A genus of the family CORONAVIRIDAE which causes respiratory or gastrointestinal disease in a variety of vertebrates.
Virus diseases caused by the CORONAVIRUS genus. Some specifics include transmissible enteritis of turkeys (ENTERITIS, TRANSMISSIBLE, OF TURKEYS); FELINE INFECTIOUS PERITONITIS; and transmissible gastroenteritis of swine (GASTROENTERITIS, TRANSMISSIBLE, OF SWINE).
A species in the genus CORONAVIRUS causing the common cold and possibly nervous system infections in humans. It lacks hemagglutinin-esterase.
A species of CORONAVIRUS infecting neonatal calves, presenting as acute diarrhea, and frequently leading to death.
A class I viral fusion protein that forms the characteristic spikes, or peplomers, found on the viral surface that mediate virus attachment, fusion, and entry into the host cell. During virus maturation, it is cleaved into two subunits: S1, which binds to receptors in the host cell, and S2, which mediates membrane fusion.
A species of CORONAVIRUS causing atypical respiratory disease (SEVERE ACUTE RESPIRATORY SYNDROME) in humans. The organism is believed to have first emerged in Guangdong Province, China, in 2002. The natural host is the Chinese horseshoe bat, RHINOLOPHUS sinicus.
A species in the genus CORONAVIRUS causing the common cold and possibly nervous system infections in humans. It contains hemagglutinin-esterase.
A species of CORONAVIRUS infecting cats of all ages and commonly found in catteries and zoos. Cats are often found carrying the virus but only a small proportion develop disease. Feline coronavirus and Feline infectious peritonitis virus (FIPV) are virtually the same virus in genetic and antigenetic terms, and are morphologically indistinguishable. Since they only differ in their disease potential (with FIPV causing a more serious illness), they are considered biotypes of each other.
Spherical RNA viruses, in the order NIDOVIRALES, infecting a wide range of animals including humans. Transmission is by fecal-oral and respiratory routes. Mechanical transmission is also common. There are two genera: CORONAVIRUS and TOROVIRUS.
A species of CORONAVIRUS infecting dogs. Onset of symptoms is usually sudden and includes vomiting, diarrhea, and dehydration.
A viral disorder characterized by high FEVER, dry COUGH, shortness of breath (DYSPNEA) or breathing difficulties, and atypical PNEUMONIA. A virus in the genus CORONAVIRUS is the suspected agent.
Virus diseases caused by CORONAVIRIDAE.
A species of the CORONAVIRUS genus causing hepatitis in mice. Four strains have been identified as MHV 1, MHV 2, MHV 3, and MHV 4 (also known as MHV-JHM, which is neurotropic and causes disseminated encephalomyelitis with demyelination as well as focal liver necrosis).
A species of CORONAVIRUS causing a fatal disease to pigs under 3 weeks old.
A species of CORONAVIRUS causing infections in chickens and possibly pheasants. Chicks up to four weeks old are the most severely affected.
A species in the genus CORONAVIRUS causing upper and lower RESPIRATORY TRACT INFECTIONS. It shares the receptor used by the SARS VIRUS.
Viral proteins found in either the NUCLEOCAPSID or the viral core (VIRAL CORE PROTEINS).
A species of CORONAVIRUS causing pneumonia in newborn rats but a clinically inapparent infection in adults. It is separate but antigenically related to MURINE HEPATITIS VIRUS.
A species of CORONAVIRUS causing enteritis in turkeys and pullets.
A mutant strain of TRANSMISSIBLE GASTROENTERITIS VIRUS causing mild or subclinical respiratory infections in young SWINE. It may also play a role in post-weaning porcine respiratory disease complex, especially when combined with other respiratory agents.
Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
Common coronavirus infection of cats caused by the feline infectious peritonitis virus (CORONAVIRUS, FELINE). The disease is characterized by a long incubation period, fever, depression, loss of appetite, wasting, and progressive abdominal enlargement. Infection of cells of the monocyte-macrophage lineage appears to be essential in FIP pathogenesis.
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
Ribonucleic acid that makes up the genetic material of viruses.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A condition of chronic gastroenteritis in adult pigs and fatal gastroenteritis in piglets caused by a CORONAVIRUS.
Glycoproteins found on the membrane or surface of cells.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
Immunoglobulins produced in response to VIRAL ANTIGENS.
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
Proteins found in any species of virus.
The family of civets which are small and medium-sized Old World carnivores, often striped or spotted.
Established cell cultures that have the potential to propagate indefinitely.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
An enzyme that catalyses RNA-template-directed extension of the 3'- end of an RNA strand by one nucleotide at a time, and can initiate a chain de novo. (Enzyme Nomenclature, 1992, p293)
Invasion of the host RESPIRATORY SYSTEM by microorganisms, usually leading to pathological processes or diseases.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An acute, highly contagious virus disease of turkeys characterized by chilling, anorexia, decreased water intake, diarrhea, dehydration and weight loss. The infectious agent is a CORONAVIRUS.
Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell.
Proteins encoded by a VIRAL GENOME that are produced in the organisms they infect, but not packaged into the VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY.
Zinc-binding metalloproteases that are members of the type II integral membrane metalloproteases. They are expressed by GRANULOCYTES; MONOCYTES; and their precursors as well as by various non-hematopoietic cells. They release an N-terminal amino acid from a peptide, amide or arylamide.
A protein-nucleic acid complex which forms part or all of a virion. It consists of a CAPSID plus enclosed nucleic acid. Depending on the virus, the nucleocapsid may correspond to a naked core or be surrounded by a membranous envelope.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
The region of southwest Asia and northeastern Africa usually considered as extending from Libya on the west to Afghanistan on the east. (From Webster's New Geographical Dictionary, 1988)
Infectious diseases that are novel in their outbreak ranges (geographic and host) or transmission mode.
Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.
ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
The entering of cells by viruses following VIRUS ATTACHMENT. This is achieved by ENDOCYTOSIS, by direct MEMBRANE FUSION of the viral membrane with the CELL MEMBRANE, or by translocation of the whole virus across the cell membrane.
INFLAMMATION of the LIVER in animals due to viral infection.
Order of mammals whose members are adapted for flight. It includes bats, flying foxes, and fruit bats.
The temporal sequence of events that have occurred.
Substances elaborated by viruses that have antigenic activity.
Acute inflammation of the intestine associated with infectious DIARRHEA of various etiologies, generally acquired by eating contaminated food containing TOXINS, BIOLOGICAL derived from BACTERIA or other microorganisms. Dysentery is characterized initially by watery FECES then by bloody mucoid stools. It is often associated with ABDOMINAL PAIN; FEVER; and DEHYDRATION.
The relationships of groups of organisms as reflected by their genetic makeup.
The functional hereditary units of VIRUSES.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
Viral infections of the brain, spinal cord, meninges, or perimeningeal spaces.
Proteins which are synthesized as a single polymer and then cleaved into several distinct proteins.
An order comprising three families of eukaryotic viruses possessing linear, nonsegmented, positive sense RNA genomes. The families are CORONAVIRIDAE; ARTERIVIRIDAE; and RONIVIRIDAE.
A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, -Xaa-*-Xbb-Xcc, when neither Xaa nor Xbb is Pro. It is a Cl(-)-dependent, zinc glycoprotein that is generally membrane-bound and active at neutral pH. It may also have endopeptidase activity on some substrates. (From Enzyme Nomenclature, 1992) EC
I'm sorry for any confusion, but "Saudi Arabia" is a country located in the western portion of the Asian continent and is not a medical term or concept. It does not have a medical definition.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
The specificity of a virus for infecting a particular type of cell or tissue.
The binding of virus particles to receptors on the host cell surface. For enveloped viruses, the virion ligand is usually a surface glycoprotein as is the cellular receptor. For non-enveloped viruses, the virus CAPSID serves as the ligand.
Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS).
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
Specific hemagglutinin subtypes encoded by VIRUSES.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Hoofed mammals with four legs, a big-lipped snout, and a humped back belonging to the family Camelidae.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A family in the suborder Feliformia, order CARNIVORA, comprising one genus Nandinia binotata.
A general term indicating inflammation of the BRAIN and SPINAL CORD, often used to indicate an infectious process, but also applicable to a variety of autoimmune and toxic-metabolic conditions. There is significant overlap regarding the usage of this term and ENCEPHALITIS in the literature.
Inflammation of the lung parenchyma that is caused by a viral infection.
Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
A catarrhal disorder of the upper respiratory tract, which may be viral or a mixed infection. It generally involves a runny nose, nasal congestion, and sneezing.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
A genus of the family ARTERIVIRIDAE, in the order NIDOVIRALES. The type species is ARTERITIS VIRUS, EQUINE.
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
A proteolytic enzyme obtained from Carica papaya. It is also the name used for a purified mixture of papain and CHYMOPAPAIN that is used as a topical enzymatic debriding agent. EC
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Proteins, usually glycoproteins, found in the viral envelopes of a variety of viruses. They promote cell membrane fusion and thereby may function in the uptake of the virus by cells.
Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization.
Viruses which enable defective viruses to replicate or to form a protein coat by complementing the missing gene function of the defective (satellite) virus. Helper and satellite may be of the same or different genus.
The former British crown colony located off the southeast coast of China, comprised of Hong Kong Island, Kowloon Peninsula, and New Territories. The three sites were ceded to the British by the Chinese respectively in 1841, 1860, and 1898. Hong Kong reverted to China in July 1997. The name represents the Cantonese pronunciation of the Chinese xianggang, fragrant port, from xiang, perfume and gang, port or harbor, with reference to its currents sweetened by fresh water from a river west of it.
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Diseases of non-human animals that may be transmitted to HUMANS or may be transmitted from humans to non-human animals.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Diseases of the domestic dog (Canis familiaris). This term does not include diseases of wild dogs, WOLVES; FOXES; and other Canidae for which the heading CARNIVORA is used.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
Deoxyribonucleic acid that makes up the genetic material of viruses.
A general term for diseases produced by viruses.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The interactions between a host and a pathogen, usually resulting in disease.
A directed change in translational READING FRAMES that allows the production of a single protein from two or more OVERLAPPING GENES. The process is programmed by the nucleotide sequence of the MRNA and is sometimes also affected by the secondary or tertiary mRNA structure. It has been described mainly in VIRUSES (especially RETROVIRUSES); RETROTRANSPOSONS; and bacterial insertion elements but also in some cellular genes.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Animate or inanimate sources which normally harbor disease-causing organisms and thus serve as potential sources of disease outbreaks. Reservoirs are distinguished from vectors (DISEASE VECTORS) and carriers, which are agents of disease transmission rather than continuing sources of potential disease outbreaks.
Proteins prepared by recombinant DNA technology.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
A glycoprotein that is secreted into the luminal surface of the epithelia in the gastrointestinal tract. It is found in the feces and pancreaticobiliary secretions and is used to monitor the response to colon cancer treatment.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
I'm sorry for any confusion, but the term "Qatar" is a country in the Middle East and does not have a medical definition. If you have any medical questions or terms you would like defined, I would be happy to help!
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes.
Inflammation of any segment of the SMALL INTESTINE.
Diseases of domestic swine and of the wild boar of the genus Sus.
DNA sequences that form the coding region for retroviral enzymes including reverse transcriptase, protease, and endonuclease/integrase. "pol" is short for polymerase, the enzyme class of reverse transcriptase.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
A serotonin antagonist with limited antihistaminic, anticholinergic, and immunosuppressive activity.
Antibodies produced by a single clone of cells.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The species Delphinapterus leucas, in the family Monodontidae, found primarily in the Arctic Ocean and adjoining seas. They are small WHALES lacking a dorsal fin.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
An enzyme that catalyzes the conversion of acetate esters and water to alcohols and acetate. EC
A genus of the family CORONAVIRIDAE characterized by enveloped, peplomer-bearing particles containing an elongated tubular nucleocapsid with helical symmetry. Toroviruses have been found in association with enteric infections in horses (Berne virus), cattle (Breda virus), swine, and humans. Transmission probably takes place via the fecal-oral route.
Antibodies that reduce or abolish some biological activity of a soluble antigen or infectious agent, usually a virus.
'Zoo animals' are various species of captive wild animals, housed and displayed in a facility for the purpose of public education, conservation, research, and recreation.
The sequence at the 5' end of the messenger RNA that does not code for product. This sequence contains the ribosome binding site and other transcription and translation regulating sequences.
Viruses whose genetic material is RNA.

Expression of murine coronavirus recombinant papain-like proteinase: efficient cleavage is dependent on the lengths of both the substrate and the proteinase polypeptides. (1/471)

Proteolytic processing of the replicase gene product of mouse hepatitis virus (MHV) is essential for viral replication. In MHV strain A59 (MHV-A59), the replicase gene encodes two predicted papain-like proteinase (PLP) domains, PLP-1 and PLP-2. Previous work using viral polypeptide substrates synthesized by in vitro transcription and translation from the replicase gene demonstrated both cis and trans cleavage activities for PLP-1. We have cloned and overexpressed the PLP-1 domain in Escherichia coli by using a T7 RNA polymerase promoter system or as a maltose-binding protein (MBP) fusion protein. With both overexpression systems, the recombinant PLP-1 exhibited trans cleavage activity when incubated with in vitro-synthesized viral polypeptide substrates. Subsequent characterization of the recombinant PLP-1 revealed that in vitro trans cleavage is more efficient at 22 degrees C than at higher temperatures. Using substrates of increasing lengths, we observed efficient cleavage by PLP-1 requires a substrate greater than 69 kDa. In addition, when PLP-1 was expressed as a polypeptide that included additional viral sequences at the carboxyl terminus of the predicted PLP-1 domain, a fivefold increase in proteolytic activity was observed. The data presented here support previous data suggesting that in vitro and in vivo cleavage of the ORF 1a polyprotein by PLP-1 can occur in both in cis and in trans. In contrast to the cleavage activity demonstrated for PLP-1, no in vitro cleavage in cis or in trans could be detected with PLP-2 expressed either as a polypeptide, including flanking viral sequences, or as an MBP fusion enzyme.  (+info)

Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. (2/471)

Human coronaviruses (HuCV) cause common colds. Previous reports suggest that these infectious agents may be neurotropic in humans, as they are for some mammals. With the long-term aim of providing experimental evidence for the neurotropism of HuCV and the establishment of persistent infections in the nervous system, we have evaluated the susceptibility of various human neural cell lines to acute and persistent infection by HuCV-229E. Viral antigen, infectious virus progeny and viral RNA were monitored during both acute and persistent infections. The astrocytoma cell lines U-87 MG, U-373 MG, and GL-15, as well as neuroblastoma SK-N-SH, neuroglioma H4, and oligodendrocytic MO3.13 cell lines, were all susceptible to an acute infection by HuCV-229E. The CHME-5 immortalized fetal microglial cell line was not susceptible to infection by this virus. The MO3.13 and H4 cell lines also sustained a persistent viral infection, as monitored by detection of viral antigen and infectious virus progeny. Sequencing of the S1 gene from viral RNA after approximately 130 days of infection showed two point mutations, suggesting amino acid changes during persistent infection of MO3.13 cells but none for H4 cells. Thus, persistent in vitro infection did not generate important changes in the S1 portion of the viral spike protein, which was shown for murine coronaviruses to bear hypervariable domains and to interact with cellular receptor. These results are consistent with the potential persistence of HuCV-229E in cells of the human nervous system, such as oligodendrocytes and possibly neurons, and the virus's apparent genomic stability.  (+info)

Acute and persistent infection of human neural cell lines by human coronavirus OC43. (3/471)

Human coronaviruses (HuCV) are recognized respiratory pathogens. Data accumulated by different laboratories suggest their neurotropic potential. For example, primary cultures of human astrocytes and microglia were shown to be susceptible to an infection by the OC43 strain of HuCV (A. Bonavia, N. Arbour, V. W. Yong, and P. J. Talbot, J. Virol. 71:800-806, 1997). We speculate that the neurotropism of HuCV will lead to persistence within the central nervous system, as was observed for murine coronaviruses. As a first step in the verification of our hypothesis, we have characterized the susceptibility of various human neural cell lines to infection by HuCV-OC43. Viral antigen, infectious virus progeny, and viral RNA were monitored during both acute and persistent infections. The astrocytoma cell lines U-87 MG, U-373 MG, and GL-15, as well as neuroblastoma SK-N-SH, neuroglioma H4, oligodendrocytic MO3.13, and the CHME-5 immortalized fetal microglial cell lines, were all susceptible to an acute infection by HuCV-OC43. Viral antigen and RNA and release of infectious virions were observed during persistent HuCV-OC43 infections ( approximately 130 days of culture) of U-87 MG, U-373 MG, MO3.13, and H4 cell lines. Nucleotide sequences of RNA encoding the putatively hypervariable viral S1 gene fragment obtained after 130 days of culture were compared to that of initial virus input. Point mutations leading to amino acid changes were observed in all persistently infected cell lines. Moreover, an in-frame deletion was also observed in persistently infected H4 cells. Some point mutations were observed in some molecular clones but not all, suggesting evolution of the viral population and the emergence of viral quasispecies during persistent infection of H4, U-87 MG, and MO3.13 cell lines. These results are consistent with the potential persistence of HuCV-OC43 in cells of the human nervous system, accompanied by the production of infectious virions and molecular variation of viral genomic RNA.  (+info)

Identification of a coronavirus hemagglutinin-esterase with a substrate specificity different from those of influenza C virus and bovine coronavirus. (4/471)

We have characterized the hemagglutinin-esterase (HE) of puffinosis virus (PV), a coronavirus closely related to mouse hepatitis virus (MHV). Analysis of the cloned gene revealed approximately 85% sequence identity to HE proteins of MHV and approximately 60% identity to the corresponding esterase of bovine coronavirus. The HE protein exhibited acetylesterase activity with synthetic substrates p-nitrophenyl acetate, alpha-naphthyl acetate, and 4-methylumbelliferyl acetate. In contrast to other viral esterases, no activity was detectable with natural substrates containing 9-O-acetylated sialic acids. Furthermore, PV esterase was unable to remove influenza C virus receptors from human erythrocytes, indicating a substrate specificity different from HEs of influenza C virus and bovine coronavirus. Solid-phase binding assays revealed that purified PV was unable to bind to sialic acid-containing glycoconjugates like bovine submaxillary mucin, mouse alpha1 macroglobulin or bovine brain extract. Because of the close relationship to MHV, possible implications on the substrate specificity of MHV esterases are suggested.  (+info)

Production, characterization, and uses of monoclonal antibodies against recombinant nucleoprotein of elk coronavirus. (5/471)

This is the first report of the production of monoclonal antibodies against elk coronavirus. The nucleoprotein gene of elk coronavirus was amplified by PCR and was cloned and expressed in a prokaryotic expression vector. Recombinant nucleocapsid protein was used to immunize mice for the production of hybridomas. Twelve hybridomas that produced monoclonal antibodies against the nucleocapsid protein of elk coronavirus were selected by an indirect fluorescent-antibody test, an enzyme-linked immunosorbent assay, and a Western blot assay. Ten of the monoclonal antibodies were of the immunoglobulin G1 (IgG1) isotype, one was IgG2a, and one was IgM. All had kappa light chains. By immunohistochemistry four monoclonal antibodies detected bovine coronavirus and elk coronavirus in formalin-fixed intestinal tissues. Antinucleoprotein monoclonal antibodies were found to be better at ruminant coronavirus detection than the anti-spike protein monoclonal antibodies. Because nucleoprotein is a more abundant antigen than spike protein in infected cells, this was not an unexpected finding.  (+info)

A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold . (6/471)

A cysteine proteinase, papain-like proteinase (PL1pro), of the human coronavirus 229E (HCoV) regulates the expression of the replicase polyproteins, pp1a and ppa1ab, by cleavage between Gly111 and Asn112, far upstream of its own catalytic residue Cys1054. In this report, using bioinformatics tools, we predict that, unlike its distant cellular homologues, HCoV PL1pro and its coronaviral relatives have a poorly conserved Zn2+ finger connecting the left and right hand domains of a papain-like fold. Optical emission spectrometry has been used to confirm the presence of Zn2+ in a purified and proteolytically active form of the HCoV PL1pro fused with the Escherichia coli maltose-binding protein. In denaturation/renaturation experiments using the recombinant protein, its activity was shown to be strongly dependent upon Zn2+, which could be partly substituted by Co2+ during renaturation. The reconstituted, Zn2+-containing PL1pro was not sensitive to 1,10-phenanthroline, and the Zn2+-depleted protein was not reactivated by adding Zn2+ after renaturation. Consistent with the proposed essential structural role of Zn2+, PL1pro was selectively inactivated by mutations in the Zn2+ finger, including replacements of any of four conserved Cys residues predicted to co-ordinate Zn2+. The unique domain organization of HCoV PL1pro provides a potential framework for regulatory processes and may be indicative of a nonproteolytic activity of this enzyme.  (+info)

Evaluation of the baculovirus-expressed S glycoprotein of transmissible gastroenteritis virus (TGEV) as antigen in a competition ELISA to differentiate porcine respiratory coronavirus from TGEV antibodies in pigs. (7/471)

The spike (S) glycoprotein of the Miller strain of transmissible gastroenteritis virus (TGEV) was recently cloned and expressed in baculovirus. The recombinant S protein was used as the coating antigen in a competition (blocking) enzyme-linked immunosorbent assay (ELISA) in combination with monoclonal antibodies to the S protein epitope A (conserved on TGEV and porcine respiratory coronavirus [PRCV]) or epitope D (present on TGEV only) to differentiate PRCV- from TGEV-induced antibodies. One set (set A) of 125 serum samples were collected at different times after inoculation of caesarean-derived, colostrum-deprived (n = 52) and conventional young pigs (n = 73) with 1 of the 2 porcine coronaviruses or uninoculated negative controls (TGEV/PRCV/negative = 75/30/20). A second set (set B) of 63 serum samples originated from adult sows inoculated with PRCV and the recombinant TGEV S protein or with mock-protein control and then exposed to virulent TGEV after challenge of their litters. Sera from set A were used to assess the accuracy indicators (sensitivity, specificity, accuracy) of the fixed-cell blocking ELISA, which uses swine testicular cells infected with the M6 strain of TGEV as the antigen source (ELISA 1) and the newly developed ELISA based on the recombinant S protein as antigen (ELISA 2). The sera from set B (adults) were tested for comparison. The plaque reduction virus neutralization test was used as a confirmatory test for the presence of antibodies to TGEV/PRCV in the test sera. The accuracy indicators for both ELISAs suggest that differential diagnosis can be of practical use at least 3 weeks after inoculation by testing the dual (acute/convalescent) samples from each individual in conjunction with another confirmatory (virus neutralization) antibody assay to provide valid and complete differentiation information. Moreover, whereas ELISA 1 had 10-20% false positive results to epitope D for PRCV-infected pigs (set A samples), no false-positive results to epitope D occurred using ELISA 2, indicating its greater specificity. The progression of seroresponses to the TGEV S protein epitopes A or D, as measured by the 2 ELISAs, was similar for both sets (A and B) of samples. Differentiation between TGEV and PRCV antibodies (based on seroresponses to epitope D) was consistently measured after the third week of inoculation.  (+info)

Development of an antigen spot test for detection of coronavirus in bovine fecal samples. (8/471)

We have developed a rapid and sensitive microimmunodot blot assay, the antigen spot test (AST), for the detection of bovine coronavirus (BCV) antigen from neonatal calf fecal samples. The AST procedure can be completed in 3.5 h, whereas the previously reported immunodot blot assays require 10 to 12 h. Ninety-six samples can be tested per membrane, and 10 membranes (960 samples) may be processed by a single technologist in 1 working day. The effects of detergents, oxidizing chemicals, chaotropic agents, and enzyme substrates in improving the sensitivity and signal-to-noise ratio of the AST were studied. Finally, the sensitivity and specificity of AST for the detection of BCV antigen were compared to those of a sandwich enzyme-linked immunosorbant assay (ELISA) and a hemagglutination assay (HA). Of 347 field samples tested by all three methods, 94.2% were positive by AST, 91.4% were positive by ELISA, and 86.7% were positive by HA. The sensitivity of the AST was determined to be 100% compared to the results of the ELISA reference method. The specificity of the AST was 67%, which reflects a lower limit of detection of 10(4) viral particles per ml in a 10% fecal suspension.  (+info)

A coronavirus is a type of virus that causes respiratory illnesses, such as the common cold, and more severe diseases including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). These viruses are typically spread through close contact with an infected person when they cough or sneeze. They can also spread by touching a surface or object that has the virus on it and then touching your own mouth, nose, or eyes.

Coronaviruses are named for the crown-like spikes on their surface. They are zoonotic, meaning they can be transmitted between animals and people. Common signs of infection include fever, cough, and shortness of breath. In more severe cases, infection can cause pneumonia, severe acute respiratory syndrome, kidney failure, and even death.

One of the most recently discovered coronaviruses is SARS-CoV-2, which causes the disease COVID-19. This virus was first identified in Wuhan, China in late 2019 and has since spread to become a global pandemic.

Coronaviruses are a large family of viruses that can cause illnesses ranging from the common cold to more severe diseases such as pneumonia. The name "coronavirus" comes from the Latin word "corona," which means crown or halo, reflecting the distinctive appearance of the virus particles under electron microscopy, which have a crown-like structure due to the presence of spike proteins on their surface.

Coronaviruses are zoonotic, meaning they can be transmitted between animals and humans. Some coronaviruses are endemic in certain animal populations and occasionally jump to humans, causing outbreaks of new diseases. This is what happened with Severe Acute Respiratory Syndrome (SARS) in 2002-2003, Middle East Respiratory Syndrome (MERS) in 2012, and the most recent Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2.

Coronavirus infections typically cause respiratory symptoms such as cough, shortness of breath, and fever. In severe cases, they can lead to pneumonia, acute respiratory distress syndrome (ARDS), and even death, especially in older adults or people with underlying medical conditions. Other symptoms may include fatigue, muscle aches, headache, sore throat, and gastrointestinal issues such as nausea, vomiting, and diarrhea.

Preventive measures for coronavirus infections include frequent hand washing, wearing face masks, practicing social distancing, avoiding close contact with sick individuals, and covering the mouth and nose when coughing or sneezing. There are currently vaccines available to prevent COVID-19, which have been shown to be highly effective in preventing severe illness, hospitalization, and death from the disease.

Human coronavirus 229E (HCoV-229E) is a species of coronavirus that causes respiratory infections in humans. It is one of the several coronaviruses known to cause the common cold. HCoV-229E was first identified in the 1960s and is named after the number assigned to it in the laboratory where it was discovered.

HCoV-229E infects the human body through the respiratory tract, and it primarily affects the upper respiratory system, causing symptoms such as runny nose, sore throat, cough, and fever. In some cases, HCoV-229E can also cause lower respiratory infections, such as pneumonia, especially in individuals with weakened immune systems or underlying medical conditions.

HCoV-229E is an enveloped, positive-sense, single-stranded RNA virus that belongs to the family Coronaviridae and the genus Alphacoronavirus. It is transmitted through respiratory droplets produced when an infected person coughs, sneezes, or talks. The virus can also survive on surfaces for several hours, making it possible to contract the infection by touching contaminated objects.

There is no specific treatment for HCoV-229E infections, and most people recover within a week or two with rest and symptomatic relief. However, severe cases may require hospitalization and supportive care, such as oxygen therapy and mechanical ventilation. Preventive measures, such as hand hygiene, wearing masks, and avoiding close contact with infected individuals, can help reduce the transmission of HCoV-229E and other respiratory viruses.

Bovine coronavirus (BCoV) is a species of coronavirus that infects cattle and other animals such as yaks, deer, and occasionally humans. It is an enveloped, single-stranded, positive-sense RNA virus belonging to the genus Betacoronavirus in the family Coronaviridae.

BCoV primarily causes respiratory and enteric diseases in cattle, resulting in symptoms such as pneumonia, coughing, diarrhea, and decreased appetite. The virus is transmitted through direct contact with infected animals or their feces, contaminated food, water, or fomites.

In humans, BCoV infection is rare but has been associated with respiratory illnesses in people working closely with cattle, such as farmers, abattoir workers, and veterinarians. The symptoms of human BCoV infection are similar to those caused by other coronaviruses, including fever, cough, and shortness of breath.

Prevention measures for BCoV include good hygiene practices, wearing personal protective equipment when working with cattle, and vaccination of animals against the virus. There is currently no specific treatment or vaccine available for human BCoV infection.

A spike glycoprotein in coronaviruses is a type of protein that extends from the surface of the virus and gives it its characteristic crown-like appearance (hence the name "corona," which is Latin for "crown"). This protein plays a crucial role in the infection process of the virus. It allows the virus to attach to and enter specific cells in the host organism, typically through binding to a receptor on the cell surface. In the case of SARS-CoV-2, the coronavirus responsible for COVID-19, the spike protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor found on cells in various tissues, including the lungs, heart, and gastrointestinal tract.

The spike protein is composed of two subunits: S1 and S2. The S1 subunit contains the receptor-binding domain (RBD), which recognizes and binds to the host cell receptor. After binding, the S2 subunit mediates the fusion of the viral membrane with the host cell membrane, allowing the viral genome to enter the host cell and initiate infection.

The spike protein is also a primary target for neutralizing antibodies generated by the host immune system during infection or following vaccination. Neutralizing antibodies bind to specific regions of the spike protein, preventing it from interacting with host cell receptors and thus inhibiting viral entry into cells.

In summary, a spike glycoprotein in coronaviruses is a crucial structural and functional component that facilitates viral attachment, fusion, and entry into host cells. Its importance in the infection process makes it an essential target for vaccine development and therapeutic interventions.

Severe Acute Respiratory Syndrome (SARS) is a viral respiratory illness caused by the SARS coronavirus (SARS-CoV). This virus is a member of the Coronaviridae family and is thought to be transmitted most readily through close person-to-person contact via respiratory droplets produced when an infected person coughs or sneezes.

The SARS outbreak began in southern China in 2002 and spread to several other countries before it was contained. The illness causes symptoms such as fever, chills, and body aches, which progress to a dry cough and sometimes pneumonia. Some people also report diarrhea. In severe cases, the illness can cause respiratory failure or death.

It's important to note that SARS is not currently a global health concern, as there have been no known cases since 2004. However, it remains a significant example of how quickly and widely a new infectious disease can spread in today's interconnected world.

Human coronavirus OC43 (HCoV-OC43) is a species of coronavirus that causes respiratory infections in humans. It is one of the several coronaviruses known to cause the common cold. HCoV-OC43 belongs to the genus Betacoronavirus and is an enveloped, positive-sense, single-stranded RNA virus.

The virus was first identified in 1967 and has since been found to be widely distributed throughout the human population. It is estimated that HCoV-OC43 infections occur annually, with a peak incidence during the winter months in temperate climates. The symptoms of HCoV-OC43 infection are typically mild and include nasal congestion, runny nose, sore throat, and cough.

HCoV-OC43 is transmitted through respiratory droplets produced when an infected person talks, coughs, or sneezes. The virus can also be spread by touching contaminated surfaces and then touching the mouth, nose, or eyes. There is no specific treatment for HCoV-OC43 infections, and management is generally supportive, with rest, hydration, and symptomatic relief of fever and cough.

HCoV-OC43 has been identified as one of the coronaviruses that have the potential to cause severe respiratory illness in immunocompromised individuals or those with underlying medical conditions. However, most HCoV-OC43 infections are mild and do not require hospitalization.

Feline coronavirus (FCoV) is a type of virus that primarily infects cats. It is part of the Coronaviridae family and has a positive-sense, single-stranded RNA genome. There are two types of feline coronavirus: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV).

FECV is a relatively harmless virus that primarily causes mild to no symptoms in infected cats, and it is spread through fecal-oral transmission. FECV mainly affects the intestines and can cause diarrhea in some cases.

FIPV, on the other hand, is a mutated form of FECV that can cause a severe and often fatal disease called feline infectious peritonitis (FIP). FIP is an immune-mediated disease characterized by inflammation and accumulation of fluid in the abdomen or chest. It can also affect other organs, such as the eyes, brain, and liver.

It's important to note that not all cats infected with FECV will develop FIP. The development of FIP depends on various factors, including the cat's age, immune system, and the specific strain of the virus. There is no cure for FIP, but supportive care can help manage the symptoms and improve the cat's quality of life.

Coronaviridae is a family of enveloped, positive-sense, single-stranded RNA viruses. They are named for the crown-like (corona) appearance of their surface proteins. Coronaviruses infect a wide range of animals, including mammals and birds, and can cause respiratory, gastrointestinal, and neurological diseases. Some coronaviruses, such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), can cause severe and potentially fatal illness in humans. The most recent example is SARS-CoV-2, which causes COVID-19.

Canine coronavirus (CCoV) is a species of coronavirus that infects dogs. It is related to the coronaviruses that cause respiratory illness in humans, such as SARS-CoV and MERS-CoV, but it is not known to infect people. CCoV primarily affects the gastrointestinal tract and can cause symptoms such as vomiting and diarrhea. It is usually spread through contact with infected feces. There are two main types of CCoV, called Type I and Type II, which are classified based on their genetic makeup. Both types can cause illness in dogs, but Type II is more likely to cause severe disease. Vaccines are available to help protect dogs against CCoV infection.

Severe Acute Respiratory Syndrome (SARS) is a viral respiratory illness characterized by fever, cough, shortness of breath, and sometimes severe pneumonia. It is caused by the SARS coronavirus (SARS-CoV).

The syndrome is considered severe due to its potential to cause rapid spread in communities and healthcare settings, and for its high case fatality rate. In the global outbreak of 2002-2003, approximately 8,000 people were infected and nearly 800 died. Since then, no large outbreaks have been reported, although there have been isolated cases linked to laboratory accidents or animal exposures.

SARS is transmitted through close contact with an infected person's respiratory droplets, such as when they cough or sneeze. It can also be spread by touching a surface contaminated with the virus and then touching the mouth, nose, or eyes. Healthcare workers and others in close contact with infected individuals are at higher risk of infection.

Preventive measures include good personal hygiene, such as frequent handwashing, wearing masks and other protective equipment when in close contact with infected individuals, and practicing respiratory etiquette (covering the mouth and nose when coughing or sneezing). Infected individuals should be isolated and receive appropriate medical care to help manage their symptoms and prevent transmission to others.

Coronaviridae is a family of enveloped, positive-sense RNA viruses that cause various diseases in animals and humans. Human coronavirus infections most commonly result in mild to moderate upper respiratory tract illnesses, such as the common cold. However, two highly pathogenic coronaviruses have emerged in the past two decades: Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). These viruses can cause severe and potentially fatal respiratory illnesses.

In general, coronaviruses are transmitted through respiratory droplets produced when an infected person coughs, sneezes, or talks. In some cases, people may become infected by touching a surface contaminated with the virus and then touching their mouth, nose, or eyes. Preventive measures include frequent handwashing, avoiding close contact with sick individuals, and practicing good respiratory etiquette (e.g., covering coughs and sneezes).

Treatment for coronavirus infections is primarily supportive, focusing on relieving symptoms and managing complications. For severe cases of SARS-CoV and MERS-CoV infections, antiviral medications and supportive care in an intensive care unit may be necessary. Vaccines have been developed to protect against SARS-CoV-2, the virus that causes COVID-19, and are being distributed globally.

Murine hepatitis virus (MHV) is a type of coronavirus that primarily infects laboratory mice. It is not related to the human hepatitis viruses A, B, C, D, or E. MHV causes a range of diseases in mice, including hepatitis (liver inflammation), encephalomyelitis (inflammation of the brain and spinal cord), and enteritis (inflammation of the intestine). The virus is transmitted through fecal-oral route and respiratory droplets. It's widely used in research to understand the pathogenesis, immunity, and molecular biology of coronaviruses.

Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that primarily affects the pig's intestinal tract, causing severe diarrhea, vomiting, and dehydration. The infection is highly contagious and can lead to significant mortality in young piglets. TGEV is transmitted through the fecal-oral route and can also be spread by contaminated fomites or aerosols. It primarily infects enterocytes in the small intestine, leading to villous atrophy and malabsorption of nutrients. There are no specific antiviral treatments for TGEV infection, and control measures typically focus on biosecurity, vaccination, and preventing the spread of the virus between herds.

Infectious Bronchitis Virus (IBV) is a single-stranded, enveloped RNA virus belonging to the genus Gammacoronavirus and family Coronaviridae. It is the causative agent of infectious bronchitis (IB), a highly contagious respiratory disease in birds, particularly in chickens. The virus primarily affects the upper respiratory tract, causing tracheitis, bronchitis, and sinusitis. In addition to respiratory issues, IBV can also lead to decreased egg production, poor growth rates, and impaired immune response in infected birds. Several serotypes and variants of IBV exist worldwide, making vaccine development and disease control challenging.

Human coronavirus NL63 (HCoV-NL63) is a single-stranded RNA virus that belongs to the family Coronaviridae and the genus Alphacoronavirus. It was first identified in 2004 in a child with bronchiolitis and conjunctivitis in the Netherlands.

HCoV-NL63 is responsible for causing respiratory tract infections, ranging from mild upper respiratory symptoms to severe lower respiratory tract illnesses such as pneumonia and bronchiolitis. The virus is transmitted through respiratory droplets and direct contact with infected individuals.

The incubation period of HCoV-NL63 ranges from 2 to 14 days, and the symptoms typically last for 7 to 10 days. In addition to respiratory symptoms, HCoV-NL63 has been associated with febrile seizures, Kawasaki disease, and croup in children.

There is no specific treatment or vaccine available for HCoV-NL63 infection, and management is primarily supportive. Preventive measures such as hand hygiene, wearing masks, and social distancing can help reduce the transmission of the virus.

Nucleocapsid proteins are structural proteins that are associated with the viral genome in many viruses. They play a crucial role in the formation and stability of the viral particle, also known as the virion. In particular, nucleocapsid proteins bind to the viral RNA or DNA genome and help to protect it from degradation by host cell enzymes. They also participate in the assembly and disassembly of the virion during the viral replication cycle.

In some viruses, such as coronaviruses, the nucleocapsid protein is also involved in regulating the transcription and replication of the viral genome. The nucleocapsid protein of SARS-CoV-2, for example, has been shown to interact with host cell proteins that are involved in the regulation of gene expression, which may contribute to the virus's ability to manipulate the host cell environment and evade the immune response.

Overall, nucleocapsid proteins are important components of many viruses and are often targeted by antiviral therapies due to their essential role in the viral replication cycle.

A coronavirus that primarily infects rats is called "rat coronavirus." It is a type of virus that belongs to the genus Betacoronavirus, which also includes coronaviruses that can infect humans, such as SARS-CoV and MERS-CoV.

Rat coronavirus is closely related to coronaviruses that infect mice and can cause respiratory illness in rats. It is typically transmitted through direct contact with infected rats or their feces and urine. Rat coronavirus infection is not known to spread to humans or other animals outside of laboratory settings.

It's worth noting that the current global pandemic is caused by a novel coronavirus called SARS-CoV-2, which is distinct from rat coronavirus and other known coronaviruses that infect animals.

I am not aware of any medical definition for "Coronavirus, Turkey." Coronaviruses are a large family of viruses that cause illness ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV).

Turkey is a country located in Southeastern Europe and Southwestern Asia. It does not refer to any specific type of coronavirus or medical condition. However, Turkey has been affected by the COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2, like many other countries around the world.

If you are looking for information about COVID-19 in Turkey, I can provide some general statistics and updates as of March 2023:

* As of March 2023, Turkey has reported over 16 million confirmed cases of COVID-19 and more than 95,000 deaths.
* The country has implemented various measures to control the spread of the virus, including travel restrictions, quarantines, social distancing guidelines, and mandatory mask-wearing in public places.
* Vaccination efforts are ongoing in Turkey, with over 130 million doses administered as of March 2023. The country has approved several vaccines for emergency use, including Pfizer-BioNTech, Sinovac, and Sputnik V.

It is important to note that the situation regarding COVID-19 is constantly evolving, and I would recommend checking the latest updates from reliable sources such as the World Health Organization (WHO) or the Turkish Ministry of Health for the most accurate information.

Porcine Respiratory Coronavirus (PRCV) is a strain of the coronavirus that primarily affects the respiratory system of pigs. It's a positive-sense, single-stranded RNA virus and is closely related to Transmissible Gastroenteritis Virus (TGEV). However, unlike TGEV, PRCV does not cause severe enteric disease and is primarily associated with mild to moderate respiratory signs in pigs.

PRCV infects the epithelial cells of the pig's respiratory tract, leading to symptoms such as coughing, sneezing, and difficulty breathing. It is highly contagious and can spread rapidly in swine populations, often causing epidemic outbreaks in farms. The virus is primarily transmitted through aerosols and direct contact with infected pigs or their feces.

While PRCV does not typically cause severe disease on its own, it can predispose pigs to other respiratory infections, such as Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Swine Influenza Virus (SIV). As a result, PRCV can contribute to the complex of respiratory diseases that affect pigs, known as porcine respiratory disease complex (PRDC).

Prevention and control measures for PRCV include good biosecurity practices, such as limiting traffic in and out of farms, using personal protective equipment, and vaccinating against other respiratory pathogens. There is no specific treatment for PRCV, but supportive care can help alleviate symptoms and reduce the risk of secondary infections.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

Feline Infectious Peritonitis (FIP) is a viral disease in cats caused by certain strains of the feline coronavirus. It is not to be confused with the common feline enteric coronavirus, which usually only causes mild diarrhea or is asymptomatic. FIP is a severe and often fatal disease, particularly in young cats.

The virus that causes FIP is spread through fecal-oral contact, often through mutual grooming or sharing of litter boxes. Once ingested, the virus typically infects the intestinal cells, but in some cases, it can mutate into a form that enters the bloodstream and spreads to other organs, such as the liver, lungs, and brain. This is when the disease becomes systemic and causes the severe symptoms associated with FIP.

There are two forms of FIP: wet (effusive) and dry (noneffusive). The wet form is characterized by an accumulation of fluid in the abdominal or chest cavity, while the dry form is characterized by granulomatous lesions in various organs. Both forms can cause a variety of symptoms, including fever, weight loss, lethargy, jaundice, vomiting, diarrhea, and neurological signs.

Currently, there is no reliable cure for FIP, and treatment is generally supportive and aimed at managing the symptoms. However, recent advances in antiviral therapy have shown promise in treating some cases of FIP, particularly those caused by the wet form of the disease.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Transmissible gastroenteritis (TGE) of swine is a viral infection that primarily affects the gastrointestinal tract of pigs. It is caused by the Transmissible Gastroenteritis Coronavirus (TGEV), which is an enveloped, single-stranded RNA virus belonging to the family Coronaviridae.

The disease is highly contagious and can spread rapidly in swine populations through direct contact with infected animals or their feces, as well as via aerosolized particles. Ingestion of contaminated feed or water can also lead to infection.

Clinical signs of TGE in pigs include vomiting, diarrhea, dehydration, and weight loss. The disease is most severe in young piglets, with mortality rates reaching up to 100% in animals younger than two weeks old. In older pigs, the infection may be milder or even asymptomatic, although they can still serve as carriers of the virus and contribute to its spread.

Transmissible gastroenteritis is a significant concern for the swine industry due to its high mortality rate in young animals and the potential economic losses associated with reduced growth rates and decreased feed conversion efficiency in infected herds. Prevention strategies include strict biosecurity measures, vaccination of sows, and proper disposal of infected pig manure.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Viverridae is not a medical term, but a taxonomic family in the order Carnivora, which includes mammals that are primarily carnivores. This family includes various species of civets, genets, and linsangs, among others. These animals are mostly found in Africa and Asia, and they have diverse habits and diets, with some being more arboreal and insectivorous while others are terrestrial and carnivorous.

While Viverridae is not a medical term, understanding the classification of animals can be important in medicine, particularly in veterinary medicine and public health, as it helps to identify potential risks associated with different species and their interactions with humans and other animals.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

RNA-dependent RNA polymerase, also known as RNA replicase, is an enzyme that catalyzes the production of RNA from an RNA template. It plays a crucial role in the replication of certain viruses, such as positive-strand RNA viruses and retroviruses, which use RNA as their genetic material. The enzyme uses the existing RNA strand as a template to create a new complementary RNA strand, effectively replicating the viral genome. This process is essential for the propagation of these viruses within host cells and is a target for antiviral therapies.

Respiratory tract infections (RTIs) are infections that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These infections can be caused by viruses, bacteria, or, less commonly, fungi.

RTIs are classified into two categories based on their location: upper respiratory tract infections (URTIs) and lower respiratory tract infections (LRTIs). URTIs include infections of the nose, sinuses, throat, and larynx, such as the common cold, flu, laryngitis, and sinusitis. LRTIs involve the lower airways, including the bronchi and lungs, and can be more severe. Examples of LRTIs are pneumonia, bronchitis, and bronchiolitis.

Symptoms of RTIs depend on the location and cause of the infection but may include cough, congestion, runny nose, sore throat, difficulty breathing, wheezing, fever, fatigue, and chest pain. Treatment for RTIs varies depending on the severity and underlying cause of the infection. For viral infections, treatment typically involves supportive care to manage symptoms, while antibiotics may be prescribed for bacterial infections.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Transmissible enteritis of turkeys is a contagious viral disease that primarily affects young turkeys. The medical definition of this condition is as follows:

Transmissible Enteritis of Turkeys (Turkey Enteritis Virus Infection)

* A highly contagious viral infection caused by the Turkey Enteritis Virus (TEV), a coronavirus.
* Primarily affects young turkeys between 2-6 weeks of age, although birds of all ages can be infected.
* Characterized by enteritis (inflammation of the intestines) and enterocyte degeneration and necrosis, resulting in malabsorption, diarrhea, dehydration, weight loss, and decreased growth rates.
* May also cause secondary bacterial infections due to immunosuppression.
* Transmitted through the fecal-oral route, contaminated water, or vertical transmission from infected hens.
* No specific treatment available; supportive care includes fluid and electrolyte replacement, nutritional support, and management of secondary infections.
* Prevention strategies include biosecurity measures, vaccination of breeder flocks, and strict sanitation practices.

Viral matrix proteins are structural proteins that play a crucial role in the morphogenesis and life cycle of many viruses. They are often located between the viral envelope and the viral genome, serving as a scaffold for virus assembly and budding. These proteins also interact with other viral components, such as the viral genome, capsid proteins, and envelope proteins, to form an infectious virion. Additionally, matrix proteins can have regulatory functions, influencing viral transcription, replication, and host cell responses. The specific functions of viral matrix proteins vary among different virus families.

Viral nonstructural proteins (NS) are viral proteins that are not part of the virion structure. They play various roles in the viral life cycle, such as replication of the viral genome, transcription, translation regulation, and modulation of the host cell environment to favor virus replication. These proteins are often produced in large quantities during infection and can manipulate or disrupt various cellular pathways to benefit the virus. They may also be involved in evasion of the host's immune response. The specific functions of viral nonstructural proteins vary depending on the type of virus.

CD13, also known as aminopeptidase N, is a type of protein found on the surface of some cells in the human body. It is a type of antigen, which is a molecule that can trigger an immune response when recognized by the immune system. CD13 is found on the surface of various cell types, including certain white blood cells and cells that line the blood vessels. It plays a role in several biological processes, such as breaking down proteins and regulating inflammation.

CD13 is also a target for some cancer therapies because it is overexpressed in certain types of cancer cells. For example, CD13-targeted therapies have been developed to treat acute myeloid leukemia (AML), a type of blood cancer that affects the bone marrow. These therapies work by binding to CD13 on the surface of AML cells and triggering an immune response that helps to destroy the cancer cells.

It's important to note that while CD13 is an antigen, it is not typically associated with infectious diseases or foreign invaders, as other antigens might be. Instead, it is a normal component of human cells that can play a role in various physiological processes and disease states.

A nucleocapsid is a protein structure that encloses the genetic material (nucleic acid) of certain viruses. It is composed of proteins encoded by the virus itself, which are synthesized inside the host cell and then assemble around the viral genome to form a stable complex.

The nucleocapsid plays an important role in the viral life cycle. It protects the viral genome from degradation by host enzymes and helps to facilitate the packaging of the genome into new virus particles during assembly. Additionally, the nucleocapsid can also play a role in the regulation of viral gene expression and replication.

In some viruses, such as coronaviruses, the nucleocapsid is encased within an envelope derived from the host cell membrane, while in others, it exists as a naked capsid. The structure and composition of the nucleocapsid can vary significantly between different virus families.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

An open reading frame (ORF) is a continuous stretch of DNA or RNA sequence that has the potential to be translated into a protein. It begins with a start codon (usually "ATG" in DNA, which corresponds to "AUG" in RNA) and ends with a stop codon ("TAA", "TAG", or "TGA" in DNA; "UAA", "UAG", or "UGA" in RNA). The sequence between these two points is called a coding sequence (CDS), which, when transcribed into mRNA and translated into amino acids, forms a polypeptide chain.

In eukaryotic cells, ORFs can be located in either protein-coding genes or non-coding regions of the genome. In prokaryotic cells, multiple ORFs may be present on a single strand of DNA, often organized into operons that are transcribed together as a single mRNA molecule.

It's important to note that not all ORFs necessarily represent functional proteins; some may be pseudogenes or result from errors in genome annotation. Therefore, additional experimental evidence is typically required to confirm the expression and functionality of a given ORF.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

I'm sorry for any confusion, but "Middle East" is not a medical term. It is a geographical region that includes countries such as Saudi Arabia, Iran, Turkey, Egypt, and others. If you have any questions related to medicine or health, I would be happy to try to help answer those!

Emerging communicable diseases are infections whose incidence has increased in the past two decades or threatens to increase in the near future. These diseases can be caused by new microbial agents, or by previously known agents that have newly acquired the ability to cause disease in humans. They may also result from changes in human demographics, behavior, or travel patterns, or from technological or environmental changes. Examples of emerging communicable diseases include COVID-19, Ebola virus disease, Zika virus infection, and West Nile fever.

Defective viruses are viruses that have lost the ability to complete a full replication cycle and produce progeny virions independently. These viruses require the assistance of a helper virus, which provides the necessary functions for replication. Defective viruses can arise due to mutations, deletions, or other genetic changes that result in the loss of essential genes. They are often non-infectious and cannot cause disease on their own, but they may interfere with the replication of the helper virus and modulate the course of infection. Defective viruses can be found in various types of viruses, including retroviruses, bacteriophages, and DNA viruses.

Cysteine endopeptidases are a type of enzymes that cleave peptide bonds within proteins. They are also known as cysteine proteases or cysteine proteinases. These enzymes contain a catalytic triad consisting of three amino acids: cysteine, histidine, and aspartate. The thiol group (-SH) of the cysteine residue acts as a nucleophile and attacks the carbonyl carbon of the peptide bond, leading to its cleavage.

Cysteine endopeptidases play important roles in various biological processes, including protein degradation, cell signaling, and inflammation. They are involved in many physiological and pathological conditions, such as apoptosis, immune response, and cancer. Some examples of cysteine endopeptidases include cathepsins, caspases, and calpains.

It is important to note that these enzymes require a reducing environment to maintain the reduced state of their active site cysteine residue. Therefore, they are sensitive to oxidizing agents and inhibitors that target the thiol group. Understanding the structure and function of cysteine endopeptidases is crucial for developing therapeutic strategies that target these enzymes in various diseases.

Virus internalization, also known as viral entry, is the process by which a virus enters a host cell to infect it and replicate its genetic material. This process typically involves several steps:

1. Attachment: The viral envelope proteins bind to specific receptors on the surface of the host cell.
2. Entry: The virus then enters the host cell through endocytosis or membrane fusion, depending on the type of virus.
3. Uncoating: Once inside the host cell, the viral capsid is removed, releasing the viral genome into the cytoplasm.
4. Replication: The viral genome then uses the host cell's machinery to replicate itself and produce new viral particles.

It's important to note that the specific mechanisms of virus internalization can vary widely between different types of viruses, and are an active area of research in virology and infectious disease.

I'm sorry for any confusion, but "Viral Hepatitis, Animal" is not a standard medical classification or definition. Hepatitis refers to inflammation of the liver, and viral hepatitis refers to inflammation caused by a virus. The term "animal" in this context doesn't provide a clear meaning.

However, it's worth noting that some animals can contract viral hepatitis, similar to humans. For instance, there are hepatitis A, B, and C-like viruses that have been identified in various animal species. These are typically not transmissible to humans.

If you're referring to a specific medical condition or context, could you please provide more details? I'd be happy to help further with more information.

Chiroptera is the scientific order that includes all bat species. Bats are the only mammals capable of sustained flight, and they are distributed worldwide with the exception of extremely cold environments. They vary greatly in size, from the bumblebee bat, which weighs less than a penny, to the giant golden-crowned flying fox, which has a wingspan of up to 6 feet.

Bats play a crucial role in many ecosystems as pollinators and seed dispersers for plants, and they also help control insect populations. Some bat species are nocturnal and use echolocation to navigate and find food, while others are diurnal and rely on their vision. Their diet mainly consists of insects, fruits, nectar, and pollen, although a few species feed on blood or small vertebrates.

Unfortunately, many bat populations face significant threats due to habitat loss, disease, and wind turbine collisions, leading to declining numbers and increased conservation efforts.

The study and recording of events in their order of occurrence, usually in relation to specific time periods. In the medical context, chronology is used to document a patient's medical history, including symptoms, diagnoses, treatments, and outcomes over time. This information can help healthcare providers understand the progression of a patient's condition, identify patterns or trends, and make informed decisions about their care.

A medical chronology may include various types of records, such as clinic notes, hospital discharge summaries, laboratory results, and imaging studies. It is important to maintain an accurate and up-to-date chronology to ensure continuity of care, support research and quality improvement initiatives, and facilitate communication among healthcare team members.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

Dysentery is a medical condition characterized by inflammation of the intestine, particularly the colon, leading to severe diarrhea containing blood, mucus, and/or pus. It is typically caused by infectious agents such as bacteria (like Shigella, Salmonella, or Escherichia coli) or parasites (such as Entamoeba histolytica). The infection can be acquired through contaminated food, water, or direct contact with an infected person. Symptoms may also include abdominal cramps, fever, and dehydration. Immediate medical attention is required for proper diagnosis and treatment to prevent potential complications.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

Central nervous system (CNS) viral diseases refer to medical conditions caused by the infection and replication of viruses within the brain or spinal cord. These viruses can cause a range of symptoms, depending on the specific virus and the location of the infection within the CNS. Some common examples of CNS viral diseases include:

1. Meningitis: This is an inflammation of the membranes surrounding the brain and spinal cord (meninges) caused by viruses such as enteroviruses, herpes simplex virus, or HIV. Symptoms may include fever, headache, stiff neck, and altered mental status.
2. Encephalitis: This is an inflammation of the brain parenchyma caused by viruses such as herpes simplex virus, West Nile virus, or rabies virus. Symptoms may include fever, headache, confusion, seizures, and focal neurologic deficits.
3. Poliomyelitis: This is a highly infectious disease caused by the poliovirus that can lead to paralysis of the muscles used for breathing, swallowing, and movement. It primarily affects children under 5 years old.
4. HIV-associated neurological disorders (HAND): HIV can cause various neurologic symptoms such as cognitive impairment, peripheral neuropathy, and myopathy.
5. Progressive multifocal leukoencephalopathy (PML): This is a rare but serious demyelinating disease of the CNS caused by the JC virus that primarily affects individuals with weakened immune systems, such as those with HIV/AIDS or those receiving immunosuppressive therapy.

Treatment for CNS viral diseases depends on the specific virus and may include antiviral medications, supportive care, and management of symptoms. Prevention measures such as vaccination, avoiding contact with infected individuals, and practicing good hygiene can help reduce the risk of these infections.

A polyprotein is a long, continuous chain of amino acids that are produced through the translation of a single mRNA (messenger RNA) molecule. This occurs in some viruses, including retroviruses like HIV, where the viral genome contains instructions for the production of one or more polyproteins.

After the polyprotein is synthesized, it is cleaved into smaller, functional proteins by virus-encoded proteases. These individual proteins then assemble to form new virus particles. The concept of polyproteins is important in understanding viral replication and may provide targets for antiviral therapy.

Nidovirales is an order of viruses that includes important pathogens such as coronaviruses and arteriviruses. These viruses are characterized by their large, complex genomes and the production of nested sets of subgenomic mRNAs during replication. They have a positive-sense, single-stranded RNA genome and are enveloped. The name "Nidovirales" is derived from the Latin word "nidus," meaning "nest," which refers to the nested set of subgenomic mRNAs produced during replication.

Coronaviruses, which include well-known human pathogens such as SARS-CoV, MERS-CoV and SARS-CoV-2 (which causes COVID-19), primarily infect the respiratory tract and can cause a range of symptoms from mild cold-like illness to severe pneumonia.

Arteriviruses, on the other hand, mainly infect animals and are associated with diseases such as porcine reproductive and respiratory syndrome (PRRS) in pigs and simian hemorrhagic fever in non-human primates.

It's important to note that Nidovirales have a high potential for cross-species transmission, which can lead to the emergence of new viruses with the ability to infect humans and cause disease.

Peptidyl-dipeptidase A is more commonly known as angiotensin-converting enzyme (ACE). It is a key enzyme in the renin-angiotensin-aldosterone system (RAAS), which regulates blood pressure and fluid balance.

ACE is a membrane-bound enzyme found primarily in the lungs, but also in other tissues such as the heart, kidneys, and blood vessels. It plays a crucial role in converting the inactive decapeptide angiotensin I into the potent vasoconstrictor octapeptide angiotensin II, which constricts blood vessels and increases blood pressure.

ACE also degrades the peptide bradykinin, which is involved in the regulation of blood flow and vascular permeability. By breaking down bradykinin, ACE helps to counteract its vasodilatory effects, thereby maintaining blood pressure homeostasis.

Inhibitors of ACE are widely used as medications for the treatment of hypertension, heart failure, and diabetic kidney disease, among other conditions. These drugs work by blocking the action of ACE, leading to decreased levels of angiotensin II and increased levels of bradykinin, which results in vasodilation, reduced blood pressure, and improved cardiovascular function.

I'm sorry for any confusion, but "Saudi Arabia" is a country, not a medical term or concept. It is located in the Asian continent, and it is known as the birthplace of Islam and home to its two holiest cities, Mecca and Medina. The country's political structure is a monarchy, and it has the largest oil reserves in the world. If you have any questions related to medical terminology or health-related topics, I would be happy to help!

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Viral tropism is the preference or susceptibility of certain cells, tissues, or organs for viral infection. It refers to the ability of a specific virus to infect and multiply in particular types of host cells, which is determined by the interaction between viral envelope proteins and specific receptors on the surface of the host cell. Understanding viral tropism is crucial in understanding the pathogenesis of viral infections and developing effective antiviral therapies and vaccines.

A viral attachment, in the context of virology, refers to the initial step in the infection process of a host cell by a virus. This involves the binding or adsorption of the viral particle to specific receptors on the surface of the host cell. The viral attachment proteins, often located on the viral envelope or capsid, recognize and interact with these receptors, leading to a close association between the virus and the host cell. This interaction is highly specific, as different viruses may target various cell types based on their unique receptor-binding preferences. Following attachment, the virus can enter the host cell and initiate the replication cycle, ultimately leading to the production of new viral particles and potential disease manifestations.

There are many diseases that can affect cats, and the specific medical definitions for these conditions can be quite detailed and complex. However, here are some common categories of feline diseases and examples of each:

1. Infectious diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include:
* Feline panleukopenia virus (FPV), also known as feline parvovirus, which can cause severe gastrointestinal symptoms and death in kittens.
* Feline calicivirus (FCV), which can cause upper respiratory symptoms such as sneezing and nasal discharge.
* Feline leukemia virus (FeLV), which can suppress the immune system and lead to a variety of secondary infections and diseases.
* Bacterial infections, such as those caused by Pasteurella multocida or Bartonella henselae, which can cause abscesses or other symptoms.
2. Neoplastic diseases: These are cancerous conditions that can affect various organs and tissues in cats. Examples include:
* Lymphoma, which is a common type of cancer in cats that can affect the lymph nodes, spleen, liver, and other organs.
* Fibrosarcoma, which is a type of soft tissue cancer that can arise from fibrous connective tissue.
* Squamous cell carcinoma, which is a type of skin cancer that can be caused by exposure to sunlight or tobacco smoke.
3. Degenerative diseases: These are conditions that result from the normal wear and tear of aging or other factors. Examples include:
* Osteoarthritis, which is a degenerative joint disease that can cause pain and stiffness in older cats.
* Dental disease, which is a common condition in cats that can lead to tooth loss, gum inflammation, and other problems.
* Heart disease, such as hypertrophic cardiomyopathy (HCM), which is a thickening of the heart muscle that can lead to congestive heart failure.
4. Hereditary diseases: These are conditions that are inherited from a cat's parents and are present at birth or develop early in life. Examples include:
* Polycystic kidney disease (PKD), which is a genetic disorder that causes cysts to form in the kidneys and can lead to kidney failure.
* Hypertrophic cardiomyopathy (HCM), which can be inherited as an autosomal dominant trait in some cats.
* Progressive retinal atrophy (PRA), which is a group of genetic disorders that cause degeneration of the retina and can lead to blindness.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Viral structural proteins are the protein components that make up the viral particle or capsid, providing structure and stability to the virus. These proteins are encoded by the viral genome and are involved in the assembly of new virus particles during the replication cycle. They can be classified into different types based on their location and function, such as capsid proteins, matrix proteins, and envelope proteins. Capsid proteins form the protein shell that encapsulates the viral genome, while matrix proteins are located between the capsid and the envelope, and envelope proteins are embedded in the lipid bilayer membrane that surrounds some viruses.

Cattle diseases are a range of health conditions that affect cattle, which include but are not limited to:

1. Bovine Respiratory Disease (BRD): Also known as "shipping fever," BRD is a common respiratory illness in feedlot cattle that can be caused by several viruses and bacteria.
2. Bovine Viral Diarrhea (BVD): A viral disease that can cause a variety of symptoms, including diarrhea, fever, and reproductive issues.
3. Johne's Disease: A chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It primarily affects the intestines and can cause severe diarrhea and weight loss.
4. Digital Dermatitis: Also known as "hairy heel warts," this is a highly contagious skin disease that affects the feet of cattle, causing lameness and decreased productivity.
5. Infectious Bovine Keratoconjunctivitis (IBK): Also known as "pinkeye," IBK is a common and contagious eye infection in cattle that can cause blindness if left untreated.
6. Salmonella: A group of bacteria that can cause severe gastrointestinal illness in cattle, including diarrhea, dehydration, and septicemia.
7. Leptospirosis: A bacterial disease that can cause a wide range of symptoms in cattle, including abortion, stillbirths, and kidney damage.
8. Blackleg: A highly fatal bacterial disease that causes rapid death in young cattle. It is caused by Clostridium chauvoei and vaccination is recommended for prevention.
9. Anthrax: A serious infectious disease caused by the bacterium Bacillus anthracis. Cattle can become infected by ingesting spores found in contaminated soil, feed or water.
10. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hooved animals, including cattle. It is characterized by fever and blisters on the feet, mouth, and teats. FMD is not a threat to human health but can have serious economic consequences for the livestock industry.

It's important to note that many of these diseases can be prevented or controlled through good management practices, such as vaccination, biosecurity measures, and proper nutrition. Regular veterinary care and monitoring are also crucial for early detection and treatment of any potential health issues in your herd.

Hemagglutinins are glycoprotein spikes found on the surface of influenza viruses. They play a crucial role in the viral infection process by binding to sialic acid receptors on host cells, primarily in the respiratory tract. After attachment, hemagglutinins mediate the fusion of the viral and host cell membranes, allowing the viral genome to enter the host cell and initiate replication.

There are 18 different subtypes of hemagglutinin (H1-H18) identified in influenza A viruses, which naturally infect various animal species, including birds, pigs, and humans. The specificity of hemagglutinins for particular sialic acid receptors can influence host range and tissue tropism, contributing to the zoonotic potential of certain influenza A virus subtypes.

Hemagglutination inhibition (HI) assays are commonly used in virology and epidemiology to measure the antibody response to influenza viruses and determine vaccine effectiveness. In these assays, hemagglutinins bind to red blood cells coated with sialic acid receptors, forming a diffuse mat of cells that can be observed visually. The addition of specific antisera containing antibodies against the hemagglutinin prevents this binding and results in the formation of discrete buttons of red blood cells, indicating a positive HI titer and the presence of neutralizing antibodies.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

A Cytopathic Effect (CPE) is a visible change in the cell or group of cells due to infection by a pathogen, such as a virus. When the cytopathic effect is caused specifically by a viral infection, it is referred to as a "Viral Cytopathic Effect" (VCPE).

The VCPE can include various changes in the cell's morphology, size, and structure, such as rounding, shrinkage, multinucleation, inclusion bodies, and formation of syncytia (multinucleated giant cells). These changes are often used to identify and characterize viruses in laboratory settings.

The VCPE is typically observed under a microscope after the virus has infected cell cultures, and it can help researchers determine the type of virus, the degree of infection, and the effectiveness of antiviral treatments. The severity and timing of the VCPE can vary depending on the specific virus and the type of cells that are infected.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

A "camel" is a large, even-toed ungulate that belongs to the genus Camelus in the family Camelidae. There are two species of camels: the dromedary camel (Camelus dromedarius), also known as the Arabian camel, which has one hump, and the Bactrian camel (Camelus bactrianus), which has two humps.

Camels are well adapted to life in arid environments and are native to the Middle East and Central Asia. They have long legs, large, flat feet that help them walk on sand, and a thick coat of hair that helps protect them from the sun and cold temperatures. Camels are also known for their ability to store fat in their humps, which they can convert into water and energy when food and water are scarce.

Camels have been domesticated for thousands of years and have played an important role in human history as transportation, pack animals, and sources of meat, milk, and wool. They are also used in traditional medicine and religious ceremonies in some cultures.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

I apologize for any confusion, but "Nandiniidae" is not a term that has a medical definition. It is a taxonomic family in the order Primates, which includes the genus *Nandinia*. This family consists of a single species, the African palm civet (*Nandinia binotata*). The African palm civet is native to continental Africa and is not typically associated with medical or clinical contexts. If you have any questions from the field of biology or veterinary medicine, I would be happy to try to help answer them.

Encephalomyelitis is a medical term that refers to inflammation of both the brain (encephalitis) and spinal cord (myelitis). This condition can be caused by various infectious agents, such as viruses, bacteria, fungi, or parasites, or it can be due to an autoimmune response where the body's own immune system attacks the nervous tissue.

The symptoms of encephalomyelitis can vary widely depending on the extent and location of the inflammation, but they may include fever, headache, stiff neck, seizures, muscle weakness, sensory changes, and difficulty with coordination or walking. In severe cases, encephalomyelitis can lead to permanent neurological damage or even death.

Treatment for encephalomyelitis typically involves addressing the underlying cause, such as administering antiviral medications for viral infections or immunosuppressive drugs for autoimmune reactions. Supportive care, such as pain management, physical therapy, and rehabilitation, may also be necessary to help manage symptoms and promote recovery.

Viral pneumonia is a type of pneumonia caused by viral infection. It primarily affects the upper and lower respiratory tract, leading to inflammation of the alveoli (air sacs) in the lungs. This results in symptoms such as cough, difficulty breathing, fever, fatigue, and chest pain. Common viruses that can cause pneumonia include influenza virus, respiratory syncytial virus (RSV), and adenovirus. Viral pneumonia is often milder than bacterial pneumonia but can still be serious, especially in young children, older adults, and people with weakened immune systems. Treatment typically involves supportive care, such as rest, hydration, and fever reduction, while the body fights off the virus. In some cases, antiviral medications may be used to help manage symptoms and prevent complications.

Feces are the solid or semisolid remains of food that could not be digested or absorbed in the small intestine, along with bacteria and other waste products. After being stored in the colon, feces are eliminated from the body through the rectum and anus during defecation. Feces can vary in color, consistency, and odor depending on a person's diet, health status, and other factors.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

The common cold is a viral infectious disease of the upper respiratory tract. It primarily affects the nose, throat, sinuses, and upper airways. The main symptoms include sore throat, runny or stuffy nose, sneezing, cough, and fatigue. The common cold is often caused by rhinoviruses and can also be caused by other viruses like coronaviruses, coxsackieviruses, and adenoviruses. It is usually spread through respiratory droplets when an infected person coughs, sneezes, or talks. The common cold is self-limiting and typically resolves within 7-10 days, although some symptoms may last up to three weeks. There is no specific treatment for the common cold, and management focuses on relieving symptoms with over-the-counter medications, rest, and hydration. Preventive measures include frequent hand washing, avoiding close contact with sick individuals, and not touching the face with unwashed hands.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

Arterivirus is a type of enveloped, single-stranded, positive-sense RNA virus that belongs to the family Arteriviridae. These viruses are named after their initial discovery in arteries and have since been found to infect a wide range of mammals, including pigs, horses, cats, and primates.

Arteriviruses can cause various diseases, such as porcine reproductive and respiratory syndrome (PRRS) in pigs, equine arteritis virus (EAV) in horses, and simian hemorrhagic fever virus (SHFV) in non-human primates. In humans, Arterivirus infection is rare, but some cases of human infection with porcine reproductive and respiratory syndrome virus have been reported.

Arteriviruses are characterized by their unique viral structure, including a distinctive "coronavirus-like" appearance due to the presence of club-shaped projections on their surface called peplomers. However, they differ from coronaviruses in several ways, such as genome organization and replication strategy.

Overall, Arterivirus is an important group of viruses that can cause significant economic losses in the livestock industry and pose a potential threat to human health.

A viral plaque assay is a laboratory technique used to measure the infectivity and concentration of viruses in a sample. This method involves infecting a monolayer of cells (usually in a petri dish or multi-well plate) with a known volume of a virus-containing sample, followed by overlaying the cells with a nutrient-agar medium to restrict viral spread and enable individual plaques to form.

After an incubation period that allows for viral replication and cell death, the cells are stained, and clear areas or "plaques" become visible in the monolayer. Each plaque represents a localized region of infected and lysed cells, caused by the progeny of a single infectious virus particle. The number of plaques is then counted, and the viral titer (infectious units per milliliter or PFU/mL) is calculated based on the dilution factor and volume of the original inoculum.

Viral plaque assays are essential for determining viral titers, assessing virus-host interactions, evaluating antiviral agents, and studying viral pathogenesis.

Papain is defined as a proteolytic enzyme that is derived from the latex of the papaya tree (Carica papaya). It has the ability to break down other proteins into smaller peptides or individual amino acids. Papain is widely used in various industries, including the food industry for tenderizing meat and brewing beer, as well as in the medical field for its digestive and anti-inflammatory properties.

In medicine, papain is sometimes used topically to help heal burns, wounds, and skin ulcers. It can also be taken orally to treat indigestion, parasitic infections, and other gastrointestinal disorders. However, its use as a medical treatment is not widely accepted and more research is needed to establish its safety and efficacy.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Viral fusion proteins are specialized surface proteins found on the envelope of enveloped viruses. These proteins play a crucial role in the viral infection process by mediating the fusion of the viral membrane with the target cell membrane, allowing the viral genetic material to enter the host cell and initiate replication.

The fusion protein is often synthesized as an inactive precursor, which undergoes a series of conformational changes upon interaction with specific receptors on the host cell surface. This results in the exposure of hydrophobic fusion peptides or domains that insert into the target cell membrane, bringing the two membranes into close proximity and facilitating their merger.

A well-known example of a viral fusion protein is the gp120/gp41 complex found on the Human Immunodeficiency Virus (HIV). The gp120 subunit binds to CD4 receptors and chemokine coreceptors on the host cell surface, triggering conformational changes in the gp41 subunit that expose the fusion peptide and enable membrane fusion. Understanding the structure and function of viral fusion proteins is important for developing antiviral strategies and vaccines.

Cell fusion is the process by which two or more cells combine to form a single cell with a single nucleus, containing the genetic material from all of the original cells. This can occur naturally in certain biological processes, such as fertilization (when a sperm and egg cell fuse to form a zygote), muscle development (where multiple muscle precursor cells fuse together to create multinucleated muscle fibers), and during the formation of bone (where osteoclasts, the cells responsible for breaking down bone tissue, are multinucleated).

Cell fusion can also be induced artificially in laboratory settings through various methods, including chemical treatments, electrical stimulation, or viral vectors. Induced cell fusion is often used in research to create hybrid cells with unique properties, such as cybrid cells (cytoplasmic hybrids) and heterokaryons (nuclear hybrids). These hybrid cells can help scientists study various aspects of cell biology, genetics, and disease mechanisms.

In summary, cell fusion is the merging of two or more cells into one, resulting in a single cell with combined genetic material. This process occurs naturally during certain biological processes and can be induced artificially for research purposes.

Helper viruses, also known as "auxiliary" or "satellite" viruses, are defective viruses that depend on the assistance of a second virus, called a helper virus, to complete their replication cycle. They lack certain genes that are essential for replication, and therefore require the helper virus to provide these functions.

Helper viruses are often found in cases of dual infection, where both the helper virus and the dependent virus infect the same cell. The helper virus provides the necessary enzymes and proteins for the helper virus to replicate, package its genome into new virions, and bud off from the host cell.

One example of a helper virus is the hepatitis B virus (HBV), which can serve as a helper virus for hepatitis D virus (HDV) infection. HDV is a defective RNA virus that requires the HBV surface antigen to form an envelope around its nucleocapsid and be transmitted to other cells. In the absence of HBV, HDV cannot replicate or cause disease.

Understanding the role of helper viruses in viral infections is important for developing effective treatments and vaccines against viral diseases.

I'm sorry for any confusion, but "Hong Kong" is not a medical term or concept. It is a region located on the southeastern coast of China. If you have any questions about a medical topic, please provide more details so I can try to help you.

Hong Kong is a Special Administrative Region (SAR) of the People's Republic of China (PRC). It was a British colony from 1842 until it was returned to China in 1997. As a SAR, Hong Kong maintains separate governing and economic systems from those of mainland China under the principle of "one country, two systems."

The region is known for its impressive skyline, deep natural harbor, and bustling urban center. It is a major port and global financial hub, and it has a high degree of autonomy in administration, legislation, and economic policies. Hong Kong's legal system is based on English common law, and it has its own currency, the Hong Kong dollar.

I hope this clarifies any confusion regarding the term "Hong Kong." If you have any medical questions, please let me know!

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

Demyelinating diseases are a group of disorders that are characterized by damage to the myelin sheath, which is the protective covering surrounding nerve fibers in the brain, optic nerves, and spinal cord. Myelin is essential for the rapid transmission of nerve impulses, and its damage results in disrupted communication between the brain and other parts of the body.

The most common demyelinating disease is multiple sclerosis (MS), where the immune system mistakenly attacks the myelin sheath. Other demyelinating diseases include:

1. Acute Disseminated Encephalomyelitis (ADEM): An autoimmune disorder that typically follows a viral infection or vaccination, causing widespread inflammation and demyelination in the brain and spinal cord.
2. Neuromyelitis Optica (NMO) or Devic's Disease: A rare autoimmune disorder that primarily affects the optic nerves and spinal cord, leading to severe vision loss and motor disability.
3. Transverse Myelitis: Inflammation of the spinal cord causing damage to both sides of one level (segment) of the spinal cord, resulting in various neurological symptoms such as muscle weakness, numbness, or pain, depending on which part of the spinal cord is affected.
4. Guillain-Barré Syndrome: An autoimmune disorder that causes rapid-onset muscle weakness, often beginning in the legs and spreading to the upper body, including the face and breathing muscles. It occurs when the immune system attacks the peripheral nerves' myelin sheath.
5. Central Pontine Myelinolysis (CPM): A rare neurological disorder caused by rapid shifts in sodium levels in the blood, leading to damage to the myelin sheath in a specific area of the brainstem called the pons.

These diseases can result in various symptoms, such as muscle weakness, numbness, vision loss, difficulty with balance and coordination, and cognitive impairment, depending on the location and extent of the demyelination. Treatment typically focuses on managing symptoms, modifying the immune system's response, and promoting nerve regeneration and remyelination when possible.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Zoonoses are infectious diseases that can be transmitted from animals to humans. They are caused by pathogens such as viruses, bacteria, parasites, or fungi that naturally infect non-human animals and can sometimes infect and cause disease in humans through various transmission routes like direct contact with infected animals, consumption of contaminated food or water, or vectors like insects. Some well-known zoonotic diseases include rabies, Lyme disease, salmonellosis, and COVID-19 (which is believed to have originated from bats). Public health officials work to prevent and control zoonoses through various measures such as surveillance, education, vaccination, and management of animal populations.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

There is no medical definition for "dog diseases" as it is too broad a term. However, dogs can suffer from various health conditions and illnesses that are specific to their species or similar to those found in humans. Some common categories of dog diseases include:

1. Infectious Diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include distemper, parvovirus, kennel cough, Lyme disease, and heartworms.
2. Hereditary/Genetic Disorders: Some dogs may inherit certain genetic disorders from their parents. Examples include hip dysplasia, elbow dysplasia, progressive retinal atrophy (PRA), and degenerative myelopathy.
3. Age-Related Diseases: As dogs age, they become more susceptible to various health issues. Common age-related diseases in dogs include arthritis, dental disease, cancer, and cognitive dysfunction syndrome (CDS).
4. Nutritional Disorders: Malnutrition or improper feeding can lead to various health problems in dogs. Examples include obesity, malnutrition, and vitamin deficiencies.
5. Environmental Diseases: These are caused by exposure to environmental factors such as toxins, allergens, or extreme temperatures. Examples include heatstroke, frostbite, and toxicities from ingesting harmful substances.
6. Neurological Disorders: Dogs can suffer from various neurological conditions that affect their nervous system. Examples include epilepsy, intervertebral disc disease (IVDD), and vestibular disease.
7. Behavioral Disorders: Some dogs may develop behavioral issues due to various factors such as anxiety, fear, or aggression. Examples include separation anxiety, noise phobias, and resource guarding.

It's important to note that regular veterinary care, proper nutrition, exercise, and preventative measures can help reduce the risk of many dog diseases.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

Viral diseases are illnesses caused by the infection and replication of viruses in host organisms. These infectious agents are obligate parasites, meaning they rely on the cells of other living organisms to survive and reproduce. Viruses can infect various types of hosts, including animals, plants, and microorganisms, causing a wide range of diseases with varying symptoms and severity.

Once a virus enters a host cell, it takes over the cell's machinery to produce new viral particles, often leading to cell damage or death. The immune system recognizes the viral components as foreign and mounts an immune response to eliminate the infection. This response can result in inflammation, fever, and other symptoms associated with viral diseases.

Examples of well-known viral diseases include:

1. Influenza (flu) - caused by influenza A, B, or C viruses
2. Common cold - usually caused by rhinoviruses or coronaviruses
3. HIV/AIDS - caused by human immunodeficiency virus (HIV)
4. Measles - caused by measles morbillivirus
5. Hepatitis B and C - caused by hepatitis B virus (HBV) and hepatitis C virus (HCV), respectively
6. Herpes simplex - caused by herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2)
7. Chickenpox and shingles - both caused by varicella-zoster virus (VZV)
8. Rabies - caused by rabies lyssavirus
9. Ebola - caused by ebolaviruses
10. COVID-19 - caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Prevention and treatment strategies for viral diseases may include vaccination, antiviral medications, and supportive care to manage symptoms while the immune system fights off the infection.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

'Frameshifting, ribosomal' refers to a type of genetic modification that occurs during translation, the process by which messenger RNA (mRNA) is translated into a protein. Specifically, frameshifting is a type of error or programmed change in the reading frame of the mRNA as it is being translated by the ribosome.

In ribosomal frameshifting, the ribosome shifts the reading frame of the mRNA by one or two nucleotides, resulting in an entirely different sequence of amino acids being incorporated into the growing polypeptide chain. This can lead to the production of a truncated or elongated protein, or a completely different protein altogether.

There are two types of ribosomal frameshifting: programmed -1 frameshifting and programmed +1 frameshifting. Programmed -1 frameshifting involves a -1 shift in the reading frame, resulting in the incorporation of a different set of three nucleotides (a codon) into the polypeptide chain. Programmed +1 frameshifting involves a +1 shift in the reading frame, with similar consequences.

Ribosomal frameshifting is a tightly regulated process that plays an important role in gene expression and can have significant consequences for protein function and cellular physiology. It is also implicated in certain genetic diseases and viral infections.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

A disease reservoir refers to a population or group of living organisms, including humans, animals, and even plants, that can naturally carry and transmit a particular pathogen (disease-causing agent) without necessarily showing symptoms of the disease themselves. These hosts serve as a source of infection for other susceptible individuals, allowing the pathogen to persist and circulate within a community or environment.

Disease reservoirs can be further classified into:

1. **Primary (or Main) Reservoir**: This refers to the species that primarily harbors and transmits the pathogen, contributing significantly to its natural ecology and maintaining its transmission cycle. For example, mosquitoes are the primary reservoirs for many arboviruses like dengue, Zika, and chikungunya viruses.

2. **Amplifying Hosts**: These hosts can become infected with the pathogen and experience a high rate of replication, leading to an increased concentration of the pathogen in their bodies. This allows for efficient transmission to other susceptible hosts or vectors. For instance, birds are amplifying hosts for West Nile virus, as they can become viremic (have high levels of virus in their blood) and infect feeding mosquitoes that then transmit the virus to other animals and humans.

3. **Dead-end Hosts**: These hosts may become infected with the pathogen but do not contribute significantly to its transmission cycle, as they either do not develop sufficient quantities of the pathogen to transmit it or do not come into contact with potential vectors or susceptible hosts. For example, humans are dead-end hosts for many zoonotic diseases like rabies, as they cannot transmit the virus to other humans.

Understanding disease reservoirs is crucial in developing effective strategies for controlling and preventing infectious diseases, as it helps identify key species and environments that contribute to their persistence and transmission.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Carcinoembryonic antigen (CEA) is a protein that is normally produced in small amounts during fetal development. In adults, low levels of CEA can be found in the blood, but elevated levels are typically associated with various types of cancer, particularly colon, rectal, and breast cancer.

Measurement of CEA levels in the blood is sometimes used as a tumor marker to monitor response to treatment, detect recurrence, or screen for secondary cancers in patients with a history of certain types of cancer. However, it's important to note that CEA is not a specific or sensitive indicator of cancer and can be elevated in various benign conditions such as inflammation, smoking, and some gastrointestinal diseases. Therefore, the test should be interpreted in conjunction with other clinical and diagnostic findings.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

I'm sorry for any confusion, but "Qatar" is not a medical term. It is the name of a country located in the Middle East, on the Arabian Peninsula. If you have any questions about medical terminology or health-related topics, I would be happy to try and help answer them!

Post-translational protein processing refers to the modifications and changes that proteins undergo after their synthesis on ribosomes, which are complex molecular machines responsible for protein synthesis. These modifications occur through various biochemical processes and play a crucial role in determining the final structure, function, and stability of the protein.

The process begins with the translation of messenger RNA (mRNA) into a linear polypeptide chain, which is then subjected to several post-translational modifications. These modifications can include:

1. Proteolytic cleavage: The removal of specific segments or domains from the polypeptide chain by proteases, resulting in the formation of mature, functional protein subunits.
2. Chemical modifications: Addition or modification of chemical groups to the side chains of amino acids, such as phosphorylation (addition of a phosphate group), glycosylation (addition of sugar moieties), methylation (addition of a methyl group), acetylation (addition of an acetyl group), and ubiquitination (addition of a ubiquitin protein).
3. Disulfide bond formation: The oxidation of specific cysteine residues within the polypeptide chain, leading to the formation of disulfide bonds between them. This process helps stabilize the three-dimensional structure of proteins, particularly in extracellular environments.
4. Folding and assembly: The acquisition of a specific three-dimensional conformation by the polypeptide chain, which is essential for its function. Chaperone proteins assist in this process to ensure proper folding and prevent aggregation.
5. Protein targeting: The directed transport of proteins to their appropriate cellular locations, such as the nucleus, mitochondria, endoplasmic reticulum, or plasma membrane. This is often facilitated by specific signal sequences within the protein that are recognized and bound by transport machinery.

Collectively, these post-translational modifications contribute to the functional diversity of proteins in living organisms, allowing them to perform a wide range of cellular processes, including signaling, catalysis, regulation, and structural support.

Membrane fusion is a fundamental biological process that involves the merging of two initially separate lipid bilayers, such as those surrounding cells or organelles, to form a single continuous membrane. This process plays a crucial role in various physiological events including neurotransmitter release, hormone secretion, fertilization, viral infection, and intracellular trafficking of proteins and lipids. Membrane fusion is tightly regulated and requires the participation of specific proteins called SNAREs (Soluble NSF Attachment Protein REceptors) and other accessory factors that facilitate the recognition, approximation, and merger of the membranes. The energy required to overcome the repulsive forces between the negatively charged lipid headgroups is provided by these proteins, which undergo conformational changes during the fusion process. Membrane fusion is a highly specific and coordinated event, ensuring that the correct membranes fuse at the right time and place within the cell.

Enteritis is a medical term that refers to inflammation of the small intestine. The small intestine is responsible for digesting and absorbing nutrients from food, so inflammation in this area can interfere with these processes and lead to symptoms such as diarrhea, abdominal pain, nausea, vomiting, and weight loss.

Enteritis can be caused by a variety of factors, including bacterial or viral infections, parasites, autoimmune disorders, medications, and exposure to toxins. In some cases, the cause of enteritis may be unknown. Treatment for enteritis depends on the underlying cause, but may include antibiotics, antiparasitic drugs, anti-inflammatory medications, or supportive care such as fluid replacement therapy.

Swine diseases refer to a wide range of infectious and non-infectious conditions that affect pigs. These diseases can be caused by viruses, bacteria, fungi, parasites, or environmental factors. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): a viral disease that causes reproductive failure in sows and respiratory problems in piglets and grower pigs.
2. Classical Swine Fever (CSF): also known as hog cholera, is a highly contagious viral disease that affects pigs of all ages.
3. Porcine Circovirus Disease (PCVD): a group of diseases caused by porcine circoviruses, including Porcine CircoVirus Associated Disease (PCVAD) and Postweaning Multisystemic Wasting Syndrome (PMWS).
4. Swine Influenza: a respiratory disease caused by type A influenza viruses that can infect pigs and humans.
5. Mycoplasma Hyopneumoniae: a bacterial disease that causes pneumonia in pigs.
6. Actinobacillus Pleuropneumoniae: a bacterial disease that causes severe pneumonia in pigs.
7. Salmonella: a group of bacteria that can cause food poisoning in humans and a variety of diseases in pigs, including septicemia, meningitis, and abortion.
8. Brachyspira Hyodysenteriae: a bacterial disease that causes dysentery in pigs.
9. Erysipelothrix Rhusiopathiae: a bacterial disease that causes erysipelas in pigs.
10. External and internal parasites, such as lice, mites, worms, and flukes, can also cause diseases in swine.

Prevention and control of swine diseases rely on good biosecurity practices, vaccination programs, proper nutrition, and management practices. Regular veterinary check-ups and monitoring are essential to detect and treat diseases early.

A "gene" is a basic unit of heredity in living organisms. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes are responsible for inherited traits, such as eye color, hair color, and height, as well as susceptibility to certain diseases.

"Pol" is short for "polymerase," which is an enzyme that helps synthesize DNA or RNA (ribonucleic acid). In the context of genes, "pol" often refers to "DNA polymerase," an enzyme that plays a crucial role in DNA replication and repair.

Therefore, "genes, pol" may refer to the genes involved in the regulation or function of DNA polymerases. These genes are essential for maintaining the integrity and stability of an organism's genome. Mutations in these genes can lead to various genetic disorders and cancer.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Cinanserin is a serotonin antagonist, which is a type of drug that blocks the action of serotonin, a neurotransmitter in the brain. Cinanserin has been investigated for its potential use as a treatment for various conditions, including anxiety, depression, and schizophrenia. However, it is not currently approved for use in clinical practice.

Serotonin antagonists like cinanserin work by blocking the action of serotonin at certain receptors in the brain. This can help to reduce the symptoms of various conditions, such as anxiety and depression, by altering the way that neurons communicate with each other. However, the exact mechanism of action of cinanserin is not fully understood, and more research is needed to determine its potential therapeutic uses.

While cinanserin has shown promise in some studies, it has also been associated with a number of side effects, including dizziness, drowsiness, and dry mouth. Additionally, there is some evidence to suggest that cinanserin may increase the risk of certain types of heart problems, such as irregular heart rhythms. As a result, further research is needed to determine the safety and efficacy of this drug before it can be approved for use in clinical practice.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

A Beluga Whale, also known as Delphinapterus leucas, is a marine mammal that belongs to the family Monodontidae. It is easily recognizable by its distinctive white color and bulbous forehead, called melon. Beluga whales are found primarily in the Arctic Ocean and sub-Arctic waters. They are highly social animals, known for their vocalizations, which include a series of clicks, whistles, and squawks. Adult belugas can grow up to 13-20 feet in length and weigh between 1,500-3,500 pounds. They feed on fish and invertebrates and are considered to be top predators in their ecosystem. Beluga whales have a thick layer of blubber that helps them with buoyancy and insulation in cold waters. They are also known for their ability to adapt to changes in salinity and temperature, which allows them to survive in various aquatic habitats.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Acetylesterase is an enzyme that catalyzes the hydrolysis of acetyl esters into alcohol and acetic acid. This enzyme plays a role in the metabolism of various xenobiotics, including drugs and environmental toxins, by removing acetyl groups from these compounds. Acetylesterase is found in many tissues, including the liver, intestine, and blood. It belongs to the class of enzymes known as hydrolases, which act on ester bonds.

Torovirus is a genus of viruses in the family Coronaviridae. It is a single-stranded, positive-sense RNA virus that primarily infects the epithelial cells of the intestinal tract of various animals, including humans. In humans, torovirus infection can cause gastroenteritis, characterized by diarrhea, vomiting, and abdominal cramps. The virus is transmitted through the fecal-oral route and is highly contagious. Torovirus infections are more common in young children and immunocompromised individuals.

Neutralizing antibodies are a type of antibody that defends against pathogens such as viruses or bacteria by neutralizing their ability to infect cells. They do this by binding to specific regions on the surface proteins of the pathogen, preventing it from attaching to and entering host cells. This renders the pathogen ineffective and helps to prevent or reduce the severity of infection. Neutralizing antibodies can be produced naturally in response to an infection or vaccination, or they can be generated artificially for therapeutic purposes.

"Animals, Zoo" is not a medical term. However, it generally refers to a collection of various species of wild animals kept in enclosures or exhibits for the public to view and learn about. These animals are usually obtained from different parts of the world and live in environments that attempt to simulate their natural habitats. Zoos play an essential role in conservation efforts, education, and research. They provide a unique opportunity for people to connect with wildlife and understand the importance of preserving and protecting endangered species and their ecosystems.

Viral encephalitis is a medical condition characterized by inflammation of the brain caused by a viral infection. The infection can be caused by various types of viruses, such as herpes simplex virus, enteroviruses, arboviruses (transmitted through insect bites), or HIV.

The symptoms of viral encephalitis may include fever, headache, stiff neck, confusion, seizures, and altered level of consciousness. In severe cases, it can lead to brain damage, coma, or even death. The diagnosis is usually made based on clinical presentation, laboratory tests, and imaging studies such as MRI or CT scan. Treatment typically involves antiviral medications, supportive care, and management of complications.

Untranslated regions (UTRs) are sections of an mRNA molecule that do not contain information for protein synthesis. There are two types of UTRs: 5' UTR, which is located at the 5' end of the mRNA molecule, and 3' UTR, which is located at the 3' end.

The 5' UTR typically contains regulatory elements that control the translation of the mRNA into protein. These elements can affect the efficiency and timing of translation, as well as the stability of the mRNA molecule. The 5' UTR may also contain upstream open reading frames (uORFs), which are short sequences that can be translated into small peptides and potentially regulate the translation of the main coding sequence.

The length and sequence composition of the 5' UTR can have significant impacts on gene expression, and variations in these regions have been associated with various diseases, including cancer and neurological disorders. Therefore, understanding the structure and function of 5' UTRs is an important area of research in molecular biology and genetics.

RNA viruses are a type of virus that contain ribonucleic acid (RNA) as their genetic material, as opposed to deoxyribonucleic acid (DNA). RNA viruses replicate by using an enzyme called RNA-dependent RNA polymerase to transcribe and replicate their RNA genome.

There are several different groups of RNA viruses, including:

1. Negative-sense single-stranded RNA viruses: These viruses have a genome that is complementary to the mRNA and must undergo transcription to produce mRNA before translation can occur. Examples include influenza virus, measles virus, and rabies virus.
2. Positive-sense single-stranded RNA viruses: These viruses have a genome that can serve as mRNA and can be directly translated into protein after entry into the host cell. Examples include poliovirus, rhinoviruses, and coronaviruses.
3. Double-stranded RNA viruses: These viruses have a genome consisting of double-stranded RNA and use a complex replication strategy involving both transcription and reverse transcription. Examples include rotaviruses and reoviruses.

RNA viruses are known to cause a wide range of human diseases, ranging from the common cold to more severe illnesses such as hepatitis C, polio, and COVID-19. Due to their high mutation rates and ability to adapt quickly to new environments, RNA viruses can be difficult to control and treat with antiviral drugs or vaccines.

A: MERS-CoV is the acronym for Middle East Respiratory Syndrome Coronavirus, the virus that causes MERS. When referring to the ... However, like the SARS virus, MERS-CoV is most similar to coronaviruses found in bats. CDC is still learning about MERS. ... Frequently Asked Questions on Middle East Respiratory Syndrome Coronavirus (MERS-CoV) World Health Organization ... MERS-CoV is not the same coronavirus that caused severe acute respiratory syndrome (SARS) in 2003. ...
Find links to guidance and information on all topics related to COVID-19, including the COVID-19 vaccine, symptom self-check, data, and other topics.
Some coronaviruses cause severe illness that can lead ... Some coronaviruses cause severe illness that can lead ... Coronaviruses are a family of viruses. Infection with these viruses generally causes mild to moderate respiratory illnesses, ... Coronaviruses are a family of viruses. Infection with these viruses generally causes mild to moderate respiratory illnesses, ... Coronavirus - SARS; Coronavirus - 2019-nCoV; Coronavirus - COVID-19; Coronavirus - Severe acute respiratory syndrome; ...
Coronavirus : The explosive rise in cases of coronavirus infection is of concern worldwide. Stay up-to-date here. ... Novel Coronavirus (COVID-19) The COVID-19 pandemic caused by the novel coronavirus (SARS-CoV-2) continues to reshape the globe ...
4. Has coronavirus changed the way you or your group are using our companys products or services? ... 1. Has the coronavirus pandemic had a positive or negative impact on your overall business operations? ... 2. What challenges has your organization experienced as the result of coronavirus? Select all that apply. ...
... coronavirus - Sharing our stories on preparing for and responding to public health events ... Tags coronavirus, COVID-19, doctors office, emergency department, errands, face covering, grocery shopping, personal health, ... Millions of people living in the United States are being told to stay at home to help slow the spread of Coronavirus (COVID-19 ...
Coronaviruses comprise a vast family of viruses, seven of which are known to cause disease in humans. Some coronaviruses that ... encoded search term (Coronavirus Disease 2019 (COVID-19)) and Coronavirus Disease 2019 (COVID-19) What to Read Next on Medscape ... Coronavirus disease 2019 (COVID-19) is defined as illness caused by a novel coronavirus called severe acute respiratory ... Severe acute respiratory syndrome-related coronavirus - The species and its viruses, a statement of the Coronavirus Study Group ...
For the latest information about how to stop the spread or to learn more about the federal response, visit coronavirus.gov, cdc ... coronavirus, and USA.gov/Coronavirus.. USDA will continue providing timely delivery of services across all USDA agencies and ...
Posted in Coronavirus, Health, IDEA 2004, webinar , Tagged coronavirus, health, special education rights , 39 Comments ↓ ... Posted in Assessment and Evaluations, Compensatory education, Coronavirus, COVID-19, FAPE, IEPs , Tagged Advocacy, IDEA 2004, ... Category Archives: Coronavirus. Long COVID under Section 504 and IDEA: A Resource Guide for Children, Students, Educators, ... Posted in Advocacy, Attorneys, Compensatory education, Coronavirus, Discrimination, Education Policy, ESY, Extended School Year ...
Coronavirus. Trudeau govt still receiving COVID shots while throwing away $1.5 billion worth of expired jabs Canada has ... Administration Big Tech Canada Catholic Catholic Church Censorship China Christianity Contraception Coronavirus Coronavirus ...
Canine coronavirus), Human coronavirus 229E, Human coronavirus NL63, Miniopterus bat coronavirus 1, Miniopterus bat coronavirus ... Bovine Coronavirus, Human coronavirus OC43), Hedgehog coronavirus 1, Human coronavirus HKU1, Middle East respiratory syndrome- ... related coronavirus, Murine coronavirus, Pipistrellus bat coronavirus HKU5, Rousettus bat coronavirus HKU9, Severe acute ... Avian coronavirus, Beluga whale coronavirus SW1 Genus Deltacoronavirus Species: Bulbul coronavirus HKU11, Porcine coronavirus ...
Detailed information from the CDC on coronavirus treatment and prevention.. Medical workers bring in patients at a coronavirus ... Bodies pile up on streets in Ecuador as coronavirus spreads. The novel coronavirus has ravaged the coastal Ecuadorian city of ... North Korea insists its coronavirus-free. North Korea remains totally free of the coronavirus, a senior health official in ... President Trump tests negative for coronavirus. President Trump has again tested negative for coronavirus, according to a ...
Coronavirus Response and Recovery Fund. Following the Coronavirus outbreak, Northamptonshire Community Foundation has launched ... Following the Coronavirus outbreak, Northamptonshire Community Foundation has launched a Response and Recovery Fund enabling ... 1. Corona Virus Response and Recovery Fund (please use the Reference Corona R&R fund) ... to continue providing care and support for older and vulnerable people hit by the social and economic impact of the coronavirus ...
Coronavirus (COVID-19) Situation reports are now included in The WHO Africa outbreaks and emergencies bulletin. ... How Ebola is helping the Democratic Republic of the Congo prepare for coronavirus disease. 20 February 2020 ... More than 20 African countries can now test for coronavirus disease. 20 February 2020 ...
... workers paid hourly are expected to bear the brunt of pay losses as coronavirus spreads. But employers are taking steps to ... Hourly Workers Lose Pay Due to Coronavirus. Some companies say they will pay even if workers cant come to work ... If a Walmart worker is diagnosed with coronavirus, the company will offer two weeks pay and additional pay replacement for up ... are expected to bear the brunt of pay losses as the new strain of coronavirus-and the respiratory illness it causes, known as ...
Australian universities have lost billions of dollars in student fees as student enrolments plummet because of the coronavirus ... is trying to protect staff jobs after universities revealed their finances had taken a multibillion-dollar hit from coronavirus ...
It begs the question: What will luxury brands do with all of that merchandise? Will Coronavirus finally drive luxury brands to ... But with falling demand fueled by Coronavirus and 58 percent of consumers we surveyed recently cutting spending, luxury ...
Coronaviruses manipulate the cell cycle of the host cell through various mechanisms. In several coronaviruses, including SARS- ... 2020). "Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States". Emerging ... it is not required for RNA transcription in all coronaviruses. In at least one coronavirus, transmissible gastroenteritis virus ... In many coronaviruses, a population of N protein is localized to the nucleolus, thought to be associated with its effects on ...
Coronavirus Exposes Global Economic Vulnerability. By Anis Chowdhury and Jomo Kwame Sundaram Reprint , , Print , ... The Wall Street Journal reports one of the worst routs in commodity prices in years due to the coronavirus outbreak as prices ... The OECD has warned that the coronavirus outbreak could halve global economic growth this year to 1.5%, the slowest rate since ... SYDNEY and KUALA LUMPUR, Mar 4 2020 (IPS) - As the outbreak of the novel coronavirus COVID-19 threatens a global pandemic, ...
Some AI and analytics applications are better suited for different impacts from the coronavirus outbreak. They all involve data ...
2020 This tracker provides the number of cases and deaths from the novel coronavirus by country, the trends in case and death ... www.kff.org/news-summary/kff-regularly-updating-covid-19-coronavirus-tracker-8/ class=see-more light-beige no-float inline- ... The data are drawn directly from official coronavirus situation,span class=readmore-ellipsis,…,/span,,a href=https:// ... This tracker provides the number of cases and deaths from the novel coronavirus by country, the trends in case and death counts ...
Coronavirus timeline: Monday, March 2. By Christopher Boyce, WFTV.com, Megan Cruz, WFTV.com and James Tutten, WFTV.com. March ... READ: Coronavirus live updates: 91 cases of COVID-19 reported in US ... Read: Woman in sanford who feared she had coronavirus tests positive for flu ... OCFLMayor: We want to emphasize that while the #Coronavirus moves at a fast pace, we are remaining calm, and have been working ...
While having diabetes does add to your risk of getting seriously ill or dying from coronavirus, we explain what this risk means ... More things to know about coronavirus research We know that you may have more questions about coronavirus and diabetes, so ... In order to do this, we first need to know what the overall risk of dying from coronavirus is. This is called the absolute risk ... How coronavirus affects people with diabetes. Most people, including those living with diabetes, will experience mild or ...
There is both health and economic pressure for a vaccine to be developed as the coronavirus continues to claim an average of ... The number of deaths per day related to the coronavirus is expected to increase as the weather gets colder, according to the ... administration on Tuesday by releasing a set of guidelines that could push an emergency use authorization of a coronavirus ...
Get live updates on the coronavirus (COVID-19), plus prevention tips, symptoms & testing info, and other resources to keep you ... What Is a Coronavirus?. Coronaviruses are a family of viruses that cause cold-and flu-like symptoms in humans… ... After Exposure to the Coronavirus, How Long Before Symptoms Appear?. The incubation period for the coronavirus is between 2 and ... Everything You Should Know About the 2019 Coronavirus and COVID-19. Get the facts about the 2019 coronavirus (and COVID-19). ...
Learn how coronavirus progresses, how doctors treat patients with coronavirus, and who is most at risk for severe or fatal ... Coronavirus symptoms include fever, cough and shortness of breath and can range from mild to severe. ... 10 Things to Know About Coronavirus Heres what to know about the new coronavirus (SARS-CoV-2), including how it spreads, the ... 11 Surprising Facts About Coronavirus Find out what doctors are learning about the coronavirus and COVID-19 including ...
... around the country are beginning to cancel their graduation and commencement ceremonies in response to the Wuhan coronavirus ... Colleges Canceling Graduation Ceremonies over Coronavirus. 40 AP Photo/Butch Dill. Tom Ciccotta. 16 Mar 2020. ... around the country are beginning to cancel their graduation and commencement ceremonies in response to the Wuhan coronavirus ... canceling graduation and commencement ceremonies as a precautionary measure against the spread of the Wuhan coronavirus. The ...
In the wake of coronavirus closures, artists and workers are turning to the digital dance party to keep nightlife alive. ... Coronavirus Shut Down Nightclubs. These DJs Are Hosting Digital Dance Parties to Get By. 8. minute read ... However, when Illinois ordered last week that all bars and restaurants close to prevent the further spread of Coronavirus, Slo ... Coronavirus Shut Down Nightclubs. These DJs Are Hosting Digital Dance Parties to Get By ...
As such, whether you like swimming in the open seas or closed swimming pools, know that the coronavirus, which causes the COVID ...
  • The COVID-19 pandemic caused by the novel coronavirus (SARS-CoV-2) continues to reshape the globe. (medscape.com)
  • The ultrastructural morphology exhibited by the 2019 Novel Coronavirus, which was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China, is seen in an illustration released by CDC in Atlanta, Georgia, Jan. 29, 2020. (voanews.com)
  • A new study led by the U.S. government has found that a new strain of the novel coronavirus that is prevailing worldwide is spreading faster than earlier versions. (voanews.com)
  • Two months before the novel coronavirus is thought to have begun its deadly advance in Wuhan, China, the Trump administration ended a $200-million pandemic early-warning program aimed at training scientists in China and other countries to detect and respond to such a threat. (latimes.com)
  • SYDNEY and KUALA LUMPUR, Mar 4 2020 (IPS) - As the outbreak of the novel coronavirus COVID-19 threatens a global pandemic, major stock markets around the world have suffered their worst performance since the 2008 financial crush. (ipsnews.net)
  • This tracker provides the number of cases and deaths from the novel coronavirus by country, the trends in case and death counts by country, and a global map showing which countries have cases and deaths. (kff.org)
  • The rapid spread of the novel coronavirus has sent governments, markets, and communities worldwide on a fervid search for answers-how long, how many, how much? (mckinsey.com)
  • is a novel coronavirus that was first identified in Wuhan, China in late 2019 as the cause of coronavirus disease 2019 (COVID-19) and spread worldwide. (msdmanuals.com)
  • This map, hereafter referred to as the "EIOS COVID-19 Map", showing some of the most recent news about the novel coronavirus (SARS-CoV-2), cycles through each news item before being refreshed and re-running the cycle. (who.int)
  • [ 5 , 6 ] On February 11, 2020, the Coronavirus Study Group of the International Committee on Taxonomy of Viruses issued a statement announcing an official designation for the novel virus: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). (medscape.com)
  • Medical workers bring in patients at a coronavirus intake tent at Maimonides Medical Center on April 2, 2020, in New York City. (cbsnews.com)
  • They looked at everyone who had died in hospital with coronavirus in England between March and May 2020 and found that a third of deaths happened in people with diabetes. (diabetes.org.uk)
  • During the coronavirus (COVID-19) pandemic, businesses, educational institutions, and government agencies must protect the health and safety of people who work, shop, study, or use their facilities. (esri.com)
  • Creating and implementing health and safety plans for sites, facilities, campuses, or other locations is important as schools, colleges, businesses and facilities reopen during the coronavirus (COVID-19) pandemic. (esri.com)
  • Daniel Hernandez, also known as the rapper Tekashi 6ix9ine, was ordered released from prison four months early amid concerns about the coronavirus pandemic. (cbsnews.com)
  • This blended family is quarantining under one roof amid the coronavirus pandemic. (yahoo.com)
  • In our effort to cover this pandemic as thoroughly as possible, we'd like to hear from the loved ones of people who have died from the coronavirus. (latimes.com)
  • It was a minor and welcome disruption, an early sign of bigger hiccups that office workers , educators and others around the world are dealing with on the fly as the coronavirus pandemic shuts people out of offices, schools, coffee shops and co-working spaces . (foxbusiness.com)
  • This study aimed to analyze stressors to which medical staff is vulnerable due to the coronavirus disease 2019 (COVID-19) pandemic. (lu.se)
  • This article examines the meanings of the Coronavirus Pandemic from a perspective which is both socio-political and psychoanalytic. (bvsalud.org)
  • The article presents a psychoanalytic analysis of the notion of vulnerability articulated to the current context of the new coronavirus pandemic. (bvsalud.org)
  • As methodological approach, the article presents a theoretical-conceptual review of vulnerability and helplessness, inserting them in the context of the new Coronavirus pandemic. (bvsalud.org)
  • At the beginning of the coronavirus disease (COVID-19) pandemic in Singapore, the strategy initially involved aggressive ring-fencing of infections, before pivoting towards managing recurrent local interspersed outbreaks of COVID-19. (who.int)
  • As airlines ended passenger flights to mainland China due to the coronavirus outbreak, that cut cargo capacity equivalent to 5,000 tons or 50 daily 747 freighter flights, Scan Global Logistics CEO Rickard Ingvarsson told the Loadstar . (forbes.com)
  • Following the Coronavirus outbreak, Northamptonshire Community Foundation has launched a Response and Recovery Fund enabling people to donate, safe in the knowledge that their donation will go directly to supporting vulnerable people in our county. (justgiving.com)
  • Over the last 19 years, Northamptonshire Community Foundation has played a crucial role in supporting the local community and the outbreak of the Coronavirus has created unprecedented strain on Northamptonshires voluntary sector. (justgiving.com)
  • Meanwhile, Bassichis had his two daughters - Abby, 15 and Caroline, 13 - on a spring break trip in Vermont, and couldn't fathom bringing them back to the epicenter of the coronavirus outbreak in New York City. (yahoo.com)
  • These are some of the unusual new scenes across the Southland during the coronavirus outbreak. (latimes.com)
  • The OECD has warned that the coronavirus outbreak could halve global economic growth this year to 1.5%, the slowest rate since 2009. (ipsnews.net)
  • The Wall Street Journal reports one of the worst routs in commodity prices in years due to the coronavirus outbreak as prices for some natural resources plunged to new lows . (ipsnews.net)
  • Colleges and universities around the country are beginning to cancel their graduation and commencement ceremonies in response to the Wuhan coronavirus outbreak. (breitbart.com)
  • Once a person has been infected by a coronavirus, the infection can spread to a healthy person (person-to-person transmission). (medlineplus.gov)
  • At this time, there is no specific treatment for coronavirus infection except for SARS-CoV-2. (medlineplus.gov)
  • For a coronavirus infection not due to SARS-CoV-2, medicines are given only to ease your symptoms. (medlineplus.gov)
  • The earliest reports of a coronavirus infection in animals occurred in the late 1920s, when an acute respiratory infection of domesticated chickens emerged in North America. (wikipedia.org)
  • To help protect yourself and your family, know the signs and symptoms of COVID-19, how the infection progresses, and who is most at risk of developing coronavirus , or COVID-19 complications. (healthgrades.com)
  • If your doctor's office collects your nasal or throat swab, they will send the sample to a lab to determine if you have an active coronavirus infection. (healthgrades.com)
  • A patient in the state of Washington was given a diagnosis of coronavirus infection on 20 January. (wikipedia.org)
  • Middle East respiratory syndrome is a coronavirus infection that causes severe flu-like symptoms. (msdmanuals.com)
  • Introduction: Hospitalised patients with coronavirus disease 2019 (COVID-19) as a result of SARS-CoV-2 infection have a high mortality rate and frequently require noninvasive respiratory support or invasive ventilation. (bvsalud.org)
  • COVID-19 (coronavirus disease 2019) is the disease resulting from infection by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus. (bvsalud.org)
  • MERS-CoV is the acronym for Middle East Respiratory Syndrome Coronavirus, the virus that causes MERS. (cdc.gov)
  • MERS is caused by the MERS-CoV coronavirus. (medlineplus.gov)
  • coronaviruses similar to MERS- detection of virus in different secretions, detection and CoV have been identified in bats ( 6 ), but epidemiologic survival of virus in the environment, and detection evidence of their role in transmission is lacking. (cdc.gov)
  • that causes Middle East respiratory syndrome (MERS) is a coronavirus. (msdmanuals.com)
  • The initiative, called PREDICT, also trained and supported staff in 60 foreign laboratories - including the Wuhan lab that identified SARS-CoV-2, the new coronavirus that causes COVID-19. (latimes.com)
  • According to a report by Campus Reform, some universities and colleges have decided that they are preemptively canceling graduation and commencement ceremonies as a precautionary measure against the spread of the Wuhan coronavirus. (breitbart.com)
  • In late February, FoldIt posted a puzzle that challenged players to design a binder against the 2019-nCoV coronavirus spike protein. (aiche.org)
  • Most people, including those living with diabetes , will experience mild or moderate symptoms from coronavirus . (diabetes.org.uk)
  • Coronavirus (COVID-19) Situation reports are now included in The WHO Africa outbreaks and emergencies bulletin. (who.int)
  • Some coronaviruses cause severe illness that can lead to pneumonia, and even death. (medlineplus.gov)
  • It is caused by the SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2). (medlineplus.gov)
  • Severe coronavirus infections may require hospitalization and breathing support. (medlineplus.gov)
  • These coronaviruses that cause severe respiratory infections are transmitted from animals to humans (zoonotic pathogens). (msdmanuals.com)
  • Millions of people living in the United States are being told to stay at home to help slow the spread of Coronavirus (COVID-19). (cdc.gov)
  • Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. (medscape.com)
  • The solution includes a collection of ArcGIS applications used to create a COVID-19 health safety plan (for example, temperature screening locations, handwashing or sanitizer stations, personal protective equipment (PPE) stations, isolation areas, etc.), estimate crowd capacities and monitor social distancing, track cleaning and disinfecting, monitor restocking of PPE stations, and report coronavirus-related problems and issues. (esri.com)
  • But critics point to official figures on cases of pneumonia, which is often caused by the coronavirus, as evidence that the confirmed COVID-19 death toll does not reflect reality. (rferl.org)
  • When Anastasia Petrova, a 36-year-old journalist in the Urals city of Perm, died on March 31, health officials changed the official cause of death from double pneumonia to 'double pneumonia brought on by coronavirus' only after a friend of Petrova's made public a text message in which Petrova revealed her second COVID-19 test had come back positive . (rferl.org)
  • Precautions are being taken in Florida after two people have been diagnosed with COVID-19, the coronavirus, in the Tampa Bay area. (wftv.com)
  • Health Department officials in Orange County are planning to launch a hotline that people can call if they think they have COVID-19, the coronavirus. (wftv.com)
  • COVID-19, which stands for coronavirus disease 2019, is the disease caused by contracting SARS-CoV-2. (healthline.com)
  • The genome size of coronaviruses ranges from approximately 26 to 32 kilobases, one of the largest among RNA viruses. (wikipedia.org)
  • The nucleocapsid (N) protein is a protein that packages the positive-sense RNA genome of coronaviruses to form ribonucleoprotein structures enclosed within the viral capsid. (wikipedia.org)
  • While Anna Lopatina, a nurse from Astrakhan, was recorded as dying from pneumonia, she was buried like a carrier of the coronavirus. (rferl.org)
  • In Daghestan, in Russia's North Caucasus, one doctor said on April 28 that at his hospital alone, 12 people had died of pneumonia in the previous four days: '80 to 90 percent [of those cases] are most certainly coronavirus,' he said. (rferl.org)
  • Coronaviruses are a large family of viruses that cause respiratory illness ranging in severity from the common cold to fatal pneumonia. (msdmanuals.com)
  • Many coronaviruses originate in bats, which can infect other animals. (medlineplus.gov)
  • When coronaviruses infect people, they cause respiratory illnesses. (healthgrades.com)
  • However, 7 types of coronaviruses are known to cause illness in humans. (msdmanuals.com)
  • The coronavirus can spread through coughs. (cbsnews.com)
  • Detailed information from the CDC on coronavirus treatment and prevention. (cbsnews.com)
  • The Centers for Disease Control and Prevention confirmed the two cases of coronavirus in Florida. (wftv.com)
  • Also, visit our coronavirus hub for more information on how to prepare, advice on prevention and treatment, and expert recommendations. (healthline.com)
  • In the late 1940s, two more animal coronaviruses, JHM that causes brain disease (murine encephalitis) and mouse hepatitis virus (MHV) that causes hepatitis in mice were discovered. (wikipedia.org)
  • In at least one coronavirus, transmissible gastroenteritis virus (TGEV), N is involved in template switching in the production of subgenomic mRNAs, a process that is a distinctive feature of viruses in the order Nidovirales. (wikipedia.org)
  • Common human coronaviruses cause mild to moderate illnesses, such as the common cold . (medlineplus.gov)
  • Mild coronavirus infections, such as the common cold, will go away in a few days with rest and self care at home . (medlineplus.gov)
  • Some animal coronaviruses evolve (mutate) and are passed from animals to humans. (medlineplus.gov)
  • There are many other coronaviruses circulating in animals, but they haven't spread to humans. (medlineplus.gov)
  • They also took blood samples from people in rural China, and learned that, in living among wildlife, they had been exposed to coronaviruses - a clear sign that, if those viruses spread easily among humans, they could take off. (latimes.com)
  • It is different from any other coronavirus that researchers have found in people before. (cdc.gov)
  • Employees, students, customers and other people returning to a facility may be concerned about large crowds or other conditions that increase the likelihood of being exposed to the coronavirus. (esri.com)
  • The Coronavirus Site Safety solution provides a complete set of capabilities that help Health Safety Officers, Security Officers, Janitorial Staff, and other employees collaborate to operationalize the site health safety plan in order to keep people at the facility, campus, etc. healthy and safe. (esri.com)
  • Our voluntary groups desperately need to continue providing care and support for older and vulnerable people hit by the social and economic impact of the coronavirus. (justgiving.com)
  • Orange County officials revealed Monday they have tested 10 people for coronavirus and the results were all negative. (wftv.com)
  • However, there is evidence to show that people with diabetes are at higher risk of ending up in hospital with coronavirus or dying from it, compared to people without diabetes. (diabetes.org.uk)
  • The number of deaths per day related to the coronavirus is expected to increase as the weather gets colder, according to the University of Washington's Institute for Health Metrics and Evaluation. (abc15.com)
  • The 2019 coronavirus causes more deaths than the seasonal flu . (healthline.com)
  • Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. (wikipedia.org)
  • Human coronaviruses that cause the common cold spread from person-to-person. (medlineplus.gov)
  • Coronaviruses have a spike protein on their surface that binds tightly to a receptor protein on the surface of human cells. (aiche.org)
  • Researchers have determined the structure of the 2019 coronavirus spike protein and how it binds to human receptors. (aiche.org)
  • The name was coined by June Almeida and David Tyrrell who first observed and studied human coronaviruses. (wikipedia.org)
  • Human coronaviruses were discovered in the 1960s using two different methods in the United Kingdom and the United States. (wikipedia.org)
  • Older coronaviruses like the common cold have been in human populations for so long that these days they are more commonly transmitted from one human to another. (healthline.com)
  • The study led by scientists at Los Alamos National Laboratory said the new strain, a mutated form of the original coronavirus, was detected three months ago in Europe. (voanews.com)
  • Within weeks, it was the only strain in countries affected by the coronavirus. (voanews.com)
  • Promising solutions will then advance to laboratory testing to evaluate whether they stick to the coronavirus spike protein. (aiche.org)
  • The N protein is the most highly expressed of the four major coronavirus structural proteins. (wikipedia.org)
  • In addition to its interactions with RNA, N forms protein-protein interactions with the coronavirus membrane protein (M) during the process of viral assembly. (wikipedia.org)
  • In several coronaviruses, ADP-ribosylation of the N protein has also been reported. (wikipedia.org)
  • With unclear functional significance, the SARS-CoV N protein has been observed to be SUMOylated and the N proteins of several coronaviruses including SARS-CoV-2 have been observed to be proteolytically cleaved. (wikipedia.org)
  • In many coronaviruses, a population of N protein is localized to the nucleolus, thought to be associated with its effects on the cell cycle. (wikipedia.org)
  • While having diabetes does add to your risk of getting seriously ill or dying from coronavirus, we explain how to understand this risk and why everyone's risk is unique to them. (diabetes.org.uk)
  • This article is part of our series on the key things to know about coronavirus and diabetes research . (diabetes.org.uk)
  • We know that you may have more questions about coronavirus and diabetes, so we've taken a look at the research to bring you the key things to know. (diabetes.org.uk)
  • Coronaviruses were jumping easily across species lines and were ones to watch for epidemics and pandemics," she said. (latimes.com)
  • DeSantis says more cases are expected after the discovery of the first two presumptive positive cases of coronavirus in Florida. (wftv.com)
  • A Health Safety Officer who needs to initiate the site safety planning process can use the Coronavirus Site Safety Form to add a site where a health safety plan will be created. (esri.com)
  • Coronavirus Site Safety Manager can be used by a Health Safety Officer to manage the status of health safety plans. (esri.com)
  • The Coronavirus Site Safety Plan Map Editor can be used to locate health resources and create social distance capacity estimates required for a health safety plan. (esri.com)
  • The Coronavirus Site Safety Map Viewer can be used by stakeholders to review a health safety map for a given location. (esri.com)
  • It wasn't until April 19, after another test, that the regional Health Ministry requalified Lopatina as the Astrakhan region's fourth confirmed coronavirus victim. (rferl.org)
  • Orange County Mayor Jerry Demings said the county has been monitoring and planning for the day the coronavirus would become a public health emergency. (wftv.com)
  • We at @OrangeCoFl have been monitoring and planning for the day the #Coronavirus would become a public health emergency. (wftv.com)
  • This remains true after you've accounted for the impact of other coronavirus risk factors, such as age, sex, where you live and other health conditions. (diabetes.org.uk)
  • Research has shown that factors like your age, bodyweight, HbA1c level , ethnicity or having other health conditions also have an impact on your risk of getting seriously ill with coronavirus. (diabetes.org.uk)
  • There is both health and economic pressure for a vaccine to be developed as the coronavirus continues to claim an average of 800 US lives a day, according to Johns Hopkins University data. (abc15.com)
  • Families everywhere are hunkering down together in order to stay close during the indefinite coronavirus self-quarantine. (yahoo.com)
  • Sharing this information with investors can demonstrate that senior leaders are attempting to stay ahead of the curve and anticipating impacts from the coronavirus across all regions, even those that haven't been severely affected yet. (mckinsey.com)
  • Summary of Middle East respiratory syndrome coronavirus transmission pathways. (cdc.gov)
  • In order to do this, we first need to know what the overall risk of dying from coronavirus is. (diabetes.org.uk)
  • The data are drawn directly from official coronavirus situation reports released regularly by the WHO (3/12). (kff.org)
  • The Food and Drug Administration resisted pressure from the Trump administration on Tuesday by releasing a set of guidelines that could push an emergency use authorization of a coronavirus vaccine past Election Day. (abc15.com)
  • Coronaviruses are a family of viruses. (medlineplus.gov)
  • Coronaviruses constitute the subfamily Orthocoronavirinae, in the family Coronaviridae, order Nidovirales and realm Riboviria. (wikipedia.org)
  • Because her initial coronavirus test returned negative, friends and relatives flocked to visit her family and pay respects. (rferl.org)

No images available that match "coronavirus"