A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase.
Complement activation initiated by the interaction of microbial ANTIGENS with COMPLEMENT C3B. When COMPLEMENT FACTOR B binds to the membrane-bound C3b, COMPLEMENT FACTOR D cleaves it to form alternative C3 CONVERTASE (C3BBB) which, stabilized by COMPLEMENT FACTOR P, is able to cleave multiple COMPLEMENT C3 to form alternative C5 CONVERTASE (C3BBB3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
A glycoprotein that is important in the activation of CLASSICAL COMPLEMENT PATHWAY. C4 is cleaved by the activated COMPLEMENT C1S into COMPLEMENT C4A and COMPLEMENT C4B.
The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES.
Serine proteases that cleave COMPLEMENT C3 into COMPLEMENT C3A and COMPLEMENT C3B, or cleave COMPLEMENT C5 into COMPLEMENT C5A and COMPLEMENT C5B. These include the different forms of C3/C5 convertases in the classical and the alternative pathways of COMPLEMENT ACTIVATION. Both cleavages take place at the C-terminal of an ARGININE residue.
The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g.
A glycine-rich, heat-labile serum glycoprotein that contains a component of the C3 CONVERTASE ALTERNATE PATHWAY (C3bBb). Bb, a serine protease, is generated when factor B is cleaved by COMPLEMENT FACTOR D into Ba and Bb.
The smaller fragment formed when complement C4 is cleaved by COMPLEMENT C1S. It is an anaphylatoxin that causes symptoms of immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE) but its activity is weaker than that of COMPLEMENT C3A or COMPLEMENT C5A.
C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX.
A serine protease that is the complex of COMPLEMENT C3B and COMPLEMENT FACTOR BB. It cleaves multiple COMPLEMENT C3 into COMPLEMENT C3A (anaphylatoxin) and COMPLEMENT C3B in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY.
The smaller fragment generated from the cleavage of complement C3 by C3 CONVERTASE. C3a, a 77-amino acid peptide, is a mediator of local inflammatory process. It induces smooth MUSCLE CONTRACTION, and HISTAMINE RELEASE from MAST CELLS and LEUKOCYTES. C3a is considered an anaphylatoxin along with COMPLEMENT C4A; COMPLEMENT C5A; and COMPLEMENT C5A, DES-ARGININE.
Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY).
A subcomponent of complement C1, composed of six copies of three polypeptide chains (A, B, and C), each encoded by a separate gene (C1QA; C1QB; C1QC). This complex is arranged in nine subunits (six disulfide-linked dimers of A and B, and three disulfide-linked homodimers of C). C1q has binding sites for antibodies (the heavy chain of IMMUNOGLOBULIN G or IMMUNOGLOBULIN M). The interaction of C1q and immunoglobulin activates the two proenzymes COMPLEMENT C1R and COMPLEMENT C1S, thus initiating the cascade of COMPLEMENT ACTIVATION via the CLASSICAL COMPLEMENT PATHWAY.
Complement activation initiated by the binding of COMPLEMENT C1 to ANTIGEN-ANTIBODY COMPLEXES at the COMPLEMENT C1Q subunit. This leads to the sequential activation of COMPLEMENT C1R and COMPLEMENT C1S subunits. Activated C1s cleaves COMPLEMENT C4 and COMPLEMENT C2 forming the membrane-bound classical C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
The large fragment formed when COMPLEMENT C4 is cleaved by COMPLEMENT C1S. The membrane-bound C4b binds COMPLEMENT C2A, a SERINE PROTEASE, to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
A serine endopeptidase that has specificity for cleavage at ARGININE. It cleaves a variety of prohormones including PRO-OPIOMELANOCORTIN, proluteinizing-hormone-releasing hormone, proenkephalins, prodynorphin, and PROINSULIN.
The minor fragment formed when C5 convertase cleaves C5 into C5a and COMPLEMENT C5B. C5a is a 74-amino-acid glycopeptide with a carboxy-terminal ARGININE that is crucial for its spasmogenic activity. Of all the complement-derived anaphylatoxins, C5a is the most potent in mediating immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE), smooth MUSCLE CONTRACTION; HISTAMINE RELEASE; and migration of LEUKOCYTES to site of INFLAMMATION.
A component of the CLASSICAL COMPLEMENT PATHWAY. C2 is cleaved by activated COMPLEMENT C1S into COMPLEMENT C2B and COMPLEMENT C2A. C2a, the COOH-terminal fragment containing a SERINE PROTEASE, combines with COMPLEMENT C4B to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
A CALCIUM-dependent endopeptidase that has specificity for cleavage at ARGININE that is near paired basic residues. It cleaves a variety of prohormones including PRO-OPIOMELANOCORTIN; PRORENIN; proenkephalins; prodynorphin; prosomatostatin; and PROINSULIN.
Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways.
Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors.
A 53-kDa protein that is a positive regulator of the alternate pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It stabilizes the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb) and protects it from rapid inactivation, thus facilitating the cascade of COMPLEMENT ACTIVATION and the formation of MEMBRANE ATTACK COMPLEX. Individuals with mutation in the PFC gene exhibit properdin deficiency and have a high susceptibility to infections.
A 105-kDa serum glycoprotein with significant homology to the other late complement components, C7-C9. It is a polypeptide chain cross-linked by 32 disulfide bonds. C6 is the next complement component to bind to the membrane-bound COMPLEMENT C5B in the assembly of MEMBRANE ATTACK COMPLEX. It is encoded by gene C6.
An important soluble regulator of the alternative pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It is a 139-kDa glycoprotein expressed by the liver and secreted into the blood. It binds to COMPLEMENT C3B and makes iC3b (inactivated complement 3b) susceptible to cleavage by COMPLEMENT FACTOR I. Complement factor H also inhibits the association of C3b with COMPLEMENT FACTOR B to form the C3bB proenzyme, and promotes the dissociation of Bb from the C3bBb complex (COMPLEMENT C3 CONVERTASE, ALTERNATIVE PATHWAY).
A 302-amino-acid fragment in the alpha chain (672-1663) of C3b. It is generated when C3b is inactivated (iC3b) and its alpha chain is cleaved by COMPLEMENT FACTOR I into C3c, and C3dg (955-1303) in the presence COMPLEMENT FACTOR H. Serum proteases further degrade C3dg into C3d (1002-1303) and C3g (955-1001).
A serum protein which is important in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. This enzyme cleaves the COMPLEMENT C3B-bound COMPLEMENT FACTOR B to form C3bBb which is ALTERNATIVE PATHWAY C3 CONVERTASE.
A 206-amino-acid fragment in the alpha chain (672-1663) of C3b. It is generated when C3b is inactivated (iC3b) and its alpha chain is cleaved by COMPLEMENT FACTOR I into C3c (749-954), and C3dg (955-1303) in the presence COMPLEMENT FACTOR H.
A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections.
Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement.
A serine endopeptidase found primarily in the EXTRACELLULAR MATRIX. It has specificity for cleavage of a variety of substrates including PRORENIN, pro-membrane type-1 matrix metalloproteinase, and NEURAL CELL ADHESION MOLECULE L1.
Proteolytic enzymes that are involved in the conversion of protein precursors such as peptide prohormones into PEPTIDE HORMONES. Some are ENDOPEPTIDASES, some are EXOPEPTIDASES.
A product of COMPLEMENT ACTIVATION cascade, regardless of the pathways, that forms transmembrane channels causing disruption of the target CELL MEMBRANE and cell lysis. It is formed by the sequential assembly of terminal complement components (COMPLEMENT C5B; COMPLEMENT C6; COMPLEMENT C7; COMPLEMENT C8; and COMPLEMENT C9) into the target membrane. The resultant C5b-8-poly-C9 is the "membrane attack complex" or MAC.
A 77-kDa subcomponent of complement C1, encoded by gene C1S, is a SERINE PROTEASE existing as a proenzyme (homodimer) in the intact complement C1 complex. Upon the binding of COMPLEMENT C1Q to antibodies, the activated COMPLEMENT C1R cleaves C1s into two chains, A (heavy) and B (light, the serine protease), linked by disulfide bonds yielding the active C1s. The activated C1s, in turn, cleaves COMPLEMENT C2 and COMPLEMENT C4 to form C4b2a (CLASSICAL C3 CONVERTASE).
Endogenous proteins that inhibit or inactivate COMPLEMENT C3B. They include COMPLEMENT FACTOR H and COMPLEMENT FACTOR I (C3b/C4b inactivator). They cleave or promote the cleavage of C3b into inactive fragments, and thus are important in the down-regulation of COMPLEMENT ACTIVATION and its cytolytic sequence.
A 93-kDa serum glycoprotein encoded by C7 gene. It is a polypeptide chain with 28 disulfide bridges. In the formation of MEMBRANE ATTACK COMPLEX; C7 is the next component to bind the C5b-6 complex forming a trimolecular complex C5b-7 which is lipophilic, resembles an integral membrane protein, and serves as an anchor for the late complement components, C8 and C9.
The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION.
Molecular sites on or in some B-lymphocytes and macrophages that recognize and combine with COMPLEMENT C3B. The primary structure of these receptors reveal that they contain transmembrane and cytoplasmic domains, with their extracellular portion composed entirely of thirty short consensus repeats each having 60 to 70 amino acids.
An IgG autoantibody against the ALTERNATIVE PATHWAY C3 CONVERTASE, found in serum of patients with MESANGIOCAPILLARY GLOMERULONEPHRITIS. The binding of this autoantibody to C3bBb stabilizes the enzyme thus reduces the actions of C3b inactivators (COMPLEMENT FACTOR H; COMPLEMENT FACTOR I). This abnormally stabilized enzyme induces a continuous COMPLEMENT ACTIVATION and generation of C3b thereby promoting the assembly of MEMBRANE ATTACK COMPLEX and cytolysis.
A 80-kDa subcomponent of complement C1, existing as a SERINE PROTEASE proenzyme in the intact complement C1 complex. When COMPLEMENT C1Q is bound to antibodies, the changed tertiary structure causes autolytic activation of complement C1r which is cleaved into two chains, A (heavy) and B (light, the serine protease), connected by disulfide bonds. The activated C1r serine protease, in turn, activates COMPLEMENT C1S proenzyme by cleaving the Arg426-Ile427 bond. No fragment is released when either C1r or C1s is cleaved.
The larger fragment generated from the cleavage of C5 by C5 CONVERTASE that yields COMPLEMENT C5A and C5b (beta chain + alpha' chain, the residual alpha chain, bound by disulfide bond). C5b remains bound to the membrane and initiates the spontaneous assembly of the late complement components to form C5b-8-poly-C9, the MEMBRANE ATTACK COMPLEX.
A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.-
A proprotein convertase with specificity for the proproteins of PROALBUMIN; COMPLEMENT 3C; and VON WILLEBRAND FACTOR. It has specificity for cleavage near paired ARGININE residues that are separated by two amino acids.
A 150-kDa serum glycoprotein composed of three subunits with each encoded by a different gene (C8A; C8B; and C8G). This heterotrimer contains a disulfide-linked C8alpha-C8gamma heterodimer and a noncovalently associated C8beta chain. C8 is the next component to bind the C5-7 complex forming C5b-8 that binds COMPLEMENT C9 and acts as a catalyst in the polymerization of C9.
GPI-linked membrane proteins broadly distributed among hematopoietic and non-hematopoietic cells. CD55 prevents the assembly of C3 CONVERTASE or accelerates the disassembly of preformed convertase, thus blocking the formation of the membrane attack complex.
The COOH-terminal fragment of COMPLEMENT 2, released by the action of activated COMPLEMENT C1S. It is a SERINE PROTEASE. C2a combines with COMPLEMENT C4B to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different.
A plasma serine proteinase that cleaves the alpha-chains of C3b and C4b in the presence of the cofactors COMPLEMENT FACTOR H and C4-binding protein, respectively. It is a 66-kDa glycoprotein that converts C3b to inactivated C3b (iC3b) followed by the release of two fragments, C3c (150-kDa) and C3dg (41-kDa). It was formerly called KAF, C3bINF, or enzyme 3b inactivator.
Important enzymes in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. They cleave COMPLEMENT C3 and COMPLEMENT C5.
Compounds that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host.
The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity.
A screening assay for circulating COMPLEMENT PROTEINS. Diluted SERUM samples are added to antibody-coated ERYTHROCYTES and the percentage of cell lysis is measured. The values are expressed by the so called CH50, in HEMOLYTIC COMPLEMENT units per milliliter, which is the dilution of serum required to lyse 50 percent of the erythrocytes in the assay.
A serine protease that cleaves multiple COMPLEMENT C5 into COMPLEMENT C5A (anaphylatoxin) and COMPLEMENT C5B in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. It is the complex of ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb) with an additional COMPLEMENT C3B, or C3bBb3b.
Molecular sites on or in B-lymphocytes, follicular dendritic cells, lymphoid cells, and epithelial cells that recognize and combine with COMPLEMENT C3D. Human complement receptor 2 (CR2) serves as a receptor for both C3dg and the gp350/220 glycoprotein of HERPESVIRUS 4, HUMAN, and binds the monoclonal antibody OKB7, which blocks binding of both ligands to the receptor.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
A G-protein-coupled receptor that signals an increase in intracellular calcium in response to the potent ANAPHYLATOXIN peptide COMPLEMENT C5A.
A serum protein that regulates the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. It binds as a cofactor to COMPLEMENT FACTOR I which then hydrolyzes the COMPLEMENT C4B in the CLASSICAL PATHWAY C3 CONVERTASE (C4bC2a).
Serum peptides derived from certain cleaved COMPLEMENT PROTEINS during COMPLEMENT ACTIVATION. They induce smooth MUSCLE CONTRACTION; mast cell HISTAMINE RELEASE; PLATELET AGGREGATION; and act as mediators of the local inflammatory process. The order of anaphylatoxin activity from the strongest to the weakest is C5a, C3a, C4a, and C5a des-arginine.
The N-terminal fragment of COMPLEMENT 2, released by the action of activated COMPLEMENT C1S.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Serum proteins that inhibit, antagonize, or inactivate COMPLEMENT C1 or its subunits.
A serine protease that cleaves multiple COMPLEMENT 3 into COMPLEMENT 3A (anaphylatoxin) and COMPLEMENT 3B in the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. It is a complex of COMPLEMENT 4B and COMPLEMENT 2A (C4b2a).
Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis.
An acidic protein found in the NEUROENDOCRINE SYSTEM that functions as a molecular chaperone for PROPROTEIN CONVERTASE 2.
Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
A serine protease that cleaves multiple COMPLEMENT 5 into COMPLEMENT 5A (anaphylatoxin) and COMPLEMENT 5B in the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. It is a complex of CLASSICAL PATHWAY C3 CONVERTASE (C4b2a) with an additional COMPLEMENT C3B, or C4b2a3b.
Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1.
Small glycoproteins found on both hematopoietic and non-hematopoietic cells. CD59 restricts the cytolytic activity of homologous complement by binding to C8 and C9 and blocking the assembly of the membrane attack complex. (From Barclay et al., The Leukocyte Antigen FactsBook, 1993, p234)
Complement activation triggered by the interaction of microbial POLYSACCHARIDES with serum MANNOSE-BINDING LECTIN resulting in the activation of MANNOSE-BINDING PROTEIN-ASSOCIATED SERINE PROTEASES. As in the classical pathway, MASPs cleave COMPLEMENT C4 and COMPLEMENT C2 to form C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
A ubiquitously expressed complement receptor that binds COMPLEMENT C3B and COMPLEMENT C4B and serves as a cofactor for their inactivation. CD46 also interacts with a wide variety of pathogens and mediates immune response.
A ZINC-containing exopeptidase primarily found in SECRETORY VESICLES of endocrine and neuroendocrine cells. It catalyzes the cleavage of C-terminal ARGININE or LYSINE residues from polypeptides and is active in processing precursors of PEPTIDE HORMONES and other bioactive peptides.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
An endogenous 105-kDa plasma glycoprotein produced primarily by the LIVER and MONOCYTES. It inhibits a broad spectrum of proteases, including the COMPLEMENT C1R and the COMPLEMENT C1S proteases of the CLASSICAL COMPLEMENT PATHWAY, and the MANNOSE-BINDING PROTEIN-ASSOCIATED SERINE PROTEASES. C1-INH-deficient individuals suffer from HEREDITARY ANGIOEDEMA TYPES I AND II.
Chronic glomerulonephritis characterized histologically by proliferation of MESANGIAL CELLS, increase in the MESANGIAL EXTRACELLULAR MATRIX, and a thickening of the glomerular capillary walls. This may appear as a primary disorder or secondary to other diseases including infections and autoimmune disease SYSTEMIC LUPUS ERYTHEMATOSUS. Various subtypes are classified by their abnormal ultrastructures and immune deposits. Hypocomplementemia is a characteristic feature of all types of MPGN.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES).
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Established cell cultures that have the potential to propagate indefinitely.
Important enzymes in the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. They cleave COMPLEMENT C3 and COMPLEMENT C5.
The rate dynamics in chemical or physical systems.
Physiologically inactive substances that can be converted to active enzymes.
Proteins prepared by recombinant DNA technology.
Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.
The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Inflammation of the renal glomeruli (KIDNEY GLOMERULUS) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. These structural and functional abnormalities usually lead to HEMATURIA; PROTEINURIA; HYPERTENSION; and RENAL INSUFFICIENCY.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
Serum serine proteases which participate in COMPLEMENT ACTIVATION. They are activated when complexed with the MANNOSE-BINDING LECTIN, therefore also known as Mannose-binding protein-Associated Serine Proteases (MASPs). They cleave COMPLEMENT C4 and COMPLEMENT C2 to form C4b2a, the CLASSICAL PATHWAY C3 CONVERTASE.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
An adrenal microsomal cytochrome P450 enzyme that catalyzes the 21-hydroxylation of steroids in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP21 gene, converts progesterones to precursors of adrenal steroid hormones (CORTICOSTERONE; HYDROCORTISONE). Defects in CYP21 cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL).
A specific mannose-binding member of the collectin family of lectins. It binds to carbohydrate groups on invading pathogens and plays a key role in the MANNOSE-BINDING LECTIN COMPLEMENT PATHWAY.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow.
A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins.
Antibodies produced by a single clone of cells.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
The clear portion of BLOOD that is left after BLOOD COAGULATION to remove BLOOD CELLS and clotting proteins.
A syndrome that is associated with microvascular diseases of the KIDNEY, such as RENAL CORTICAL NECROSIS. It is characterized by hemolytic anemia (ANEMIA, HEMOLYTIC); THROMBOCYTOPENIA; and ACUTE RENAL FAILURE.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Elements of limited time intervals, contributing to particular results or situations.
An adhesion-promoting leukocyte surface membrane heterodimer. The alpha subunit consists of the CD11b ANTIGEN and the beta subunit the CD18 ANTIGEN. The antigen, which is an integrin, functions both as a receptor for complement 3 and in cell-cell and cell-substrate adhesive interactions.
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity.
Hormones secreted by the PITUITARY GLAND including those from the anterior lobe (adenohypophysis), the posterior lobe (neurohypophysis), and the ill-defined intermediate lobe. Structurally, they include small peptides, proteins, and glycoproteins. They are under the regulation of neural signals (NEUROTRANSMITTERS) or neuroendocrine signals (HYPOTHALAMIC HORMONES) from the hypothalamus as well as feedback from their targets such as ADRENAL CORTEX HORMONES; ANDROGENS; ESTROGENS.
A class of C-type lectins that target the carbohydrate structures found on invading pathogens. Binding of collectins to microorganisms results in their agglutination and enhanced clearance. Collectins form trimers that may assemble into larger oligomers. Each collectin polypeptide chain consists of four regions: a relatively short N-terminal region, a collagen-like region, an alpha-helical coiled-coil region, and carbohydrate-binding region.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
The common precursor polypeptide of pancreatic GLUCAGON and intestinal GLUCAGON-LIKE PEPTIDES. Proglucagon is the 158-amino acid segment of preproglucagon without the N-terminal signal sequence. Proglucagon is expressed in the PANCREAS; INTESTINES; and the CENTRAL NERVOUS SYSTEM. Posttranslational processing of proglucagon is tissue-specific yielding numerous bioactive peptides.
A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP).
Transport proteins that carry specific substances in the blood or across cell membranes.
The sum of the weight of all the atoms in a molecule.
A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell.
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Proteins found in any species of bacterium.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
Glycoproteins found on the membrane or surface of cells.
Polysaccharides consisting of mannose units.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Immunoelectrophoresis in which a second electrophoretic transport is performed on the initially separated antigen fragments into an antibody-containing medium in a direction perpendicular to the first electrophoresis.
A derivative of complement C5a, generated when the carboxy-terminal ARGININE is removed by CARBOXYPEPTIDASE B present in normal human serum. C5a des-Arg shows complete loss of spasmogenic activity though it retains some chemotactic ability (CHEMOATTRACTANTS).
A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID.
Inflammation of any part of the KIDNEY.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Serum proteins with an electrophoretic mobility that falls between ALPHA-GLOBULINS and GAMMA-GLOBULINS.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
A component of NF-kappa B transcription factor. It is proteolytically processed from NF-kappa B p100 precursor protein and is important for maturation of B-LYMPHOCYTES and adaptive HUMORAL IMMUNITY.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS.
The process of cleaving a chemical compound by the addition of a molecule of water.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue.
Polysaccharide isolated from the edible mushroom LENTINULA EDODES. The exact composition is unknown.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
A 69-amino acid peptide derived from the N-terminal of PROGLUCAGON. It is mainly produced by the INTESTINAL L CELLS. Further processing of glicentin yield a 30-amino acid N-terminal peptide (glicentin-related polypeptide) and a 37-amino acid peptide OXYNTOMODULIN. Both glicentin and oxyntomodulin can reduce digestive secretions and delay gastric emptying.
A genus of trematode flukes belonging to the family Schistosomatidae. There are over a dozen species. These parasites are found in man and other mammals. Snails are the intermediate hosts.
Procedures, such as TISSUE CULTURE TECHNIQUES; mathematical models; etc., when used or advocated for use in place of the use of animals in research or diagnostic laboratories.
A serine endopeptidase isolated from Bacillus subtilis. It hydrolyzes proteins with broad specificity for peptide bonds, and a preference for a large uncharged residue in P1. It also hydrolyzes peptide amides. (From Enzyme Nomenclature, 1992) EC 3.4.21.62.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
The relationship between the dose of an administered drug and the response of the organism to the drug.
A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues.
Degenerative changes in the RETINA usually of older adults which results in a loss of vision in the center of the visual field (the MACULA LUTEA) because of damage to the retina. It occurs in dry and wet forms.
A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
A species of motile, free-living, gram-negative bacteria that occur in the soil. They are aerobic or microaerophilic and are sometimes capable of nitrogen fixation.
Thickening of the walls of small ARTERIES or ARTERIOLES due to cell proliferation or HYALINE deposition.
A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts.
A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals.
The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement.

Complement activation in patients with systemic lupus erythematosus without nephritis. (1/30)

OBJECTIVE: To study the association between disease activity and complement activation prospectively in patients with systemic lupus erythematosus (SLE). PATIENTS AND METHODS: Twenty-one SLE patients were examined monthly for 1 yr. Disease activity, autoantibodies, conventional complement tests and the following complement activation products were investigated: C1rs-C1inh complexes, C4bc, Bb, C3a, C3bc, C5a and the terminal SC5b-9 complement complex (TCC). RESULTS: Modest variation in disease activity was noted. None of the patients had nephritis. Flare was observed at 27 visits. Four patients had anti-C1q antibodies in conjunction with modestly low C1q concentrations. The complement parameters were rather constant during the observation period. Slightly to moderately decreased C4 (0.05-0.10 g/l) was found in 10 patients and severely decreased C4 (<0.05 g/l) in seven patients. Decreased C4 was not associated with increased complement activation. Complement activation products were either normal or slightly elevated. TCC was the only activation product correlating significantly with score for disease activity at flare. None of the variables tested predicted flares. CONCLUSION: Complement tests are of limited importance in routine examination of SLE without nephritis, although TCC is suggested to be one of the most sensitive markers for disease activity.  (+info)

Cooperation between decay-accelerating factor and membrane cofactor protein in protecting cells from autologous complement attack. (2/30)

Decay-accelerating factor (DAF or CD55) and membrane cofactor protein (MCP or CD46) function intrinsically in the membranes of self cells to prevent activation of autologous complement on their surfaces. How these two regulatory proteins cooperate on self-cell surfaces to inhibit autologous complement attack is unknown. In this study, a GPI-anchored form of MCP was generated. The ability of this recombinant protein and that of naturally GPI-anchored DAF to incorporate into cell membranes then was exploited to examine the combined functions of DAF and MCP in regulating complement intermediates assembled from purified alternative pathway components on rabbit erythrocytes. Quantitative studies with complement-coated rabbit erythrocyte intermediates constituted with each protein individually or the two proteins together demonstrated that DAF and MCP synergize the actions of each other in preventing C3b deposition on the cell surface. Further analyses showed that MCP's ability to catalyze the factor I-mediated cleavage of cell-bound C3b is inhibited in the presence of factors B and D and is restored when DAF is incorporated into the cells. Thus, the activities of DAF and MCP, when present together, are greater than the sum of the two proteins individually, and DAF is required for MCP to catalyze the cleavage of cell-bound C3b in the presence of excess factors B and D. These data are relevant to xenotransplantation, pharmacological inhibition of complement in inflammatory diseases, and evasion of tumor cells from humoral immune responses.  (+info)

Rejection of pig liver xenografts in patients with liver failure: implications for xenotransplantation. (3/30)

The pathophysiological state of rejection in liver xenotransplantation is poorly understood. Data from clinical pig liver perfusion suggest that pig livers might be rejected less vigorously than pig hearts or kidneys. Pig livers used in clinical xenoperfusions were exposed to blood from patients with liver failure. We have shown in an animal model that transplant recipients with liver failure are less capable of initiating hyperacute rejection of a xenografted liver than a healthy transplant recipient. The goal of this report is to examine the pathological characteristics of pig livers used in 2 clinical pig liver perfusions and combine this information with in vitro studies of pig-to-human liver xenotransplantation to determine whether the findings in the perfused pig livers could be explained in part by the diminished capacity of the patient with liver failure to respond to xenogeneic tissue. Pathological analysis of the perfused pig livers showed immunoglobulin M deposition in the sinusoids with little evidence of complement activation. Our in vitro studies showed that serum from patients with liver failure caused less injury to pig liver endothelium than serum from healthy subjects. Serum from patients with liver failure had similar levels of xenoreactive antibodies as serum from healthy humans. Incubation of serum from patients with liver failure with pig hepatic endothelial cells generated less iC3b, Bb fragment, and C5b-9 than serum from healthy subjects. We conclude that the altered injury in the perfused pig livers can be attributed to the relative complement deficiency that accompanies liver failure.  (+info)

Complement 1 inhibitor is a regulator of the alternative complement pathway. (4/30)

We studied complement 1 inhibitor (C1-INH) as an inhibitor of the alternative complement pathway. C1-INH prevented lysis, induced by the alternative complement pathway, of paroxysmal nocturnal hemoglobinuria (PNH) erythrocytes in human serum. It inhibited the binding of both factors B and C3 to PNH and rabbit erythrocytes and blocked the ability of factor B to restore alternative-pathway function in factor B-depleted serum. C1-INH did not bind to factors B or D but did bind to immobilized C3b and cobra venom factor (CVF), a C3b analogue. C1-INH prevented factor B from binding to CVF-coated beads and dissociated bound factor B from such beads. Factor B and C1-INH showed cross competition in binding to CVF-coated beads. Factor D cleaved factor B into Bb and Ba in the presence of C3b. Cleavage was markedly inhibited when C3b was preincubated with C1-INH. C1-INH inhibited the formation of CVFBb and decreased the C3 cleavage. Removal of C1-INH from serum, in the presence of Mg-EGTA with an anti-C1-INH immunoabsorbant, markedly increased alternative-pathway lysis. C1-INH interacts with C3b to inhibit binding of factor B to C3b. At physiologic concentrations, it is a downregulator of the alternative pathway convertase.  (+info)

Complement activation in chromosome 13 dementias. Similarities with Alzheimer's disease. (5/30)

Chromosome 13 dementias, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with neurodegeneration and cerebrovascular amyloidosis, with striking neuropathological similarities to Alzheimer's disease (AD). Despite the structural differences among the amyloid subunits (ABri in FBD, ADan in FDD, and Abeta in AD), these disorders are all characterized by the presence of neurofibrillary tangles and parenchymal and vascular amyloid deposits co-localizing with markers of glial activation, suggestive of local inflammation. Proteins of the complement system and their pro-inflammatory activation products are among the inflammation markers associated with AD lesions. Immunohistochemistry of FBD and FDD brain sections demonstrated the presence of complement activation components of the classical and alternative pathways as well as the neo-epitope of the membrane attack complex. Hemolytic experiments and enzyme-linked immunosorbent assays specific for the activation products iC3b, C4d, Bb, and C5b-9 indicated that ABri and ADan are able to fully activate the complement cascade at levels comparable to those generated by Abeta1-42. ABri and ADan specifically bound C1q with high affinity and formed stable complexes in physiological conditions. Activation proceeds approximately 70-75% through the classical pathway while only approximately 25-30% seems to occur through the alternative pathway. The data suggest that the chronic inflammatory response generated by the amyloid peptides in vivo might be a contributing factor for the pathogenesis of FBD and FDD and, in more general terms, to other neurodegenerative conditions.  (+info)

Structural analysis of engineered Bb fragment of complement factor B: insights into the activation mechanism of the alternative pathway C3-convertase. (6/30)

The C-terminal fragment, Bb, of factor B combines with C3b to form the pivotal C3-convertase, C3bBb, of alternative complement pathway. Bb consists of a von Willebrand factor type A (vWFA) domain that is structurally similar to the I domains of integrins and a serine protease (SP) domain that is in inactive conformation. The structure of the C3bBb complex would be important in deciphering the activation mechanism of the SP domain. However, C3bBb is labile and not amenable to X-ray diffraction studies. We engineered a disulfide bond in the vWFA domain of Bb homologous to that shown to lock I domains in active conformation. The crystal structures of Bb(C428-C435) and its inhibitor complexes reveal that the adoption of the "active" conformation by the vWFA domain is not sufficient to activate the C3-convertase catalytic apparatus and also provide insights into the possible mode of C3-convertase activation.  (+info)

Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay. (7/30)

Decay-accelerating factor (DAF; CD55) inhibits the complement (C) cascade by dissociating the multimolecular C3 convertase enzymes central to amplification. We have previously demonstrated using surface plasmon resonance (Biacore International) that DAF mediates decay of the alternative pathway C3 convertase, C3bBb, but not of the inactive proenzyme, C3bB, and have shown that the major site of interaction is with the larger cleavage subunit factor B (Bb) subunit. In this study, we dissect these interactions and demonstrate that the second short consensus repeat (SCR) domain of DAF (SCR2) interacts only with Bb, whereas SCR4 interacts with C3b. Despite earlier studies that found SCR3 to be critical to DAF activity, we find that SCR3 does not directly interact with either subunit. Furthermore, we demonstrate that properdin, a positive regulator of the alternative pathway, does not directly interact with DAF. Extending from studies of binding to decay-accelerating activity, we show that truncated forms of DAF consisting of SCRs 2 and 3 bind the convertase stably via SCR2-Bb interactions but have little functional activity. In contrast, an SCR34 construct mediates decay acceleration, presumably due to SCR4-C3b interactions demonstrated above, because SCR3 alone has no binding or functional effect. We propose that DAF interacts with C3bBb through major sites in SCR2 and SCR4. Binding to Bb via SCR2 increases avidity of binding, concentrating DAF on the active convertase, whereas more transient interactions through SCR4 with C3b directly mediate decay acceleration. These data provide new insights into the mechanisms involved in C3 convertase decay by DAF.  (+info)

Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. (8/30)

Complement promotes the rapid recognition and elimination of pathogens, infected cells, and immune complexes. The biochemical basis for its target specificity is incompletely understood. In this report, we demonstrate that properdin can directly bind to microbial targets and provide a platform for the in situ assembly and function of the alternative pathway C3 convertases. This mechanism differs from the standard model wherein nascent C3b generated in the fluid phase attaches nonspecifically to its targets. Properdin-directed complement activation occurred on yeast cell walls (zymosan) and Neisseria gonorrhoeae. Properdin did not bind wild-type Escherichia coli, but it readily bound E. coli LPS mutants, and the properdin-binding capacity of each strain correlated with its respective serum-dependent AP activation rate. Moreover, properdin:single-chain Ab constructs were used to direct serum-dependent complement activation to novel targets. We conclude properdin participates in two distinct complement activation pathways: one that occurs by the standard model and one that proceeds by the properdin-directed model. The properdin-directed model is consistent with a proposal made by Pillemer and his colleagues >50 years ago.  (+info)

Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical Immunology. Linnaeus Univ, Ctr Biomat Chem, Kalmar, Sweden.. ...
Results of studies published since 2002 reveal that T cells and antigen-presenting cells (APCs) produce complement proteins. The immune cell-derived, alternative pathway complement components activate
In the rodent model of temporal lobe epilepsy, there is extensive synaptic reorganization within the hippocampus following a single prolonged seizure event, after which animals eventually develop epilepsy. The perineuronal net (PN), a component of the neural extracellular matrix (ECM), primarily surrounds inhibitory interneurons and, under normal conditions, restricts synaptic reorganization. The objective of the current study was to explore the effects of status epilepticus (SE) on PNs in the adult hippocampus. The aggrecan component of the PN was studied, acutely (48 h post-SE), sub-acutely (1 week post-SE) and during the chronic period (2 months post-SE). Aggrecan expressing PNs decreased by 1 week, likely contributing to a permissive environment for neuronal reorganization, and remained attenuated at 2 months. The SE-exposed hippocampus showed many PNs with poor structural integrity, a condition rarely seen in controls. Additionally, the decrease in the aggrecan component of the PN was ...
Complement is a complex biological system which works in conjunction with antibody and other factors to protect the body from invasion by pathogens. When activated by either the classical or alternative pathway Complement acts on biological membranes and may cause cell death. The human complement cascade consists of several distinct plasma proteins. Complement C3 and Complement C4 levels are important in determining inherited or acquired deficiencies. Conversely, levels may rise in a variety of inflammatory and necrotic disorders as part of the acute-phase plasma protein response.. Available Applications. ...
Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b and C9b on agarose-coated plates in a dose dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B
does MHC class III genes encode Interleukin Beta microglobulinc Tumor necro MHC class III genes encodes proteins of classic and alternate complement pathways (C2 and C4, properdin factor B), soluble proteins, tumor necrosis factors (TNF alpha, beta), HSP 70 and the 21 hydroxy
2WY7: A Structural Basis for Staphylococcal Complement Subversion: X-Ray Structure of the Complement- Binding Domain of Staphylococcus Aureus Protein Sbi in Complex with Ligand C3D.
Blue Cambrian clay lump 0,5 kg ( 1,1 lb)edible for detox and scin care . Free worldwide shipping. Products from Russia on Kalinka-Store. 688
Human umbilical vein endothelial cells grown in vitro under standard conditions contain a high level of mRNA specific for the complement regulatory factors H and I. An additional 1.8-kb mRNA encoding a truncated form of factor H is also present. IFN-gamma stimulation of the cells causes a 6-7 fold increase in both factor H mRNA species, and a greater than 10-fold increase in factor I mRNA. IL-1 and LPS slightly suppressed factor H mRNA, while TNF had no effect. mRNA for factor B is also detectable in IFN-gamma-stimulated cells, but messengers for C1q, C4bp, and CR3 beta chain were not found. Secretion of factor H protein was also stimulated by IFN-gamma. The presence of mRNA for factors H, B, and I, together with C3 secretion, demonstrated by others, suggests that endothelial cells can assemble the complete alternative complement pathway. Endothelial cell complement may be involved in leukocyte-endothelium interactions mediated by leukocyte C3 receptors. ...
As a member of the wwPDB, the RCSB PDB curates and annotates PDB data according to agreed upon standards. The RCSB PDB also provides a variety of tools and resources. Users can perform simple and advanced searches based on annotations relating to sequence, structure and function. These molecules are visualized, downloaded, and analyzed by users who range from students to specialized scientists.
Summary of SCIN (KIAA1905) expression in human tissue. Distinct cytoplasmic expression in distal renal tubules, gastrointestinal tract, placental trophoblasts and chondrocytes.
Looking for online definition of Complement factor b in the Medical Dictionary? Complement factor b explanation free. What is Complement factor b? Meaning of Complement factor b medical term. What does Complement factor b mean?
The IUPHAR/BPS Guide to Pharmacology. complement factor B - S1: Chymotrypsin. Detailed annotation on the structure, function, physiology, pharmacology and clinical relevance of drug targets.
A Serum protein which is important in the Alternative Complement Activation Pathway. This enzyme cleaves the Complement C3b-bound Complement Factor B to form C3bBb which is Alternative Pathway C3 Convertase ...
Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b-binding protein C-terminal-alpha-/beta-chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent-positive regulator of the AP, the human factor H-related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VH H targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab-recognising epitopes [VH H(T) or VH H(P)], respectively, were used as HER2 anchoring moieties. Optimised high-FHR4 valence heteromultimeric immunoconjugates [FHR4/VH H(T) or FHR4/VH H(P)] were selected by sequential cell cloning and a selective ...
For several decades, techniques for modifying the surface of steel pipes were practiced with varying results. In addition, these methods did not address either the hydrophobicity of the carbon steel or steel/cement interfacial bond, other than the use of surfactants in spacers and cement slurry. SCIN offers an economical solution to this issue by achieving a superhydrophilic pipe surface that is chemically reactive to Portland cement, allowing an effective bond to cement.
Gentaur molecular products has all kinds of products like :search , Nordic Immunological Lab \ goat serum against human properdin \ GAHu/PPD for more molecular products just contact us
Barraquer-Simons syndrome (or acquired partial lipodystrophy, cephalothoracic lipodystrophy, and progressive lipodystrophy)) is a rare form of lipodystrophy, which usually first affects the head, and then spreads to the thorax. It is named for Luis Barraquer Roviralta (1855-1928), a Spanish physician, and Arthur Simons (1879-1942), a German physician. Some evidence links it to LMNB2. The etiology of this condition has not been fully elucidated. Lipodystrophy is often associated with glomerulonephritis, low C3 serum complement levels, and the presence of a C3 nephritic factor. C3 nephritic factor is a serum immunoglobulin G that interacts with the C3bBb alternative pathway convertase to activate C3. C3 nephritic factor induces the lysis of adipocytes that secrete adipsin, a product identical to complement factor D. The distribution of the lipoatrophy is postulated to be dictated by the variable amounts of adipsin secreted by the adipocytes at different locations. Human PTRF mutations may cause ...
Alternative pathway definition, the activation of complement by contact with polysaccharides on bacteria, protozoa, or yeast cells: a nonspecific immune response. See more.
AccessGUDID - Anti Human Properdin FITC (B1761082)- Fluorescein conjugated polyclonal goat antiserum to Human Complement Properdin
I conduct research into genetic kidney disease and perform a weekly nephrology clinic specializing in the care of patients and families with hereditary kidney problems, including polycystic kidney disease, unexplained familial kidney failure, inherited microscopic haematuria syndromes and renal cancer syndromes.. Using linkage mapping, next generation sequencing and other techniques I have described and identified the molecular defects responsible for the genetic diseases HIF2α erythrocytosis, which results from a defect in cellular oxygen sensing, and CFHR5 nephropathy, which results from a defect of complement alternative pathway regulation and which is endemic in people of Cypriot ancestry.. Ongoing projects aim firstly to improve understanding of the pathophysiology of these diseases; secondly to develop rational approaches to their treatment; and thirdly to investigate other families with inherited kidney disease in order to uncover the genetic change responsible in each one. ...
Engaging math & science practice! Improve your skills with free problems in Alternative Pathways for Photosynthesis and thousands of other practice lessons.

No FAQ available that match "complement c3 convertase alternative pathway"

No images available that match "complement c3 convertase alternative pathway"