 (IGF-1), which promotes cell growth and division, as well as other metabolic processes.
2. Adrenocorticotropic Hormone (ACTH) Receptors: These receptors are primarily located on cells in the adrenal gland, particularly in the adrenal cortex. The binding of ACTH to these receptors stimulates the production and release of cortisol, a steroid hormone involved in stress response, metabolism, and immune function.
3. Thyroid-Stimulating Hormone (TSH) Receptors: These receptors are found on the surface of thyroid follicular cells. The binding of TSH to these receptors triggers the production and release of thyroid hormones, triiodothyronine (T3) and thyroxine (T4), which regulate metabolism, growth, and development.
4. Follicle-Stimulating Hormone (FSH) Receptors: These receptors are present in the gonads (ovaries and testes). In females, FSH binds to these receptors to stimulate follicular growth and estrogen production, while in males, it promotes spermatogenesis.
5. Luteinizing Hormone (LH) Receptors: These receptors are also found in the gonads. In females, LH binding triggers ovulation and progesterone production, while in males, it stimulates testosterone production and sperm maturation.
6. Prolactin (PRL) Receptors: These receptors are located in various tissues, including the mammary glands, liver, and brain. The binding of PRL to these receptors promotes lactation, growth, and differentiation of mammary cells, as well as modulating immune function and behavior.
7. Melanocyte-Stimulating Hormone (MSH) Receptors: These receptors are found in the skin and central nervous system. The binding of MSH to these receptors regulates pigmentation, appetite, and energy balance.
8. Growth Hormone-Releasing Hormone (GHRH) Receptors: These receptors are present in the pituitary gland. The binding of GHRH to these receptors stimulates the release of growth hormone, which promotes growth, cell reproduction, and regeneration.
9. Somatostatin Receptors (SST): These receptors are located in various tissues, including the pancreas, brain, and gastrointestinal tract. The binding of somatostatin to these receptors inhibits the release of several hormones, such as growth hormone, insulin, and glucagon.
10. Corticotropin-Releasing Hormone (CRH) Receptors: These receptors are found in the hypothalamus and other brain regions. The binding of CRH to these receptors stimulates the release of adrenocorticotropic hormone (ACTH), which regulates stress response, metabolism, and immune function.
11. Thyrotropin-Releasing Hormone (TRH) Receptors: These receptors are present in the hypothalamus and pituitary gland. The binding of TRH to these receptors stimulates the release of thyroid-stimulating hormone (TSH), which regulates thyroid function and metabolism.
12. Gonadotropin-Releasing Hormone (GnRH) Receptors: These receptors are located in the hypothalamus and pituitary gland. The binding of GnRH to these receptors stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function.
13. Prolactin-Releasing Hormone (PRH) Receptors: These receptors are found in the hypothalamus and pituitary gland. The binding of PRH to these receptors stimulates the release of prolactin, which regulates lactation and other physiological processes.
14. Growth Hormone-Releasing Hormone (GHRH) Receptors: These receptors are located in the hypothalamus and pituitary gland. The binding of GHRH to these receptors stimulates the release of growth hormone, which regulates growth, metabolism, and other physiological processes.
15. Melanin-Concentrating Hormone (MCH) Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of MCH to these receptors regulates energy balance, feeding behavior, and sleep-wake cycles.
16. Neuropeptide Y (NPY) Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of NPY to these receptors regulates energy balance, feeding behavior, stress response, and cardiovascular function.
17. Corticotropin-Releasing Hormone (CRH) Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of CRH to these receptors regulates the hypothalamic-pituitary-adrenal axis, stress response, and anxiety.
18. Oxytocin Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of oxytocin to these receptors regulates social behavior, maternal care, and reproductive function.
19. Vasopressin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of vasopressin to these receptors regulates water balance, blood pressure, and social behavior.
20. Substance P Receptors (Neurokinin 1 Receptors): These receptors are located in various brain regions and peripheral tissues. The binding of substance P to these receptors regulates pain transmission, neuroinflammation, and stress response.
21. Melanocortin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of melanocortins to these receptors regulates energy balance, feeding behavior, and sexual function.
22. Endorphin Receptors (Mu, Delta, Kappa Opioid Receptors): These receptors are located in various brain regions and peripheral tissues. The binding of endorphins to these receptors modulates pain transmission, reward processing, and stress response.
23. Galanin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of galanin to these receptors regulates feeding behavior, anxiety, and nociception.
24. Somatostatin Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of somatostatin to these receptors modulates neurotransmitter release, hormone secretion, and cell proliferation.
25. Neuropeptide Y Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of neuropeptide Y to these receptors regulates feeding behavior, anxiety, and cardiovascular function.
26. Corticotropin-Releasing Hormone Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of corticotropin-releasing hormone to these receptors modulates stress response, anxiety, and neuroinflammation.
27. Oxytocin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of oxytocin to these receptors regulates social behavior, maternal care, and anxiety.
28. Vasopressin Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of vasopressin to these receptors modulates water balance, blood pressure, and social behavior.
2

The amygdala is an almond-shaped group of nuclei located deep within the temporal lobe of the brain, specifically in the anterior portion of the temporal lobes and near the hippocampus. It forms a key component of the limbic system and plays a crucial role in processing emotions, particularly fear and anxiety. The amygdala is involved in the integration of sensory information with emotional responses, memory formation, and decision-making processes.

In response to emotionally charged stimuli, the amygdala can modulate various physiological functions, such as heart rate, blood pressure, and stress hormone release, via its connections to the hypothalamus and brainstem. Additionally, it contributes to social behaviors, including recognizing emotional facial expressions and responding appropriately to social cues. Dysfunctions in amygdala function have been implicated in several psychiatric and neurological conditions, such as anxiety disorders, depression, post-traumatic stress disorder (PTSD), and autism spectrum disorder (ASD).

Pituitary-adrenal function tests are a group of diagnostic tests that evaluate the functioning of the pituitary gland and the adrenal gland. These glands are important components of the endocrine system, which regulates various bodily functions through the production of hormones.

The pituitary gland, located at the base of the brain, produces several hormones that regulate the function of other glands in the body, including the adrenal glands. The adrenal glands, located on top of the kidneys, produce a variety of hormones that help regulate metabolism, immune system function, blood pressure, and stress responses.

Pituitary-adrenal function tests typically include:

1. Cortisol levels: Cortisol is a hormone produced by the adrenal glands in response to stress. Blood or saliva samples may be taken at different times of the day to measure cortisol levels and evaluate the body's response to stress.
2. ACTH (adrenocorticotropic hormone) levels: ACTH is a hormone produced by the pituitary gland that stimulates the adrenal glands to produce cortisol. Blood samples may be taken to measure ACTH levels and evaluate the communication between the pituitary and adrenal glands.
3. CRH (corticotropin-releasing hormone) stimulation test: This test involves administering CRH, a hormone produced by the hypothalamus that stimulates the release of ACTH, and measuring the body's response in terms of cortisol and ACTH levels.
4. Insulin tolerance test: This test involves administering insulin to lower blood sugar levels and measuring the body's response in terms of cortisol and growth hormone levels.
5. Metyrapone or dexamethasone suppression tests: These tests involve administering medications that suppress cortisol production and measuring the body's response in terms of cortisol and ACTH levels.

These tests can help diagnose various conditions related to pituitary and adrenal gland dysfunction, such as Cushing's syndrome, Addison's disease, and hypopituitarism.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Intraventricular injections are a type of medical procedure where medication is administered directly into the cerebral ventricles of the brain. The cerebral ventricles are fluid-filled spaces within the brain that contain cerebrospinal fluid (CSF). This procedure is typically used to deliver drugs that target conditions affecting the central nervous system, such as infections or tumors.

Intraventricular injections are usually performed using a thin, hollow needle that is inserted through a small hole drilled into the skull. The medication is then injected directly into the ventricles, allowing it to circulate throughout the CSF and reach the brain tissue more efficiently than other routes of administration.

This type of injection is typically reserved for situations where other methods of drug delivery are not effective or feasible. It carries a higher risk of complications, such as bleeding, infection, or damage to surrounding tissues, compared to other routes of administration. Therefore, it is usually performed by trained medical professionals in a controlled clinical setting.

I'm not aware of a specific medical definition for "amphibian proteins." However, I can provide some context that might help you understand what you might be looking for.

Proteins are complex molecules that perform a wide variety of functions within organisms, including catalyzing metabolic reactions, DNA replication, responding to stimuli, and transporting molecules from one location to another. Amphibians are a class of animals that include frogs, toads, salamanders, and newts.

If you're looking for information about proteins that are found in amphibians or are unique to amphibians, then you might be interested in researching the specific proteins that are involved in various biological processes in these animals. For example, some amphibian proteins have been studied for their potential roles in wound healing, immune response, and developmental biology.

One well-known example of an amphibian protein is antimicrobial peptides (AMPs), which are produced by the skin of many amphibians as a defense against pathogens. These peptides have been studied for their potential therapeutic applications in human medicine, particularly in the context of antibiotic resistance.

If you could provide more context or clarify what you're looking for, I might be able to give you a more specific answer!

Growth Hormone-Releasing Hormone (GHRH) is a hormone that is produced and released by the hypothalamus, a small gland located in the brain. Its primary function is to stimulate the anterior pituitary gland to release growth hormone (GH) into the bloodstream. GH plays a crucial role in growth and development, particularly during childhood and adolescence, by promoting the growth of bones and muscles.

GHRH is a 44-amino acid peptide that binds to specific receptors on the surface of pituitary cells, triggering a series of intracellular signals that ultimately lead to the release of GH. The production and release of GHRH are regulated by various factors, including sleep, stress, exercise, and nutrition.

Abnormalities in the production or function of GHRH can lead to growth disorders, such as dwarfism or gigantism, as well as other hormonal imbalances. Therefore, understanding the role of GHRH in regulating GH release is essential for diagnosing and treating these conditions.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Methandrostenolone is a synthetic anabolic-androgenic steroid, which is derived from testosterone. It is also known as methandienone or Dianabol. This drug is commonly used by bodybuilders and athletes for its ability to increase muscle mass, strength, and stamina. However, it has significant adverse effects, including increased risk of cardiovascular disease, liver damage, and hormonal imbalances. Therefore, its use is regulated and often illegal without a prescription.

Estradiol is a type of estrogen, which is a female sex hormone. It is the most potent and dominant form of estrogen in humans. Estradiol plays a crucial role in the development and maintenance of secondary sexual characteristics in women, such as breast development and regulation of the menstrual cycle. It also helps maintain bone density, protect the lining of the uterus, and is involved in cognition and mood regulation.

Estradiol is produced primarily by the ovaries, but it can also be synthesized in smaller amounts by the adrenal glands and fat cells. In men, estradiol is produced from testosterone through a process called aromatization. Abnormal levels of estradiol can contribute to various health issues, such as hormonal imbalances, infertility, osteoporosis, and certain types of cancer.

Blepharitis is a common inflammatory condition that affects the eyelids, specifically the eyelash follicles and the edges of the eyelids (called the "eyelid margins"). It can cause symptoms such as redness, swelling, itching, burning, and a crusty or flaky buildup on the lashes. Blepharitis can be caused by a variety of factors, including bacterial infection, skin disorders like seborrheic dermatitis or rosacea, and meibomian gland dysfunction. It is often a chronic condition that requires ongoing treatment to manage symptoms and prevent recurrence.

17-Hydroxycorticosteroids are a class of steroid hormones that are produced in the adrenal gland. They are formed from the metabolism of cortisol, which is a hormone that helps regulate metabolism, immune response, and stress response. 17-Hydroxycorticosteroids include compounds such as cortisone and corticosterone.

These hormones have various functions in the body, including:

* Regulation of carbohydrate, fat, and protein metabolism
* Suppression of the immune system
* Modulation of the stress response
* Influence on blood pressure and electrolyte balance

Abnormal levels of 17-hydroxycorticosteroids can indicate problems with the adrenal gland or pituitary gland, which regulates adrenal function. They are often measured in urine or blood tests to help diagnose conditions such as Cushing's syndrome (overproduction of cortisol) and Addison's disease (underproduction of cortisol).

Steroids, also known as corticosteroids, are a type of hormone that the adrenal gland produces in your body. They have many functions, such as controlling the balance of salt and water in your body and helping to reduce inflammation. Steroids can also be synthetically produced and used as medications to treat a variety of conditions, including allergies, asthma, skin conditions, and autoimmune disorders.

Steroid medications are available in various forms, such as oral pills, injections, creams, and inhalers. They work by mimicking the effects of natural hormones produced by your body, reducing inflammation and suppressing the immune system's response to prevent or reduce symptoms. However, long-term use of steroids can have significant side effects, including weight gain, high blood pressure, osteoporosis, and increased risk of infections.

It is important to note that anabolic steroids are a different class of drugs that are sometimes abused for their muscle-building properties. These steroids are synthetic versions of the male hormone testosterone and can have serious health consequences when taken in large doses or without medical supervision.

Hypothalamic hormones are a group of hormones that are produced and released by the hypothalamus, a small region at the base of the brain. These hormones play a crucial role in regulating various bodily functions, including temperature, hunger, thirst, sleep, and emotional behavior.

The hypothalamus produces two main types of hormones: releasing hormones and inhibiting hormones. Releasing hormones stimulate the pituitary gland to release its own hormones, while inhibiting hormones prevent the pituitary gland from releasing hormones.

Some examples of hypothalamic hormones include:

* Thyroid-releasing hormone (TRH), which stimulates the release of thyroid-stimulating hormone (TSH) from the pituitary gland.
* Growth hormone-releasing hormone (GHRH) and somatostatin, which regulate the release of growth hormone (GH) from the pituitary gland.
* Gonadotropin-releasing hormone (GnRH), which stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn regulate reproductive function.
* Corticotropin-releasing hormone (CRH), which stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary gland, which regulates the stress response.
* Prolactin-inhibiting hormone (PIH) and prolactin-releasing hormone (PRH), which regulate the release of prolactin from the pituitary gland, which is involved in lactation.

Overall, hypothalamic hormones play a critical role in maintaining homeostasis in the body by regulating various physiological processes.

Alpha-MSH (α-MSH) stands for alpha-melanocyte stimulating hormone. It is a peptide hormone that is produced in the pituitary gland and other tissues in the body. Alpha-MSH plays a role in various physiological processes, including:

1. Melanin production: Alpha-MSH stimulates melanin production in the skin, which leads to skin tanning.
2. Appetite regulation: Alpha-MSH acts as a appetite suppressant by signaling to the brain that the stomach is full.
3. Inflammation and immune response: Alpha-MSH has anti-inflammatory effects and helps regulate the immune response.
4. Energy balance and metabolism: Alpha-MSH helps regulate energy balance and metabolism by signaling to the brain to increase or decrease food intake and energy expenditure.

Alpha-MSH exerts its effects by binding to melanocortin receptors, specifically MC1R, MC3R, MC4R, and MC5R. Dysregulation of alpha-MSH signaling has been implicated in various medical conditions, including obesity, anorexia nervosa, and certain skin disorders.

Thyroxine (T4) is a type of hormone produced and released by the thyroid gland, a small butterfly-shaped endocrine gland located in the front of your neck. It is one of two major hormones produced by the thyroid gland, with the other being triiodothyronine (T3).

Thyroxine plays a crucial role in regulating various metabolic processes in the body, including growth, development, and energy expenditure. Specifically, T4 helps to control the rate at which your body burns calories for energy, regulates protein, fat, and carbohydrate metabolism, and influences the body's sensitivity to other hormones.

T4 is produced by combining iodine and tyrosine, an amino acid found in many foods. Once produced, T4 circulates in the bloodstream and gets converted into its active form, T3, in various tissues throughout the body. Thyroxine has a longer half-life than T3, which means it remains active in the body for a more extended period.

Abnormal levels of thyroxine can lead to various medical conditions, such as hypothyroidism (underactive thyroid) or hyperthyroidism (overactive thyroid). These conditions can cause a range of symptoms, including weight gain or loss, fatigue, mood changes, and changes in heart rate and blood pressure.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Secretory rate refers to the amount or volume of a secretion produced by a gland or an organ over a given period of time. It is a measure of the productivity or activity level of the secreting structure. The secretory rate can be quantified for various bodily fluids, such as saliva, sweat, digestive enzymes, hormones, or milk, depending on the context and the specific gland or organ being studied.

In clinical settings, measuring the secretory rate might involve collecting and analyzing samples over a certain duration to estimate the production rate of the substance in question. This information can be helpful in diagnosing conditions related to impaired secretion, monitoring treatment responses, or understanding the physiological adaptations of the body under different circumstances.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Anti-Mullerian Hormone (AMH) is a glycoprotein hormone that belongs to the transforming growth factor-beta (TGF-β) family. It is primarily produced by the granulosa cells of developing follicles in the ovaries of females. AMH plays an essential role in female reproductive physiology, as it inhibits the recruitment and further development of primordial follicles, thereby regulating the size of the primordial follicle pool and the onset of puberty.

AMH levels are often used as a biomarker for ovarian reserve assessment in women. High AMH levels indicate a larger ovarian reserve, while low levels suggest a decreased reserve, which may be associated with reduced fertility or an earlier onset of menopause. Additionally, measuring AMH levels can help predict the response to ovarian stimulation during assisted reproductive technologies (ART) such as in vitro fertilization (IVF).

Gonadal hormones, also known as sex hormones, are steroid hormones that are primarily produced by the gonads (ovaries in females and testes in males). They play crucial roles in the development and regulation of sexual characteristics and reproductive functions. The three main types of gonadal hormones are:

1. Estrogens - predominantly produced by ovaries, they are essential for female sexual development and reproduction. The most common estrogen is estradiol, which supports the growth and maintenance of secondary sexual characteristics in women, such as breast development and wider hips. Estrogens also play a role in regulating the menstrual cycle and maintaining bone health.

2. Progesterone - primarily produced by ovaries during the menstrual cycle and pregnancy, progesterone prepares the uterus for implantation of a fertilized egg and supports the growth and development of the fetus during pregnancy. It also plays a role in regulating the menstrual cycle.

3. Androgens - produced by both ovaries and testes, but primarily by testes in males. The most common androgen is testosterone, which is essential for male sexual development and reproduction. Testosterone supports the growth and maintenance of secondary sexual characteristics in men, such as facial hair, a deeper voice, and increased muscle mass. It also plays a role in regulating sex drive (libido) and bone health in both males and females.

In summary, gonadal hormones are steroid hormones produced by the gonads that play essential roles in sexual development, reproduction, and maintaining secondary sexual characteristics.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Thyroid hormone receptors (THRs) are nuclear receptor proteins that bind to thyroid hormones and mediate their effects in target cells. There are two main types of THRs, referred to as THR alpha and THR beta. THR beta is further divided into two subtypes, THR beta1 and THR beta2.

THR beta is a type of nuclear receptor that is primarily expressed in the liver, kidney, and heart, as well as in the central nervous system. It plays an important role in regulating the metabolism of carbohydrates, lipids, and proteins, as well as in the development and function of the heart. THR beta is also involved in the regulation of body weight and energy expenditure.

THR beta1 is the predominant subtype expressed in the liver and is responsible for many of the metabolic effects of thyroid hormones in this organ. THR beta2, on the other hand, is primarily expressed in the heart and plays a role in regulating cardiac function.

Abnormalities in THR beta function can lead to various diseases, including thyroid hormone resistance, a condition in which the body's cells are unable to respond properly to thyroid hormones. This can result in symptoms such as weight gain, fatigue, and cold intolerance.

Anxiety: A feeling of worry, nervousness, or unease, typically about an imminent event or something with an uncertain outcome. In a medical context, anxiety refers to a mental health disorder characterized by feelings of excessive and persistent worry, fear, or panic that interfere with daily activities. It can also be a symptom of other medical conditions, such as heart disease, diabetes, or substance abuse disorders. Anxiety disorders include generalized anxiety disorder, panic disorder, social anxiety disorder, and phobias.

I'm sorry for any confusion, but "Succinic Anhydrides" is not a recognized medical term. Succinic anhydride is a chemical compound with the formula (CH2)2(CO)2O. It is used in organic synthesis as a dehydrating agent and acylating agent. If you're asking about a medical application or effect of succinic anhydride or its derivatives, I would need more specific information to provide an accurate and helpful response.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Somatostatin is a hormone that inhibits the release of several hormones and also has a role in slowing down digestion. It is produced by the body in various parts of the body, including the hypothalamus (a part of the brain), the pancreas, and the gastrointestinal tract.

Somatostatin exists in two forms: somatostatin-14 and somatostatin-28, which differ in their length. Somatostatin-14 is the predominant form found in the brain, while somatostatin-28 is the major form found in the gastrointestinal tract.

Somatostatin has a wide range of effects on various physiological processes, including:

* Inhibiting the release of several hormones such as growth hormone, insulin, glucagon, and gastrin
* Slowing down digestion by inhibiting the release of digestive enzymes from the pancreas and reducing blood flow to the gastrointestinal tract
* Regulating neurotransmission in the brain

Somatostatin is used clinically as a diagnostic tool for detecting certain types of tumors that overproduce growth hormone or other hormones, and it is also used as a treatment for some conditions such as acromegaly (a condition characterized by excessive growth hormone production) and gastrointestinal disorders.

Psychological stress is the response of an individual's mind and body to challenging or demanding situations. It can be defined as a state of emotional and physical tension resulting from adversity, demand, or change. This response can involve a variety of symptoms, including emotional, cognitive, behavioral, and physiological components.

Emotional responses may include feelings of anxiety, fear, anger, sadness, or frustration. Cognitive responses might involve difficulty concentrating, racing thoughts, or negative thinking patterns. Behaviorally, psychological stress can lead to changes in appetite, sleep patterns, social interactions, and substance use. Physiologically, the body's "fight-or-flight" response is activated, leading to increased heart rate, blood pressure, muscle tension, and other symptoms.

Psychological stress can be caused by a wide range of factors, including work or school demands, financial problems, relationship issues, traumatic events, chronic illness, and major life changes. It's important to note that what causes stress in one person may not cause stress in another, as individual perceptions and coping mechanisms play a significant role.

Chronic psychological stress can have negative effects on both mental and physical health, increasing the risk of conditions such as anxiety disorders, depression, heart disease, diabetes, and autoimmune diseases. Therefore, it's essential to identify sources of stress and develop effective coping strategies to manage and reduce its impact.

Progesterone is a steroid hormone that is primarily produced in the ovaries during the menstrual cycle and in pregnancy. It plays an essential role in preparing the uterus for implantation of a fertilized egg and maintaining the early stages of pregnancy. Progesterone works to thicken the lining of the uterus, creating a nurturing environment for the developing embryo.

During the menstrual cycle, progesterone is produced by the corpus luteum, a temporary structure formed in the ovary after an egg has been released from a follicle during ovulation. If pregnancy does not occur, the levels of progesterone will decrease, leading to the shedding of the uterine lining and menstruation.

In addition to its reproductive functions, progesterone also has various other effects on the body, such as helping to regulate the immune system, supporting bone health, and potentially influencing mood and cognition. Progesterone can be administered medically in the form of oral pills, intramuscular injections, or vaginal suppositories for various purposes, including hormone replacement therapy, contraception, and managing certain gynecological conditions.

Gastrointestinal (GI) hormones are a group of hormones that are secreted by cells in the gastrointestinal tract in response to food intake and digestion. They play crucial roles in regulating various physiological processes, including appetite regulation, gastric acid secretion, motility of the gastrointestinal tract, insulin secretion, and pancreatic enzyme release.

Examples of GI hormones include:

* Gastrin: Secreted by G cells in the stomach, gastrin stimulates the release of hydrochloric acid from parietal cells in the stomach lining.
* Ghrelin: Produced by the stomach, ghrelin is often referred to as the "hunger hormone" because it stimulates appetite and food intake.
* Cholecystokinin (CCK): Secreted by I cells in the small intestine, CCK promotes digestion by stimulating the release of pancreatic enzymes and bile from the liver. It also inhibits gastric emptying and reduces appetite.
* Gastric inhibitory peptide (GIP): Produced by K cells in the small intestine, GIP promotes insulin secretion and inhibits glucagon release.
* Secretin: Released by S cells in the small intestine, secretin stimulates the pancreas to produce bicarbonate-rich fluid that neutralizes stomach acid in the duodenum.
* Motilin: Secreted by MO cells in the small intestine, motilin promotes gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for cleaning out the small intestine between meals.

These hormones work together to regulate digestion and maintain homeostasis in the body. Dysregulation of GI hormones can contribute to various gastrointestinal disorders, such as gastroparesis, irritable bowel syndrome (IBS), and diabetes.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

The septal nuclei are a collection of gray matter structures located in the basal forebrain, specifically in the septum pellucidum. They consist of several interconnected subnuclei that play important roles in various functions such as reward and reinforcement, emotional processing, learning, and memory.

The septal nuclei are primarily composed of GABAergic neurons (neurons that release the neurotransmitter gamma-aminobutyric acid or GABA) and receive inputs from several brain regions, including the hippocampus, amygdala, hypothalamus, and prefrontal cortex. They also send projections to various areas, including the thalamus, hypothalamus, and other limbic structures.

Stimulation of the septal nuclei has been associated with feelings of pleasure and reward, while damage or lesions can lead to changes in emotional behavior and cognitive functions. The septal nuclei are also involved in neuroendocrine regulation, particularly in relation to the hypothalamic-pituitary-adrenal (HPA) axis and the release of stress hormones.

Glucocorticoids are a class of steroid hormones that are naturally produced in the adrenal gland, or can be synthetically manufactured. They play an essential role in the metabolism of carbohydrates, proteins, and fats, and have significant anti-inflammatory effects. Glucocorticoids suppress immune responses and inflammation by inhibiting the release of inflammatory mediators from various cells, such as mast cells, eosinophils, and lymphocytes. They are frequently used in medical treatment for a wide range of conditions, including allergies, asthma, rheumatoid arthritis, dermatological disorders, and certain cancers. Prolonged use or high doses of glucocorticoids can lead to several side effects, such as weight gain, mood changes, osteoporosis, and increased susceptibility to infections.

Polyribosomes, also known as polysomes, are clusters of ribosomes that are translating the same mRNA molecule simultaneously. They can be found in the cytoplasm of eukaryotic cells and are responsible for the synthesis of proteins. The mRNA molecule serves as a template for the translation process, with multiple ribosomes moving along it and producing multiple copies of the same protein. This allows for efficient and rapid production of large quantities of a single protein. Polyribosomes can be found in high numbers in cells that are actively synthesizing proteins, such as secretory cells or cells undergoing growth and division.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Aldosterone is a hormone produced by the adrenal gland. It plays a key role in regulating sodium and potassium balance and maintaining blood pressure through its effects on the kidneys. Aldosterone promotes the reabsorption of sodium ions and the excretion of potassium ions in the distal tubules and collecting ducts of the nephrons in the kidneys. This increases the osmotic pressure in the blood, which in turn leads to water retention and an increase in blood volume and blood pressure.

Aldosterone is released from the adrenal gland in response to a variety of stimuli, including angiotensin II (a peptide hormone produced as part of the renin-angiotensin-aldosterone system), potassium ions, and adrenocorticotropic hormone (ACTH) from the pituitary gland. The production of aldosterone is regulated by a negative feedback mechanism involving sodium levels in the blood. High sodium levels inhibit the release of aldosterone, while low sodium levels stimulate its release.

In addition to its role in maintaining fluid and electrolyte balance and blood pressure, aldosterone has been implicated in various pathological conditions, including hypertension, heart failure, and primary hyperaldosteronism (a condition characterized by excessive production of aldosterone).

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

Gastric Inhibitory Polypeptide (GIP) is a 42-amino acid long peptide hormone that is released from the K cells in the duodenum and jejunum of the small intestine in response to food intake, particularly carbohydrates and fats. It is also known as glucose-dependent insulinotropic polypeptide.

GIP has several physiological effects on the body, including:

* Incretin effect: GIP stimulates the release of insulin from the pancreas in a glucose-dependent manner, which means that it only increases insulin secretion when blood glucose levels are high. This is known as the incretin effect and helps to regulate postprandial glucose levels.
* Inhibition of gastric acid secretion: GIP inhibits the release of gastric acid from the stomach, which helps to protect the intestinal mucosa from damage caused by excessive acid production.
* Increase in blood flow: GIP increases blood flow to the intestines, which helps to facilitate nutrient absorption.
* Energy storage: GIP promotes the storage of energy by increasing fat synthesis and reducing fat breakdown in adipose tissue.

Overall, GIP plays an important role in regulating glucose metabolism, energy balance, and gastrointestinal function.

Physical restraint, in a medical context, refers to the use of physical force or equipment to limit a person's movements or access to their own body. This is typically done to prevent harm to the individual themselves or to others. It can include various devices such as wrist restraints, vest restraints, or bed rails. The use of physical restraints should be a last resort and must be in accordance with established guidelines and regulations to ensure the safety and rights of the patient are respected.

Vasopressin, also known as antidiuretic hormone (ADH), is a hormone that helps regulate water balance in the body. It is produced by the hypothalamus and stored in the posterior pituitary gland. When the body is dehydrated or experiencing low blood pressure, vasopressin is released into the bloodstream, where it causes the kidneys to decrease the amount of urine they produce and helps to constrict blood vessels, thereby increasing blood pressure. This helps to maintain adequate fluid volume in the body and ensure that vital organs receive an adequate supply of oxygen-rich blood. In addition to its role in water balance and blood pressure regulation, vasopressin also plays a role in social behaviors such as pair bonding and trust.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Thyroid hormone receptors (THRs) are nuclear receptor proteins that bind to thyroid hormones and mediate their effects in the body. There are two main types of THRs, referred to as THRα and THRβ.

THRα is a subtype of thyroid hormone receptor that is primarily expressed in tissues such as the heart, skeletal muscle, and brown adipose tissue. It plays an important role in regulating metabolism, growth, and development in these tissues. THRα has two subtypes, THRα1 and THRα2, which have different functions and are expressed in different tissues.

THRα1 is the predominant form of THRα and is found in many tissues, including the heart, skeletal muscle, and brown adipose tissue. It regulates genes involved in metabolism, growth, and development, and has been shown to play a role in regulating heart rate and contractility.

THRα2, on the other hand, is primarily expressed in the brain and pituitary gland, where it regulates the production of thyroid-stimulating hormone (TSH). THRα2 is unable to bind to thyroid hormones, but can form heterodimers with THRα1 or THRβ1, which allows it to modulate their activity.

Overall, THRα plays an important role in regulating various physiological processes in the body, and dysregulation of THRα function has been implicated in a number of diseases, including heart disease, muscle wasting, and neurological disorders.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Glycoprotein hormones are a group of hormones that share a similar structure and are made up of four subunits: two identical alpha subunits and two distinct beta subunits. The alpha subunit is common to all glycoprotein hormones, including thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG).

The alpha subunit of glycoprotein hormones is a 92 amino acid polypeptide chain that contains several disulfide bonds, which help to stabilize its structure. It is heavily glycosylated, meaning that it contains many carbohydrate groups attached to the protein backbone. The alpha subunit plays an important role in the biological activity of the hormone by interacting with a specific receptor on the target cell surface.

The alpha subunit contains several regions that are important for its function, including a signal peptide, a variable region, and a conserved region. The signal peptide is a short sequence of amino acids at the N-terminus of the protein that directs it to the endoplasmic reticulum for processing and secretion. The variable region contains several amino acid residues that differ between different glycoprotein hormones, while the conserved region contains amino acids that are identical or very similar in all glycoprotein hormones.

Together with the beta subunit, the alpha subunit forms the functional hormone molecule. The beta subunit determines the specificity of the hormone for its target cells and regulates its biological activity.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Insect hormones are chemical messengers that regulate various physiological and behavioral processes in insects. They are produced and released by endocrine glands and organs, such as the corpora allata, prothoracic glands, and neurosecretory cells located in the brain. Insect hormones play crucial roles in the regulation of growth and development, reproduction, diapause (a state of dormancy), metamorphosis, molting, and other vital functions. Some well-known insect hormones include juvenile hormone (JH), ecdysteroids (such as 20-hydroxyecdysone), and neuropeptides like the brain hormone and adipokinetic hormone. These hormones act through specific receptors, often transmembrane proteins, to elicit intracellular signaling cascades that ultimately lead to changes in gene expression, cell behavior, or organ function. Understanding insect hormones is essential for developing novel strategies for pest management and control, as well as for advancing our knowledge of insect biology and evolution.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Pituitary hormone-releasing hormones (PRHs), also known as hypothalamic releasing hormones or hypothalamic hormones, are small neuropeptides produced and released by the hypothalamus - a small region of the brain. These hormones play crucial roles in regulating the secretion and release of various pituitary hormones, which in turn control several essential bodily functions, including growth, development, metabolism, stress response, reproduction, and lactation.

There are several PRHs, each with a specific target pituitary hormone:

1. Thyrotropin-releasing hormone (TRH): Stimulates the release of thyroid-stimulating hormone (TSH) from the anterior pituitary gland, which then promotes the production and release of thyroid hormones.
2. Gonadotropin-releasing hormone (GnRH): Regulates the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary gland, which are essential for reproductive functions.
3. Corticotropin-releasing hormone (CRH): Stimulates the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary gland, which then promotes the production and release of cortisol and other glucocorticoids from the adrenal glands.
4. Growth hormone-releasing hormone (GHRH): Stimulates the release of growth hormone (GH) from the anterior pituitary gland, which is essential for growth, development, and metabolism regulation.
5. Somatostatin or growth hormone-inhibiting hormone (GHIH): Inhibits the release of GH from the anterior pituitary gland and also suppresses the secretion of thyroid hormones.
6. Prolactin-releasing hormone (PRH) or prolactin-releasing factor (PRF): Stimulates the release of prolactin from the anterior pituitary gland, which is essential for lactation and reproductive functions.
7. Prolactin-inhibiting hormone (PIH) or dopamine: Inhibits the release of prolactin from the anterior pituitary gland.

These releasing hormones and inhibitory hormones work together to maintain a delicate balance in various physiological processes, including growth, development, metabolism, stress response, and reproductive functions. Dysregulation of these hormonal systems can lead to various endocrine disorders and diseases.

Invertebrate hormones refer to the chemical messengers that regulate various physiological processes in invertebrate animals, which include insects, mollusks, worms, and other animals without a backbone. These hormones are produced by specialized endocrine cells or glands and released into the bloodstream to target organs, where they elicit specific responses that help control growth, development, reproduction, metabolism, and behavior.

Examples of invertebrate hormones include:

1. Ecdysteroids: These are steroid hormones found in arthropods such as insects and crustaceans. They regulate molting (ecdysis) and metamorphosis by stimulating the growth and differentiation of new cuticle layers.
2. Juvenile hormone (JH): This is a sesquiterpenoid hormone produced by the corpora allata glands in insects. JH plays a crucial role in maintaining the juvenile stage, regulating reproduction, and controlling diapause (a period of suspended development during unfavorable conditions).
3. Neuropeptides: These are short chains of amino acids that act as hormones or neurotransmitters in invertebrates. They regulate various functions such as feeding behavior, growth, reproduction, and circadian rhythms. Examples include the neuropeptide F (NPF), which controls food intake and energy balance, and the insulin-like peptides (ILPs) that modulate metabolism and growth.
4. Molluscan cardioactive peptides: These are neuropeptides found in mollusks that regulate heart function by controlling heart rate and contractility. An example is FMRFamide, which has been identified in various mollusk species and influences several physiological processes, including feeding behavior, muscle contraction, and reproduction.
5. Vertebrate-like hormones: Some invertebrates produce hormones that are structurally and functionally similar to those found in vertebrates. For example, some annelids (segmented worms) and cephalopods (squid and octopus) have insulin-like peptides that regulate metabolism and growth, while certain echinoderms (starfish and sea urchins) produce steroid hormones that control reproduction.

In summary, invertebrates utilize various types of hormones to regulate their physiological functions, including neuropeptides, cardioactive peptides, insulin-like peptides, and vertebrate-like hormones. These hormones play crucial roles in controlling growth, development, reproduction, feeding behavior, and other essential processes that maintain homeostasis and ensure survival. Understanding the mechanisms of hormone action in invertebrates can provide valuable insights into the evolution of hormonal systems and their functions across different animal taxa.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Pituitary hormones refer to the chemical messengers produced and released by the pituitary gland, which is a small endocrine gland located at the base of the brain. The pituitary gland is divided into two main parts: the anterior lobe (also known as the adenohypophysis) and the posterior lobe (also known as the neurohypophysis).

Posterior pituitary hormones are those that are produced by the hypothalamus, a region of the brain located above the pituitary gland, and stored in the posterior pituitary before being released. There are two main posterior pituitary hormones:

1. Oxytocin: This hormone plays a role in social bonding, sexual reproduction, and childbirth. During childbirth, oxytocin stimulates uterine contractions to help facilitate delivery of the baby. After delivery, oxytocin continues to be released to stimulate milk production and letdown during breastfeeding.
2. Vasopressin (also known as antidiuretic hormone or ADH): This hormone helps regulate water balance in the body by controlling the amount of urine that is produced by the kidneys. When vasopressin is released, it causes the kidneys to retain water and increase blood volume, which can help to maintain blood pressure.

Together, these posterior pituitary hormones play important roles in regulating various physiological processes in the body.

Neuropeptide Y (NPY) is a neurotransmitter and neuropeptide that is widely distributed in the central and peripheral nervous systems. It is a member of the pancreatic polypeptide family, which includes peptide YY and pancreatic polypeptide. NPY plays important roles in various physiological functions such as energy balance, feeding behavior, stress response, anxiety, memory, and cardiovascular regulation. It is involved in the modulation of neurotransmitter release, synaptic plasticity, and neural development. NPY is synthesized from a larger precursor protein called prepro-NPY, which is post-translationally processed to generate the mature NPY peptide. The NPY system has been implicated in various pathological conditions such as obesity, depression, anxiety disorders, hypertension, and drug addiction.

8-Bromo Cyclic Adenosine Monophosphate (8-Br-cAMP) is a synthetic, cell-permeable analog of cyclic adenosine monophosphate (cAMP). Cyclic AMP is an important second messenger in many signal transduction pathways, and 8-Br-cAMP is often used in research to mimic or study the effects of increased cAMP levels. The bromine atom at the 8-position makes 8-Br-cAMP more resistant to degradation by phosphodiesterases, allowing it to have a longer duration of action compared to cAMP. It is used in various biochemical and cellular studies as a tool compound to investigate the role of cAMP in different signaling pathways.

Somatotropin receptors are a type of cell surface receptor that binds to and gets activated by the hormone somatotropin, also known as growth hormone (GH). These receptors are found in many tissues throughout the body, including the liver, muscle, and fat. When somatotropin binds to its receptor, it activates a series of intracellular signaling pathways that regulate various physiological processes such as growth, metabolism, and cell reproduction.

Somatotropin receptors belong to the class I cytokine receptor family and are composed of two subunits, a homodimer of extracellular glycoproteins that bind to the hormone and an intracellular tyrosine kinase domain that activates downstream signaling pathways. Mutations in the somatotropin receptor gene can lead to growth disorders such as dwarfism or gigantism, depending on whether the mutation results in a decrease or increase in receptor activity.

Epinephrine, also known as adrenaline, is a hormone and a neurotransmitter that is produced in the body. It is released by the adrenal glands in response to stress or excitement, and it prepares the body for the "fight or flight" response. Epinephrine works by binding to specific receptors in the body, which causes a variety of physiological effects, including increased heart rate and blood pressure, improved muscle strength and alertness, and narrowing of the blood vessels in the skin and intestines. It is also used as a medication to treat various medical conditions, such as anaphylaxis (a severe allergic reaction), cardiac arrest, and low blood pressure.

A circadian rhythm is a roughly 24-hour biological cycle that regulates various physiological and behavioral processes in living organisms. It is driven by the body's internal clock, which is primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain.

The circadian rhythm controls many aspects of human physiology, including sleep-wake cycles, hormone secretion, body temperature, and metabolism. It helps to synchronize these processes with the external environment, particularly the day-night cycle caused by the rotation of the Earth.

Disruptions to the circadian rhythm can have negative effects on health, leading to conditions such as insomnia, sleep disorders, depression, bipolar disorder, and even increased risk of chronic diseases like cancer, diabetes, and cardiovascular disease. Factors that can disrupt the circadian rhythm include shift work, jet lag, irregular sleep schedules, and exposure to artificial light at night.

Estrogens are a group of steroid hormones that are primarily responsible for the development and regulation of female sexual characteristics and reproductive functions. They are also present in lower levels in males. The main estrogen hormone is estradiol, which plays a key role in promoting the growth and development of the female reproductive system, including the uterus, fallopian tubes, and breasts. Estrogens also help regulate the menstrual cycle, maintain bone density, and have important effects on the cardiovascular system, skin, hair, and cognitive function.

Estrogens are produced primarily by the ovaries in women, but they can also be produced in smaller amounts by the adrenal glands and fat cells. In men, estrogens are produced from the conversion of testosterone, the primary male sex hormone, through a process called aromatization.

Estrogen levels vary throughout a woman's life, with higher levels during reproductive years and lower levels after menopause. Estrogen therapy is sometimes used to treat symptoms of menopause, such as hot flashes and vaginal dryness, or to prevent osteoporosis in postmenopausal women. However, estrogen therapy also carries risks, including an increased risk of certain cancers, blood clots, and stroke, so it is typically recommended only for women who have a high risk of these conditions.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

"Skin physiological phenomena" is not a standard medical term with a specific definition. However, I can provide some information about the general concepts that might be encompassed by this term.

Physiological phenomena refer to the functions and processes that occur in living organisms. When it comes to the skin, there are many different physiological phenomena that take place, including:

1. Barrier function: The skin acts as a barrier to protect the body from external elements such as bacteria, viruses, chemicals, and UV radiation.
2. Temperature regulation: The skin helps regulate body temperature through sweat production and blood flow.
3. Sensation: The skin contains nerve endings that allow us to feel touch, pressure, pain, and temperature.
4. Vitamin D synthesis: The skin can produce vitamin D when exposed to sunlight.
5. Moisture regulation: The skin helps maintain the body's moisture balance by producing sweat and preventing water loss.
6. Immunological function: The skin plays a role in the immune system by providing a physical barrier and containing immune cells that help fight off infections.
7. Excretion: The skin eliminates waste products through sweat.
8. Wound healing: The skin has the ability to repair itself after injury, through a complex process involving inflammation, tissue regeneration, and remodeling.

Therefore, "skin physiological phenomena" could refer to any or all of these functions and processes that take place in the skin.

Testicular hormones, also known as androgens, are a type of sex hormone primarily produced in the testes of males. The most important and well-known androgen is testosterone, which plays a crucial role in the development of male reproductive system and secondary sexual characteristics. Testosterone is responsible for the growth and maintenance of male sex organs, such as the testes and prostate, and it also promotes the development of secondary sexual characteristics like facial hair, deep voice, and muscle mass.

Testicular hormones are produced and regulated by a feedback system involving the hypothalamus and pituitary gland in the brain. The hypothalamus produces gonadotropin-releasing hormone (GnRH), which stimulates the pituitary gland to release follicle-stimulating hormone (FSH) and luteinizing hormone (LH). LH stimulates the testes to produce testosterone, while FSH works together with testosterone to promote sperm production.

In addition to their role in male sexual development and function, testicular hormones also have important effects on other bodily functions, such as bone density, muscle mass, red blood cell production, mood, and cognitive function.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced and released by the anterior pituitary gland. It plays crucial roles in the reproductive system, primarily by promoting the growth and development of follicles in the ovaries or sperm production in the testes.

The FSH molecule consists of two subunits: α (alpha) and β (beta). The α-subunit is common to several glycoprotein hormones, including thyroid-stimulating hormone (TSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG). In contrast, the β-subunit is unique to each hormone and determines its specific biological activity.

A medical definition of 'Follicle Stimulating Hormone, beta Subunit' refers to the distinct portion of the FSH molecule that is responsible for its particular functions in the body. The β-subunit of FSH enables the hormone to bind to its specific receptors in the gonads and initiate downstream signaling pathways leading to follicular development and spermatogenesis. Any alterations or mutations in the FSH beta subunit can lead to disruptions in reproductive processes, potentially causing infertility or other related disorders.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Hypothyroidism is a medical condition where the thyroid gland, which is a small butterfly-shaped gland located in the front of your neck, does not produce enough thyroid hormones. This results in a slowing down of the body's metabolic processes, leading to various symptoms such as fatigue, weight gain, constipation, cold intolerance, dry skin, hair loss, muscle weakness, and depression.

The two main thyroid hormones produced by the thyroid gland are triiodothyronine (T3) and thyroxine (T4). These hormones play crucial roles in regulating various bodily functions, including heart rate, body temperature, and energy levels. In hypothyroidism, the production of these hormones is insufficient, leading to a range of symptoms that can affect multiple organ systems.

Hypothyroidism can be caused by several factors, including autoimmune disorders (such as Hashimoto's thyroiditis), surgical removal of the thyroid gland, radiation therapy for neck cancer, certain medications, and congenital defects. Hypothyroidism is typically diagnosed through blood tests that measure levels of TSH (thyroid-stimulating hormone), T3, and T4. Treatment usually involves taking synthetic thyroid hormones to replace the missing hormones and alleviate symptoms.

Parathyroid Hormone Receptor Type 1 (PTH1R) is a type of G protein-coupled receptor that binds to parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP). It is primarily found in bone and kidney cells.

The activation of PTH1R by PTH or PTHrP leads to a series of intracellular signaling events that regulate calcium homeostasis, bone metabolism, and renal function. In the bone, PTH1R stimulates the release of calcium from bone matrix into the bloodstream, while in the kidney, it increases the reabsorption of calcium in the distal tubule and inhibits phosphate reabsorption.

Mutations in the gene encoding PTH1R can lead to several genetic disorders, such as Blomstrand chondrodysplasia, Jansen metaphyseal chondrodysplasia, and hypoparathyroidism type 1B. These conditions are characterized by abnormalities in bone development, growth, and mineralization.

Melanin is a pigment that determines the color of skin, hair, and eyes in humans and animals. It is produced by melanocytes, which are specialized cells found in the epidermis (the outer layer of the skin) and the choroid (the vascular coat of the eye). There are two main types of melanin: eumelanin and pheomelanin. Eumelanin is a black or brown pigment, while pheomelanin is a red or yellow pigment. The amount and type of melanin produced by an individual can affect their skin and hair color, as well as their susceptibility to certain diseases, such as skin cancer.

The Cholesterol Side-Chain Cleavage Enzyme, also known as Steroidogenic Acute Regulatory (StAR) protein or P450scc, is a complex enzymatic system that plays a crucial role in the production of steroid hormones. It is located in the inner mitochondrial membrane of steroid-producing cells, such as those found in the adrenal glands, gonads, and placenta.

The Cholesterol Side-Chain Cleavage Enzyme is responsible for converting cholesterol into pregnenolone, which is the first step in the biosynthesis of all steroid hormones, including cortisol, aldosterone, sex hormones, and vitamin D. This enzymatic complex consists of two components: a flavoprotein called NADPH-cytochrome P450 oxidoreductase, which provides electrons for the reaction, and a cytochrome P450 protein called CYP11A1, which catalyzes the actual cleavage of the cholesterol side chain.

Defects in the Cholesterol Side-Chain Cleavage Enzyme can lead to various genetic disorders, such as congenital lipoid adrenal hyperplasia (CLAH), a rare autosomal recessive disorder characterized by impaired steroidogenesis and accumulation of cholesteryl esters in the adrenal glands and gonads.

Placental hormones are a type of hormones that are produced by the placenta, an organ that develops in the uterus during pregnancy. These hormones play a crucial role in maintaining and supporting a healthy pregnancy. Some of the key placental hormones include:

1. Human Chorionic Gonadotropin (hCG): This hormone is produced after implantation and is detected in the urine or blood to confirm pregnancy. It maintains the corpus luteum, which produces progesterone during early pregnancy.
2. Progesterone: This hormone is critical for preparing the uterus for pregnancy and maintaining the pregnancy. It suppresses maternal immune response to prevent rejection of the developing embryo/fetus.
3. Estrogen: This hormone plays a vital role in the growth and development of the fetal brain, as well as promoting the growth of the uterus and mammary glands during pregnancy.
4. Human Placental Lactogen (hPL): This hormone stimulates maternal metabolism to provide nutrients for the developing fetus and helps prepare the breasts for lactation.
5. Relaxin: This hormone relaxes the pelvic ligaments and softens and widens the cervix in preparation for childbirth.

These hormones work together to support fetal growth, maintain pregnancy, and prepare the mother's body for childbirth and lactation.

Pancreatic hormones are chemical messengers produced and released by the pancreas, a gland located in the abdomen. The two main types of pancreatic hormones are insulin and glucagon, which are released by specialized cells called islets of Langerhans.

Insulin is produced by beta cells and helps regulate blood sugar levels by allowing cells in the body to take in sugar (glucose) from the bloodstream. It also helps the body store excess glucose in the liver for later use.

Glucagon is produced by alpha cells and has the opposite effect of insulin. When blood sugar levels are low, glucagon stimulates the release of stored glucose from the liver to raise blood sugar levels.

Together, insulin and glucagon help maintain balanced blood sugar levels and are essential for the proper functioning of the body's metabolism. Other hormones produced by the pancreas include somatostatin, which regulates the release of insulin and glucagon, and gastrin, which stimulates the production of digestive enzymes in the stomach.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Microinjection is a medical technique that involves the use of a fine, precise needle to inject small amounts of liquid or chemicals into microscopic structures, cells, or tissues. This procedure is often used in research settings to introduce specific substances into individual cells for study purposes, such as introducing DNA or RNA into cell nuclei to manipulate gene expression.

In clinical settings, microinjections may be used in various medical and cosmetic procedures, including:

1. Intracytoplasmic Sperm Injection (ICSI): A type of assisted reproductive technology where a single sperm is injected directly into an egg to increase the chances of fertilization during in vitro fertilization (IVF) treatments.
2. Botulinum Toxin Injections: Microinjections of botulinum toxin (Botox, Dysport, or Xeomin) are used for cosmetic purposes to reduce wrinkles and fine lines by temporarily paralyzing the muscles responsible for their formation. They can also be used medically to treat various neuromuscular disorders, such as migraines, muscle spasticity, and excessive sweating (hyperhidrosis).
3. Drug Delivery: Microinjections may be used to deliver drugs directly into specific tissues or organs, bypassing the systemic circulation and potentially reducing side effects. This technique can be particularly useful in treating localized pain, delivering growth factors for tissue regeneration, or administering chemotherapy agents directly into tumors.
4. Gene Therapy: Microinjections of genetic material (DNA or RNA) can be used to introduce therapeutic genes into cells to treat various genetic disorders or diseases, such as cystic fibrosis, hemophilia, or cancer.

Overall, microinjection is a highly specialized and precise technique that allows for the targeted delivery of substances into small structures, cells, or tissues, with potential applications in research, medical diagnostics, and therapeutic interventions.

Neuropeptides are small protein-like molecules that are used by neurons to communicate with each other and with other cells in the body. They are produced in the cell body of a neuron, processed from larger precursor proteins, and then transported to the nerve terminal where they are stored in secretory vesicles. When the neuron is stimulated, the vesicles fuse with the cell membrane and release their contents into the extracellular space.

Neuropeptides can act as neurotransmitters or neuromodulators, depending on their target receptors and the duration of their effects. They play important roles in a variety of physiological processes, including pain perception, appetite regulation, stress response, and social behavior. Some neuropeptides also have hormonal functions, such as oxytocin and vasopressin, which are produced in the hypothalamus and released into the bloodstream to regulate reproductive and cardiovascular function, respectively.

There are hundreds of different neuropeptides that have been identified in the nervous system, and many of them have multiple functions and interact with other signaling molecules to modulate neural activity. Dysregulation of neuropeptide systems has been implicated in various neurological and psychiatric disorders, such as chronic pain, addiction, depression, and anxiety.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Ovariectomy is a surgical procedure in which one or both ovaries are removed. It is also known as "ovary removal" or "oophorectomy." This procedure is often performed as a treatment for various medical conditions, including ovarian cancer, endometriosis, uterine fibroids, and pelvic pain. Ovariectomy can also be part of a larger surgical procedure called an hysterectomy, in which the uterus is also removed.

In some cases, an ovariectomy may be performed as a preventative measure for individuals at high risk of developing ovarian cancer. This is known as a prophylactic ovariectomy. After an ovariectomy, a person will no longer have menstrual periods and will be unable to become pregnant naturally. Hormone replacement therapy may be recommended in some cases to help manage symptoms associated with the loss of hormones produced by the ovaries.

Thyrotropin-releasing hormone (TRH) receptors are a type of G protein-coupled receptor found in the pituitary gland and other tissues throughout the body. TRH is a tripeptide hormone that plays a crucial role in regulating the release of thyroid-stimulating hormone (TSH) from the anterior pituitary gland.

TRH receptors are activated when TRH binds to them, which triggers a signaling cascade that ultimately leads to an increase in intracellular calcium and the release of TSH. In addition to regulating TSH secretion, TRH receptors have been found to play a role in various physiological processes, including feeding behavior, energy metabolism, and neuroprotection.

Abnormalities in TRH receptor function have been implicated in several endocrine disorders, such as thyroid dysfunction and obesity. Therefore, understanding the structure and function of TRH receptors is essential for developing new therapeutic strategies to treat these conditions.

The Raphe Nuclei are clusters of neurons located in the brainstem, specifically in the midline of the pons, medulla oblongata, and mesencephalon (midbrain). These neurons are characterized by their ability to synthesize and release serotonin, a neurotransmitter that plays a crucial role in regulating various functions such as mood, appetite, sleep, and pain perception.

The Raphe Nuclei project axons widely throughout the central nervous system, allowing serotonin to modulate the activity of other neurons. There are several subdivisions within the Raphe Nuclei, each with distinct connections and functions. Dysfunction in the Raphe Nuclei has been implicated in several neurological and psychiatric disorders, including depression, anxiety, and chronic pain.

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

Parathyroid hormone (PTH) receptors are a type of cell surface receptor that bind to and respond to parathyroid hormone, a hormone secreted by the parathyroid glands. These receptors are found in various tissues throughout the body, including bone, kidney, and intestine.

The PTH receptor is a member of the G protein-coupled receptor (GPCR) family, which consists of seven transmembrane domains. When PTH binds to the receptor, it activates a signaling pathway that leads to increased calcium levels in the blood. In bone, activation of PTH receptors stimulates the release of calcium from bone matrix, while in the kidney, it increases the reabsorption of calcium from the urine and decreases the excretion of phosphate.

In the intestine, PTH receptors play a role in the regulation of vitamin D metabolism, which is important for calcium absorption. Overall, the activation of PTH receptors helps to maintain normal calcium levels in the blood and regulate bone metabolism.

Enkephalins are naturally occurring opioid peptides that bind to opiate receptors in the brain and other organs, producing pain-relieving and other effects. They are derived from the precursor protein proenkephalin and consist of two main types: Leu-enkephalin and Met-enkephalin. Enkephalins play a role in pain modulation, stress response, mood regulation, and addictive behaviors. They are also involved in the body's reward system and have been implicated in various physiological processes such as respiration, gastrointestinal motility, and hormone release.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Electroshock, also known as electroconvulsive therapy (ECT), is a medical procedure in which electric currents are passed through the brain to treat certain mental health conditions. It is primarily used to treat severe forms of depression that have not responded to other treatments, and it may also be used to treat bipolar disorder and schizophrenia.

During an ECT procedure, electrodes are placed on the patient's head, and a carefully controlled electric current is passed through the brain, intentionally triggering a seizure. The patient is under general anesthesia and given muscle relaxants to prevent physical injury from the seizure.

ECT is typically administered in a series of treatments, usually two or three times a week for several weeks. While the exact mechanism of action is not fully understood, ECT is thought to affect brain chemistry and help regulate mood and other symptoms. It is generally considered a safe and effective treatment option for certain mental health conditions when other treatments have failed. However, it can have side effects, including short-term memory loss and confusion, and it may not be appropriate for everyone.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder characterized by recurrent abdominal pain, bloating, and altered bowel habits in the absence of any structural or biochemical abnormalities. The symptoms can vary from person to person, ranging from mild to severe.

The exact cause of IBS is not known, but it's thought to involve a combination of factors such as muscle contractions in the intestine, abnormalities in the nervous system, inflammation in the intestines, severe infection, or changes in bacteria in the gut.

It's important to note that while IBS can cause great discomfort and distress, it does not lead to serious complications such as changes in bowel tissue or increased risk of colorectal cancer. However, it can significantly affect a person's quality of life and daily activities.

Pyrimidines are heterocyclic aromatic organic compounds similar to benzene and pyridine, containing two nitrogen atoms at positions 1 and 3 of the six-member ring. They are one of the two types of nucleobases found in nucleic acids, the other being purines. The pyrimidine bases include cytosine (C) and thymine (T) in DNA, and uracil (U) in RNA, which pair with guanine (G) and adenine (A), respectively, through hydrogen bonding to form the double helix structure of nucleic acids. Pyrimidines are also found in many other biomolecules and have various roles in cellular metabolism and genetic regulation.

Insulin-like growth factor I (IGF-I) is a hormone that plays a crucial role in growth and development. It is a small protein with structural and functional similarity to insulin, hence the name "insulin-like." IGF-I is primarily produced in the liver under the regulation of growth hormone (GH).

IGF-I binds to its specific receptor, the IGF-1 receptor, which is widely expressed throughout the body. This binding activates a signaling cascade that promotes cell proliferation, differentiation, and survival. In addition, IGF-I has anabolic effects on various tissues, including muscle, bone, and cartilage, contributing to their growth and maintenance.

IGF-I is essential for normal growth during childhood and adolescence, and it continues to play a role in maintaining tissue homeostasis throughout adulthood. Abnormal levels of IGF-I have been associated with various medical conditions, such as growth disorders, diabetes, and certain types of cancer.

The thyroid gland is a major endocrine gland located in the neck, anterior to the trachea and extends from the lower third of the Adams apple to the suprasternal notch. It has two lateral lobes, connected by an isthmus, and sometimes a pyramidal lobe. This gland plays a crucial role in the metabolism, growth, and development of the human body through the production of thyroid hormones (triiodothyronine/T3 and thyroxine/T4) and calcitonin. The thyroid hormones regulate body temperature, heart rate, and the production of protein, while calcitonin helps in controlling calcium levels in the blood. The function of the thyroid gland is controlled by the hypothalamus and pituitary gland through the thyroid-stimulating hormone (TSH).

LHRH (Luteinizing Hormone-Releasing Hormone) receptors are a type of G protein-coupled receptor found on the surface of certain cells in the body, most notably in the anterior pituitary gland. These receptors bind to LHRH, a hormone that is produced and released by the hypothalamus in the brain.

When LHRH binds to its receptor, it triggers a series of intracellular signaling events that ultimately lead to the release of two other hormones from the anterior pituitary gland: luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These hormones play critical roles in regulating reproductive function, including the development and maturation of sex cells (sperm and eggs), the production of sex steroid hormones (such as testosterone and estrogen), and the regulation of the menstrual cycle in females.

Disorders of the LHRH receptor or its signaling pathway can lead to a variety of reproductive disorders, including precocious puberty, delayed puberty, and infertility.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Chorionic Gonadotropin (hCG) is a hormone that is produced during pregnancy. It is produced by the placenta after implantation of the fertilized egg in the uterus. The main function of hCG is to prevent the disintegration of the corpus luteum, which is a temporary endocrine structure that forms in the ovary after ovulation and produces progesterone during early pregnancy. Progesterone is essential for maintaining the lining of the uterus and supporting the pregnancy.

hCG can be detected in the blood or urine as early as 10 days after conception, and its levels continue to rise throughout the first trimester of pregnancy. In addition to its role in maintaining pregnancy, hCG is also used as a clinical marker for pregnancy and to monitor certain medical conditions such as gestational trophoblastic diseases.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

Thyroid Hormone Resistance Syndrome, also known as Refractory Thyroid Disease or Generalized T3 Resistance, is a rare genetic disorder characterized by reduced sensitivity and impaired response of the body's tissues to thyroid hormones, despite having normal or elevated levels of these hormones in the blood. This condition is caused by mutations in the THRB gene, which encodes the thyroid hormone receptor beta.

In this syndrome, the target cells and tissues do not respond properly to thyroid hormones, leading to a wide range of symptoms similar to those seen in hypothyroidism (underactive thyroid), such as fatigue, weight gain, cold intolerance, constipation, dry skin, and depression. However, unlike hypothyroidism, patients with Thyroid Hormone Resistance Syndrome usually have normal or increased levels of thyroid-stimulating hormone (TSH) and free thyroxine (FT4) in their blood.

The diagnosis of Thyroid Hormone Resistance Syndrome is often challenging, as it requires the exclusion of other causes of hypothyroidism and the confirmation of normal or elevated thyroid hormone levels with impaired tissue response. Treatment typically involves careful monitoring and management of symptoms, as the use of additional thyroid hormones may not improve the condition and can even worsen symptoms in some cases.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

"Pyrroles" is not a medical term in and of itself, but "pyrrole" is an organic compound that contains one nitrogen atom and four carbon atoms in a ring structure. In the context of human health, "pyrroles" often refers to a group of compounds called pyrrol derivatives or pyrrole metabolites.

In clinical settings, "pyrroles" is sometimes used to refer to a urinary metabolite called "pyrrole-protein conjugate," which contains a pyrrole ring and is excreted in the urine. Elevated levels of this compound have been associated with certain psychiatric and behavioral disorders, such as schizophrenia and mood disorders. However, the relationship between pyrroles and these conditions is not well understood, and more research is needed to establish a clear medical definition or diagnostic criteria for "pyrrole disorder" or "pyroluria."

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Proto-oncogene proteins, such as c-Fos, are normal cellular proteins that play crucial roles in various biological processes including cell growth, differentiation, and survival. They can be activated or overexpressed due to genetic alterations, leading to the formation of cancerous cells. The c-Fos protein is a nuclear phosphoprotein involved in signal transduction pathways and forms a heterodimer with c-Jun to create the activator protein-1 (AP-1) transcription factor complex. This complex binds to specific DNA sequences, thereby regulating the expression of target genes that contribute to various cellular responses, including proliferation, differentiation, and apoptosis. Dysregulation of c-Fos can result in uncontrolled cell growth and malignant transformation, contributing to tumor development and progression.

Colforsin is a drug that belongs to a class of medications called phosphodiesterase inhibitors. It works by increasing the levels of a chemical called cyclic AMP (cyclic adenosine monophosphate) in the body, which helps to relax and widen blood vessels.

Colforsin is not approved for use in humans in many countries, including the United States. However, it has been used in research settings to study its potential effects on heart function and other physiological processes. In animals, colforsin has been shown to have positive inotropic (contractility-enhancing) and lusitropic (relaxation-enhancing) effects on the heart, making it a potential therapeutic option for heart failure and other cardiovascular conditions.

It is important to note that while colforsin has shown promise in preclinical studies, more research is needed to establish its safety and efficacy in humans. Therefore, it should only be used under the supervision of a qualified healthcare professional and in the context of a clinical trial or research study.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Dactinomycin is an antineoplastic antibiotic, which means it is used to treat cancer. It is specifically used to treat certain types of testicular cancer, Wilms' tumor (a type of kidney cancer that occurs in children), and some gestational trophoblastic tumors (a type of tumor that can develop in the uterus after pregnancy). Dactinomycin works by interfering with the DNA in cancer cells, which prevents them from dividing and growing. It is often used in combination with other chemotherapy drugs as part of a treatment regimen.

Dactinomycin is administered intravenously (through an IV) and its use is usually limited to hospitals or specialized cancer treatment centers due to the need for careful monitoring during administration. Common side effects include nausea, vomiting, and hair loss. More serious side effects can include bone marrow suppression, which can lead to an increased risk of infection, and tissue damage at the site where the drug is injected. Dactinomycin can also cause severe allergic reactions in some people.

It's important to note that dactinomycin should only be used under the supervision of a qualified healthcare professional, as its use requires careful monitoring and management of potential side effects.

Postmenopause is a stage in a woman's life that follows 12 months after her last menstrual period (menopause) has occurred. During this stage, the ovaries no longer release eggs and produce lower levels of estrogen and progesterone hormones. The reduced levels of these hormones can lead to various physical changes and symptoms, such as hot flashes, vaginal dryness, and mood changes. Postmenopause is also associated with an increased risk of certain health conditions, including osteoporosis and heart disease. It's important for women in postmenopause to maintain a healthy lifestyle, including regular exercise, a balanced diet, and routine medical check-ups to monitor their overall health and manage any potential risks.

Growth Hormone (GH), also known as somatotropin, is a peptide hormone secreted by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in regulating growth, cell reproduction, and regeneration by stimulating the production of another hormone called insulin-like growth factor 1 (IGF-1) in the liver and other tissues. GH also has important metabolic functions, such as increasing glucose levels, enhancing protein synthesis, and reducing fat storage. Its secretion is regulated by two hypothalamic hormones: growth hormone-releasing hormone (GHRH), which stimulates its release, and somatostatin (SRIF), which inhibits its release. Abnormal levels of GH can lead to various medical conditions, such as dwarfism or gigantism if there are deficiencies or excesses, respectively.

Follicle-stimulating hormone (FSH) receptors are specialized protein structures found on the surface of specific cells in the body. They play a crucial role in the endocrine system, particularly in the regulation of reproduction and development.

FSH receptors are primarily located on the granulosa cells that surround and support the developing eggs (oocytes) within the ovarian follicles in females. In males, these receptors can be found on the Sertoli cells in the seminiferous tubules of the testes.

When FSH, a glycoprotein hormone secreted by the anterior pituitary gland, binds to its specific receptor, it triggers a series of intracellular signaling events that ultimately lead to various physiological responses. In females, FSH receptor activation stimulates follicle growth, estrogen production, and oocyte maturation. In males, FSH receptor signaling supports spermatogenesis, the process of sperm cell development within the testes.

In summary, FSH receptors are essential components in the hormonal regulation of reproduction and development, mediating the actions of follicle-stimulating hormone on target cells in both females and males.

Pituitary hormone-regulating hormone receptors refer to specific protein structures found on the surface of certain cells in the body. These receptors are responsible for detecting and responding to hormones produced by the hypothalamus, which regulate the function of the pituitary gland.

The pituitary gland is a small gland located at the base of the brain that plays a critical role in regulating various bodily functions, including growth and development, metabolism, reproduction, and stress response. The hypothalamus produces hormones that either stimulate or inhibit the release of pituitary hormones, which then act on target organs throughout the body to regulate their function.

Pituitary hormone-regulating hormone receptors are found on the surface of pituitary cells and are specific to individual hypothalamic hormones. When a hypothalamic hormone binds to its corresponding receptor, it triggers a series of intracellular signals that ultimately result in the release or inhibition of pituitary hormones.

Examples of pituitary hormone-regulating hormone receptors include:

* Thyroid-stimulating hormone (TSH) receptor, which responds to thyrotropin-releasing hormone (TRH) from the hypothalamus.
* Adrenocorticotropic hormone (ACTH) receptor, which responds to corticotropin-releasing hormone (CRH) from the hypothalamus.
* Growth hormone-releasing hormone (GHRH) receptor, which responds to GHRH from the hypothalamus.
* Gonadotropin-releasing hormone (GnRH) receptor, which responds to GnRH from the hypothalamus.
* Prolactin-inhibiting hormone (PIH) receptor, which responds to dopamine from the hypothalamus.

Abnormalities in pituitary hormone-regulating hormone receptors can lead to various endocrine disorders, such as hypothyroidism, Cushing's disease, acromegaly, and infertility.

Luteinizing Hormone (LH) is a glycoprotein hormone secreted by the anterior pituitary gland. It plays a crucial role in regulating the reproductive system. The beta subunit of LH is one of the two non-identical polypeptide chains that make up the LH molecule (the other being the alpha subunit, which is common to several hormones).

The beta subunit of LH is unique to LH and is often used in assays to measure and determine the concentration of LH in blood or urine. It's responsible for the biological specificity and activity of the LH hormone. Any changes in the structure of this subunit can affect the function of LH, which in turn can have implications for reproductive processes such as ovulation and testosterone production.

Progestins are a class of steroid hormones that are similar to progesterone, a natural hormone produced by the ovaries during the menstrual cycle and pregnancy. They are often used in hormonal contraceptives, such as birth control pills, shots, and implants, to prevent ovulation and thicken the cervical mucus, making it more difficult for sperm to reach the egg. Progestins are also used in menopausal hormone therapy to alleviate symptoms of menopause, such as hot flashes and vaginal dryness. Additionally, progestins may be used to treat endometriosis, uterine fibroids, and breast cancer. Different types of progestins have varying properties and may be more suitable for certain indications or have different side effect profiles.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Iodide peroxidase, also known as iodide:hydrogen peroxide oxidoreductase, is an enzyme that belongs to the family of oxidoreductases. Specifically, it is a peroxidase that uses iodide as its physiological reducing substrate. This enzyme catalyzes the oxidation of iodide by hydrogen peroxide to produce iodine, which plays a crucial role in thyroid hormone biosynthesis.

The systematic name for this enzyme is iodide:hydrogen-peroxide oxidoreductase (iodinating). It is most commonly found in the thyroid gland, where it helps to produce and regulate thyroid hormones by facilitating the iodination of tyrosine residues on thyroglobulin, a protein produced by the thyroid gland.

Iodide peroxidase requires a heme cofactor for its enzymatic activity, which is responsible for the oxidation-reduction reactions it catalyzes. The enzyme's ability to iodinate tyrosine residues on thyroglobulin is essential for the production of triiodothyronine (T3) and thyroxine (T4), two critical hormones that regulate metabolism, growth, and development in mammals.

Septic shock is a serious condition that occurs as a complication of an infection that has spread throughout the body. It's characterized by a severe drop in blood pressure and abnormalities in cellular metabolism, which can lead to organ failure and death if not promptly treated.

In septic shock, the immune system overreacts to an infection, releasing an overwhelming amount of inflammatory chemicals into the bloodstream. This leads to widespread inflammation, blood vessel dilation, and leaky blood vessels, which can cause fluid to leak out of the blood vessels and into surrounding tissues. As a result, the heart may not be able to pump enough blood to vital organs, leading to organ failure.

Septic shock is often caused by bacterial infections, but it can also be caused by fungal or viral infections. It's most commonly seen in people with weakened immune systems, such as those who have recently undergone surgery, have chronic medical conditions, or are taking medications that suppress the immune system.

Prompt diagnosis and treatment of septic shock is critical to prevent long-term complications and improve outcomes. Treatment typically involves aggressive antibiotic therapy, intravenous fluids, vasopressors to maintain blood pressure, and supportive care in an intensive care unit (ICU).

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

The colon, also known as the large intestine, is a part of the digestive system in humans and other vertebrates. It is an organ that eliminates waste from the body and is located between the small intestine and the rectum. The main function of the colon is to absorb water and electrolytes from digested food, forming and storing feces until they are eliminated through the anus.

The colon is divided into several regions, including the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, rectum, and anus. The walls of the colon contain a layer of muscle that helps to move waste material through the organ by a process called peristalsis.

The inner surface of the colon is lined with mucous membrane, which secretes mucus to lubricate the passage of feces. The colon also contains a large population of bacteria, known as the gut microbiota, which play an important role in digestion and immunity.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

Ghrelin is a hormone primarily produced and released by the stomach with some production in the small intestine, pancreas, and brain. It is often referred to as the "hunger hormone" because it stimulates appetite, promotes food intake, and contributes to the regulation of energy balance.

Ghrelin levels increase before meals and decrease after eating. In addition to its role in regulating appetite and meal initiation, ghrelin also has other functions, such as modulating glucose metabolism, insulin secretion, gastric motility, and cardiovascular function. Its receptor, the growth hormone secretagogue receptor (GHS-R), is found in various tissues throughout the body, indicating its wide range of physiological roles.

Menopause is a natural biological process that typically occurs in women in their mid-40s to mid-50s. It marks the end of menstrual cycles and fertility, defined as the absence of menstruation for 12 consecutive months. This transition period can last several years and is often accompanied by various physical and emotional symptoms such as hot flashes, night sweats, mood changes, sleep disturbances, and vaginal dryness. The hormonal fluctuations during this time, particularly the decrease in estrogen levels, contribute to these symptoms. It's essential to monitor and manage these symptoms to maintain overall health and well-being during this phase of life.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Thymus hormones, also known as thymic factors or thymic humoral factors, refer to the biologically active molecules secreted by the thymus gland. The two main thymus hormones are thymosin and thymopoietin. These hormones play crucial roles in the differentiation, maturation, and function of T-cells, which are a type of white blood cell responsible for cell-mediated immunity. Thymosin is involved in the maturation of T-cells, helping them to distinguish between self and non-self antigens, while thymopoietin contributes to the differentiation of T-cells into their various subsets and supports their proliferation and activation.

The thymus gland is a primary lymphoid organ located in the upper chest region, anterior to the heart. It plays a critical role in the adaptive immune system, particularly during fetal development and early childhood. The thymus gland begins to atrophy after puberty, leading to a decrease in the production of thymus hormones. This natural decline in thymic function is believed to contribute to the decreased immune response observed in older individuals.

Supplementation with thymus hormones has been explored as a potential therapeutic approach for enhancing immune function in various clinical settings, including immunodeficiency disorders, cancer, and aging. However, more research is needed to fully understand their mechanisms of action and potential benefits and risks.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Castration is a surgical procedure to remove the testicles in males or ovaries in females. In males, it is also known as orchiectomy. This procedure results in the inability to produce sex hormones and gametes (sperm in men and eggs in women), and can be done for various reasons such as medical treatment for certain types of cancer, to reduce sexual urges in individuals with criminal tendencies, or as a form of birth control in animals.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Ethanol is the medical term for pure alcohol, which is a colorless, clear, volatile, flammable liquid with a characteristic odor and burning taste. It is the type of alcohol that is found in alcoholic beverages and is produced by the fermentation of sugars by yeasts.

In the medical field, ethanol is used as an antiseptic and disinfectant, and it is also used as a solvent for various medicinal preparations. It has central nervous system depressant properties and is sometimes used as a sedative or to induce sleep. However, excessive consumption of ethanol can lead to alcohol intoxication, which can cause a range of negative health effects, including impaired judgment, coordination, and memory, as well as an increased risk of accidents, injuries, and chronic diseases such as liver disease and addiction.

Alcoholism is a chronic and often relapsing brain disorder characterized by the excessive and compulsive consumption of alcohol despite negative consequences to one's health, relationships, and daily life. It is also commonly referred to as alcohol use disorder (AUD) or alcohol dependence.

The diagnostic criteria for AUD include a pattern of alcohol use that includes problems controlling intake, continued use despite problems resulting from drinking, development of a tolerance, drinking that leads to risky behaviors or situations, and withdrawal symptoms when not drinking.

Alcoholism can cause a wide range of physical and psychological health problems, including liver disease, heart disease, neurological damage, mental health disorders, and increased risk of accidents and injuries. Treatment for alcoholism typically involves a combination of behavioral therapies, medications, and support groups to help individuals achieve and maintain sobriety.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Hyperthyroidism is a medical condition characterized by an excessive production and release of thyroid hormones from the thyroid gland, leading to an increased metabolic rate in various body systems. The thyroid gland, located in the front of the neck, produces two main thyroid hormones: triiodothyronine (T3) and thyroxine (T4). These hormones play crucial roles in regulating many bodily functions, including heart rate, digestion, energy levels, and mood.

In hyperthyroidism, the elevated levels of T3 and T4 can cause a wide range of symptoms, such as rapid heartbeat, weight loss, heat intolerance, increased appetite, tremors, anxiety, and sleep disturbances. Some common causes of hyperthyroidism include Graves' disease, toxic adenoma, Plummer's disease (toxic multinodular goiter), and thyroiditis. Proper diagnosis and treatment are essential to manage the symptoms and prevent potential complications associated with this condition.

Orchiectomy is a surgical procedure where one or both of the testicles are removed. It is also known as castration. This procedure can be performed for various reasons, including the treatment of testicular cancer, prostate cancer, or other conditions that may affect the testicles. It can also be done to reduce levels of male hormones in the body, such as in the case of transgender women undergoing gender affirming surgery. The specific medical definition may vary slightly depending on the context and the extent of the procedure.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Reverse Triiodothyronine (rT3) is a thyroid hormone that is chemically identical to triiodothyronine (T3), but has a reverse configuration at one end of the molecule. It is produced in smaller quantities compared to T3 and its function is not well understood. In some cases, increased levels of rT3 have been associated with decreased thyroid hormone action, such as in non-thyroidal illnesses or during calorie restriction. However, the clinical significance of rT3 levels remains a topic of ongoing research and debate.

Growth disorders are medical conditions that affect a person's growth and development, leading to shorter or taller stature than expected for their age, sex, and ethnic group. These disorders can be caused by various factors, including genetic abnormalities, hormonal imbalances, chronic illnesses, malnutrition, and psychosocial issues.

There are two main types of growth disorders:

1. Short stature: This refers to a height that is significantly below average for a person's age, sex, and ethnic group. Short stature can be caused by various factors, including genetic conditions such as Turner syndrome or dwarfism, hormonal deficiencies, chronic illnesses, malnutrition, and psychosocial issues.
2. Tall stature: This refers to a height that is significantly above average for a person's age, sex, and ethnic group. Tall stature can be caused by various factors, including genetic conditions such as Marfan syndrome or Klinefelter syndrome, hormonal imbalances, and certain medical conditions like acromegaly.

Growth disorders can have significant impacts on a person's physical, emotional, and social well-being. Therefore, it is essential to diagnose and manage these conditions early to optimize growth and development and improve overall quality of life. Treatment options for growth disorders may include medication, nutrition therapy, surgery, or a combination of these approaches.

Biological metamorphosis is a complex process of transformation that certain organisms undergo during their development from embryo to adult. This process involves profound changes in form, function, and structure of the organism, often including modifications of various body parts, reorganization of internal organs, and changes in physiology.

In metamorphosis, a larval or juvenile form of an animal is significantly different from its adult form, both morphologically and behaviorally. This phenomenon is particularly common in insects, amphibians, and some fish and crustaceans. The most well-known examples include the transformation of a caterpillar into a butterfly or a tadpole into a frog.

The mechanisms that drive metamorphosis are regulated by hormonal signals and genetic programs. In many cases, metamorphosis is triggered by environmental factors such as temperature, moisture, or food availability, which interact with the organism's internal developmental cues to initiate the transformation. The process of metamorphosis allows these organisms to exploit different ecological niches at different stages of their lives and contributes to their evolutionary success.

Pituitary dwarfism, also known as growth hormone deficiency dwarfism or hypopituitarism dwarfism, is a type of dwarfism that results from insufficient production of growth hormone by the pituitary gland during childhood. The medical term for this condition is "growth hormone deficiency."

The pituitary gland is a small gland located at the base of the brain that produces several important hormones, including growth hormone. Growth hormone plays a critical role in regulating growth and development during childhood and adolescence. When the pituitary gland fails to produce enough growth hormone, children do not grow and develop normally, resulting in short stature and other symptoms associated with dwarfism.

Pituitary dwarfism can be caused by a variety of factors, including genetic mutations, brain tumors, trauma, or infection. In some cases, the cause may be unknown. Symptoms of pituitary dwarfism include short stature, delayed puberty, and other hormonal imbalances.

Treatment for pituitary dwarfism typically involves replacing the missing growth hormone with injections of synthetic growth hormone. This therapy can help promote normal growth and development, although it may not completely eliminate the short stature associated with the condition. Early diagnosis and treatment are essential to optimize outcomes and improve quality of life for individuals with pituitary dwarfism.

The menstrual cycle is a series of natural changes that occur in the female reproductive system over an approximate 28-day interval, marking the body's preparation for potential pregnancy. It involves the interplay of hormones that regulate the growth and disintegration of the uterine lining (endometrium) and the release of an egg (ovulation) from the ovaries.

The menstrual cycle can be divided into three main phases:

1. Menstrual phase: The cycle begins with the onset of menstruation, where the thickened uterine lining is shed through the vagina, lasting typically for 3-7 days. This shedding occurs due to a decrease in estrogen and progesterone levels, which are hormones essential for maintaining the endometrium during the previous cycle.

2. Follicular phase: After menstruation, the follicular phase commences with the pituitary gland releasing follicle-stimulating hormone (FSH). FSH stimulates the growth of several ovarian follicles, each containing an immature egg. One dominant follicle usually becomes selected to mature and release an egg during ovulation. Estrogen levels rise as the dominant follicle grows, causing the endometrium to thicken in preparation for a potential pregnancy.

3. Luteal phase: Following ovulation, the ruptured follicle transforms into the corpus luteum, which produces progesterone and estrogen to further support the endometrial thickening. If fertilization does not occur within approximately 24 hours after ovulation, the corpus luteum will degenerate, leading to a decline in hormone levels. This drop triggers the onset of menstruation, initiating a new menstrual cycle.

Understanding the menstrual cycle is crucial for monitoring reproductive health and planning or preventing pregnancies. Variations in cycle length and symptoms are common among women, but persistent irregularities may indicate underlying medical conditions requiring further evaluation by a healthcare professional.

Plant growth regulators (PGRs) are natural or synthetic chemical substances that, when present in low concentrations, can influence various physiological and biochemical processes in plants. These processes include cell division, elongation, and differentiation; flowering and fruiting; leaf senescence; and stress responses. PGRs can be classified into several categories based on their mode of action and chemical structure, including auxins, gibberellins, cytokinins, abscisic acid, ethylene, and others. They are widely used in agriculture to improve crop yield and quality, regulate plant growth and development, and enhance stress tolerance.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Ovulation is the medical term for the release of a mature egg from an ovary during a woman's menstrual cycle. The released egg travels through the fallopian tube where it may be fertilized by sperm if sexual intercourse has occurred recently. If the egg is not fertilized, it will break down and leave the body along with the uterine lining during menstruation. Ovulation typically occurs around day 14 of a 28-day menstrual cycle, but the timing can vary widely from woman to woman and even from cycle to cycle in the same woman.

During ovulation, there are several physical changes that may occur in a woman's body, such as an increase in basal body temperature, changes in cervical mucus, and mild cramping or discomfort on one side of the lower abdomen (known as mittelschmerz). These symptoms can be used to help predict ovulation and improve the chances of conception.

It's worth noting that some medical conditions, such as polycystic ovary syndrome (PCOS) or premature ovarian failure, may affect ovulation and make it difficult for a woman to become pregnant. In these cases, medical intervention may be necessary to help promote ovulation and increase the chances of conception.

Androgens are a class of hormones that are primarily responsible for the development and maintenance of male sexual characteristics and reproductive function. Testosterone is the most well-known androgen, but other androgens include dehydroepiandrosterone (DHEA), androstenedione, and dihydrotestosterone (DHT).

Androgens are produced primarily by the testes in men and the ovaries in women, although small amounts are also produced by the adrenal glands in both sexes. They play a critical role in the development of male secondary sexual characteristics during puberty, such as the growth of facial hair, deepening of the voice, and increased muscle mass.

In addition to their role in sexual development and function, androgens also have important effects on bone density, mood, and cognitive function. Abnormal levels of androgens can contribute to a variety of medical conditions, including infertility, erectile dysfunction, acne, hirsutism (excessive hair growth), and prostate cancer.

Steroid receptors are a type of nuclear receptor protein that are activated by the binding of steroid hormones or related molecules. These receptors play crucial roles in various physiological processes, including development, homeostasis, and metabolism. Steroid receptors function as transcription factors, regulating gene expression when activated by their respective ligands.

There are several subtypes of steroid receptors, classified based on the specific steroid hormones they bind to:

1. Glucocorticoid receptor (GR): Binds to glucocorticoids, which regulate metabolism, immune response, and stress response.
2. Mineralocorticoid receptor (MR): Binds to mineralocorticoids, which regulate electrolyte and fluid balance.
3. Androgen receptor (AR): Binds to androgens, which are male sex hormones that play a role in the development and maintenance of male sexual characteristics.
4. Estrogen receptor (ER): Binds to estrogens, which are female sex hormones that play a role in the development and maintenance of female sexual characteristics.
5. Progesterone receptor (PR): Binds to progesterone, which is a female sex hormone involved in the menstrual cycle and pregnancy.
6. Vitamin D receptor (VDR): Binds to vitamin D, which plays a role in calcium homeostasis and bone metabolism.

Upon ligand binding, steroid receptors undergo conformational changes that allow them to dimerize, interact with co-regulatory proteins, and bind to specific DNA sequences called hormone response elements (HREs) in the promoter regions of target genes. This interaction leads to the recruitment of transcriptional machinery, ultimately resulting in the modulation of gene expression. Dysregulation of steroid receptor signaling has been implicated in various diseases, including cancer, metabolic disorders, and inflammatory conditions.

Hypopituitarism is a medical condition characterized by deficient secretion of one or more hormones produced by the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland controls several other endocrine glands in the body, including the thyroid, adrenals, and sex glands (ovaries and testes).

Hypopituitarism can result from damage to the pituitary gland due to various causes such as tumors, surgery, radiation therapy, trauma, or inflammation. In some cases, hypopituitarism may also be caused by a dysfunction of the hypothalamus, a region in the brain that regulates the pituitary gland's function.

The symptoms and signs of hypopituitarism depend on which hormones are deficient and can include fatigue, weakness, decreased appetite, weight loss, low blood pressure, decreased sex drive, infertility, irregular menstrual periods, intolerance to cold, constipation, thinning hair, dry skin, and depression.

Treatment of hypopituitarism typically involves hormone replacement therapy to restore the deficient hormones' normal levels. The type and dosage of hormones used will depend on which hormones are deficient and may require regular monitoring and adjustments over time.

Progesterone receptors (PRs) are a type of nuclear receptor proteins that are expressed in the nucleus of certain cells and play a crucial role in the regulation of various physiological processes, including the menstrual cycle, embryo implantation, and maintenance of pregnancy. These receptors bind to the steroid hormone progesterone, which is produced primarily in the ovaries during the second half of the menstrual cycle and during pregnancy.

Once progesterone binds to the PRs, it triggers a series of molecular events that lead to changes in gene expression, ultimately resulting in the modulation of various cellular functions. Progesterone receptors exist in two main isoforms, PR-A and PR-B, which differ in their size, structure, and transcriptional activity. Both isoforms are expressed in a variety of tissues, including the female reproductive tract, breast, brain, and bone.

Abnormalities in progesterone receptor expression or function have been implicated in several pathological conditions, such as uterine fibroids, endometriosis, breast cancer, and osteoporosis. Therefore, understanding the molecular mechanisms underlying PR signaling is essential for developing novel therapeutic strategies to treat these disorders.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Gonadotropins are hormones produced and released by the anterior pituitary gland, a small endocrine gland located at the base of the brain. These hormones play crucial roles in regulating reproduction and sexual development. There are two main types of gonadotropins:

1. Follicle-Stimulating Hormone (FSH): FSH is essential for the growth and development of follicles in the ovaries (in females) or sperm production in the testes (in males). In females, FSH stimulates the maturation of eggs within the follicles.
2. Luteinizing Hormone (LH): LH triggers ovulation in females, causing the release of a mature egg from the dominant follicle. In males, LH stimulates the production and secretion of testosterone in the testes.

Together, FSH and LH work synergistically to regulate various aspects of reproductive function and sexual development. Their secretion is controlled by the hypothalamus, which releases gonadotropin-releasing hormone (GnRH) to stimulate the production and release of FSH and LH from the anterior pituitary gland.

Abnormal levels of gonadotropins can lead to various reproductive disorders, such as infertility or menstrual irregularities in females and issues related to sexual development or function in both sexes. In some cases, synthetic forms of gonadotropins may be used clinically to treat these conditions or for assisted reproductive technologies (ART).

Estrogen receptors (ERs) are a type of nuclear receptor protein that are expressed in various tissues and cells throughout the body. They play a critical role in the regulation of gene expression and cellular responses to the hormone estrogen. There are two main subtypes of ERs, ERα and ERβ, which have distinct molecular structures, expression patterns, and functions.

ERs function as transcription factors that bind to specific DNA sequences called estrogen response elements (EREs) in the promoter regions of target genes. When estrogen binds to the ER, it causes a conformational change in the receptor that allows it to recruit co-activator proteins and initiate transcription of the target gene. This process can lead to a variety of cellular responses, including changes in cell growth, differentiation, and metabolism.

Estrogen receptors are involved in a wide range of physiological processes, including the development and maintenance of female reproductive tissues, bone homeostasis, cardiovascular function, and cognitive function. They have also been implicated in various pathological conditions, such as breast cancer, endometrial cancer, and osteoporosis. As a result, ERs are an important target for therapeutic interventions in these diseases.

The testis, also known as the testicle, is a male reproductive organ that is part of the endocrine system. It is located in the scrotum, outside of the abdominal cavity. The main function of the testis is to produce sperm and testosterone, the primary male sex hormone.

The testis is composed of many tiny tubules called seminiferous tubules, where sperm are produced. These tubules are surrounded by a network of blood vessels, nerves, and supportive tissues. The sperm then travel through a series of ducts to the epididymis, where they mature and become capable of fertilization.

Testosterone is produced in the Leydig cells, which are located in the interstitial tissue between the seminiferous tubules. Testosterone plays a crucial role in the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also supports sperm production and sexual function.

Abnormalities in testicular function can lead to infertility, hormonal imbalances, and other health problems. Regular self-examinations and medical check-ups are recommended for early detection and treatment of any potential issues.

A cell-free system is a biochemical environment in which biological reactions can occur outside of an intact living cell. These systems are often used to study specific cellular processes or pathways, as they allow researchers to control and manipulate the conditions in which the reactions take place. In a cell-free system, the necessary enzymes, substrates, and cofactors for a particular reaction are provided in a test tube or other container, rather than within a whole cell.

Cell-free systems can be derived from various sources, including bacteria, yeast, and mammalian cells. They can be used to study a wide range of cellular processes, such as transcription, translation, protein folding, and metabolism. For example, a cell-free system might be used to express and purify a specific protein, or to investigate the regulation of a particular metabolic pathway.

One advantage of using cell-free systems is that they can provide valuable insights into the mechanisms of cellular processes without the need for time-consuming and resource-intensive cell culture or genetic manipulation. Additionally, because cell-free systems are not constrained by the limitations of a whole cell, they offer greater flexibility in terms of reaction conditions and the ability to study complex or transient interactions between biological molecules.

Overall, cell-free systems are an important tool in molecular biology and biochemistry, providing researchers with a versatile and powerful means of investigating the fundamental processes that underlie life at the cellular level.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Placental lactogen is a hormone produced by the placenta during pregnancy in humans and some other mammals. It is similar in structure to human growth hormone and prolactin, and has both growth-promoting and lactogenic (milk-producing) properties. Placental lactogen plays an important role in regulating maternal metabolism during pregnancy, promoting the growth and development of the fetus, and preparing the mother's body for lactation after birth. It helps to stimulate the growth of the mammary glands and the production of milk by increasing the availability of nutrients such as glucose, amino acids, and fatty acids in the mother's bloodstream. Placental lactogen also helps to regulate the mother's insulin sensitivity, which can affect her energy levels and the growth of the fetus.

Sexual maturation is the process of physical development during puberty that leads to the ability to reproduce. This process involves the development of primary and secondary sexual characteristics, changes in hormone levels, and the acquisition of reproductive capabilities. In females, this includes the onset of menstruation and the development of breasts and hips. In males, this includes the deepening of the voice, growth of facial hair, and the production of sperm. Achieving sexual maturation is an important milestone in human development and typically occurs during adolescence.

Inhibins are a group of protein hormones that play a crucial role in regulating the function of the reproductive system, specifically by inhibiting the production of follicle-stimulating hormone (FSH) in the pituitary gland. They are produced and secreted primarily by the granulosa cells in the ovaries of females and Sertoli cells in the testes of males.

Inhibins consist of two subunits, an alpha subunit, and a beta subunit, which can be further divided into two types: inhibin A and inhibin B. Inhibin A is primarily produced by the granulosa cells of developing follicles in the ovary, while inhibin B is mainly produced by the Sertoli cells in the testes.

By regulating FSH production, inhibins help control the development and maturation of ovarian follicles in females and spermatogenesis in males. Abnormal levels of inhibins have been associated with various reproductive disorders, including polycystic ovary syndrome (PCOS) and certain types of cancer.

Breast neoplasms refer to abnormal growths in the breast tissue that can be benign or malignant. Benign breast neoplasms are non-cancerous tumors or growths, while malignant breast neoplasms are cancerous tumors that can invade surrounding tissues and spread to other parts of the body.

Breast neoplasms can arise from different types of cells in the breast, including milk ducts, milk sacs (lobules), or connective tissue. The most common type of breast cancer is ductal carcinoma, which starts in the milk ducts and can spread to other parts of the breast and nearby structures.

Breast neoplasms are usually detected through screening methods such as mammography, ultrasound, or MRI, or through self-examination or clinical examination. Treatment options for breast neoplasms depend on several factors, including the type and stage of the tumor, the patient's age and overall health, and personal preferences. Treatment may include surgery, radiation therapy, chemotherapy, hormone therapy, or targeted therapy.

The parathyroid glands are four small endocrine glands located in the neck, usually near or behind the thyroid gland. They secrete parathyroid hormone (PTH), which plays a critical role in regulating calcium and phosphate levels in the blood and bones. PTH helps maintain the balance of these minerals by increasing the absorption of calcium from food in the intestines, promoting reabsorption of calcium in the kidneys, and stimulating the release of calcium from bones when needed. Additionally, PTH decreases the excretion of calcium through urine and reduces phosphate reabsorption in the kidneys, leading to increased phosphate excretion. Disorders of the parathyroid glands can result in conditions such as hyperparathyroidism (overactive glands) or hypoparathyroidism (underactive glands), which can have significant impacts on calcium and phosphate homeostasis and overall health.

"Sex characteristics" refer to the anatomical, chromosomal, and genetic features that define males and females. These include both primary sex characteristics (such as reproductive organs like ovaries or testes) and secondary sex characteristics (such as breasts or facial hair) that typically develop during puberty. Sex characteristics are primarily determined by the presence of either X or Y chromosomes, with XX individuals usually developing as females and XY individuals usually developing as males, although variations and exceptions to this rule do occur.

Estrone is a type of estrogen, which is a female sex hormone. It's one of the three major naturally occurring estrogens in women, along with estradiol and estriol. Estrone is weaker than estradiol but has a longer half-life, meaning it remains active in the body for a longer period of time.

Estrone is produced primarily in the ovaries, adrenal glands, and fat tissue. In postmenopausal women, when the ovaries stop producing estradiol, estrone becomes the dominant form of estrogen. It plays a role in maintaining bone density, regulating the menstrual cycle, and supporting the development and maintenance of female sexual characteristics.

Like other forms of estrogen, estrone can also have effects on various tissues throughout the body, including the brain, heart, and breast tissue. Abnormal levels of estrone, either too high or too low, can contribute to a variety of health issues, such as osteoporosis, menstrual irregularities, and increased risk of certain types of cancer.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

Dehydroepiandrosterone (DHEA) is a steroid hormone produced by the adrenal glands. It serves as a precursor to other hormones, including androgens such as testosterone and estrogens such as estradiol. DHEA levels typically peak during early adulthood and then gradually decline with age.

DHEA has been studied for its potential effects on various health conditions, including aging, cognitive function, sexual dysfunction, and certain chronic diseases. However, the evidence supporting its use for these purposes is generally limited and inconclusive. As with any supplement or medication, it's important to consult with a healthcare provider before taking DHEA to ensure safety and effectiveness.

Estrus is a term used in veterinary medicine to describe the physiological and behavioral state of female mammals that are ready to mate and conceive. It refers to the period of time when the female's reproductive system is most receptive to fertilization.

During estrus, the female's ovaries release one or more mature eggs (ovulation) into the fallopian tubes, where they can be fertilized by sperm from a male. This phase of the estrous cycle is often accompanied by changes in behavior and physical appearance, such as increased vocalization, restlessness, and swelling of the genital area.

The duration and frequency of estrus vary widely among different species of mammals. In some animals, such as dogs and cats, estrus occurs regularly at intervals of several weeks or months, while in others, such as cows and mares, it may only occur once or twice a year.

It's important to note that the term "estrus" is not used to describe human reproductive physiology. In humans, the equivalent phase of the menstrual cycle is called ovulation.

Leuprolide is a synthetic hormonal analog of gonadotropin-releasing hormone (GnRH or LHRH). It acts as a potent agonist of GnRH receptors, leading to the suppression of pituitary gland's secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). This, in turn, results in decreased levels of sex hormones such as testosterone and estrogen.

Leuprolide is used clinically for the treatment of various conditions related to hormonal imbalances, including:
- Prostate cancer: Leuprolide can help slow down the growth of prostate cancer cells by reducing testosterone levels in the body.
- Endometriosis: By lowering estrogen levels, leuprolide can alleviate symptoms associated with endometriosis such as pelvic pain and menstrual irregularities.
- Central precocious puberty: Leuprolide is used to delay the onset of puberty in children who experience it prematurely by inhibiting the release of gonadotropins.
- Uterine fibroids: Lowering estrogen levels with leuprolide can help shrink uterine fibroids and reduce symptoms like heavy menstrual bleeding and pelvic pain.

Leuprolide is available in various formulations, such as injectable depots or implants, for long-term hormonal suppression. Common side effects include hot flashes, mood changes, and potential loss of bone density due to prolonged hormone suppression.

Leptin is a hormone primarily produced and released by adipocytes, which are the fat cells in our body. It plays a crucial role in regulating energy balance and appetite by sending signals to the brain when the body has had enough food. This helps control body weight by suppressing hunger and increasing energy expenditure. Leptin also influences various metabolic processes, including glucose homeostasis, neuroendocrine function, and immune response. Defects in leptin signaling can lead to obesity and other metabolic disorders.

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Ecdysterone is a type of steroid hormone that occurs naturally in various plants and animals. In animals, ecdysterones are known to play important roles in the growth, development, and reproduction of arthropods, such as insects and crustaceans. They are called "ecdysteroids" and are crucial for the process of molting, in which the arthropod sheds its exoskeleton to grow a new one.

In plants, ecdysterones are believed to function as growth regulators and defense compounds. Some studies suggest that they may help protect plants against pests and pathogens.

Ecdysterone has also gained attention in the context of human health and performance enhancement. While it is not a hormone naturally produced by the human body, some research suggests that ecdysterone may have anabolic effects, meaning it could potentially promote muscle growth and improve physical performance. However, more studies are needed to confirm these findings and establish the safety and efficacy of ecdysterone supplementation in humans.

It is important to note that the use of performance-enhancing substances, including ecdysterone, may be subject to regulations and anti-doping rules in various sports organizations. Always consult with a healthcare professional before starting any new supplement regimen.

Androstenedione is a steroid hormone produced by the adrenal glands, ovaries, and testes. It is a precursor to both male and female sex hormones, including testosterone and estrogen. In the adrenal glands, it is produced from cholesterol through a series of biochemical reactions involving several enzymes. Androstenedione can also be converted into other steroid hormones, such as dehydroepiandrosterone (DHEA) and estrone.

In the body, androstenedione plays an important role in the development and maintenance of secondary sexual characteristics, such as facial hair and a deep voice in men, and breast development and menstrual cycles in women. It also contributes to bone density, muscle mass, and overall physical strength.

Androstenedione is available as a dietary supplement and has been marketed as a way to boost athletic performance and increase muscle mass. However, its effectiveness for these purposes is not supported by scientific evidence, and it may have harmful side effects when taken in high doses or for extended periods of time. Additionally, the use of androstenedione as a dietary supplement is banned by many sports organizations, including the International Olympic Committee and the National Collegiate Athletic Association.

Reproduction, in the context of biology and medicine, refers to the process by which organisms produce offspring. It is a complex process that involves the creation, development, and growth of new individuals from parent organisms. In sexual reproduction, this process typically involves the combination of genetic material from two parents through the fusion of gametes (sex cells) such as sperm and egg cells. This results in the formation of a zygote, which then develops into a new individual with a unique genetic makeup.

In contrast, asexual reproduction does not involve the fusion of gametes and can occur through various mechanisms such as budding, fragmentation, or parthenogenesis. Asexual reproduction results in offspring that are genetically identical to the parent organism.

Reproduction is a fundamental process that ensures the survival and continuation of species over time. It is also an area of active research in fields such as reproductive medicine, where scientists and clinicians work to understand and address issues related to human fertility, contraception, and genetic disorders.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Glucocorticoid receptors (GRs) are a type of nuclear receptor proteins found inside cells that bind to glucocorticoids, a class of steroid hormones. These receptors play an essential role in the regulation of various physiological processes, including metabolism, immune response, and stress response.

When a glucocorticoid hormone such as cortisol binds to the GR, it undergoes a conformational change that allows it to translocate into the nucleus of the cell. Once inside the nucleus, the GR acts as a transcription factor, binding to specific DNA sequences called glucocorticoid response elements (GREs) located in the promoter regions of target genes. The binding of the GR to the GRE can either activate or repress gene transcription, depending on the context and the presence of co-regulatory proteins.

Glucocorticoids have diverse effects on the body, including anti-inflammatory and immunosuppressive actions. They are commonly used in clinical settings to treat a variety of conditions such as asthma, rheumatoid arthritis, and inflammatory bowel disease. However, long-term use of glucocorticoids can lead to several side effects, including osteoporosis, weight gain, and increased risk of infections, due to the widespread effects of these hormones on multiple organ systems.

Dihydrotestosterone (DHT) is a sex hormone and androgen that plays a critical role in the development and maintenance of male characteristics, such as facial hair, deep voice, and muscle mass. It is synthesized from testosterone through the action of the enzyme 5-alpha reductase. DHT is essential for the normal development of the male genitalia during fetal development and for the maturation of the sexual organs at puberty.

In addition to its role in sexual development, DHT also contributes to the growth of hair follicles, the health of the prostate gland, and the maintenance of bone density. However, an excess of DHT has been linked to certain medical conditions, such as benign prostatic hyperplasia (BPH) and androgenetic alopecia (male pattern baldness).

DHT exerts its effects by binding to androgen receptors in various tissues throughout the body. Once bound, DHT triggers a series of cellular responses that regulate gene expression and influence the growth and differentiation of cells. In some cases, these responses can lead to unwanted side effects, such as hair loss or prostate enlargement.

Medications that block the action of 5-alpha reductase, such as finasteride and dutasteride, are sometimes used to treat conditions associated with excess DHT production. These drugs work by reducing the amount of DHT available to bind to androgen receptors, thereby alleviating symptoms and slowing disease progression.

In summary, dihydrotestosterone is a potent sex hormone that plays a critical role in male sexual development and function. While it is essential for normal growth and development, an excess of DHT has been linked to certain medical conditions, such as BPH and androgenetic alopecia. Medications that block the action of 5-alpha reductase are sometimes used to treat these conditions by reducing the amount of DHT available to bind to androgen receptors.

Buserelin is a synthetic analogue of gonadotropin-releasing hormone (GnRH or LHRH), which is a hormonal drug used in the treatment of various conditions such as endometriosis, uterine fibroids, prostate cancer, and central precocious puberty.

By mimicking the action of natural GnRH, buserelin stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn regulates the production of sex hormones such as estrogen and testosterone.

However, prolonged use of buserelin leads to downregulation of GnRH receptors and a decrease in FSH and LH secretion, resulting in reduced levels of sex hormones. This property is exploited in the treatment of hormone-dependent cancers such as prostate cancer, where reducing testosterone levels can help slow tumor growth.

Buserelin is available in various forms, including nasal sprays, implants, and injectable solutions, and its use should be under the supervision of a healthcare professional due to potential side effects and the need for careful monitoring of hormone levels during treatment.

The endocrine system is a complex network of glands and organs that produce, store, and secrete hormones. It plays a crucial role in regulating various functions and processes in the body, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

The major endocrine glands include:

1. Pituitary gland: located at the base of the brain, it is often referred to as the "master gland" because it controls other glands' functions. It produces and releases several hormones that regulate growth, development, and reproduction.
2. Thyroid gland: located in the neck, it produces hormones that regulate metabolism, growth, and development.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone, which regulates calcium levels in the blood.
4. Adrenal glands: located on top of the kidneys, they produce hormones that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located in the abdomen, it produces hormones such as insulin and glucagon that regulate blood sugar levels.
6. Sex glands (ovaries and testes): they produce sex hormones such as estrogen, progesterone, and testosterone that regulate sexual development and reproduction.
7. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.

The endocrine system works closely with the nervous system to maintain homeostasis or balance in the body's internal environment. Hormones are chemical messengers that travel through the bloodstream to target cells or organs, where they bind to specific receptors and elicit a response. Disorders of the endocrine system can result from overproduction or underproduction of hormones, leading to various health problems such as diabetes, thyroid disorders, growth disorders, and sexual dysfunction.

Thyroidectomy is a surgical procedure where all or part of the thyroid gland is removed. The thyroid gland is a butterfly-shaped endocrine gland located in the neck, responsible for producing hormones that regulate metabolism, growth, and development.

There are different types of thyroidectomy procedures, including:

1. Total thyroidectomy: Removal of the entire thyroid gland.
2. Partial (or subtotal) thyroidectomy: Removal of a portion of the thyroid gland.
3. Hemithyroidectomy: Removal of one lobe of the thyroid gland, often performed to treat benign solitary nodules or differentiated thyroid cancer.

Thyroidectomy may be recommended for various reasons, such as treating thyroid nodules, goiter, hyperthyroidism (overactive thyroid), or thyroid cancer. Potential risks and complications of the procedure include bleeding, infection, damage to nearby structures like the parathyroid glands and recurrent laryngeal nerve, and hypoparathyroidism or hypothyroidism due to removal of or damage to the parathyroid glands or thyroid gland, respectively. Close postoperative monitoring and management are essential to minimize these risks and ensure optimal patient outcomes.

Acromegaly is a rare hormonal disorder that typically occurs in middle-aged adults. It results from the pituitary gland producing too much growth hormone (GH) during adulthood. The excessive production of GH leads to abnormal growth of body tissues, particularly in the hands, feet, and face.

The term "acromegaly" is derived from two Greek words: "akros," meaning extremities, and "megaly," meaning enlargement. In most cases, acromegaly is caused by a benign tumor (adenoma) of the pituitary gland, which results in overproduction of GH.

Common symptoms include enlarged hands and feet, coarse facial features, deepened voice, joint pain, and sweating. If left untreated, acromegaly can lead to serious complications such as diabetes, hypertension, heart disease, and arthritis. Treatment usually involves surgical removal of the tumor, radiation therapy, or medication to control GH production.

Endocrine glands are ductless glands in the human body that release hormones directly into the bloodstream, which then carry the hormones to various tissues and organs in the body. These glands play a crucial role in regulating many of the body's functions, including metabolism, growth and development, tissue function, sexual function, reproduction, sleep, and mood.

Examples of endocrine glands include the pituitary gland, thyroid gland, parathyroid glands, adrenal glands, pineal gland, pancreas, ovaries, and testes. Each of these glands produces specific hormones that have unique effects on various target tissues in the body.

The endocrine system works closely with the nervous system to regulate many bodily functions through a complex network of feedback mechanisms. Disorders of the endocrine system can result in a wide range of symptoms and health problems, including diabetes, thyroid disease, growth disorders, and sexual dysfunction.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Triptorelin pamoate is a synthetic analogue of the natural hormone gonadotropin-releasing hormone (GnRH). It is used in the treatment of various conditions such as endometriosis, uterine fibroids, precocious puberty, and prostate cancer.

Triptorelin pamoate works by stimulating the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn stimulate the production of sex hormones such as estrogen and testosterone. However, with continued use, it causes downregulation of the pituitary gland, leading to a decrease in the production of FSH and LH, and therefore a reduction in the levels of sex hormones.

The pamoate salt is used to slow down the release of triptorelin, allowing for longer-acting formulations that can be administered monthly or quarterly. The medication is usually given as an injection into a muscle (intramuscularly).

Teriparatide is a synthetic form of parathyroid hormone (PTH), which is a natural hormone produced by the parathyroid glands in the body. The medication contains the active fragment of PTH, known as 1-34 PTH, and it is used in medical treatment to stimulate new bone formation and increase bone density.

Teriparatide is primarily prescribed for the management of osteoporosis in postmenopausal women and men with a high risk of fractures who have not responded well to other osteoporosis therapies, such as bisphosphonates. It is administered via subcutaneous injection, typically once daily.

By increasing bone formation and reducing bone resorption, teriparatide helps improve bone strength and structure, ultimately decreasing the risk of fractures in treated individuals. The medication's effects on bone metabolism can lead to improvements in bone mineral density (BMD) and microarchitecture, making it an essential tool for managing severe osteoporosis and reducing fracture risk.

Ghrelin receptors are a type of G protein-coupled receptor found in the central nervous system and other tissues throughout the body. They are also known as growth hormone secretagogue receptor 1a (GHS-R1a) because they were initially identified as being activated by synthetic ligands called growth hormone secretagogues, which stimulate the release of growth hormone.

However, it was later discovered that ghrelin, a hormone produced in the stomach, is the natural endogenous ligand for these receptors. Ghrelin is often referred to as the "hunger hormone" because its levels rise before meals and decrease after eating, signaling to the brain that it's time to eat.

Activation of ghrelin receptors has been shown to have a variety of effects on the body, including stimulating appetite, increasing growth hormone secretion, promoting fat storage, and modulating glucose metabolism. Dysregulation of the ghrelin system has been implicated in various pathological conditions such as obesity, anorexia nervosa, and type 2 diabetes.

The parathyroid hormone type 2 receptor (PTH2R) is a gene that encodes for a G protein-coupled receptor found primarily in the central nervous system. It is a receptor for parathyroid hormone-related peptide (PTHrP), a hormone involved in calcium homeostasis, and tuberoinfundibular peptide of 39 residues (TIP39), a neuropeptide involved in pain regulation.

Unlike the parathyroid hormone type 1 receptor (PTH1R), which is widely expressed and mediates the actions of PTH on bone and kidney, PTH2R has a more limited distribution and its physiological role is not as well understood. However, it is known to play a role in regulating pain sensitivity, anxiety, and food intake.

It's important to note that while PTH and PTHrP can bind to both PTH1R and PTH2R, they have different affinities and elicit distinct signaling pathways depending on the receptor they bind to.

Propylthiouracil is a medication that is primarily used to treat hyperthyroidism, a condition characterized by an overactive thyroid gland that produces too much thyroid hormone. The medication works by inhibiting the production of thyroid hormones in the body. It belongs to a class of drugs called antithyroid agents or thionamides.

In medical terms, propylthiouracil is defined as an antithyroid medication used to manage hyperthyroidism due to Graves' disease or toxic adenoma. It acts by inhibiting the synthesis of thyroid hormones, triiodothyronine (T3) and thyroxine (T4), in the thyroid gland. Propylthiouracil also reduces the peripheral conversion of T4 to T3. The medication is available as a tablet for oral administration and is typically prescribed at a starting dose of 100-150 mg three times daily, with adjustments made based on the patient's response and thyroid function tests.

It's important to note that propylthiouracil should be used under the close supervision of a healthcare provider due to potential side effects and risks associated with its use. Regular monitoring of thyroid function tests is necessary during treatment, and patients should promptly report any signs or symptoms of adverse reactions to their healthcare provider.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

The follicular phase is a term used in reproductive endocrinology, which refers to the first part of the menstrual cycle. This phase begins on the first day of menstruation and lasts until ovulation. During this phase, several follicles in the ovaries begin to mature under the influence of follicle-stimulating hormone (FSH) released by the pituitary gland.

Typically, one follicle becomes dominant and continues to mature, while the others regress. The dominant follicle produces increasing amounts of estrogen, which causes the lining of the uterus to thicken in preparation for a possible pregnancy. The follicular phase can vary in length, but on average it lasts about 14 days.

It's important to note that the length and characteristics of the follicular phase can provide valuable information in diagnosing various reproductive disorders, such as polycystic ovary syndrome (PCOS) or thyroid dysfunction.

Hypogonadism is a medical condition characterized by the inability of the gonads (testes in males and ovaries in females) to produce sufficient amounts of sex hormones, such as testosterone and estrogen. This can lead to various symptoms including decreased libido, erectile dysfunction in men, irregular menstrual periods in women, and reduced fertility in both sexes. Hypogonadism may be caused by genetic factors, aging, injury to the gonads, or certain medical conditions such as pituitary disorders. It can be treated with hormone replacement therapy.

Ecdysone is a steroid hormone that triggers molting in arthropods, including insects. It's responsible for the regulation of growth and development in these organisms. When ecdysone binds to specific receptors within the cell, it initiates a cascade of events leading to the shedding of the old exoskeleton and the formation of a new one. This process is essential for the growth and survival of arthropods, as their rigid exoskeletons do not allow for expansion. By understanding ecdysone and its role in insect development, researchers can develop targeted strategies to control pest insect populations.

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

Granulosa cells are specialized cells that surround and enclose the developing egg cells (oocytes) in the ovaries. They play a crucial role in the growth, development, and maturation of the follicles (the fluid-filled sacs containing the oocytes) by providing essential nutrients and hormones.

Granulosa cells are responsible for producing estrogen, which supports the development of the endometrium during the menstrual cycle in preparation for a potential pregnancy. They also produce inhibin and activin, two hormones that regulate the function of the pituitary gland and its secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH).

These cells are critical for female reproductive health and fertility. Abnormalities in granulosa cell function can lead to various reproductive disorders, such as polycystic ovary syndrome (PCOS), premature ovarian failure, and infertility.

The estrous cycle is the reproductive cycle in certain mammals, characterized by regular changes in the reproductive tract and behavior, which are regulated by hormonal fluctuations. It is most commonly observed in non-primate mammals such as dogs, cats, cows, pigs, and horses.

The estrous cycle consists of several stages:

1. Proestrus: This stage lasts for a few days and is characterized by the development of follicles in the ovaries and an increase in estrogen levels. During this time, the female may show signs of sexual receptivity, but will not allow mating to occur.
2. Estrus: This is the period of sexual receptivity, during which the female allows mating to take place. It typically lasts for a few days and is marked by a surge in luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which triggers ovulation.
3. Metestrus: This stage follows ovulation and is characterized by the formation of a corpus luteum, a structure that produces progesterone to support pregnancy. If fertilization does not occur, the corpus luteum will eventually regress, leading to the next phase.
4. Diestrus: This is the final stage of the estrous cycle and can last for several weeks or months. During this time, the female's reproductive tract returns to its resting state, and she is not sexually receptive. If pregnancy has occurred, the corpus luteum will continue to produce progesterone until the placenta takes over this function later in pregnancy.

It's important to note that the human menstrual cycle is different from the estrous cycle. While both cycles involve hormonal fluctuations and changes in the reproductive tract, the menstrual cycle includes a shedding of the uterine lining (menstruation) if fertilization does not occur, which is not a feature of the estrous cycle.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

The corpora allata are small endocrine glands found in the head of insects, located near the brain. They are part of the insect endocrine system and produce important hormones that regulate various physiological processes, including growth, development, reproduction, and molting. The most well-known hormone produced by the corpora allata is juvenile hormone (JH), which plays a crucial role in maintaining the larval or nymphal stage of insects and preventing metamorphosis into the adult form. As the insect grows and develops, the production of JH decreases, allowing for the initiation of metamorphosis and the emergence of the adult form.

Cytoplasmic receptors and nuclear receptors are two types of intracellular receptors that play crucial roles in signal transduction pathways and regulation of gene expression. They are classified based on their location within the cell. Here are the medical definitions for each:

1. Cytoplasmic Receptors: These are a group of intracellular receptors primarily found in the cytoplasm of cells, which bind to specific hormones, growth factors, or other signaling molecules. Upon binding, these receptors undergo conformational changes that allow them to interact with various partners, such as adapter proteins and enzymes, leading to activation of downstream signaling cascades. These pathways ultimately result in modulation of cellular processes like proliferation, differentiation, and apoptosis. Examples of cytoplasmic receptors include receptor tyrosine kinases (RTKs), serine/threonine kinase receptors, and cytokine receptors.
2. Nuclear Receptors: These are a distinct class of intracellular receptors that reside primarily in the nucleus of cells. They bind to specific ligands, such as steroid hormones, thyroid hormones, vitamin D, retinoic acid, and various other lipophilic molecules. Upon binding, nuclear receptors undergo conformational changes that facilitate their interaction with co-regulatory proteins and the DNA. This interaction results in the modulation of gene transcription, ultimately leading to alterations in protein expression and cellular responses. Examples of nuclear receptors include estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor (TR), vitamin D receptor (VDR), and peroxisome proliferator-activated receptors (PPARs).

Both cytoplasmic and nuclear receptors are essential components of cellular communication networks, allowing cells to respond appropriately to extracellular signals and maintain homeostasis. Dysregulation of these receptors has been implicated in various diseases, including cancer, diabetes, and autoimmune disorders.

Thyrotropin receptors (TSHRs) are a type of G protein-coupled receptor found on the surface of cells in the thyroid gland. They bind to thyroid-stimulating hormone (TSH), which is produced and released by the pituitary gland. When TSH binds to the TSHR, it activates a series of intracellular signaling pathways that stimulate the production and release of thyroid hormones, triiodothyronine (T3) and thyroxine (T4). These hormones are important for regulating metabolism, growth, and development in the body. Mutations in the TSHR gene can lead to various thyroid disorders, such as hyperthyroidism or hypothyroidism.

A biological assay is a method used in biology and biochemistry to measure the concentration or potency of a substance (like a drug, hormone, or enzyme) by observing its effect on living cells or tissues. This type of assay can be performed using various techniques such as:

1. Cell-based assays: These involve measuring changes in cell behavior, growth, or viability after exposure to the substance being tested. Examples include proliferation assays, apoptosis assays, and cytotoxicity assays.
2. Protein-based assays: These focus on measuring the interaction between the substance and specific proteins, such as enzymes or receptors. Examples include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and pull-down assays.
3. Genetic-based assays: These involve analyzing the effects of the substance on gene expression, DNA structure, or protein synthesis. Examples include quantitative polymerase chain reaction (qPCR) assays, reporter gene assays, and northern blotting.

Biological assays are essential tools in research, drug development, and diagnostic applications to understand biological processes and evaluate the potential therapeutic efficacy or toxicity of various substances.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Prolactin receptors are proteins found on the surface of various cells throughout the body that bind to the hormone prolactin. Once prolactin binds to its receptor, it activates a series of intracellular signaling pathways that regulate diverse physiological functions, including lactation, growth and development, metabolism, immune function, and behavior.

Prolactin receptors belong to the class I cytokine receptor family and are expressed in many tissues, including the mammary gland, pituitary gland, liver, kidney, adipose tissue, brain, and immune cells. In the mammary gland, prolactin signaling through its receptor is essential for milk production and breast development during pregnancy and lactation.

Abnormalities in prolactin receptor function have been implicated in several diseases, including cancer, infertility, and metabolic disorders. Therefore, understanding the structure, regulation, and function of prolactin receptors is crucial for developing new therapies to treat these conditions.

"Molting" is not a term typically used in medical contexts. It is primarily used to describe the shedding and replacement of feathers, hair, or skin in animals, including birds, reptiles, insects, and other invertebrates. In humans and other mammals, this process is more commonly referred to as "shedding" or "growing new hair/skin."

However, if you are referring to the medical term "molt," it is a rare genetic disorder that affects the skin's pigmentation and causes it to shed in patches. It is also known as "congenital ichthyosiform erythroderma" or "non-bullous congenital ichthyosiform erythroderma." The condition is present at birth, and affected individuals have red, scaly skin that sheds in a pattern similar to snake skin. Molting is not contagious and has no known cure, but various treatments can help manage its symptoms.

Calcitriol is the active form of vitamin D, also known as 1,25-dihydroxyvitamin D. It is a steroid hormone that plays a crucial role in regulating calcium and phosphate levels in the body to maintain healthy bones. Calcitriol is produced in the kidneys from its precursor, calcidiol (25-hydroxyvitamin D), which is derived from dietary sources or synthesized in the skin upon exposure to sunlight.

Calcitriol promotes calcium absorption in the intestines, helps regulate calcium and phosphate levels in the kidneys, and stimulates bone cells (osteoblasts) to form new bone tissue while inhibiting the activity of osteoclasts, which resorb bone. This hormone is essential for normal bone mineralization and growth, as well as for preventing hypocalcemia (low calcium levels).

In addition to its role in bone health, calcitriol has various other physiological functions, including modulating immune responses, cell proliferation, differentiation, and apoptosis. Calcitriol deficiency or resistance can lead to conditions such as rickets in children and osteomalacia or osteoporosis in adults.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Antithyroid agents are a class of medications that are used to treat hyperthyroidism, a condition in which the thyroid gland produces too much thyroid hormone. These medications work by inhibiting the production of thyroid hormones in the thyroid gland. There are several types of antithyroid agents available, including:

1. Propylthiouracil (PTU): This medication works by blocking the enzyme that is needed to produce thyroid hormones. It also reduces the conversion of thyroxine (T4) to triiodothyronine (T3), another thyroid hormone, in peripheral tissues.
2. Methimazole: This medication works similarly to propylthiouracil by blocking the enzyme that is needed to produce thyroid hormones. However, it does not affect the conversion of T4 to T3 in peripheral tissues.
3. Carbimazole: This medication is converted to methimazole in the body and works similarly to block the production of thyroid hormones.

Antithyroid agents are usually taken orally, and their effects on thyroid hormone production begin within a few hours after ingestion. However, it may take several weeks for patients to notice an improvement in their symptoms. These medications can have side effects, including rash, hives, and joint pain. In rare cases, they can cause liver damage or agranulocytosis, a condition in which the body does not produce enough white blood cells.

It is important to note that antithyroid agents do not cure hyperthyroidism; they only treat the symptoms by reducing thyroid hormone production. Therefore, patients may need to take these medications for several months or even years, depending on their individual circumstances. In some cases, surgery or radioactive iodine therapy may be recommended as alternative treatments for hyperthyroidism.

Medroxyprogesterone Acetate (MPA) is a synthetic form of the natural hormone progesterone, which is often used in various medical applications. It is a white to off-white crystalline powder, slightly soluble in water, and freely soluble in alcohol, chloroform, and methanol.

Medically, MPA is used as a prescription medication for several indications, including:

1. Contraception: As an oral contraceptive or injectable solution, it can prevent ovulation, thicken cervical mucus to make it harder for sperm to reach the egg, and alter the lining of the uterus to make it less likely for a fertilized egg to implant.
2. Hormone replacement therapy (HRT): In postmenopausal women, MPA can help manage symptoms associated with decreased estrogen levels, such as hot flashes and vaginal dryness. It may also help prevent bone loss (osteoporosis).
3. Endometrial hyperplasia: MPA can be used to treat endometrial hyperplasia, a condition where the lining of the uterus becomes too thick, which could potentially lead to cancer if left untreated. By opposing the effects of estrogen, MPA helps regulate the growth of the endometrium.
4. Gynecological disorders: MPA can be used to treat various gynecological disorders, such as irregular menstrual cycles, amenorrhea (absence of menstruation), and dysfunctional uterine bleeding.
5. Cancer treatment: In some cases, MPA may be used in conjunction with other medications to treat certain types of breast or endometrial cancer.

As with any medication, Medroxyprogesterone Acetate can have side effects and potential risks. It is essential to consult a healthcare professional for proper evaluation, dosage, and monitoring when considering this medication.

The uterus, also known as the womb, is a hollow, muscular organ located in the female pelvic cavity, between the bladder and the rectum. It has a thick, middle layer called the myometrium, which is composed of smooth muscle tissue, and an inner lining called the endometrium, which provides a nurturing environment for the fertilized egg to develop into a fetus during pregnancy.

The uterus is where the baby grows and develops until it is ready for birth through the cervix, which is the lower, narrow part of the uterus that opens into the vagina. The uterus plays a critical role in the menstrual cycle as well, by shedding its lining each month if pregnancy does not occur.

Dwarfism is a medical condition that is characterized by short stature, typically with an adult height of 4 feet 10 inches (147 centimeters) or less. It is caused by a variety of genetic and medical conditions that affect bone growth, including skeletal dysplasias, hormonal deficiencies, and chromosomal abnormalities.

Skeletal dysplasias are the most common cause of dwarfism and are characterized by abnormalities in the development and growth of bones and cartilage. Achondroplasia is the most common form of skeletal dysplasia, accounting for about 70% of all cases of dwarfism. It is caused by a mutation in the fibroblast growth factor receptor 3 (FGFR3) gene and results in short limbs, a large head, and a prominent forehead.

Hormonal deficiencies, such as growth hormone deficiency or hypothyroidism, can also cause dwarfism if they are not diagnosed and treated early. Chromosomal abnormalities, such as Turner syndrome (monosomy X) or Down syndrome (trisomy 21), can also result in short stature and other features of dwarfism.

It is important to note that people with dwarfism are not "dwarves" - the term "dwarf" is a medical and sociological term used to describe individuals with this condition, while "dwarves" is a term often used in fantasy literature and media to refer to mythical beings. The use of the term "dwarf" can be considered disrespectful or offensive to some people with dwarfism, so it is important to use respectful language when referring to individuals with this condition.

Neuropeptide receptors are a type of cell surface receptor that bind to neuropeptides, which are small signaling molecules made up of short chains of amino acids. These receptors play an important role in the nervous system by mediating the effects of neuropeptides on various physiological processes, including neurotransmission, pain perception, and hormone release.

Neuropeptide receptors are typically composed of seven transmembrane domains and are classified into several families based on their structure and function. Some examples of neuropeptide receptor families include the opioid receptors, somatostatin receptors, and vasoactive intestinal peptide (VIP) receptors.

When a neuropeptide binds to its specific receptor, it activates a signaling pathway within the cell that leads to various cellular responses. These responses can include changes in gene expression, ion channel activity, and enzyme function. Overall, the activation of neuropeptide receptors helps to regulate many important functions in the body, including mood, appetite, and pain sensation.

Hyperparathyroidism is a condition in which the parathyroid glands produce excessive amounts of parathyroid hormone (PTH). There are four small parathyroid glands located in the neck, near or within the thyroid gland. They release PTH into the bloodstream to help regulate the levels of calcium and phosphorus in the body.

In hyperparathyroidism, overproduction of PTH can lead to an imbalance in these minerals, causing high blood calcium levels (hypercalcemia) and low phosphate levels (hypophosphatemia). This can result in various symptoms such as fatigue, weakness, bone pain, kidney stones, and cognitive issues.

There are two types of hyperparathyroidism: primary and secondary. Primary hyperparathyroidism occurs when there is a problem with one or more of the parathyroid glands, causing them to become overactive and produce too much PTH. Secondary hyperparathyroidism develops as a response to low calcium levels in the body due to conditions like vitamin D deficiency, chronic kidney disease, or malabsorption syndromes.

Treatment for hyperparathyroidism depends on the underlying cause and severity of symptoms. In primary hyperparathyroidism, surgery to remove the overactive parathyroid gland(s) is often recommended. For secondary hyperparathyroidism, treating the underlying condition and managing calcium levels with medications or dietary changes may be sufficient.

Calcitonin is a hormone that is produced and released by the parafollicular cells (also known as C cells) of the thyroid gland. It plays a crucial role in regulating calcium homeostasis in the body. Specifically, it helps to lower elevated levels of calcium in the blood by inhibiting the activity of osteoclasts, which are bone cells that break down bone tissue and release calcium into the bloodstream. Calcitonin also promotes the uptake of calcium in the bones and increases the excretion of calcium in the urine.

Calcitonin is typically released in response to high levels of calcium in the blood, and its effects help to bring calcium levels back into balance. In addition to its role in calcium regulation, calcitonin may also have other functions in the body, such as modulating immune function and reducing inflammation.

Clinically, synthetic forms of calcitonin are sometimes used as a medication to treat conditions related to abnormal calcium levels, such as hypercalcemia (high blood calcium) or osteoporosis. Calcitonin can be administered as an injection, nasal spray, or oral tablet, depending on the specific formulation and intended use.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Retinoic acid receptors (RARs) are a type of nuclear receptor proteins that play crucial roles in the regulation of gene transcription. They are activated by retinoic acid, which is a metabolite of vitamin A. There are three subtypes of RARs, namely RARα, RARβ, and RARγ, each encoded by different genes.

Once retinoic acid binds to RARs, they form heterodimers with another type of nuclear receptor called retinoid X receptors (RXRs). The RAR-RXR complex then binds to specific DNA sequences called retinoic acid response elements (RAREs) in the promoter regions of target genes. This binding event leads to the recruitment of coactivator proteins and the modification of chromatin structure, ultimately resulting in the activation or repression of gene transcription.

Retinoic acid and its receptors play essential roles in various biological processes, including embryonic development, cell differentiation, apoptosis, and immune function. In addition, RARs have been implicated in several diseases, such as cancer, where they can act as tumor suppressors or oncogenes depending on the context. Therefore, understanding the mechanisms of RAR signaling has important implications for the development of novel therapeutic strategies for various diseases.

Leydig cells, also known as interstitial cells of Leydig or interstitial cell-stroma, are cells in the testes that produce and release testosterone and other androgens into the bloodstream. They are located in the seminiferous tubules of the testis, near the blood vessels, and are named after Franz Leydig, the German physiologist who discovered them in 1850.

Leydig cells contain cholesterol esters, which serve as precursors for the synthesis of testosterone. They respond to luteinizing hormone (LH) released by the anterior pituitary gland, which stimulates the production and release of testosterone. Testosterone is essential for the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also plays a role in sperm production and bone density.

In addition to their endocrine function, Leydig cells have been shown to have non-hormonal functions, including phagocytosis, antigen presentation, and immune regulation. However, these functions are not as well understood as their hormonal roles.

Ecdysteroids are a class of steroid hormones that are primarily known for their role in the regulation of molting and growth in arthropods, such as insects and crustaceans. They are structurally similar to vertebrate steroid hormones, such as estrogens and androgens, but have different physiological functions.

Ecdysteroids bind to specific receptors in the cell nucleus, leading to changes in gene expression that regulate various processes related to molting and growth, including the synthesis of new exoskeleton components and the breakdown of old ones. They also play a role in other physiological processes, such as reproduction, development, and stress response.

In recent years, ecdysteroids have attracted interest in the medical community due to their potential therapeutic applications. Some studies suggest that certain ecdysteroids may have anabolic effects, promoting muscle growth and protein synthesis, while others have shown anti-inflammatory, antioxidant, and immunomodulatory properties. However, more research is needed to fully understand the potential therapeutic uses of ecdysteroids in humans.

Pituitary function tests are a group of diagnostic exams that evaluate the proper functioning of the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is responsible for producing and releasing several essential hormones that regulate various bodily functions, including growth, metabolism, stress response, reproduction, and lactation.

These tests typically involve measuring the levels of different hormones in the blood, stimulating or suppressing the pituitary gland with specific medications, and assessing the body's response to these challenges. Some common pituitary function tests include:

1. Growth hormone (GH) testing: Measures GH levels in the blood, often after a provocative test using substances like insulin, arginine, clonidine, or glucagon to stimulate GH release.
2. Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) testing: Assesses the function of the thyroid gland by measuring TSH and FT4 levels in response to TRH (thyrotropin-releasing hormone) stimulation.
3. Adrenocorticotropic hormone (ACTH) and cortisol testing: Evaluates the hypothalamic-pituitary-adrenal axis by measuring ACTH and cortisol levels after a CRH (corticotropin-releasing hormone) stimulation test or an insulin tolerance test.
4. Prolactin (PRL) testing: Measures PRL levels in the blood, which can be elevated due to pituitary tumors or other conditions affecting the hypothalamus.
5. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) testing: Assesses reproductive function by measuring FSH and LH levels, often in conjunction with estradiol or testosterone levels.
6. Gonadotropin-releasing hormone (GnRH) stimulation test: Evaluates gonadal function by measuring FSH and LH levels after GnRH administration.
7. Growth hormone (GH) testing: Measures GH levels in response to various stimuli, such as insulin-like growth factor-1 (IGF-1), glucagon, or arginine.
8. Vasopressin (ADH) testing: Assesses the posterior pituitary function by measuring ADH levels and performing a water deprivation test.

These tests can help diagnose various pituitary disorders, such as hypopituitarism, hyperpituitarism, or pituitary tumors, and guide appropriate treatment strategies.

Puberty is the period of sexual maturation, generally occurring between the ages of 10 and 16 in females and between 12 and 18 in males. It is characterized by a series of events including rapid growth, development of secondary sexual characteristics, and the acquisition of reproductive capabilities. Puberty is initiated by the activation of the hypothalamic-pituitary-gonadal axis, leading to the secretion of hormones such as estrogen and testosterone that drive the physical changes associated with this stage of development.

In females, puberty typically begins with the onset of breast development (thelarche) and the appearance of pubic hair (pubarche), followed by the start of menstruation (menarche). In males, puberty usually starts with an increase in testicular size and the growth of pubic hair, followed by the deepening of the voice, growth of facial hair, and the development of muscle mass.

It's important to note that the onset and progression of puberty can vary widely among individuals, and may be influenced by genetic, environmental, and lifestyle factors.

Glucagon-like peptide 1 (GLP-1) is a hormone that is secreted by the intestines in response to food intake. It plays a crucial role in regulating blood sugar levels through several mechanisms, including stimulation of insulin secretion from the pancreas, inhibition of glucagon release, slowing gastric emptying, and promoting satiety. GLP-1 is an important target for the treatment of type 2 diabetes due to its insulin-secretory and glucose-lowering effects. In addition, GLP-1 receptor agonists are used in the management of obesity due to their ability to promote weight loss by reducing appetite and increasing feelings of fullness.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Premenopause is not a formal medical term, but it's often informally used to refer to the time period in a woman's life leading up to menopause. During this stage, which can last for several years, hormonal changes begin to occur in preparation for menopause. The ovaries start to produce less estrogen and progesterone, which can lead to various symptoms such as irregular periods, hot flashes, mood swings, and sleep disturbances. However, it's important to note that not all women will experience these symptoms.

The official medical term for the stage when a woman's period becomes irregular and less frequent, but hasn't stopped completely, is perimenopause. This stage typically lasts from two to eight years and ends with menopause, which is defined as the point when a woman has not had a period for 12 consecutive months. After menopause, women enter postmenopause.

The medical definition of "eating" refers to the process of consuming and ingesting food or nutrients into the body. This process typically involves several steps, including:

1. Food preparation: This may involve cleaning, chopping, cooking, or combining ingredients to make them ready for consumption.
2. Ingestion: The act of taking food or nutrients into the mouth and swallowing it.
3. Digestion: Once food is ingested, it travels down the esophagus and enters the stomach, where it is broken down by enzymes and acids to facilitate absorption of nutrients.
4. Absorption: Nutrients are absorbed through the walls of the small intestine and transported to cells throughout the body for use as energy or building blocks for growth and repair.
5. Elimination: Undigested food and waste products are eliminated from the body through the large intestine (colon) and rectum.

Eating is an essential function that provides the body with the nutrients it needs to maintain health, grow, and repair itself. Disorders of eating, such as anorexia nervosa or bulimia nervosa, can have serious consequences for physical and mental health.

The luteal phase is the second half of the menstrual cycle, starting from ovulation (release of an egg from the ovaries) and lasting until the start of the next menstruation. This phase typically lasts around 12-14 days in a regular 28-day menstrual cycle. During this phase, the remains of the dominant follicle that released the egg transform into the corpus luteum, which produces progesterone and some estrogen to support the implantation of a fertilized egg and maintain the early stages of pregnancy. If pregnancy does not occur, the corpus luteum degenerates, leading to a drop in hormone levels and the start of a new menstrual cycle.

Iodine is an essential trace element that is necessary for the production of thyroid hormones in the body. These hormones play crucial roles in various bodily functions, including growth and development, metabolism, and brain development during pregnancy and infancy. Iodine can be found in various foods such as seaweed, dairy products, and iodized salt. In a medical context, iodine is also used as an antiseptic to disinfect surfaces, wounds, and skin infections due to its ability to kill bacteria, viruses, and fungi.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Retinoid X receptors (RXRs) are a subfamily of nuclear receptor proteins that function as transcription factors, playing crucial roles in the regulation of gene expression. They are activated by binding to retinoids, which are derivatives of vitamin A. RXRs can form heterodimers with other nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptors (FXRs), and thyroid hormone receptors (THRs). Upon activation by their respective ligands, these heterodimers bind to specific DNA sequences called response elements in the promoter regions of target genes, leading to modulation of transcription. RXRs are involved in various biological processes, including cell differentiation, development, metabolism, and homeostasis. Dysregulation of RXR-mediated signaling pathways has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders.

Androgen receptors (ARs) are a type of nuclear receptor protein that are expressed in various tissues throughout the body. They play a critical role in the development and maintenance of male sexual characteristics and reproductive function. ARs are activated by binding to androgens, which are steroid hormones such as testosterone and dihydrotestosterone (DHT). Once activated, ARs function as transcription factors that regulate gene expression, ultimately leading to various cellular responses.

In the context of medical definitions, androgen receptors can be defined as follows:

Androgen receptors are a type of nuclear receptor protein that bind to androgens, such as testosterone and dihydrotestosterone, and mediate their effects on gene expression in various tissues. They play critical roles in the development and maintenance of male sexual characteristics and reproductive function, and are involved in the pathogenesis of several medical conditions, including prostate cancer, benign prostatic hyperplasia, and androgen deficiency syndromes.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

The corpus luteum is a temporary endocrine structure that forms in the ovary after an oocyte (egg) has been released from a follicle during ovulation. It's formed by the remaining cells of the ruptured follicle, which transform into large, hormone-secreting cells.

The primary function of the corpus luteum is to produce progesterone and, to a lesser extent, estrogen during the menstrual cycle or pregnancy. Progesterone plays a crucial role in preparing the uterus for potential implantation of a fertilized egg and maintaining the early stages of pregnancy. If pregnancy does not occur, the corpus luteum will typically degenerate and stop producing hormones after approximately 10-14 days, leading to menstruation.

However, if pregnancy occurs, the developing embryo starts to produce human chorionic gonadotropin (hCG), which signals the corpus luteum to continue secreting progesterone and estrogen until the placenta takes over hormonal production, usually around the end of the first trimester.

Thyronines are a type of hormone that is produced and released by the thyroid gland. They are iodinated amino acids, specifically triiodothyronine (T3) and thyroxine (T4), that are essential for regulating the body's metabolic rate, growth, and development. These hormones play a crucial role in maintaining the body's energy balance, brain development, and overall health. They work by binding to specific receptors in cells throughout the body, where they help to regulate gene expression and various cellular processes. Disorders of thyronine production or function can lead to a variety of medical conditions, such as hypothyroidism or hyperthyroidism.

Ovulation induction is a medical procedure that involves the stimulation of ovulation (the release of an egg from the ovaries) in women who have difficulties conceiving due to ovulatory disorders. This is typically achieved through the use of medications such as clomiphene citrate or gonadotropins, which promote the development and maturation of follicles in the ovaries containing eggs. The process is closely monitored through regular ultrasounds and hormone tests to ensure appropriate response and minimize the risk of complications like multiple pregnancies. Ovulation induction may be used as a standalone treatment or in conjunction with other assisted reproductive technologies (ART), such as intrauterine insemination (IUI) or in vitro fertilization (IVF).

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Indole-3-acetic acid (IAA) is not exactly a medical term, but rather a scientific term used in the field of biochemistry and physiology. It is a type of auxin, which is a plant hormone that regulates various growth and development processes in plants. IAA is the most abundant and best-studied natural auxin.

Medically, indole-3-acetic acid may be mentioned in the context of certain medical conditions or treatments related to plants or plant-derived substances. For example, some research has investigated the potential use of IAA in promoting wound healing in plants or in agricultural applications. However, it is not a substance that is typically used in medical treatment for humans or animals.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Lactation is the process by which milk is produced and secreted from the mammary glands of female mammals, including humans, for the nourishment of their young. This physiological function is initiated during pregnancy and continues until it is deliberately stopped or weaned off. The primary purpose of lactation is to provide essential nutrients, antibodies, and other bioactive components that support the growth, development, and immune system of newborns and infants.

The process of lactation involves several hormonal and physiological changes in a woman's body. During pregnancy, the hormones estrogen and progesterone stimulate the growth and development of the mammary glands. After childbirth, the levels of these hormones drop significantly, allowing another hormone called prolactin to take over. Prolactin is responsible for triggering the production of milk in the alveoli, which are tiny sacs within the breast tissue.

Another hormone, oxytocin, plays a crucial role in the release or "let-down" of milk from the alveoli to the nipple during lactation. This reflex is initiated by suckling or thinking about the baby, which sends signals to the brain to release oxytocin. The released oxytocin then binds to receptors in the mammary glands, causing the smooth muscles around the alveoli to contract and push out the milk through the ducts and into the nipple.

Lactation is a complex and highly regulated process that ensures the optimal growth and development of newborns and infants. It provides not only essential nutrients but also various bioactive components, such as immunoglobulins, enzymes, and growth factors, which protect the infant from infections and support their immune system.

In summary, lactation is the physiological process by which milk is produced and secreted from the mammary glands of female mammals for the nourishment of their young. It involves hormonal changes, including the actions of prolactin, oxytocin, estrogen, and progesterone, to regulate the production, storage, and release of milk.

The posterior pituitary gland, also known as the neurohypophysis, is the posterior portion of the pituitary gland. It is primarily composed of nerve fibers that originate from the hypothalamus, a region of the brain. These nerve fibers release two important hormones: oxytocin and vasopressin (also known as antidiuretic hormone or ADH).

Oxytocin plays a role in social bonding, sexual reproduction, and childbirth. During childbirth, it stimulates uterine contractions to help facilitate delivery, and after birth, it helps to trigger the release of milk from the mother's breasts during breastfeeding.

Vasopressin, on the other hand, helps regulate water balance in the body by controlling the amount of water that is excreted by the kidneys. It does this by increasing the reabsorption of water in the collecting ducts of the kidney, which leads to a more concentrated urine and helps prevent dehydration.

Overall, the posterior pituitary gland plays a critical role in maintaining fluid balance, social bonding, and reproduction.

An adenoma is a benign (noncancerous) tumor that develops from glandular epithelial cells. These types of cells are responsible for producing and releasing fluids, such as hormones or digestive enzymes, into the surrounding tissues. Adenomas can occur in various organs and glands throughout the body, including the thyroid, pituitary, adrenal, and digestive systems.

Depending on their location, adenomas may cause different symptoms or remain asymptomatic. Some common examples of adenomas include:

1. Colorectal adenoma (also known as a polyp): These growths occur in the lining of the colon or rectum and can develop into colorectal cancer if left untreated. Regular screenings, such as colonoscopies, are essential for early detection and removal of these polyps.
2. Thyroid adenoma: This type of adenoma affects the thyroid gland and may result in an overproduction or underproduction of hormones, leading to conditions like hyperthyroidism (overactive thyroid) or hypothyroidism (underactive thyroid).
3. Pituitary adenoma: These growths occur in the pituitary gland, which is located at the base of the brain and controls various hormonal functions. Depending on their size and location, pituitary adenomas can cause vision problems, headaches, or hormonal imbalances that affect growth, reproduction, and metabolism.
4. Liver adenoma: These rare benign tumors develop in the liver and may not cause any symptoms unless they become large enough to press on surrounding organs or structures. In some cases, liver adenomas can rupture and cause internal bleeding.
5. Adrenal adenoma: These growths occur in the adrenal glands, which are located above the kidneys and produce hormones that regulate stress responses, metabolism, and blood pressure. Most adrenal adenomas are nonfunctioning, meaning they do not secrete excess hormones. However, functioning adrenal adenomas can lead to conditions like Cushing's syndrome or Conn's syndrome, depending on the type of hormone being overproduced.

It is essential to monitor and manage benign tumors like adenomas to prevent potential complications, such as rupture, bleeding, or hormonal imbalances. Treatment options may include surveillance with imaging studies, medication to manage hormonal issues, or surgical removal of the tumor in certain cases.

Proestrus is a stage in the estrous cycle of animals, specifically referring to the phase preceding estrus (heat) during which follicle development and estrogen production occur. It is characterized by the swelling of the vulva and the onset of behaviors indicating readiness to mate, although the animal is not yet receptive to males. This stage typically lasts around 2-13 days, depending on the species. In humans, this equivalent phase does not exist due to menstrual cycles rather than estrous cycles.

Vasotocin is not generally recognized as a medical term or a well-established physiological concept in human medicine. However, it is a term used in comparative endocrinology and animal physiology to refer to a nonapeptide hormone that is functionally and structurally similar to arginine vasopressin (AVP) or antidiuretic hormone (ADH) in mammals.

Vasotocin is found in various non-mammalian vertebrates, including fish, amphibians, and reptiles, where it plays roles in regulating water balance, blood pressure, social behaviors, and reproduction. In these animals, vasotocin is produced by the hypothalamus and stored in the posterior pituitary gland before being released into the circulation to exert its effects on target organs.

Therefore, while not a medical definition per se, vasotocin can be defined as a neuropeptide hormone that regulates various physiological functions in non-mammalian vertebrates, with structural and functional similarities to mammalian arginine vasopressin.

Fertility is the natural ability to conceive or to cause conception of offspring. In humans, it is the capacity of a woman and a man to reproduce through sexual reproduction. For women, fertility usually takes place during their reproductive years, which is from adolescence until menopause. A woman's fertility depends on various factors including her age, overall health, and the health of her reproductive system.

For men, fertility can be affected by a variety of factors such as age, genetics, general health, sexual function, and environmental factors that may affect sperm production or quality. Factors that can negatively impact male fertility include exposure to certain chemicals, radiation, smoking, alcohol consumption, drug use, and sexually transmitted infections (STIs).

Infertility is a common medical condition affecting about 10-15% of couples trying to conceive. Infertility can be primary or secondary. Primary infertility refers to the inability to conceive after one year of unprotected sexual intercourse, while secondary infertility refers to the inability to conceive following a previous pregnancy.

Infertility can be treated with various medical and surgical interventions depending on the underlying cause. These may include medications to stimulate ovulation, intrauterine insemination (IUI), in vitro fertilization (IVF), or surgery to correct anatomical abnormalities.

Thyroid diseases are a group of conditions that affect the function and structure of the thyroid gland, a small butterfly-shaped endocrine gland located in the base of the neck. The thyroid gland produces hormones that regulate many vital functions in the body, including metabolism, growth, and development.

Thyroid diseases can be classified into two main categories: hypothyroidism and hyperthyroidism. Hypothyroidism occurs when the thyroid gland does not produce enough hormones, leading to symptoms such as fatigue, weight gain, cold intolerance, constipation, and depression. Hyperthyroidism, on the other hand, occurs when the thyroid gland produces too much hormone, resulting in symptoms such as weight loss, heat intolerance, rapid heart rate, tremors, and anxiety.

Other common thyroid diseases include:

1. Goiter: an enlargement of the thyroid gland that can be caused by iodine deficiency or autoimmune disorders.
2. Thyroid nodules: abnormal growths on the thyroid gland that can be benign or malignant.
3. Thyroid cancer: a malignant tumor of the thyroid gland that requires medical treatment.
4. Hashimoto's disease: an autoimmune disorder that causes chronic inflammation of the thyroid gland, leading to hypothyroidism.
5. Graves' disease: an autoimmune disorder that causes hyperthyroidism and can also lead to eye problems and skin changes.

Thyroid diseases are diagnosed through a combination of physical examination, medical history, blood tests, and imaging studies such as ultrasound or CT scan. Treatment options depend on the specific type and severity of the disease and may include medication, surgery, or radioactive iodine therapy.

Hormone-dependent neoplasms are a type of tumor that requires the presence of specific hormones to grow and multiply. These neoplasms have receptors on their cell surfaces that bind to the hormones, leading to the activation of signaling pathways that promote cell division and growth.

Examples of hormone-dependent neoplasms include breast cancer, prostate cancer, and endometrial cancer. In breast cancer, for instance, estrogen and/or progesterone can bind to their respective receptors on the surface of cancer cells, leading to the activation of signaling pathways that promote tumor growth. Similarly, in prostate cancer, androgens such as testosterone can bind to androgen receptors on the surface of cancer cells, promoting cell division and tumor growth.

Hormone-dependent neoplasms are often treated with hormonal therapies that aim to reduce or block the production of the relevant hormones or interfere with their ability to bind to their respective receptors. This can help slow down or stop the growth of the tumor and improve outcomes for patients.

Pregnanediol is a steroid hormone that is produced as a metabolite of progesterone. It is primarily used as a biomarker to measure the exposure to progesterone, particularly in cases where progesterone levels need to be monitored, such as during pregnancy or in certain medical conditions. Pregnanediol can be measured in urine, blood, or other bodily fluids and is often used in clinical and research settings to assess hormonal status. It is important to note that pregnanediol itself does not have any known physiological effects on the body, but rather serves as an indicator of progesterone levels.

Melatonin is a hormone that is produced by the pineal gland in the brain. It helps regulate sleep-wake cycles and is often referred to as the "hormone of darkness" because its production is stimulated by darkness and inhibited by light. Melatonin plays a key role in synchronizing the circadian rhythm, the body's internal clock that regulates various biological processes over a 24-hour period.

Melatonin is primarily released at night, and its levels in the blood can rise and fall in response to changes in light and darkness in an individual's environment. Supplementing with melatonin has been found to be helpful in treating sleep disorders such as insomnia, jet lag, and delayed sleep phase syndrome. It may also have other benefits, including antioxidant properties and potential uses in the treatment of certain neurological conditions.

It is important to note that while melatonin supplements are available over-the-counter in many countries, they should still be used under the guidance of a healthcare professional, as their use can have potential side effects and interactions with other medications.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Diiodothyronines are hormones that contain two iodine atoms and are produced by the thyroid gland. They are formed when thyroxine (T4), another thyroid hormone, is deiodinated. Diiodothyronines include T2 (3,5-diiodothyronine) and reverse T2 (3,3'-diiodothyronine). These hormones play a role in regulating metabolism and energy production in the body. However, their specific functions and mechanisms of action are not as well understood as those of thyroxine and triiodothyronine (T3), another important thyroid hormone.

Menstruation is the regular, cyclical shedding of the uterine lining (endometrium) in women and female individuals of reproductive age, accompanied by the discharge of blood and other materials from the vagina. It typically occurs every 21 to 35 days and lasts for approximately 2-7 days. This process is a part of the menstrual cycle, which is under the control of hormonal fluctuations involving follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone.

The menstrual cycle can be divided into three main phases:

1. Menstruation phase: The beginning of the cycle is marked by the start of menstrual bleeding, which signals the breakdown and shedding of the endometrium due to the absence of pregnancy and low levels of estrogen and progesterone. This phase typically lasts for 2-7 days.

2. Proliferative phase: After menstruation, under the influence of rising estrogen levels, the endometrium starts to thicken and regenerate. The uterine lining becomes rich in blood vessels and glands, preparing for a potential pregnancy. This phase lasts from day 5 until around day 14 of an average 28-day cycle.

3. Secretory phase: Following ovulation (release of an egg from the ovaries), which usually occurs around day 14, increased levels of progesterone cause further thickening and maturation of the endometrium. The glands in the lining produce nutrients to support a fertilized egg. If pregnancy does not occur, both estrogen and progesterone levels will drop, leading to menstruation and the start of a new cycle.

Understanding menstruation is essential for monitoring reproductive health, identifying potential issues such as irregular periods or menstrual disorders, and planning family planning strategies.

Estrogen Receptor alpha (ERα) is a type of nuclear receptor protein that is activated by the hormone estrogen. It is encoded by the gene ESR1 and is primarily expressed in the cells of the reproductive system, breast, bone, liver, heart, and brain tissue.

When estrogen binds to ERα, it causes a conformational change in the receptor, which allows it to dimerize and translocate to the nucleus. Once in the nucleus, ERα functions as a transcription factor, binding to specific DNA sequences called estrogen response elements (EREs) and regulating the expression of target genes.

ERα plays important roles in various physiological processes, including the development and maintenance of female reproductive organs, bone homeostasis, and lipid metabolism. It is also a critical factor in the growth and progression of certain types of breast cancer, making ERα status an important consideration in the diagnosis and treatment of this disease.

Estriol is a type of estrogen, which is a female sex hormone. It is produced in the placenta during pregnancy and is used as a marker for fetal growth and development. Estriol levels can be measured in the mother's urine or blood to assess fetal well-being during pregnancy. Additionally, synthetic forms of estriol are sometimes used in hormone replacement therapy to treat symptoms of menopause.

Gastrointestinal (GI) hormone receptors are specialized protein structures found on the surface of cells in the gastrointestinal tract. These receptors recognize and respond to specific hormones that are released by enteroendocrine cells in the GI tract. Examples of GI hormones include gastrin, secretin, cholecystokinin (CCK), motilin, and ghrelin.

When a GI hormone binds to its specific receptor, it triggers a series of intracellular signaling events that ultimately lead to changes in cell function. These changes can include increased or decreased secretion of digestive enzymes, altered motility (movement) of the GI tract, and regulation of appetite and satiety.

Abnormalities in GI hormone receptors have been implicated in a variety of gastrointestinal disorders, including functional dyspepsia, irritable bowel syndrome, and obesity. Therefore, understanding the role of these receptors in GI physiology and pathophysiology is an important area of research.

Thyrotropin, also known as thyroid-stimulating hormone (TSH), is a hormone produced and released by the anterior pituitary gland. It plays a crucial role in regulating the function of the thyroid gland by stimulating the production and release of thyroid hormones, triiodothyronine (T3) and thyroxine (T4).

The TSH molecule is composed of two subunits: alpha and beta. The alpha subunit is common to several pituitary hormones, including TSH, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG). In contrast, the beta subunit is unique to each hormone, determining its specific biological activity.

Therefore, 'Thyrotropin, beta Subunit' refers to the distinct portion of the TSH molecule that confers its thyroid-stimulating properties and allows it to be identified and measured separately from other pituitary hormones sharing the common alpha subunit. Beta-subunit assays are sometimes used in clinical settings to evaluate thyroid function, as they can provide information about TSH levels independent of the common alpha subunit.

Secondary hyperparathyroidism is a condition characterized by an overproduction of parathyroid hormone (PTH) from the parathyroid glands due to hypocalcemia (low levels of calcium in the blood). This condition is usually a result of chronic kidney disease, where the kidneys fail to convert vitamin D into its active form, leading to decreased absorption of calcium in the intestines. The body responds by increasing PTH production to maintain normal calcium levels, but over time, this results in high PTH levels and associated complications such as bone disease, kidney stones, and cardiovascular calcification.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Vitamin D is a fat-soluble secosteroid that is crucial for the regulation of calcium and phosphate levels in the body, which are essential for maintaining healthy bones and teeth. It can be synthesized by the human body when skin is exposed to ultraviolet-B (UVB) rays from sunlight, or it can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements. There are two major forms of vitamin D: vitamin D2 (ergocalciferol), which is found in some plants and fungi, and vitamin D3 (cholecalciferol), which is produced in the skin or obtained from animal-derived foods. Both forms need to undergo two hydroxylations in the body to become biologically active as calcitriol (1,25-dihydroxyvitamin D3), the hormonally active form of vitamin D. This activated form exerts its effects by binding to the vitamin D receptor (VDR) found in various tissues, including the small intestine, bone, kidney, and immune cells, thereby influencing numerous physiological processes such as calcium homeostasis, bone metabolism, cell growth, and immune function.

Adipose tissue, also known as fatty tissue, is a type of connective tissue that is composed mainly of adipocytes (fat cells). It is found throughout the body, but is particularly abundant in the abdominal cavity, beneath the skin, and around organs such as the heart and kidneys.

Adipose tissue serves several important functions in the body. One of its primary roles is to store energy in the form of fat, which can be mobilized and used as an energy source during periods of fasting or exercise. Adipose tissue also provides insulation and cushioning for the body, and produces hormones that help regulate metabolism, appetite, and reproductive function.

There are two main types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more common form and is responsible for storing energy as fat. BAT, on the other hand, contains a higher number of mitochondria and is involved in heat production and energy expenditure.

Excessive accumulation of adipose tissue can lead to obesity, which is associated with an increased risk of various health problems such as diabetes, heart disease, and certain types of cancer.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Precocious puberty is a medical condition where the onset of sexual maturation occurs at an unusually early age, typically before the age of 8 in girls and before the age of 9 in boys. It is characterized by the development of secondary sexual characteristics such as breast development or growth of facial hair, as well as the start of menstruation in girls. This condition can be caused by various factors including central nervous system abnormalities, genetic disorders, or exposure to certain hormones. Early diagnosis and treatment are important to prevent potential negative effects on growth, bone health, and psychosocial development.

Aromatase is a enzyme that belongs to the cytochrome P450 superfamily, and it is responsible for converting androgens into estrogens through a process called aromatization. This enzyme plays a crucial role in the steroid hormone biosynthesis pathway, particularly in females where it is primarily expressed in adipose tissue, ovaries, brain, and breast tissue.

Aromatase inhibitors are used as a treatment for estrogen receptor-positive breast cancer in postmenopausal women, as they work by blocking the activity of aromatase and reducing the levels of circulating estrogens in the body.

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

"Animal pregnancy" is not a term that is typically used in medical definitions. However, in biological terms, animal pregnancy refers to the condition where a fertilized egg (or eggs) implants and develops inside the reproductive tract of a female animal, leading to the birth of offspring (live young).

The specific details of animal pregnancy can vary widely between different species, with some animals exhibiting phenomena such as placental development, gestation periods, and hormonal changes that are similar to human pregnancy, while others may have very different reproductive strategies.

It's worth noting that the study of animal pregnancy and reproduction is an important area of biological research, as it can provide insights into fundamental mechanisms of embryonic development, genetics, and evolution.

Hypercalcemia is a medical condition characterized by an excess of calcium ( Ca2+ ) in the blood. While the normal range for serum calcium levels is typically between 8.5 to 10.2 mg/dL (milligrams per deciliter) or 2.14 to 2.55 mmol/L (millimoles per liter), hypercalcemia is generally defined as a serum calcium level greater than 10.5 mg/dL or 2.6 mmol/L.

Hypercalcemia can result from various underlying medical disorders, including primary hyperparathyroidism, malignancy (cancer), certain medications, granulomatous diseases, and excessive vitamin D intake or production. Symptoms of hypercalcemia may include fatigue, weakness, confusion, memory loss, depression, constipation, nausea, vomiting, increased thirst, frequent urination, bone pain, and kidney stones. Severe or prolonged hypercalcemia can lead to serious complications such as kidney failure, cardiac arrhythmias, and calcification of soft tissues. Treatment depends on the underlying cause and severity of the condition.

Antineoplastic agents, hormonal, are a class of drugs used to treat cancers that are sensitive to hormones. These agents work by interfering with the production or action of hormones in the body. They can be used to slow down or stop the growth of cancer cells and may also help to relieve symptoms caused by the spread of cancer.

Hormonal therapies can work in one of two ways: they can either block the production of hormones or prevent their action on cancer cells. For example, some hormonal therapies work by blocking the action of estrogen or testosterone, which are hormones that can stimulate the growth of certain types of cancer cells.

Examples of hormonal agents used to treat cancer include:

* Aromatase inhibitors (such as letrozole, anastrozole, and exemestane), which block the production of estrogen in postmenopausal women
* Selective estrogen receptor modulators (such as tamoxifen and raloxifene), which block the action of estrogen on cancer cells
* Luteinizing hormone-releasing hormone agonists (such as leuprolide, goserelin, and triptorelin), which block the production of testosterone in men
* Antiandrogens (such as bicalutamide, flutamide, and enzalutamide), which block the action of testosterone on cancer cells

Hormonal therapies are often used in combination with other treatments, such as surgery or radiation therapy. They may be used to shrink tumors before surgery, to kill any remaining cancer cells after surgery, or to help control the spread of cancer that cannot be removed by surgery. Hormonal therapies can also be used to relieve symptoms and improve quality of life in people with advanced cancer.

It's important to note that hormonal therapies are not effective for all types of cancer. They are most commonly used to treat breast, prostate, and endometrial cancers, which are known to be sensitive to hormones. Hormonal therapies may also be used to treat other types of cancer in certain situations.

Like all medications, hormonal therapies can have side effects. These can vary depending on the specific drug and the individual person. Common side effects of hormonal therapies include hot flashes, fatigue, mood changes, and sexual dysfunction. Some hormonal therapies can also cause more serious side effects, such as an increased risk of osteoporosis or blood clots. It's important to discuss the potential risks and benefits of hormonal therapy with a healthcare provider before starting treatment.

Progesterone congeners refer to synthetic or naturally occurring compounds that are structurally similar to progesterone, a steroid hormone involved in the menstrual cycle, pregnancy, and embryogenesis. These compounds have similar chemical structures to progesterone and may exhibit similar physiological activities, although they can also have unique properties and uses. Examples of progesterone congeners include various synthetic progestins used in hormonal contraceptives and other medical treatments.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Hypocalcemia is a medical condition characterized by an abnormally low level of calcium in the blood. Calcium is a vital mineral that plays a crucial role in various bodily functions, including muscle contraction, nerve impulse transmission, and bone formation. Normal calcium levels in the blood usually range from 8.5 to 10.2 milligrams per deciliter (mg/dL). Hypocalcemia is typically defined as a serum calcium level below 8.5 mg/dL or, when adjusted for albumin (a protein that binds to calcium), below 8.4 mg/dL (ionized calcium).

Hypocalcemia can result from several factors, such as vitamin D deficiency, hypoparathyroidism (underactive parathyroid glands), kidney dysfunction, certain medications, and severe magnesium deficiency. Symptoms of hypocalcemia may include numbness or tingling in the fingers, toes, or lips; muscle cramps or spasms; seizures; and, in severe cases, cognitive impairment or cardiac arrhythmias. Treatment typically involves correcting the underlying cause and administering calcium and vitamin D supplements to restore normal calcium levels in the blood.

Bone density refers to the amount of bone mineral content (usually measured in grams) in a given volume of bone (usually measured in cubic centimeters). It is often used as an indicator of bone strength and fracture risk. Bone density is typically measured using dual-energy X-ray absorptiometry (DXA) scans, which provide a T-score that compares the patient's bone density to that of a young adult reference population. A T-score of -1 or above is considered normal, while a T-score between -1 and -2.5 indicates osteopenia (low bone mass), and a T-score below -2.5 indicates osteoporosis (porous bones). Regular exercise, adequate calcium and vitamin D intake, and medication (if necessary) can help maintain or improve bone density and prevent fractures.

Amenorrhea is a medical condition characterized by the absence or cessation of menstrual periods in women of reproductive age. It can be categorized as primary amenorrhea, when a woman who has not yet had her first period at the expected age (usually around 16 years old), or secondary amenorrhea, when a woman who has previously had regular periods stops getting them for six months or more.

There are various causes of amenorrhea, including hormonal imbalances, pregnancy, breastfeeding, menopause, extreme weight loss or gain, eating disorders, intense exercise, stress, chronic illness, tumors, and certain medications or medical treatments. In some cases, amenorrhea may indicate an underlying medical condition that requires further evaluation and treatment.

Amenorrhea can have significant impacts on a woman's health and quality of life, including infertility, bone loss, and emotional distress. Therefore, it is essential to consult with a healthcare provider if you experience amenorrhea or missed periods to determine the underlying cause and develop an appropriate treatment plan.

Pituitary diseases refer to a group of conditions that affect the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is responsible for producing and secreting several important hormones that regulate various bodily functions, including growth and development, metabolism, stress response, and reproduction.

Pituitary diseases can be classified into two main categories:

1. Pituitary tumors: These are abnormal growths in or around the pituitary gland that can affect its function. Pituitary tumors can be benign (non-cancerous) or malignant (cancerous), and they can vary in size. Some pituitary tumors produce excess hormones, leading to a variety of symptoms, while others may not produce any hormones but can still cause problems by compressing nearby structures in the brain.
2. Pituitary gland dysfunction: This refers to conditions that affect the normal function of the pituitary gland without the presence of a tumor. Examples include hypopituitarism, which is a condition characterized by decreased production of one or more pituitary hormones, and Sheehan's syndrome, which occurs when the pituitary gland is damaged due to severe blood loss during childbirth.

Symptoms of pituitary diseases can vary widely depending on the specific condition and the hormones that are affected. Treatment options may include surgery, radiation therapy, medication, or a combination of these approaches.

Mammary glands are specialized exocrine glands found in mammals, including humans and other animals. These glands are responsible for producing milk, which is used to nurse offspring after birth. The mammary glands are located in the breast region of female mammals and are usually rudimentary or absent in males.

In animals, mammary glands can vary in number and location depending on the species. For example, humans and other primates have two mammary glands, one in each breast. Cows, goats, and sheep, on the other hand, have multiple pairs of mammary glands located in their lower abdominal region.

Mammary glands are made up of several structures, including lobules, ducts, and connective tissue. The lobules contain clusters of milk-secreting cells called alveoli, which produce and store milk. The ducts transport the milk from the lobules to the nipple, where it is released during lactation.

Mammary glands are an essential feature of mammals, as they provide a source of nutrition for newborn offspring. They also play a role in the development and maintenance of the mother-infant bond, as nursing provides opportunities for physical contact and bonding between the mother and her young.

Parathyroid Hormone-Related Protein (PTHrP) is a protein that is encoded by the PTHLH gene in humans. It is structurally similar to parathyroid hormone (PTH) and was initially identified due to its role in humoral hypercalcemia of malignancy, a condition characterized by high levels of calcium in the blood caused by certain types of cancer.

PTHrP has a variety of functions in the body, including regulation of calcium and phosphate homeostasis, cell growth and differentiation, and bone metabolism. It acts through a specific G protein-coupled receptor called the PTH/PTHrP receptor, which is found in many tissues throughout the body, including bone, kidney, and cartilage.

In contrast to PTH, which is primarily produced by the parathyroid glands and regulates calcium levels in the blood, PTHrP is produced by many different types of cells throughout the body. Its expression is regulated in a tissue-specific manner, and its functions can vary depending on the context in which it is produced.

Overall, PTHrP plays important roles in normal physiology as well as in various disease states, including cancer, bone disorders, and developmental abnormalities.

Iodine isotopes are different forms of the chemical element iodine, which have different numbers of neutrons in their nuclei. Iodine has a total of 53 protons in its nucleus, and its stable isotope, iodine-127, has 74 neutrons, giving it a mass number of 127. However, there are also radioactive isotopes of iodine, which have different numbers of neutrons and are therefore unstable.

Radioactive isotopes of iodine emit radiation as they decay towards a stable state. For example, iodine-131 is a commonly used isotope in medical imaging and therapy, with a half-life of about 8 days. It decays by emitting beta particles and gamma rays, making it useful for treating thyroid cancer and other conditions that involve overactive thyroid glands.

Other radioactive iodine isotopes include iodine-123, which has a half-life of about 13 hours and is used in medical imaging, and iodine-125, which has a half-life of about 60 days and is used in brachytherapy (a type of radiation therapy that involves placing radioactive sources directly into or near tumors).

It's important to note that exposure to radioactive iodine isotopes can be harmful, especially if it occurs through inhalation or ingestion. This is because the iodine can accumulate in the thyroid gland and cause damage over time. Therefore, appropriate safety measures must be taken when handling or working with radioactive iodine isotopes.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Hypoparathyroidism is a medical condition characterized by decreased levels or insufficient function of parathyroid hormone (PTH), which is produced and released by the parathyroid glands. These glands are located in the neck, near the thyroid gland, and play a crucial role in regulating calcium and phosphorus levels in the body.

In hypoparathyroidism, low PTH levels result in decreased absorption of calcium from the gut, increased excretion of calcium through the kidneys, and impaired regulation of bone metabolism. This leads to low serum calcium levels (hypocalcemia) and high serum phosphorus levels (hyperphosphatemia).

Symptoms of hypoparathyroidism can include muscle cramps, spasms, or tetany (involuntary muscle contractions), numbness or tingling sensations in the fingers, toes, and around the mouth, fatigue, weakness, anxiety, cognitive impairment, and in severe cases, seizures. Hypoparathyroidism can be caused by various factors, including surgical removal or damage to the parathyroid glands, autoimmune disorders, radiation therapy, genetic defects, or low magnesium levels. Treatment typically involves calcium and vitamin D supplementation to maintain normal serum calcium levels and alleviate symptoms. In some cases, recombinant PTH (Natpara) may be prescribed as well.

A drug implant is a medical device that is specially designed to provide controlled release of a medication into the body over an extended period of time. Drug implants can be placed under the skin or in various body cavities, depending on the specific medical condition being treated. They are often used when other methods of administering medication, such as oral pills or injections, are not effective or practical.

Drug implants come in various forms, including rods, pellets, and small capsules. The medication is contained within the device and is released slowly over time, either through diffusion or erosion of the implant material. This allows for a steady concentration of the drug to be maintained in the body, which can help to improve treatment outcomes and reduce side effects.

Some common examples of drug implants include:

1. Hormonal implants: These are small rods that are inserted under the skin of the upper arm and release hormones such as progestin or estrogen over a period of several years. They are often used for birth control or to treat conditions such as endometriosis or uterine fibroids.
2. Intraocular implants: These are small devices that are placed in the eye during surgery to release medication directly into the eye. They are often used to treat conditions such as age-related macular degeneration or diabetic retinopathy.
3. Bone cement implants: These are specially formulated cements that contain antibiotics and are used to fill bone defects or joint spaces during surgery. The antibiotics are released slowly over time, helping to prevent infection.
4. Implantable pumps: These are small devices that are placed under the skin and deliver medication directly into a specific body cavity, such as the spinal cord or the peritoneal cavity. They are often used to treat chronic pain or cancer.

Overall, drug implants offer several advantages over other methods of administering medication, including improved compliance, reduced side effects, and more consistent drug levels in the body. However, they may also have some disadvantages, such as the need for surgical placement and the potential for infection or other complications. As with any medical treatment, it is important to discuss the risks and benefits of drug implants with a healthcare provider.

Norethindrone is a synthetic form of progesterone, a female hormone that is produced naturally in the ovaries. It is used as a medication for various purposes such as:

* Preventing pregnancy when used as a birth control pill
* Treating endometriosis
* Managing symptoms associated with menopause
* Treating abnormal menstrual bleeding

Norethindrone works by thinning the lining of the uterus, preventing ovulation (the release of an egg from the ovary), and changing the cervical mucus to make it harder for sperm to reach the egg. It is important to note that norethindrone should be taken under the supervision of a healthcare provider, as it can have side effects and may interact with other medications.

Methimazole is an anti-thyroid medication that is primarily used to treat hyperthyroidism, a condition in which the thyroid gland produces excessive amounts of thyroid hormones. It works by inhibiting the enzyme thyroperoxidase, which is essential for the production of thyroid hormones. By blocking this enzyme, methimazole reduces the amount of thyroid hormones produced by the thyroid gland, helping to restore normal thyroid function.

Methimazole is available in oral tablet form and is typically taken two to three times a day. Common side effects of methimazole include nausea, vomiting, skin rashes, and joint pain. In rare cases, it can cause more serious side effects such as liver damage or agranulocytosis (a severe decrease in white blood cell count).

It is important to note that methimazole should only be used under the close supervision of a healthcare provider, as regular monitoring of thyroid function and potential side effects is necessary. Additionally, it may take several weeks or months of treatment with methimazole before thyroid function returns to normal.

Parathyroidectomy is a surgical procedure for the removal of one or more of the parathyroid glands. These glands are located in the neck and are responsible for producing parathyroid hormone (PTH), which helps regulate the levels of calcium and phosphorus in the body.

Parathyroidectomy is typically performed to treat conditions such as hyperparathyroidism, where one or more of the parathyroid glands become overactive and produce too much PTH. This can lead to high levels of calcium in the blood, which can cause symptoms such as weakness, fatigue, bone pain, kidney stones, and mental confusion.

There are different types of parathyroidectomy procedures, including:

* Partial parathyroidectomy: removal of one or more, but not all, of the parathyroid glands.
* Total parathyroidectomy: removal of all four parathyroid glands.
* Subtotal parathyroidectomy: removal of three and a half of the four parathyroid glands, leaving a small portion of one gland to prevent hypoparathyroidism (a condition where the body produces too little PTH).

The choice of procedure depends on the underlying condition and its severity. After the surgery, patients may need to have their calcium levels monitored and may require calcium and vitamin D supplements to maintain normal calcium levels in the blood.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Cytokinins are a type of plant growth hormone that play a crucial role in cell division, differentiation, and growth. They were first discovered in 1950s and named for their ability to promote cytokinesis, the process of cell division. Cytokinins belong to a class of compounds called adenine derivatives, which are structurally similar to nucleotides, the building blocks of DNA and RNA.

Cytokinins are produced in the roots and shoots of plants and are transported throughout the plant via the vascular system. They have been shown to regulate various aspects of plant growth and development, including shoot initiation, leaf expansion, apical dominance, and senescence. Cytokinins also interact with other hormones such as auxins, gibberellins, and abscisic acid to modulate plant responses to environmental stresses.

Cytokinins have been used in horticulture and agriculture to enhance crop yields, improve plant quality, and delay senescence. They are also being studied for their potential role in human health, particularly in the context of cancer research.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

A larva is a distinct stage in the life cycle of various insects, mites, and other arthropods during which they undergo significant metamorphosis before becoming adults. In a medical context, larvae are known for their role in certain parasitic infections. Specifically, some helminth (parasitic worm) species use larval forms to infect human hosts. These invasions may lead to conditions such as cutaneous larva migrans, visceral larva migrans, or gnathostomiasis, depending on the specific parasite involved and the location of the infection within the body.

The larval stage is characterized by its markedly different morphology and behavior compared to the adult form. Larvae often have a distinct appearance, featuring unsegmented bodies, simple sense organs, and undeveloped digestive systems. They are typically adapted for a specific mode of life, such as free-living or parasitic existence, and rely on external sources of nutrition for their development.

In the context of helminth infections, larvae may be transmitted to humans through various routes, including ingestion of contaminated food or water, direct skin contact with infective stages, or transmission via an intermediate host (such as a vector). Once inside the human body, these parasitic larvae can cause tissue damage and provoke immune responses, leading to the clinical manifestations of disease.

It is essential to distinguish between the medical definition of 'larva' and its broader usage in biology and zoology. In those fields, 'larva' refers to any juvenile form that undergoes metamorphosis before reaching adulthood, regardless of whether it is parasitic or not.

Ethinyl estradiol is a synthetic form of the hormone estrogen that is often used in various forms of hormonal contraception, such as birth control pills. It works by preventing ovulation and thickening cervical mucus to make it more difficult for sperm to reach the egg. Ethinyl estradiol may also be used in combination with other hormones to treat menopausal symptoms or hormonal disorders.

It is important to note that while ethinyl estradiol can be an effective form of hormonal therapy, it can also carry risks and side effects, such as an increased risk of blood clots, stroke, and breast cancer. As with any medication, it should only be used under the guidance and supervision of a healthcare provider.

Cholecystokinin (CCK) is a hormone that is produced in the duodenum (the first part of the small intestine) and in the brain. It is released into the bloodstream in response to food, particularly fatty foods, and plays several roles in the digestive process.

In the digestive system, CCK stimulates the contraction of the gallbladder, which releases bile into the small intestine to help digest fats. It also inhibits the release of acid from the stomach and slows down the movement of food through the intestines.

In the brain, CCK acts as a neurotransmitter and has been shown to have effects on appetite regulation, mood, and memory. It may play a role in the feeling of fullness or satiety after eating, and may also be involved in anxiety and panic disorders.

CCK is sometimes referred to as "gallbladder-stimulating hormone" or "pancreozymin," although these terms are less commonly used than "cholecystokinin."

An Immunoradiometric Assay (IRMA) is a type of radioimmunoassay (RIA), which is a technique used in clinical laboratories to measure the concentration of specific analytes, such as hormones, drugs, or vitamins, in biological samples. In an IRMA, the sample containing the unknown amount of the analyte is incubated with a known quantity of a labeled antibody that specifically binds to the analyte.

The labeled antibody is usually radiolabeled with a radioisotope such as iodine-125 (^125^I) or tritium (^3^H). During the incubation, the labeled antibody binds to the analyte in the sample, forming an immune complex. The unbound labeled antibody is then separated from the immune complex by a variety of methods such as precipitation, centrifugation, or chromatography.

The amount of radioactivity in the pellet (immune complex) is measured using a gamma counter (for ^125^I) or liquid scintillation counter (for ^3^H). The amount of radioactivity is directly proportional to the amount of analyte present in the sample. By comparing the radioactivity in the sample to a standard curve prepared with known concentrations of the analyte, the concentration of the analyte in the sample can be determined.

IRMAs are highly sensitive and specific assays that can detect very low levels of analytes in biological samples. However, they require specialized equipment and handling procedures due to the use of radioisotopes.

Thyroglobulin is a protein produced and used by the thyroid gland in the production of thyroid hormones, primarily thyroxine (T4) and triiodothyronine (T3). It is composed of two subunits, an alpha and a beta or gamma unit, which bind iodine atoms necessary for the synthesis of the thyroid hormones. Thyroglobulin is exclusively produced by the follicular cells of the thyroid gland.

In clinical practice, measuring thyroglobulin levels in the blood can be useful as a tumor marker for monitoring treatment and detecting recurrence of thyroid cancer, particularly in patients with differentiated thyroid cancer (papillary or follicular) who have had their thyroid gland removed. However, it is important to note that thyroglobulin is not specific to thyroid tissue and can be produced by some non-thyroidal cells under certain conditions, which may lead to false positive results in some cases.

Congenital hypothyroidism is a medical condition characterized by the partial or complete absence of thyroid hormone production in the baby's body at birth. The thyroid gland, which is located in the front of the neck, produces hormones that are essential for normal growth and development of the brain and body.

Congenital hypothyroidism can occur due to various reasons such as the absence or abnormal development of the thyroid gland, or a defect in the production or regulation of thyroid hormones. In some cases, it may be caused by genetic mutations that affect the development or function of the thyroid gland.

If left untreated, congenital hypothyroidism can lead to mental and physical retardation, growth problems, and other health issues. Therefore, it is important to diagnose and treat this condition as early as possible, usually within the first few weeks of life. Treatment typically involves replacing the missing thyroid hormones with synthetic medications, which are safe and effective when administered under a doctor's supervision.

Relaxin is a hormone produced by the ovaries and, during pregnancy, also by the placenta and the fetal membranes. Its primary function is to relax the uterus and pelvic joints in preparation for childbirth, hence its name. It does this by softening the connective tissues and increasing their elasticity, which allows them to stretch more easily. Relaxin also plays a role in the cardiovascular system during pregnancy, helping to maintain healthy blood pressure levels.

Additionally, relaxin has been shown to have effects on other parts of the body, such as reducing muscle stiffness and joint pain, increasing flexibility, and potentially even playing a role in bone metabolism. However, more research is needed to fully understand all of its functions and potential therapeutic uses.

Sertoli cells, also known as sustentacular cells or nurse cells, are specialized cells in the seminiferous tubules of the testis in mammals. They play a crucial role in supporting and nurturing the development of sperm cells (spermatogenesis). Sertoli cells create a microenvironment within the seminiferous tubules that facilitates the differentiation, maturation, and survival of germ cells.

These cells have several essential functions:

1. Blood-testis barrier formation: Sertoli cells form tight junctions with each other, creating a physical barrier called the blood-testis barrier, which separates the seminiferous tubules into basal and adluminal compartments. This barrier protects the developing sperm cells from the immune system and provides an isolated environment for their maturation.
2. Nutrition and support: Sertoli cells provide essential nutrients and growth factors to germ cells, ensuring their proper development and survival. They also engulf and digest residual bodies, which are byproducts of spermatid differentiation.
3. Phagocytosis: Sertoli cells have phagocytic properties, allowing them to remove debris and dead cells within the seminiferous tubules.
4. Hormone metabolism: Sertoli cells express receptors for various hormones, such as follicle-stimulating hormone (FSH), testosterone, and estradiol. They play a role in regulating hormonal signaling within the testis by metabolizing these hormones or producing inhibins, which modulate FSH secretion from the pituitary gland.
5. Regulation of spermatogenesis: Sertoli cells produce and secrete various proteins and growth factors that influence germ cell development and proliferation. They also control the release of mature sperm cells into the epididymis through a process called spermiation.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

... , Hormones of the hypothalamus, Peptide hormones, Corticotropin-releasing hormone receptor ... Corticotropin-releasing hormone has been shown to interact with its receptors corticotropin-releasing hormone receptor 1 (CRFR1 ... Corticotropin-releasing hormone (CRH) (also known as corticotropin-releasing factor (CRF) or corticoliberin; corticotropin may ... corticotropin releasing hormone and corticotropin releasing hormone receptor genes are expressed in human skin". FEBS Letters. ...
... s (CRHRs), also known as corticotropin-releasing factor receptors (CRFRs) are a G ... Corticotropin-releasing+hormone+receptors at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e v t e ... This binding of corticotropin releasing-hormone (CRH) activates the hypothalamic-pituitary-adrenal (HPA) axis, one of the two ... Corticotropin-releasing hormone, All stub articles, Human chromosome 17 gene stubs, Cell biology stubs). ...
A Corticotropin-releasing hormone antagonist (CRH antagonist) is a specific type of receptor antagonist that blocks the ... receptor sites for corticotropin-releasing hormone, also known as corticotropin-releasing factor (CRF), which synchronizes the ... Vulliémoz NR, Xiao E, Xia-Zhang L, Rivier J, Ferin M (March 2008). "Astressin B, a nonselective corticotropin-releasing hormone ... Reul JM, Holsboer F (March 2002). "On the role of corticotropin-releasing hormone receptors in anxiety and depression". ...
Corticotropin-releasing hormone receptor GRCh38: Ensembl release 89: ENSG00000106113 - Ensembl, May 2017 GRCm38: Ensembl ... Control of intracellular signalling by corticotropin-releasing hormone in human myometrium. Frontiers of Hormone Research. Vol ... Corticotropin-releasing hormone receptor 2 (CRHR2) is a protein, also known by the IUPHAR-recommended name CRF2, that is ... "Entrez Gene: CRHR2 corticotropin releasing hormone receptor 2". Pal K, Swaminathan K, Xu HE, Pioszak AA (Dec 2010). "Structural ...
Corticotropin-releasing hormone Corticotropin-releasing hormone receptor Corticotropin-releasing hormone antagonist Antalarmin ... Corticotropin-releasing hormone receptor 1 has been shown to interact with Corticotropin-releasing hormone and urocortin. ... The corticotropin-releasing hormone receptor binds corticotropin-releasing hormone, a potent mediator of endocrine, autonomic, ... Corticotropin-releasing hormone receptor 1 (CRHR1) is a protein, also known as CRF1, with the latter (CRF1) now being the ...
Corticotropin-releasing hormone binding protein (CRH-BP) binds corticotropin-releasing hormone (CRH) and several related ... Corticotropin-releasing hormone (CRH) plays multiple roles in vertebrate species. It is the major hypothalamic releasing factor ... "Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates". General and ... Huising, Mark O.; Flik, Gert (May 2005). "The Remarkable Conservation of Corticotropin-Releasing Hormone (CRH)-Binding Protein ...
If secondary adrenal insufficiency is diagnosed, the insulin tolerance test (ITT) or the CRH (corticotropin-releasing hormone) ... a progestogen steroid hormone related to progesterone Luteinizing hormone - a pituitary hormone that stimulates sex hormone ... "Corticotropin-releasing hormone stimulation test". {{cite journal}}: Cite journal requires ,journal= (help) "Role of ACTH in ... ACTH is a hormone produced in the anterior pituitary gland that stimulates the adrenal glands to release cortisol, ...
... of the hypothalamus releases corticotropin-releasing hormone (CRH), which stimulates the pituitary gland to release ... Corticotropin releasing hormone) (tertiary hypercortisolism/hypercorticism). This causes the blood ACTH levels to be elevated ... "Cushing's syndrome secondary to ectopic corticotropin-releasing hormone-adrenocorticotropin secretion". The Journal of Clinical ... "Hypothalamic hamartoma secreting corticotropin-releasing hormone. Case report". Journal of Neurosurgery. 100 (2 Suppl ...
"Hypothalamic hamartoma secreting corticotropin-releasing hormone. Case report". J Neurosurg. 100 (2 Suppl Pediatrics): 212-6. ... Mahachoklertwattana P, Kaplan SL, Grumbach MM (July 1993). "The luteinizing hormone-releasing hormone-secreting hypothalamic ... "Treatment of gonadotropin dependent precocious puberty due to hypothalamic hamartoma with gonadotropin releasing hormone ... Hormonal suppressive therapy with luteinizing hormone receptor agonists like leuprorelin can be used to treat the seizure ...
"Corticotropin-releasing hormone as adrenal androgen secretagogue". Pediatric Research. 46 (3): 351-3. doi:10.1203/00006450- ... Instead, they are released into the blood stream and taken up in the testis and ovaries to produce testosterone and the ...
Corticotropin-releasing hormone (CRH), also known as Corticotropin-releasing factor, is an endogenous peptide hormone released ... a nonpeptide corticotropin-releasing hormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral ... CP-154,526 Pexacerfont Corticotropin-releasing hormone antagonist Zoumakis E, Rice KC, Gold PW, Chrousos GP (November 2006). " ... June 2002). "Corticotropin releasing hormone (CRH) antagonist attenuates adjuvant induced arthritis: role of CRH in peripheral ...
Corticotropin-releasing factor (CRF), also known as corticotropin-releasing hormone, is an endogenous peptide hormone which is ... This then triggers the release of corticotropin (ACTH), another hormone which is involved in the physiological response to ... Corticotropin releasing hormone antagonists Antalarmin CP-154,526 Emicerfont Verucerfont "International Nonproprietary Names ... Zoumakis E, Rice KC, Gold PW, Chrousos GP (November 2006). "Potential uses of corticotropin-releasing hormone antagonists". ...
It belongs to corticotropin-releasing hormone binding protein family. Corticotropin-releasing hormone is a potent stimulator of ... "Entrez Gene: CRHBP corticotropin releasing hormone binding protein". Human CRHBP genome location and CRHBP gene details page in ... 2003). "The corticotropin-releasing hormone binding protein is associated with major depression in a population from Northern ... 1995). "Mapping the human corticotropin releasing hormone binding protein gene (CRHBP) to the long arm of chromosome 5 (5q11.2- ...
Corticotropin-releasing hormone (CRH) is activated by the HPA axis during times of stress. Heightened CRH levels have been ... Hypothalamic pituitary adrenal axis and corticotropin-releasing hormone. The hypothalamic pituitary adrenal (HPA) axis is ...
It belongs to the corticotropin-releasing hormone family. This gene is a member of the sauvagine/corticotropin-releasing factor ... "Corticotropin-releasing hormone system in human adipose tissue". The Journal of Clinical Endocrinology and Metabolism. 89 (2): ... "Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor ... It is structurally related to the corticotropin-releasing factor (CRF) gene and the encoded product is an endogenous ligand for ...
... and are all released as prohormones. Corticotropin-releasing hormone (CRH) is a releasing hormone found mainly in the ... This family includes corticotropin-releasing hormone (also known as CRF), urotensin-I, urocortin, and sauvagine. The family can ... Lederis KP, Okawara Y, Richter D, Morley SD (1990). "Evolutionary aspects of corticotropin releasing hormones". Prog. Clin. ... "Chemical and Biological Characterization of Corticotropin Releasing Factor". Proceedings of the 1982 Laurentian Hormone ...
Genes on human chromosome 2, Corticotropin-releasing hormone receptor agonists, Peptide hormones). ... but not corticotropin-releasing hormone". The Journal of Clinical Endocrinology and Metabolism. 83 (2): 708-11. doi:10.1210/ ... "Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor ... Morin SM, Ling N, Liu XJ, Kahl SD, Gehlert DR (1999). "Differential distribution of urocortin- and corticotropin-releasing ...
April 2005). "Corticotropin-releasing hormone activates ERK1/2 MAPK in specific brain areas". Proceedings of the National ...
Corticotropin-releasing hormone, Corticotropin-releasing hormone receptor agonists, Peptides, World Anti-Doping Agency ... It is a synthetic form of human corticotropin-releasing hormone (hCRH). The corticorelin stimulation test helps to ... June 1994). "General pharmacological properties of the human corticotropin-releasing hormone corticorelin (human)". ... differentiate between the causes for adrenocorticotropic hormone (ACTH)-dependent hypercortisolism. It is used to distinguish a ...
"Maternal Prenatal Anxiety and Corticotropin-Releasing Hormone Associated With Timing of Delivery". Psychosomatic Medicine. 66 ( ...
Fukudo S (January 2007). "Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation". ... The Rome criteria are consensus guidelines, initially released in 1994 and updated periodically since then. These may pertain ... Evidence has demonstrated that the release of high levels of proinflammatory cytokines during acute enteric infection causes ... "New Studies Examine the Evidence on Probiotics in IBS" (PDF) (Press release). American College of Gastroenterology. October 31 ...
Colocalization of connexin 36 and corticotropin-releasing hormone in the mouse brain. BMC Neuroscience 10:41. "Lisa Gunaydin, ...
Papadopoulou N, Kalogeromitros D, Staurianeas NG, Tiblalexi D, Theoharides TC (November 2005). "Corticotropin-releasing hormone ... Finally, PLP re-forms its original Schiff base at lysine 305, and histamine is released. This mechanism is very similar to ... H3 controls histamine turnover by feedback inhibition of histamine synthesis and release. Finally, H4 plays roles in mast cell ...
These hormones include dopamine, norepinephrine, thyrotropin-releasing hormone, and corticotropin-releasing hormone. Many of ... The somatostatin hormone itself can negatively affect the uptake of hormones in the body and may play a role in some hormonal ... GRCh38: Ensembl release 89: ENSG00000180616 - Ensembl, May 2017 GRCm38: Ensembl release 89: ENSMUSG00000047904 - Ensembl, May ... and also acts as an inhibitor to the milk producing hormone in female mammals, prolactin, and growth hormones. Researchers ...
These cytokines stimulate the hypothalamus, causing it to release corticotropin-releasing hormone (CRH). CRH in turn stimulates ... The secretion of corticotropin-releasing hormone by the hypothalamus triggers cells in the neighboring anterior pituitary to ... ACTH is in turn controlled by the hypothalamic peptide corticotropin-releasing hormone (CRH), which is under nervous control. ... Minton JE, Parsons KM (March 1993). "Adrenocorticotropic hormone and cortisol response to corticotropin-releasing factor and ...
Release of corticotropin-releasing hormone (CRH) from the hypothalamus is influenced by stress. CRH is a major regulator of the ... Glucocorticoids also inhibit the further secretion of corticotropin-releasing hormone from the hypothalamus and ACTH from the ... Hypothalamic Pituitary Adrenal axis releases the needed hormones to support the immune system. Activity of the immune system is ... facilitate inflammation through induction of signaling pathways and through activation of the corticotropin-releasing hormone. ...
"Endocannabinoids mediate acute fear adaptation via glutamatergic neurons independently of corticotropin-releasing hormone ... release from the isolated paw skin of diabetic and non-diabetic rats". Neuropharmacology. 42 (7): 966-975. doi:10.1016/S0028- ...
Another possibility being researched is a hyper-production of the corticotropin-releasing hormone (CRH). It is possible that ... Therapies with hormones is the standard of care, namely adrenocorticotrophic hormone (ACTH), or oral corticosteroids such as ...
The corticotropin-releasing hormone test can then differentiate between secondary and tertiary adrenal insufficiency. ... person's adrenal glands because the exogenous glucocorticoids suppress release of hypothalamic corticotropin-releasing hormone ... when caused by lack of corticotropin-releasing hormone (CRH) in the hypothalamus). There are three major types of adrenal ... resulting in a lack of corticotropin-releasing hormone (CRH) production, causing downstream reduction in ACTH production and ...
One study found that the stress hormone placental corticotropin-releasing hormone (pCRH) mediated the relationship between ... Hahn-Holbrook J, Schetter CD, Arora C, Hobel CJ (July 2013). "Placental Corticotropin-Releasing Hormone Mediates the ...
Corticotropin-releasing hormone, Hormones of the hypothalamus, Peptide hormones, Corticotropin-releasing hormone receptor ... Corticotropin-releasing hormone has been shown to interact with its receptors corticotropin-releasing hormone receptor 1 (CRFR1 ... Corticotropin-releasing hormone (CRH) (also known as corticotropin-releasing factor (CRF) or corticoliberin; corticotropin may ... corticotropin releasing hormone and corticotropin releasing hormone receptor genes are expressed in human skin". FEBS Letters. ...
The corticotropin-releasing hormone receptor type 1 (CRHR1) plays an important role in orchestrating neuroendocrine, behavioral ...
Alterations of Corticotropin Releasing Hormone (CRH) and Neuropeptide Y (NPY) Plasma Levels in Mood Disorder Patients With a ... Alterations of Corticotropin Releasing Hormone (CRH) and Neuropeptide Y (NPY) Plasma Levels in Mood Disorder Patients With a ...
Intra-amygdala CORT or intra-LC corticotropin releasing hormone (CRH) infusion supported aversion learning with intra-LC CRH ... Locus Ceruleus Corticotropin Releasing Hormone, and Olfactory Bulb Norepinephrine. Moriceau, Stephanie Emotional Brain ... Maternal odor learning occurs using a simple learning circuit including robust olfactory bulb norepinephrine (NE), release from ...
... is a hormone involved in the stress response and is believed to mediate stress-induced behaviors. ... What is Corticotropin-Releasing Hormone (CRH)?. Corticotropin-Releasing Hormone (CRH), also referred to as Corticotropin- ... When Corticotropin-Releasing Hormone levels are high, your body will start producing a stress hormone known as cortisol. ... The release of the corticotropin-releasing hormone, resulting in an active HPA axis, causes sleep deprivation and disorders. ...
... metastases appear to worsen in response to acute stress that leads to the local release of corticotropin-releasing hormone (CRH ... Corticotropin-releasing hormone and the blood-brain-barrier. Front. Biosci. (Landmark Ed) 2007, 12(5), 1615-1628. https://doi. ... which activates brain mast cells to selectively release IL-6, IL-8 and vascular endothelial growth factor (VEGF). Acute stress ...
Corticotropin-Releasing Hormone (CRH) Corticotropin-releasing hormone (CRH) is a peptide hormone that activates the synthesis ... Norepinephrine, also called noradrenaline, is a catecholamine that acts as both a hormone and neurotransmitter. ...
Human CRH(Corticotropin Releasing Hormone) ELISA Kit. Human CRH(Corticotropin Releasing Hormone) ELISA Kit ... Rat Corticotropin Releasing Hormone (CRH) ELISA Kit. CEA835Ra-5x96wellstestplate Cloud-Clone 5x96-wells test plate. 3024.07 EUR ... Human Corticotropin Releasing Hormone (CRH) ELISA Kit. CEA835Hu-1x48wellstestplate Cloud-Clone 1x48-wells test plate. 527.48 ... Human Corticotropin Releasing Hormone (CRH) ELISA Kit. CEA835Hu-1x96wellstestplate Cloud-Clone 1x96-wells test plate. 702.12 ...
Testing corticotropin-releasing hormone (CRH) levels involves measuring the response to an intravenous bolus injection of ... encoded search term (Dexamethasone/Corticotropin-Releasing Hormone Test) and Dexamethasone/Corticotropin-Releasing Hormone Test ... Dexamethasone/Corticotropin-Releasing Hormone Test Updated: May 15, 2013 * Author: Rakesh Vadde, MBBS; Chief Editor: Eric B ... The ovine corticotropin-releasing hormone (CRH) stimulation test is superior to the human CRH stimulation test for the ...
Testing corticotropin-releasing hormone (CRH) levels involves measuring the response to an intravenous bolus injection of ... encoded search term (Dexamethasone/Corticotropin-Releasing Hormone Test) and Dexamethasone/Corticotropin-Releasing Hormone Test ... Dexamethasone/Corticotropin-Releasing Hormone Test Updated: May 15, 2013 * Author: Rakesh Vadde, MBBS; Chief Editor: Eric B ... The ovine corticotropin-releasing hormone (CRH) stimulation test is superior to the human CRH stimulation test for the ...
Rat CRHBP(Corticotropin Releasing Hormone Binding Protein) ELISA Kit. Rat Corticotropin Releasing Hormone Binding Protein ( ... Rat Corticotropin Releasing Hormone Binding Protein (CRHBP) ELISA Kit. SEC401Ra-1x48wellstestplate Cloud-Clone 1x48-wells test ... Rat Corticotropin Releasing Hormone Binding Protein (CRHBP) ELISA Kit. SEC401Ra-1x96wellstestplate Cloud-Clone 1x96-wells test ... Rat Corticotropin Releasing Hormone Binding Protein (CRHBP) ELISA Kit. SEC401Ra-5x96wellstestplate Cloud-Clone 5x96-wells test ...
Corticotropin-releasing hormone modulates cytokines release in cultured human peripheral blood mononuclear cells. ANGIONI S; ... 1993). Corticotropin-releasing hormone modulates cytokines release in cultured human peripheral blood mononuclear cells. LIFE ... 1993). Corticotropin-releasing hormone modulates cytokines release in cultured human peripheral blood mononuclear cells. LIFE ... or corticotropin-releasing hormone (CRH) induces the release of beta-endorphin from peripheral human mononuclear cells. The aim ...
Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto ... Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular ... Supplementary Figure 5 Heterogeneity of corticotropin-releasing hormone systems in the mouse hypothalamus. (a,a1) Genetic ... 3. McNally, G.P. & Akil, H. Role of corticotropin-releasing hormone in the amygdala and bed nucleus of the stria terminalis in ...
Role of Corticotropin-Releasing Hormone (CRH) in Stress-Induced Visceral Hypersensitivity. CRH is released from the ... 2015). Effects of electroacupuncture on corticotropin-releasing hormone in rats with chronic visceral hypersensitivity. World J ... 2004). Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with ... Schulkin, J., Gold, P. W., and Mcewen, B. S. (1998). Induction of corticotropin-releasing hormone gene expression by ...
The mechanism by which stress alters GnRH release is not well known. Recently, the role of corticotropin-releasing hormone (CRH ... The mechanism by which stress alters GnRH release is not well known. Recently, the role of corticotropin-releasing hormone (CRH ... allopregnanolone and cortisol responses to corticotropin-releasing hormone test. Meczekalski, Blazej;Tonetti, Arianna; ... allopregnanolone and cortisol responses to corticotropin-releasing hormone test / Meczekalski, Blazej; Tonetti, Arianna; ...
Receptors, Corticotropin-Releasing Hormone / drug effects * Receptors, Corticotropin-Releasing Hormone / genetics* * Receptors ... Molecular identification and analysis of a novel human corticotropin-releasing factor (CRF) receptor: the CRF2gamma receptor ...
... jcem.endojournals.org/cgi/content/abstract/91/7/2582 Comparison of the Dexamethasone-Suppressed Corticotropin-Releasing Hormone ... Dexamethasone-Suppressed Corticotropin-Releasing Hormone Test and Low-Dose Dexamethasone Suppression Test ... Dexamethasone-Suppressed Corticotropin-Releasing Hormone Test and Low-Dose Dexamethasone Suppression Test ... Dexamethasone-Suppressed Corticotropin-Releasing Hormone Test and Low-Dose Dexamethasone Suppression Test ...
An N-ethyl-n-nitrosourea induced corticotropin-releasing hormone promoter mutation provides a mouse model for endogenous ... An N-ethyl-n-nitrosourea induced corticotropin-releasing hormone promoter mutation provides a mouse model for endogenous ...
The Onset of Labor Alters Corticotropin-Releasing Hormone Type 1 Receptor Variant Expression in Human Myometrium: Putative Role ... The Onset of Labor Alters Corticotropin-Releasing Hormone Type 1 Receptor Variant Expression in Human Myometrium: Putative Role ...
Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and ... Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and ... T1 - Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls ... title = "Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal ...
Dive into the research topics of Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and ... Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and ... Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and ... Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and ...
The effects of growth hormone-releasing hormone and corticotropin-releasing hormone on the recovery sleep after sleep ... Released Journal Article The effects of growth hormone-releasing hormone and corticotropin-releasing hormone on the recovery ... The effects of growth hormone-releasing hormone and corticotropin-releasing hormone on the recovery sleep after sleep ...
In response to hypothalamic release of corticotropin-releasing hormone (CRH) the pituitary gland increases the synthesis and ... fish, corticotropin-releasing hormone, cRH-BP, cRH-R1, Cyprinus carpio, gills, skin ... Corticotropin-releasing hormone-receptor 1 (CRH-R1) and CRH-binding protein (CRH-BP) are expressed in the gills and skin of ... A. F. Mazon, B. M. L. Verburg-van Kemenade, G. Flik, M. O. Huising; Corticotropin-releasing hormone-receptor 1 (CRH-R1) and CRH ...
Depression in Parkinsons disease is not accompanied by more corticotropin-releasing hormone expressing neurons in the ... Depression in Parkinsons disease is not accompanied by more corticotropin-releasing hormone expressing neurons in the ...
Chronic Stress Induces Maladaptive Behaviors by Activating Corticotropin-Releasing Hormone Signaling in the Mouse Oval Bed ... Chronic Stress Induces Maladaptive Behaviors by Activating Corticotropin-Releasing Hormone Signaling in the Mouse Oval Bed ... is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in ...
The corticotropin-releasing hormone (CRH) stimulation test is reliable for diagnosing pituitary or hypothalamic adrenal ... The corticotropin-releasing hormone (CRH) stimulation test is reliable for diagnosing pituitary or hypothalamic adrenal ... The corticotropin-releasing hormone (CRH) stimulation test is reliable for diagnosing pituitary or hypothalamic adrenal ... The corticotropin-releasing hormone (CRH) stimulation test is reliable for diagnosing pituitary or hypothalamic adrenal ...
An N-Ethyl-N-Nitrosourea Induced Corticotropin-Releasing Hormone Promoter Mutation Provides a Mouse Model for Endogenous ... An N-Ethyl-N-Nitrosourea Induced Corticotropin-Releasing Hormone Promoter Mutation Provides a Mouse Model for Endogenous ...
Different oxytocin and corticotropin-releasing hormone system changes in bipolar disorder and major depressive disorder ... Different oxytocin and corticotropin-releasing hormone system changes in bipolar disorder and major depressive disorder ... BACKGROUND: Oxytocin (OXT) and corticotropin-releasing hormone (CRH) are both produced in hypothalamic paraventricular nucleus ...
Corticotropin-Releasing Hormone / blood* * Female * Humans * Insulin Resistance* * Polycystic Ovary Syndrome / blood* ...
Suppression of corticotropin-releasing factor and adrenocorticotropin hormone. * Pinpoint pupils (miosis). * Nausea, vomiting, ... FDA News Release. FDA moves quickly to approve easy-to-use nasal spray to treat opioid overdose. U.S. Food and Drug ... Injectable, sustained-release naltrexone for the treatment of opioid dependence: a randomized, placebo-controlled trial. Arch ... In 2014, the FDA announced that extended-release and long-acting (ER/LA) opioid pain relievers should be restricted for use ...
  • Its main function is the stimulation of the pituitary synthesis of adrenocorticotropic hormone (ACTH), as part of the hypothalamic-pituitary-adrenal axis (HPA axis). (wikipedia.org)
  • The portal system carries the CRH to the anterior lobe of the pituitary, where it stimulates corticotropes to secrete adrenocorticotropic hormone (ACTH) and other biologically-active substances (β-endorphin). (wikipedia.org)
  • Corticotropin-releasing hormone (CRH) is a peptide hormone that activates the synthesis and release of adrenocorticotropic hormone from the pituitary gland. (news-medical.net)
  • Methods - CRH (2 χ/kg) was intravenously administered during duodenal and colonic manometry and plasma adrenocorticotropic hormone (ACTH) was measured by radioimmunoassay. (elsevierpure.com)
  • Release of Vasopressin within the Rat Paraventricular Nucleus in Response to Emotional Stress: A Novel Mechanism of Regulating Adrenocorticotropic Hormone Secretion? (jneurosci.org)
  • Finally, a mixture of a V1 AVP and the α-helical corticotropin-releasing hormone (CRH) receptor antagonists administered via inverse microdialysis into the PVN caused a significant increase in the plasma adrenocorticotropic hormone (ACTH) concentration compared with vehicle-treated controls both under basal conditions and during social defeat, indicating inhibitory effects of intra-PVN-released AVP and/or CRH on HPA system activity. (jneurosci.org)
  • [ 4 ] The clinical response to adrenocorticotropic hormone (ACTH) and glucocorticoids can be explained by the suppression of CRH production. (medscape.com)
  • Cushing disease is Cushing syndrome that results from excess pituitary production of adrenocorticotropic hormone (ACTH) secondary to a pituitary adenoma. (msdmanuals.com)
  • Hyperfunction of the adrenal cortex can be adrenocorticotropic hormone (ACTH)-dependent or ACTH-independent. (msdmanuals.com)
  • The most relevant hormones for the neuroendocrine axis are the adrenocorticotropic hormone (ACTH) and ß-endorphins, which stimulate the secretion of various endogenous substances, such as glucocorticoids, produced in the adrenal cortex, and noradrenaline and adrenaline, produced in the adrenal medulla and nerve endings 5-7 . (bvsalud.org)
  • Cushing disease , which occurs when the pituitary gland makes too much of the hormone adrenocorticotrophic hormone (ACTH). (medlineplus.gov)
  • This occurs when the pituitary gland does not make enough of a hormone called adrenocorticotropin (ACTH). (medicalnewstoday.com)
  • We hypothesize that this intranuclear release provides a negative tonus on ACTH secretion. (jneurosci.org)
  • Magnetic resonance imaging (MRI) of the pituitary, the corticotropin-releasing hormone (CRH) test and the high-dose dexamethasone suppression test are the main tests for the differential diagnosis of ACTH-dependent Cushing's syndrome. (scielo.br)
  • CRH travels to another part of the brain called the pituitary gland and triggers the secretion of corticotropin, also called ACTH. (testing.com)
  • [ 7 ] The test best suited to distinguish between ectopic corticotropin secretion and Cushing disease is the inferior petrosal sinus sampling test, which helps localize the site within the pituitary for partial surgical resection, if desired. (medscape.com)
  • Inappropriate pituitary hormone secretion and visual field deficits are the most characteristic presenting features of pituitary adenomas. (bmj.com)
  • So-called "silent adenomas", in which abnormal hormone gene activity is not accompanied by excessive hormone secretion, tend to be more aggressive than truly inactive adenomas. (bmj.com)
  • One theory states that the effect of different stressors in the immature brain produces an abnormal, excessive secretion of corticotropin-releasing hormone (CRH), causing spasms. (medscape.com)
  • Increased CRH production has been observed to be associated with Alzheimer's disease and major depression, and autosomal recessive hypothalamic corticotropin deficiency has multiple and potentially fatal metabolic consequences including hypoglycemia. (wikipedia.org)
  • Autosomal recessive hypothalamic corticotropin deficiency has multiple and potentially fatal metabolic consequences including hypoglycemia. (wikipedia.org)
  • CRH testing is also used to differentiate hypothalamic adrenal insufficiency, in which patients have subnormal cortisol response and a prolonged and delayed corticotropin response, and pituitary adrenal insufficiency, in which patients demonstrate no response. (medscape.com)
  • Hypothalamic amenorrhea (HA) is a functional disorder caused by disturbances in gonadotropin-releasing hormone (GnRH) pulsatility. (unifi.it)
  • The effect of amitriptyline upon hypothalamic-pituitary-adrenal [HPA]- system-regulating neuropeptides (corticotropin-releasing hormone [CRH], vasopressin, somatostatin) was studied in a group of depressed elderly patients and controls. (uni-luebeck.de)
  • The corticotropin-releasing hormone (CRH) stimulation test is reliable for diagnosing pituitary or hypothalamic adrenal insufficiency. (tmu.edu.tw)
  • The effects of emotional stressors on the release of arginine vasopressin (AVP) and oxytocin (OXT) within the rat hypothalamus and the origin and physiological significance of AVP released within the hypothalamic paraventricular nucleus (PVN) were investigated. (jneurosci.org)
  • Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin-releasing hormone expression in the immature rat. (bvsalud.org)
  • When Corticotropin-Releasing Hormone levels are high, your body will start producing a stress hormone known as cortisol . (evolvetelemed.com)
  • Cortisol inhibits the continued release of CRH and deactivates the HPA axis, and activates specific resources needed to manage the source of the stress. (evolvetelemed.com)
  • An increase in CRH release and the production of cortisol in the body over extended periods can result in serious health issues. (evolvetelemed.com)
  • Blood for specimens is collected at 15 minutes and 1 minute before CRH administration and at 30, 45, 60, 90, and 120 minutes after CRH administration for measuring corticotropin and cortisol levels. (medscape.com)
  • In patients with pituitary Cushing syndrome, cortisol and corticotropin levels are normal or increased. (medscape.com)
  • Cushing syndrome is a disorder that occurs when your body has a high level of the hormone cortisol. (medlineplus.gov)
  • Glucocorticoids mimic the action of the body's natural hormone cortisol. (medlineplus.gov)
  • If the tumor cannot be removed, you may need medicines to help block the release of cortisol or the ability of cortisol to signal. (medlineplus.gov)
  • It produces the hormones cortisol and aldosterone. (medicalnewstoday.com)
  • Cortisol is a hormone made in the adrenal glands, which are small glands located near the top of each kidney. (testing.com)
  • Cortisol testing helps your doctor determine whether the adrenal glands are producing an appropriate amount of the hormone. (testing.com)
  • Testing measures the cortisol hormone in the blood, urine, or saliva. (testing.com)
  • Cortisol is one of several glucocorticoid hormones that help the body control blood sugar levels, respond to stress, and regulate the immune system. (testing.com)
  • Corticotropin-releasing hormone has been shown to interact with its receptors corticotropin-releasing hormone receptor 1 (CRFR1) and corticotropin-releasing hormone receptor 2 (CRFR2) in order to induce its effects. (wikipedia.org)
  • We established that corticotropin-releasing hormone (CRH), CRH-binding protein (CRH-BP) and CRH-receptor 1 (CRH-R1) are expressed in the gills and skin of common carp Cyprinus carpio , an early vertebrate. (silverchair.com)
  • Corticotrophin-Releasing Hormone Receptor 1 (CRHR-1), also known as CRFR-1, is a 7TM protein that belongs to the G protein-coupled receptor family 2. (rndsystems.com)
  • Acute exposure to alcohol stimulates dopamine release into the NAc, which activates D1 receptors, stimulating PKA signaling and subsequent CREB-mediated gene expression, whereas chronic alcohol exposure leads to an adaptive downregulation of this pathway, in particular of CREB function. (genome.jp)
  • Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. (nature.com)
  • So far, however, little information is available about the intrahypothalamic release of these neuropeptides under physiological rather than pharmacological conditions. (jneurosci.org)
  • It produces the hormones adrenaline and noradrenaline. (medicalnewstoday.com)
  • An area of the brain called the hypothalamus produces the corticotropin-releasing hormone (CRH). (testing.com)
  • Once excited, the PVN produces the neuropeptide corticotropin-releasing factor (CRF), which travels through the hypophyseal portal system and stimulates the adrenal and pituitary glands to produce many neurotransmitters. (bvsalud.org)
  • Du Vigneaud, V. Hormones of the posterior pituitary gland: oxytocin and vasopressin. (nature.com)
  • Vasopressin from the posterior pituitary is released, causing water retention at the distal tubules. (medscape.com)
  • Description: Quantitativecompetitive ELISA kit for measuring Human corticotropin releasing hormone, CRH in samples from serum, plasma, tissue homogenates. (pharmas-eu.org)
  • Description: A sandwich ELISA kit for detection of Corticotropin Releasing Hormone Binding Protein from Rat in samples from blood, serum, plasma, cell culture fluid and other biological fluids. (orbitalbiosciences.com)
  • Less specific symptoms such as headache, and subtle signs of pituitary hormone deficiency with peripheral endocrine organ hypofunction characterised by amenorrhoea, loss of libido, and lethargy, are also common. (bmj.com)
  • Symptoms and signs of pituitary hormone deficiency are more subtle than those seen in primary end organ failure (table 1). (bmj.com)
  • These CeA GABA neurons express dynorphin, somatostatin and/or corticotropin releasing hormone. (iasp-pain.org)
  • We describe a novel pathway, consisting of inhibition by dynorphin, somatostatin and corticotropin-releasing hormone expressing neurons in the central nucleus of the amygdala that project to the parabrachial nucleus (PB). (iasp-pain.org)
  • CRHR-1 is expressed in the brain and adrenal gland where it mediates corticotropin-induced effects on anxiety, depression, and stress-associated pathologies. (rndsystems.com)
  • CRH is produced in response to stress, predominantly by parvocellular neurosecretory cells within the paraventricular nucleus of the hypothalamus and is released at the median eminence from neurosecretory terminals of these neurons into the primary capillary plexus of the hypothalamo-hypophyseal portal system. (wikipedia.org)
  • In particular, either cytokines activate the hypothalamus-pituitary-adrenal axis (HPA) or corticotropin-releasing hormone (CRH) induces the release of beta-endorphin from peripheral human mononuclear cells. (unisi.it)
  • For patients with pseudo-Cushing syndrome, low-dose dexamethasone suppression testing alongside corticotropin-releasing hormone (CRH) testing aids in diagnosis. (medscape.com)
  • A low-dose dexamethasone suppression test prior to CRH testing further helps identify a corticotropin-secreting tumor. (medscape.com)
  • The release of the corticotropin-releasing hormone, resulting in an active HPA axis, causes sleep deprivation and disorders . (evolvetelemed.com)
  • However, central effects of AVP have been revealed mainly by pharmacological approaches, which presuppose the intracerebral release of the neuropeptide. (jneurosci.org)
  • They studied the stress hormone-the peptide corticotropin-releasing hormone (CRH)-and neuropeptide-Y (NPY), an anti-stress hormone, in animals. (ualberta.ca)
  • It is a releasing hormone that belongs to corticotropin-releasing factor family. (wikipedia.org)
  • Corticotropin-Releasing Hormone (CRH), also referred to as Corticotropin-Releasing Factor (CRF), is the hormone responsible for triggering your body's central response system to regulate stress. (evolvetelemed.com)
  • and 3) task performance in aged rats only (corticotropin releasing hormone, interleukin 4, interferon regulatory factor 1, inhibin alpha, and interleukin 6). (cdc.gov)
  • This eventually leads to glucocorticoid and beta-endorphin release. (medscape.com)
  • Some serious damaging effects arise relating to the excessive production of the Corticotropin-Releasing Hormone and stress response. (evolvetelemed.com)
  • corticotropin may also be spelled corticotrophin) is a peptide hormone involved in stress responses. (wikipedia.org)
  • Corticotropin-releasing hormone (CRH) is a 41-amino acid peptide derived from a 196-amino acid preprohormone. (wikipedia.org)
  • Maternal odor learning occurs using a simple learning circuit including robust olfactory bulb norepinephrine (NE), release from the locus ceruleus (LC), and amygdala suppression by low corticosterone (CORT). (diva-portal.org)
  • U of A pharmacology professor William Colmers' research focuses on hormones that regulate fight-or-flight response. (ualberta.ca)
  • Although CRH testing is both difficult and costly, it is mainly used in certain settings such as finding the cause of corticotropin-dependent Cushing syndrome, distinguishing between pseudo-Cushing syndrome and Cushing syndrome, and identifying the difference between central and primary adrenal insufficiency. (medscape.com)
  • CRH testing has a sensitivity of 86% and a specificity of 90% in assessing corticotropin-dependent Cushing syndrome. (medscape.com)
  • CRH is useful in differentiating corticotropin-dependent and independent Cushing syndrome, and it also helps in the investigation of pediatric Cushing disease. (medscape.com)
  • This is due to a glucagon and growth hormone-induced increase in gluconeogenesis and glycogenolysis. (medscape.com)
  • Commonly used antidepressants are designed to either increase the release or block the degradation of three neurotransmitters -- dopamine, norepinephrine and serotonin. (sciencedaily.com)
  • Description: This is Competitive Enzyme-linked immunosorbent assay for detection of Human Corticotropin Releasing Hormone (CRH) in serum, plasma and other biological fluids. (pharmas-eu.org)
  • Description: Enzyme-linked immunosorbent assay based on the Competitive Inhibition method for detection of Human Corticotropin Releasing Hormone (CRH) in samples from serum, plasma and other biological fluids with no significant corss-reactivity with analogues from other species. (pharmas-eu.org)
  • Description: A competitive inhibition quantitative ELISA assay kit for detection of Human Corticotropin Releasing Hormone (CRH) in samples from serum, plasma or other biological fluids. (pharmas-eu.org)
  • Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Rat Corticotropin Releasing Hormone Binding Protein (CRHBP) in samples from Serum, plasma and other biological fluids with no significant corss-reactivity with analogues from other species. (orbitalbiosciences.com)
  • Raynaud's syndrome is a rare condition characterized by the narrowing of peripheral blood vessels in response to cold temperature, stress, or hormones. (news-medical.net)
  • The mechanism by which stress alters GnRH release is not well known. (unifi.it)
  • The bed nucleus of the stria terminalis (BNST) is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in mood disorders such as anxiety. (herseninstituut.nl)
  • Role of glucocorticoids and cAMP-mediated repression in limiting corticotropin-releasing hormone transcription during stress. (igbmc.fr)
  • It also plays a role in helping the body respond to stress and is sometimes called "the stress hormone. (testing.com)
  • Norepinephrine, also called noradrenaline, is a catecholamine that acts as both a hormone and neurotransmitter. (news-medical.net)
  • This occurs when the brain cannot produce enough corticotropin-releasing hormone (CRH). (medicalnewstoday.com)
  • Sometimes, the adrenal glands produce too much or not enough of their hormones. (medicalnewstoday.com)
  • All the hormones released in response give your body an energy boost and help focus your mind on the singular act of staying alive. (evolvetelemed.com)
  • Testing corticotropin-releasing hormone (CRH) levels involves measuring the response to an intravenous bolus injection of synthetic ovine CRH at doses of 1 mcg (200 nmol) per kg of body weight (or total dose of 100 mcg). (medscape.com)
  • Renin is released by the juxtamedullary complex in response to decreased mean arterial pressure, leading to increased aldosterone levels and eventually to sodium and water resorption. (medscape.com)
  • Release of AVP within the PVN was significantly increased in response to social defeat but not to novelty. (jneurosci.org)
  • Taken together, our results show for the first time that AVP is released within the PVN in response to an emotional stressor. (jneurosci.org)
  • The hormones they produce affect metabolism, blood sugar regulation, blood pressure, and many other essential functions. (medicalnewstoday.com)
  • This hormone affects many processes in the body and influences the immune system, nervous system, and metabolism. (testing.com)
  • It does so by influencing the release of other hormones and processes within the body to help you cope. (evolvetelemed.com)
  • Syndromes of pituitary hormone excess are described below. (bmj.com)
  • Background - Corticotropin-releasing hormone (CRH) plays a key role in modulating intestinal motility in stressed animals. (elsevierpure.com)