Synthetic resins, containing an inert filler, that are widely used in dentistry.
The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility.
Materials used in the production of dental bases, restorations, impressions, prostheses, etc.
Acrylic resins, also known as polymethyl methacrylate (PMMA), are a type of synthetic resin formed from polymerized methyl methacrylate monomers, used in various medical applications such as dental restorations, orthopedic implants, and ophthalmic lenses due to their biocompatibility, durability, and transparency.
The reaction product of bisphenol A and glycidyl methacrylate that undergoes polymerization when exposed to ultraviolet light or mixed with a catalyst. It is used as a bond implant material and as the resin component of dental sealants and composite restorative materials.
Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group.
A restoration designed to remain in service for not less than 20 to 30 years, usually made of gold casting, cohesive gold, or amalgam. (Jablonski, Dictionary of Dentistry, 1992)
Polymers of high molecular weight which at some stage are capable of being molded and then harden to form useful components.
Creation of a smooth and glossy surface finish on a denture or amalgam.
Poly-2-methylpropenoic acids. Used in the manufacture of methacrylate resins and plastics in the form of pellets and granules, as absorbent for biological materials and as filters; also as biological membranes and as hydrogens. Synonyms: methylacrylate polymer; poly(methylacrylate); acrylic acid methyl ester polymer.
Flammable, amorphous, vegetable products of secretion or disintegration, usually formed in special cavities of plants. They are generally insoluble in water and soluble in alcohol, carbon tetrachloride, ether, or volatile oils. They are fusible and have a conchoidal fracture. They are the oxidation or polymerization products of the terpenes, and are mixtures of aromatic acids and esters. Most are soft and sticky, but harden after exposure to cold. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed)
The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property.
The description and measurement of the various factors that produce physical stress upon dental restorations, prostheses, or appliances, materials associated with them, or the natural oral structures.
An adhesion procedure for orthodontic attachments, such as plastic DENTAL CROWNS. This process usually includes the application of an adhesive material (DENTAL CEMENTS) and letting it harden in-place by light or chemical curing.
The hardening or polymerization of bonding agents (DENTAL CEMENTS) via exposure to light.
Light sources used to activate polymerization of light-cured DENTAL CEMENTS and DENTAL RESINS. Degree of cure and bond strength depends on exposure time, wavelength, and intensity of the curing light.
Characteristics or attributes of the outer boundaries of objects, including molecules.
A group of thermoplastic or thermosetting polymers containing polyisocyanate. They are used as ELASTOMERS, as coatings, as fibers and as foams.
Occlusal wear of the surfaces of restorations and surface wear of dentures.
Dental cements composed either of polymethyl methacrylate or dimethacrylate, produced by mixing an acrylic monomer liquid with acrylic polymers and mineral fillers. The cement is insoluble in water and is thus resistant to fluids in the mouth, but is also irritating to the dental pulp. It is used chiefly as a luting agent for fabricated and temporary restorations. (Jablonski's Dictionary of Dentistry, 1992, p159)
Nanometer-scale composite structures composed of organic molecules intimately incorporated with inorganic molecules. (Glossary of Biotechnology and Nanobiotechology Terms, 4th ed)
Compounds similar to hydrocarbons in which a tetravalent silicon atom replaces the carbon atom. They are very reactive, ignite in air, and form useful derivatives.
Substances used to bond COMPOSITE RESINS to DENTAL ENAMEL and DENTIN. These bonding or luting agents are used in restorative dentistry, ROOT CANAL THERAPY; PROSTHODONTICS; and ORTHODONTICS.
A prosthetic restoration that reproduces the entire surface anatomy of the visible natural crown of a tooth. It may be partial (covering three or more surfaces of a tooth) or complete (covering all surfaces). It is made of gold or other metal, porcelain, or resin.
Inability or inadequacy of a dental restoration or prosthesis to perform as expected.
Zirconium. A rather rare metallic element, atomic number 40, atomic weight 91.22, symbol Zr. (From Dorland, 28th ed)
The quality or state of being able to be bent or creased repeatedly. (From Webster, 3d ed)
An operation in which carious material is removed from teeth and biomechanically correct forms are established in the teeth to receive and retain restorations. A constant requirement is provision for prevention of failure of the restoration through recurrence of decay or inadequate resistance to applied stresses. (Boucher's Clinical Dental Terminology, 4th ed, p239-40)
Composite materials composed of an ion-leachable glass embedded in a polymeric matrix. They differ from GLASS IONOMER CEMENTS in that partially silanized glass particles are used to provide a direct bond to the resin matrix and the matrix is primarily formed by a light-activated, radical polymerization reaction.
Chemical reaction in which monomeric components are combined to form POLYMERS (e.g., POLYMETHYLMETHACRYLATE).
The hardening or polymerization of bonding agents (DENTAL CEMENTS) via chemical reactions, usually involving two components. This type of dental bonding uses a self-cure or dual-cure system.
The maximum stress a material subjected to a stretching load can withstand without tearing. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p2001)
A hard thin translucent layer of calcified substance which envelops and protects the dentin of the crown of the tooth. It is the hardest substance in the body and is almost entirely composed of calcium salts. Under the microscope, it is composed of thin rods (enamel prisms) held together by cementing substance, and surrounded by an enamel sheath. (From Jablonski, Dictionary of Dentistry, 1992, p286)
Cements that act through infiltration and polymerization within the dentinal matrix and are used for dental restoration. They can be adhesive resins themselves, adhesion-promoting monomers, or polymerization initiators that act in concert with other agents to form a dentin-bonding system.
The degree of approximation or fit of filling material or dental prosthetic to the tooth surface. A close marginal adaptation and seal at the interface is important for successful dental restorations.
Preparation of TOOTH surfaces and DENTAL MATERIALS with etching agents, usually phosphoric acid, to roughen the surface to increase adhesion or osteointegration.
The hard portion of the tooth surrounding the pulp, covered by enamel on the crown and cementum on the root, which is harder and denser than bone but softer than enamel, and is thus readily abraded when left unprotected. (From Jablonski, Dictionary of Dentistry, 1992)
A polymer obtained by reacting polyacrylic acid with a special anion-leachable glass (alumino-silicate). The resulting cement is more durable and tougher than others in that the materials comprising the polymer backbone do not leach out.
Use of a metal casting, usually with a post in the pulp or root canal, designed to support and retain an artificial crown.
Coloring, shading, or tinting of prosthetic components, devices, and materials.
A solution used for irrigating the mouth in xerostomia and as a substitute for saliva.
Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.
The internal resistance of a material to moving some parts of it parallel to a fixed plane, in contrast to stretching (TENSILE STRENGTH) or compression (COMPRESSIVE STRENGTH). Ionic crystals are brittle because, when subjected to shear, ions of the same charge are brought next to each other, which causes repulsion.
Silicon polymers that contain alternate silicon and oxygen atoms in linear or cyclic molecular structures.
Inorganic derivatives of phosphoric acid (H3PO4). Note that organic derivatives of phosphoric acids are listed under ORGANOPHOSPHATES.
High molecular weight, insoluble polymers which contain functional groups that are capable of undergoing exchange reactions (ION EXCHANGE) with either cations or anions.
Restorations of metal, porcelain, or plastic made to fit a cavity preparation, then cemented into the tooth. Onlays are restorations which fit into cavity preparations and overlay the occlusal surface of a tooth or teeth. Onlays are retained by frictional or mechanical factors.
Polymeric resins containing a combination of SILOXANES and OXIRANES.
The visually perceived property of objects created by absorption or reflection of specific wavelengths of light.
The process of repairing broken or worn parts of a PERMANENT DENTAL RESTORATION.
Break or rupture of a tooth or tooth root.
Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid.
Preparation of TOOTH surfaces, and of materials bonded to teeth or DENTAL IMPLANTS, with agents and methods which roughen the surface to facilitate adhesion. Agents include phosphoric or other acids (ACID ETCHING, DENTAL) and methods include LASERS.
An inner coating, as of varnish or other protective substance, to cover the dental cavity wall. It is usually a resinous film-forming agent dissolved in a volatile solvent, or a suspension of calcium hydroxide in a solution of a synthetic resin. The lining seals the dentinal tubules and protects the pulp before a restoration is inserted. (Jablonski, Illustrated Dictionary of Dentistry, 1982)
Alloys that contain a high percentage of gold. They are used in restorative or prosthetic dentistry.
Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY.
The plan and delineation of dental prostheses in general or a specific dental prosthesis. It does not include DENTURE DESIGN. The framework usually consists of metal.
Polymeric resins derived from OXIRANES and characterized by strength and thermosetting properties. Epoxy resins are often used as dental materials.
A tooth from which the dental pulp has been removed or is necrotic. (Boucher, Clinical Dental Terminology, 4th ed)
An oxide of aluminum, occurring in nature as various minerals such as bauxite, corundum, etc. It is used as an adsorbent, desiccating agent, and catalyst, and in the manufacture of dental cements and refractories.
Inorganic compounds that contain carbon as an integral part of the molecule but are not derived from hydrocarbons.
A test to determine the relative hardness of a metal, mineral, or other material according to one of several scales, such as Brinell, Mohs, Rockwell, Vickers, or Shore. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Physical reactions involved in the formation of or changes in the structure of atoms and molecules and their interactions.
A type of porcelain used in dental restorations, either jacket crowns or inlays, artificial teeth, or metal-ceramic crowns. It is essentially a mixture of particles of feldspar and quartz, the feldspar melting first and providing a glass matrix for the quartz. Dental porcelain is produced by mixing ceramic powder (a mixture of quartz, kaolin, pigments, opacifiers, a suitable flux, and other substances) with distilled water. (From Jablonski's Dictionary of Dentistry, 1992)
A fabricated tooth substituting for a natural tooth in a prosthesis. It is usually made of porcelain or plastic.
Chemicals that are used to oxidize pigments in TEETH and thus effect whitening.
The seepage of fluids, debris, and micro-organisms between the walls of a prepared dental cavity and the restoration.
Products made by baking or firing nonmetallic minerals (clay and similar materials). In making dental restorations or parts of restorations the material is fused porcelain. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Boucher's Clinical Dental Terminology, 4th ed)
The act of cleaning teeth with a brush to remove plaque and prevent tooth decay. (From Webster, 3d ed)
One of the eight permanent teeth, two on either side in each jaw, between the canines (CUSPID) and the molars (MOLAR), serving for grinding and crushing food. The upper have two cusps (bicuspid) but the lower have one to three. (Jablonski, Dictionary of Dentistry, 1992, p822)
The placing of a body or a part thereof into a liquid.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
A prosthesis or restoration placed for a limited period, from several days to several months, which is designed to seal the tooth and maintain its position until a permanent restoration (DENTAL RESTORATION, PERMANENT) will replace it. (From Jablonski, Dictionary of Dentistry, 1992)
Chemical compound used to initiate polymerization of dental resins by the use of DENTAL CURING LIGHTS. It absorbs UV light and undergoes decomposition into free radicals that initiate polymerization process of the resins in the mix. Each photoinitiator has optimum emission spectrum and intensity for proper curing of dental materials.
The use of a layer of tooth-colored material, usually porcelain or acrylic resin, applied to the surface of natural teeth, crowns, or pontics by fusion, cementation, or mechanical retention.
Any of the numerous types of clay which contain varying proportions of Al2O3 and SiO2. They are made synthetically by heating aluminum fluoride at 1000-2000 degrees C with silica and water vapor. (From Hawley's Condensed Chemical Dictionary, 11th ed)
A mixture of metallic elements or compounds with other metallic or metalloid elements in varying proportions for use in restorative or prosthetic dentistry.
Organic-inorganic hybrid polymers developed primarily for DENTAL RESTORATION. They typically contain a defined mixture of ORGANOSILICON COMPOUNDS; CERAMICS; and organic POLYMERS.
The pathologic wearing away of the tooth substance by brushing, bruxism, clenching, and other mechanical causes. It is differentiated from TOOTH ATTRITION in that this type of wearing away is the result of tooth-to-tooth contact, as in mastication, occurring only on the occlusal, incisal, and proximal surfaces. It differs also from TOOTH EROSION, the progressive loss of the hard substance of a tooth by chemical processes not involving bacterial action. (From Jablonski, Dictionary of Dentistry, 1992, p2)
Inorganic compounds that contain barium as an integral part of the molecule.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode.
The use of a chemical oxidizing agent to whiten TEETH. In some procedures the oxidation process is activated by the use of heat or light.
An alloy used in restorative dentistry that contains mercury, silver, tin, copper, and possibly zinc.
Stainless steel. A steel containing Ni, Cr, or both. It does not tarnish on exposure and is used in corrosive environments. (Grant & Hack's Chemical Dictionary, 5th ed)
A family of nonmetallic, generally electronegative, elements that form group 17 (formerly group VIIa) of the periodic table.
Diamond. A crystalline form of carbon that occurs as hard, colorless or tinted isomeric crystals. It is used as a precious stone, for cutting glass, and as bearings for delicate mechanisms. (From Grant & Hackh's Chemical Dictionary, 5th ed)
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A property of the surface of an object that makes it stick to another surface.
Natural teeth or teeth roots used as anchorage for a fixed or removable denture or other prosthesis (such as an implant) serving the same purpose.
The process of reuniting or replacing broken or worn parts of a denture.
The generic term for salts derived from silica or the silicic acids. They contain silicon, oxygen, and one or more metals, and may contain hydrogen. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th Ed)
A change of a substance from one form or state to another.
Substances that cause the adherence of two surfaces. They include glues (properly collagen-derived adhesives), mucilages, sticky pastes, gums, resins, or latex.
Small metal or ceramic attachments used to fasten an arch wire. These attachments are soldered or welded to an orthodontic band or cemented directly onto the teeth. Bowles brackets, edgewise brackets, multiphase brackets, ribbon arch brackets, twin-wire brackets, and universal brackets are all types of orthodontic brackets.
The most posterior teeth on either side of the jaw, totaling eight in the deciduous dentition (2 on each side, upper and lower), and usually 12 in the permanent dentition (three on each side, upper and lower). They are grinding teeth, having large crowns and broad chewing surfaces. (Jablonski, Dictionary of Dentistry, 1992, p821)
Procedures carried out with regard to the teeth or tooth structures preparatory to specified dental therapeutic and surgical measures.
Inorganic compounds that contain silicon as an integral part of the molecule.
Water-soluble low-molecular-weight polymers of acrylic or methacrylic acid that form solid, insoluble products when mixed with specially prepared ZnO powder. The resulting cement adheres to dental enamel and is also used as a luting agent.
The part of a tooth from the neck to the apex, embedded in the alveolar process and covered with cementum. A root may be single or divided into several branches, usually identified by their relative position, e.g., lingual root or buccal root. Single-rooted teeth include mandibular first and second premolars and the maxillary second premolar teeth. The maxillary first premolar has two roots in most cases. Maxillary molars have three roots. (Jablonski, Dictionary of Dentistry, 1992, p690)
Quartz (SiO2). A glassy or crystalline form of silicon dioxide. Many colored varieties are semiprecious stones. (From Grant & Hackh's Chemical Dictionary, 5th ed)
The selected form given to a natural tooth when it is reduced by instrumentation to receive a prosthesis (e.g., artificial crown or a retainer for a fixed or removable prosthesis). The selection of the form is guided by clinical circumstances and physical properties of the materials that make up the prosthesis. (Boucher's Clinical Dental Terminology, 4th ed, p239)
The methyl esters of methacrylic acid that polymerize easily and are used as tissue cements, dental materials, and absorbent for biological substances.
The maximum compression a material can withstand without failure. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p427)
High-molecular-weight insoluble polymers that contain functional cationic groups capable of undergoing exchange reactions with anions.
Polymerized methyl methacrylate monomers which are used as sheets, moulding, extrusion powders, surface coating resins, emulsion polymers, fibers, inks, and films (From International Labor Organization, 1983). This material is also used in tooth implants, bone cements, and hard corneal contact lenses.
The quality or state of being wettable or the degree to which something can be wet. This is also the ability of any solid surface to be wetted when in contact with a liquid whose surface tension is reduced so that the liquid spreads over the surface of the solid.
Elements of limited time intervals, contributing to particular results or situations.
The force applied by the masticatory muscles in dental occlusion.
Hydrofluoric acid. A solution of hydrogen fluoride in water. It is a colorless fuming liquid which can cause painful burns.
A denture replacing one or more (but not all) natural teeth. It is supported and retained by underlying tissue and some or all of the remaining teeth.
Technique whereby the weight of a sample can be followed over a period of time while its temperature is being changed (usually increased at a constant rate).
Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Substances that inhibit or arrest DENTAL CARIES formation. (Boucher's Clinical Dental Terminology, 4th ed)
Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS).
Numerical expression indicating the measure of stiffness in a material. It is defined by the ratio of stress in a unit area of substance to the resulting deformation (strain). This allows the behavior of a material under load (such as bone) to be calculated.
High molecular weight insoluble polymers which contain functional anionic groups that are capable of undergoing exchange reactions with cations.
Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS.
That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range.
The constricted part of the tooth at the junction of the crown and root or roots. It is often referred to as the cementoenamel junction (CEJ), the line at which the cementum covering the root of a tooth and the enamel of the tooth meet. (Jablonski, Dictionary of Dentistry, 1992, p530, p433)
The nonexpendable items used by the dentist or dental staff in the performance of professional duties. (From Boucher's Clinical Dental Terminology, 4th ed, p106)
The part of a denture that overlies the soft tissue and supports the supplied teeth and is supported in turn by abutment teeth or the residual alveolar ridge. It is usually made of resins or metal or their combination.
Loss of the tooth substance by chemical or mechanical processes
Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria.
A class of statistical methods applicable to a large set of probability distributions used to test for correlation, location, independence, etc. In most nonparametric statistical tests, the original scores or observations are replaced by another variable containing less information. An important class of nonparametric tests employs the ordinal properties of the data. Another class of tests uses information about whether an observation is above or below some fixed value such as the median, and a third class is based on the frequency of the occurrence of runs in the data. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1284; Corsini, Concise Encyclopedia of Psychology, 1987, p764-5)
Silver. An element with the atomic symbol Ag, atomic number 47, and atomic weight 107.87. It is a soft metal that is used medically in surgical instruments, dental prostheses, and alloys. Long-continued use of silver salts can lead to a form of poisoning known as ARGYRIA.
A technique using a pneumatic, high-pressure stream of aluminum oxide to remove DENTAL ENAMEL; DENTIN; and restorative materials from teeth. In contrast to using DENTAL HIGH-SPEED EQUIPMENT, this method usually requires no dental anesthesia (ANESTHESIA, DENTAL) and reduces risks of tooth chipping and microfracturing. It is used primarily for routine DENTAL CAVITY PREPARATION.
The process of keeping pharmaceutical products in an appropriate location.
Relating to the size of solids.
Materials that have a limited and usually variable electrical conductivity. They are particularly useful for the production of solid-state electronic devices.
Chemical reactions effected by light.
Magnesium oxide (MgO). An inorganic compound that occurs in nature as the mineral periclase. In aqueous media combines quickly with water to form magnesium hydroxide. It is used as an antacid and mild laxative and has many nonmedicinal uses.
Any of the eight frontal teeth (four maxillary and four mandibular) having a sharp incisal edge for cutting food and a single root, which occurs in man both as a deciduous and a permanent tooth. (Jablonski, Dictionary of Dentistry, 1992, p820)
Resistance and recovery from distortion of shape.
The methyl ester of methacrylic acid. It polymerizes easily to form POLYMETHYL METHACRYLATE. It is used as a bone cement.
The teeth of the first dentition, which are shed and replaced by the permanent teeth.
A phenethylamine that is an isomer of EPHEDRINE which has less central nervous system effects and usage is mainly for respiratory tract decongestion.
Agents, usually topical, that cause the contraction of tissues for the control of bleeding or secretions.
That phase of clinical dentistry concerned with the restoration of parts of existing teeth that are defective through disease, trauma, or abnormal development, to the state of normal function, health, and esthetics, including preventive, diagnostic, biological, mechanical, and therapeutic techniques, as well as material and instrument science and application. (Jablonski's Dictionary of Dentistry, 2d ed, p237)
The process of reuniting or replacing a broken or worn dental prosthesis or its part.
The fusion of ceramics (porcelain) to an alloy of two or more metals for use in restorative and prosthodontic dentistry. Examples of metal alloys employed include cobalt-chromium, gold-palladium, gold-platinum-palladium, and nickel-based alloys.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Skills, techniques, standards, and principles used to improve the art and symmetry of the teeth and face to improve the appearance as well as the function of the teeth, mouth, and face. (From Boucher's Clinical Dental Terminology, 4th ed, p108)
The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods.
A mild astringent and topical protectant with some antiseptic action. It is also used in bandages, pastes, ointments, dental cements, and as a sunblock.
Tools used in dentistry that operate at high rotation speeds.
The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
A tooth's loss of minerals, such as calcium in hydroxyapatite from the tooth matrix, caused by acidic exposure. An example of the occurrence of demineralization is in the formation of dental caries.
A dark-gray, metallic element of widespread distribution but occurring in small amounts; atomic number, 22; atomic weight, 47.90; symbol, Ti; specific gravity, 4.5; used for fixation of fractures. (Dorland, 28th ed)
Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices.
LIGHT, it's processes and properties, and the characteristics of materials interacting with it.
Localized destruction of the tooth surface initiated by decalcification of the enamel followed by enzymatic lysis of organic structures and leading to cavity formation. If left unchecked, the cavity may penetrate the enamel and dentin and reach the pulp.
The third tooth to the left and to the right of the midline of either jaw, situated between the second INCISOR and the premolar teeth (BICUSPID). (Jablonski, Dictionary of Dentistry, 1992, p817)
Application of a protective agent to an exposed pulp (direct capping) or the remaining thin layer of dentin over a nearly exposed pulp (indirect capping) in order to allow the pulp to recover and maintain its normal vitality and function.
Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS.
Solutions for rinsing the mouth, possessing cleansing, germicidal, or palliative properties. (From Boucher's Clinical Dental Terminology, 4th ed)
Inorganic compounds that contain potassium as an integral part of the molecule.
The study of the energy of electrons ejected from matter by the photoelectric effect, i.e., as a direct result of absorption of energy from electromagnetic radiation. As the energies of the electrons are characteristic of a specific element, the measurement of the energy of these electrons is a technique used to determine the chemical composition of surfaces.
Erbium. An element of the rare earth family of metals. It has the atomic symbol Er, atomic number 68, and atomic weight 167.26.
Natural or synthetic dyes used as coloring agents in processed foods.
The upper part of the tooth, which joins the lower part of the tooth (TOOTH ROOT) at the cervix (TOOTH CERVIX) at a line called the cementoenamel junction. The entire surface of the crown is covered with enamel which is thicker at the extremity and becomes progressively thinner toward the cervix. (From Jablonski, Dictionary of Dentistry, 1992, p216)
The joining of objects by means of a cement (e.g., in fracture fixation, such as in hip arthroplasty for joining of the acetabular component to the femoral component). In dentistry, it is used for the process of attaching parts of a tooth or restorative material to a natural tooth or for the attaching of orthodontic bands to teeth by means of an adhesive.
A computer based method of simulating or analyzing the behavior of structures or components.
A spectroscopic technique in which a range of wavelengths is presented simultaneously with an interferometer and the spectrum is mathematically derived from the pattern thus obtained.
A beverage made from ground COFFEA beans (SEEDS) infused in hot water. It generally contains CAFFEINE and THEOPHYLLINE unless it is decaffeinated.
A species of gram-positive, coccoid bacteria that is numerous in the mouth and throat. It is a common cause of endocarditis and is also implicated in dental plaque formation.
"Space maintenance in dentistry refers to the use of an appliance (such as a band or a crown) to maintain the space created by a missing primary tooth, preventing the drifting of adjacent teeth and allowing the correct eruption path for the permanent successor."
Inorganic compounds that contain calcium as an integral part of the molecule.
A high-molecular-weight polymeric elastomer derived from the milk juice (LATEX) of HEVEA brasiliensis and other trees and plants. It is a substance that can be stretched at room temperature to at least twice its original length and after releasing the stress, retract rapidly, and recover its original dimensions fully.
The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A chemical element having an atomic weight of 106.4, atomic number of 46, and the symbol Pd. It is a white, ductile metal resembling platinum, and following it in abundance and importance of applications. It is used in dentistry in the form of gold, silver, and copper alloys.
A species of gram-positive, coccoid bacteria isolated from the human tooth surface. Strains have been shown to be cariogenic in experimental animals and may be associated with human dental caries.
Inorganic compounds that contain aluminum as an integral part of the molecule.
A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects.
Preparatory activities in ROOT CANAL THERAPY by partial or complete extirpation of diseased pulp, cleaning and sterilization of the empty canal, enlarging and shaping the canal to receive the sealing material. The cavity may be prepared by mechanical, sonic, chemical, or other means. (From Dorland, 28th ed, p1700)
A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed)
A richly vascularized and innervated connective tissue of mesodermal origin, contained in the central cavity of a tooth and delimited by the dentin, and having formative, nutritive, sensory, and protective functions. (Jablonski, Dictionary of Dentistry, 1992)
The application of dental knowledge to questions of law.
An occlusion resulting in overstrain and injury to teeth, periodontal tissue, or other oral structures.
Inorganic or organic compounds that contain boron as an integral part of the molecule.
The plan, delineation, and location of actual structural elements of dentures. The design can relate to retainers, stress-breakers, occlusal rests, flanges, framework, lingual or palatal bars, reciprocal arms, etc.
The force per unit area that the air exerts on any surface in contact with it. Primarily used for articles pertaining to air pressure within a closed environment.
Surface resistance to the relative motion of one body against the rubbing, sliding, rolling, or flowing of another with which it is in contact.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Presence of warmth or heat or a temperature notably higher than an accustomed norm.
Condition of having pores or open spaces. This often refers to bones, bone implants, or bone cements, but can refer to the porous state of any solid substance.
A trace element that constitutes about 27.6% of the earth's crust in the form of SILICON DIOXIDE. It does not occur free in nature. Silicon has the atomic symbol Si, atomic number 14, and atomic weight [28.084; 28.086].
Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements.
Agents used to occlude dental enamel pits and fissures in the prevention of dental caries.
One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative.
Methylester of cellulose. Methylcellulose is used as an emulsifying and suspending agent in cosmetics, pharmaceutics and the chemical industry. It is used therapeutically as a bulk laxative.
A class of compounds composed of repeating 5-carbon units of HEMITERPENES.
Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging.
A peroxide derivative that has been used topically for BURNS and as a dermatologic agent in the treatment of ACNE and POISON IVY DERMATITIS. It is used also as a bleach in the food industry.
Substances made up of an aggregation of small particles, as that obtained by grinding or trituration of a solid drug. In pharmacy it is a form in which substances are administered. (From Dorland, 28th ed)
Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function.

The crystal growth technique--a laboratory evaluation of bond strengths. (1/1129)

An ex vivo study was carried out to determine differences in the bond strengths achieved with brackets placed using a crystal growth technique compared with a conventional acid-etch technique. A solution of 37 per cent phosphoric acid was used for acid-etching and a commercially available polyacrylic acid gel, Crystal-lok for crystal growth. A heavily-filled composite resin was used for all samples to bond brackets to healthy premolar teeth extracted for orthodontic purposes. Polycrystalline ceramic and stainless steel brackets were used and tested to both tensile and shear failure using an Instron Universal Testing machine. The tensile and shear bond strengths were recorded in kgF. In view of difficulties experienced with previous authors using different units to describe their findings, the data were subsequently converted to a range of units in order to facilitate direct comparison. The crystal growth technique produced significantly lower bond strengths than the acid-etch technique for ceramic and stainless steel brackets, both in tensile and shear mode. The tensile bond strength for stainless steel brackets with crystal growth was 2.2 kg compared with 6.01 kg for acid-etch, whilst with ceramic brackets the tensile bond strengths were 3.9 kg for crystal growth and 5.55 kg for acid-etch. The mean shear bond strength for stainless steel brackets with crystal growth was 12.61 kg compared with 21.55 kg for acid-etch, whilst with ceramic brackets the shear bond strengths were 7.93 kg with crystal growth compared with 16.55 kg for acid-tech. These bond strengths were below those previously suggested as clinically acceptable.  (+info)

Marginal adaptation of commercial compomers in dentin cavity. (2/1129)

The dentin cavity adaptation and setting characteristics of four commercial compomers were evaluated by measuring the wall-to-wall contraction gap width in the cylindrical dentin cavity and measuring the compressive strength for a maximum of 14 days after setting. The dentin cavity wall was pretreated by the dentin adhesives according to each manufacturer's instructions or the experimental contraction gap-free dentin bonding system. Complete marginal integrity was obtained in only one compomer and two resin composites which were combined with the experimental dentin bonding system. The compressive strength of two resin composites and two compomers ten minutes after setting was comparable to that after 14 days which indicated that the compomers exhibited setting characteristics as rapidly as the resin composite. It was concluded that a high efficacy dentin bonding system is required for commercial compomers to prevent gap formation during irradiation caused by the rapid setting shrinkage.  (+info)

A laboratory investigation to compare enamel preparation by sandblasting or acid etching prior to bracket bonding. (3/1129)

A laboratory investigation to compare the mean shear debonding force and mode of bond failure of metallic brackets bonded to sandblasted and acid-etched enamel is described. The buccal surfaces of 30 extracted human premolars were sandblasted for 5 seconds with 50 mu alumina and the buccal surfaces of a further 30 human premolars were etched with 37 per cent phosphoric acid for 15 seconds. Following storage for 24 hours at 37 degrees C in distilled water, shear debonding force was measured using an Instron Universal Testing Machine with a cross-head speed of 10 mm/minute. Mean shear debonding force was significantly lower for brackets bonded to sandblasted enamel compared to acid etched enamel (P < 0.001). Weibull analysis showed that at a given stress the probability of failure was significantly greater for brackets bonded to sandblasted enamel. Brackets bonded to etched enamel showed a mixed mode of bond failure whereas following sandblasting, failure was adhesive at the enamel/composite interface (P < 0.01).  (+info)

Photopolymerization of composite resin using the argon laser. (4/1129)

Because of the dental profession's increased utilization of light-cured restorative materials, there has been a corresponding increase in research into the light sources used to initiate polymerization. The argon laser is one promising source, as the wavelength of light emitted by this laser is optimal for the initiation of polymerization of composite resins. The literature reflects a strong divergence of opinion about many aspects of the effectiveness of laser curing compared to conventional light curing. Research indicates that the argon laser offers a greater depth and degree of polymerization, less time required and an enhancement of the physical properties of composite resins polymerized. These advantages are offset by reports that the increased polymerization caused by the laser results in increased shrinkage, brittleness and marginal leakage. Dentists interested in the new technology need to monitor ongoing studies.  (+info)

Ultraconservative resin restorations. (5/1129)

Ultraconservative dentistry represents a great step forward for the dentist, the profession, and especially the patient. It involves the early detection and complete elimination of all accessible and non-accessible carious material from the tooth. Untreated caries can be extremely and rapidly destructive. The earliest interception of decay maintains total dental health and increases the likelihood of the restored teeth lasting a lifetime.  (+info)

The oral effects of smokeless tobacco. (6/1129)

Smokeless tobacco use has increased rapidly in North America. This form of tobacco use has many oral effects including leukoplakia, oral cancer, loss of periodontal support (recession), and staining of teeth and composite restorations. Systemic effects such as nicotine dependence, transient hypertension and cardiovascular disease may also result from smokeless tobacco use. This paper aims to guide dental practitioners in identifying oral lesions that occur due to the use of smokeless tobacco and also offer guidelines on how to counsel patients who express a desire to stop using smokeless tobacco products.  (+info)

Effects of composite thickness on the shear bond strength to dentin. (7/1129)

The manufacturers of some condensable posterior composites claim that their products can be placed in bulk and light-cured in 5-mm-thick increments. This study compared the shear bond strengths of three composite resins when bonded to dentin in 2- and 5-mm-thick increments. Overall the bond strengths were adversely affected by the composite thickness (p < 0.0001). The shear bond strength of each composite tested was much lower when polymerized in a 5-mm increment than in a 2-mm increment of composite (p < or = 0.0005). The two condensable composites tested had a lower bond strength than the conventional composite when polymerized in a 5-mm bulk increment (p < or = 0.01).  (+info)

In situ self hardening bioactive composite for bone and dental surgery. (8/1129)

A new biomaterial is presented which consists of a cellulose derivative--silanised hydroxyethylcellulose (HEC-SIL) and biphasic calcium phosphate (BCP). Rheological properties of the polymer itself and its mixture with BCP are pH-dependent. At pH 10-12 HEC-SIL is liquid and undergoes quick gellation at pH < 9. Similarly, the paste of HEC-SIL and BCP is fluid and injectable at higher pH and solidifies in biological solutions. The rate of this solidification can be easily controlled by the degree of substitution of hydroxyethylcellulose with silicoalkoxy groups.  (+info)

Composite resins, also known as dental composites or filling materials, are a type of restorative material used in dentistry to restore the function, integrity, and morphology of missing tooth structure. They are called composite resins because they are composed of a combination of materials, including a resin matrix (usually made of bisphenol A-glycidyl methacrylate or urethane dimethacrylate) and filler particles (commonly made of silica, quartz, or glass).

The composite resins are widely used in modern dentistry due to their excellent esthetic properties, ease of handling, and ability to bond directly to tooth structure. They can be used for a variety of restorative procedures, including direct and indirect fillings, veneers, inlays, onlays, and crowns.

Composite resins are available in various shades and opacities, allowing dentists to match the color and translucency of natural teeth closely. They also have good wear resistance, strength, and durability, making them a popular choice for both anterior and posterior restorations. However, composite resins may be prone to staining over time and may require more frequent replacement compared to other types of restorative materials.

I'm happy to help! However, I must clarify that "materials testing" is not a medical term per se. It is a term used in various fields, including engineering and materials science, to describe the process of subjecting materials to different tests to evaluate their properties and performance under various conditions.

In the context of medical devices or implants, materials testing may refer to the evaluation of the physical and mechanical properties of materials used in their construction. These tests can include assessments of strength, durability, biocompatibility, and other factors that are critical to ensuring the safety and efficacy of medical devices.

Medical device manufacturers must comply with regulatory standards for materials testing to ensure that their products meet specific requirements for performance, safety, and quality. These standards may vary depending on the type of device, its intended use, and the country or region in which it will be marketed and sold.

Dental materials are substances that are used in restorative dentistry, prosthodontics, endodontics, orthodontics, and preventive dentistry to restore or replace missing tooth structure, improve the function and esthetics of teeth, and protect the oral tissues from decay and disease. These materials can be classified into various categories based on their physical and chemical properties, including metals, ceramics, polymers, composites, cements, and alloys.

Some examples of dental materials include:

1. Amalgam: a metal alloy used for dental fillings that contains silver, tin, copper, and mercury. It is strong, durable, and resistant to wear but has been controversial due to concerns about the toxicity of mercury.
2. Composite: a tooth-colored restorative material made of a mixture of glass or ceramic particles and a bonding agent. It is used for fillings, veneers, and other esthetic dental treatments.
3. Glass ionomer cement: a type of cement used for dental restorations that releases fluoride ions and helps prevent tooth decay. It is often used for fillings in children's teeth or as a base under crowns and bridges.
4. Porcelain: a ceramic material used for dental crowns, veneers, and other esthetic restorations. It is strong, durable, and resistant to staining but can be brittle and prone to fracture.
5. Gold alloy: a metal alloy used for dental restorations that contains gold, copper, and other metals. It is highly biocompatible, corrosion-resistant, and malleable but can be expensive and less esthetic than other materials.
6. Acrylic resin: a type of polymer used for dental appliances such as dentures, night guards, and orthodontic retainers. It is lightweight, flexible, and easy to modify but can be less durable than other materials.

The choice of dental material depends on various factors, including the location and extent of the restoration, the patient's oral health status, their esthetic preferences, and their budget. Dental professionals must consider these factors carefully when selecting the appropriate dental material for each individual case.

Acrylic resins are a type of synthetic polymer made from methacrylate monomers. They are widely used in various industrial, commercial, and medical applications due to their unique properties such as transparency, durability, resistance to breakage, and ease of coloring or molding. In the medical field, acrylic resins are often used to make dental restorations like false teeth and fillings, medical devices like intraocular lenses, and surgical instruments. They can also be found in orthopedic implants, bone cement, and other medical-grade plastics. Acrylic resins are biocompatible, meaning they do not typically cause adverse reactions when in contact with living tissue. However, they may release small amounts of potentially toxic chemicals over time, so their long-term safety in certain applications is still a subject of ongoing research.

Bisphenol A-Glycidyl Methacrylate (BPAGM) is a type of chemical compound that belongs to the class of organic compounds known as glycidyl methacrylates. It is created by the reaction between bisphenol A and glycidyl methacrylate.

BPAGM is used in various industrial applications, including the production of coatings, adhesives, and resins. In the medical field, it has been used as a component in some dental materials, such as bonding agents and composite resins. However, due to concerns about its potential health effects, including its possible estrogenic activity and potential to cause reproductive toxicity, its use in dental materials has become more restricted in recent years.

It is important to note that exposure to BPAGM should be limited as much as possible, and appropriate safety measures should be taken when handling this chemical compound.

Methacrylates are a group of chemical compounds that contain the methacrylate functional group, which is a vinyl group (CH2=CH-) with a carbonyl group (C=O) at the β-position. This structure gives them unique chemical and physical properties, such as low viscosity, high reactivity, and resistance to heat and chemicals.

In medical terms, methacrylates are used in various biomedical applications, such as dental restorative materials, bone cements, and drug delivery systems. For example, methacrylate-based resins are commonly used in dentistry for fillings, crowns, and bridges due to their excellent mechanical properties and adhesion to tooth structures.

However, there have been concerns about the potential toxicity of methacrylates, particularly their ability to release monomers that can cause allergic reactions, irritation, or even mutagenic effects in some individuals. Therefore, it is essential to use these materials with caution and follow proper handling and safety protocols.

A dental restoration, permanent, is a type of dental treatment that involves the use of materials such as gold, silver amalgam, porcelain, or composite resin to repair and restore the function, form, and aesthetics of a damaged or decayed tooth. Unlike temporary restorations, which are meant to be replaced with a permanent solution, permanent restorations are designed to last for many years, if not a lifetime.

Examples of permanent dental restorations include:

1. Dental fillings: These are used to fill cavities caused by tooth decay. The decayed portion of the tooth is removed, and the resulting space is filled with a material such as amalgam, composite resin, or gold.
2. Inlays and onlays: These are similar to dental fillings but are made in a laboratory and then bonded to the tooth. They are used when there is not enough tooth structure left to support a filling.
3. Dental crowns: Also known as caps, these are used to cover and protect a tooth that has been damaged or weakened by decay, injury, or wear. The crown fits over the entire tooth, restoring its shape, size, and strength.
4. Dental bridges: These are used to replace one or more missing teeth. A bridge consists of one or more artificial teeth (pontics) that are held in place by crowns on either side.
5. Dental implants: These are used to replace missing teeth. An implant is a small titanium post that is surgically placed in the jawbone, where it functions as an anchor for a replacement tooth or bridge.

Permanent dental restorations are custom-made for each patient and require careful planning and preparation. They are designed to blend in with the surrounding teeth and provide a natural-looking appearance. With proper care and maintenance, these restorations can last for many years and help preserve the health and function of the teeth and mouth.

Synthetic resins are artificially produced substances that have properties similar to natural resins. They are typically created through polymerization, a process in which small molecules called monomers chemically bind together to form larger, more complex structures known as polymers.

Synthetic resins can be classified into several categories based on their chemical composition and properties, including:

1. Thermosetting resins: These resins undergo a chemical reaction when heated, resulting in a rigid and infusible material that cannot be melted or reformed once it has cured. Examples include epoxy, phenolic, and unsaturated polyester resins.

2. Thermoplastic resins: These resins can be repeatedly softened and hardened by heating and cooling without undergoing any significant chemical changes. Examples include polyethylene, polypropylene, and polystyrene.

3. Elastomeric resins: These resins have the ability to stretch and return to their original shape when released, making them ideal for use in applications that require flexibility and durability. Examples include natural rubber, silicone rubber, and polyurethane.

Synthetic resins are widely used in various industries, including construction, automotive, electronics, and healthcare. In the medical field, they may be used to create dental restorations, medical devices, and drug delivery systems, among other applications.

Dental polishing is a procedure in dentistry that is performed to smooth and clean the surfaces of teeth after professional dental cleaning (prophylaxis), restoration, or other dental treatments. It is usually done using a slow-speed handpiece with a soft, rubber cup attached to it, which holds a polishing paste or a slurry of pumice and water. The polishing paste may contain an abrasive agent, fluoride, or a flavoring agent. The dental professional moves the handpiece in a circular motion over the tooth surface to remove stains, plaque, and minor surface roughness, leaving the teeth smooth and shiny. Dental polishing helps to prevent the buildup of plaque and tartar, reduce the risk of decay and gum disease, and improve the overall oral hygiene and aesthetics of the teeth.

Polymethacrylic acids are not typically referred to as a medical term, but rather as a chemical one. They are a type of synthetic polymer made up of repeating units of methacrylic acid (MAA). These polymers have various applications in different industries, including the medical field.

In medicine, polymethacrylates are often used in the formulation of controlled-release drug delivery systems, such as beads or microspheres, due to their ability to swell and shrink in response to changes in pH or temperature. This property allows for the gradual release of drugs encapsulated within these polymers over an extended period.

Polymethacrylates are also used in dental applications, such as in the production of artificial teeth and dentures, due to their durability and resistance to wear. Additionally, they can be found in some surgical sealants and adhesives.

While polymethacrylic acids themselves may not have a specific medical definition, their various forms and applications in medical devices and drug delivery systems contribute significantly to the field of medicine.

In a medical context, "resins, plant" refer to the sticky, often aromatic substances produced by certain plants. These resins are typically composed of a mixture of volatile oils, terpenes, and rosin acids. They may be present in various parts of the plant, including leaves, stems, and roots, and are often found in specialized structures such as glands or ducts.

Plant resins have been used for centuries in traditional medicine and other applications. Some resins have antimicrobial, anti-inflammatory, or analgesic properties and have been used to treat a variety of ailments, including skin conditions, respiratory infections, and pain.

Examples of plant resins with medicinal uses include:

* Frankincense (Boswellia spp.) resin has been used in traditional medicine to treat inflammation, arthritis, and asthma.
* Myrrh (Commiphora spp.) resin has been used as an antiseptic, astringent, and anti-inflammatory agent.
* Pine resin has been used topically for its antimicrobial and anti-inflammatory properties.

It's important to note that while some plant resins have demonstrated medicinal benefits, they should be used with caution and under the guidance of a healthcare professional. Some resins can have adverse effects or interact with medications, and it's essential to ensure their safe and effective use.

In the context of medical terminology, "hardness" is not a term that has a specific or standardized definition. It may be used in various ways to describe the firmness or consistency of a tissue, such as the hardness of an artery or tumor, but it does not have a single authoritative medical definition.

In some cases, healthcare professionals may use subjective terms like "hard," "firm," or "soft" to describe their tactile perception during a physical examination. For example, they might describe the hardness of an enlarged liver or spleen by comparing it to the feel of their knuckles when gently pressed against the abdomen.

However, in other contexts, healthcare professionals may use more objective measures of tissue stiffness or elasticity, such as palpation durometry or shear wave elastography, which provide quantitative assessments of tissue hardness. These techniques can be useful for diagnosing and monitoring conditions that affect the mechanical properties of tissues, such as liver fibrosis or cancer.

Therefore, while "hardness" may be a term used in medical contexts to describe certain physical characteristics of tissues, it does not have a single, universally accepted definition.

Dental stress analysis is a method used in dentistry to evaluate the amount and distribution of forces that act upon teeth and surrounding structures during biting, chewing, or other functional movements. This analysis helps dental professionals identify areas of excessive stress or strain that may lead to dental problems such as tooth fracture, mobility, or periodontal (gum) disease. By identifying these areas, dentists can develop treatment plans to reduce the risk of dental issues and improve overall oral health.

Dental stress analysis typically involves the use of specialized equipment, such as strain gauges, T-scan occlusal analysis systems, or finite element analysis software, to measure and analyze the forces that act upon teeth during various functional movements. The results of the analysis can help dentists determine the best course of treatment, which may include adjusting the bite, restoring damaged teeth with crowns or fillings, or fabricating custom-made oral appliances to redistribute the forces evenly across the dental arch.

Overall, dental stress analysis is an important tool in modern dentistry that helps dental professionals diagnose and treat dental problems related to occlusal (bite) forces, ensuring optimal oral health and function for their patients.

Dental bonding is a cosmetic dental procedure in which a tooth-colored resin material (a type of plastic) is applied and hardened with a special light, which ultimately "bonds" the material to the tooth to improve its appearance. According to the American Dental Association (ADA), dental bonding can be used for various purposes, including:

1. Repairing chipped or cracked teeth
2. Improving the appearance of discolored teeth
3. Closing spaces between teeth
4. Protecting a portion of the tooth's root that has been exposed due to gum recession
5. Changing the shape and size of teeth

Dental bonding is generally a quick and painless procedure, often requiring little to no anesthesia. The surface of the tooth is roughened and conditioned to help the resin adhere properly. Then, the resin material is applied, molded, and smoothed to the desired shape. A special light is used to harden the material, which typically takes only a few minutes. Finally, the bonded material is trimmed, shaped, and polished to match the surrounding teeth.

While dental bonding can be an effective solution for minor cosmetic concerns, it may not be as durable or long-lasting as other dental restoration options like veneers or crowns. The lifespan of a dental bonding procedure typically ranges from 3 to 10 years, depending on factors such as oral habits, location of the bonded tooth, and proper care. Regular dental checkups and good oral hygiene practices can help extend the life of dental bonding.

Light-curing of dental adhesives refers to the process of using a special type of light to polymerize and harden the adhesive material used in dentistry. The light is typically a blue spectrum light, with a wavelength of approximately 460-490 nanometers, which activates a photoinitiator within the adhesive. This initiates a polymerization reaction that causes the adhesive to solidify and form a strong bond between the tooth surface and the dental restoration material, such as a filling or a crown.

The light-curing process is an important step in many dental procedures as it helps ensure the durability and longevity of the restoration. The intensity and duration of the light exposure are critical factors that can affect the degree of cure and overall strength of the bond. Therefore, it is essential to follow the manufacturer's instructions carefully when using dental adhesives and light-curing equipment.

Curing lights, dental, are specialized devices used in dentistry to initiate the polymerization (hardening) of light-cured restorative materials, such as composite resins and sealants. These lights emit high-intensity, visible blue light with a wavelength range typically between 450-490 nanometers. This blue light activates photoinitiators within the dental material, which then undergo a chemical reaction that causes the material to harden and solidify.

There are two primary types of curing lights used in dental practice:

1. Quartz Tungsten Halogen (QTH) Lamps: These are traditional curing lights that use a halogen bulb to produce the necessary light intensity. They provide a broad spectrum of light, which allows them to cure a wide variety of materials. However, they tend to produce more heat and have a shorter lifespan compared to newer alternatives.
2. Light-Emitting Diodes (LED) Curing Lights: These are more modern curing lights that utilize LEDs as the light source. They offer several advantages over QTH lamps, including cooler operation, longer lifespan, and lower energy consumption. Additionally, some LED curing lights can emit higher light intensities, which may lead to shorter curing times and better polymerization of the restorative material.

Proper use of dental curing lights is essential for ensuring optimal physical and mechanical properties of the restored teeth, such as strength, wear resistance, and marginal seal.

Surface properties in the context of medical science refer to the characteristics and features of the outermost layer or surface of a biological material or structure, such as cells, tissues, organs, or medical devices. These properties can include physical attributes like roughness, smoothness, hydrophobicity or hydrophilicity, and electrical conductivity, as well as chemical properties like charge, reactivity, and composition.

In the field of biomaterials science, understanding surface properties is crucial for designing medical implants, devices, and drug delivery systems that can interact safely and effectively with biological tissues and fluids. Surface modifications, such as coatings or chemical treatments, can be used to alter surface properties and enhance biocompatibility, improve lubricity, reduce fouling, or promote specific cellular responses like adhesion, proliferation, or differentiation.

Similarly, in the field of cell biology, understanding surface properties is essential for studying cell-cell interactions, cell signaling, and cell behavior. Cells can sense and respond to changes in their environment, including variations in surface properties, which can influence cell shape, motility, and function. Therefore, characterizing and manipulating surface properties can provide valuable insights into the mechanisms of cellular processes and offer new strategies for developing therapies and treatments for various diseases.

I'm sorry for any confusion, but "Polyurethanes" are not a medical term. They are a type of polymer that is used in a variety of industrial and consumer products, including foam cushions, insulation, and packaging materials. Polyurethanes are created through a chemical reaction between diisocyanates and polyols. While they have many applications in the medical field, such as in the production of medical devices and equipment, they are not a medical term themselves.

Dental restoration wear refers to the progressive loss of structure and function of a dental restoration, such as a filling or crown, due to wear and tear over time. This can be caused by factors such as chewing, grinding, or clenching of teeth, as well as chemical dissolution from acidic foods and drinks. The wear can lead to changes in the shape and fit of the restoration, which may result in discomfort, sensitivity, or even failure of the restoration. Regular dental check-ups are important for monitoring dental restorations and addressing any issues related to wear before they become more serious.

Resin cements are dental materials used to bond or cement restorations, such as crowns, bridges, and orthodontic appliances, to natural teeth or implants. They are called "resin" cements because they are made of a type of synthetic resin material that can be cured or hardened through the use of a chemical reaction or exposure to light.

Resin cements typically consist of three components: a base, a catalyst, and a filler. The base and catalyst are mixed together to create a putty-like consistency, which is then applied to the restoration or tooth surface. Once the cement is in place, it is exposed to light or allowed to chemically cure, which causes it to harden and form a strong bond between the restoration and the tooth.

Resin cements are known for their excellent adhesive properties, as well as their ability to withstand the forces of biting and chewing. They can also be color-matched to natural teeth, making them an aesthetically pleasing option for dental restorations. However, they may not be suitable for all patients or situations, and it is important for dental professionals to carefully consider the specific needs and conditions of each patient when choosing a cement material.

I'm sorry for any confusion, but "nanocomposites" is not a term that has a specific medical definition. It is a term used in materials science and engineering to refer to a type of composite material where at least one of the phases has dimensions in the nanoscale (typically less than 100 nanometers). Nanocomposites can have unique properties that make them useful for various applications, including biomedical applications such as drug delivery systems or tissue engineering scaffolds. However, the term itself is not a medical definition.

Silanes are a group of chemical compounds that contain silicon and hydrogen. The general formula for silanes is Si_xH_(2x+2), where x is a positive integer. Silanes are named after their parent compound, silane (SiH4), which contains one silicon atom and four hydrogen atoms.

Silanes are colorless and highly flammable gases at room temperature. They are typically prepared by the reaction of metal silicides with acids or by the reduction of halogenated silanes. Silanes have a variety of industrial applications, including as intermediates in the production of silicon-based materials such as semiconductors and polymers.

In medical contexts, silanes are not typically used directly. However, some silane-containing compounds have been investigated for their potential therapeutic uses. For example, some organosilanes have been shown to have antimicrobial properties and may be useful as disinfectants or in the development of medical devices. Other silane-containing materials have been studied for their potential use in drug delivery systems or as imaging agents in diagnostic procedures.

It is important to note that some silanes can be hazardous if not handled properly, and they should only be used by trained professionals in a controlled environment. Exposure to silanes can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects.

Dental cements are materials used in dentistry to bond or seal restorative dental materials, such as crowns, fillings, and orthodontic appliances, to natural tooth structures. They can be made from various materials including glass ionomers, resin-modified glass ionomers, zinc oxide eugenol, polycarboxylate, and composite resins. The choice of cement depends on the specific clinical situation and the properties required, such as strength, durability, biocompatibility, and esthetics.

A dental crown is a type of dental restoration that completely caps or encircles a tooth or dental implant. Crowns are used to restore the strength, functionality, and appearance of teeth that have been damaged or weakened due to various reasons such as decay, fracture, or large fillings. They can be made from various materials including porcelain, ceramic, metal, or a combination of these. The crown is custom-made to fit over the prepared tooth and is cemented into place, becoming a permanent part of the tooth. Crowns are also used for cosmetic purposes to improve the appearance of discolored or misshapen teeth.

Dental restoration failure refers to the breakdown or loss of functionality of a dental restoration, which is a procedure performed to restore the function, integrity, and morphology of a tooth that has been damaged due to decay, trauma, or wear. The restoration can include fillings, crowns, veneers, bridges, and implants. Failure of dental restorations can occur due to various reasons such as recurrent decay, fracture, poor fit, or material failure, leading to further damage or loss of the tooth.

Zirconium is not a medical term, but it is a chemical element with the symbol Zr and atomic number 40. It is a gray-white, strong, corrosion-resistant transition metal that is used primarily in nuclear reactors, as an opacifier in glazes for ceramic cookware, and in surgical implants such as artificial joints due to its biocompatibility.

In the context of medical devices or implants, zirconium alloys may be used for their mechanical properties and resistance to corrosion. For example, zirconia (a form of zirconium dioxide) is a popular material for dental crowns and implants due to its durability, strength, and natural appearance.

However, it's important to note that while zirconium itself is not considered a medical term, there are various medical applications and devices that utilize zirconium-based materials.

In the context of medicine, particularly in physical therapy and rehabilitation, "pliability" refers to the quality or state of being flexible or supple. It describes the ability of tissues, such as muscles or fascia (connective tissue), to stretch, deform, and adapt to forces applied upon them without resistance or injury. Improving pliability can help enhance range of motion, reduce muscle stiffness, promote circulation, and alleviate pain. Techniques like soft tissue mobilization, myofascial release, and stretching are often used to increase pliability in clinical settings.

Dental cavity preparation is the process of removing decayed and damaged tissue from a tooth and shaping the remaining healthy structure in order to prepare it for the placement of a filling or a crown. The goal of cavity preparation is to remove all traces of decay and create a clean, stable surface for the restoration to bond with, while also maintaining as much of the natural tooth structure as possible.

The process typically involves the use of dental drills and other tools to remove the decayed tissue and shape the tooth. The size and depth of the preparation will depend on the extent of the decay and the type of restoration that will be used. After the preparation is complete, the dentist will place the filling or crown, restoring the function and integrity of the tooth.

Compomers are a type of dental restorative material that contain both glass ionomer and composite resin components. They are designed to combine the advantages of both materials, such as the fluoride release and adhesion to tooth structure of glass ionomers, and the strength and esthetics of composite resins. Compomers are often used for restoring primary teeth in children due to their ease of use and reduced sensitivity compared to traditional composite resins. However, they may not be as durable or wear-resistant as other restorative materials, so their use is generally limited to small to moderate-sized cavities.

Polymerization is not exclusively a medical term, but it is widely used in the field of medical sciences, particularly in areas such as biochemistry and materials science. In a broad sense, polymerization refers to the process by which small molecules, known as monomers, chemically react and join together to form larger, more complex structures called polymers.

In the context of medical definitions:

Polymerization is the chemical reaction where multiple repeating monomer units bind together covalently (through strong chemical bonds) to create a long, chain-like molecule known as a polymer. This process can occur naturally or be induced artificially through various methods, depending on the type of monomers and desired polymer properties.

In biochemistry, polymerization plays an essential role in forming important biological macromolecules such as DNA, RNA, proteins, and polysaccharides. These natural polymers are built from specific monomer units—nucleotides for nucleic acids (DNA and RNA), amino acids for proteins, and sugars for polysaccharides—that polymerize in a highly regulated manner to create the final functional structures.

In materials science, synthetic polymers are often created through polymerization for various medical applications, such as biocompatible materials, drug delivery systems, and medical devices. These synthetic polymers can be tailored to have specific properties, such as degradation rates, mechanical strength, or hydrophilicity/hydrophobicity, depending on the desired application.

Self-curing of dental resins, also known as auto-curing or self-cure, refers to the ability of certain dental materials to undergo polymerization and harden without the need for external light activation. This process is typically achieved through a chemical reaction between two components within the material that generates heat and causes the resin to solidify.

Self-curing dental resins are commonly used in dentistry for various applications, such as filling cavities or creating dental restorations like crowns and bridges. These materials offer several advantages over light-cured resins, including easier placement in hard-to-reach areas and reduced dependence on specialized equipment.

However, self-curing resins may have some limitations compared to light-cured alternatives, such as longer setting times, potential for overheating during the curing process, and less precise control over the degree of polymerization.

Tensile strength is a material property that measures the maximum amount of tensile (pulling) stress that a material can withstand before failure, such as breaking or fracturing. It is usually measured in units of force per unit area, such as pounds per square inch (psi) or pascals (Pa). In the context of medical devices or biomaterials, tensile strength may be used to describe the mechanical properties of materials used in implants, surgical tools, or other medical equipment. High tensile strength is often desirable in these applications to ensure that the material can withstand the stresses and forces it will encounter during use.

Dental enamel is the hard, white, outermost layer of a tooth. It is a highly mineralized and avascular tissue, meaning it contains no living cells or blood vessels. Enamel is primarily composed of calcium and phosphate minerals and serves as the protective covering for the crown of a tooth, which is the portion visible above the gum line.

Enamel is the hardest substance in the human body, and its primary function is to provide structural support and protection to the underlying dentin and pulp tissues of the tooth. It also plays a crucial role in chewing and biting by helping to distribute forces evenly across the tooth surface during these activities.

Despite its hardness, dental enamel can still be susceptible to damage from factors such as tooth decay, erosion, and abrasion. Once damaged or lost, enamel cannot regenerate or repair itself, making it essential to maintain good oral hygiene practices and seek regular dental checkups to prevent enamel damage and protect overall oral health.

Dentin-bonding agents are substances used in dentistry to create a strong and durable bond between the dental restoration material (such as composite resin, glass ionomer cement, or crowns) and the dentin surface of a tooth. Dentin is the hard tissue that lies beneath the enamel and consists of microscopic tubules filled with fluid.

The primary function of dentin-bonding agents is to improve the adhesion of restorative materials to the tooth structure, enhancing the retention and durability of dental fillings, crowns, veneers, and other types of restorations. These agents typically contain one or more types of bonding resins, such as hydroxyethyl methacrylate (HEMA), 4-methacryloxyethyl trimellitate anhydride (4-META), and/or phosphoric acid ester monomers.

The application process for dentin-bonding agents usually involves several steps, including:

1. Etching the dentin surface with a mild acid to remove the smear layer and expose the collagen network within the dentin tubules.
2. Applying a primer that penetrates into the etched dentin and promotes the infiltration of bonding resins into the dentinal tubules.
3. Applying an adhesive, which is typically a mixture of hydrophilic and hydrophobic monomers, to form a stable bond between the tooth structure and the restoration material.
4. Light-curing the adhesive to polymerize the resin and create a strong mechanical bond with the dentin surface.

Dentin-bonding agents have significantly improved the clinical success of various dental restorations by enhancing their retention, reducing microleakage, and minimizing postoperative sensitivity. However, they may still be susceptible to degradation over time due to factors such as moisture contamination, enzymatic degradation, or hydrolysis, which can lead to the failure of dental restorations. Therefore, continuous advancements in dentin-bonding technology are essential for improving the long-term success and durability of dental restorations.

Dental marginal adaptation refers to the way in which a dental restoration, such as a filling or crown, fits precisely and accurately along the margin or edge where it meets the tooth structure. The term "marginal" describes the border between the restoration and the tooth. Ideally, this junction should be tight and smooth, without any gaps or spaces that could allow for the accumulation of bacteria, food debris, or dental plaque.

Achieving good marginal adaptation is crucial to ensure the longevity and success of a dental restoration. When the margin is well-adapted, it helps prevent microleakage, secondary tooth decay, and sensitivity. It also contributes to the overall seal and integrity of the restoration, minimizing the risk of recurrent caries or other complications.

The process of achieving optimal marginal adaptation involves careful preparation of the tooth structure, precise impression-taking techniques, and meticulous fabrication of the dental restoration. The use of high-quality materials and modern technologies, such as digital impressions and CAD/CAM systems, can further enhance the accuracy and predictability of the marginal adaptation.

Acid etching in dental terminology refers to a surface treatment technique used in dentistry, particularly for bonding procedures. This process involves the application of a mild acid (usually phosphoric or maleic acid) onto the enamel or dentin surface of a tooth. The acid etches the surface by selectively removing the minerals and creating microscopic irregularities or porosities.

This etched surface provides an increased surface area and better mechanical retention for bonding agents, resin composites, or dental cements. As a result, the bond between the tooth and the restorative material becomes stronger and more durable. Acid etching is widely used in various dental procedures such as direct and indirect tooth-colored restorations, veneers, crowns, bridges, and orthodontic attachments.

Dentin is the hard, calcified tissue that lies beneath the enamel and cementum of a tooth. It forms the majority of the tooth's structure and is composed primarily of mineral salts (hydroxyapatite), collagenous proteins, and water. Dentin has a tubular structure, with microscopic channels called dentinal tubules that radiate outward from the pulp chamber (the center of the tooth containing nerves and blood vessels) to the exterior of the tooth. These tubules contain fluid and nerve endings that are responsible for the tooth's sensitivity to various stimuli such as temperature changes, pressure, or decay. Dentin plays a crucial role in protecting the dental pulp while also providing support and structure to the overlying enamel and cementum.

Glass Ionomer Cements (GICs) are a type of dental restorative material that have the ability to chemically bond to tooth structure. They are composed of a mixture of silicate glass powder and an organic acid, such as polyacrylic acid. GICs have several clinical applications in dentistry, including as a filling material for small to moderate sized cavities, as a liner or base under other restorative materials, and as a cement for securing crowns, bridges, and orthodontic appliances.

GICs are known for their biocompatibility, caries inhibition, and adhesion to tooth structure. They also have the ability to release fluoride ions, which can help protect against future decay. However, they are not as strong or wear-resistant as some other dental restorative materials, such as amalgam or composite resin, so they may not be suitable for use in high-load bearing restorations.

GICs can be classified into two main types: conventional and resin-modified. Conventional GICs have a longer setting time and are more prone to moisture sensitivity during placement, while resin-modified GICs contain additional methacrylate monomers that improve their handling properties and shorten their setting time. However, the addition of these monomers may also reduce their fluoride release capacity.

Overall, glass ionomer cements are a valuable dental restorative material due to their unique combination of adhesion, biocompatibility, and caries inhibition properties.

The post and core technique is a dental restorative procedure that involves the use of a post made of metal or other materials, which is placed inside the root canal of a severely damaged tooth, to provide support and retention for a dental core. The dental core is then built up using various materials such as composite resin, glass ionomer cement, or amalgam, to restore the missing portion of the tooth structure. This technique is often used as a foundation for a dental crown in cases where there is not enough remaining tooth structure to support the crown on its own. The post and core restoration helps to reinforce the tooth, prevent fractures, and improve the overall functionality and esthetics of the restored tooth.

"Prosthesis coloring" is not a recognized medical term or concept in the field of prosthetics. However, I can provide you with some context that might help clarify what you are looking for.

In the context of artificial limbs (prostheses), patients may want their devices to match their skin tone as closely as possible to make them less noticeable and more aesthetically appealing. This process is called "prosthetic covering" or "cosmesis," which involves applying custom-made covers, sleeves, or skins over the prosthesis to mimic the appearance of natural skin color and texture.

Prosthetic covering materials can be painted, printed, or dyed to achieve the desired color match. This process is often referred to as "coloring" or "painting the prosthesis." The coloring technique may involve using various shades, tones, and textures to create a natural-looking appearance that blends well with the user's remaining limb or body.

In summary, while there is no formal medical definition for "prosthesis coloring," it likely refers to the process of applying custom colors, shading, or patterns to an artificial limb (prosthesis) to create a more natural and aesthetically pleasing appearance that matches the user's skin tone.

Artificial saliva is a synthetic solution that mimics the chemical composition and properties of natural saliva. It is often used for patients with dry mouth (xerostomia) caused by conditions such as Sjögren's syndrome, radiation therapy, or certain medications that reduce saliva production. Artificial saliva may contain ingredients like carboxymethylcellulose, mucin, and electrolytes to provide lubrication, moisture, and pH buffering capacity similar to natural saliva. It can help alleviate symptoms associated with dry mouth, such as difficulty speaking, swallowing, and chewing, as well as protect oral tissues from irritation and infection.

I'm sorry for any confusion, but "Glass" is not a medical term. Glass is a non-crystalline amorphous solid that is often transparent and has various uses in everyday life, including medical devices and equipment. If you have any questions related to medical terminology or concepts, please provide them, and I'll be happy to help.

Shear strength is a property of a material that describes its ability to withstand forces that cause internal friction and sliding of one portion of the material relative to another. In the context of human tissues, shear strength is an important factor in understanding how tissues respond to various stresses and strains, such as those experienced during physical activities or injuries.

For example, in the case of bones, shear strength is a critical factor in determining their ability to resist fractures under different types of loading conditions. Similarly, in soft tissues like ligaments and tendons, shear strength plays a crucial role in maintaining the integrity of these structures during movement and preventing excessive deformation or injury.

It's worth noting that measuring the shear strength of human tissues can be challenging due to their complex structure and anisotropic properties. As such, researchers often use specialized techniques and equipment to quantify these properties under controlled conditions in the lab.

Siloxanes are a group of synthetic compounds that contain repeating units of silicon-oxygen-silicon (Si-O-Si) bonds, often combined with organic groups such as methyl or ethyl groups. They are widely used in various industrial and consumer products due to their unique properties, including thermal stability, low surface tension, and resistance to water and heat.

In medical terms, siloxanes have been studied for their potential use in medical devices and therapies. For example, some siloxane-based materials have been developed for use as coatings on medical implants, such as catheters and stents, due to their ability to reduce friction and prevent bacterial adhesion.

However, it's worth noting that exposure to high levels of certain types of siloxanes has been linked to potential health effects, including respiratory irritation and reproductive toxicity. Therefore, appropriate safety measures should be taken when handling these compounds in a medical or industrial setting.

Phosphoric acids are a group of mineral acids known chemically as orthophosphoric acid and its salts or esters. The chemical formula for orthophosphoric acid is H3PO4. It is a weak acid that partially dissociates in solution to release hydrogen ions (H+), making it acidic. Phosphoric acid has many uses in various industries, including food additives, fertilizers, and detergents.

In the context of medical definitions, phosphoric acids are not typically referred to directly. However, they can be relevant in certain medical contexts, such as:

* In dentistry, phosphoric acid is used as an etching agent to prepare tooth enamel for bonding with dental materials.
* In nutrition, phosphorus is an essential mineral that plays a crucial role in many bodily functions, including energy metabolism, bone and teeth formation, and nerve function. Phosphoric acid is one form of phosphorus found in some foods and beverages.
* In medical research, phosphoric acids can be used as buffers to maintain a stable pH in laboratory experiments or as reagents in various analytical techniques.

Ion exchange resins are insoluble, cross-linked polymeric materials that contain functional groups which can exchange ions with surrounding solutions. These resins are typically used in water treatment and purification processes to remove unwanted dissolved ions, molecules, or gases. They operate through the principle of ion exchange, where ions held on the resin are exchanged for ions in the solution. The process can be used to soften water, remove heavy metals, treat wastewater, and deionize water, among other applications.

The resins consist of a three-dimensional network of cross-linked polymer chains, providing a large surface area for ion exchange. They are often made from styrene and divinylbenzene monomers, which form a rigid structure that can withstand repeated ion exchange cycles without losing its shape or functionality. The functional groups on the resins can be cationic (positively charged) or anionic (negatively charged), allowing them to attract and retain ions of opposite charge from the surrounding solution.

Cation exchange resins are used to remove positively charged ions, such as calcium, magnesium, sodium, and potassium, while anion exchange resins are used to remove negatively charged ions, such as chloride, sulfate, nitrate, and bicarbonate. The resins can be regenerated by washing them with a strong solution of the ion to be recovered, allowing them to be reused multiple times before they need to be replaced.

Inlays are a type of dental restoration used to repair and restore teeth that have been damaged by decay or trauma. They are custom-made fillings made in a laboratory, typically from materials such as gold, porcelain, or composite resin. Inlays are designed to fit precisely into the cavity or damaged area of a tooth, restoring its strength, function, and appearance. Unlike traditional fillings, which are molded directly onto the tooth, inlays are created outside of the mouth and then bonded or cemented into place during a separate dental appointment. This makes them a more durable and long-lasting solution for repairing damaged teeth. Inlays can also be used to replace old or failing fillings, providing a stronger and more aesthetically pleasing alternative.

Silorane resins are a type of dental restorative material used in dentistry for direct and indirect restorations, such as fillings and crowns. They are composed of a unique chemical structure that includes siloxanes and oxiranes. The siloxane component provides excellent hydrophobicity and wear resistance, while the oxirane component undergoes a polymerization reaction when activated by a curing light, forming a stable and durable restoration.

Silorane resins are known for their low shrinkage during polymerization, which reduces the risk of post-operative sensitivity and marginal gaps. They also have good biocompatibility and are less likely to cause tooth staining compared to other dental restorative materials. However, they may require a longer curing time and can be more technique-sensitive to place compared to other materials.

In the context of medical terminology, 'color' is not defined specifically with a unique meaning. Instead, it generally refers to the characteristic or appearance of something, particularly in relation to the color that a person may observe visually. For instance, doctors may describe the color of a patient's skin, eyes, hair, or bodily fluids to help diagnose medical conditions or monitor their progression.

For example, jaundice is a yellowing of the skin and whites of the eyes that can indicate liver problems, while cyanosis refers to a bluish discoloration of the skin and mucous membranes due to insufficient oxygen in the blood. Similarly, doctors may describe the color of stool or urine to help diagnose digestive or kidney issues.

Therefore, 'color' is not a medical term with a specific definition but rather a general term used to describe various visual characteristics of the body and bodily fluids that can provide important diagnostic clues for healthcare professionals.

Dental restoration repair refers to the process of fixing or replacing a dental restoration that has become damaged, worn, or failed. Dental restorations are procedures used to restore the function, integrity, and morphology of missing tooth structure due to decay or trauma. They include fillings, crowns, veneers, bridges, and implants.

Repairing a dental restoration may involve removing the damaged or failing material and replacing it with new restorative materials, or building up and reinforcing the existing restoration. The specific repair procedure will depend on the type and extent of damage to the restoration, as well as the patient's individual oral health needs and treatment goals.

The aim of dental restoration repair is to restore the function, aesthetics, and durability of the restored tooth, preventing further decay or damage and ensuring long-term oral health.

A tooth fracture is a dental health condition characterized by a break or crack in the tooth structure. It can occur in different parts of the tooth, including the crown (the visible part), root, or filling. Tooth fractures can result from various factors such as trauma, biting or chewing on hard objects, grinding or clenching teeth, and having large, old amalgam fillings that weaken the tooth structure over time. Depending on the severity and location of the fracture, it may cause pain, sensitivity, or affect the tooth's functionality and appearance. Treatment options for tooth fractures vary from simple bonding to root canal treatment or even extraction in severe cases. Regular dental check-ups are essential for early detection and management of tooth fractures.

Silicon dioxide is not a medical term, but a chemical compound with the formula SiO2. It's commonly known as quartz or sand and is not something that would typically have a medical definition. However, in some cases, silicon dioxide can be used in pharmaceutical preparations as an excipient (an inactive substance that serves as a vehicle or medium for a drug) or as a food additive, often as an anti-caking agent.

In these contexts, it's important to note that silicon dioxide is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA). However, exposure to very high levels of respirable silica dust, such as in certain industrial settings, can increase the risk of lung disease, including silicosis.

Dental etching is a dental procedure that involves the use of a chemical agent, such as phosphoric or maleic acid, to create microscopic roughness on the surface of teeth. This process is typically used to prepare the tooth enamel for the application of bonding agents, such as dental adhesives and composite resins, which are used in various restorative and cosmetic dental procedures, such as fillings, veneers, and crowns.

During dental etching, the chemical agent is applied to the tooth surface for a specific amount of time, usually between 15-60 seconds, depending on the strength of the acid and the desired level of etching. The acid dissolves the minerals in the enamel, creating small pores or irregularities that increase the surface area and improve the bonding of the restorative material to the tooth. After etching, the tooth is rinsed with water and dried, and the bonding agent is applied and cured to create a strong and durable bond between the restoration and the tooth.

Dental etching is a safe and effective procedure when performed by a trained dental professional. However, over-etching or improper use of the acid can weaken the tooth structure and lead to sensitivity or other complications. Therefore, it is important to follow proper techniques and guidelines for dental etching to ensure optimal outcomes and patient satisfaction.

A dental cavity lining, also known as a dental restoration or filling, refers to the material used to fill and seal a tooth after decay has been removed. The purpose of the lining is to restore the function, integrity, and morphology of the tooth, while preventing further decay and infection. Common materials used for dental cavity linings include:

1. Amalgam: A mixture of metals, such as silver, tin, copper, and mercury, amalgam fillings are strong, durable, and resistant to wear. They are often used for posterior teeth that undergo heavy chewing forces. However, due to their dark color, they may be less aesthetically pleasing compared to other materials.
2. Composite resin: A tooth-colored material made of a mixture of plastic and glass particles, composite resins provide a more natural appearance and are often used for anterior teeth or cosmetic restorations. They bond directly to the tooth structure, which can help reinforce the remaining tooth structure. However, they may be less durable than amalgam fillings and may wear down or discolor over time.
3. Glass ionomer: A tooth-colored material made of acrylic and a type of glass, glass ionomers release fluoride, which can help protect the tooth from further decay. They are often used for fillings near the gum line, for cementing crowns or orthodontic appliances, or as a base layer under other restorative materials. Glass ionomers are less durable than composite resins and amalgam fillings and may not withstand heavy chewing forces as well.
4. Gold: A precious metal used for dental restorations, gold is highly durable, non-reactive, and resistant to corrosion. It can be used for inlays, onlays, or crowns and provides excellent longevity. However, due to its high cost and less desirable aesthetics, it is not as commonly used as other materials.
5. Porcelain: A ceramic material that can be matched to the color of natural teeth, porcelain is often used for inlays, onlays, crowns, or veneers. It provides excellent aesthetics and durability but may be more brittle than other materials and requires a skilled dental technician for fabrication.

Ultimately, the choice of restorative material depends on several factors, including the location and extent of the decay, the patient's oral health status, aesthetic preferences, and budget. Dentists will consider these factors when recommending the most appropriate material for a specific situation.

Gold alloys are not strictly a medical term, but they are often used in medical applications, particularly in the field of dentistry. Therefore, I will provide both a general definition and a dental-specific definition for clarity.

A gold alloy is a mixture of different metals, where gold is the primary component. The other metals are added to modify the properties of gold, such as its hardness, melting point, or color. These alloys can contain varying amounts of gold, ranging from 30% to 75%, depending on their intended use.

In dentistry, gold alloys refer to a specific type of alloy used for dental restorations like crowns, inlays, and onlays. These alloys typically contain between 60% and 90% gold, along with other metals such as silver, copper, and sometimes palladium or zinc. The high gold content ensures excellent biocompatibility, corrosion resistance, and durability, making these alloys a popular choice for dental applications. Additionally, their malleability allows for precise shaping and adjustment during the fabrication process.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

A dental prosthesis is a device that replaces missing teeth or parts of teeth and restores their function and appearance. The design of a dental prosthesis refers to the plan and specifications used to create it, including the materials, shape, size, and arrangement of the artificial teeth and any supporting structures.

The design of a dental prosthesis is typically based on a variety of factors, including:

* The number and location of missing teeth
* The condition of the remaining teeth and gums
* The patient's bite and jaw alignment
* The patient's aesthetic preferences
* The patient's ability to chew and speak properly

There are several types of dental prostheses, including:

* Dentures: A removable appliance that replaces all or most of the upper or lower teeth.
* Fixed partial denture (FPD): Also known as a bridge, this is a fixed (non-removable) appliance that replaces one or more missing teeth by attaching artificial teeth to the remaining natural teeth on either side of the gap.
* Removable partial denture (RPD): A removable appliance that replaces some but not all of the upper or lower teeth.
* Implant-supported prosthesis: An artificial tooth or set of teeth that is supported by dental implants, which are surgically placed in the jawbone.

The design of a dental prosthesis must be carefully planned and executed to ensure a good fit, proper function, and natural appearance. It may involve several appointments with a dentist or dental specialist, such as a prosthodontist, to take impressions, make measurements, and try in the finished prosthesis.

Epoxy resins are a type of synthetic polymer that are created through the reaction of an epoxide compound with a hardening agent or curing agent. These materials are known for their strong adhesive properties, chemical resistance, and durability. They are commonly used in coatings, adhesives, and composite materials for various industrial, commercial, and consumer applications.

In medical contexts, epoxy resins may be used to create durable and reliable components for medical devices or equipment. For example, they might be used to make housings for medical instruments, or to bond together different parts of a medical device. However, it's worth noting that epoxy resins are not typically used in direct contact with the body or as part of medical treatments.

It's important to note that while epoxy resins have many useful properties, they can also release potentially harmful chemicals during their production and disposal. As such, appropriate safety precautions should be taken when working with these materials.

A nonvital tooth is one that no longer has a living or viable pulp, which contains the nerves and blood vessels inside the tooth. This condition can occur due to various reasons such as tooth decay that has progressed deeply into the tooth, dental trauma, or previous invasive dental procedures. As a result, the tooth loses its sensitivity to temperature changes and may darken in color. Nonvital teeth typically require root canal treatment to remove the dead pulp tissue, disinfect the canals, and fill them with an inert material to preserve the tooth structure and function.

Aluminum oxide is a chemical compound with the formula Al2O3. It is also known as alumina and it is a white solid that is widely used in various industries due to its unique properties. Aluminum oxide is highly resistant to corrosion, has a high melting point, and is an electrical insulator.

In the medical field, aluminum oxide is used in a variety of applications such as:

1. Dental crowns and implants: Aluminum oxide is used in the production of dental crowns and implants due to its strength and durability.
2. Orthopedic implants: Aluminum oxide is used in some types of orthopedic implants, such as knee and hip replacements, because of its biocompatibility and resistance to wear.
3. Medical ceramics: Aluminum oxide is used in the production of medical ceramics, which are used in various medical devices such as pacemakers and hearing aids.
4. Pharmaceuticals: Aluminum oxide is used as an excipient in some pharmaceutical products, such as tablets and capsules, to improve their stability and shelf life.
5. Medical research: Aluminum oxide is used in medical research, for example, as a substrate material for growing cells or as a coating material for medical devices.

It's important to note that while aluminum oxide has many useful applications in the medical field, exposure to high levels of aluminum can be harmful to human health. Therefore, it is important to use aluminum oxide and other aluminum-containing materials safely and according to established guidelines.

Carbon inorganic compounds are chemical substances that contain carbon combined with one or more elements other than hydrogen. These compounds include oxides of carbon such as carbon monoxide (CO) and carbon dioxide (CO2), metal carbides like calcium carbide (CaC2) and silicon carbide (SiC), and carbonates like calcium carbonate (CaCO3) and sodium carbonate (Na2CO3).

Unlike organic compounds, which are based on carbon-hydrogen bonds, inorganic carbon compounds do not contain hydrocarbon structures. Instead, they feature carbon bonded to elements such as nitrogen, oxygen, sulfur, or halogens. Inorganic carbon compounds have diverse physical and chemical properties and play important roles in various industrial applications, as well as in biological systems.

A hardness test is a quantitative measure of a material's resistance to deformation, typically defined as the penetration of an indenter with a specific shape and load into the surface of the material being tested. There are several types of hardness tests, including Rockwell, Vickers, Brinell, and Knoop, each with their own specific methods and applications. The resulting hardness value is used to evaluate the material's properties, such as wear resistance, durability, and suitability for various industrial or manufacturing processes. Hardness tests are widely used in materials science, engineering, and quality control to ensure the consistency and reliability of materials and components.

Physicochemical processes refer to interactions and changes that occur at the interface of physical and chemical systems in a living organism or biological sample. These processes are crucial in understanding various biological phenomena, including cellular functions, metabolic pathways, and drug actions. They involve the transformation of energy and matter, as well as the formation and breaking of chemical bonds.

Examples of physicochemical processes include:

1. Membrane transport: The movement of molecules across biological membranes through passive diffusion or active transport.
2. Enzyme kinetics: The study of how enzymes catalyze biochemical reactions, including the rate of reaction and the factors that affect it.
3. Protein folding: The process by which a protein molecule assumes its three-dimensional structure, which is critical for its function.
4. Acid-base equilibria: The balance between acids and bases in biological systems, which affects various physiological processes such as pH regulation.
5. Oxidation-reduction reactions: The transfer of electrons between molecules, which plays a crucial role in energy metabolism and other cellular functions.
6. Conformational changes: The alterations in the shape or structure of biological macromolecules, such as proteins and nucleic acids, that are critical for their function.
7. Phase transitions: The transformation of matter from one physical state to another, such as the melting of lipid membranes or the denaturation of proteins.

Understanding physicochemical processes is essential in developing medical interventions, including drugs and therapies, as well as in diagnosing and treating various diseases.

Dental porcelain is a type of biocompatible ceramic material that is commonly used in restorative and cosmetic dentistry to create tooth-colored restorations such as crowns, veneers, inlays, onlays, and bridges. It is made from a mixture of powdered porcelain and water, which is heated to high temperatures to form a hard, glass-like substance. Dental porcelain has several desirable properties for dental restorations, including:

1. High strength and durability: Dental porcelain is strong enough to withstand the forces of biting and chewing, making it suitable for use in load-bearing restorations such as crowns and bridges.
2. Natural appearance: Dental porcelain can be matched closely to the color, translucency, and texture of natural teeth, allowing for highly aesthetic restorations that blend seamlessly with the surrounding dentition.
3. Biocompatibility: Dental porcelain is biologically inert and does not cause adverse reactions or toxicity in the body, making it a safe choice for dental restorations.
4. Chemical resistance: Dental porcelain is resistant to staining and chemical attack from substances such as coffee, tea, red wine, and acidic foods and drinks.
5. Low thermal conductivity: Dental porcelain has low thermal conductivity, which means it does not transmit heat or cold readily, reducing the risk of temperature sensitivity in dental restorations.

Overall, dental porcelain is a versatile and reliable material for creating high-quality, natural-looking, and durable dental restorations.

An artificial tooth, also known as a dental prosthesis or dental restoration, is a device made to replace a missing tooth or teeth. It can be removable, such as a denture, or fixed, such as a bridge or an implant-supported crown. The material used to make artificial teeth can vary and may include porcelain, resin, metal, or a combination of these materials. Its purpose is to restore function, aesthetics, and/or speech, and it is custom-made to fit the individual's mouth for comfort and effectiveness.

Tooth bleaching agents are substances used to whiten and remove stains from teeth through a chemical process. They typically contain either hydrogen peroxide or carbamide peroxide, which break down into oxygen ions that penetrate the tooth enamel and dentin, oxidizing and breaking up stain molecules. Commonly used tooth bleaching agents include in-office professional treatments, at-home whitening kits, and over-the-counter products like whitening strips and toothpastes. It is essential to follow the manufacturer's instructions or consult with a dental professional to ensure safe and effective use of these products.

Dental leakage, also known as "microleakage" in dental terminology, refers to the seepage or penetration of fluids, bacteria, or other substances between the walls of a dental restoration (such as a filling, crown, or bridge) and the prepared tooth structure. This occurs due to the presence of microscopic gaps or spaces at the interface of the restoration and the tooth.

Dental leakage can lead to several problems, including:

1. Recurrent decay: The seepage of fluids, bacteria, and sugars from the oral environment can cause secondary tooth decay around the margins of the restoration.
2. Sensitivity: Microleakage may result in temperature sensitivity or pain when consuming hot or cold foods and beverages due to fluid movement within the gap.
3. Discoloration: Over time, dental leakage might lead to staining of the tooth structure around the restoration, resulting in an unaesthetic appearance.
4. Failed restorations: Persistent dental leakage can weaken the bond between the restoration and the tooth, increasing the risk of restoration failure and the need for replacement.

To prevent dental leakage, dentists employ various techniques during restoration placement, such as using appropriate adhesives, following meticulous preparation protocols, and ensuring a tight seal around the margins of the restoration. Regular dental check-ups and professional cleanings are essential to monitor the condition of existing restorations and address any issues before they become more severe.

In the field of medicine, ceramics are commonly referred to as inorganic, non-metallic materials that are made up of compounds such as oxides, carbides, and nitrides. These materials are often used in medical applications due to their biocompatibility, resistance to corrosion, and ability to withstand high temperatures. Some examples of medical ceramics include:

1. Bioceramics: These are ceramic materials that are used in medical devices and implants, such as hip replacements, dental implants, and bone grafts. They are designed to be biocompatible, which means they can be safely implanted into the body without causing an adverse reaction.
2. Ceramic coatings: These are thin layers of ceramic material that are applied to medical devices and implants to improve their performance and durability. For example, ceramic coatings may be used on orthopedic implants to reduce wear and tear, or on cardiovascular implants to prevent blood clots from forming.
3. Ceramic membranes: These are porous ceramic materials that are used in medical filtration systems, such as hemodialysis machines. They are designed to selectively filter out impurities while allowing essential molecules to pass through.
4. Ceramic scaffolds: These are three-dimensional structures made of ceramic material that are used in tissue engineering and regenerative medicine. They provide a framework for cells to grow and multiply, helping to repair or replace damaged tissues.

Overall, medical ceramics play an important role in modern healthcare, providing safe and effective solutions for a wide range of medical applications.

Toothbrushing is the act of cleaning teeth and gums using a toothbrush to remove plaque, food debris, and dental calculus (tartar) from the surfaces of the teeth and gums. It is typically performed using a soft-bristled toothbrush and fluoride toothpaste, with gentle circular or back-and-forth motions along the gumline and on all surfaces of the teeth. Toothbrushing should be done at least twice a day, preferably after every meal and before bedtime, for two minutes each time, to maintain good oral hygiene and prevent dental diseases such as tooth decay and gum disease. It is also recommended to brush the tongue to remove bacteria and freshen breath.

A bicuspid valve, also known as a mitral valve in the heart, is a heart valve that has two leaflets or cusps. It lies between the left atrium and the left ventricle and helps to regulate blood flow between these two chambers of the heart. In a healthy heart, the bicuspid valve opens to allow blood to flow from the left atrium into the left ventricle and closes tightly to prevent blood from flowing back into the left atrium during contraction of the ventricle.

A congenital heart defect known as a bicuspid aortic valve occurs when the aortic valve, which normally has three leaflets or cusps, only has two. This can lead to narrowing of the valve (aortic stenosis) or leakage of the valve (aortic regurgitation), which can cause symptoms and may require medical treatment.

In medical terms, "immersion" is not a term with a specific clinical definition. However, in general terms, immersion refers to the act of placing something or someone into a liquid or environment completely. In some contexts, it may be used to describe a type of wound care where the wound is covered completely with a medicated dressing or solution. It can also be used to describe certain medical procedures or therapies that involve submerging a part of the body in a liquid, such as hydrotherapy.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

A dental restoration, temporary, is a type of dental restorative material or device that is used for a short period of time to restore the function, shape, and aesthetics of a damaged or decayed tooth. It serves as a placeholder until a permanent restoration can be created and placed.

Temporary dental restorations are typically made of materials such as cotton, plastic, or metal alloys that are easy to manipulate and remove. They may be used in various situations, including:

1. To protect the tooth pulp from further damage or infection after a deep cavity preparation or root canal treatment.
2. To restore the shape and function of a fractured or chipped tooth while waiting for a permanent restoration to be fabricated.
3. As a provisional restoration during the period of healing following oral surgery, such as extraction or implant placement.
4. In some cases, temporary dental restorations may also serve as a diagnostic tool to evaluate the patient's comfort and function before proceeding with a permanent restoration.

It is important to note that temporary dental restorations are not intended for long-term use and should be replaced with a permanent restoration as soon as possible to ensure optimal oral health and functionality.

Photoinitiators in dental materials are substances that initiate polymerization reactions when exposed to light. They are a critical component of dental resin-based composites and other light-cured materials, as they enable the material to harden and set rapidly upon exposure to a dental curing light.

The most commonly used photoinitiator in dental materials is camphorquinone (CQ), which absorbs light in the blue region of the visible spectrum (around 468 nm) and generates free radicals that initiate the polymerization reaction. However, due to its yellowish color and limited depth of cure, alternative photoinitiators or co-initiator systems have been developed, such as phenylpropanedione (PPD), Lucirin TPO-L, and Ivocerin.

These photoinitiators are chosen for their ability to absorb light at specific wavelengths that correspond to the emission spectrum of dental curing lights, their efficiency in generating free radicals, and their low toxicity profile. The use of photoinitiators in dental materials has significantly improved the physical properties, handling characteristics, and clinical performance of these materials.

Dental veneers, also known as dental porcelain laminates or just veneers, are thin custom-made shells of tooth-colored materials designed to cover the front surface of teeth to improve their appearance. These shells are bonded to the front of the teeth, changing their color, shape, size, or length.

Dental veneers can be made from porcelain or resin composite materials. Porcelain veneers are more stain-resistant and generally last longer than resin veneers. They also better mimic the light-reflecting properties of natural teeth. Resin veneers, on the other hand, are thinner and require less removal of the tooth's surface before placement.

Dental veneers are often used to treat dental conditions like discolored teeth, worn down teeth, chipped or broken teeth, misaligned teeth, irregularly shaped teeth, or gaps between teeth. The procedure usually requires three visits to the dentist: one for consultation and treatment planning, another to prepare the tooth and take an impression for the veneer, and a final visit to bond the veneer to the tooth.

It is important to note that while dental veneers can greatly improve the appearance of your teeth, they are not suitable for everyone. Your dentist will evaluate your oral health and discuss whether dental veneers are the right option for you.

Aluminum silicates are a type of mineral compound that consist of aluminum, silicon, and oxygen in their chemical structure. They are often found in nature and can be categorized into several groups, including kaolinite, illite, montmorillonite, and bentonite. These minerals have various industrial and commercial uses, including as fillers and extenders in products like paper, paint, and rubber. In the medical field, certain types of aluminum silicates (like bentonite) have been used in some medicinal and therapeutic applications, such as detoxification and gastrointestinal disorders. However, it's important to note that the use of these minerals in medical treatments is not widely accepted or supported by extensive scientific evidence.

Dental alloys are materials made by combining two or more metals to be used in dental restorations, such as crowns, bridges, fillings, and orthodontic appliances. These alloys can be classified into three main categories based on their composition:

1. Precious Alloys: Predominantly composed of precious metals like gold, platinum, palladium, and silver. They are highly corrosion-resistant, biocompatible, and durable, making them suitable for long-term use in dental restorations. Common examples include high noble (gold) alloys and noble alloys.
2. Base Metal Alloys: Contain primarily non-precious metals like nickel, chromium, cobalt, and beryllium. They are more affordable than precious alloys but may cause allergic reactions or sensitivities in some patients. Common examples include nickel-chromium alloys and cobalt-chromium alloys.
3. Castable Glass Ionomer Alloys: A combination of glass ionomer cement (GIC) powder and metal liquid, which can be cast into various dental restorations. They have the advantage of being both strong and adhesive to tooth structure but may not be as durable as other alloy types.

Each type of dental alloy has its unique properties and applications, depending on the specific clinical situation and patient needs. Dental professionals consider factors like cost, biocompatibility, mechanical properties, and esthetics when selecting an appropriate alloy for a dental restoration.

I'm sorry for any confusion, but "Organically Modified Ceramics" is not a widely recognized or established term in the field of medicine. It is more commonly used in materials science and nanotechnology to refer to ceramic materials that have been modified with organic components to alter their properties. If you're looking for information related to a specific medical context, could you please provide more details? I'd be happy to help with more precise information.

Tooth abrasion is defined as the wearing away of tooth structure due to mechanical forces from activities such as tooth brushing, chewing, or habits like nail biting or pen chewing. It typically occurs at the gum line and can result in sensitive teeth, notches in the teeth near the gums, and even tooth loss if left untreated. The use of hard-bristled toothbrushes, excessive force while brushing, and abrasive toothpastes can all contribute to tooth abrasion.

Barium compounds are inorganic substances that contain the metallic element barium (Ba) combined with one or more other elements. Barium is an alkaline earth metal that is highly reactive and toxic in its pure form. However, when bound with other elements to form barium compounds, it can be used safely for various medical and industrial purposes.

In medicine, barium compounds are commonly used as a contrast material for X-ray examinations of the digestive system. When a patient swallows a preparation containing barium sulfate, the dense compound coats the lining of the esophagus, stomach, and intestines, making them visible on an X-ray image. This allows doctors to diagnose conditions such as ulcers, tumors, or blockages in the digestive tract.

Other barium compounds include barium carbonate, barium chloride, and barium hydroxide, which are used in various industrial applications such as drilling muds, flame retardants, and pigments for paints and plastics. However, these compounds can be toxic if ingested or inhaled, so they must be handled with care.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Electron Probe Microanalysis (EPMA) is a technique used in materials science and geology to analyze the chemical composition of materials at very small scales, typically on the order of microns or less. In this technique, a focused beam of electrons is directed at a sample, causing the emission of X-rays that are characteristic of the elements present in the sample. By analyzing the energy and intensity of these X-rays, researchers can determine the concentration of different elements in the sample with high precision and accuracy.

EPMA is typically performed using a specialized instrument called an electron probe microanalyzer (EPMA), which consists of an electron column for generating and focusing the electron beam, an X-ray spectrometer for analyzing the emitted X-rays, and a stage for positioning and manipulating the sample. The technique is widely used in fields such as mineralogy, geochemistry, metallurgy, and materials science to study the composition and structure of minerals, alloys, semiconductors, and other materials.

One of the key advantages of EPMA is its ability to analyze the chemical composition of small regions within a sample, even in cases where there are spatial variations in composition or where the sample is heterogeneous. This makes it an ideal technique for studying the distribution and behavior of trace elements in minerals, the microstructure of alloys and other materials, and the composition of individual grains or phases within a polyphase material. Additionally, EPMA can be used to analyze both conductive and non-conductive samples, making it a versatile tool for a wide range of applications.

Tooth bleaching, also known as tooth whitening, is a cosmetic dental procedure that aims to lighten the color of natural teeth and remove stains or discoloration. It's important to note that this process doesn't involve physically removing the tooth structure but rather uses various agents containing bleaching chemicals like hydrogen peroxide or carbamide peroxide to oxidize the stain molecules, breaking them down and making the teeth appear whiter and brighter.

The procedure can be performed in a dental office under professional supervision (in-office bleaching), at home using custom-made trays provided by a dentist (at-home or take-home bleaching), or through over-the-counter products such as whitening toothpaste, strips, and gels. However, it is always recommended to consult with a dental professional before starting any tooth bleaching treatment to ensure safety, effectiveness, and suitability for your specific oral health condition.

Dental amalgam is a commonly used dental filling material that consists of a mixture of metals, including silver, tin, copper, and mercury. The mercury binds the other metals together to form a strong, durable, and stable restoration that is resistant to wear and tear. Dental amalgam has been used for over 150 years to fill cavities and repair damaged teeth, and it remains a popular choice among dentists due to its strength, durability, and affordability.

However, there has been some controversy surrounding the use of dental amalgam due to concerns about the potential health effects of mercury exposure. While the majority of scientific evidence suggests that dental amalgam is safe for most people, some individuals may be more sensitive to mercury and may experience adverse reactions. As a result, some dentists may recommend alternative filling materials, such as composite resin or gold, for certain patients.

Overall, dental amalgam is a safe and effective option for filling cavities and restoring damaged teeth, but it is important to discuss any concerns or questions with a qualified dental professional.

I'm sorry for any confusion, but "Stainless Steel" is not a medical term. It is a type of steel that contains at least 10.5% chromium content by mass, and usually contains nickel as well. The chromium forms a passive film that protects the metal from corrosion and staining. Stainless steel is widely used in various industries including medicine, for example, in medical equipment and surgical instruments due to its resistance to rust and corrosion.

Halogens are a group of nonmetallic elements found in the seventh group of the periodic table. They include fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). Tennessine (Ts) is sometimes also classified as a halogen, although it has not been extensively studied.

In medical terms, halogens have various uses in medicine and healthcare. For example:

* Chlorine is used for disinfection and sterilization of surgical instruments, drinking water, and swimming pools. It is also used as a medication to treat certain types of anemia.
* Fluoride is added to drinking water and toothpaste to prevent dental caries (cavities) by strengthening tooth enamel.
* Iodine is used as a disinfectant, in medical imaging, and in the treatment of thyroid disorders.
* Bromine has been used in the past as a sedative and anticonvulsant, but its use in medicine has declined due to safety concerns.

Halogens are highly reactive and can be toxic or corrosive in high concentrations, so they must be handled with care in medical settings.

I believe you are asking for a medical explanation or definition of the term "diamond" in a medical context. However, I should clarify that "diamond" is not a commonly used medical term for a specific disease, condition, or diagnostic feature. It's essential to provide more information if it relates to a particular medical concept or usage.

In general, the term "diamond" refers to a clear and colorless form of carbon with a crystalline structure in which each carbon atom is bonded to four other carbon atoms, forming a tetrahedral shape. It's widely known for its use as a valuable gemstone due to its exceptional hardness, brilliance, and fire.

However, there are some tangential medical connections to the term "diamond." For example:

1. Diamond Blackfan anemia (DBA): A rare congenital bone marrow failure disorder characterized by a decrease in red blood cell production. It is named after Drs. Louis Diamond and Kenneth Blackfan, who first described it.
2. Turner syndrome with XY sex chromosomes: A rare genetic condition where an individual has only one functional X chromosome instead of the typical pair (XX) found in females. Occasionally, these individuals may have a Y chromosome fragment, often referred to as "mosaic Turner syndrome with XY cells" or "XY gonadal dysgenesis." In this context, the term "XY" is sometimes metaphorically described as a "genetic male's 'diamond in the rough'" due to its rarity and unique characteristics.

If you have more information about how the term "diamond" is being used in your specific medical context, I would be happy to help further clarify or provide additional details.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

'Adhesiveness' is a term used in medicine and biology to describe the ability of two surfaces to stick or adhere to each other. In medical terms, it often refers to the property of tissues or cells to adhere to one another, as in the case of scar tissue formation where healing tissue adheres to adjacent structures.

In the context of microbiology, adhesiveness can refer to the ability of bacteria or other microorganisms to attach themselves to surfaces, such as medical devices or human tissues, which can lead to infection and other health problems. Adhesives used in medical devices, such as bandages or wound dressings, also have adhesiveness properties that allow them to stick to the skin or other surfaces.

Overall, adhesiveness is an important property in many areas of medicine and biology, with implications for wound healing, infection control, and the design and function of medical devices.

A dental abutment is a component of a dental implant restoration that connects the implant to the replacement tooth or teeth. It serves as a support structure and is attached to the implant, which is surgically placed in the jawbone. The abutment provides a stable foundation for the placement of a crown, bridge, or denture, depending on the patient's individual needs.

Dental abutments can be made from various materials such as titanium, zirconia, or other biocompatible materials. They come in different shapes and sizes to accommodate the specific requirements of each implant case. The selection of an appropriate dental abutment is crucial for ensuring a successful and long-lasting dental implant restoration.

Denture repair is the process of fixing or mending broken, damaged, or ill-fitting dentures to restore their functionality, comfort, and appearance. This may involve repairing fractured denture bases or teeth, rebasing or relining dentures to ensure a better fit, or adding new teeth to replace those that have been lost due to decay or breakage. Denture repairs are typically performed by dental professionals, such as dentists or prosthodontists, who have the necessary training and expertise to provide high-quality and safe repairs. It is essential to have damaged dentures repaired promptly to prevent further damage and potential harm to the oral tissues.

I'm sorry for any confusion, but "silicates" is not a term typically used in medical definitions. Silicates are a broad class of minerals that are composed of silicon and oxygen atoms in various arrangements. They are abundant in Earth's crust and are commonly found in sand, quartz, and many types of rocks.

While not directly related to human health, some silicate-based materials can have medical applications. For example, certain forms of magnesium silicate (talc) have been used as a component in some medications for their ability to absorb moisture and help reduce the risk of skin irritation. However, exposure to certain types of silica dust (like crystalline silica) has been linked to lung diseases such as silicosis, bronchitis, and lung cancer, especially in occupational settings like construction, sandblasting, and mining.

If you have any concerns about silicates or their potential impact on your health, I would recommend consulting a healthcare professional for personalized advice based on your specific situation.

A phase transition in the context of medicine and physiology often refers to the transformation of a substance or matter from one state to another within the body, typically in relation to temperature or pressure changes. However, I couldn't find a widely accepted medical definition for "phase transition."

In physics and chemistry, a phase transition is a process where a thermodynamic system changes from one phase or state of matter to another, such as:

1. Solid to liquid (melting)
2. Liquid to gas (vaporization)
3. Gas to liquid (condensation)
4. Solid to gas (sublimation)
5. Changes between different crystalline structures of the same substance (polymorphic phase transitions)

While not a direct medical definition, these concepts are relevant in various biochemical and physiological processes, such as protein folding, cell membrane fluidity, and temperature regulation in the body.

Adhesives are substances that are used to bind two surfaces together. They can be composed of a variety of materials, including natural substances like tree sap or animal glue, or synthetic substances like cyanoacrylates (super glues) or epoxies. Adhesives can be classified based on their chemical composition, how they cure (set), and their properties such as strength, flexibility, and resistance to environmental factors. In a medical context, adhesives may be used in a variety of applications, such as wound closure, securing medical devices, or attaching bandages or dressings. It's important to choose the right type of adhesive for each application to ensure proper adhesion, safety, and effectiveness.

Orthodontic brackets are small square attachments that are bonded to the teeth or bands that are attached to the back molars. They have a slot in which the orthodontic archwire fits and is held in place. The bracket can be made of stainless steel, ceramic, plastic or a combination of these materials. They play an essential role in moving the teeth into the desired position during orthodontic treatment.

In the context of dentistry, a molar is a type of tooth found in the back of the mouth. They are larger and wider than other types of teeth, such as incisors or canines, and have a flat biting surface with multiple cusps. Molars are primarily used for grinding and chewing food into smaller pieces that are easier to swallow. Humans typically have twelve molars in total, including the four wisdom teeth.

In medical terminology outside of dentistry, "molar" can also refer to a unit of mass in the apothecaries' system of measurement, which is equivalent to 4.08 grams. However, this usage is less common and not related to dental or medical anatomy.

Tooth preparation is a term used in dentistry to refer to the process of altering the tooth structure to receive a dental restoration, such as a filling, crown, or veneer. This procedure involves removing decayed or damaged portions of the tooth and shaping the remaining tooth structure to provide a stable foundation for the restoration. The preparation may also include reducing the size of the tooth to make room for the restoration and creating a smooth, uniform surface to ensure a proper fit and seal. The ultimate goal of tooth preparation is to restore the function, health, and aesthetics of the damaged tooth while preserving as much of the natural tooth structure as possible.

Silicon compounds refer to chemical substances that contain the element silicon (Si) combined with other elements. Silicon is a Group 14 semimetal in the periodic table, and it often forms compounds through covalent bonding. The most common silicon compound is silicon dioxide (SiO2), also known as silica, which is found in nature as quartz, sand, and other minerals.

Silicon can form compounds with many other elements, including hydrogen, oxygen, halogens, sulfur, nitrogen, and carbon. For example:

* Silanes (SiHn) are a series of silicon-hydrogen compounds where n ranges from 1 to 6.
* Silicones are synthetic polymers made up of alternating silicon and oxygen atoms with organic groups attached to the silicon atoms.
* Silicates are a class of minerals that contain silicon, oxygen, and one or more metal cations. They have a wide range of structures and uses, including as building materials, ceramics, and glass.
* Siloxanes are a group of compounds containing alternating silicon-oxygen bonds with organic groups attached to the silicon atoms.

Silicon compounds have various applications in industry, medicine, and daily life. For instance, silicones are used in medical devices such as breast implants, contact lenses, and catheters due to their biocompatibility and flexibility. Silicates are found in pharmaceuticals, cosmetics, and food additives. Silicon-based materials are also used in dental restorations, bone cement, and drug delivery systems.

Polycarboxylate cement is not a medical term, but rather refers to a type of hydraulic cement used in construction and engineering. It's a specialized kind of cement that contains polycarboxylate-based high-range water-reducing admixtures (HRWRAs). These admixtures improve the workability and durability of concrete by reducing the amount of water needed for mixing while maintaining or even enhancing the strength of the final product.

The use of polycarboxylate cement is not directly related to medical practice or patient care, but it may have indirect implications in medical fields such as construction safety, environmental health, and industrial medicine.

A tooth root is the part of a tooth that is embedded in the jawbone and cannot be seen when looking at a person's smile. It is the lower portion of a tooth that typically has a conical shape and anchors the tooth to the jawbone through a periodontal ligament. The tooth root is covered by cementum, a specialized bone-like tissue, and contains nerve endings and blood vessels within its pulp chamber.

The number of roots in a tooth can vary depending on the type of tooth. For example, incisors typically have one root, canines may have one or two roots, premolars usually have one or two roots, and molars often have two to four roots. The primary function of the tooth root is to provide stability and support for the crown of the tooth, allowing it to withstand the forces of biting and chewing.

I'm sorry for any confusion, but "quartz" is not a medical term. Quartz is a mineral that is one of the most common minerals on Earth. It is found in many different types of rocks and is made up of silicon dioxide (SiO2). It is often used in electronics and watches because of its piezoelectric properties, which means it can generate an electric charge when subjected to pressure or stress.

It does not have any direct relation with medical field, although there are some Quartz based equipment like quartz crystal microbalance (QCM) sensors that are used in medical research for the detection of biomolecules and pathogens.

Tooth preparation in prosthodontics refers to the process of altering the clinical crown of a tooth or teeth to receive a restoration, such as a crown, veneer, or bridge. This procedure involves removing a portion of the enamel and dentin to create a suitable foundation for the prosthetic device. The preparation aims to achieve proper retention, resistance form, and marginal fit, ensuring the successful integration and longevity of the restoration. The process may also include the management of tooth structure loss due to decay, trauma, or wear, and the establishment of harmonious occlusion with the opposing teeth.

Methyl Methacrylates (MMA) are a family of synthetic materials that are commonly used in the medical field, particularly in orthopedic and dental applications. Medically, MMA is often used as a bone cement to fix prosthetic implants, such as artificial hips or knees, into place during surgeries.

Methyl methacrylates consist of a type of acrylic resin that hardens when mixed with a liquid catalyst. This property allows it to be easily molded and shaped before it sets, making it ideal for use in surgical procedures where precise positioning is required. Once hardened, MMA forms a strong, stable bond with the bone, helping to secure the implant in place.

It's important to note that while MMA is widely used in medical applications, there have been concerns about its safety in certain situations. For example, some studies have suggested that high levels of methyl methacrylate fumes released during the setting process may be harmful to both patients and surgical staff. Therefore, appropriate precautions should be taken when using MMA-based products in medical settings.

Compressive strength is a measure of the maximum compressive load that a material or structure can withstand before failure or deformation. It is typically expressed in units of pressure, such as pounds per square inch (psi) or megapascals (MPa). Compressive strength is an important property in the design and analysis of structures and materials, as it helps to ensure their safety and durability under compressive loads.

In medical terminology, compressive strength may refer to the ability of biological tissues, such as bone or cartilage, to withstand compressive forces without deforming or failing. For example, osteoporosis is a condition characterized by reduced bone density and compressive strength, which can increase the risk of fractures in affected individuals. Similarly, degenerative changes in articular cartilage can lead to decreased compressive strength and joint pain or stiffness.

Anion exchange resins are a type of ion exchange resin that are positively charged and used to remove anions (negatively charged ions) from aqueous solutions. These resins contain functional groups such as quaternary ammonium or tertiary amine groups, which can attract and retain anions like chloride, sulfate, or nitrate ions.

Anion exchange resins are commonly used in water treatment to remove excess dissolved salts, heavy metals, and other impurities from drinking water, industrial wastewater, and process water. They can also be used in the pharmaceutical industry for the purification of drugs and biomolecules, as well as in research and analytical applications.

When anions come into contact with the resin, they are attracted to the positively charged functional groups and exchanged for hydroxide ions (OH-) present on the resin surface. This exchange results in the formation of water and the release of the anion from the resin. The resin can then be regenerated by washing it with a strong base, which replaces the hydroxide ions and restores its ability to exchange anions.

Overall, anion exchange resins are important tools for removing unwanted anions from various types of solutions, including water, biological samples, and industrial process streams.

Polymethyl methacrylate (PMMA) is a type of synthetic resin that is widely used in the medical field due to its biocompatibility and versatility. It is a transparent, rigid, and lightweight material that can be easily molded into different shapes and forms. Here are some of the medical definitions of PMMA:

1. A biocompatible acrylic resin used in various medical applications such as bone cement, intraocular lenses, dental restorations, and drug delivery systems.
2. A type of synthetic material that is used as a bone cement to fix prosthetic joint replacements and vertebroplasty for the treatment of spinal fractures.
3. A transparent and shatter-resistant material used in the manufacture of medical devices such as intravenous (IV) fluid bags, dialyzer housings, and oxygenators.
4. A drug delivery system that can be used to administer drugs locally or systemically, such as intraocular sustained-release drug implants for the treatment of chronic eye diseases.
5. A component of dental restorations such as fillings, crowns, and bridges due to its excellent mechanical properties and esthetic qualities.

Overall, PMMA is a versatile and valuable material in the medical field, with numerous applications that take advantage of its unique properties.

"Wettability" is not a term that has a specific medical definition. It is a term that is more commonly used in the fields of chemistry, physics, and materials science to describe how well a liquid spreads on a solid surface. In other words, it refers to the ability of a liquid to maintain contact with a solid surface, which can have implications for various medical applications such as the design of medical devices or the study of biological surfaces. However, it is not a term that would typically be used in a clinical medical context.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Bite force refers to the amount of force or pressure that can be exerted by the teeth and jaw when biting down or clenching together. It is a measure of an individual's maximum biting strength, typically expressed in units such as pounds (lb) or newtons (N). Bite force is an important factor in various biological and medical contexts, including oral health, nutrition, and the study of animal behavior and evolution.

In humans, bite force can vary widely depending on factors such as age, sex, muscle strength, and dental health. On average, a healthy adult human male may have a maximum bite force of around 150-200 pounds (670-890 newtons), while an adult female may have a bite force of around 100-130 pounds (445-578 newtons). However, these values can vary significantly from person to person.

Abnormalities in bite force can be indicative of various medical conditions or injuries, such as temporomandibular joint disorders (TMD), muscle weakness, or neurological disorders affecting the facial muscles. Assessing and measuring bite force may also be useful in evaluating the effectiveness of dental treatments or appliances, such as dentures or orthodontic devices.

Hydrofluoric acid is not typically considered a medical term, but rather a chemical one. However, it's important for medical professionals to be aware of its potential hazards and health effects.

Hydrofluoric acid (HF) is a highly corrosive and toxic liquid, which is colorless or slightly yellowish. It is a solution of hydrogen fluoride in water. It is used in various industries for etching glass, cleaning metal surfaces, manufacturing semiconductors, and in chemical research.

In terms of health effects, exposure to HF can cause severe burns and tissue damage. Even at very low concentrations, it can cause pain and irritation to the skin and eyes. Inhalation can lead to respiratory irritation, coughing, and choking. If ingested, it can be fatal due to its ability to cause deep burns in the gastrointestinal tract and potentially lead to systemic fluoride toxicity. Delayed medical attention can result in serious complications, including damage to bones and nerves.

A partial denture is a type of removable dental prosthesis that replaces one or more missing teeth on a jaw while the remaining natural teeth remain intact. It is designed to fit securely and comfortably among the existing teeth, filling in the gaps created by tooth loss and helping to restore normal biting, chewing, and speaking functions.

Partial dentures typically consist of an acrylic base that resembles the color of gum tissue, with artificial teeth attached to it. The base is often held in place by metal or plastic clasps that hook around the existing teeth for support. In some cases, precision attachments may be used instead of clasps for a more discreet and natural-looking fit.

Partial dentures can help prevent several dental issues associated with tooth loss, such as drifting, tilting, or rotating of adjacent teeth, which can lead to further tooth loss and bite problems over time. They also help maintain the overall shape and structure of the face, preventing sagging or collapsing of facial muscles that may occur due to missing teeth.

Regular dental check-ups are essential for individuals wearing partial dentures to ensure proper fit, function, and oral health. Dentists will often examine the denture, the remaining natural teeth, and the gums to monitor any changes or issues and make necessary adjustments as needed.

Thermogravimetry (TG) is a technique used in materials science and analytical chemistry to measure the mass of a substance as a function of temperature while it is subjected to a controlled heating or cooling rate in a carefully controlled atmosphere. The sample is placed in a pan which is suspended from a balance and heated at a constant rate. As the temperature increases, various components of the sample may decompose, lose water, or evolve gases, resulting in a decrease in mass, which is recorded by the balance.

TG can be used to determine the weight loss due to decomposition, desorption, or volatilization, and to calculate the amount of various components present in a sample. It is often used in conjunction with other techniques such as differential thermal analysis (DTA) or differential scanning calorimetry (DSC) to provide additional information about the thermal behavior of materials.

In summary, thermogravimetry is a method for measuring the mass changes of a material as it is heated or cooled, which can be used to analyze its composition and thermal stability.

Colorimetry is the scientific measurement and quantification of color, typically using a colorimeter or spectrophotometer. In the medical field, colorimetry may be used in various applications such as:

1. Diagnosis and monitoring of skin conditions: Colorimeters can measure changes in skin color to help diagnose or monitor conditions like jaundice, cyanosis, or vitiligo. They can also assess the effectiveness of treatments for these conditions.
2. Vision assessment: Colorimetry is used in vision testing to determine the presence and severity of visual impairments such as color blindness or deficiencies. Special tests called anomaloscopes or color vision charts are used to measure an individual's ability to distinguish between different colors.
3. Environmental monitoring: In healthcare settings, colorimetry can be employed to monitor the cleanliness and sterility of surfaces or equipment by measuring the amount of contamination present. This is often done using ATP (adenosine triphosphate) bioluminescence assays, which emit light when they come into contact with microorganisms.
4. Medical research: Colorimetry has applications in medical research, such as studying the optical properties of tissues or developing new diagnostic tools and techniques based on color measurements.

In summary, colorimetry is a valuable tool in various medical fields for diagnosis, monitoring, and research purposes. It allows healthcare professionals to make more informed decisions about patient care and treatment plans.

Cariostatic agents are substances or medications that are used to prevent or inhibit the development and progression of dental caries, also known as tooth decay or cavities. These agents work by reducing the ability of bacteria in the mouth to produce acid, which can erode the enamel and dentin of the teeth and lead to cavities.

There are several types of cariostatic agents that are commonly used in dental care, including:

1. Fluorides: These are the most widely used and well-studied cariostatic agents. They work by promoting the remineralization of tooth enamel and making it more resistant to acid attacks. Fluoride can be found in toothpaste, mouthwashes, gels, varnishes, and fluoridated water supplies.
2. Antimicrobial agents: These substances work by reducing the population of bacteria in the mouth that contribute to tooth decay. Examples include chlorhexidine, triclosan, and xylitol.
3. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): This is a complex protein that has been shown to help remineralize tooth enamel and reduce the risk of dental caries. It can be found in some toothpastes and mouthwashes.
4. Silver diamine fluoride: This is a topical fluoride compound that contains silver ions, which have antimicrobial properties. It has been shown to be effective in preventing and arresting dental caries, particularly in high-risk populations such as young children and older adults with dry mouth.

It's important to note that while cariostatic agents can help reduce the risk of tooth decay, they are not a substitute for good oral hygiene practices such as brushing twice a day, flossing daily, and visiting the dentist regularly.

In the context of medical definitions, polymers are large molecules composed of repeating subunits called monomers. These long chains of monomers can have various structures and properties, depending on the type of monomer units and how they are linked together. In medicine, polymers are used in a wide range of applications, including drug delivery systems, medical devices, and tissue engineering scaffolds. Some examples of polymers used in medicine include polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC), and biodegradable polymers such as polylactic acid (PLA) and polycaprolactone (PCL).

The Elastic Modulus, also known as Young's modulus, is a measure of the stiffness of a material. It is defined as the ratio of stress (force per unit area) to strain (partial deformation or change in length per unit length) in the elastic range of deformation of a material. In other words, it measures how much a material will deform (change in length or size) when subjected to a given amount of force. A higher elastic modulus indicates that a material is stiffer and less likely to deform, while a lower elastic modulus indicates that a material is more flexible and will deform more easily. The elastic modulus is typically expressed in units of Pascals (Pa) or Gigapascals (GPa).

Cation exchange resins are a type of ion exchange resin that are positively charged and used to remove cations (positively charged ions) from aqueous solutions. They are often used in water treatment to soften water by removing calcium and magnesium ions, which can cause scale buildup in pipes and appliances. Cation exchange resins can also be used to remove heavy metals and other contaminants from water.

The resin itself is typically made of a cross-linked polymer matrix, such as polystyrene or polyacrylate, which contains functional groups that give the resin its ion exchange properties. The most common type of cation exchange resin is the sulfonated styrene divinylbenzene copolymer (SSDVB), in which the functional group is a sulfonic acid (-SO3H) group. When this resin comes into contact with a solution containing cations, such as a water supply, the cations in the solution will replace the hydrogen ions on the resin, causing the resin to become positively charged and the solution to become deionized.

Cation exchange resins can be regenerated by washing them with a strong acid, which replaces the captured cations with hydrogen ions, allowing the resin to be reused. The regeneration process must be done carefully to avoid damaging the resin and to ensure that it is properly rinsed of any residual acid before being put back into service.

Cation exchange resins are widely used in various industries such as pharmaceuticals, food and beverage, power generation, chemical processing and metal finishing for purification of water and wastewater treatment.

Polyethylene glycols (PEGs) are a family of synthetic, water-soluble polymers with a wide range of molecular weights. They are commonly used in the medical field as excipients in pharmaceutical formulations due to their ability to improve drug solubility, stability, and bioavailability. PEGs can also be used as laxatives to treat constipation or as bowel cleansing agents prior to colonoscopy examinations. Additionally, some PEG-conjugated drugs have been developed for use in targeted cancer therapies.

In a medical context, PEGs are often referred to by their average molecular weight, such as PEG 300, PEG 400, PEG 1500, and so on. Higher molecular weight PEGs tend to be more viscous and have longer-lasting effects in the body.

It's worth noting that while PEGs are generally considered safe for use in medical applications, some people may experience allergic reactions or hypersensitivity to these compounds. Prolonged exposure to high molecular weight PEGs has also been linked to potential adverse effects, such as decreased fertility and developmental toxicity in animal studies. However, more research is needed to fully understand the long-term safety of PEGs in humans.

In the context of medical terminology, "light" doesn't have a specific or standardized definition on its own. However, it can be used in various medical terms and phrases. For example, it could refer to:

1. Visible light: The range of electromagnetic radiation that can be detected by the human eye, typically between wavelengths of 400-700 nanometers. This is relevant in fields such as ophthalmology and optometry.
2. Therapeutic use of light: In some therapies, light is used to treat certain conditions. An example is phototherapy, which uses various wavelengths of ultraviolet (UV) or visible light for conditions like newborn jaundice, skin disorders, or seasonal affective disorder.
3. Light anesthesia: A state of reduced consciousness in which the patient remains responsive to verbal commands and physical stimulation. This is different from general anesthesia where the patient is completely unconscious.
4. Pain relief using light: Certain devices like transcutaneous electrical nerve stimulation (TENS) units have a 'light' setting, indicating lower intensity or frequency of electrical impulses used for pain management.

Without more context, it's hard to provide a precise medical definition of 'light'.

The term "tooth cervix" is not commonly used in medical dentistry with a specific technical definition. However, if you are referring to the "cervical region of a tooth," it generally refers to the area where the crown (the visible part of the tooth) meets the root (the portion of the tooth that is below the gum line). This region is also sometimes referred to as the "cementoenamel junction" (CEJ), where the enamel covering of the crown meets the cementum covering of the root. Dental issues such as tooth decay, receding gums, or abrasion can affect this area and may require professional dental treatment.

Dental equipment refers to the various instruments and devices used by dental professionals to perform oral health examinations, diagnose dental conditions, and provide treatment to patients. Here are some examples:

1. Dental chair: A specially designed chair that allows patients to recline while receiving dental care.
2. Examination light: A bright light used to illuminate the oral cavity during examinations and procedures.
3. Dental mirror: A small, angled mirror used to help dentists see hard-to-reach areas of the mouth.
4. Explorer: A sharp instrument used to probe teeth for signs of decay or other dental problems.
5. Dental probe: A blunt instrument used to measure the depth of periodontal pockets and assess gum health.
6. Scaler: A handheld instrument or ultrasonic device used to remove tartar and calculus from teeth.
7. Suction device: A vacuum-like tool that removes saliva, water, and debris from the mouth during procedures.
8. Dental drill: A high-speed instrument used to remove decayed or damaged tooth structure and prepare teeth for fillings, crowns, or other restorations.
9. Rubber dam: A thin sheet of rubber used to isolate individual teeth during procedures, keeping them dry and free from saliva.
10. Dental X-ray machine: A device that uses radiation to capture images of the teeth and surrounding structures, helping dentists diagnose conditions such as decay, infection, and bone loss.
11. Curing light: A special light used to harden dental materials, such as composite fillings and crowns, after they have been placed in the mouth.
12. Air/water syringe: A handheld device that delivers a stream of air and water to clean teeth and rinse away debris during procedures.

Denture bases are the part of a dental prosthesis that rests on the oral tissues and supports the artificial teeth. They are typically made from polymers such as acrylic resin or polymer-ceramic composites, and are custom-fabricated to fit precisely onto the gums and underlying bone structure in the mouth. The denture base provides stability and retention for the prosthesis, allowing it to remain securely in place during eating, speaking, and other activities. It is important that denture bases fit well and are comfortable, as ill-fitting bases can cause irritation, sores, and difficulty with oral function.

Tooth wear is the progressive loss of tooth structure that can occur as a result of various factors. According to the medical definition, it refers to the wearing down, rubbing away, or grinding off of the hard tissues of the teeth (enamel and dentin) due to mechanical forces or chemical processes.

There are three primary types of tooth wear:

1. Abrasion: This is the loss of tooth structure caused by friction from external sources, such as incorrect brushing techniques, bite appliances, or habits like nail-biting and pipe smoking.
2. Attrition: This type of tooth wear results from the natural wearing down of teeth due to occlusal forces during biting, chewing, and grinding. However, excessive attrition can occur due to bruxism (teeth grinding) or clenching.
3. Erosion: Chemical processes, such as acid attacks from dietary sources (e.g., citrus fruits, sodas, and sports drinks) or gastric reflux, cause the loss of tooth structure in this type of tooth wear. The enamel dissolves when exposed to low pH levels, leaving the dentin underneath vulnerable to further damage.

Professional dental examination and treatment may be necessary to address significant tooth wear and prevent further progression, which can lead to sensitivity, pain, and functional or aesthetic issues.

Brompheniramine is an antihistamine medication that is used to relieve symptoms of allergies, such as runny nose, sneezing, and itchy or watery eyes. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms.

Brompheniramine is available in various forms, including tablets, capsules, syrup, and solutions for injection. It may be used alone or in combination with other medications to treat cold and allergy symptoms.

Common side effects of brompheniramine include dizziness, dry mouth, blurred vision, and drowsiness. It is important to use caution when taking this medication, as it can cause impairment of mental alertness and physical coordination.

As with any medication, it is important to follow the instructions of your healthcare provider when taking brompheniramine, and to inform them of any other medications you are taking or medical conditions you have.

Nonparametric statistics is a branch of statistics that does not rely on assumptions about the distribution of variables in the population from which the sample is drawn. In contrast to parametric methods, nonparametric techniques make fewer assumptions about the data and are therefore more flexible in their application. Nonparametric tests are often used when the data do not meet the assumptions required for parametric tests, such as normality or equal variances.

Nonparametric statistical methods include tests such as the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) for comparing two independent groups, the Wilcoxon signed-rank test for comparing two related groups, and the Kruskal-Wallis test for comparing more than two independent groups. These tests use the ranks of the data rather than the actual values to make comparisons, which allows them to be used with ordinal or continuous data that do not meet the assumptions of parametric tests.

Overall, nonparametric statistics provide a useful set of tools for analyzing data in situations where the assumptions of parametric methods are not met, and can help researchers draw valid conclusions from their data even when the data are not normally distributed or have other characteristics that violate the assumptions of parametric tests.

I'm sorry for any confusion, but "Silver" is not a medical term. It is a chemical element with the symbol Ag and atomic number 47. Silver is a soft, white, lustrous transition metal that occurs in its pure, free form (native silver) as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite.

In the medical field, silver compounds have been used for their antimicrobial properties. For example, silver sulfadiazine is a common topical cream used to prevent or treat wound infections. Colloidal silver, a suspension of silver particles in a liquid, has also been promoted as a dietary supplement and alternative treatment for various conditions, but its effectiveness and safety are not well-established.

Air abrasion, dental, is a method of removing decay and minor defects from teeth using a stream of air and fine particles. This technique is an alternative to the traditional drilling method and is often used in preventative dentistry and for preparing teeth for fillings or sealants. The process is generally considered to be more comfortable for patients as it typically does not require anesthesia, and it can be more precise and less invasive than drilling. However, air abrasion may not be suitable for all types of dental work and its use is determined by the dentist on a case-by-case basis.

"Drug storage" refers to the proper handling, maintenance, and preservation of medications in a safe and suitable environment to ensure their effectiveness and safety until they are used. Proper drug storage includes:

1. Protecting drugs from light, heat, and moisture: Exposure to these elements can degrade the quality and potency of medications. Therefore, it is recommended to store most drugs in a cool, dry place, away from direct sunlight.

2. Keeping drugs out of reach of children and pets: Medications should be stored in a secure location, such as a locked cabinet or medicine chest, to prevent accidental ingestion or harm to young children and animals.

3. Following storage instructions on drug labels and packaging: Some medications require specific storage conditions, such as refrigeration or protection from freezing. Always follow the storage instructions provided by the manufacturer or pharmacist.

4. Regularly inspecting drugs for signs of degradation or expiration: Check medications for changes in color, consistency, or odor, and discard any that have expired or show signs of spoilage.

5. Storing drugs separately from one another: Keep different medications separate to prevent cross-contamination, incorrect dosing, or accidental mixing of incompatible substances.

6. Avoiding storage in areas with high humidity or temperature fluctuations: Bathrooms, kitchens, and garages are generally not ideal for storing medications due to their exposure to moisture, heat, and temperature changes.

Proper drug storage is crucial for maintaining the safety, efficacy, and stability of medications. Improper storage can lead to reduced potency, increased risk of adverse effects, or even life-threatening situations. Always consult a healthcare professional or pharmacist for specific storage instructions and recommendations.

In the context of medical and health sciences, particle size generally refers to the diameter or dimension of particles, which can be in the form of solid particles, droplets, or aerosols. These particles may include airborne pollutants, pharmaceutical drugs, or medical devices such as nanoparticles used in drug delivery systems.

Particle size is an important factor to consider in various medical applications because it can affect the behavior and interactions of particles with biological systems. For example, smaller particle sizes can lead to greater absorption and distribution throughout the body, while larger particle sizes may be filtered out by the body's natural defense mechanisms. Therefore, understanding particle size and its implications is crucial for optimizing the safety and efficacy of medical treatments and interventions.

I'm sorry for any confusion, but "semiconductors" is a term from the field of materials science and electronics rather than medicine. Semiconductors are materials, often silicon-based, that have properties between conductors and insulators. They are used in various electronic devices due to their unique property of controlling the flow of electrical current. If you have any medical questions, I'd be happy to help with those instead!

Photochemical processes refer to chemical reactions that are initiated or driven by the absorption of light. In these reactions, photons (light particles) interact with molecules, causing electrons in the molecules to become excited and leading to the formation of new chemical bonds or the breaking of existing ones. This results in the creation of different molecular structures or products.

In the context of human health and medicine, photochemical processes can occur both naturally and artificially. For instance, the body uses light-dependent reactions in the process of vision, where light is absorbed by rhodopsin in the retina, triggering a series of chemical events that ultimately lead to visual perception.

Additionally, photochemotherapy is a medical treatment that utilizes photochemical processes to achieve therapeutic effects. In this approach, a photosensitizing agent is administered to a patient, and then exposed to specific wavelengths of light. The light causes the photosensitizer to react with oxygen, generating reactive oxygen species that can destroy targeted cells or tissues, such as cancer cells or bacteria.

Overall, photochemical processes play an essential role in various biological and medical contexts, enabling critical functions like vision and offering promising therapeutic avenues for a range of conditions.

Magnesium oxide is an inorganic compound with the chemical formula MgO. It is a white, odorless solid that is highly basic and stable. Medically, magnesium oxide is used as a dietary supplement to prevent or treat low amounts of magnesium in the blood. It is also used as a antacid to neutralize stomach acid and as a laxative to relieve constipation.

An incisor is a type of tooth that is primarily designed for biting off food pieces rather than chewing or grinding. They are typically chisel-shaped, flat, and have a sharp cutting edge. In humans, there are eight incisors - four on the upper jaw and four on the lower jaw, located at the front of the mouth. Other animals such as dogs, cats, and rodents also have incisors that they use for different purposes like tearing or gnawing.

In medicine, elasticity refers to the ability of a tissue or organ to return to its original shape after being stretched or deformed. This property is due to the presence of elastic fibers in the extracellular matrix of the tissue, which can stretch and recoil like rubber bands.

Elasticity is an important characteristic of many tissues, particularly those that are subjected to repeated stretching or compression, such as blood vessels, lungs, and skin. For example, the elasticity of the lungs allows them to expand and contract during breathing, while the elasticity of blood vessels helps maintain normal blood pressure by allowing them to expand and constrict in response to changes in blood flow.

In addition to its role in normal physiology, elasticity is also an important factor in the diagnosis and treatment of various medical conditions. For example, decreased elasticity in the lungs can be a sign of lung disease, while increased elasticity in the skin can be a sign of aging or certain genetic disorders. Medical professionals may use techniques such as pulmonary function tests or skin biopsies to assess elasticity and help diagnose these conditions.

Methyl Methacrylate (MMA) is not a medical term itself, but it is a chemical compound that is used in various medical applications. Therefore, I will provide you with a general definition and some of its medical uses.

Methyl methacrylate (C5H8O2) is an organic compound, specifically an ester of methacrylic acid and methanol. It is a colorless liquid at room temperature, with a characteristic sweet odor. MMA is primarily used in the production of polymethyl methacrylate (PMMA), a transparent thermoplastic often referred to as acrylic glass or plexiglass.

In the medical field, PMMA has several applications:

1. Intraocular lenses: PMMA is used to create artificial intraocular lenses (IOLs) that replace natural lenses during cataract surgery. These IOLs are biocompatible and provide excellent optical clarity.
2. Bone cement: MMA is mixed with a powdered polymer to form polymethyl methacrylate bone cement, which is used in orthopedic and trauma surgeries for fixation of prosthetic joint replacements, vertebroplasty, and kyphoplasty.
3. Dental applications: PMMA is used in the fabrication of dental crowns, bridges, and dentures due to its excellent mechanical properties and biocompatibility.
4. Surgical implants: PMMA is also used in various surgical implants, such as cranial plates and reconstructive surgery, because of its transparency and ability to be molded into specific shapes.

A deciduous tooth, also known as a baby tooth or primary tooth, is a type of temporary tooth that humans and some other mammals develop during childhood. They are called "deciduous" because they are eventually shed and replaced by permanent teeth, much like how leaves on a deciduous tree fall off and are replaced by new growth.

Deciduous teeth begin to form in the womb and start to erupt through the gums when a child is around six months old. By the time a child reaches age three, they typically have a full set of 20 deciduous teeth, including incisors, canines, and molars. These teeth are smaller and less durable than permanent teeth, but they serve important functions such as helping children chew food properly, speak clearly, and maintain space in the jaw for the permanent teeth to grow into.

Deciduous teeth usually begin to fall out around age six or seven, starting with the lower central incisors. This process continues until all of the deciduous teeth have been shed, typically by age 12 or 13. At this point, the permanent teeth will have grown in and taken their place, with the exception of the wisdom teeth, which may not erupt until later in adolescence or early adulthood.

Pseudoephedrine is a decongestant medication that works by narrowing the blood vessels in the lining of the nose, which can help to relieve nasal congestion. It is commonly used to treat symptoms of allergies, colds, and sinusitis. Pseudoephedrine is available over-the-counter in various forms, including tablets, capsules, and liquids.

It is important to note that pseudoephedrine has been misused in the production of methamphetamine, a highly addictive and illegal drug. As a result, some countries have implemented regulations on the sale of products containing pseudoephedrine, requiring them to be sold behind the counter or kept in locked cases.

Astringents are substances that cause the contraction of body tissues, particularly the skin and mucous membranes. They have the ability to shrink or constrict proteins in the skin or mucous membrane, leading to a tightening effect. This is often used in various medical and cosmetic applications.

In a medical context, astringents are often used to:

1. Dry up weeping or oozing wounds or sores.
2. Reduce local inflammation.
3. Control bleeding from minor cuts or wounds by constricting the blood vessels.

Commonly used astringent substances include tannins, found in plants like oak bark and witch hazel, as well as aluminum salts, found in some antiperspirants. Astringents are often applied topically in the form of lotions, gels, or solutions. However, they can also be used systemically, although this is less common.

It's important to note that while astringents have therapeutic uses, they can also cause skin irritation and dryness if not used properly. Therefore, it's recommended to follow the instructions provided by a healthcare professional or as directed on the product label.

Operative dentistry is a branch of dental medicine that involves the diagnosis, treatment, and management of teeth with structural or functional damage due to decay, trauma, or other causes. It primarily focuses on restoring the function, form, and health of damaged teeth through various operative procedures such as fillings, crowns, inlays, onlays, and root canal treatments. The goal is to preserve natural tooth structure, alleviate pain, prevent further decay or damage, and restore the patient's oral health and aesthetics.

Here are some of the key aspects and procedures involved in operative dentistry:

1. Diagnosis: Operative dentists use various diagnostic tools and techniques to identify and assess tooth damage, including visual examination, dental X-rays, and special tests like pulp vitality testing. This helps them determine the most appropriate treatment approach for each case.
2. Preparation: Before performing any operative procedure, the dentist must prepare the tooth by removing decayed or damaged tissue, as well as any existing restorations that may be compromised or failing. This process is called tooth preparation and involves using specialized dental instruments like burs and excavators to shape the tooth and create a stable foundation for the new restoration.
3. Restoration: Operative dentistry encompasses various techniques and materials used to restore damaged teeth, including:
a. Fillings: Direct fillings are placed directly into the prepared cavity using materials like amalgam (silver), composite resin (tooth-colored), glass ionomer, or gold foil. The choice of filling material depends on factors such as the location and extent of the damage, patient's preferences, and cost considerations.
b. Indirect restorations: These are fabricated outside the mouth, usually in a dental laboratory, and then cemented or bonded to the prepared tooth. Examples include inlays, onlays, and crowns, which can be made from materials like gold, porcelain, ceramic, or resin composites.
c. Endodontic treatments: Operative dentistry also includes root canal therapy, which involves removing infected or inflamed pulp tissue from within the tooth's root canals, cleaning and shaping the canals, and then filling and sealing them to prevent reinfection.
d. Veneers: These are thin layers of porcelain or composite resin that are bonded to the front surfaces of teeth to improve their appearance, shape, or alignment.
4. Follow-up care: After placing a restoration, patients should maintain good oral hygiene practices and have regular dental checkups to ensure the long-term success of the treatment. In some cases, additional adjustments or repairs may be necessary over time due to wear, fracture, or secondary decay.

Dental prosthesis repair refers to the process of fixing or mending a broken or damaged dental prosthesis. A dental prosthesis is a device that replaces missing teeth and can be removable or fixed. Examples of dental prostheses include dentures, bridges, and crowns.

Repairs to dental prostheses may be necessary due to damage caused by normal wear and tear, accidents, or poor oral hygiene. The repair process typically involves cleaning the prosthesis, identifying the damaged or broken parts, and replacing or fixing them using appropriate dental materials. The repaired prosthesis should then be properly fitted and adjusted to ensure comfortable and effective use.

It is important to seek professional dental care for dental prosthesis repair to ensure that the repairs are done correctly and safely. A dentist or a dental technician with experience in prosthodontics can perform dental prosthesis repair.

I'm sorry for any confusion, but "Metal Ceramic Alloys" is not a recognized medical term. It is, however, a term used in the field of materials science and engineering. Metal ceramic alloys, also known as cermets, are materials that combine properties of both metals and ceramics. They are typically composed of a metal or alloy matrix with embedded ceramic particles.

In the context of medical devices or dental restorations, the term you might be looking for is "porcelain-fused-to-metal" (PFM). PFM restorations are a type of dental crown or bridge that combines a metal substructure with a ceramic outer layer. The metal provides strength and durability, while the ceramic layer mimics the appearance of natural teeth.

If you have any questions related to medical terminology or definitions, please don't hesitate to ask!

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Dental esthetics refers to the branch of dentistry concerned with the aesthetic appearance of teeth and smile. It involves the use of various dental treatments and procedures to improve the color, shape, alignment, and position of teeth, thereby enhancing the overall facial appearance and self-confidence of a person. Some common dental esthetic treatments include tooth whitening, dental veneers, composite bonding, orthodontic treatment (braces), and dental implants. It is important to note that dental esthetics not only focuses on improving the appearance but also maintaining or improving oral health and function.

X-ray emission spectrometry is a technique used to analyze the elements present in a sample by measuring the characteristic X-rays that are emitted when the sample is bombarded with high-energy X-rays or charged particles. The sample is excited to emit X-rays, which have specific energies (wavelengths) that correspond to the energy levels of the electrons in the atoms of the elements present in the sample. These X-ray emissions are then detected and analyzed using a spectrometer, which separates and measures the intensity of the different X-ray energies. The resulting spectrum provides information about the identity and quantity of the elements present in the sample. This technique is widely used in materials analysis, particularly for the identification and quantification of heavy metals and other elements in a variety of samples, including geological, biological, and industrial materials.

Zinc oxide is an inorganic compound with the formula ZnO. It exists as a white, odorless, and crystalline powder. In medicine, zinc oxide is used primarily as a topical agent for the treatment of various skin conditions, including diaper rash, minor burns, and irritations caused by eczema or psoriasis.

Zinc oxide has several properties that make it useful in medical applications:

1. Antimicrobial activity: Zinc oxide exhibits antimicrobial properties against bacteria, viruses, and fungi, which can help prevent infection and promote wound healing.
2. Skin protectant: It forms a physical barrier on the skin, protecting it from external irritants, friction, and moisture. This property is particularly useful in products like diaper rash creams and sunscreens.
3. Astringent properties: Zinc oxide can help constrict and tighten tissues, which may reduce inflammation and promote healing.
4. Mineral sunscreen agent: Zinc oxide is a common active ingredient in physical (mineral) sunscreens due to its ability to reflect and scatter UV light, protecting the skin from both UVA and UVB radiation.

Zinc oxide can be found in various medical and skincare products, such as creams, ointments, pastes, lotions, and powders. It is generally considered safe for topical use, but it may cause skin irritation or allergic reactions in some individuals.

Dental high-speed equipment typically refers to the handpiece used in dental procedures that operates at high rotational speeds, often exceeding 100,000 revolutions per minute (RPM). These handpieces are used for cutting and removing tooth structure, such as during cavity preparation or tooth reduction for restorations. They are called "high-speed" to distinguish them from slow-speed handpieces that operate at lower RPMs, typically under 10,000, and are used for procedures like polishing or cutting softer materials. High-speed handpieces are an essential part of modern dental practice, enabling precise and efficient removal of tooth structure while minimizing patient discomfort and procedure time.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

Tooth demineralization is a process that involves the loss of minerals, such as calcium and phosphate, from the hard tissues of the teeth. This process can lead to the development of dental caries or tooth decay. Demineralization occurs when acids produced by bacteria in the mouth attack the enamel of the tooth, dissolving its mineral content. Over time, these attacks can create holes or cavities in the teeth. Fluoride, found in many toothpastes and public water supplies, can help to remineralize teeth and prevent decay. Good oral hygiene practices, such as brushing and flossing regularly, can also help to prevent demineralization by removing plaque and bacteria from the mouth.

Titanium is not a medical term, but rather a chemical element (symbol Ti, atomic number 22) that is widely used in the medical field due to its unique properties. Medically, it is often referred to as a biocompatible material used in various medical applications such as:

1. Orthopedic implants: Titanium and its alloys are used for making joint replacements (hips, knees, shoulders), bone plates, screws, and rods due to their high strength-to-weight ratio, excellent corrosion resistance, and biocompatibility.
2. Dental implants: Titanium is also commonly used in dental applications like implants, crowns, and bridges because of its ability to osseointegrate, or fuse directly with bone tissue, providing a stable foundation for replacement teeth.
3. Cardiovascular devices: Titanium alloys are used in the construction of heart valves, pacemakers, and other cardiovascular implants due to their non-magnetic properties, which prevent interference with magnetic resonance imaging (MRI) scans.
4. Medical instruments: Due to its resistance to corrosion and high strength, titanium is used in the manufacturing of various medical instruments such as surgical tools, needles, and catheters.

In summary, Titanium is a chemical element with unique properties that make it an ideal material for various medical applications, including orthopedic and dental implants, cardiovascular devices, and medical instruments.

Fluorides are ionic compounds that contain the fluoride anion (F-). In the context of dental and public health, fluorides are commonly used in preventive measures to help reduce tooth decay. They can be found in various forms such as sodium fluoride, stannous fluoride, and calcium fluoride. When these compounds come into contact with saliva, they release fluoride ions that can be absorbed by tooth enamel. This process helps to strengthen the enamel and make it more resistant to acid attacks caused by bacteria in the mouth, which can lead to dental caries or cavities. Fluorides can be topically applied through products like toothpaste, mouth rinses, and fluoride varnishes, or systemically ingested through fluoridated water, salt, or supplements.

Optical phenomena refer to the various observable patterns and effects that occur due to the interaction of light with the environment or with structures in our eye. These can include natural phenomena such as rainbows, mirages, and halos around the sun or moon, as well as visual artifacts created by the eye itself, such as afterimages, floaters, and flashes of light. Some optical phenomena are caused by the refraction, reflection, or interference of light waves, while others may result from abnormalities in the eye's structure or function. Understanding these phenomena can provide insight into the properties of light and the functioning of the visual system.

Dental caries, also known as tooth decay or cavities, refers to the damage or breakdown of the hard tissues of the teeth (enamel, dentin, and cementum) due to the activity of acid-producing bacteria. These bacteria ferment sugars from food and drinks, producing acids that dissolve and weaken the tooth structure, leading to cavities.

The process of dental caries development involves several stages:

1. Demineralization: The acidic environment created by bacterial activity causes minerals (calcium and phosphate) to be lost from the tooth surface, making it weaker and more susceptible to decay.
2. Formation of a white spot lesion: As demineralization progresses, a chalky white area appears on the tooth surface, indicating early caries development.
3. Cavity formation: If left untreated, the demineralization process continues, leading to the breakdown and loss of tooth structure, resulting in a cavity or hole in the tooth.
4. Infection and pulp involvement: As the decay progresses deeper into the tooth, it can reach the dental pulp (the soft tissue containing nerves and blood vessels), causing infection, inflammation, and potentially leading to toothache, abscess, or even tooth loss.

Preventing dental caries involves maintaining good oral hygiene, reducing sugar intake, using fluoride toothpaste and mouthwash, and having regular dental check-ups and cleanings. Early detection and treatment of dental caries can help prevent further progression and more severe complications.

A cuspid, also known as a canine tooth or cuspid tooth, is a type of tooth in mammals. It is the pointiest tooth in the dental arch and is located between the incisors and bicuspids (or premolars). Cuspids have a single cusp or pointed tip that is used for tearing and grasping food. In humans, there are four cuspids, two on the upper jaw and two on the lower jaw, one on each side of the dental arch.

Dental pulp capping is a dental procedure that involves the application of a small amount of medication or dressing to a small exposed area of the dental pulp, with the aim of promoting the formation of reparative dentin and preserving the vitality of the pulp. The dental pulp is the soft tissue located inside the tooth, containing nerves, blood vessels, and connective tissues that provide nutrients and sensory functions to the tooth.

Pulp capping may be recommended when the dental pulp is exposed due to tooth decay or trauma, but the pulp is still vital and has the potential to heal. The procedure typically involves cleaning and removing any infected or damaged tissue from the exposure site, followed by the application of a medicated dressing or cement to promote healing and protect the pulp from further injury or infection.

There are two types of pulp capping: direct and indirect. Direct pulp capping involves applying the medication directly to the exposed pulp, while indirect pulp capping involves placing the medication over a thin layer of dentin that has been created to protect the pulp. The success of pulp capping depends on various factors, including the size and depth of the exposure, the patient's age and overall health, and the skill and experience of the dental professional performing the procedure.

Coloring agents, also known as food dyes or color additives, are substances that are added to foods, medications, and cosmetics to improve their appearance by giving them a specific color. These agents can be made from both synthetic and natural sources. They must be approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) before they can be used in products intended for human consumption.

Coloring agents are used for various reasons, including:

* To replace color lost during food processing or preparation
* To make foods more visually appealing
* To help consumers easily identify certain types of food
* To indicate the flavor of a product (e.g., fruit-flavored candies)

It's important to note that while coloring agents can enhance the appearance of products, they do not affect their taste or nutritional value. Some people may have allergic reactions to certain coloring agents, so it's essential to check product labels if you have any known allergies. Additionally, excessive consumption of some synthetic coloring agents has been linked to health concerns, so moderation is key.

A mouthwash is an antiseptic or therapeutic solution that is held in the mouth and then spit out, rather than swallowed. It is used to improve oral hygiene, to freshen breath, and to help prevent dental cavities, gingivitis, and other periodontal diseases.

Mouthwashes can contain a variety of ingredients, including water, alcohol, fluoride, chlorhexidine, essential oils, and other antimicrobial agents. Some mouthwashes are available over-the-counter, while others require a prescription. It is important to follow the instructions for use provided by the manufacturer or your dentist to ensure the safe and effective use of mouthwash.

Potassium compounds refer to substances that contain the element potassium (chemical symbol: K) combined with one or more other elements. Potassium is an alkali metal that has the atomic number 19 and is highly reactive, so it is never found in its free form in nature. Instead, it is always found combined with other elements in the form of potassium compounds.

Potassium compounds can be ionic or covalent, depending on the properties of the other element(s) with which it is combined. In general, potassium forms ionic compounds with nonmetals and covalent compounds with other metals. Ionic potassium compounds are formed when potassium donates one electron to a nonmetal, forming a positively charged potassium ion (K+) and a negatively charged nonmetal ion.

Potassium compounds have many important uses in medicine, industry, and agriculture. For example, potassium chloride is used as a salt substitute and to treat or prevent low potassium levels in the blood. Potassium citrate is used to treat kidney stones and to alkalinize urine. Potassium iodide is used to treat thyroid disorders and to protect the thyroid gland from radioactive iodine during medical imaging procedures.

It's important to note that some potassium compounds can be toxic or even fatal if ingested in large quantities, so they should only be used under the supervision of a healthcare professional.

Photoelectron Spectroscopy (PES) is not typically considered a medical definition, but it is a term used in physical and analytical chemistry. However, I can provide a definition for you:

Photoelectron Spectroscopy (PES) is a technique used to study the electronic structure of atoms, molecules, and solids by irradiating them with photons (usually from a laser or a synchrotron light source) and measuring the kinetic energy of the ejected electrons. The technique provides information about the energy levels of the electrons in the sample, which can be used to determine its chemical composition, bonding, and electronic structure. PES is a valuable tool in surface science, materials research, and environmental analysis.

Erbium is a chemical element with the symbol "Er" and atomic number 68. It is a rare earth element that belongs to the lanthanide series in the periodic table. Erbium is not naturally found in its pure form, but it is typically extracted from minerals such as xenotime and bastnasite.

In medical terms, erbium is used in the form of erbium-doped yttrium aluminum garnet (Er:YAG) lasers for various surgical procedures. These lasers emit light at a wavelength of 2940 nanometers, which is highly absorbed by water and therefore ideal for cutting and coagulating tissue with minimal thermal damage to surrounding tissues. Erbium lasers are commonly used in dermatology and ophthalmology for procedures such as skin resurfacing, removal of tattoos and birthmarks, and cataract surgery.

Food coloring agents, also known as food dyes, are substances that are added to foods and beverages to improve or modify their color. They are typically made from synthetic chemicals, although some are derived from natural sources. Food coloring agents are subject to regulation by the U.S. Food and Drug Administration (FDA) and other regulatory bodies to ensure their safety.

Food coloring agents are used for a variety of reasons, including:

* Making foods look more appealing or attractive
* Restoring the natural color of foods that has been lost during processing
* Helping consumers identify products, such as flavors or varieties of candy
* Ensuring consistency in the color of a product from batch to batch

Some common food coloring agents include:

* Blue 1 (Brilliant Blue)
* Blue 2 (Indigo Carmine)
* Green 3 (Fast Green FCF)
* Red 3 (Erythrosine)
* Red 40 (Allura Red)
* Yellow 5 (Tartrazine)
* Yellow 6 (Sunset Yellow)

It is important to note that some people may be sensitive or allergic to certain food coloring agents and may experience adverse reactions after consuming them. Additionally, there has been some concern about the potential health effects of artificial food dyes, although current research does not support a strong link between their consumption and negative health outcomes in the general population.

A tooth crown is a type of dental restoration that covers the entire visible portion of a tooth, restoring its shape, size, and strength. It is typically made of materials like porcelain, ceramic, or metal alloys and is custom-made to fit over the prepared tooth. The tooth crown is cemented in place and becomes the new outer surface of the tooth, protecting it from further damage or decay.

The process of getting a tooth crown usually involves two dental appointments. During the first appointment, the dentist prepares the tooth by removing any decay or damaged tissue and shaping the tooth to accommodate the crown. An impression is then taken of the prepared tooth and sent to a dental laboratory where the crown is fabricated. In the meantime, a temporary crown is placed over the prepared tooth to protect it until the permanent crown is ready. At the second appointment, the temporary crown is removed, and the permanent crown is cemented in place.

Tooth crowns are often recommended for several reasons, including:

* To restore a broken or fractured tooth
* To protect a weakened tooth from further damage or decay
* To support a large filling when there isn't enough natural tooth structure left
* To cover a dental implant
* To improve the appearance of a discolored or misshapen tooth

Overall, a tooth crown is an effective and long-lasting solution for restoring damaged or decayed teeth and improving oral health.

In the medical field, cementation refers to the process of using a type of dental cement or bonding agent to attach a dental restoration (such as a crown, bridge, or false tooth) to a natural tooth or implant. The cement helps to create a strong and secure attachment, while also helping to seal the restoration and prevent the entry of bacteria and saliva.

Dental cement can be made from various materials, including glass ionomers, resin-modified glass ionomers, zinc phosphate, and polycarboxylate cements. The choice of cement depends on several factors, such as the type of restoration being attached, the location in the mouth, and the patient's individual needs and preferences.

Cementation is an important step in many dental procedures, as it helps to ensure the longevity and success of the restoration. Proper technique and material selection are crucial for achieving a successful cementation that will last for years to come.

I'm sorry for any confusion, but "Finite Element Analysis" (FEA) is not a medical term. It is a computational technique used in engineering and physical sciences. FEA is a computerized method for predicting how a product reacts to real-world forces, vibration, heat, fluid flow, and other physical effects. It's a way that engineers can simulate the performance of a product or system before it is built, which can help reduce costs, improve quality, and shorten the development time.

However, in a medical context, FEA might be used in the field of biomechanical engineering to analyze the mechanical behavior of biological systems, such as bones, joints, or soft tissues, under various loads and conditions. This can help researchers and clinicians better understand the mechanisms of injury, disease, or the effects of treatment, and develop more effective prevention, diagnostic, or therapeutic strategies.

Fourier Transform Infrared (FTIR) spectroscopy is a type of infrared spectroscopy that uses the Fourier transform mathematical technique to convert the raw data obtained from an interferometer into a more interpretable spectrum. This technique allows for the simultaneous collection of a wide range of wavelengths, resulting in increased sensitivity and speed compared to traditional dispersive infrared spectroscopy.

FTIR spectroscopy measures the absorption or transmission of infrared radiation by a sample as a function of frequency, providing information about the vibrational modes of the molecules present in the sample. This can be used for identification and quantification of chemical compounds, analysis of molecular structure, and investigation of chemical interactions and reactions.

In summary, FTIR spectroscopy is a powerful analytical technique that uses infrared radiation to study the vibrational properties of molecules, with increased sensitivity and speed due to the use of Fourier transform mathematical techniques and an interferometer.

Coffee is defined in medical terms as a beverage prepared from the roasted seeds of the Coffea plant. It contains caffeine, a stimulant that can help increase alertness, improve mood, and boost mental and physical performance. Coffee also contains antioxidants and other bioactive compounds that may have health benefits. However, excessive consumption of coffee can lead to side effects such as insomnia, nervousness, restlessness, and rapid heart rate. It's important to consume coffee in moderation and be aware of its potential interactions with medications and medical conditions.

Streptococcus oralis is a type of gram-positive, facultatively anaerobic coccus (round-shaped bacterium) that belongs to the viridans group of streptococci. It is commonly found in the human oral cavity, particularly on the surface of the teeth and gums.

S. oralis is generally considered to be a commensal organism, meaning that it can exist harmlessly in the mouth without causing any negative effects. However, under certain circumstances, such as when the immune system is weakened or when there is damage to the oral tissues, S. oralis can cause infections. These infections may include dental caries (cavities), periodontal disease, and endocarditis (inflammation of the inner lining of the heart).

Like other streptococci, S. oralis is able to form biofilms, which are complex communities of bacteria that adhere to surfaces and can be difficult to remove. This ability to form biofilms may contribute to its ability to cause infections.

It's important to note that while S. oralis is a normal part of the oral microbiome, good oral hygiene practices such as brushing and flossing regularly can help prevent an overgrowth of this bacterium and reduce the risk of infection.

In dental terminology, "space maintenance" refers to the use of a device or appliance to maintain the proper space between teeth following the loss of a primary (baby) tooth. This is especially important when the lost tooth is a molar, as it plays a crucial role in maintaining the alignment and spacing of the remaining teeth and the eruption path for the developing permanent tooth.

Space maintainers can be fixed or removable and are typically made from materials such as stainless steel, plastic, or acrylic. They help prevent dental issues like crowding, misalignment, and impaction of adjacent and/or succeeding teeth, which may lead to more complex orthodontic treatments in the future. It is essential that space maintainers are custom-made and properly fitted by a dentist or an orthodontist to ensure their effectiveness and avoid potential damage to surrounding tissues.

Calcium compounds are chemical substances that contain calcium ions (Ca2+) bonded to various anions. Calcium is an essential mineral for human health, and calcium compounds have numerous biological and industrial applications. Here are some examples of calcium compounds with their medical definitions:

1. Calcium carbonate (CaCO3): A common mineral found in rocks and sediments, calcium carbonate is also a major component of shells, pearls, and bones. It is used as a dietary supplement to prevent or treat calcium deficiency and as an antacid to neutralize stomach acid.
2. Calcium citrate (C6H8CaO7): A calcium salt of citric acid, calcium citrate is often used as a dietary supplement to prevent or treat calcium deficiency. It is more soluble in water and gastric juice than calcium carbonate, making it easier to absorb, especially for people with low stomach acid.
3. Calcium gluconate (C12H22CaO14): A calcium salt of gluconic acid, calcium gluconate is used as a medication to treat or prevent hypocalcemia (low blood calcium levels) and hyperkalemia (high blood potassium levels). It can be given intravenously, orally, or topically.
4. Calcium chloride (CaCl2): A white, deliquescent salt, calcium chloride is used as a de-icing agent, a food additive, and a desiccant. In medical settings, it can be used to treat hypocalcemia or hyperkalemia, or as an antidote for magnesium overdose.
5. Calcium lactate (C6H10CaO6): A calcium salt of lactic acid, calcium lactate is used as a dietary supplement to prevent or treat calcium deficiency. It is less commonly used than calcium carbonate or calcium citrate but may be better tolerated by some people.
6. Calcium phosphate (Ca3(PO4)2): A mineral found in rocks and bones, calcium phosphate is used as a dietary supplement to prevent or treat calcium deficiency. It can also be used as a food additive or a pharmaceutical excipient.
7. Calcium sulfate (CaSO4): A white, insoluble powder, calcium sulfate is used as a desiccant, a plaster, and a fertilizer. In medical settings, it can be used to treat hypocalcemia or as an antidote for magnesium overdose.
8. Calcium hydroxide (Ca(OH)2): A white, alkaline powder, calcium hydroxide is used as a disinfectant, a flocculant, and a building material. In medical settings, it can be used to treat hyperkalemia or as an antidote for aluminum overdose.
9. Calcium acetate (Ca(C2H3O2)2): A white, crystalline powder, calcium acetate is used as a food additive and a medication. It can be used to treat hyperphosphatemia (high blood phosphate levels) in patients with kidney disease.
10. Calcium carbonate (CaCO3): A white, chalky powder, calcium carbonate is used as a dietary supplement, a food additive, and a pharmaceutical excipient. It can also be used as a building material and a mineral supplement.

I believe there may be some confusion in your question. "Rubber" is not a medical term, but rather a common term used to describe a type of material that is elastic and can be stretched or deformed and then return to its original shape when the force is removed. It is often made from the sap of rubber trees or synthetically.

However, in a medical context, "rubber" might refer to certain medical devices or supplies made from rubber materials, such as rubber gloves used for medical examinations or procedures, or rubber stoppers used in laboratory equipment. But there is no medical definition specifically associated with the term 'Rubber' itself.

Viscosity is a physical property of a fluid that describes its resistance to flow. In medical terms, viscosity is often discussed in relation to bodily fluids such as blood or synovial fluid (found in joints). The unit of measurement for viscosity is the poise, although it is more commonly expressed in millipascals-second (mPa.s) in SI units. Highly viscous fluids flow more slowly than less viscous fluids. Changes in the viscosity of bodily fluids can have significant implications for health and disease; for example, increased blood viscosity has been associated with cardiovascular diseases, while decreased synovial fluid viscosity can contribute to joint pain and inflammation in conditions like osteoarthritis.

I'm sorry for the confusion, but "Palladium" is not a medical term. It is a chemical element with symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by William Hyde Wollaston. It's used in various applications, including jewelry, dental work, electronics, and chemical reactions. If you have any medical terms you would like me to define, please let me know!

Streptococcus sobrinus is a gram-positive, facultatively anaerobic coccus that belongs to the viridans group of streptococci. It's a type of bacteria commonly found in the oral cavity and is one of the primary causative agents of dental caries (tooth decay) along with Streptococcus mutans.

S. sobrinus has the ability to metabolize sugars and produce acid as a byproduct, which can lower the pH of the oral environment and contribute to tooth demineralization and cavity formation. This organism is often found in higher numbers in individuals with a high risk of caries and is associated with a more severe form of the disease.

It's important to note that while S. sobrinus is a significant contributor to dental caries, good oral hygiene practices, such as regular brushing and flossing, limiting sugar intake, and receiving professional dental care can help prevent the negative effects of this bacteria on oral health.

Aluminum compounds refer to chemical substances that are formed by the combination of aluminum with other elements. Aluminum is a naturally occurring metallic element, and it can combine with various non-metallic elements to form compounds with unique properties and uses. Some common aluminum compounds include:

1. Aluminum oxide (Al2O3): Also known as alumina, this compound is formed when aluminum combines with oxygen. It is a white, odorless powder that is highly resistant to heat and corrosion. Aluminum oxide is used in a variety of applications, including ceramics, abrasives, and refractories.
2. Aluminum sulfate (Al2(SO4)3): This compound is formed when aluminum combines with sulfuric acid. It is a white, crystalline powder that is highly soluble in water. Aluminum sulfate is used as a flocculant in water treatment, as well as in the manufacture of paper and textiles.
3. Aluminum chloride (AlCl3): This compound is formed when aluminum combines with chlorine. It is a white or yellowish-white solid that is highly deliquescent, meaning it readily absorbs moisture from the air. Aluminum chloride is used as a catalyst in chemical reactions, as well as in the production of various industrial chemicals.
4. Aluminum hydroxide (Al(OH)3): This compound is formed when aluminum combines with hydroxide ions. It is a white, powdery substance that is amphoteric, meaning it can react with both acids and bases. Aluminum hydroxide is used as an antacid and as a fire retardant.
5. Zinc oxide (ZnO) and aluminum hydroxide (Al(OH)3): This compound is formed when zinc oxide is combined with aluminum hydroxide. It is a white, powdery substance that is used as a filler in rubber and plastics, as well as in the manufacture of paints and coatings.

It's important to note that some aluminum compounds have been linked to health concerns, particularly when they are inhaled or ingested in large quantities. For example, aluminum chloride has been shown to be toxic to animals at high doses, while aluminum hydroxide has been associated with neurological disorders in some studies. However, the risks associated with exposure to these compounds are generally low, and they are considered safe for most industrial and consumer uses when used as directed.

"Random allocation," also known as "random assignment" or "randomization," is a process used in clinical trials and other research studies to distribute participants into different intervention groups (such as experimental group vs. control group) in a way that minimizes selection bias and ensures the groups are comparable at the start of the study.

In random allocation, each participant has an equal chance of being assigned to any group, and the assignment is typically made using a computer-generated randomization schedule or other objective methods. This process helps to ensure that any differences between the groups are due to the intervention being tested rather than pre-existing differences in the participants' characteristics.

Root canal preparation is a procedure in endodontics, which is the branch of dentistry dealing with the dental pulp and tissues surrounding the root of a tooth. The goal of root canal preparation is to thoroughly clean, shape, and disinfect the root canal system of an infected or damaged tooth, in order to prepare it for a filling material that will seal and protect the tooth from further infection or damage.

The procedure involves the use of specialized dental instruments, such as files and reamers, to remove the infected or necrotic pulp tissue and debris from within the root canal. The root canal is then shaped using progressively larger files to create a tapering preparation that facilitates the placement of the filling material. Irrigation solutions are used to help flush out any remaining debris and disinfect the canal.

The success of root canal preparation depends on several factors, including the thoroughness of cleaning and shaping, the effectiveness of disinfection, and the sealing ability of the filling material. Properly performed, root canal preparation can alleviate pain, save a tooth from extraction, and restore function and aesthetics to the mouth.

Peroxides, in a medical context, most commonly refer to chemical compounds that contain the peroxide ion (O2−2). Peroxides are characterized by the presence of an oxygen-oxygen single bond and can be found in various substances.

In dentistry, hydrogen peroxide (H2O2) is a widely used agent for teeth whitening or bleaching due to its oxidizing properties. It can help remove stains and discoloration on the tooth surface by breaking down into water and oxygen-free radicals, which react with the stain molecules, ultimately leading to their oxidation and elimination.

However, it is essential to note that high concentrations of hydrogen peroxide or prolonged exposure can cause tooth sensitivity, irritation to the oral soft tissues, and potential damage to the dental pulp. Therefore, professional supervision and appropriate concentration control are crucial when using peroxides for dental treatments.

Dental pulp is the soft tissue located in the center of a tooth, surrounded by the dentin. It contains nerves, blood vessels, and connective tissue, and plays a vital role in the development and health of the tooth. The dental pulp helps to form dentin during tooth development and continues to provide nourishment to the tooth throughout its life. It also serves as a sensory organ, allowing the tooth to detect hot and cold temperatures and transmit pain signals to the brain. Injury or infection of the dental pulp can lead to serious dental problems, such as tooth decay or abscesses, and may require root canal treatment to remove the damaged tissue and save the tooth.

Forensic dentistry, also known as forensic odontology, is a specialty in forensic science that involves the examination, identification, and evaluation of dental evidence for legal purposes. It encompasses various aspects such as:

1. Identification of deceased individuals through dental records comparison (e.g., during mass disasters or unidentified human remains).
2. Analysis of bite marks found on victims or objects related to criminal investigations.
3. Assessment of age, sex, ancestry, and other personal characteristics based on dental features.
4. Examination of cases of abuse, neglect, or malpractice in dentistry.
5. Evaluation of occupational dental injuries and diseases.

Forensic dentists often work closely with law enforcement agencies, medical examiners, and other legal professionals to provide expert testimony in court proceedings.

Dental occlusion, traumatic is a term used to describe an abnormal bite or contact between the upper and lower teeth that results in trauma or injury to the oral structures. This can occur when there is a discrepancy in the alignment of the teeth or jaws, such as an overbite, underbite, or crossbite, which causes excessive force or pressure on certain teeth or tissues.

Traumatic dental occlusion can result in various dental and oral health issues, including tooth wear, fractures, mobility of teeth, gum recession, and temporomandibular joint (TMJ) disorders. It is important to diagnose and treat traumatic dental occlusion early to prevent further damage and alleviate any discomfort or pain. Treatment options may include orthodontic treatment, adjustment of the bite, restoration of damaged teeth, or a combination of these approaches.

Boron compounds refer to chemical substances that contain the element boron (symbol: B) combined with one or more other elements. Boron is a naturally occurring, non-metallic element found in various minerals and ores. It is relatively rare, making up only about 0.001% of the Earth's crust by weight.

Boron compounds can take many forms, including salts, acids, and complex molecules. Some common boron compounds include:

* Boric acid (H3BO3) - a weak acid used as an antiseptic, preservative, and insecticide
* Sodium borate (Na2B4O7·10H2O) - also known as borax, a mineral used in detergents, cosmetics, and enamel glazes
* Boron carbide (B4C) - an extremely hard material used in abrasives, ceramics, and nuclear reactors
* Boron nitride (BN) - a compound with properties similar to graphite, used as a lubricant and heat shield

Boron compounds have a variety of uses in medicine, including as antiseptics, anti-inflammatory agents, and drugs for the treatment of cancer. For example, boron neutron capture therapy (BNCT) is an experimental form of radiation therapy that uses boron-containing compounds to selectively target and destroy cancer cells.

It's important to note that some boron compounds can be toxic or harmful if ingested, inhaled, or otherwise exposed to the body in large quantities. Therefore, they should be handled with care and used only under the guidance of a trained medical professional.

Denture design refers to the plan and configuration of a removable dental prosthesis, which is created to replace missing teeth and surrounding tissues in the mouth. The design process involves several factors such as:

1. The number and position of artificial teeth (pontics) used to restore the functional occlusion and aesthetics.
2. The type and arrangement of the denture base material that supports the artificial teeth and conforms to the oral tissues.
3. The selection and placement of various rests, clasps, or attachments to improve retention, stability, and support of the denture.
4. The choice of materials used for the construction of the denture, including the type of acrylic resin, metal alloys, or other components.
5. Consideration of the patient's individual needs, preferences, and oral conditions to ensure optimal fit, comfort, and functionality.

The design process is typically carried out by a dental professional, such as a prosthodontist or denturist, in close collaboration with the patient to achieve a custom-made solution that meets their specific requirements.

Air pressure, also known as atmospheric pressure, is the force exerted by the weight of air in the atmosphere on a surface. It is measured in units such as pounds per square inch (psi), hectopascals (hPa), or inches of mercury (inHg). The standard atmospheric pressure at sea level is defined as 101,325 Pa (14.7 psi/1013 hPa/29.92 inHg). Changes in air pressure can be used to predict weather patterns and are an important factor in the study of aerodynamics and respiratory physiology.

I'm sorry for any confusion, but "friction" is not a term that has a specific medical definition. Friction is a physical concept that describes the force that resists the sliding of one surface over another. It is commonly described as the "roughness" between two surfaces. While friction can have effects on various biological processes and medical devices, it does not have a unique medical meaning in and of itself.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

In a medical context, "hot temperature" is not a standard medical term with a specific definition. However, it is often used in relation to fever, which is a common symptom of illness. A fever is typically defined as a body temperature that is higher than normal, usually above 38°C (100.4°F) for adults and above 37.5-38°C (99.5-101.3°F) for children, depending on the source.

Therefore, when a medical professional talks about "hot temperature," they may be referring to a body temperature that is higher than normal due to fever or other causes. It's important to note that a high environmental temperature can also contribute to an elevated body temperature, so it's essential to consider both the body temperature and the environmental temperature when assessing a patient's condition.

In the context of medical terminology, "porosity" is not a term that is frequently used to describe human tissues or organs. However, in dermatology and cosmetics, porosity refers to the ability of the skin to absorb and retain moisture or topical treatments.

A skin with high porosity has larger pores and can absorb more products, while a skin with low porosity has smaller pores and may have difficulty absorbing products. It is important to note that this definition of porosity is not a medical one but is instead used in the beauty industry.

I'm sorry for any confusion, but "Silicon" does not have a specific medical definition. Silicon is a chemical element with the symbol Si and atomic number 14. It is a metalloid, which means it has properties of both metals and nonmetals. In the human body, silicon is not considered an essential nutrient, although it is found in trace amounts in various tissues. Some research suggests that silicon might play a role in collagen synthesis and bone health, but more studies are needed to confirm these findings and establish recommended intake levels.

Calcium phosphates are a group of minerals that are important components of bones and teeth. They are also found in some foods and are used in dietary supplements and medical applications. Chemically, calcium phosphates are salts of calcium and phosphoric acid, and they exist in various forms, including hydroxyapatite, which is the primary mineral component of bone tissue. Other forms of calcium phosphates include monocalcium phosphate, dicalcium phosphate, and tricalcium phosphate, which are used as food additives and dietary supplements. Calcium phosphates are important for maintaining strong bones and teeth, and they also play a role in various physiological processes, such as nerve impulse transmission and muscle contraction.

Pit and fissure sealants are a preventive dental treatment that involves the application of a thin, plastic coating to the chewing surfaces of teeth, usually the molars and premolars. The goal of this treatment is to protect the pits and fissures, which are the grooves and depressions on the chewing surfaces of teeth, from decay.

The sealant material flows into the pits and fissures, creating a smooth, protective barrier that prevents food and bacteria from becoming trapped in these areas and causing cavities. The procedure is typically quick, painless, and non-invasive, and can be performed during a routine dental checkup. Sealants are most commonly recommended for children and adolescents, but they may also be appropriate for adults who are at high risk of tooth decay.

I believe there might be a misunderstanding in your question. "Glutaral" does not seem to be a recognized medical term or abbreviation in healthcare and biomedical sciences. It is possible that you may be looking for information on "glutaraldehyde," which is a disinfectant and sterilizing agent used in medical settings.

Glutaraldehyde is a chemical compound with the formula C5H8O2, and it's often used as a 2% solution. It's an effective agent against bacteria, viruses, and fungi, making it useful for sterilizing medical equipment. However, glutaraldehyde can cause respiratory issues and skin irritation in some individuals, so proper handling and use are essential to minimize exposure.

If you meant to ask about a different term or if this answer does not address your question, please provide more context or clarify your request, and I will be happy to help further.

Methylcellulose is a semisynthetic, inert, viscous, and tasteless white powder that is soluble in cold water but not in hot water. It is derived from cellulose through the process of methylation. In medical contexts, it is commonly used as a bulk-forming laxative to treat constipation, as well as a lubricant in ophthalmic solutions and a suspending agent in pharmaceuticals.

When mixed with water, methylcellulose forms a gel-like substance that can increase stool volume and promote bowel movements. It is generally considered safe for most individuals, but like any medication or supplement, it should be used under the guidance of a healthcare provider.

Terpenes are a large and diverse class of organic compounds produced by a variety of plants, including cannabis. They are responsible for the distinctive aromas and flavors found in different strains of cannabis. Terpenes have been found to have various therapeutic benefits, such as anti-inflammatory, analgesic, and antimicrobial properties. Some terpenes may also enhance the psychoactive effects of THC, the main psychoactive compound in cannabis. It's important to note that more research is needed to fully understand the potential medical benefits and risks associated with terpenes.

Nanoparticles are defined in the field of medicine as tiny particles that have at least one dimension between 1 to 100 nanometers (nm). They are increasingly being used in various medical applications such as drug delivery, diagnostics, and therapeutics. Due to their small size, nanoparticles can penetrate cells, tissues, and organs more efficiently than larger particles, making them ideal for targeted drug delivery and imaging.

Nanoparticles can be made from a variety of materials including metals, polymers, lipids, and dendrimers. The physical and chemical properties of nanoparticles, such as size, shape, charge, and surface chemistry, can greatly affect their behavior in biological systems and their potential medical applications.

It is important to note that the use of nanoparticles in medicine is still a relatively new field, and there are ongoing studies to better understand their safety and efficacy.

Benzoyl peroxide is a medication used in the treatment of acne. It is available in various forms, including creams, gels, and washes. Benzoyl peroxide works by reducing the amount of bacteria on the skin and helping to unclog pores. It is typically applied to the affected area once or twice a day.

Benzoyl peroxide can cause side effects such as dryness, redness, and irritation of the skin. It is important to follow the directions for use carefully and start with a lower concentration if you are new to using this medication. If you experience severe or persistent side effects, it is recommended that you speak with a healthcare provider.

It is also important to note that benzoyl peroxide can bleach clothing and hair, so it is best to apply it carefully and allow it to fully absorb into the skin before dressing or coming into contact with fabrics.

In the context of medical terminology, "powders" do not have a specific technical definition. However, in a general sense, powders refer to dry, finely ground or pulverized solid substances that can be dispersed in air or liquid mediums. In medicine, powders may include various forms of medications, such as crushed tablets or capsules, which are intended to be taken orally, mixed with liquids, or applied topically. Additionally, certain medical treatments and therapies may involve the use of medicated powders for various purposes, such as drying agents, abrasives, or delivery systems for active ingredients.

Biocompatible materials are non-toxic and non-reacting substances that can be used in medical devices, tissue engineering, and drug delivery systems without causing harm or adverse reactions to living tissues or organs. These materials are designed to mimic the properties of natural tissues and are able to integrate with biological systems without being rejected by the body's immune system.

Biocompatible materials can be made from a variety of substances, including metals, ceramics, polymers, and composites. The specific properties of these materials, such as their mechanical strength, flexibility, and biodegradability, are carefully selected to meet the requirements of their intended medical application.

Examples of biocompatible materials include titanium used in dental implants and joint replacements, polyethylene used in artificial hips, and hydrogels used in contact lenses and drug delivery systems. The use of biocompatible materials has revolutionized modern medicine by enabling the development of advanced medical technologies that can improve patient outcomes and quality of life.

The price of the vinyl ester resin is similar to that of the polyester resin. It utilizes the same hardeners as polyester resin ... These resins can be utilized in making shape memory composites. Depending on their formulation, they have varying visual ... Epoxy resin is, when cured, nearly transparent. Polyester resin is fit for most backyard projects. It tends to have a yellowish ... Vinyl ester resin has a lower viscosity than polyester resin and is more transparent. It also tends to have a purplish to ...
... elastomers and composite materials. When the phrase waterborne resin is used, it usually describes all resins which have water ... Waterborne resins are sometimes called water-based resins. They are resins or polymeric resins that use water as the carrying ... An epoxy resin system generally consists of a curing agent and an epoxy resin. Both the curing agent and the epoxy resin can be ... The resin backbone is often modified to ensure water dispersibility. These resins dry in their own right by water/co-solvent ...
"Light Resin Transfer Moulding (LRTM)". BFG Architecture. Retrieved 2020-11-14. (Composite materials, Composite material ... Light resin transfer moulding (Light RTM) is a process by which products of Composite materials are manufactured using a closed ... After the air is removed the resin is injected into the part. The vacuum remains in effect into the resin is cured. "Light ... Similar to the methods performed in resin transfer molding, Light RTM involves a closed mold process. A vacuum holds mold A and ...
"Resin Transfer Molding - Closed Molding". CompositesLab. Retrieved 2020-11-10. (Composite materials, Composite material ... Resin transfer moulding (RTM) is a process for producing high performance composite components. It is a process using a rigid ... Resin transfer moulding involves numerous varieties which differ in the mechanics of how the resin is introduced to the ... "What is Resin Transfer Moulding (RTM)?". Coventive Composites. 2018-04-25. Retrieved 2018-10-01. " ...
"3D-Printable Antimicrobial Composite Resins". Adv. Funct. Mater. 25 (43): 6756-6767. doi:10.1002/adfm.201502384. S2CID 94142463 ... Materials can range from plastic and polymers as thermoplastic filaments, to resins, and even stem cells. Three-dimensional ... "3D Printed Clothing Becoming a Reality". Resins Online. June 17, 2013. Archived from the original on November 1, 2013. ... the group of Professor Andreas Herrmann at the University of Groningen has developed the first 3D printable resins with ...
... in order to cure the resin-based composite, and claimed to cure resin composite material within 3 seconds. In practice, however ... A dental curing light is a piece of dental equipment that is used for polymerization of light-cure resin-based composites. It ... "Curing lights for Composite Resins". Health Mantra: Your Mantra for Health, Wealth and Prosperity!. Health mantra. Retrieved 14 ... In the early 1960s, the first light curing resin composites were developed. This led to the development of the first curing ...
... composite materials from epoxy resins); 3DGence (manufacturer of 3D printers); Genicore (manufacturer of ovens for composite ... "New Era Materials , Composites , Epoxy Resin , Innovation , Labs". neweramaterials.com. Retrieved 2021-03-31. "About us - ...
Many commercially produced composites use a polymer matrix material often called a resin solution. There are many different ... Composites can also use metal fibres reinforcing other metals, as in metal matrix composites (MMC) or ceramic matrix composites ... In 2007, an all-composite military Humvee was introduced by TPI Composites Inc and Armor Holdings Inc, the first all-composite ... Composites Design and Manufacturing HUB Distance learning course in polymers and composites OptiDAT composite material database ...
In Handbook of Wood Chemistry and Wood Composites, Rowell, R., Ed. Taylor & Francis: Boca Raton, FL, 2005; pp. 381-420. ... Resin flows through the lumen and pit network, ideally gaining access to all the cells, and then ideally the resin enters the ... This resin can be polymerized after impregnation into the wood substrate by oven-curing. UF resins are beginning to be used ... Although MF resins have this extra benefit, it is difficult to use them for impregnation resins because of the high free ...
Ortho resins comprise the most common type of UPR, and many are known as general purpose resins. FRP composites utilizing ortho ... For example, a resin containing primarily terephthalic acid is known as a Tere resin, a resin containing primarily phthalic ... There exists a special sub-set of Tere resins, known as PET UPR resins, which are produced by catalytically cracking PET resin ... This type of resin is known as a Nadic resin and is referred to as a poor man's Ortho, due to sharing many similar properties ...
"5.1.3 Epoxy Resins". Guide to Composites (PDF). p. 19. Retrieved 2022-10-21. {{cite book}}: ,website= ignored (help) Allsopp, M ... Some synthetic resins have properties similar to natural plant resins, but many do not. Synthetic resins are of several classes ... Prepolymer Resin casting Waterborne resins Pham, Ha Q.; Marks, Maurice J. (2012). "Epoxy Resins". Ullmann's Encyclopedia of ... A large category of resins, which constitutes 75% of resins used,[citation needed] is that of the unsaturated polyester resins ...
Same Qualified Resin Transfer Molding (SQRTM) is a closed mold composites manufacturing method similar to RTM (Resin Transfer ... Resin transfer molding (RTM) is a method of fabricating high-tech composite structures. The RTM process is capable of ... The process can use thermosetting, thermoplastic prepregs (pre-impregnated composite fibers), and wet resin with dry fiber to ... Having the mold heated and under vacuum, as in Vacuum Assisted Resin Transfer Molding (VARTM) assists the resin flow. The mold ...
... was incorporated into composite dental resins in 1962 by Rafael Bowen. Until matrix development work in the early 2000s ... Bis-GMA (bisphenol A-glycidyl methacrylate) is a resin commonly used in dental composite, dental sealants. and dental cement. ... Fugolin AP, Pfeifer CS (21 July 2017). "New Resins for Dental Composites". Journal of Dental Research. 96 (10): 1085-91. doi: ... Soderholm KJ, Mariotti A (February 1999). "Bis-GMA-based resins in dentistry: are they safe?". The Journal of the American ...
It makes synthetic resins and composite materials. Since 1951, it has expanded and is now international, employing around 700 ...
dead link]Composite Panel Association: Hardboard European Panel Federation: Hardboard (Articles with short description, Short ... although resin is often added. Hardboard is produced in either a wet or dry process. The wet process, known as the Mason Method ... "Hardboard, Perforated Board, Underlayment, Office Furniture - Composite Panel Association". Archived from the original on 2015- ... Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology. Berlin: Springer. p. 142. ISBN 3540655174. " ...
ChemicaInvest consists of three business units; Aliancys (composite resins), AnQore (acrylonitrile) and Fibrant (caprolactam). ... DSM Resins & Functional Materials manufacture resins solutions for paints, inks, stereolithography, and industrial and optical ... 2021: Resins & Functional Materials business to Covestro AG. 2022: Protective Materials business to Avient Corporation 2022: ... The Materials cluster is made up of DSM Engineering Materials, DSM Protective Materials and DSM Resins & Functional Materials. ...
GICs are about as expensive as composite resin. The fillings do not wear as well as composite resin fillings, but they are ... The cost is similar to composite resin. It holds up better than GIC, but not as well as composite resin, and is not recommended ... Composite resin fillings (also called white fillings) are a mixture of nanoparticles or powdered glass and plastic resin, and ... A combination of glass-ionomer and composite resin, these fillings are a mixture of glass, an organic acid, and resin monomers ...
Dental composite Resin dispensing Spin casting Harper, Charles A. (2003). In Plastics Materials and Processes: A Concise ... polyurethane resin, epoxy resin, unsaturated polyester resin, acrylic resin and silicone resin. Epoxy resin has a lower ... resin casting may be accomplished with a resin plus a nearly equal amount of a "hardener" liquid (as in many epoxy resin or ... Resin casting is a method of plastic casting where a mold is filled with a liquid synthetic resin, which then hardens. It is ...
Beland, S. (1990). High performance thermoplastic resins and their composites. William Andrew. Díez-Pascual, A. M., Naffakh, M ...
"Bio-Composites Update: Bio-Based Resins Begin to Grow". Composites World (April). 2008. Retrieved 2008-11-25. Dawe, Bob; ... "Methods of preparing casting resins and coating compositions using polyols derived from high oleic acid content fatty acid ... acid catalyzed ring opening of soy fatty acid methyl esters with multifunctional polyols to form new polyols for casting resins ...
5 Direct composite veneer restorations where the whole labial surface is covered with resin, are good treatment options in such ... Clinical studies have found that 60 to 80% of all Class III and V composite resin restorations remain acceptable after 5 years ... Millar, B J; Robinson, P B; Inglis, A T (January 1997). "Clinical evaluation of an anterior hybrid composite resin over 8 years ... Lee, Yong-Keun; Lim, Bum-Soon; Kim, Cheol-We (2002). "Effect of surface conditions on the color of dental resin composites". ...
Lenhard, M (2008). "Closing diastemas with resin composite restorations". The European Journal of Esthetic Dentistry. 3 (3): ... Possible treatments to correct angularis nigra include addition of composite resin in the space, veneer placement, or gum graft ...
On average, amalgam lasts twice as long as resin composites, takes less time to place, is tolerant of saliva or blood ... Teaching of amalgam techniques to dental students is declining in some schools in favor of composite resin, and at least one ... Sources of mercury from the diet, and the potential harm of the composite resins to replace the purportedly harmful amalgam ... Stein, PS; Sullivan, J; Haubenreich, JE; Osborne, PB (2005). "Composite resin in medicine and dentistry". Journal of Long-Term ...
For VARTM to create high quality composite parts it is crucial that air leakages are avoided. Air leakages can cause resin to ... Normally the process is capable of producing composites with a fiber volume fraction between 40 and 50%. The resin to fiber ... composite manufacturing process. VARTM is a variation of Resin Transfer Molding (RTM) with its distinguishing characteristic ... polyester or vinyl ester resin along with fiberglass fibers to create a composite. ...
No composite wood or agrifiber products contain urea-formaldehyde resins. Heating and cooling systems operate on non- ...
In composite materials, epoxy, polyester or phenolic resins are common. In reinforced carbon-carbon, plastic or pitch resin is ... Tensile strength is greatly improved in composite materials consisting of resin as the matrix and fiber as a reinforcement. ... Other binding agents such as resins may be tough and possibly elastic but can neither bear compressive nor tensile force. ...
Polyurethanes are another group of resins used in advanced composite processes. These compounds are formed by reacting the ... Of these, epoxy systems currently dominate the advanced composite industry. Thermoset resins require addition of a curing agent ... Pilato, L.; Michno, Michael J. (January 1994). Advanced composite materials (Chap 1 Introduction, and Chapter 2 "Matrix Resins ... Phenolic and amino resins are another group of PMC resins. The bismaleimides and polyamides are relative newcomers to the ...
Formica is a brand of composite materials manufactured by the Formica Corporation. In common use, the term refers to the ... Melamine resin or melamine formaldehyde (also shortened to melamine) is a resin with melamine rings terminated with multiple ... The crosslinking can be carried out to a limited degree to give resins. Either the melamine-formaldehyde resins or melamine- ... Melamine-resin tile wall panels can also be used as whiteboards. Melamine formaldehyde is used in plastic laminate and overlay ...
The industrial composites industry has been in place for over 40 years in the U.S. This large industry utilizes various resin ... These classifications are polymer matrix composites (PMCs), ceramic matrix composites (CMCs), and metal matrix composites (MMCs ... industrial composites and advanced composites. Several of the composites manufacturing processes are common to both segments. ... Pilato, L.; Michno, Michael J. (January 1994). Advanced composite materials (Chap 1 Introduction, and Chapter 2 "Matrix Resins ...
However, this difference has decreased with continual development of composite resins. Amalgam is typically compared to resin- ... Amalgam possesses greater longevity when compared to other direct restorative materials, such as composite. ... based composites because many applications are similar and many physical properties and costs are comparable. Dental amalgam ...
Significance and Use This practice provides a uniform procedure for fabricating glass fiber/thermoset resin ring samples for ... Standard Practice for Fabrication of Ring Test Specimens for Glass-Resin Composites. ... Standard Practice for Fabrication of Ring Test Specimens for Glass-Resin Composites D2291-03 ASTM,D2291-03,en-US Standard ... D2291 Standard Practice for Fabrication of Ring Test Specimens for Glass-Resin Composites> new BOS Vol. 08.01 Committee D20 $ ...
... including epoxy resins, polyester and polyurethane, casting urethanes, filling and fairing compounds, tooling boards, tooling ... Contact an Advanced Resins Expert Shown at right: Pros Choice is a leading manufacturer of composite-based, custom-fit, hockey ... Epoxy resin systems used in general lamination processes for composites. Room temp and high temp options available. ... We offer a wide range of customized solutions for the composites market, including epoxy resins, casting urethanes, filling and ...
Therefore, the aim of the project is to evaluate the mechanical properties of 3D printed resins composite, namely the carbon ... Ng, X. X. (2022). Mechanical characteristics of 3D printed resins composites. Final Year Project (FYP), Nanyang Technological ... Analysis and Discussion of mechanical characteristics of 3D printed resins composites. With comprehensive research and results ... before plotting the stress cycle curve of the Onyx composite. ... Mechanical characteristics of 3D printed resins composites. ...
Objective: To evaluate the preheating effect of composite resin on its colour stability when immersed in tea and coca cola ... CONCLUSION: The findings of the present study showed that preheating of the composite resin is effective in the reduction of ... In group 2 of 30 specimens , composite was placed in convection micro oven at temperature of 53 to 680C, the composite was ... Preheating of composite resin rises its degree of polymerization leading to reduced absorption and penetration of the colorant ...
Swancor manufactures, formulates and modifies vinyl ester resins, unsaturated polyester resins, and epoxy resins for hand ... Pacific Resins are proud sponsors of Composites Australia.. About Swancor. Swancor is a world leading manufacturer of specialty ... epoxy vinyl ester (VER) and epoxy (EPR) resin products, resin systems, and specialty additives for use in composites and ... LED (light emitting diode) packing resin *Pulp & paper (e.g. ducts, pipes, tanks, etc.) etc. Click here for product overview ...
Unfortunately, precursors for epoxy hardeners are currently also becoming scarce and more expensive. The European amine plants are working to capacity and there are almost no more import possibilities. Price increases have already been announced ...
... *. *Composite & Resin Machining Centers. Composite & Resin Machining Centers. Composite & ...
Complete resin infusion starter kit including all consumables and equipment from the recognised experts. In stock, expert ... What is Resin Infusion? Resin infusion is a sophisticated technique for manufacturing high performance, void free composites ... What is Resin Infusion? Resin infusion is a sophisticated technique for manufacturing high performance, void free composites ... Once the resin has fully infused through the reinforcement, the supply of resin is cut off (using a pipe clamp) and the resin ...
Composite veneers are used to treat cosmetic dental issues like stained teeth, crooked teeth, or chipped or cracked teeth ... What is Composite Resin?. Dental composite resin is a special material that is applied and sculpted to the tooth. Once the ... Composite resin is a less expensive, tooth-colored material frequently used for veneers. While composite resin veneers might ... What are Composite Veneers?. Composite resin veneers are a porcelain alternative derived from translucent resin and ...
A direct composite resin veneer was completed on her left lateral incisor to give it a more natural shape. ... Direct Composite Resin Veneer 12. Request an appointment or call: 847.729.6080 ...
Composite veneers are used to treat cosmetic dental issues like stained teeth, crooked teeth, or chipped or cracked teeth ... What is Composite Resin?. Dental composite resin is a special material that is applied and sculpted to the tooth. Once the ... Composite resin is a less expensive, tooth-colored material frequently used for veneers. While composite resin veneers might ... What are Composite Veneers?. Composite resin veneers are a porcelain alternative derived from translucent resin and ...
Get your child tooth-colored composite resin fillings that mimic the color of their natural teeth from reputable Houston, TX ... What is a composite resin (white filling)?. Resin fillings are created to match the shade of your natural teeth. This way, it ... Natural-looking fillings can be made of resin, ceramic, plastic, or glass ionomer; the most common being composite resin. All ... Composite resin fillings function in the same way amalgam ones do, so they are still effective for restoring teeth that have ...
DINIZ, Jiordanne Araújo et al. Effect on hydroeletrolitc reposition microhardness of composite resins. Odontol. Clín.-Cient. ( ... Aim: To investigate the effect of electrolyte replacers on the microhardness of composite resins. Materials and Methods: Using ... sixteen specimens were fabricated composite resin brands Rok ®, Herculite ® Classic, Filtek TM P-60 ® and ® EstelitΣ, color B2 ... Analysis was performed Vickers microhardness of resins each week exposure. Data were analyzed using descriptive and inferential ...
"Shrinkage force measurement of light cure composite resin",. abstract = "The polymerization shrinkage of a light cure composite ... Arakawa K, Mada T. Shrinkage force measurement of light cure composite resin. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions ... Arakawa, K., & Mada, T. (2009). Shrinkage force measurement of light cure composite resin. Nihon Kikai Gakkai Ronbunshu, A Hen/ ... Arakawa, K & Mada, T 2009, Shrinkage force measurement of light cure composite resin, Nihon Kikai Gakkai Ronbunshu, A Hen/ ...
Aesthetics are of great significance since long era that attribute to great Smile by using modern color match Composite resin ... Sculpting Composite with help of brush & composite instrument having detailed knowledge of anatomy of teeth that will create ... Which type of Composite should select according to clinical situation?. *Selection of Composite instrument for Posterior & ... Learn how to mask white line clinically into Anterior composite restoration.. *Addition of Tints into composite will create ...
837 Novel Resins for Dental Composites and Sealants Friday, March 23, 2012: 2 p.m. - 3:15 p.m. ... Keywords: Composites, Dental materials, Elasticity, Polymers and Stress Presenting authors disclosure statement: Jim Duff is a ... The percent elongation of Exothane 8 and Exothane 10, 79% and 64% respectively, far exceeds the traditional resins. The Shore D ... The combination of high conversion, low volumetric shrinkage and low shrinkage stress has applications in dental composites ...
... Kersig Matt Grey Bathroom Wall Hung Vanity Unit ... Composite Resin Basin 80cm. Premium quality at affordable prices. Two Push To Open Drawers. Supplied Assembled (Other than ...
CompositeComposite Veneer SystemsFlowable CompositeUniversal Composite Caps/TipsUniversal Composite SyringesUveneerCuring ... AccessoriesPressable CeramicsResin/Composite Denture AccessoriesBase PlatesDenture CareFlasks & PressesPressure PotsReline Jigs ... BlocksComposite BlocksFeldspathic BlocksGlass Ceramic BlocksHybrid BlocksLithium Disilicate BlocksTemporary BlocksZirconia ... RestorativeAmalgam CarriersAmalgam PluggersBurnishersCarversCheek RetractorsCompositeCord PackersCrown RemoversExcavators ...
Composites. Discarded fishing nets as new resins. Royal DSM and Starboard are collecting and upcycling discarded fishing nets ... The surfboard company has selected DSMs Akulon RePurposed, resin fully recycled from discarded nylon-based fishing nets and ...
... elastomers and composite materials. When the phrase waterborne resin is used, it usually describes all resins which have water ... Waterborne resins are sometimes called water-based resins. They are resins or polymeric resins that use water as the carrying ... An epoxy resin system generally consists of a curing agent and an epoxy resin. Both the curing agent and the epoxy resin can be ... The resin backbone is often modified to ensure water dispersibility. These resins dry in their own right by water/co-solvent ...
Flexural strength (n = 5) and indirect tensile strength (n = 5) of 7 resin composite cements (RelyX Unicem 2 Automix [RXU], ... Flexural strength and indirect tensile strength of resin composite cements are correlated. At high strength values the indirect ... the indirect tensile test may only be recommended as a screening test especially for low or medium strength resin composite ... a potential correlation between flexural strength and indirect tensile strength in assessing the mechanical strength of resin ...
Gather supplies - Composite resin kit, etching gel, light cure, tools.. *Prep tooth - Clean, isolate, etch enamel, remove decay ... Follow these steps when placing the actual composite resin material:. *Select tooth shade - Hold the shade guide up to ... Knead putty - Take a small amount of the composite resin putty and knead between gloved fingers until it reaches an easily ... When properly shaped, cured and finished, the composite resin material should be tightly bonded to form a natural looking DIY ...
The main disadvantages of the heat-cured resins for removable dentures are that they require lots of special equipment, skilled ... With the development of digital dentistry, it is becoming increasingly necessary to use 3D printed resin materials for the ... The aim of the current paper is to review the available literature reporting on comparative studies of heat-cured resins and ... "Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review" Journal of Composites Science ...
Developing Predictable Esthetics with High Tech Composite Resins New Advanced Restorative Solutions - The Glass Ionomer ... Through composite resin both can be achieved. Understanding the proper use of state of the art materials and techniques allows ... Minimal Invasive Dentistry: Solving Anterior Esthetic Restorative Problems with Composite Resin. Presenter: Dr. Wynn Okuda ... One and Done: A Universal Composite for the Restorative Dentist Dont Sleep On GIs: How Glass Ionomer Can Benefit Your Patients ...
Free consultation ★ Prices from 200 € - Enquire for a fast quote ★ Good ServiceScore™ 6.2 from 6 votes ★ Visit our Dentist - Blas Infante 7, local, Brenes, Sevilla, 41310, Spain.
Resins and Polymers. * Fibers and Composites. * Foam and Insulation. * Yarns, Fabric and Textile ...
A new composite material has been produced using bamboo fibers and a bio-based resin. Similar in strength to steel, the ...
The tested resin cement, alongside with IPS Empress Direct composite resin preheated and ultrasonically vibrated, provided the ... This study aims to evaluate and compare the film thickness obtained with a resin cement and two composite resins, preheated and ... Luting indirect restorations with resin cements versus composite resins: Effects of preheating and ultrasound energy on film ... Adhesive cementation protocols with composite resins should mainly consider ultrasonic vibration, but also preheating, as ...
... and crowns for your patients requires an understanding of the resin polymerization process and postprocessing. Here... ... it can also be called polymer resin, resin-based composite (RBC), or photo-sensitive resin. The resins on the market are ... first composite resins and appearance of the term "composite" in dentistry, which was previously known as "reinforced." ... Prior to composite resins, other materials were used in dental applications, especially as they pertained to fillings: gold, ...
Gordon Christensen discusses the challenges of composites and outlines techniques that can help... ... Composite restorations do not have to be difficult procedures or short-lived. Dr. ... Remaining challenges with composite materials. Shrinkage of the composite material on polymerization: Most current resin-based ... Resin-based composite material challenges. I have practiced dentistry through the complete history of dental composites, and ...
  • 10. Yu H, Cheng S-l, Jiang N-w, Cheng H. Effects of cyclic staining on the color, translucency, surface roughness, and substance loss of contemporary adhesive resin cements. (jptcp.com)
  • To evaluate a potential correlation between flexural strength and indirect tensile strength in assessing the mechanical strength of resin composite cements. (biomedcentral.com)
  • Flexural strength and indirect tensile strength of resin composite cements are correlated. (biomedcentral.com)
  • The results suggest that the indirect tensile test may only be recommended as a screening test especially for low or medium strength resin composite cements. (biomedcentral.com)
  • Therefore, assessing the mechanical strength of resin composite cements is important to classify these materials. (biomedcentral.com)
  • Resin composite cements may be polymerized by auto-polymerization or by light-activation [ 4 ]. (biomedcentral.com)
  • Today, most resin composite cements provide both activation systems allowing the placement of a restoration within sufficient time while guaranteeing complete polymerization. (biomedcentral.com)
  • The purpose of this study was to investigate if indirect tensile strength test and flexural strength test of resin composite cements provide similar results. (biomedcentral.com)
  • Seven resin composite cements were used in this investigation, 3 self-adhesive and 4 conventional resin cements (Table 1 ). (biomedcentral.com)
  • Further, with 2 self-adhesive and 2 conventional resin composite cements (RXU, PSA, PF2, MLI) measurements were performed immediately after curing as well as after 96 h water storage at 37 °C. (biomedcentral.com)
  • Luting indirect restorations with resin cements versus composite resins: Effects of preheating and ultrasound energy on film thickness. (bvsalud.org)
  • The direct composite resin veneer can be used to correct gapped, chipped, poorly shaped, and stained teeth. (lifetimestpeters.com)
  • A direct composite resin veneer was completed on her left lateral incisor to give it a more natural shape. (chicagobeautifulsmiles.com)
  • Swancor unsaturated polyester resins include orthophthalic, isophthalic, terephthalic and low styrene emission orthophthalic. (pacificresins.com.au)
  • 8. Kolbeck C, Rosentritt M, Lang R, Handel G. Discolouration of facing and restorative composites by UV-irradiation and staining food. (jptcp.com)
  • 11. Toledano M, Osorio R, Osorio E, Fuentes V, Prati C, Garcıa-Godoy F. Sorption and solubility of resin-based restorative dental materials. (jptcp.com)
  • Aesthetics are of great significance since long era that attribute to great Smile by using modern color match Composite resin as Restorative material which also has ability to transform into desire Shape & form of teeth, however, to retain functional & long-term predictable result, it is important to highlight following topics. (udayendo.com)
  • Resin composite restorative materials can mimic the natural color and shade of the tooth. (who.int)
  • Composite resins activated by ultraviolet light and visible light have become an essential part of the armamentarium of the dentist undertaking restorative, preventive and orthodontic dentistry [1,2]. (who.int)
  • Dental trauma: restorative procedures using composite resin and mouthguards for prevention. (medscape.com)
  • Once all the air has been removed from the bag and the reinforcement has been fully compressed under atmospheric pressure, liquid epoxy resin (mixed with hardener) is introduced to the reinforcement through a pipe which then infuses through the reinforcement under the vacuum. (easycomposites.eu)
  • Peroxide is considered as the hardener of polyester resin. (wikipedia.org)
  • Therefore, the aim of the project is to evaluate the mechanical properties of 3D printed resins composite, namely the carbon fibre reinforced Onyx. (ntu.edu.sg)
  • The process is ideally suited to the manufacture of carbon fibre composites and is widely used by professional manufacturers for the production of carbon fibre body panels such as bonnets and by marine manufacturers for the production of boat hulls, making this product ideal as a carbon fibre infusion kit. (easycomposites.eu)
  • The most common polymer-based composite materials which include carbon fibre, fibreglass and Kevlar, typically involve two parts at least, the resin and the substrate. (wikipedia.org)
  • Glycidyl methacrylate is used as an important component of many polymers and resins. (who.int)
  • Glycidyl meth- References acrylate is not expected to be released from resins or polymers containing glycidyl meth- HSDB (2011). (who.int)
  • This series provides a comprehensive collection of reference handbooks on all aspects around polymers and polymeric composites. (lu.se)
  • Specifically, bisphenol A (BPA) is used in the manufacture of polycarbonate plastics and epoxy resins, which have been used in baby bottles, as protective coatings on food containers, and as composites and sealants in dentistry. (cdc.gov)
  • Our dentists can help you decide if composite veneers are the right option for you or determine if you would benefit more from porcelain veneers or one of our other cosmetic dentistry services. (lifetimestpeters.com)
  • At Memorial Pediatric Dentistry, we use composite fillings on a regular basis. (memorialpediatricdds.com)
  • 5. Malhotra N, Shenoy RP, Acharya S, Shenoy R, Mayya S. Effect of three indigenous food stains on resin based, microhybrid and nano composites. (jptcp.com)
  • Aim: This study aims to evaluate the staining capacity of microhybrid and nanohybrid resin-based composites, to saffron extract, tandoori powder, and turmeric powder. (who.int)
  • Subjects and Methods: Forty samples of microhybrid (Kulzer Charisma) and nanohybrid (3M Filtek Z350) resin composites were prepared using an acrylic template of dimension 5 mm × 3 mm. (who.int)
  • However, turmeric solution showed the maximum mean color variation ΔE*ab of 14.8 ± 2.57 in microhybrid resin composites and 16.8 ± 3.50 in nanohybrid resin composites. (who.int)
  • Conclusion: Microhybrid and nanohybrid resin composites tend to stain to Indian food colorants, especially to turmeric powder. (who.int)
  • Conclusions: The enhanced properties of the EXOTHANE Elastomers, specifically the high percent elongation and hardness, suggest that these novel materials could be used as functional additives to increase the toughness and durability of traditional dental composite restorations. (umich.edu)
  • The influence of Indian food colorants and spices on resin composite restorations has not been evaluated extensively. (who.int)
  • Swancor has LSE products that meet the LSE definition in AS/NZS 4585: Low styrene emission resins Part 1: Determination of styrene evaporation from unsaturated polyester and vinyl ester resins. (pacificresins.com.au)
  • citation needed] Vinyl ester resin has a lower viscosity than polyester resin and is more transparent. (wikipedia.org)
  • The price of the vinyl ester resin is similar to that of the polyester resin. (wikipedia.org)
  • Generally, vinyl ester resin is considered as fuel resistant. (wikipedia.org)
  • Effect of preheating on microhardness and viscosity of 4 resin composites. (jptcp.com)
  • Aim: To investigate the effect of electrolyte replacers on the microhardness of composite resins. (bvsalud.org)
  • Analysis was performed Vickers microhardness of resins each week exposure. (bvsalud.org)
  • Conclusion: The electrolyte replacers had an influence on the microhardness of resins. (bvsalud.org)
  • One hundred and twenty-six (126) pairs of resin discs were randomly assigned to six experimental groups (n = 21) according to luting agent (Variolink Esthetic LC, IPS Empress Direct or Estelite Omega) and cementation technique (preheating at 68°C and/or ultrasonic vibration ). (bvsalud.org)
  • The addition of ultrasonic vibration during cementation proved to be effective in reducing film thickness of both tested composite resins . (bvsalud.org)
  • Adhesive cementation protocols with composite resins should mainly consider ultrasonic vibration , but also preheating, as strategies for reducing film thickness. (bvsalud.org)
  • A literature review was carried out on the Pubmed database using the terms Ceramic repair, Adhesive and Composite resin searching for studies published in the period from 2000 to 2020. (bvsalud.org)
  • We offer a wide range of customized solutions for the composites market, including e poxy resins, casting urethanes, filling and fairing compounds, machinable tooling boards, tooling pastes, tooling surface coats, and silicones. (sika.com)
  • Color shift, color stability, and post-polishing surface roughness of esthetic resin composites. (jptcp.com)
  • The composite material is typically applied to the surface of the tooth and molded into shape by your dentist, thus giving you a timely yet effective smile makeover. (lifetimestpeters.com)
  • It provides the composite component its shape and directs its surface quality. (wikipedia.org)
  • 3. Ilie N, Jelen E, Clementino-Luedemann T, Hickel R. Low-shrinkage composite for dental application. (jptcp.com)
  • The polymerization shrinkage of a light cure composite resin was studied using artificial cylindrical cavities fabricated in stainless steel plates. (elsevierpure.com)
  • Arakawa, K & Mada, T 2009, ' Shrinkage force measurement of light cure composite resin ', Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A , vol. 75, no. 760, pp. 1663-1667. (elsevierpure.com)
  • Shrinkage stress of the Exothanesshowed an 80% improvement over traditional resins. (umich.edu)
  • The combination of high conversion, low volumetric shrinkage and low shrinkage stress has applications in dental composites where de-bonding from surrounding dentin is a problem. (umich.edu)
  • 1.1 This practice is intended for use in the fabrication of ring-type test specimens to be used in the evaluation of the mechanical properties of reinforcement and resins in a composite structure. (astm.org)
  • Reinforcement is laid into the mould 'dry', i.e. without any resin, and then enclosed in a specially configured stack of bagging materials (such as peel ply, infusion mesh and bagging film) before being subjected to vacuum pressure using a composites vacuum pump. (easycomposites.eu)
  • Swancor has low styrene emission (LSE) resin options, including products for hand/ spray laminating, filament winding, and infusion, etc. (pacificresins.com.au)
  • This practice provides a uniform procedure for fabricating glass fiber/thermoset resin ring samples for use as test specimens. (astm.org)
  • In the fatigue test, 24 specimens were tested to obtain failure cycles for each orientation at different load percentages, before plotting the stress cycle curve of the Onyx composite. (ntu.edu.sg)
  • Group 1 of 30 specimens, composite was placed in refrigerator and placed in plastic moulds at room temperature. (jptcp.com)
  • In group 2 of 30 specimens , composite was placed in convection micro oven at temperature of 53 to 68 0 C, the composite was immediately inserted in plastic mould to reduce heat dissipation and cured for 40 seconds. (jptcp.com)
  • Materials and Methods: Using an in vitro study, sixteen specimens were fabricated composite resin brands Rok ®, Herculite ® Classic, Filtek TM P-60 ® and ® EstelitΣ, color B2, with dimensions of 5 mm in diameter and 2 mm in height. (bvsalud.org)
  • Sika Advanced Resins is the leading provider and developer of high-performance resins (epoxy, polyester, and polyurethane) for the tooling and composite materials industry. (sika.com)
  • Polyester resin is fit for most backyard projects. (wikipedia.org)
  • Mostly, MEKP (methyl ethyl ketone peroxide) is considered for polyester resin. (wikipedia.org)
  • It utilizes the same hardeners as polyester resin (at a similar mix ratio). (wikipedia.org)
  • It doesn't degrade much over time, when compared to polyester resin, and is more flexible. (wikipedia.org)
  • You can instantly improve your smile with composite resin veneers! (lifetimestpeters.com)
  • Composite resin is a less expensive, tooth-colored material frequently used for veneers. (lifetimestpeters.com)
  • While composite resin veneers might wear down quicker than their porcelain counterpart, they are easier to repair and cost less. (lifetimestpeters.com)
  • Although composite veneers typically have a shorter shelf life than porcelain veneers, they offer an affordable and convenient option that requires a far smaller investment of time and money. (lifetimestpeters.com)
  • For more information on composite veneers, call us at 636-970-1595 today! (lifetimestpeters.com)
  • Composite veneers require less or no enamel removal. (lifetimestpeters.com)
  • If your composite veneer requires a lab, the steps are similar to porcelain veneers. (lifetimestpeters.com)
  • Composite veneers have many advantages, namely being cost-effective while not sacrificing quality. (lifetimestpeters.com)
  • Direct composite veneers are sculpted onto your teeth rather than at a lab. (lifetimestpeters.com)
  • Arguably, the biggest benefit of composite veneers is reversibility. (lifetimestpeters.com)
  • While many patients prefer composite veneers to porcelain veneers, porcelain veneers, with proper care, can be a great option. (lifetimestpeters.com)
  • Porcelain veneers typically last between 10-15 years, while composite resin dental veneers last around 4-8 years. (lifetimestpeters.com)
  • How to Get Composite Veneers Near Me? (lifetimestpeters.com)
  • If you are interested in getting composite veneers, our dental team is here for you! (lifetimestpeters.com)
  • Composite resin veneers are a porcelain alternative derived from translucent resin and meticulously sculpted and hardened by your dentist, typically in a single appointment. (lifetimestpeters.com)
  • While they use the same materials, composite veneers are more functional than aesthetic treatments. (lifetimestpeters.com)
  • What Issues Can Composite Veneers Help With? (lifetimestpeters.com)
  • Often referred to as "chair-side veneers," composite veneers are designed by the dentist directly on your tooth, requiring a dentist's technique combined with an artist's eye. (lifetimestpeters.com)
  • Typically, composite veneers can be placed in just one visit, but porcelain veneers usually require multiple visits before being placed. (lifetimestpeters.com)
  • How Long Do Composite Veneers Last? (lifetimestpeters.com)
  • If you maintain a strict and comprehensive routine, your composite resin veneers can last at least 5 years and as long as 10! (lifetimestpeters.com)
  • For more information on composite veneers, call us at 618-882-6405 today! (highlandilfamilydentistry.com)
  • e Composite resin buscando estudos publicados no período de 2000 a 2020. (bvsalud.org)
  • Preheating of composite resin rises its degree of polymerization leading to reduced absorption and penetration of the colorant solution causing higher resistance to discolouration. (jptcp.com)
  • If your child has amalgam fillings now, we can even replace them with composite ones. (memorialpediatricdds.com)
  • Composite resin fillings function in the same way amalgam ones do, so they are still effective for restoring teeth that have suffered from decay or fracture. (memorialpediatricdds.com)
  • What are the advantages of composite vs. amalgam fillings? (memorialpediatricdds.com)
  • The biggest advantages of composite fillings, over amalgam fillings, is that composite-colored fillings do not stand out. (memorialpediatricdds.com)
  • Dentists fill teeth by removing the decayed tooth material with a drill and replacing it with a material such as composite resin, glass ionomer, or amalgam. (medlineplus.gov)
  • Which type of Composite should select according to clinical situation? (udayendo.com)
  • The project consists of an Introduction, Literature Review regarding Additive Manufacturing and Fused Modelling Deposition, Methods and Materials, Results, Analysis and Discussion of mechanical characteristics of 3D printed resins composites. (ntu.edu.sg)
  • 13. Um CM, Ruyter I. Staining of resin-based veneering materials with coffee and tea. (jptcp.com)
  • In materials science, a matrix is a constituent of a composite material. (wikipedia.org)
  • Shape memory polymer (SMP) resins are those materials that their shape and can be modified regularly by heating above their glass transition temperature (Tg). (wikipedia.org)
  • The tested resin cement , alongside with IPS Empress Direct composite resin preheated and ultrasonically vibrated, provided the lowest film thickness among the tested materials and techniques . (bvsalud.org)
  • Results: The commercial maracas composites showed statistically significant difference in hardness values after 1, 2 or 3 weeks. (bvsalud.org)
  • Statistically significant lower film thickness was observed in Variolink Esthetic LC group when compared to all composite resin groups (p (bvsalud.org)
  • Another advantage is timeliness: composites can typically be fabricated while you wait. (lifetimestpeters.com)
  • Composite fillings are one of our most frequently used procedures, since we typically place a filling after removing tooth decay (common cavities). (memorialpediatricdds.com)
  • The Shore D hardness of Exothane 24 is unique as it exceeds that of UDMA and the blend of BisGMA and TEGDMA typically used in dental composites. (umich.edu)
  • Also supplied with the kit is a complete set of vacuum bagging consumables selected specifically for resin infusion including vacuum bagging film, peel ply, infusion mesh, spiral and sealant tape. (easycomposites.eu)
  • Stainless steel pins and composite resin placed lateral to the mandible keep the fracture rigidly reduced. (medscape.com)
  • we've sold nearly 5,000 resin infusion starter kits over the years and it's helped to launch a number of today's successful composites manufacturing companies. (easycomposites.eu)
  • The kit includes all vacuum bagging consumables, tools, equipment and ancillary items in order to start-out with the vacuum resin infusion process. (easycomposites.eu)
  • Complete starter kit designed to provide all the necessary equipment and supplies to enable anybody to undertake sophisticated resin infusion composites manufacture without the need for any additional equipment or training. (easycomposites.eu)
  • The resin infusion kit is available to buy with or without the optional EC4 Compact Composites Vacuum Pump at a special discounted price. (easycomposites.eu)
  • Also available as an option is our IN2 Epoxy Infusion Resin which can be included as part of the kit. (easycomposites.eu)
  • The kit includes a high quality resin catch pot complete with vacuum gauge, valve and connector and re-usable silicone rubber resin infusion connectors. (easycomposites.eu)
  • As an option the kit can be supplied complete with our EC4 Compact Composites Vacuum Pump and IN2 Epoxy Infusion Resin. (easycomposites.eu)
  • What is Resin Infusion? (easycomposites.eu)
  • Resin infusion is a sophisticated technique for manufacturing high performance, void free composites even on large or complicated moulds. (easycomposites.eu)
  • In that study, the indirect tensile test revealed to be an appropriate test to assess the influence of artificial aging on a resin composite cement: A decrease in indirect tensile strength was observed for water storage at 37 °C as well as thermocycling over an aging period of 64 days for a conventional resin composite cement. (biomedcentral.com)
  • The tooth-shaded resin is directly applied to teeth where it can be shaped, sculpted, and polished to elicit a more natural, tooth-like appearance. (lifetimestpeters.com)
  • Minimal prep work is done to your teeth when it comes to composites, meaning that they are not permanently altered to such an extent that the composite material cannot be removed and replaced as needed. (lifetimestpeters.com)
  • If you have worn, chipped, or damaged teeth, composite resin can be directly sculpted onto the teeth for exponential results. (lifetimestpeters.com)
  • Resin fillings are created to match the shade of your natural teeth. (memorialpediatricdds.com)
  • Sculpting Composite with help of brush & composite instrument having detailed knowledge of anatomy of teeth that will create seamless transition without occlusal anatomy adjustment for Posterior composite restoration. (udayendo.com)
  • Composite resin is the preferred material today, as it more closely matches the natural tooth appearance, and is also strong enough to use anywhere in the mouth, including the back teeth, where the majority of chewing takes place. (medlineplus.gov)
  • This is because the fillings are made of resin or a plastic material. (memorialpediatricdds.com)
  • The benefit of these resins is that without losing their material properties, they can be shaped and reshaped regularly. (wikipedia.org)
  • A new composite material has been produced using bamboo fibers and a bio-based resin. (empa.ch)
  • What methods can be applied to manipulate and change the material composite, by using robotics, light, physics, chemistry, heat or electronics. (lu.se)
  • In the bottom-up mechanism, NMPPs can be emitted during high energy or high heat processes (such as laser cutting or high-speed drilling), treatment of polymer composites, [2] and during 3D printing from melting or fusing of plastics [3, 4, 5, 8] (Figure 1). (cdc.gov)
  • In this experimental study, 60 disks samples of a nano hybrid composite with a diameter of 5mm and thickness 2mm were prepared using plastic mould. (jptcp.com)
  • This study aims to evaluate and compare the film thickness obtained with a resin cement and two composite resins , preheated and/or ultrasonically vibrated, as luting agents . (bvsalud.org)
  • Swancor products been available and successfully used in the Australian composites industry for over fifteen years. (pacificresins.com.au)
  • A curing reaction is initiated when the peroxide is combined with the resin, and decomposes to generate free radicals. (wikipedia.org)
  • The findings of the present study showed that preheating of the composite resin is effective in the reduction of its colour change. (jptcp.com)
  • One benefit of a tooth-colored filling is that we can place a composite resin filling quickly. (memorialpediatricdds.com)
  • Addition of Tints into composite will create natural tooth color transition with minimal use of composite shades. (udayendo.com)
  • Finally, the composite resin will be shined and polished until it blends in with the natural, healthy appearance of the rest of your smile. (lifetimestpeters.com)
  • Aim of this study was to evaluate the preheating effect of composite resin on its colour stability when immersed in tea and coca cola solutions. (jptcp.com)
  • To evaluate the preheating effect of composite resin on its colour stability when immersed in tea and coca cola solutions. (jptcp.com)