Proteolytic enzymes that are involved in the conversion of protein precursors such as peptide prohormones into PEPTIDE HORMONES. Some are ENDOPEPTIDASES, some are EXOPEPTIDASES.
A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase.
Serine proteases that cleave COMPLEMENT C3 into COMPLEMENT C3A and COMPLEMENT C3B, or cleave COMPLEMENT C5 into COMPLEMENT C5A and COMPLEMENT C5B. These include the different forms of C3/C5 convertases in the classical and the alternative pathways of COMPLEMENT ACTIVATION. Both cleavages take place at the C-terminal of an ARGININE residue.
A glycoprotein that is important in the activation of CLASSICAL COMPLEMENT PATHWAY. C4 is cleaved by the activated COMPLEMENT C1S into COMPLEMENT C4A and COMPLEMENT C4B.
The smaller fragment formed when complement C4 is cleaved by COMPLEMENT C1S. It is an anaphylatoxin that causes symptoms of immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE) but its activity is weaker than that of COMPLEMENT C3A or COMPLEMENT C5A.
A proprotein convertase with specificity for the proproteins of PROALBUMIN; COMPLEMENT 3C; and VON WILLEBRAND FACTOR. It has specificity for cleavage near paired ARGININE residues that are separated by two amino acids.
A serine endopeptidase that has specificity for cleavage at ARGININE. It cleaves a variety of prohormones including PRO-OPIOMELANOCORTIN, proluteinizing-hormone-releasing hormone, proenkephalins, prodynorphin, and PROINSULIN.
C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX.
The smaller fragment generated from the cleavage of complement C3 by C3 CONVERTASE. C3a, a 77-amino acid peptide, is a mediator of local inflammatory process. It induces smooth MUSCLE CONTRACTION, and HISTAMINE RELEASE from MAST CELLS and LEUKOCYTES. C3a is considered an anaphylatoxin along with COMPLEMENT C4A; COMPLEMENT C5A; and COMPLEMENT C5A, DES-ARGININE.
The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES.
The large fragment formed when COMPLEMENT C4 is cleaved by COMPLEMENT C1S. The membrane-bound C4b binds COMPLEMENT C2A, a SERINE PROTEASE, to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.-
A subcomponent of complement C1, composed of six copies of three polypeptide chains (A, B, and C), each encoded by a separate gene (C1QA; C1QB; C1QC). This complex is arranged in nine subunits (six disulfide-linked dimers of A and B, and three disulfide-linked homodimers of C). C1q has binding sites for antibodies (the heavy chain of IMMUNOGLOBULIN G or IMMUNOGLOBULIN M). The interaction of C1q and immunoglobulin activates the two proenzymes COMPLEMENT C1R and COMPLEMENT C1S, thus initiating the cascade of COMPLEMENT ACTIVATION via the CLASSICAL COMPLEMENT PATHWAY.
The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g.
The minor fragment formed when C5 convertase cleaves C5 into C5a and COMPLEMENT C5B. C5a is a 74-amino-acid glycopeptide with a carboxy-terminal ARGININE that is crucial for its spasmogenic activity. Of all the complement-derived anaphylatoxins, C5a is the most potent in mediating immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE), smooth MUSCLE CONTRACTION; HISTAMINE RELEASE; and migration of LEUKOCYTES to site of INFLAMMATION.
A CALCIUM-dependent endopeptidase that has specificity for cleavage at ARGININE that is near paired basic residues. It cleaves a variety of prohormones including PRO-OPIOMELANOCORTIN; PRORENIN; proenkephalins; prodynorphin; prosomatostatin; and PROINSULIN.
A component of the CLASSICAL COMPLEMENT PATHWAY. C2 is cleaved by activated COMPLEMENT C1S into COMPLEMENT C2B and COMPLEMENT C2A. C2a, the COOH-terminal fragment containing a SERINE PROTEASE, combines with COMPLEMENT C4B to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY).
A serine endopeptidase found primarily in the EXTRACELLULAR MATRIX. It has specificity for cleavage of a variety of substrates including PRORENIN, pro-membrane type-1 matrix metalloproteinase, and NEURAL CELL ADHESION MOLECULE L1.
A 105-kDa serum glycoprotein with significant homology to the other late complement components, C7-C9. It is a polypeptide chain cross-linked by 32 disulfide bonds. C6 is the next complement component to bind to the membrane-bound COMPLEMENT C5B in the assembly of MEMBRANE ATTACK COMPLEX. It is encoded by gene C6.
A 206-amino-acid fragment in the alpha chain (672-1663) of C3b. It is generated when C3b is inactivated (iC3b) and its alpha chain is cleaved by COMPLEMENT FACTOR I into C3c (749-954), and C3dg (955-1303) in the presence COMPLEMENT FACTOR H.
A 302-amino-acid fragment in the alpha chain (672-1663) of C3b. It is generated when C3b is inactivated (iC3b) and its alpha chain is cleaved by COMPLEMENT FACTOR I into C3c, and C3dg (955-1303) in the presence COMPLEMENT FACTOR H. Serum proteases further degrade C3dg into C3d (1002-1303) and C3g (955-1001).
Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement.
A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections.
Complement activation initiated by the binding of COMPLEMENT C1 to ANTIGEN-ANTIBODY COMPLEXES at the COMPLEMENT C1Q subunit. This leads to the sequential activation of COMPLEMENT C1R and COMPLEMENT C1S subunits. Activated C1s cleaves COMPLEMENT C4 and COMPLEMENT C2 forming the membrane-bound classical C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
Complement activation initiated by the interaction of microbial ANTIGENS with COMPLEMENT C3B. When COMPLEMENT FACTOR B binds to the membrane-bound C3b, COMPLEMENT FACTOR D cleaves it to form alternative C3 CONVERTASE (C3BBB) which, stabilized by COMPLEMENT FACTOR P, is able to cleave multiple COMPLEMENT C3 to form alternative C5 CONVERTASE (C3BBB3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors.
A 77-kDa subcomponent of complement C1, encoded by gene C1S, is a SERINE PROTEASE existing as a proenzyme (homodimer) in the intact complement C1 complex. Upon the binding of COMPLEMENT C1Q to antibodies, the activated COMPLEMENT C1R cleaves C1s into two chains, A (heavy) and B (light, the serine protease), linked by disulfide bonds yielding the active C1s. The activated C1s, in turn, cleaves COMPLEMENT C2 and COMPLEMENT C4 to form C4b2a (CLASSICAL C3 CONVERTASE).
A glycine-rich, heat-labile serum glycoprotein that contains a component of the C3 CONVERTASE ALTERNATE PATHWAY (C3bBb). Bb, a serine protease, is generated when factor B is cleaved by COMPLEMENT FACTOR D into Ba and Bb.
A product of COMPLEMENT ACTIVATION cascade, regardless of the pathways, that forms transmembrane channels causing disruption of the target CELL MEMBRANE and cell lysis. It is formed by the sequential assembly of terminal complement components (COMPLEMENT C5B; COMPLEMENT C6; COMPLEMENT C7; COMPLEMENT C8; and COMPLEMENT C9) into the target membrane. The resultant C5b-8-poly-C9 is the "membrane attack complex" or MAC.
The COOH-terminal fragment of COMPLEMENT 2, released by the action of activated COMPLEMENT C1S. It is a SERINE PROTEASE. C2a combines with COMPLEMENT C4B to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
A 80-kDa subcomponent of complement C1, existing as a SERINE PROTEASE proenzyme in the intact complement C1 complex. When COMPLEMENT C1Q is bound to antibodies, the changed tertiary structure causes autolytic activation of complement C1r which is cleaved into two chains, A (heavy) and B (light, the serine protease), connected by disulfide bonds. The activated C1r serine protease, in turn, activates COMPLEMENT C1S proenzyme by cleaving the Arg426-Ile427 bond. No fragment is released when either C1r or C1s is cleaved.
A 93-kDa serum glycoprotein encoded by C7 gene. It is a polypeptide chain with 28 disulfide bridges. In the formation of MEMBRANE ATTACK COMPLEX; C7 is the next component to bind the C5b-6 complex forming a trimolecular complex C5b-7 which is lipophilic, resembles an integral membrane protein, and serves as an anchor for the late complement components, C8 and C9.
Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways.
A 150-kDa serum glycoprotein composed of three subunits with each encoded by a different gene (C8A; C8B; and C8G). This heterotrimer contains a disulfide-linked C8alpha-C8gamma heterodimer and a noncovalently associated C8beta chain. C8 is the next component to bind the C5-7 complex forming C5b-8 that binds COMPLEMENT C9 and acts as a catalyst in the polymerization of C9.
The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION.
A screening assay for circulating COMPLEMENT PROTEINS. Diluted SERUM samples are added to antibody-coated ERYTHROCYTES and the percentage of cell lysis is measured. The values are expressed by the so called CH50, in HEMOLYTIC COMPLEMENT units per milliliter, which is the dilution of serum required to lyse 50 percent of the erythrocytes in the assay.
Important enzymes in the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. They cleave COMPLEMENT C3 and COMPLEMENT C5.
Molecular sites on or in some B-lymphocytes and macrophages that recognize and combine with COMPLEMENT C3B. The primary structure of these receptors reveal that they contain transmembrane and cytoplasmic domains, with their extracellular portion composed entirely of thirty short consensus repeats each having 60 to 70 amino acids.
An important soluble regulator of the alternative pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It is a 139-kDa glycoprotein expressed by the liver and secreted into the blood. It binds to COMPLEMENT C3B and makes iC3b (inactivated complement 3b) susceptible to cleavage by COMPLEMENT FACTOR I. Complement factor H also inhibits the association of C3b with COMPLEMENT FACTOR B to form the C3bB proenzyme, and promotes the dissociation of Bb from the C3bBb complex (COMPLEMENT C3 CONVERTASE, ALTERNATIVE PATHWAY).
The larger fragment generated from the cleavage of C5 by C5 CONVERTASE that yields COMPLEMENT C5A and C5b (beta chain + alpha' chain, the residual alpha chain, bound by disulfide bond). C5b remains bound to the membrane and initiates the spontaneous assembly of the late complement components to form C5b-8-poly-C9, the MEMBRANE ATTACK COMPLEX.
GPI-linked membrane proteins broadly distributed among hematopoietic and non-hematopoietic cells. CD55 prevents the assembly of C3 CONVERTASE or accelerates the disassembly of preformed convertase, thus blocking the formation of the membrane attack complex.
A G-protein-coupled receptor that signals an increase in intracellular calcium in response to the potent ANAPHYLATOXIN peptide COMPLEMENT C5A.
Important enzymes in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. They cleave COMPLEMENT C3 and COMPLEMENT C5.
A serum protein which is important in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. This enzyme cleaves the COMPLEMENT C3B-bound COMPLEMENT FACTOR B to form C3bBb which is ALTERNATIVE PATHWAY C3 CONVERTASE.
A plasma serine proteinase that cleaves the alpha-chains of C3b and C4b in the presence of the cofactors COMPLEMENT FACTOR H and C4-binding protein, respectively. It is a 66-kDa glycoprotein that converts C3b to inactivated C3b (iC3b) followed by the release of two fragments, C3c (150-kDa) and C3dg (41-kDa). It was formerly called KAF, C3bINF, or enzyme 3b inactivator.
Compounds that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host.
A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity.
Serum proteins that inhibit, antagonize, or inactivate COMPLEMENT C1 or its subunits.
Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis.
Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification, such as cleavage, to produce the active functional protein or peptide hormone.
An acidic protein found in the NEUROENDOCRINE SYSTEM that functions as a molecular chaperone for PROPROTEIN CONVERTASE 2.
Molecular sites on or in B-lymphocytes, follicular dendritic cells, lymphoid cells, and epithelial cells that recognize and combine with COMPLEMENT C3D. Human complement receptor 2 (CR2) serves as a receptor for both C3dg and the gp350/220 glycoprotein of HERPESVIRUS 4, HUMAN, and binds the monoclonal antibody OKB7, which blocks binding of both ligands to the receptor.
Serum peptides derived from certain cleaved COMPLEMENT PROTEINS during COMPLEMENT ACTIVATION. They induce smooth MUSCLE CONTRACTION; mast cell HISTAMINE RELEASE; PLATELET AGGREGATION; and act as mediators of the local inflammatory process. The order of anaphylatoxin activity from the strongest to the weakest is C5a, C3a, C4a, and C5a des-arginine.
A serine protease that is the complex of COMPLEMENT C3B and COMPLEMENT FACTOR BB. It cleaves multiple COMPLEMENT C3 into COMPLEMENT C3A (anaphylatoxin) and COMPLEMENT C3B in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A 53-kDa protein that is a positive regulator of the alternate pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It stabilizes the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb) and protects it from rapid inactivation, thus facilitating the cascade of COMPLEMENT ACTIVATION and the formation of MEMBRANE ATTACK COMPLEX. Individuals with mutation in the PFC gene exhibit properdin deficiency and have a high susceptibility to infections.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
A ZINC-containing exopeptidase primarily found in SECRETORY VESICLES of endocrine and neuroendocrine cells. It catalyzes the cleavage of C-terminal ARGININE or LYSINE residues from polypeptides and is active in processing precursors of PEPTIDE HORMONES and other bioactive peptides.
A serum protein that regulates the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. It binds as a cofactor to COMPLEMENT FACTOR I which then hydrolyzes the COMPLEMENT C4B in the CLASSICAL PATHWAY C3 CONVERTASE (C4bC2a).
A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP).
Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES.
Endogenous proteins that inhibit or inactivate COMPLEMENT C3B. They include COMPLEMENT FACTOR H and COMPLEMENT FACTOR I (C3b/C4b inactivator). They cleave or promote the cleavage of C3b into inactive fragments, and thus are important in the down-regulation of COMPLEMENT ACTIVATION and its cytolytic sequence.
Complement activation triggered by the interaction of microbial POLYSACCHARIDES with serum MANNOSE-BINDING LECTIN resulting in the activation of MANNOSE-BINDING PROTEIN-ASSOCIATED SERINE PROTEASES. As in the classical pathway, MASPs cleave COMPLEMENT C4 and COMPLEMENT C2 to form C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
The N-terminal fragment of COMPLEMENT 2, released by the action of activated COMPLEMENT C1S.
Small glycoproteins found on both hematopoietic and non-hematopoietic cells. CD59 restricts the cytolytic activity of homologous complement by binding to C8 and C9 and blocking the assembly of the membrane attack complex. (From Barclay et al., The Leukocyte Antigen FactsBook, 1993, p234)
Hormones secreted by the PITUITARY GLAND including those from the anterior lobe (adenohypophysis), the posterior lobe (neurohypophysis), and the ill-defined intermediate lobe. Structurally, they include small peptides, proteins, and glycoproteins. They are under the regulation of neural signals (NEUROTRANSMITTERS) or neuroendocrine signals (HYPOTHALAMIC HORMONES) from the hypothalamus as well as feedback from their targets such as ADRENAL CORTEX HORMONES; ANDROGENS; ESTROGENS.
Proteins prepared by recombinant DNA technology.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
An adrenal microsomal cytochrome P450 enzyme that catalyzes the 21-hydroxylation of steroids in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP21 gene, converts progesterones to precursors of adrenal steroid hormones (CORTICOSTERONE; HYDROCORTISONE). Defects in CYP21 cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL).
Established cell cultures that have the potential to propagate indefinitely.
An endogenous 105-kDa plasma glycoprotein produced primarily by the LIVER and MONOCYTES. It inhibits a broad spectrum of proteases, including the COMPLEMENT C1R and the COMPLEMENT C1S proteases of the CLASSICAL COMPLEMENT PATHWAY, and the MANNOSE-BINDING PROTEIN-ASSOCIATED SERINE PROTEASES. C1-INH-deficient individuals suffer from HEREDITARY ANGIOEDEMA TYPES I AND II.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity.
A serine protease that cleaves multiple COMPLEMENT 5 into COMPLEMENT 5A (anaphylatoxin) and COMPLEMENT 5B in the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. It is a complex of CLASSICAL PATHWAY C3 CONVERTASE (C4b2a) with an additional COMPLEMENT C3B, or C4b2a3b.
A serine protease that cleaves multiple COMPLEMENT 3 into COMPLEMENT 3A (anaphylatoxin) and COMPLEMENT 3B in the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. It is a complex of COMPLEMENT 4B and COMPLEMENT 2A (C4b2a).
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A ubiquitously expressed complement receptor that binds COMPLEMENT C3B and COMPLEMENT C4B and serves as a cofactor for their inactivation. CD46 also interacts with a wide variety of pathogens and mediates immune response.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate.
Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Zymosan is a polysaccharide derived from the cell walls of Saccharomyces cerevisiae, commonly used in research as an immunostimulant to induce inflammation and study phagocytosis, complement activation, and oxidative burst in neutrophils and macrophages.
A type of chromogranin which was initially characterized in the ANTERIOR PITUITARY GLAND. It is found in several species including human, rat, mouse, and others. Secretogranin II is an acidic protein of 559 to 586 amino acid residues that can stimulate DOPAMINE release from neurons and release of pituitary GONADOTROPINS.
A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow.
A serine protease that cleaves multiple COMPLEMENT C5 into COMPLEMENT C5A (anaphylatoxin) and COMPLEMENT C5B in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. It is the complex of ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb) with an additional COMPLEMENT C3B, or C3bBb3b.
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES).
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
A 69-amino acid peptide derived from the N-terminal of PROGLUCAGON. It is mainly produced by the INTESTINAL L CELLS. Further processing of glicentin yield a 30-amino acid N-terminal peptide (glicentin-related polypeptide) and a 37-amino acid peptide OXYNTOMODULIN. Both glicentin and oxyntomodulin can reduce digestive secretions and delay gastric emptying.
A group of acidic proteins that are major components of SECRETORY GRANULES in the endocrine and neuroendocrine cells. They play important roles in the aggregation, packaging, sorting, and processing of secretory protein prior to secretion. They are cleaved to release biologically active peptides. There are various types of granins, usually classified by their sources.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
An envelope protein of the human immunodeficiency virus that is encoded by the HIV env gene. It has a molecular weight of 160,000 kDa and contains numerous glycosylation sites. It serves as a precursor for both the HIV ENVELOPE PROTEIN GP120 and the HIV ENVELOPE PROTEIN GP41.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A derivative of complement C5a, generated when the carboxy-terminal ARGININE is removed by CARBOXYPEPTIDASE B present in normal human serum. C5a des-Arg shows complete loss of spasmogenic activity though it retains some chemotactic ability (CHEMOATTRACTANTS).
A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
The common precursor polypeptide of pancreatic GLUCAGON and intestinal GLUCAGON-LIKE PEPTIDES. Proglucagon is the 158-amino acid segment of preproglucagon without the N-terminal signal sequence. Proglucagon is expressed in the PANCREAS; INTESTINES; and the CENTRAL NERVOUS SYSTEM. Posttranslational processing of proglucagon is tissue-specific yielding numerous bioactive peptides.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
An adhesion-promoting leukocyte surface membrane heterodimer. The alpha subunit consists of the CD11b ANTIGEN and the beta subunit the CD18 ANTIGEN. The antigen, which is an integrin, functions both as a receptor for complement 3 and in cell-cell and cell-substrate adhesive interactions.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
A 13-amino acid peptide derived from proteolytic cleavage of ADRENOCORTICOTROPIC HORMONE, the N-terminal segment of ACTH. ACTH (1-13) is amidated at the C-terminal to form ACTH (1-13)NH2 which in turn is acetylated to form alpha-MSH in the secretory granules. Alpha-MSH stimulates the synthesis and distribution of MELANIN in MELANOCYTES in mammals and MELANOPHORES in lower vertebrates.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The rate dynamics in chemical or physical systems.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
Physiologically inactive substances that can be converted to active enzymes.
The clear portion of BLOOD that is left after BLOOD COAGULATION to remove BLOOD CELLS and clotting proteins.
Chronic glomerulonephritis characterized histologically by proliferation of MESANGIAL CELLS, increase in the MESANGIAL EXTRACELLULAR MATRIX, and a thickening of the glomerular capillary walls. This may appear as a primary disorder or secondary to other diseases including infections and autoimmune disease SYSTEMIC LUPUS ERYTHEMATOSUS. Various subtypes are classified by their abnormal ultrastructures and immune deposits. Hypocomplementemia is a characteristic feature of all types of MPGN.
A family of structurally-related angiogenic proteins of approximately 70 kDa in size. They have high specificity for members of the TIE RECEPTOR FAMILY.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
A genus of trematode flukes belonging to the family Schistosomatidae. There are over a dozen species. These parasites are found in man and other mammals. Snails are the intermediate hosts.
A 31-amino acid peptide that is the C-terminal fragment of BETA-LIPOTROPIN. It acts on OPIOID RECEPTORS and is an analgesic. Its first four amino acids at the N-terminal are identical to the tetrapeptide sequence of METHIONINE ENKEPHALIN and LEUCINE ENKEPHALIN.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Inflammation of the renal glomeruli (KIDNEY GLOMERULUS) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. These structural and functional abnormalities usually lead to HEMATURIA; PROTEINURIA; HYPERTENSION; and RENAL INSUFFICIENCY.
Thickening of the walls of small ARTERIES or ARTERIOLES due to cell proliferation or HYALINE deposition.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Antibodies produced by a single clone of cells.
The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Glycoproteins found on the membrane or surface of cells.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
The process of cleaving a chemical compound by the addition of a molecule of water.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Elements of limited time intervals, contributing to particular results or situations.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ.
The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Matrix metalloproteinases that are associated with the CELL MEMBRANE, either through transmembrane domains or GLYCOSYLPHOSPHATIDYLINOSITOL ANCHORS. Membrane-type matrix metalloproteinases may act within the pericellular environment to influence the process of CELL MIGRATION.
Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES).
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
A specific mannose-binding member of the collectin family of lectins. It binds to carbohydrate groups on invading pathogens and plays a key role in the MANNOSE-BINDING LECTIN COMPLEMENT PATHWAY.
One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla.
ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
An IgG autoantibody against the ALTERNATIVE PATHWAY C3 CONVERTASE, found in serum of patients with MESANGIOCAPILLARY GLOMERULONEPHRITIS. The binding of this autoantibody to C3bBb stabilizes the enzyme thus reduces the actions of C3b inactivators (COMPLEMENT FACTOR H; COMPLEMENT FACTOR I). This abnormally stabilized enzyme induces a continuous COMPLEMENT ACTIVATION and generation of C3b thereby promoting the assembly of MEMBRANE ATTACK COMPLEX and cytolysis.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
Plasma glycoproteins that form a stable complex with hemoglobin to aid the recycling of heme iron. They are encoded in man by a gene on the short arm of chromosome 16.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding.
Peptides whose amino and carboxy ends are linked together with a peptide bond forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS. Some of them are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL).
Glomerulonephritis associated with autoimmune disease SYSTEMIC LUPUS ERYTHEMATOSUS. Lupus nephritis is histologically classified into 6 classes: class I - normal glomeruli, class II - pure mesangial alterations, class III - focal segmental glomerulonephritis, class IV - diffuse glomerulonephritis, class V - diffuse membranous glomerulonephritis, and class VI - advanced sclerosing glomerulonephritis (The World Health Organization classification 1982).
Autoantibodies directed against various nuclear antigens including DNA, RNA, histones, acidic nuclear proteins, or complexes of these molecular elements. Antinuclear antibodies are found in systemic autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, scleroderma, polymyositis, and mixed connective tissue disease.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
Vesicles derived from the GOLGI APPARATUS containing material to be released at the cell surface.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles.
A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Proteins found in any species of bacterium.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
Transport proteins that carry specific substances in the blood or across cell membranes.
Serum serine proteases which participate in COMPLEMENT ACTIVATION. They are activated when complexed with the MANNOSE-BINDING LECTIN, therefore also known as Mannose-binding protein-Associated Serine Proteases (MASPs). They cleave COMPLEMENT C4 and COMPLEMENT C2 to form C4b2a, the CLASSICAL PATHWAY C3 CONVERTASE.
A group of inherited disorders of the ADRENAL GLANDS, caused by enzyme defects in the synthesis of cortisol (HYDROCORTISONE) and/or ALDOSTERONE leading to accumulation of precursors for ANDROGENS. Depending on the hormone imbalance, congenital adrenal hyperplasia can be classified as salt-wasting, hypertensive, virilizing, or feminizing. Defects in STEROID 21-HYDROXYLASE; STEROID 11-BETA-HYDROXYLASE; STEROID 17-ALPHA-HYDROXYLASE; 3-beta-hydroxysteroid dehydrogenase (3-HYDROXYSTEROID DEHYDROGENASES); TESTOSTERONE 5-ALPHA-REDUCTASE; or steroidogenic acute regulatory protein; among others, underlie these disorders.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
An individual in which both alleles at a given locus are identical.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Biologically active substances whose activities affect or play a role in the functioning of the immune system.
The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage.
The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.
Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases.
Peptides composed of between two and twelve amino acids.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.

Channel catfish virus gene 50 encodes a secreted, mucin-like glycoprotein. (1/215)

Cells infected with the wild-type (WT) strain of channel catfish virus (CCV) secreted a glycoprotein with an apparent molecular mass (MM) superior to 200 kDa into the culture medium. This protein, designated gp250, was the sole viral glycoprotein detected in the culture medium after [3H]mannose labeling of the infected cells. When cells were infected with the attenuated V60 strain, a glycoprotein of 135 kDa (designated gp135) was detected instead of gp250. Because WT gene 50 is predicted to encode a secreted, mucin-type glycoprotein, we expressed this gene transiently and detected a glycoprotein of the same apparent MM as gp250 in the culture medium of transfected catfish cells. The increased mobility in SDS-PAGE of the secreted V60 glycoprotein correlated with the presence of a major deletion in V60 gene 50. Therefore, we concluded that gp250 in the WT and gp135 in the V60 strains are both likely encoded by gene 50. An important shift in the relative mobility of gp250 in SDS-PAGE was observed after tunicamycin treatment of infected cells labeled with [3H]glucosamine, confirming the presence of N-linked sugars on gp250. We observed variations in the size of PCR products derived from gene 50 amplification in three different field isolates. Such genetic variations are a characteristic feature of mucin genes and are linked to crossing-over events between internal repeated sequences, such as those present in gene 50.  (+info)

Active sites in complement components C5 and C3 identified by proximity to indels in the C3/4/5 protein family. (2/215)

We recently suggested that sites of length polymorphisms in protein families (indels) might serve as useful guides for locating protein:protein interaction sites. This report describes additional site-specific mutagenesis and synthetic peptide inhibition studies aimed at testing this idea for the paralogous complement C3, C4, and C5 proteins. A series of C5 mutants was constructed by altering the C5 sequence at each of the 27 indels in this protein family. Mutants were expressed in COS cells and were assayed for hemolytic activity and protease sensitivity. Mutants at five indels showed relatively normal expression but substantially reduced sp. act., indicating that the mutations damaged sites important for C5 function. Twenty-three synthetic peptides with C5 sequences and 10 with C3 sequences were also tested for the ability to inhibit C hemolytic activity. Three of the C5 peptides and one of the C3 peptides showed 50% inhibition of both C hemolytic and bactericidal activities at a concentration of 100 microM. In several cases both the mutational and peptide methods implicated the same indel site. Overall, the results suggest that regions important for function of both C3 and C5 lie proximal to residues 150-200 and 1600-1620 in the precursor sequences. Additional sites potentially important for C5 function are near residue 500 in the beta-chain and at two or three sites between the N-terminus of the alpha'-chain and the C5d fragment. One of the latter sites, near residue 865, appears to be important for proteolytic activation of C5.  (+info)

Alterations in C3 activation and binding caused by phosphorylation by a casein kinase released from activated human platelets. (3/215)

A casein kinase released from activated human platelets phosphorylates a number of plasma proteins extracellularly, and that activation of platelets in systemic lupus erythematosus patients parallels an increase in the phosphate content of plasma proteins, including C3. The present study was undertaken to characterize this platelet protein kinase and to further elucidate the effect(s) on C3 function of phosphorylation by platelet casein kinase. The phosphate content of human plasma C3 was increased from 0.15 to 0.60 mol phosphate/mol of C3 after platelet activation in whole blood or platelet-rich plasma. The platelet casein kinase was distinct from other casein kinases in terms of its dependence on cations, inhibition by specific protein kinase inhibitors, and immunological reactivity. C3 that had been phosphorylated with platelet casein kinase was tested for its susceptibility to cleavage by trypsin or the classical and alternative pathway convertases and its binding to EAC and IgG. Phosphorylation did not affect the cleavage of C3 into C3a and C3b, but the binding of fragments from phosphorylated C3 to EAC14oxy2 cells and to IgG in purified systems and in serum was increased by 1.6-4.5 times over that of unphosphorylated C3. A covariation was seen between the enhanced binding of C3 fragments to IgG after phosphorylation and an increased ratio of glycerol/glycine binding, from 2.0 for unphosphorylated C3 to 4.9 for phosphorylated C3. The present study suggests that an overall effect of phosphorylation of C3 by platelet casein kinase is to enhance the opsonization of immune complexes.  (+info)

Enhancement of lectin pathway haemolysis by immunoglobulins. (4/215)

We recently reported that indicator sheep erythrocytes (E) coated with mannan and sensitized with mannan-binding lectin (MBL) (E-M-MBL) are lysed by human serum in the absence of calcium via the lectin pathway of complement activation by a process which requires alternative pathway amplification and is associated with increased binding of and control by complement regulatory proteins C4 bp and factor H. In the present study, we investigated the effect of immunoglobulin (Ig) on this haemolysis. Co-sensitization of indicator E with anti-E haemolysin led to threefold enhancement of lectin pathway haemolysis in the absence of calcium, associated with increased binding of C3 and C5. Lysis was enhanced approximately twofold when E-M-MBL were chemically or immunologically coated with IgM or IgA, and fourfold when coated with IgG, prior to lysis in human serum-Mg-ethyleneglycol tetraacetic acid. The presence of haemolysin did not reduce the binding or inhibitory activity of C4 bp, and the enhancing activity of haemolysin was retained in serum depleted of C4 bp. By contrast, binding of factor H was greatly reduced in the presence of haemolysin, which had no enhancing effect in serum depleted of factor H. These experiments demonstrate the ability of IgG, IgM and IgA to enhance lectin pathway cytolysis, and that this enhancement occurs by neutralization of the inhibitory activity of factor H. Immunoglobulin enhancement of lectin pathway cytolysis represents another interaction between the innate and adaptive systems of immunity.  (+info)

Mechanism of complement-dependent haemolysis via the lectin pathway: role of the complement regulatory proteins. (5/215)

Mannan-binding lectin (MBL) is an acute phase protein which activates the classical complement pathway at the level of C4 and C2 via two novel serine proteases homologous to C1r and C1s. We recently reported that haemolysis via this lectin pathway requires alternative pathway amplification. The present experiments sought to establish the basis for this requirement, and hence focused on the activity and regulation of the C3 convertases. Complement activation was normalized between the lectin and classical pathways such that identical amounts of bound C4 and of haemolytically active C4,2 sites were present on the indicator cells. Under these conditions, there was markedly less haemolysis, associated with markedly less C3 and C5 deposited, via the lectin pathway than via the classical pathway, particularly when alternative pathway recruitment was blocked by depletion of factor D. Lectin pathway activation was associated with enhanced binding in the presence of MBL of complement control proteins C4bp and factor H to C4b and C3b, respectively, with decreased stability of the C3-converting enzyme C4b,2a attributable to C4bp. Immunodepletion of C4bp and/or factor H increased lectin pathway haemolysis and allowed lysis to occur in absence of the alternative pathway. Thus, the lectin pathway of humans is particularly susceptible to the regulatory effects of C4bp and factor H, due at least in part to MBL enhancement of C4bp binding to C4b and factor H binding to C3b.  (+info)

Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating C5 convertases. (6/215)

The goal of this study was to identify the site(s) in CR1 that mediate the dissociation of the C3 and C5 convertases. To that end, truncated derivatives of CR1 whose extracellular part is composed of 30 tandem repeating modules, termed complement control protein repeats (CCPs), were generated. Site 1 (CCPs 1-3) alone mediated the decay acceleration of the classical and alternative pathway C3 convertases. Site 2 (CCPs 8-10 or the nearly identical CCPs 15-17) had one-fifth the activity of site 1. In contrast, for the C5 convertase, site 1 had only 0.5% of the decay accelerating activity, while site 2 had no detectable activity. Efficient C5 decay accelerating activity was detected in recombinants that carried both site 1 and site 2. The activity was reduced if the intervening repeats between site 1 and site 2 were deleted. The results indicate that, for the C5 convertases, decay accelerating activity is mediated primarily by site 1. A properly spaced site 2 has an important auxiliary role, which may involve its C3b binding capacity. Moreover, using homologous substitution mutagenesis, residues important in site 1 for dissociating activity were identified. Based on these results, we generated proteins one-fourth the size of CR1 but with enhanced decay accelerating activity for the C3 convertases.  (+info)

Mutational analysis of the primary substrate specificity pocket of complement factor B. Asp(226) is a major structural determinant for p(1)-Arg binding. (7/215)

Factor B is a serine protease, which despite its trypsin-like specificity has Asn instead of the typical Asp at the bottom of the S(1) pocket (position 189, chymotrypsinogen numbering). Asp residues are present at positions 187 and 226 and either one could conceivably provide the negative charge for binding the P(1)-Arg of the substrate. Determination of the crystal structure of the factor B serine protease domain has revealed that the side chain of Asp(226) is within the S(1) pocket, whereas Asp(187) is located outside the pocket. To investigate the possible role of these atypical structural features in substrate binding and catalysis, we constructed a panel of mutants of these residues. Replacement of Asp(187) caused moderate (50-60%) decrease in hemolytic activity, compared with wild type factor B, whereas replacement of Asn(189) resulted in more profound reductions (71-95%). Substitutions at these two positions did not significantly affect assembly of the alternative pathway C3 convertase. In contrast, elimination of the negative charge from Asp(226) completely abrogated hemolytic activity and also affected formation of the C3 convertase. Kinetic analyses of the hydrolysis of a P(1)-Arg containing thioester by selected mutants confirmed that residue Asp(226) is a primary structural determinant for P(1)-Arg binding and catalysis.  (+info)

Functional role of the noncatalytic subunit of complement C5 convertase. (8/215)

The C5 convertase is a serine protease that consists of two subunits: a catalytic subunit which is bound in a Mg2+-dependent complex to a noncatalytic subunit. To understand the functional role of the noncatalytic subunit, we have determined the C5-cleaving properties of the cobra venom factor-dependent C5 convertase (CVF, Bb) made with CVF purified from the venom of Naja naja (CVFn) and Naja haje (CVFh) and compared them to those for two C3b-dependent C5 convertases (ZymC3b,Bb and C3b,Bb). A comparison of the kinetic parameters indicated that although the four C5 convertases (CVFn,Bb, ZymC3b,Bb, CVFh,Bb, and C3b,Bb) had similar catalytic rate constants (kcat = 0.004-0.012 s-1) they differed 700-fold in their affinity for the substrate as indicated by the Km values (CVFn,Bb = 0.036 microM, ZymC3b,Bb = 1.24 microM, CVFh,Bb = 14.0 microM, and C3b,Bb = 24 microM). Analysis of binding interactions between C5 and the noncatalytic subunits (CVFh or C3b, or CVFn) using the BIAcore, revealed dissociation binding constants (Kd) that were similar to the Km values of the respective enzymes. The kinetic and binding data demonstrate that the binding site for C5 resides in the noncatalytic subunit of the enzyme, the affinity for the substrate is solely determined by the noncatalytic subunit and the catalytic efficiency of the enzyme appears not to be influenced by the nature of this subunit.  (+info)

Proprotein convertases (PCs) are a group of calcium-dependent serine proteases that play a crucial role in the post-translational modification of proteins. They are responsible for cleaving proproteins into their active forms by removing the propeptide or inhibitory sequences, thereby regulating various biological processes such as protein maturation, activation, and trafficking.

There are nine known human proprotein convertases, including PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, Subtilisin/Kexin type 1 Protease (SKI-1/S1P), and Neuropsin. These enzymes are characterized by their conserved catalytic domain and a distinct prodomain that regulates their activity.

Proprotein convertases have been implicated in several physiological processes, including blood coagulation, neuroendocrine signaling, immune response, and cell differentiation. Dysregulation of these enzymes has been associated with various diseases, such as cancer, cardiovascular disorders, neurological disorders, and infectious diseases. Therefore, understanding the function and regulation of proprotein convertases is essential for developing novel therapeutic strategies to target these diseases.

Complement C3 is a protein that plays a central role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Complement C3 can be activated through three different pathways: the classical pathway, the lectin pathway, and the alternative pathway. Once activated, it breaks down into two fragments, C3a and C3b.

C3a is an anaphylatoxin that helps to recruit immune cells to the site of infection or injury, while C3b plays a role in opsonization, which is the process of coating pathogens or damaged cells with proteins to make them more recognizable to the immune system. Additionally, C3b can also activate the membrane attack complex (MAC), which forms a pore in the membrane of target cells leading to their lysis or destruction.

In summary, Complement C3 is an important protein in the complement system that helps to identify and eliminate pathogens and damaged cells from the body through various mechanisms.

Complement C3-C5 convertases are proteins that play a crucial role in the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by marking them for destruction and attracting immune cells to the site of infection or injury.

The C3-C5 convertases are formed during the activation of the complement component 3 (C3) protein, which is a central player in the complement system. The formation of the C3-C5 convertase involves two main steps:

1. C3 convertase formation: In this step, a complex of proteins called the C3 convertase is formed by the cleavage of C3 into C3a and C3b fragments. This complex can then cleave additional C3 molecules into C3a and C3b fragments, amplifying the complement response.
2. C5 convertase formation: In this step, the C3b fragment from the C3 convertase binds to another protein called C4b2a, forming a new complex called the C5 convertase. The C5 convertase can then cleave the C5 protein into C5a and C5b fragments.

The C5b fragment goes on to form the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, leading to its lysis or destruction. The C3a and C5a fragments are small proteins called anaphylatoxins that can cause inflammation and attract immune cells to the site of infection or injury.

Overall, the formation of Complement C3-C5 convertases is a critical step in the activation of the complement system and plays a key role in the body's defense against pathogens and damaged cells.

Complement C4 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Complement C4 is involved in the early stages of the complement activation cascade, where it helps to identify and tag foreign or abnormal cells for destruction by other components of the immune system.

Specifically, Complement C4 can be cleaved into two smaller proteins, C4a and C4b, during the complement activation process. C4b then binds to the surface of the target cell and helps to initiate the formation of the membrane attack complex (MAC), which creates a pore in the cell membrane and leads to lysis or destruction of the target cell.

Deficiencies or mutations in the Complement C4 gene can lead to various immune disorders, including certain forms of autoimmune diseases and susceptibility to certain infections.

Complement C4a is a protein fragment or cleavage product generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells by marking them for destruction and direct lysis. Complement component 4 (C4) is one of the key proteins in this cascade, and it gets cleaved into C4a and C4b during the activation process.

C4a is a small anaphylatoxin with a molecular weight of approximately 9 kDa. It has chemotactic properties, meaning it can attract immune cells like neutrophils to the site of complement activation. Additionally, C4a can induce histamine release from mast cells and basophils, contributing to local inflammation. However, its precise physiological role in the immune response is not entirely clear, and dysregulation of C4a production has been implicated in several pathological conditions, such as autoimmune diseases and allergies.

Furin is not a medical condition or disease, but rather it is a type of enzyme that belongs to the group of proteases. It's also known as paired basic amino acid cleaving enzyme (PACE) or convertase 6.

Furin plays an essential role in processing and activating various proteins in the body, particularly those involved in cell signaling, growth regulation, and viral infectivity. Furin works by cutting or cleaving specific amino acid sequences in proteins, allowing them to become active and perform their functions.

In a medical context, furin is often discussed in relation to its role in activating certain viruses, such as HIV, influenza, and coronaviruses (including SARS-CoV-2). Inhibiting furin activity has been explored as a potential therapeutic strategy for treating these viral infections.

Proprotein convertase 2 (PCSK2) is a type of enzyme known as a proprotein convertase. It plays a role in the activation of other proteins by cleaving off specific peptide sequences and allowing them to become biologically active. PCSK2 is primarily involved in the processing of hormones and neurotransmitters, including insulin, prolactin, and members of the bombesin family.

Defects in the gene that encodes PCSK2 have been associated with certain medical conditions, such as congenital hyperinsulinism, a disorder characterized by low blood sugar levels due to excessive insulin secretion. However, more research is needed to fully understand the relationship between PCSK2 and these conditions.

Complement C5 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. The complement system is a complex series of biochemical reactions that help to identify and destroy foreign substances, such as bacteria and viruses.

Complement C5 is one of several proteins in the complement system that are activated in a cascading manner in response to an activating event, such as the binding of an antibody to a pathogen. Once activated, Complement C5 can be cleaved into two smaller proteins, C5a and C5b.

C5a is a powerful anaphylatoxin, which means it can cause the release of histamine from mast cells and basophils, leading to inflammation and increased vascular permeability. It also acts as a chemoattractant, drawing immune cells to the site of infection or injury.

C5b, on the other hand, plays a role in the formation of the membrane attack complex (MAC), which is a protein structure that can punch holes in the membranes of pathogens, leading to their lysis and destruction.

Overall, Complement C5 is an important component of the immune system's response to infection and injury, helping to eliminate pathogens and damaged cells from the body.

Complement C3a is a protein fragment that is generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by marking them for destruction and attracting immune cells to the site of infection or injury.

C3a is produced when the third component of the complement system (C3) is cleaved into two smaller fragments, C3a and C3b, during the complement activation cascade. C3a is a potent anaphylatoxin, which means it can cause the release of histamine and other mediators from mast cells and basophils, leading to inflammation, increased vascular permeability, and smooth muscle contraction.

C3a also has chemotactic properties, meaning it can attract immune cells such as neutrophils and monocytes to the site of complement activation. Additionally, C3a can modulate the activity of various immune cells, including dendritic cells, T cells, and B cells, and play a role in the regulation of the adaptive immune response.

It's important to note that while C3a has important functions in the immune response, uncontrolled or excessive activation of the complement system can lead to tissue damage and inflammation, contributing to the pathogenesis of various diseases such as autoimmune disorders, inflammatory diseases, and allergies.

Complement activation is the process by which the complement system, a part of the immune system, is activated to help eliminate pathogens and damaged cells from the body. The complement system consists of a group of proteins that work together to recognize and destroy foreign substances.

Activation of the complement system can occur through three different pathways: the classical pathway, the lectin pathway, and the alternative pathway. Each pathway involves a series of proteolytic reactions that ultimately result in the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, leading to its lysis and removal.

The classical pathway is typically activated by the binding of antibodies to antigens on the surface of a pathogen or damaged cell. The lectin pathway is activated by the recognition of specific carbohydrate structures on the surface of microorganisms. The alternative pathway can be spontaneously activated and serves as an amplification loop for both the classical and lectin pathways.

Complement activation plays a crucial role in the immune response, but uncontrolled or excessive activation can also lead to tissue damage and inflammation. Dysregulation of complement activation has been implicated in various diseases, including autoimmune disorders, inflammatory conditions, and neurodegenerative diseases.

Complement C4b is a protein fragment that is formed during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by tagging them for destruction and attracting immune cells to the site of infection or injury.

C4b is generated when the C4 protein is cleaved into two smaller fragments, C4a and C4b, during the activation of the classical or lectin pathways of the complement system. C4b then binds covalently to the surface of the target cell or pathogen, forming a complex with other complement proteins that can create a membrane attack complex (MAC) and cause cell lysis.

C4b can also act as an opsonin, coating the surface of the target cell or pathogen and making it easier for immune cells to recognize and phagocytose them. Additionally, C4b can activate the alternative pathway of the complement system, leading to further amplification of the complement response.

Subtilisins are a group of serine proteases that are produced by certain bacteria, including Bacillus subtilis. They are named after the bacterium and the Latin word "subtilis," which means delicate or finely made. Subtilisins are alkaline proteases, meaning they work best in slightly basic conditions.

Subtilisins have a broad specificity for cleaving peptide bonds and can hydrolyze a wide range of protein substrates. They are widely used in industry for various applications such as detergents, food processing, leather treatment, and biotechnology due to their ability to function at high temperatures and in the presence of denaturing agents.

In medicine, subtilisins have been studied for their potential use in therapeutic applications, including as anti-inflammatory agents and in wound healing. However, more research is needed to fully understand their mechanisms of action and potential benefits.

Complement C1q is a protein that is part of the complement system, which is a group of proteins in the blood that help to eliminate pathogens and damaged cells from the body. C1q is the first component of the classical complement pathway, which is activated by the binding of C1q to antibodies that are attached to the surface of a pathogen or damaged cell.

C1q is composed of six identical polypeptide chains, each containing a collagen-like region and a globular head region. The globular heads can bind to various structures, including the Fc regions of certain antibodies, immune complexes, and some types of cells. When C1q binds to an activating surface, it triggers a series of proteolytic reactions that lead to the activation of other complement components and the formation of the membrane attack complex (MAC), which can punch holes in the membranes of pathogens or damaged cells, leading to their destruction.

In addition to its role in the immune system, C1q has also been found to have roles in various physiological processes, including tissue remodeling, angiogenesis, and the clearance of apoptotic cells. Dysregulation of the complement system, including abnormalities in C1q function, has been implicated in a variety of diseases, including autoimmune disorders, inflammatory diseases, and neurodegenerative conditions.

Complement C3b is a protein fragment that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. C3b is generated during the activation of the complement system, particularly via the classical, lectin, and alternative pathways.

Once formed, C3b can bind covalently to the surface of microbes or other target particles, marking them for destruction by other components of the immune system. Additionally, C3b can interact with other proteins in the complement system to generate the membrane attack complex (MAC), which forms pores in the membranes of targeted cells, leading to their lysis and removal.

In summary, Complement C3b is a vital protein fragment involved in the recognition, tagging, and elimination of pathogens and damaged cells during the immune response.

Complement C5a is a protein fragment that is generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by tagging them for destruction and attracting immune cells to the site of infection or injury.

C5a is formed when the fifth component of the complement system (C5) is cleaved into two smaller fragments, C5a and C5b, during the complement activation cascade. C5a is a potent pro-inflammatory mediator that can attract and activate various immune cells, such as neutrophils, monocytes, and eosinophils, to the site of infection or injury. It can also increase vascular permeability, promote the release of histamine, and induce the production of reactive oxygen species, all of which contribute to the inflammatory response.

However, excessive or uncontrolled activation of the complement system and generation of C5a can lead to tissue damage and inflammation, contributing to the pathogenesis of various diseases, such as sepsis, acute respiratory distress syndrome (ARDS), and autoimmune disorders. Therefore, targeting C5a or its receptors has been explored as a potential therapeutic strategy for these conditions.

Proprotein convertase 1 (PCSK1) is a protein-coding gene that encodes for the prohormone convertase 1/3 (PC1/3), also known as PCsk1 or PCSK1. This enzyme belongs to the family of subtilisin-like proprotein convertases, which play crucial roles in processing and activating various peptide hormones and neuropeptides by cleaving their precursor proteins.

PC1/3 is primarily expressed in neuroendocrine cells, neurons, and enteroendocrine cells of the gastrointestinal tract. It is involved in the maturation of several bioactive peptides, such as:

1. Proinsulin: PC1/3 processes proinsulin into insulin and C-peptide.
2. Proglucagon: PC1/3 cleaves proglucagon to generate glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glicentin, and oxyntomodulin.
3. Proopiomelanocortin (POMC): PC1/3 processes POMC to generate adrenocorticotropic hormone (ACTH), β-lipotropin, β-endorphin, and melanocyte-stimulating hormones (MSH).
4. Prohormone convertase 2 (PCSK2) precursor: PC1/3 cleaves the PCSK2 precursor into its mature form.
5. Neuropeptide YY (NPY): PC1/3 processes NPY precursors to generate NPY and peptide YY (PYY).
6. Proghrelin: PC1/3 converts proghrelin into acylated ghrelin, which stimulates appetite, and desacyl ghrelin, which has no known function.

Defects in the PCSK1 gene can lead to various endocrine disorders, such as monogenic forms of diabetes (MODY), obesity, and short stature.

Complement C2 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C2 is a component of the classical complement pathway, which is activated by the binding of antibodies to antigens on the surface of foreign particles or cells.

When the classical pathway is activated, C2 is cleaved into two fragments: C2a and C2b. C2a then binds to C4b to form the C3 convertase (C4b2a), which cleaves C3 into C3a and C3b. C3b can then go on to form the membrane attack complex, which creates a pore in the membrane of the target cell, leading to its lysis.

In summary, Complement C2 is a protein that helps to activate the complement system and destroy foreign particles or cells through the formation of the C3 convertase and the membrane attack complex.

The complement system is a group of proteins found in the blood and on the surface of cells that when activated, work together to help eliminate pathogens such as bacteria, viruses, and fungi from the body. The proteins are normally inactive in the bloodstream. When they encounter an invading microorganism or foreign substance, a series of reactions take place leading to the activation of the complement system. Activation results in the production of effector molecules that can punch holes in the cell membranes of pathogens, recruit and activate immune cells, and help remove debris and dead cells from the body.

There are three main pathways that can lead to complement activation: the classical pathway, the lectin pathway, and the alternative pathway. Each pathway involves a series of proteins that work together in a cascade-like manner to amplify the response and generate effector molecules. The three main effector molecules produced by the complement system are C3b, C4b, and C5b. These molecules can bind to the surface of pathogens, marking them for destruction by other immune cells.

Complement proteins also play a role in the regulation of the immune response. They help to prevent excessive activation of the complement system, which could damage host tissues. Dysregulation of the complement system has been implicated in a number of diseases, including autoimmune disorders and inflammatory conditions.

In summary, Complement System Proteins are a group of proteins that play a crucial role in the immune response by helping to eliminate pathogens and regulate the immune response. They can be activated through three different pathways, leading to the production of effector molecules that mark pathogens for destruction. Dysregulation of the complement system has been linked to various diseases.

Proprotein convertase 5 (PC5, also known as PCSK5 or PACE4) is a serine protease enzyme that belongs to the family of proprotein convertases. These enzymes play crucial roles in processing and activating various protein precursors by cleaving them at specific recognition sites.

PC5 is primarily involved in the activation of other proteins through proteolytic processing, which means it cuts large protein precursors into their smaller, active forms. It has a wide range of substrates, including hormones, growth factors, receptors, and adhesion molecules. PC5 is synthesized as an inactive zymogen and undergoes autocatalytic activation to become fully functional.

PC5 is expressed in various tissues, such as the brain, pancreas, testis, ovary, and placenta. Its dysregulation has been implicated in several diseases, including cancer, neurodegenerative disorders, and viral infections. However, more research is needed to fully understand its functions and therapeutic potential.

Complement C6 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C6 is a component of the membrane attack complex (MAC), which is a group of proteins that work together to form a pore in the membrane of target cells, leading to their lysis or destruction.

The complement system is activated through several different pathways, including the classical pathway, the lectin pathway, and the alternative pathway. Once activated, these pathways converge at the level of C3, which is cleaved into C3a and C3b fragments. C3b can then bind to the surface of target cells and initiate the formation of the MAC.

C6 is one of several proteins that are required for the formation of the MAC. When C6 binds to C7, it undergoes a conformational change that allows it to interact with C8 and form a stable complex. This complex then recruits additional C9 molecules, which polymerize to form the pore in the target cell membrane.

Deficiencies in complement components, including C6, can lead to increased susceptibility to certain types of infections, as well as autoimmune disorders and other medical conditions.

Complement C3c is a protein component of the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Complement C3c is formed when the third component of the complement system (C3) is cleaved into two smaller proteins, C3a and C3b, during the complement activation process.

C3b can then be further cleaved into C3c and C3dg. C3c is a stable fragment that remains in the circulation and can be measured in blood tests as a marker of complement activation. It plays a role in the opsonization of pathogens, which means it coats them to make them more recognizable to immune cells, and helps to initiate the membrane attack complex (MAC), which forms a pore in the cell membrane of pathogens leading to their lysis or destruction.

Abnormal levels of C3c may indicate an underlying inflammatory or immune-mediated condition, such as infection, autoimmune disease, or cancer.

Complement C3d is a protein fragment that is formed during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens such as bacteria and viruses from the body by tagging them for destruction and attracting immune cells to the site of infection.

C3d is a cleavage product of complement component C3, which is one of the central proteins in the complement system. When C3 is activated, it is cleaved into two fragments: C3a and C3b. C3b can then be further cleaved into C3d and C3c.

C3d plays a role in the activation of the immune system by helping to link the complement system with the adaptive immune response. It does this by binding to receptors on B cells, which are a type of white blood cell that produces antibodies. This interaction can help to stimulate the production of antibodies and enhance the immune response to pathogens.

C3d has also been implicated in the development of certain autoimmune diseases, as it can contribute to the formation of immune complexes that can cause tissue damage.

Complement receptors are proteins found on the surface of various cells in the human body, including immune cells and some non-immune cells. They play a crucial role in the complement system, which is a part of the innate immune response that helps to eliminate pathogens and damaged cells from the body. Complement receptors bind to complement proteins or fragments that are generated during the activation of the complement system. This binding triggers various intracellular signaling events that can lead to diverse cellular responses, such as phagocytosis, inflammation, and immune regulation.

There are several types of complement receptors, including:

1. CR1 (CD35): A receptor found on erythrocytes, B cells, neutrophils, monocytes, macrophages, and glomerular podocytes. It functions in the clearance of immune complexes and regulates complement activation.
2. CR2 (CD21): Expressed mainly on B cells and follicular dendritic cells. It facilitates antigen presentation, B-cell activation, and immune regulation.
3. CR3 (CD11b/CD18, Mac-1): Present on neutrophils, monocytes, macrophages, and some T cells. It mediates cell adhesion, phagocytosis, and intracellular signaling.
4. CR4 (CD11c/CD18, p150,95): Expressed on neutrophils, monocytes, macrophages, and dendritic cells. It is involved in cell adhesion, phagocytosis, and intracellular signaling.
5. C5aR (CD88): Found on various immune cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and dendritic cells. It binds to the complement protein C5a and mediates chemotaxis, degranulation, and inflammation.
6. C5L2 (GPR77): Present on various cell types, including immune cells. Its function is not well understood but may involve regulating C5a-mediated responses or acting as a receptor for other ligands.

These receptors play crucial roles in the immune response and inflammation by mediating various functions such as chemotaxis, phagocytosis, cell adhesion, and intracellular signaling. Dysregulation of these receptors has been implicated in several diseases, including autoimmune disorders, infections, and cancer.

Complement C9 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C9 is one of the components of the membrane attack complex (MAC), which is a protein structure that forms pores in the membranes of target cells, leading to their lysis or destruction.

When activated, C9 polymerizes and inserts itself into the cell membrane, forming a transmembrane pore that disrupts the membrane's integrity and causes the cell to lyse. This process is an essential part of the complement system's ability to destroy pathogens and clear damaged cells from the body.

Defects in the C9 gene can lead to a rare genetic disorder called complement component 9 deficiency, which is characterized by recurrent bacterial infections and immune complex-mediated diseases. Additionally, mutations in the C9 gene have been associated with an increased risk of age-related macular degeneration (AMD), a leading cause of blindness in older adults.

The "Classical Complement Pathway" is one of the three pathways that make up the complement system, which is a part of the immune system in humans and other animals. The complement system helps to enhance the ability of antibodies and phagocytic cells to clear pathogens from the body.

The Classical Complement Pathway is initiated by the binding of the first component of the complement system, C1, to an activator surface, such as an antigen-antibody complex. Activation of C1 results in the sequential activation of other components of the complement system, including C4 and C2, which form the C3 convertase (C4b2a). The C3 convertase cleaves the third component of the complement system, C3, into C3a and C3b. C3b then binds to the activator surface and forms a complex with other components of the complement system, leading to the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, causing its lysis.

The Classical Complement Pathway plays an important role in the immune response to pathogens and can also contribute to inflammation and tissue damage in certain diseases, such as autoimmune disorders and allergies.

The alternative complement pathway is one of the three initiating pathways of the complement system, which is a part of the innate immune system that helps to clear pathogens and damaged cells from the body. The other two pathways are the classical and lectin pathways.

The alternative pathway is continuously activated at a low level, even in the absence of infection or injury, through the spontaneous cleavage of complement component C3 into C3a and C3b by the protease factor D in the presence of magnesium ions. The generated C3b can then bind covalently to nearby surfaces, including pathogens and host cells.

On self-surfaces, regulatory proteins like decay-accelerating factor (DAF) or complement receptor 1 (CR1) help to prevent the formation of the alternative pathway convertase and thus further activation of the complement system. However, on foreign surfaces, the C3b can recruit more complement components, forming a complex called the alternative pathway convertase (C3bBb), which cleaves additional C3 molecules into C3a and C3b.

The generated C3b can then bind to the surface and participate in the formation of the membrane attack complex (MAC), leading to the lysis of the target cell. The alternative pathway plays a crucial role in the defense against gram-negative bacteria, fungi, and parasites, as well as in the clearance of immune complexes and apoptotic cells. Dysregulation of the alternative complement pathway has been implicated in several diseases, including autoimmune disorders and atypical hemolytic uremic syndrome (aHUS).

Complement inactivator proteins are a group of regulatory proteins that help to control and limit the activation of the complement system, which is a part of the immune system. The complement system is a complex series of biochemical reactions that help to eliminate pathogens and damaged cells from the body. However, if not properly regulated, the complement system can also cause damage to healthy tissues and contribute to the development of various diseases.

Complement inactivator proteins work by inhibiting specific components of the complement system, preventing them from activating and causing an immune response. Some examples of complement inactivator proteins include:

1. C1 inhibitor (C1INH): This protein regulates the activation of the classical pathway of the complement system by inhibiting the C1 complex, which is a group of proteins that initiate this pathway.
2. Decay-accelerating factor (DAF or CD55): This protein regulates the activation of both the classical and alternative pathways of the complement system by accelerating the decay of the C3/C5 convertases, which are enzymes that activate the complement components C3 and C5.
3. Membrane cofactor protein (MCP or CD46): This protein regulates the activation of the alternative pathway of the complement system by serving as a cofactor for the cleavage and inactivation of C3b, a component of the C3 convertase.
4. Factor H: This protein also regulates the activation of the alternative pathway of the complement system by acting as a cofactor for the cleavage and inactivation of C3b, and by preventing the formation of the C3 convertase.

Deficiencies or dysfunction of complement inactivator proteins can lead to various diseases, including hereditary angioedema (C1INH deficiency), atypical hemolytic uremic syndrome (factor H deficiency or dysfunction), and age-related macular degeneration (complement component overactivation).

Complement C1s is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, C1s is a component of the first protein complex in the classical complement pathway, called C1.

C1 is composed of three subunits: C1q, C1r, and C1s. When C1 encounters an activating surface, such as an antibody-antigen complex or certain types of viruses and bacteria, it undergoes a conformational change that allows C1r to cleave and activate C1s. Activated C1s then goes on to cleave and activate other components in the complement pathway, leading to the generation of the membrane attack complex (MAC) and subsequent lysis of the target cell.

Deficiencies or mutations in the genes encoding complement proteins, including C1s, can lead to various immune disorders and increased susceptibility to infections.

Complement Factor B is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, Factor B is a component of the alternative pathway of the complement system, which provides a rapid and amplified response to microbial surfaces.

Factor B is cleaved by another protease called Factor D into two fragments, Ba and Bb. The formation of the C3 convertase (C3bBb) is essential for the activation of the alternative pathway. This complex can cleave and activate more C3 molecules, leading to a cascade of reactions that result in the formation of the membrane attack complex (MAC), which forms pores in the membranes of target cells, causing their lysis and elimination.

Deficiencies or mutations in Complement Factor B can lead to various complement-mediated diseases, such as atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD).

The Complement Membrane Attack Complex (MAC), also known as the Terminal Complement Complex (TCC), is a protein structure that forms in the final stages of the complement system's immune response. The complement system is a part of the innate immune system that helps to eliminate pathogens and damaged cells from the body.

The MAC is composed of several proteins, including C5b, C6, C7, C8, and multiple subunits of C9, which assemble on the surface of target cells. The formation of the MAC creates a pore-like structure in the cell membrane, leading to disruption of the membrane's integrity and ultimately causing cell lysis or damage.

The MAC plays an important role in the immune response by helping to eliminate pathogens that have evaded other immune defenses. However, uncontrolled activation of the complement system and formation of the MAC can also contribute to tissue damage and inflammation in various diseases, such as autoimmune disorders, age-related macular degeneration, and ischemia-reperfusion injury.

Complement C2a is a proteolytic fragment generated through the activation of the complement component C2 during the classical complement pathway. It is a serine protease that plays a crucial role in the formation of the C3 convertase (C4b2a) complex, which cleaves and activates the complement component C3 into C3a and C3b. This activation step is essential for the initiation of the immune response and elimination of pathogens through various effector mechanisms such as opsonization, phagocytosis, and formation of the membrane attack complex (MAC). Dysregulation or deficiency in complement components, including C2a, can lead to immunological disorders and increased susceptibility to infections.

Complement C1r is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, C1r is one of the three proteins that make up the C1 complex, which is the first component of the classical complement pathway.

The C1 complex is composed of C1q, C1r, and C1s, and it is activated by the binding of C1q to the Fc region of an antibody that is bound to a pathogen or damaged cell. Once activated, C1r undergoes a conformational change that allows it to cleave and activate C1s. Activated C1s then goes on to cleave and activate other components of the complement system, leading to the production of the membrane attack complex (MAC), which forms a pore in the membrane of the target cell and causes lysis.

Deficiencies or mutations in the genes encoding the proteins of the C1 complex can lead to immune disorders, including hereditary angioedema, which is characterized by recurrent episodes of swelling in various parts of the body.

Complement C7 is a protein that plays a role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, C7 is a component of the membrane attack complex (MAC), which is a group of proteins that forms a pore in the membrane of target cells, leading to their lysis or destruction.

C7 is activated when it binds to the C5b-7 complex, which is formed by the cleavage of C5 and C6 by the C5 convertase. Once bound to the C5b-7 complex, C7 undergoes a conformational change that allows it to insert into the target cell membrane. This forms the basis for the formation of the MAC and subsequent lysis of the target cell.

Deficiencies in complement components, including C7, can lead to increased susceptibility to certain infections and autoimmune disorders. Additionally, abnormal regulation of the complement system has been implicated in a variety of diseases, including inflammatory and degenerative conditions.

Complement activating enzymes are proteins that play a crucial role in the activation of the complement system, which is a part of the immune system. The complement system is a complex series of biochemical reactions that help to eliminate pathogens and damaged cells from the body.

There are several types of complement activating enzymes, including:

1. Classical pathway activators: These include the C1, C4, and C2 components of the complement system. When activated, they trigger a series of reactions that lead to the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, leading to its lysis.
2. Alternative pathway activators: These include factors B, D, and P. They are constantly active at low levels and can be activated by surfaces that are not normally found in the body, such as bacterial cell walls. Once activated, they also trigger the formation of the MAC.
3. Lectin pathway activators: These include mannose-binding lectin (MBL) and ficolins. They bind to carbohydrates on the surface of microbes and activate the complement system through the MBL-associated serine proteases (MASPs).

Overall, complement activating enzymes play a critical role in the immune response by helping to identify and eliminate pathogens and damaged cells from the body.

Complement C8 is a protein component of the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C8 is a part of the membrane attack complex (MAC), which forms a pore in the membrane of target cells, leading to their lysis or destruction.

C8 is composed of three subunits: alpha, beta, and gamma. It is activated when it binds to the complement component C5b67 complex on the surface of a target cell. Once activated, C8 undergoes a conformational change that allows it to insert into the target cell membrane and form a pore, which disrupts the cell's membrane integrity and can lead to its death.

Deficiencies in complement components, including C8, can make individuals more susceptible to certain infections and autoimmune diseases. Additionally, mutations in the genes encoding complement proteins have been associated with various inherited disorders, such as atypical hemolytic uremic syndrome (aHUS), which is characterized by thrombotic microangiopathy and kidney failure.

Complement C1 is a protein complex that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. The complement system consists of a group of proteins that work together to destroy microbes and remove debris.

Complement C1 is composed of three subunits: C1q, C1r, and C1s. When activated, C1q binds to the surface of a pathogen or damaged cell, leading to the activation of C1r and C1s. Activated C1r then cleaves and activates C1s, which in turn cleaves and activates other complement components, ultimately resulting in the formation of the membrane attack complex (MAC), a protein structure that forms a pore in the membrane of the target cell, leading to its lysis and destruction.

Defects in the complement component C1 can lead to immune disorders, such as hereditary angioedema, which is characterized by recurrent episodes of swelling in various parts of the body.

A Complement Hemolytic Activity Assay is a laboratory test used to measure the functionality and activity level of the complement system, which is a part of the immune system. The complement system is a group of proteins that work together to help eliminate pathogens from the body.

The assay measures the ability of the complement system to lyse (break open) red blood cells. This is done by mixing the patient's serum (the liquid portion of the blood) with antibody-coated red blood cells and incubating them together. The complement proteins in the serum will then bind to the antibodies on the red blood cells and cause them to lyse.

The degree of hemolysis (red blood cell lysis) is directly proportional to the activity level of the complement system. By measuring the amount of hemolysis, the assay can determine whether the complement system is functioning properly and at what level of activity.

This test is often used to diagnose or monitor complement-mediated diseases such as autoimmune disorders, infections, and some types of cancer. It may also be used to evaluate the effectiveness of treatments that target the complement system.

Complement C3-C5 convertases are protease complexes that play a crucial role in the classical pathway of the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

The complement system consists of a group of plasma proteins that work together to help eliminate foreign substances and initiate the inflammatory response. The classical pathway is initiated when an antibody binds to a pathogen or antigen, forming an antigen-antibody complex. This complex then activates the first protein in the classical pathway, C1, which subsequently activates the next protein, C4, and then C2.

The resulting complex of C4 and C2 (C4b2a) is called the C3 convertase of the classical pathway. This enzyme cleaves the complement component C3 into C3a and C3b. The C3b fragment then binds to the surface of the pathogen or antigen, forming a new complex with other complement components (C3bBb), which is called the C5 convertase of the classical pathway.

The C5 convertase cleaves the complement component C5 into C5a and C5b. The C5b fragment then initiates the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the pathogen or cell, leading to its lysis and elimination.

Therefore, the Complement C3-C5 convertases, Classical Pathway are essential components of the classical pathway of the complement system that help to eliminate pathogens and damaged cells from the body by activating the complement system and initiating the membrane attack complex.

Complement receptor 3b (CR3b or CD11b/CD18) is not a medical definition itself, but I can provide you with the relevant information regarding this term.

Complement receptor 3 (CR3) is a heterodimeric receptor consisting of two subunits, CD11b (also known as Mac-1 or CR3 alpha) and CD18 (also known as beta2 integrin). There are two forms of the CD11b/CD18 heterodimer: CR3a (CD11b/CD18) and CR3b (CD11b/CD18'). The difference between these two forms lies in the conformation of the CD11b subunit.

Complement receptor 3b (CR3b or CD11b/CD18') is a less common form of the CR3 receptor, which is primarily expressed on myeloid cells such as monocytes, macrophages, and neutrophils. CR3b has a higher affinity for complement component C3b and its fragments iC3b and C3dg compared to CR3a.

CR3b plays a role in various immune functions, including:

1. Phagocytosis: Binding of C3b or its fragments to CR3b facilitates the recognition and uptake of opsonized pathogens by phagocytes.
2. Adhesion: The integrin component of CR3b mediates cell-cell and cell-matrix interactions, contributing to leukocyte migration and recruitment to sites of inflammation or infection.
3. Intracellular signaling: Activation of CR3b can lead to intracellular signaling events that modulate immune responses, such as the release of pro-inflammatory cytokines and reactive oxygen species.

In summary, Complement receptor 3b (CR3b or CD11b/CD18') is a less common form of CR3 primarily expressed on myeloid cells that binds complement component C3b and its fragments with high affinity, mediating phagocytosis, adhesion, and intracellular signaling.

Complement Factor H is a protein involved in the regulation of the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, Complement Factor H helps to regulate the activation and deactivation of the complement component C3b, preventing excessive or unwanted activation of the complement system and protecting host tissues from damage.

Complement Factor H is a crucial protein in maintaining the balance between the protective effects of the complement system and the potential for harm to the body's own cells and tissues. Deficiencies or mutations in Complement Factor H have been associated with several diseases, including age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and C3 glomerulopathy.

Complement C5b is a protein complex that forms during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by marking them for destruction and attracting immune cells to the site of infection or injury.

The complement component C5 is cleaved into two fragments, C5a and C5b, during the activation of the complement system. C5a is a small peptide that acts as a chemoattractant, drawing immune cells to the site of inflammation. C5b, on the other hand, forms a complex with other complement components (C6, C7, C8, and C9) to create the membrane attack complex (MAC). The MAC inserts itself into the membrane of the target cell, forming a pore that disrupts the cell's integrity and leads to its lysis or destruction.

Therefore, Complement C5b is an important protein involved in the immune response, specifically in the terminal phase of complement activation, which results in the formation of the MAC and subsequent destruction of target cells.

CD55, also known as Decay-accelerating factor (DAF), is a protein that acts as an inhibitor of the complement system, which is a part of the immune system. It prevents the formation of the membrane attack complex (MAC) on host cells and tissues, thereby protecting them from damage caused by the complement activation. CD55 is found on the surface of many types of cells in the body, including red blood cells, white blood cells, and cells lining the blood vessels.

As an antigen, CD55 is a molecule that can be recognized by the immune system and stimulate an immune response. However, unlike some other antigens, CD55 does not typically elicit a strong immune response because it is a self-antigen, meaning it is normally present in the body and should not be targeted by the immune system.

In certain medical conditions, such as autoimmune disorders or transplant rejection, the immune system may mistakenly attack cells expressing CD55. In these cases, measuring the levels of CD55 antigens can provide valuable diagnostic information and help guide treatment decisions.

The term "Receptor, Anaphylatoxin C5a" refers to a specific type of receptor found on the surface of various cells in the human body, including immune cells and endothelial cells. This receptor binds to a molecule called C5a, which is a cleavage product of the complement component C5 and is one of the most potent anaphylatoxins.

Anaphylatoxins are inflammatory mediators that play a crucial role in the immune response, particularly in the activation of the complement system and the recruitment of immune cells to sites of infection or injury. C5a is generated during the activation of the complement system and has a wide range of biological activities, including chemotaxis (attracting immune cells to the site of inflammation), increased vascular permeability, and the activation of immune cells such as neutrophils, monocytes, and mast cells.

The C5a receptor, also known as CD88, is a G protein-coupled receptor that belongs to the superfamily of seven transmembrane domain receptors. When C5a binds to the receptor, it triggers a series of intracellular signaling events that lead to the activation of various cellular responses, such as the release of inflammatory mediators and the recruitment of immune cells to the site of inflammation.

Abnormal activation of the C5a/C5a receptor pathway has been implicated in a variety of inflammatory diseases, including sepsis, acute respiratory distress syndrome (ARDS), and autoimmune disorders. Therefore, targeting this pathway with therapeutic agents has emerged as a promising strategy for the treatment of these conditions.

The complement system is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. The alternative pathway is one of three pathways that can activate the complement system. Complement C3-C5 convertases are proteins that play a crucial role in the activation of the complement system through the alternative pathway.

Complement C3-C5 convertases are formed by the cleavage of complement component C3 into C3a and C3b by the C3 convertase enzyme. The C3b fragment then binds to the surface of a pathogen or damaged cell, forming a new complex called the C3bBb convertase. This complex can then cleave additional C3 molecules into C3a and C3b fragments, leading to the amplification of the complement response.

The C3bBb convertase can also cleave complement component C5 into C5a and C5b fragments. The C5b fragment then forms a complex with other complement components to form the membrane attack complex (MAC), which creates a pore in the membrane of the pathogen or damaged cell, leading to its lysis and elimination from the body.

Therefore, Complement C3-C5 convertases, Alternative Pathway refer to the enzyme complexes that play a critical role in the activation of the complement system through the alternative pathway, ultimately leading to the destruction of pathogens or damaged cells.

Complement Factor D is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, Factor D is a serine protease that is involved in the alternative pathway of the complement system.

In this pathway, Factor D helps to cleave another protein called Factor B, which then activates a complex called the C3 convertase. The C3 convertase cleaves complement component 3 (C3) into C3a and C3b, leading to the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, causing its lysis and removal from the body.

Deficiencies or mutations in Complement Factor D can lead to an impaired alternative pathway and increased susceptibility to certain infections, particularly those caused by Neisseria bacteria. Additionally, abnormal regulation of the complement system has been implicated in a variety of diseases, including autoimmune disorders, inflammatory conditions, and neurodegenerative diseases.

Complement Factor I is a protein involved in the regulation of the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, Complement Factor I is a serine protease that regulates the complement component C3b by cleaving it into inactive fragments, thereby preventing the excessive activation of the complement system and protecting host tissues from damage.

Complement Factor I functions in conjunction with other regulatory proteins, such as complement receptor 1 (CR1) and membrane cofactor protein (MCP), to control the activity of the complement system at various stages. Deficiencies or mutations in Complement Factor I have been associated with several diseases, including atypical hemolytic uremic syndrome (aHUS), age-related macular degeneration (AMD), and systemic lupus erythematosus (SLE).

Complement inactivating agents are substances or drugs that inhibit the complement system, which is a part of the immune system responsible for the recognition and elimination of foreign substances and microorganisms. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

Complement inactivating agents are used in medical settings to prevent or treat various conditions associated with excessive or unwanted activation of the complement system, such as inflammation, autoimmune diseases, and transplant rejection. These agents can inhibit different components of the complement pathway, including C1 esterase inhibitors, C3 convertase inhibitors, and C5a receptor antagonists.

Examples of complement inactivating agents include eculizumab, ravulizumab, and Alexion's Ultomiris, which are monoclonal antibodies that target C5, a protein involved in the final steps of the complement pathway. These drugs have been approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and other complement-mediated diseases.

Other complement inactivating agents include C1 esterase inhibitors, such as Berinert and Ruconest, which are used to treat hereditary angioedema (HAE). These drugs work by inhibiting the activation of the classical pathway of the complement system, thereby preventing the release of inflammatory mediators that can cause swelling and pain.

Overall, complement inactivating agents play an important role in the treatment of various complement-mediated diseases, helping to reduce inflammation, prevent tissue damage, and improve patient outcomes.

Aspartic acid endopeptidases are a type of enzyme that cleave peptide bonds within proteins. They are also known as aspartyl proteases or aspartic proteinases. These enzymes contain two catalytic aspartic acid residues in their active site, which work together to hydrolyze the peptide bond.

Aspartic acid endopeptidases play important roles in various biological processes, including protein degradation, processing, and activation. They are found in many organisms, including viruses, bacteria, fungi, plants, and animals. Some well-known examples of aspartic acid endopeptidases include pepsin, cathepsin D, and HIV protease.

Pepsin is a digestive enzyme found in the stomach that helps break down proteins in food. Cathepsin D is a lysosomal enzyme that plays a role in protein turnover and degradation within cells. HIV protease is an essential enzyme for the replication of the human immunodeficiency virus (HIV), which causes AIDS. Inhibitors of HIV protease are used as antiretroviral drugs to treat HIV infection.

Complement C1 Inactivator proteins are a part of the complement system, which is a group of proteins in the blood that play a crucial role in the body's immune defense system. Specifically, Complement C1 Inactivator proteins are responsible for regulating the activation of the first component of the complement system, C1.

The complement system is activated in response to the presence of foreign substances such as bacteria or viruses in the body. The activation of C1 leads to a cascade of reactions that result in the destruction of the foreign substance. However, if this process is not properly regulated, it can lead to damage to the body's own cells and tissues.

Complement C1 Inactivator proteins help to prevent this by regulating the activation of C1. They do this by binding to and inhibiting the activity of C1, preventing it from initiating the complement cascade. A deficiency in Complement C1 Inactivator proteins can lead to a condition called hereditary angioedema, which is characterized by recurrent episodes of swelling in various parts of the body.

Serine endopeptidases are a type of enzymes that cleave peptide bonds within proteins (endopeptidases) and utilize serine as the nucleophilic amino acid in their active site for catalysis. These enzymes play crucial roles in various biological processes, including digestion, blood coagulation, and programmed cell death (apoptosis). Examples of serine endopeptidases include trypsin, chymotrypsin, thrombin, and elastase.

Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification to become active. These modifications typically include cleavage of the precursor protein by specific enzymes, resulting in the release of the active protein. This process allows for the regulation and control of protein activity within the body. Protein precursors can be found in various biological processes, including the endocrine system where they serve as inactive hormones that can be converted into their active forms when needed.

Neuroendocrine Secretory Protein 7B2 (NESP7B2) is defined as a protein that is encoded by the 7B2 gene in humans. This protein is primarily produced in neuroendocrine cells, including those found in the brain and the endocrine system. NESP7B2 has a molecular weight of approximately 29 kDa and is composed of 256 amino acids.

One of the primary functions of NESP7B2 is to regulate the activity of another protein called prohormone convertase 2 (PC2). PC2 is involved in the processing and activation of various hormones and neurotransmitters, and NESP7B2 helps to control its activity by binding to it and inhibiting its action.

NESP7B2 has also been found to have a role in the regulation of calcium homeostasis and may be involved in the development and function of the nervous system. Mutations in the 7B2 gene have been associated with certain medical conditions, including some forms of cancer and neurological disorders.

Complement receptor 3d (CR3d or CD11b/CD18) is not a medical definition in itself, but rather a specific type of integrin receptor that plays a crucial role in the immune system. Here's a breakdown of the components:

1. Complement Receptors: These are proteins found on the surface of various cells, including white blood cells (leukocytes), that recognize and bind to complement components, which are proteins involved in the immune response. The binding of complement components to their receptors helps facilitate communication between cells, enhances phagocytosis (the process by which certain cells engulf and destroy foreign particles or microorganisms), and contributes to the inflammatory response.
2. CR3 (Complement Receptor 3): Complement Receptor 3 is a heterodimeric receptor composed of two subunits, CD11b (also known as integrin alpha M) and CD18 (also known as integrin beta 2). Together, they form the integrin Mac-1 or αMβ2.
3. CR3d (CD11b/CD18): CR3d specifically refers to the CD11b subunit of the Complement Receptor 3 heterodimer. The CD11b subunit is responsible for recognizing and binding to complement component C3b, iC3b, and C4b fragments, as well as other ligands such as fibrinogen, ICAM-1 (Intercellular Adhesion Molecule 1), and factor X.

In summary, Complement Receptor 3d (CR3d or CD11b/CD18) is a type of integrin receptor found on the surface of various immune cells that recognizes and binds to complement components C3b, iC3b, and C4b fragments, as well as other ligands. This binding facilitates communication between cells, enhances phagocytosis, and contributes to the inflammatory response.

Anaphylatoxins are a group of small protein molecules that are released during an immune response, specifically as a result of the activation of the complement system. The term "anaphylatoxin" comes from their ability to induce anaphylaxis, a severe and rapid allergic reaction. There are three main anaphylatoxins, known as C3a, C4a, and C5a, which are derived from the cleavage of complement components C3, C4, and C5, respectively.

Anaphylatoxins play a crucial role in the immune response by attracting and activating various immune cells, such as neutrophils, eosinophils, and mast cells, to the site of infection or injury. They also increase vascular permeability, causing fluid to leak out of blood vessels and leading to tissue swelling. Additionally, anaphylatoxins can induce smooth muscle contraction, which can result in bronchoconstriction and hypotension.

While anaphylatoxins are important for the immune response, they can also contribute to the pathogenesis of various inflammatory diseases, such as asthma, arthritis, and sepsis. Therefore, therapies that target the complement system and anaphylatoxin production have been developed and are being investigated as potential treatments for these conditions.

Complement C3 Convertase, Alternative Pathway is a complex enzyme composed of the proteins C3b and Bb. It plays a crucial role in the alternative pathway of the complement system, which is a part of the innate immune system that helps to defend the body against invading pathogens.

The alternative pathway is continuously activated at a low level, and C3 Convertase is responsible for amplifying this activation. It does so by cleaving the complement component C3 into C3a and C3b. The C3b then binds to the surface of the pathogen and can form additional C3 Convertases, leading to a positive feedback loop that results in the rapid accumulation of complement components on the surface of the pathogen.

This accumulation of complement components helps to mark the pathogen for destruction by other immune cells, such as neutrophils and macrophages. Additionally, the cleavage products C3a and C5a generated during this process can act as anaphylatoxins, inducing inflammation and attracting more immune cells to the site of infection.

Regulation of Complement C3 Convertase is critical to prevent damage to host tissues. Several regulatory proteins, such as factor H and decay-accelerating factor (DAF), help to limit the formation and activity of C3 Convertase on host cells and tissues. Dysregulation of the complement system, including the alternative pathway and Complement C3 Convertase, has been implicated in a variety of diseases, including autoimmune disorders, inflammatory diseases, and infectious diseases.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Properdin is defined as a positive regulatory protein in the complement system, which is a part of the immune system. It plays a crucial role in the alternative pathway of complement activation. Properdin stabilizes the C3 convertase (C3bBb), preventing its decay and increasing the efficiency of the alternative pathway. This results in the production of the membrane attack complex, which leads to the lysis of foreign cells or pathogens. Deficiencies in properdin can lead to an increased susceptibility to bacterial infections.

Post-translational protein processing refers to the modifications and changes that proteins undergo after their synthesis on ribosomes, which are complex molecular machines responsible for protein synthesis. These modifications occur through various biochemical processes and play a crucial role in determining the final structure, function, and stability of the protein.

The process begins with the translation of messenger RNA (mRNA) into a linear polypeptide chain, which is then subjected to several post-translational modifications. These modifications can include:

1. Proteolytic cleavage: The removal of specific segments or domains from the polypeptide chain by proteases, resulting in the formation of mature, functional protein subunits.
2. Chemical modifications: Addition or modification of chemical groups to the side chains of amino acids, such as phosphorylation (addition of a phosphate group), glycosylation (addition of sugar moieties), methylation (addition of a methyl group), acetylation (addition of an acetyl group), and ubiquitination (addition of a ubiquitin protein).
3. Disulfide bond formation: The oxidation of specific cysteine residues within the polypeptide chain, leading to the formation of disulfide bonds between them. This process helps stabilize the three-dimensional structure of proteins, particularly in extracellular environments.
4. Folding and assembly: The acquisition of a specific three-dimensional conformation by the polypeptide chain, which is essential for its function. Chaperone proteins assist in this process to ensure proper folding and prevent aggregation.
5. Protein targeting: The directed transport of proteins to their appropriate cellular locations, such as the nucleus, mitochondria, endoplasmic reticulum, or plasma membrane. This is often facilitated by specific signal sequences within the protein that are recognized and bound by transport machinery.

Collectively, these post-translational modifications contribute to the functional diversity of proteins in living organisms, allowing them to perform a wide range of cellular processes, including signaling, catalysis, regulation, and structural support.

Complement fixation tests are a type of laboratory test used in immunology and serology to detect the presence of antibodies in a patient's serum. These tests are based on the principle of complement activation, which is a part of the immune response. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

In a complement fixation test, the patient's serum is mixed with a known antigen and complement proteins. If the patient has antibodies against the antigen, they will bind to it and activate the complement system. This results in the consumption or "fixation" of the complement proteins, which are no longer available to participate in a secondary reaction.

A second step involves adding a fresh source of complement proteins and a dye-labeled antibody that recognizes a specific component of the complement system. If complement was fixed during the first step, it will not be available for this secondary reaction, and the dye-labeled antibody will remain unbound. Conversely, if no antibodies were present in the patient's serum, the complement proteins would still be available for the second reaction, leading to the binding of the dye-labeled antibody.

The mixture is then examined under a microscope or using a spectrophotometer to determine whether the dye-labeled antibody has bound. If it has not, this indicates that the patient's serum contains antibodies specific to the antigen used in the test, and a positive result is recorded.

Complement fixation tests have been widely used for the diagnosis of various infectious diseases, such as syphilis, measles, and influenza. However, they have largely been replaced by more modern serological techniques, like enzyme-linked immunosorbent assays (ELISAs) and nucleic acid amplification tests (NAATs), due to their increased sensitivity, specificity, and ease of use.

Cobra venoms are a type of snake venom that is produced by cobras, which are members of the genus Naja in the family Elapidae. These venoms are complex mixtures of proteins and other molecules that have evolved to help the snake immobilize and digest its prey.

Cobra venoms typically contain a variety of toxic components, including neurotoxins, hemotoxins, and cytotoxins. Neurotoxins target the nervous system and can cause paralysis and respiratory failure. Hemotoxins damage blood vessels and tissues, leading to internal bleeding and organ damage. Cytotoxins destroy cells and can cause tissue necrosis.

The specific composition of cobra venoms can vary widely between different species of cobras, as well as between individual snakes of the same species. Some cobras have venoms that are primarily neurotoxic, while others have venoms that are more hemotoxic or cytotoxic. The potency and effects of cobra venoms can also be influenced by factors such as the age and size of the snake, as well as the temperature and pH of the environment.

Cobra bites can be extremely dangerous and even fatal to humans, depending on the species of cobra, the amount of venom injected, and the location of the bite. Immediate medical attention is required in the event of a cobra bite, including the administration of antivenom therapy to neutralize the effects of the venom.

Carboxypeptidase H is also known as carboxypeptidase E or CPE. It is an enzyme that plays a role in the processing and activation of neuropeptides, which are small protein-like molecules that function as chemical messengers within the nervous system. Carboxypeptidase H/E is responsible for removing certain amino acids from the end of newly synthesized neuropeptides, allowing them to become biologically active. It is widely expressed in the brain and other tissues throughout the body.

Complement C4b-binding protein (C4bp) is a regulatory protein in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. C4bp regulates the complement system by binding to and inhibiting the activity of C4b, an activated component of the classical and lectin pathways of the complement system. By doing so, C4bp helps to prevent excessive or inappropriate activation of the complement system, which could otherwise lead to tissue damage and inflammation.

C4bp is a complex protein that consists of several subunits, including a central α-chain and multiple β-chains. It is produced by liver cells and can also be found on the surface of some cells in the body. Mutations in the genes encoding C4bp have been associated with certain immune disorders, such as systemic lupus erythematosus (SLE) and atypical hemolytic uremic syndrome (aHUS).

Pro-opiomelanocortin (POMC) is a precursor protein that gets cleaved into several biologically active peptides in the body. These peptides include adrenocorticotropic hormone (ACTH), beta-lipotropin, and multiple opioid peptides such as beta-endorphin, met-enkephalin, and leu-enkephalin.

ACTH stimulates the release of cortisol from the adrenal gland, while beta-lipotropin has various metabolic functions. The opioid peptides derived from POMC have pain-relieving (analgesic) and rewarding effects in the brain. Dysregulation of the POMC system has been implicated in several medical conditions, including obesity, addiction, and certain types of hormone deficiencies.

Alpha 1-antitrypsin (AAT, or α1-antiproteinase, A1AP) is a protein that is primarily produced by the liver and released into the bloodstream. It belongs to a group of proteins called serine protease inhibitors, which help regulate inflammation and protect tissues from damage caused by enzymes involved in the immune response.

Alpha 1-antitrypsin is particularly important for protecting the lungs from damage caused by neutrophil elastase, an enzyme released by white blood cells called neutrophils during inflammation. In the lungs, AAT binds to and inhibits neutrophil elastase, preventing it from degrading the extracellular matrix and damaging lung tissue.

Deficiency in alpha 1-antitrypsin can lead to chronic obstructive pulmonary disease (COPD) and liver disease. The most common cause of AAT deficiency is a genetic mutation that results in abnormal folding and accumulation of the protein within liver cells, leading to reduced levels of functional AAT in the bloodstream. This condition is called alpha 1-antitrypsin deficiency (AATD) and can be inherited in an autosomal codominant manner. Individuals with severe AATD may require augmentation therapy with intravenous infusions of purified human AAT to help prevent lung damage.

Complement C3b inactivator proteins, also known as complement regulators or decay-accelerating factor (DAF), are a group of proteins that play a crucial role in regulating the complement system. The complement system is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

The complement C3b inactivator proteins include two main types: complement receptor 1 (CR1) and decay-accelerating factor (DAF). These proteins work by regulating the formation of the membrane attack complex (MAC), a protein structure that forms pores in the cell membrane, leading to cell lysis.

Complement C3b inactivator proteins bind to C3b and C4b components of the complement system, preventing them from forming the MAC. By doing so, they help to prevent excessive activation of the complement system, which can damage healthy cells and tissues.

Deficiencies or dysfunction of complement C3b inactivator proteins have been associated with several diseases, including autoimmune disorders, inflammatory diseases, and infectious diseases. Therefore, understanding the role of these proteins in regulating the complement system is essential for developing new therapies to treat these conditions.

The Mannose-Binding Lectin (MBL) pathway is a part of the complement system, which is a group of proteins that play a crucial role in the body's immune defense against infectious agents. The MBL pathway is an alternative activation pathway of the complement system, which can be initiated without the need for antibodies.

MBL is a protein found in blood plasma and other bodily fluids. It recognizes and binds to specific sugars (mannose and fucose) found on the surface of many microorganisms, including bacteria, viruses, fungi, and parasites. When MBL binds to these sugars, it triggers a series of proteolytic cleavage events that activate the complement components C4 and C2, forming the C3 convertase (C4b2a).

The C3 convertase then cleaves the complement component C3 into C3a and C3b. C3b can bind to the surface of microorganisms, leading to their opsonization (coating) and subsequent phagocytosis by immune cells. Additionally, C3b can also trigger the formation of the membrane attack complex (MAC), which creates a pore in the membrane of microorganisms, leading to their lysis and death.

Overall, the MBL pathway plays an essential role in innate immunity, providing a rapid and effective defense against invading microorganisms.

Complement C2b is a proteolytic fragment generated through the activation of the complement component C2, which is a part of the complement system. The complement system is a group of plasma proteins that play an important role in the body's immune defense against pathogens and abnormal cells.

When the complement component C2 is activated by the C3 convertase (a complex formed by C3b and either C4b or C4d), it is cleaved into two fragments: C2a and C2b. The C2b fragment is a smaller piece that contains an active protease domain, which can cleave other proteins in the complement pathway.

C2b plays a role in the formation of the membrane attack complex (MAC), a protein structure that forms pores in the membranes of target cells, leading to their lysis and removal by the immune system. Dysregulation or overactivation of the complement system, including C2b, can contribute to various pathological conditions such as autoimmune diseases, inflammatory disorders, and tissue damage.

CD59 is a type of protein found on the surface of many cells in the human body, including red and white blood cells, that functions as an inhibitor of the complement system. The complement system is a part of the immune system that helps to eliminate pathogens such as bacteria and viruses from the body.

CD59 specifically inhibits the formation of the membrane attack complex (MAC), which is a protein structure that forms pores in the cell membrane and can lead to cell lysis or death. By preventing the formation of the MAC, CD59 helps to protect cells from complement-mediated damage.

As an antigen, CD59 is a molecule that can be recognized by the immune system and stimulate an immune response. However, because it is a self-protein found on normal human cells, CD59 is not typically targeted by the immune system unless there is some kind of dysregulation or abnormality.

In certain medical conditions, such as autoimmune disorders or transplant rejection, the immune system may mistakenly target CD59 or other self-proteins, leading to damage to healthy cells and tissues. In these cases, treatments may be necessary to modulate or suppress the immune response and prevent further harm.

Pituitary hormones are chemical messengers produced and released by the pituitary gland, a small endocrine gland located at the base of the brain. The pituitary gland is often referred to as the "master gland" because it controls several other endocrine glands and regulates various bodily functions.

There are two main types of pituitary hormones: anterior pituitary hormones and posterior pituitary hormones, which are produced in different parts of the pituitary gland and have distinct functions.

Anterior pituitary hormones include:

1. Growth hormone (GH): regulates growth and metabolism.
2. Thyroid-stimulating hormone (TSH): stimulates the thyroid gland to produce thyroid hormones.
3. Adrenocorticotropic hormone (ACTH): stimulates the adrenal glands to produce cortisol and other steroid hormones.
4. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH): regulate reproductive function in both males and females.
5. Prolactin: stimulates milk production in lactating women.
6. Melanocyte-stimulating hormone (MSH): regulates skin pigmentation and appetite.

Posterior pituitary hormones include:

1. Oxytocin: stimulates uterine contractions during childbirth and milk ejection during lactation.
2. Vasopressin (antidiuretic hormone, ADH): regulates water balance in the body by controlling urine production in the kidneys.

Overall, pituitary hormones play crucial roles in regulating growth, development, metabolism, reproductive function, and various other bodily functions. Abnormalities in pituitary hormone levels can lead to a range of medical conditions, such as dwarfism, acromegaly, Cushing's disease, infertility, and diabetes insipidus.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

An antigen-antibody complex is a type of immune complex that forms when an antibody binds to a specific antigen. An antigen is any substance that triggers an immune response, while an antibody is a protein produced by the immune system to neutralize or destroy foreign substances like antigens.

When an antibody binds to an antigen, it forms a complex that can be either soluble or insoluble. Soluble complexes are formed when the antigen is small and can move freely through the bloodstream. Insoluble complexes, on the other hand, are formed when the antigen is too large to move freely, such as when it is part of a bacterium or virus.

The formation of antigen-antibody complexes plays an important role in the immune response. Once formed, these complexes can be recognized and cleared by other components of the immune system, such as phagocytes, which help to prevent further damage to the body. However, in some cases, the formation of large numbers of antigen-antibody complexes can lead to inflammation and tissue damage, contributing to the development of certain autoimmune diseases.

Steroid 21-hydroxylase, also known as CYP21A2, is a crucial enzyme involved in the synthesis of steroid hormones in the adrenal gland. Specifically, it catalyzes the conversion of 17-hydroxyprogesterone to 11-deoxycortisol and progesterone to deoxycorticosterone in the glucocorticoid and mineralocorticoid pathways, respectively.

Deficiency or mutations in this enzyme can lead to a group of genetic disorders called congenital adrenal hyperplasia (CAH), which is characterized by impaired cortisol production and disrupted hormonal balance. Depending on the severity of the deficiency, CAH can result in various symptoms such as ambiguous genitalia, precocious puberty, sexual infantilism, infertility, and increased risk of adrenal crisis.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

The Complement C1 Inhibitor protein, also known as C1-INH, is a protein involved in the regulation of the complement system and the contact system, which are parts of the immune system. The complement system helps to eliminate pathogens (e.g., bacteria, viruses) from the body, while the contact system helps to regulate blood coagulation and inflammation.

C1-INH works by inhibiting the activation of C1, an enzyme complex that is the first component of the classical complement pathway. By inhibiting C1, C1-INH prevents the activation of downstream components of the complement system, thereby helping to regulate the immune response and prevent excessive inflammation.

Deficiencies or dysfunction in the C1-INH protein can lead to a group of genetic disorders known as C1 inhibitor deficiency disorders, which include hereditary angioedema (HAE) and acquired angioedema (AAE). These conditions are characterized by recurrent episodes of swelling in various parts of the body, such as the face, hands, feet, and airway, which can be painful and potentially life-threatening if they affect the airway.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Hemolysis is the destruction or breakdown of red blood cells, resulting in the release of hemoglobin into the surrounding fluid (plasma). This process can occur due to various reasons such as chemical agents, infections, autoimmune disorders, mechanical trauma, or genetic abnormalities. Hemolysis may lead to anemia and jaundice, among other complications. It is essential to monitor hemolysis levels in patients undergoing medical treatments that might cause this condition.

Complement C5 Convertase, Classical Pathway is a protein complex that plays a crucial role in the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body.

The classical pathway is one of three pathways that can activate the complement system, with the other two being the lectin pathway and the alternative pathway. The activation of the classical pathway begins when an antibody binds to a pathogen or foreign substance. This binding event causes the activation of the C1 complex, which is made up of three proteins: C1q, C1r, and C1s.

Once activated, the C1 complex cleaves C4 and C2 proteins into smaller fragments, C4a, C4b, C2a, and C2b. The C4b and C2a fragments then combine to form the C3 convertase of the classical pathway, also known as C4b2a. This protein complex can cleave C3 protein into C3a and C3b fragments.

The C3b fragment can then bind to the surface of the pathogen or foreign substance, leading to the formation of the membrane attack complex (MAC), which creates a pore in the cell membrane and ultimately leads to the lysis of the target cell. The complement system is tightly regulated to prevent damage to host cells, and deficiencies in any of the components can lead to increased susceptibility to infections.

Complement C3 Convertase, Classical Pathway is a protein complex that plays a crucial role in the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body.

The classical pathway is one of three pathways that can activate the complement system, with the other two being the lectin pathway and the alternative pathway. The classical pathway is initiated by the binding of antibodies to antigens on the surface of a pathogen or damaged cell. This binding event triggers a series of proteolytic cleavage reactions that result in the formation of the C3 Convertase complex.

The C3 Convertase complex, specifically the C4b2a form, is composed of two proteins: C4b and C2a. These proteins are derived from the cleavage of complement components C4 and C2 by an enzyme called C1 esterase. The C3 Convertase complex then cleaves complement component C3 into C3a and C3b fragments, which initiate further downstream reactions in the complement cascade.

The formation of the C3 Convertase complex is a critical step in the activation of the classical pathway, as it marks the point at which the complement system begins to amplify its response and recruit other immune cells to help eliminate the target pathogen or damaged cell. Dysregulation of the complement system, including abnormalities in the formation or function of the C3 Convertase complex, can contribute to a variety of diseases, including autoimmune disorders, inflammatory conditions, and infections.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

CD46, also known as membrane cofactor protein (MCP), is a regulatory protein that plays a role in the immune system and helps to protect cells from complement activation. It is found on the surface of many different types of cells in the body, including cells of the immune system such as T cells and B cells, as well as cells of various other tissues such as epithelial cells and endothelial cells.

As an antigen, CD46 is a molecule that can be recognized by the immune system and stimulate an immune response. It is a type I transmembrane protein that consists of four distinct domains: two short cytoplasmic domains, a transmembrane domain, and a large extracellular domain. The extracellular domain contains several binding sites for complement proteins, which helps to regulate the activation of the complement system and prevent it from damaging host cells.

CD46 has been shown to play a role in protecting cells from complement-mediated damage, modulating immune responses, and promoting the survival and proliferation of certain types of immune cells. It is also thought to be involved in the development of some autoimmune diseases and may be a target for immunotherapy in the treatment of cancer.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Opsonins are proteins found in the blood that help enhance the immune system's response to foreign substances, such as bacteria and viruses. They do this by coating the surface of these pathogens, making them more recognizable to immune cells like neutrophils and macrophages. This process, known as opsonization, facilitates the phagocytosis (engulfing and destroying) of the pathogen by these immune cells.

There are two main types of opsonins:

1. IgG antibodies: These are a type of antibody produced by the immune system in response to an infection. They bind to specific antigens on the surface of the pathogen, marking them for destruction by phagocytic cells.
2. Complement proteins: The complement system is a group of proteins that work together to help eliminate pathogens. When activated, the complement system can produce various proteins that act as opsonins, including C3b and C4b. These proteins bind to the surface of the pathogen, making it easier for phagocytic cells to recognize and destroy them.

In summary, opsonin proteins are crucial components of the immune system's response to infections, helping to mark foreign substances for destruction by immune cells like neutrophils and macrophages.

Blood proteins, also known as serum proteins, are a group of complex molecules present in the blood that are essential for various physiological functions. These proteins include albumin, globulins (alpha, beta, and gamma), and fibrinogen. They play crucial roles in maintaining oncotic pressure, transporting hormones, enzymes, vitamins, and minerals, providing immune defense, and contributing to blood clotting.

Albumin is the most abundant protein in the blood, accounting for about 60% of the total protein mass. It functions as a transporter of various substances, such as hormones, fatty acids, and drugs, and helps maintain oncotic pressure, which is essential for fluid balance between the blood vessels and surrounding tissues.

Globulins are divided into three main categories: alpha, beta, and gamma globulins. Alpha and beta globulins consist of transport proteins like lipoproteins, hormone-binding proteins, and enzymes. Gamma globulins, also known as immunoglobulins or antibodies, are essential for the immune system's defense against pathogens.

Fibrinogen is a protein involved in blood clotting. When an injury occurs, fibrinogen is converted into fibrin, which forms a mesh to trap platelets and form a clot, preventing excessive bleeding.

Abnormal levels of these proteins can indicate various medical conditions, such as liver or kidney disease, malnutrition, infections, inflammation, or autoimmune disorders. Blood protein levels are typically measured through laboratory tests like serum protein electrophoresis (SPE) and immunoelectrophoresis (IEP).

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Zymosan is a type of substance that is derived from the cell walls of yeast and some types of fungi. It's often used in laboratory research as an agent to stimulate inflammation, because it can activate certain immune cells (such as neutrophils) and cause them to release pro-inflammatory chemicals.

In medical terms, Zymosan is sometimes used as a tool for studying the immune system and inflammation in experimental settings. It's important to note that Zymosan itself is not a medical condition or disease, but rather a research reagent with potential applications in understanding human health and disease.

Secretogranin II, also known as chromogranin A-like immunoreactivity or secretoneurin precursor, is a protein that belongs to the granin family. Granins are involved in neuroendocrine differentiation and are commonly used as markers for neuroendocrine tumors.

Secretogranin II is a 59 kDa protein that is synthesized as part of larger precursors, which undergo proteolytic processing to generate smaller bioactive peptides. These peptides have various functions, including modulation of neurotransmitter release and regulation of blood pressure.

Secretogranin II is primarily localized in secretory vesicles of neurons and endocrine cells, where it plays a role in the packaging, transport, and exocytosis of neurosecretory granules. It has been identified as a major component of dense-core vesicles, which store and release hormones and neuropeptides.

In summary, Secretogranin II is a protein involved in the biogenesis and secretion of neurosecretory granules in neurons and endocrine cells.

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that can affect almost any organ or system in the body. In SLE, the immune system produces an exaggerated response, leading to the production of autoantibodies that attack the body's own cells and tissues, causing inflammation and damage. The symptoms and severity of SLE can vary widely from person to person, but common features include fatigue, joint pain, skin rashes (particularly a "butterfly" rash across the nose and cheeks), fever, hair loss, and sensitivity to sunlight.

Systemic lupus erythematosus can also affect the kidneys, heart, lungs, brain, blood vessels, and other organs, leading to a wide range of symptoms such as kidney dysfunction, chest pain, shortness of breath, seizures, and anemia. The exact cause of SLE is not fully understood, but it is believed to involve a combination of genetic, environmental, and hormonal factors. Treatment typically involves medications to suppress the immune system and manage symptoms, and may require long-term management by a team of healthcare professionals.

Complement C5 Convertase, Alternative Pathway is a protein complex that plays a crucial role in the alternative pathway of the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells. The complement system consists of a group of proteins that work together to help recognize and destroy foreign substances, such as bacteria and viruses.

The alternative pathway is one of three pathways that can activate the complement system, and it is constantly active at low levels in the body. The C5 convertase enzyme is formed by the cleavage of a protein called C3 into two fragments, C3a and C3b. The C3b fragment then binds to another protein called factor B, which is activated by a protease called factor D to form the C3bBb complex, known as the C5 convertase of the alternative pathway.

The C5 convertase cleaves the complement protein C5 into two fragments, C5a and C5b. The C5a fragment acts as a chemoattractant, recruiting immune cells to the site of infection or injury. The C5b fragment, along with other complement proteins, forms the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, leading to its lysis and death.

Regulation of the alternative pathway is critical to prevent damage to host cells and tissues. Several regulatory proteins, such as factor H and factor I, help to control the activation of the C5 convertase and limit its activity to prevent excessive complement activation. Dysregulation of the complement system has been implicated in various diseases, including autoimmune disorders, inflammatory conditions, and neurodegenerative diseases.

Phagocytosis is the process by which certain cells in the body, known as phagocytes, engulf and destroy foreign particles, bacteria, or dead cells. This mechanism plays a crucial role in the immune system's response to infection and inflammation. Phagocytes, such as neutrophils, monocytes, and macrophages, have receptors on their surface that recognize and bind to specific molecules (known as antigens) on the target particles or microorganisms.

Once attached, the phagocyte extends pseudopodia (cell extensions) around the particle, forming a vesicle called a phagosome that completely encloses it. The phagosome then fuses with a lysosome, an intracellular organelle containing digestive enzymes and other chemicals. This fusion results in the formation of a phagolysosome, where the engulfed particle is broken down by the action of these enzymes, neutralizing its harmful effects and allowing for the removal of cellular debris or pathogens.

Phagocytosis not only serves as a crucial defense mechanism against infections but also contributes to tissue homeostasis by removing dead cells and debris.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Glicentin is a polypeptide hormone that is derived from the preproglucagon gene and is secreted by intestinal L cells. It consists of 69 amino acids, including the first 30 amino acids of glucagon and the following 37 amino acids that are unique to glicentin.

Glicentin has several biological activities, including stimulating insulin secretion from pancreatic beta cells, inhibiting gastric acid secretion, and regulating intestinal motility. It also acts as a growth factor for the intestinal mucosa and may have a role in modulating inflammation and immune responses.

Glicentin is often co-secreted with other hormones such as glucagon-like peptide-1 (GLP-1) and GLP-2, which also play important roles in regulating glucose metabolism and intestinal function.

Chromogranins are a group of proteins that are stored in the secretory vesicles of neuroendocrine cells, including neurons and endocrine cells. These proteins are co-released with neurotransmitters and hormones upon stimulation of the cells. Chromogranin A is the most abundant and best studied member of this protein family.

Chromogranins have several functions in the body. They play a role in the biogenesis, processing, and storage of neuropeptides and neurotransmitters within secretory vesicles. Additionally, chromogranins can be cleaved into smaller peptides, some of which have hormonal or regulatory activities. For example, vasostatin-1, a peptide derived from chromogranin A, has been shown to have vasodilatory and cardioprotective effects.

Measurement of chromogranin levels in blood can be used as a biomarker for the diagnosis and monitoring of neuroendocrine tumors, which are characterized by excessive secretion of chromogranins and other neuroendocrine markers.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

HIV Envelope Protein gp160 is a precursor protein that is cleaved to form the two envelope glycoproteins, gp120 and gp41, on the surface of the Human Immunodeficiency Virus (HIV). The gp160 protein plays a crucial role in the viral life cycle as it mediates the attachment and fusion of the virus to the host cell membrane during infection.

The gp160 protein is composed of an extracellular domain, a transmembrane domain, and an intracellular domain. The extracellular domain contains several important regions that are involved in receptor binding and fusion activation. After the virus infects a host cell, the gp160 protein is cleaved by a protease enzyme into two separate proteins: gp120 and gp41.

The gp120 protein remains on the surface of the viral envelope and functions as the primary binding site for the CD4 receptor on the host cell surface, while gp41 spans the viral membrane and mediates the fusion of the viral and host cell membranes. Together, these proteins facilitate the entry of the viral genome into the host cell, which is a critical step in the HIV replication cycle.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Complement C5a, des-Arginine is a derivative of the complement component C5a. The complement system is a group of proteins that are part of the body's immune defense against foreign invaders such as bacteria and viruses. When activated, the complement system can help to eliminate pathogens by attracting immune cells to the site of infection, promoting inflammation, and directly killing the pathogen.

C5a is a small protein that is generated when the complement component C5 is cleaved during the activation of the complement system. C5a is a potent anaphylatoxin, which means it can cause the release of histamine from mast cells and basophils, leading to increased vascular permeability, smooth muscle contraction, and recruitment of immune cells to the site of infection.

Des-Arginine refers to the removal of an arginine residue from the C-terminus of C5a. This modified form of C5a is known as C5a-desArg and has reduced pro-inflammatory activity compared to intact C5a. However, it can still contribute to the regulation of the immune response by interacting with specific receptors on immune cells.

In summary, Complement C5a, des-Arginine is a derivative of the complement component C5a that has reduced pro-inflammatory activity due to the removal of an arginine residue from its C-terminus.

Proinsulin is the precursor protein to insulin, produced in the beta cells of the pancreas. It has a molecular weight of around 9,000 daltons and is composed of three distinct regions: the A-chain, the B-chain, and the C-peptide. The A-chain and B-chain are linked together by disulfide bonds and will eventually become the insulin molecule after a series of enzymatic cleavages. The C-peptide is removed during this process and is released into the bloodstream in equimolar amounts to insulin. Proinsulin levels can be measured in the blood and are sometimes used as a marker for beta cell function in certain clinical settings, such as diagnosing or monitoring insulinoma (a tumor of the pancreas that produces insulin) or assessing the risk of diabetes-related complications.

Proglucagon is a precursor protein that gets cleaved into several hormones, including glucagon, GLP-1 (Glucagon-like peptide-1), and GLP-2 (Glucagon-like peptide-2). These hormones play crucial roles in regulating blood sugar levels, energy balance, and gut function. Proglucagon is primarily produced by the alpha cells of the pancreas and L cells in the intestine. Glucagon helps to raise blood sugar levels during fasting or hypoglycemia, while GLP-1 and GLP-2 contribute to glucose regulation, satiety, and gut motility, among other functions.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

The Macrophage-1 Antigen (also known as Macrophage Antigen-1 or CD14) is a glycoprotein found on the surface of various cells, including monocytes, macrophages, and some dendritic cells. It functions as a receptor for complexes formed by lipopolysaccharides (LPS) and LPS-binding protein (LBP), which are involved in the immune response to gram-negative bacteria. CD14 plays a crucial role in activating immune cells and initiating the release of proinflammatory cytokines upon recognizing bacterial components.

In summary, Macrophage-1 Antigen is a cell surface receptor that contributes to the recognition and response against gram-negative bacteria by interacting with LPS-LBP complexes.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Alpha-MSH (α-MSH) stands for alpha-melanocyte stimulating hormone. It is a peptide hormone that is produced in the pituitary gland and other tissues in the body. Alpha-MSH plays a role in various physiological processes, including:

1. Melanin production: Alpha-MSH stimulates melanin production in the skin, which leads to skin tanning.
2. Appetite regulation: Alpha-MSH acts as a appetite suppressant by signaling to the brain that the stomach is full.
3. Inflammation and immune response: Alpha-MSH has anti-inflammatory effects and helps regulate the immune response.
4. Energy balance and metabolism: Alpha-MSH helps regulate energy balance and metabolism by signaling to the brain to increase or decrease food intake and energy expenditure.

Alpha-MSH exerts its effects by binding to melanocortin receptors, specifically MC1R, MC3R, MC4R, and MC5R. Dysregulation of alpha-MSH signaling has been implicated in various medical conditions, including obesity, anorexia nervosa, and certain skin disorders.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

Enzyme precursors are typically referred to as zymogens or proenzymes. These are inactive forms of enzymes that can be activated under specific conditions. When the need for the enzyme's function arises, the proenzyme is converted into its active form through a process called proteolysis, where it is cleaved by another enzyme. This mechanism helps control and regulate the activation of certain enzymes in the body, preventing unwanted or premature reactions. A well-known example of an enzyme precursor is trypsinogen, which is converted into its active form, trypsin, in the digestive system.

Serum, in the context of clinical and medical laboratory science, refers to the fluid that is obtained after blood coagulation. It is the yellowish, straw-colored liquid fraction of whole blood that remains after the clotting factors have been removed. Serum contains various proteins, electrolytes, hormones, antibodies, antigens, and other substances, which can be analyzed to help diagnose and monitor a wide range of medical conditions. It is commonly used for various clinical tests such as chemistry panels, immunological assays, drug screening, and infectious disease testing.

Membranoproliferative Glomerulonephritis (MPGN) is a type of glomerulonephritis, which is a group of kidney disorders characterized by inflammation and damage to the glomeruli, the tiny blood vessels in the kidneys responsible for filtering waste and excess fluids from the blood.

MPGN is specifically characterized by thickening of the glomerular basement membrane and proliferation (increased number) of cells in the mesangium, a region within the glomerulus. This condition can be primary or secondary to other diseases such as infections, autoimmune disorders, or monoclonal gammopathies.

MPGN is typically classified into three types based on the pattern of injury seen on electron microscopy: Type I, Type II (Dense Deposit Disease), and Type III. Each type has distinct clinical features, laboratory findings, and treatment approaches. Symptoms of MPGN may include hematuria (blood in urine), proteinuria (protein in urine), hypertension (high blood pressure), edema (swelling), and eventually progress to chronic kidney disease or end-stage renal disease if left untreated.

Angiopoietins are a family of growth factors that play crucial roles in the development and maintenance of blood vessels. They bind to the Tie2 receptor tyrosine kinase, which is primarily expressed on vascular endothelial cells. The interaction between angiopoietins and Tie2 regulates various aspects of vascular biology, including vasculogenesis, angiogenesis, and vascular stability.

There are four main members in the angiopoietin family: Ang1, Ang2, Ang3 (also known as Ang4 in humans), and Ang4 (also known as Ang5 in mice). Among these, Ang1 and Ang2 have been studied most extensively.

Ang1 is produced by perivascular cells, such as smooth muscle cells and pericytes, and it acts as a stabilizing factor for blood vessels. It promotes vascular maturation and quiescence by enhancing endothelial cell survival, reducing vascular permeability, and increasing the association between endothelial cells and mural cells (pericytes or smooth muscle cells).

Ang2, on the other hand, is produced mainly by endothelial cells and has context-dependent functions. During embryonic development, Ang2 acts as a pro-angiogenic factor in conjunction with vascular endothelial growth factor (VEGF) to promote the formation of new blood vessels. However, in adult tissues, Ang2 is upregulated during pathological conditions like inflammation and tumor growth, where it destabilizes existing vasculature by antagonizing Ang1's effects on Tie2 signaling. This leads to increased vascular permeability, inflammation, and the initiation of angiogenesis.

In summary, angiopoietins are essential regulators of blood vessel development and homeostasis, with distinct functions for different family members in promoting or inhibiting various aspects of vascular biology.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Immunoglobulin M (IgM) is a type of antibody that is primarily found in the blood and lymph fluid. It is the first antibody to be produced in response to an initial exposure to an antigen, making it an important part of the body's primary immune response. IgM antibodies are large molecules that are composed of five basic units, giving them a pentameric structure. They are primarily found on the surface of B cells as membrane-bound immunoglobulins (mlgM), where they function as receptors for antigens. Once an mlgM receptor binds to an antigen, it triggers the activation and differentiation of the B cell into a plasma cell that produces and secretes large amounts of soluble IgM antibodies.

IgM antibodies are particularly effective at agglutination (clumping) and complement activation, which makes them important in the early stages of an immune response to help clear pathogens from the bloodstream. However, they are not as stable or long-lived as other types of antibodies, such as IgG, and their levels tend to decline after the initial immune response has occurred.

In summary, Immunoglobulin M (IgM) is a type of antibody that plays a crucial role in the primary immune response to antigens by agglutination and complement activation. It is primarily found in the blood and lymph fluid, and it is produced by B cells after they are activated by an antigen.

Schistosoma is a genus of flatworms that cause the disease schistosomiasis, also known as snail fever. These parasitic worms infect freshwater snails and then release a form of the parasite that can penetrate the skin of humans when they come into contact with contaminated water. The larvae mature into adult worms in the human body, living in the blood vessels of the bladder, intestines or other organs, where they lay eggs. These eggs can cause serious damage to internal organs and lead to a range of symptoms including fever, chills, diarrhea, and anemia. Schistosomiasis is a significant public health problem in many tropical and subtropical regions around the world.

Beta-endorphins are naturally occurring opioid peptides that are produced in the brain and other parts of the body. They are synthesized from a larger precursor protein called proopiomelanocortin (POMC) and consist of 31 amino acids. Beta-endorphins have potent analgesic effects, which means they can reduce the perception of pain. They also play a role in regulating mood, emotions, and various physiological processes such as immune function and hormonal regulation.

Beta-endorphins bind to opioid receptors in the brain and other tissues, leading to a range of effects including pain relief, sedation, euphoria, and reduced anxiety. They are released in response to stress, physical activity, and certain physiological conditions such as pregnancy and lactation. Beta-endorphins have been studied for their potential therapeutic uses in the treatment of pain, addiction, and mood disorders. However, more research is needed to fully understand their mechanisms of action and potential side effects.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Glomerulonephritis is a medical condition that involves inflammation of the glomeruli, which are the tiny blood vessel clusters in the kidneys that filter waste and excess fluids from the blood. This inflammation can impair the kidney's ability to filter blood properly, leading to symptoms such as proteinuria (protein in the urine), hematuria (blood in the urine), edema (swelling), hypertension (high blood pressure), and eventually kidney failure.

Glomerulonephritis can be acute or chronic, and it may occur as a primary kidney disease or secondary to other medical conditions such as infections, autoimmune disorders, or vasculitis. The diagnosis of glomerulonephritis typically involves a combination of medical history, physical examination, urinalysis, blood tests, and imaging studies, with confirmation often requiring a kidney biopsy. Treatment depends on the underlying cause and severity of the disease but may include medications to suppress inflammation, control blood pressure, and manage symptoms.

Arteriolosclerosis is a medical term that refers to the thickening and hardening of the walls of small arteries or arterioles, usually due to the buildup of calcium, fatty deposits, or excessive collagen. This process can lead to decreased blood flow and increased resistance in the affected vessels, potentially causing damage to various organs and contributing to the development of hypertension, kidney disease, and other conditions.

There are two main types of arteriolosclerosis: hyaline arteriolosclerosis and hyperplastic arteriolosclerosis. Hyaline arteriolosclerosis is characterized by the accumulation of a homogeneous, eosinophilic (pink) material called hyaline within the walls of the arterioles. This type of arteriolosclerosis is often associated with aging, diabetes mellitus, and hypertension.

Hyperplastic arteriolosclerosis, on the other hand, involves the proliferation of smooth muscle cells and excessive collagen deposition in the walls of the arterioles. This type of arteriolosclerosis is commonly seen in malignant hypertension and can lead to fibrinoid necrosis, a condition where the vessel wall undergoes degeneration and becomes replaced by fibrin, a protein involved in blood clotting.

In summary, arteriolosclerosis refers to the thickening and hardening of the walls of small arteries or arterioles due to various causes, which can negatively impact organ function and contribute to the development of several medical conditions.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

The Major Histocompatibility Complex (MHC) is a group of cell surface proteins in vertebrates that play a central role in the adaptive immune system. They are responsible for presenting peptide antigens to T-cells, which helps the immune system distinguish between self and non-self. The MHC is divided into two classes:

1. MHC Class I: These proteins present endogenous (intracellular) peptides to CD8+ T-cells (cytotoxic T-cells). The MHC class I molecule consists of a heavy chain and a light chain, together with an antigenic peptide.

2. MHC Class II: These proteins present exogenous (extracellular) peptides to CD4+ T-cells (helper T-cells). The MHC class II molecule is composed of two heavy chains and two light chains, together with an antigenic peptide.

MHC genes are highly polymorphic, meaning there are many different alleles within a population. This diversity allows for better recognition and presentation of various pathogens, leading to a more robust immune response. The term "histocompatibility" refers to the compatibility between donor and recipient MHC molecules in tissue transplantation. Incompatible MHC molecules can lead to rejection of the transplanted tissue due to an activated immune response against the foreign MHC antigens.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Serine proteinase inhibitors, also known as serine protease inhibitors or serpins, are a group of proteins that inhibit serine proteases, which are enzymes that cut other proteins in a process called proteolysis. Serine proteinases are important in many biological processes such as blood coagulation, fibrinolysis, inflammation and cell death. The inhibition of these enzymes by serpin proteins is an essential regulatory mechanism to maintain the balance and prevent uncontrolled proteolytic activity that can lead to diseases.

Serpins work by forming a covalent complex with their target serine proteinases, irreversibly inactivating them. The active site of serpins contains a reactive center loop (RCL) that mimics the protease's target protein sequence and acts as a bait for the enzyme. When the protease cleaves the RCL, it gets trapped within the serpin structure, leading to its inactivation.

Serpin proteinase inhibitors play crucial roles in various physiological processes, including:

1. Blood coagulation and fibrinolysis regulation: Serpins such as antithrombin, heparin cofactor II, and protease nexin-2 control the activity of enzymes involved in blood clotting and dissolution to prevent excessive or insufficient clot formation.
2. Inflammation modulation: Serpins like α1-antitrypsin, α2-macroglobulin, and C1 inhibitor regulate the activity of proteases released during inflammation, protecting tissues from damage.
3. Cell death regulation: Some serpins, such as PI-9/SERPINB9, control apoptosis (programmed cell death) by inhibiting granzyme B, a protease involved in this process.
4. Embryonic development and tissue remodeling: Serpins like plasminogen activator inhibitor-1 (PAI-1) and PAI-2 regulate the activity of enzymes involved in extracellular matrix degradation during embryonic development and tissue remodeling.
5. Neuroprotection: Serpins such as neuroserpin protect neurons from damage by inhibiting proteases released during neuroinflammation or neurodegenerative diseases.

Dysregulation of serpins has been implicated in various pathological conditions, including thrombosis, emphysema, Alzheimer's disease, and cancer. Understanding the roles of serpins in these processes may provide insights into potential therapeutic strategies for treating these diseases.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Neurosecretory systems are specialized components of the nervous system that produce and release chemical messengers called neurohormones. These neurohormones are released into the bloodstream and can have endocrine effects on various target organs in the body. The cells that make up neurosecretory systems, known as neurosecretory cells, are found in specific regions of the brain, such as the hypothalamus, and in peripheral nerves.

Neurosecretory systems play a critical role in regulating many physiological processes, including fluid and electrolyte balance, stress responses, growth and development, reproductive functions, and behavior. The neurohormones released by these systems can act synergistically or antagonistically to maintain homeostasis and coordinate the body's response to internal and external stimuli.

Neurosecretory cells are characterized by their ability to synthesize and store neurohormones in secretory granules, which are released upon stimulation. The release of neurohormones can be triggered by a variety of signals, including neural impulses, hormonal changes, and other physiological cues. Once released into the bloodstream, neurohormones can travel to distant target organs, where they bind to specific receptors and elicit a range of responses.

Overall, neurosecretory systems are an essential component of the neuroendocrine system, which plays a critical role in regulating many aspects of human physiology and behavior.

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

Matrix metalloproteinases (MMPs) are a group of enzymes that can degrade various components of the extracellular matrix (ECM). Membrane-associated matrix metalloproteinases (MT-MMPs) are a subgroup of MMPs that are bound to the cell membrane through a transmembrane domain. They play important roles in ECM remodeling, tissue repair and regeneration, as well as in various pathological processes such as cancer invasion and metastasis.

MT-MMPs can activate other MMPs and convert pro-MMPs into their active forms. They also have the ability to cleave cell surface receptors, adhesion molecules, and growth factors, thereby regulating various cellular processes such as cell migration, proliferation, and apoptosis.

The membrane-associated matrix metalloproteinases include MMP-14 (MT1-MMP), MMP-15 (MT2-MMP), MMP-16 (MT3-MMP), MMP-17 (MT4-MMP), and MMP-24 (MT5-MMP). Dysregulation of MT-MMPs has been implicated in various diseases, including cancer, fibrosis, and neurodegenerative disorders.

Protease inhibitors are a class of antiviral drugs that are used to treat infections caused by retroviruses, such as the human immunodeficiency virus (HIV), which is responsible for causing AIDS. These drugs work by blocking the activity of protease enzymes, which are necessary for the replication and multiplication of the virus within infected cells.

Protease enzymes play a crucial role in the life cycle of retroviruses by cleaving viral polyproteins into functional units that are required for the assembly of new viral particles. By inhibiting the activity of these enzymes, protease inhibitors prevent the virus from replicating and spreading to other cells, thereby slowing down the progression of the infection.

Protease inhibitors are often used in combination with other antiretroviral drugs as part of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS. Common examples of protease inhibitors include saquinavir, ritonavir, indinavir, and atazanavir. While these drugs have been successful in improving the outcomes of people living with HIV/AIDS, they can also cause side effects such as nausea, diarrhea, headaches, and lipodystrophy (changes in body fat distribution).

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Blood bactericidal activity refers to the ability of an individual's blood to kill or inhibit the growth of bacteria. This is an important aspect of the body's immune system, as it helps to prevent infection and maintain overall health. The bactericidal activity of blood can be influenced by various factors, including the presence of antibodies, white blood cells (such as neutrophils), and complement proteins.

In medical terms, the term "bactericidal" specifically refers to an agent or substance that is capable of killing bacteria. Therefore, when we talk about blood bactericidal activity, we are referring to the collective ability of various components in the blood to kill or inhibit the growth of bacteria. This is often measured in laboratory tests as a way to assess a person's immune function and their susceptibility to infection.

It's worth noting that not all substances in the blood are bactericidal; some may simply inhibit the growth of bacteria without killing them. These substances are referred to as bacteriostatic. Both bactericidal and bacteriostatic agents play important roles in maintaining the body's defense against infection.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Mannose-Binding Lectin (MBL) is a protein that belongs to the collectin family and plays a crucial role in the innate immune system. It's primarily produced by the liver and secreted into the bloodstream. MBL binds to carbohydrate structures, such as mannose, found on the surface of various microorganisms, including bacteria, viruses, fungi, and parasites.

Once MBL binds to these microorganisms, it activates the complement system through the lectin pathway, which leads to the destruction of the pathogens by opsonization (marking for phagocytosis) or direct lysis. Additionally, MBL can also initiate other immune responses, such as inflammation and immune cell activation, helping to protect the host from infections.

Deficiencies in MBL have been associated with increased susceptibility to certain infectious diseases, autoimmune disorders, and allergies. However, more research is needed to fully understand the complex role of MBL in human health and disease.

Enkephalins are naturally occurring opioid peptides that bind to opiate receptors in the brain and other organs, producing pain-relieving and other effects. They are derived from the precursor protein proenkephalin and consist of two main types: Leu-enkephalin and Met-enkephalin. Enkephalins play a role in pain modulation, stress response, mood regulation, and addictive behaviors. They are also involved in the body's reward system and have been implicated in various physiological processes such as respiration, gastrointestinal motility, and hormone release.

Metalloendopeptidases are a type of enzymes that cleave peptide bonds in proteins, specifically at interior positions within the polypeptide chain. They require metal ions as cofactors for their catalytic activity, typically zinc (Zn2+) or cobalt (Co2+). These enzymes play important roles in various biological processes such as protein degradation, processing, and signaling. Examples of metalloendopeptidases include thermolysin, matrix metalloproteinases (MMPs), and neutrophil elastase.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Complement C3 Nephritic Factor (C3NeF) is a type of autoantibody that activates the complement system and plays a significant role in the development of certain types of kidney diseases. The complement system is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

C3NeF is specifically directed against the C3 convertase enzyme complex, which is a critical component of the complement system's activation pathway. By binding to this enzyme complex, C3NeF stabilizes it and enhances its activity, leading to excessive complement activation and subsequent tissue damage.

In the context of kidney diseases, C3NeF has been associated with several forms of glomerulonephritis, including membranoproliferative glomerulonephritis (MPGN) type II, also known as dense deposit disease (DDD). The persistent activation of the complement system by C3NeF can result in the accumulation of complement components and immune complexes in the glomeruli, causing inflammation, tissue injury, and ultimately leading to kidney function impairment.

It is essential to diagnose and monitor C3NeF levels in patients with kidney diseases, as it may help guide treatment decisions and assess disease prognosis. Therapeutic strategies targeting the complement system, such as eculizumab, have shown promising results in managing C3NeF-associated kidney diseases.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Immunoglobulins (Igs), also known as antibodies, are glycoprotein molecules produced by the immune system's B cells in response to the presence of foreign substances, such as bacteria, viruses, and toxins. These Y-shaped proteins play a crucial role in identifying and neutralizing pathogens and other antigens, thereby protecting the body against infection and disease.

Immunoglobulins are composed of four polypeptide chains: two identical heavy chains and two identical light chains, held together by disulfide bonds. The variable regions of these chains form the antigen-binding sites, which recognize and bind to specific epitopes on antigens. Based on their heavy chain type, immunoglobulins are classified into five main isotypes or classes: IgA, IgD, IgE, IgG, and IgM. Each class has distinct functions in the immune response, such as providing protection in different body fluids and tissues, mediating hypersensitivity reactions, and aiding in the development of immunological memory.

In medical settings, immunoglobulins can be administered therapeutically to provide passive immunity against certain diseases or to treat immune deficiencies, autoimmune disorders, and other conditions that may benefit from immunomodulation.

Haptoglobins are proteins found in the blood that bind to free hemoglobin, which is released when red blood cells break down. The resulting complex is then removed from the bloodstream by the liver, preventing the loss of iron and potential kidney damage caused by the breakdown products of hemoglobin. Haptoglobins are produced in the liver and their levels can be measured to help diagnose various medical conditions such as hemolytic anemia, liver disease, and inflammation.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Surface Plasmon Resonance (SPR) is a physical phenomenon that occurs at the interface between a metal and a dielectric material, when electromagnetic radiation (usually light) is shone on it. It involves the collective oscillation of free electrons in the metal, known as surface plasmons, which are excited by the incident light. The resonance condition is met when the momentum and energy of the photons match those of the surface plasmons, leading to a strong absorption of light and an evanescent wave that extends into the dielectric material.

In the context of medical diagnostics and research, SPR is often used as a sensitive and label-free detection technique for biomolecular interactions. By immobilizing one binding partner (e.g., a receptor or antibody) onto the metal surface and flowing the other partner (e.g., a ligand or antigen) over it, changes in the refractive index at the interface can be measured in real-time as the plasmons are disturbed by the presence of bound molecules. This allows for the quantification of binding affinities, kinetics, and specificity with high sensitivity and selectivity.

Cyclic peptides are a type of peptides in which the N-terminus and C-terminus of the peptide chain are linked to form a circular structure. This is in contrast to linear peptides, which have a straight peptide backbone with a free N-terminus and C-terminus. The cyclization of peptides can occur through various mechanisms, including the formation of an amide bond between the N-terminal amino group and the C-terminal carboxylic acid group (head-to-tail cyclization), or through the formation of a bond between side chain functional groups.

Cyclic peptides have unique structural and chemical properties that make them valuable in medical and therapeutic applications. For example, they are more resistant to degradation by enzymes compared to linear peptides, which can increase their stability and half-life in the body. Additionally, the cyclic structure allows for greater conformational rigidity, which can enhance their binding affinity and specificity to target molecules.

Cyclic peptides have been explored as potential therapeutics for a variety of diseases, including cancer, infectious diseases, and neurological disorders. They have also been used as tools in basic research to study protein-protein interactions and cell signaling pathways.

Lupus nephritis is a type of kidney inflammation (nephritis) that can occur in people with systemic lupus erythematosus (SLE), an autoimmune disease. In lupus nephritis, the immune system produces abnormal antibodies that attack the tissues of the kidneys, leading to inflammation and damage. The condition can cause a range of symptoms, including proteinuria (protein in the urine), hematuria (blood in the urine), hypertension (high blood pressure), and eventually kidney failure if left untreated. Lupus nephritis is typically diagnosed through a combination of medical history, physical examination, laboratory tests, and imaging studies. Treatment may include medications to suppress the immune system and control inflammation, such as corticosteroids and immunosuppressive drugs.

Antinuclear antibodies (ANA) are a type of autoantibody that target structures found in the nucleus of a cell. These antibodies are produced by the immune system and attack the body's own cells and tissues, leading to inflammation and damage. The presence of ANA is often used as a marker for certain autoimmune diseases, such as systemic lupus erythematosus (SLE), Sjogren's syndrome, rheumatoid arthritis, scleroderma, and polymyositis.

ANA can be detected through a blood test called the antinuclear antibody test. A positive result indicates the presence of ANA in the blood, but it does not necessarily mean that a person has an autoimmune disease. Further testing is usually needed to confirm a diagnosis and determine the specific type of autoantibodies present.

It's important to note that ANA can also be found in healthy individuals, particularly as they age. Therefore, the test results should be interpreted in conjunction with other clinical findings and symptoms.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Glycosylation is the enzymatic process of adding a sugar group, or glycan, to a protein, lipid, or other organic molecule. This post-translational modification plays a crucial role in modulating various biological functions, such as protein stability, trafficking, and ligand binding. The structure and composition of the attached glycans can significantly influence the functional properties of the modified molecule, contributing to cell-cell recognition, signal transduction, and immune response regulation. Abnormal glycosylation patterns have been implicated in several disease states, including cancer, diabetes, and neurodegenerative disorders.

Secretory vesicles are membrane-bound organelles found within cells that store and transport secretory proteins and other molecules to the plasma membrane for exocytosis. Exocytosis is the process by which these molecules are released from the cell, allowing them to perform various functions, such as communication with other cells or participation in biochemical reactions. Secretory vesicles can be found in a variety of cell types, including endocrine cells, exocrine cells, and neurons. The proteins and molecules contained within secretory vesicles are synthesized in the rough endoplasmic reticulum and then transported to the Golgi apparatus, where they are processed, modified, and packaged into the vesicles for subsequent release.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

Cosmids are a type of cloning vector, which are self-replicating DNA molecules that can be used to introduce foreign DNA fragments into a host organism. Cosmids are plasmids that contain the cos site from bacteriophage λ, allowing them to be packaged into bacteriophage heads during an in vitro packaging reaction. This enables the transfer of large DNA fragments (up to 45 kb) into a host cell through transduction. Cosmids are widely used in molecular biology for the construction and analysis of genomic libraries, physical mapping, and DNA sequencing.

"Cricetulus" is a genus of rodents that includes several species of hamsters. These small, burrowing animals are native to Asia and have a body length of about 8-15 centimeters, with a tail that is usually shorter than the body. They are characterized by their large cheek pouches, which they use to store food. Some common species in this genus include the Chinese hamster (Cricetulus griseus) and the Daurian hamster (Cricetulus dauuricus). These animals are often kept as pets or used in laboratory research.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Mannose-binding protein-associated serine proteases (MASPs) are a group of enzymes that are associated with mannose-binding lectin (MBL), a protein involved in the innate immune system's response to pathogens. MASPs are responsible for activating the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

MASPs are proteases, meaning they cleave other proteins at specific sites. There are two main types of MASPs, MASP-1 and MASP-2, which are activated by the binding of MBL to carbohydrate structures on the surface of pathogens. Once activated, MASP-1 and MASP-2 cleave complement components C4 and C2, leading to the formation of the C3 convertase enzyme complex, which ultimately results in the activation of the complement system.

MASPs have also been shown to play a role in other physiological processes, such as tissue remodeling and inflammation. Mutations in MASP genes have been associated with various immune disorders, including recurrent infections, autoimmune diseases, and inflammatory conditions.

Congenital Adrenal Hyperplasia (CAH) is a group of inherited genetic disorders that affect the adrenal glands, which are triangular-shaped glands located on top of the kidneys. The adrenal glands are responsible for producing several essential hormones, including cortisol, aldosterone, and androgens.

CAH is caused by mutations in genes that code for enzymes involved in the synthesis of these hormones. The most common form of CAH is 21-hydroxylase deficiency, which affects approximately 90% to 95% of all cases. Other less common forms of CAH include 11-beta-hydroxylase deficiency and 3-beta-hydroxysteroid dehydrogenase deficiency.

The severity of the disorder can vary widely, depending on the degree of enzyme deficiency. In severe cases, the lack of cortisol production can lead to life-threatening salt wasting and electrolyte imbalances in newborns. The excess androgens produced due to the enzyme deficiency can also cause virilization, or masculinization, of female fetuses, leading to ambiguous genitalia at birth.

In milder forms of CAH, symptoms may not appear until later in childhood or even adulthood. These may include early puberty, rapid growth followed by premature fusion of the growth plates and short stature, acne, excessive hair growth, irregular menstrual periods, and infertility.

Treatment for CAH typically involves replacing the missing hormones with medications such as hydrocortisone, fludrocortisone, and/or sex hormones. Regular monitoring of hormone levels and careful management of medication doses is essential to prevent complications such as adrenal crisis, growth suppression, and osteoporosis.

In severe cases of CAH, early diagnosis and treatment can help prevent or minimize the risk of serious health problems and improve quality of life. Genetic counseling may also be recommended for affected individuals and their families to discuss the risks of passing on the disorder to future generations.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Immunologic factors refer to the elements of the immune system that contribute to the body's defense against foreign substances, infectious agents, and cancerous cells. These factors include various types of white blood cells (such as lymphocytes, neutrophils, monocytes, and eosinophils), antibodies, complement proteins, cytokines, and other molecules involved in the immune response.

Immunologic factors can be categorized into two main types: innate immunity and adaptive immunity. Innate immunity is the non-specific defense mechanism that provides immediate protection against pathogens through physical barriers (e.g., skin, mucous membranes), chemical barriers (e.g., stomach acid, enzymes), and inflammatory responses. Adaptive immunity, on the other hand, is a specific defense mechanism that develops over time as the immune system learns to recognize and respond to particular pathogens or antigens.

Abnormalities in immunologic factors can lead to various medical conditions, such as autoimmune disorders, immunodeficiency diseases, and allergies. Therefore, understanding immunologic factors is crucial for diagnosing and treating these conditions.

Gene dosage, in genetic terms, refers to the number of copies of a particular gene present in an organism's genome. Each gene usually has two copies (alleles) in diploid organisms, one inherited from each parent. An increase or decrease in the number of copies of a specific gene can lead to changes in the amount of protein it encodes, which can subsequently affect various biological processes and phenotypic traits.

For example, gene dosage imbalances have been associated with several genetic disorders, such as Down syndrome (trisomy 21), where an individual has three copies of chromosome 21 instead of the typical two copies, leading to developmental delays and intellectual disabilities. Similarly, in certain cases of cancer, gene amplification (an increase in the number of copies of a particular gene) can result in overexpression of oncogenes, contributing to tumor growth and progression.

A haplotype is a group of genes or DNA sequences that are inherited together from a single parent. It refers to a combination of alleles (variant forms of a gene) that are located on the same chromosome and are usually transmitted as a unit. Haplotypes can be useful in tracing genetic ancestry, understanding the genetic basis of diseases, and developing personalized medical treatments.

In population genetics, haplotypes are often used to study patterns of genetic variation within and between populations. By comparing haplotype frequencies across populations, researchers can infer historical events such as migrations, population expansions, and bottlenecks. Additionally, haplotypes can provide information about the evolutionary history of genes and genomic regions.

In clinical genetics, haplotypes can be used to identify genetic risk factors for diseases or to predict an individual's response to certain medications. For example, specific haplotypes in the HLA gene region have been associated with increased susceptibility to certain autoimmune diseases, while other haplotypes in the CYP450 gene family can affect how individuals metabolize drugs.

Overall, haplotypes provide a powerful tool for understanding the genetic basis of complex traits and diseases, as well as for developing personalized medical treatments based on an individual's genetic makeup.

HLA (Human Leukocyte Antigen) antigens are a group of proteins found on the surface of cells in our body. They play a crucial role in the immune system's ability to differentiate between "self" and "non-self." HLA antigens are encoded by a group of genes located on chromosome 6, known as the major histocompatibility complex (MHC).

There are three types of HLA antigens: HLA class I, HLA class II, and HLA class III. HLA class I antigens are found on the surface of almost all cells in the body and help the immune system recognize and destroy virus-infected or cancerous cells. They consist of three components: HLA-A, HLA-B, and HLA-C.

HLA class II antigens are primarily found on the surface of immune cells, such as macrophages, B cells, and dendritic cells. They assist in the presentation of foreign particles (like bacteria and viruses) to CD4+ T cells, which then activate other parts of the immune system. HLA class II antigens include HLA-DP, HLA-DQ, and HLA-DR.

HLA class III antigens consist of various molecules involved in immune responses, such as cytokines and complement components. They are not directly related to antigen presentation.

The genetic diversity of HLA antigens is extensive, with thousands of variations or alleles. This diversity allows for a better ability to recognize and respond to a wide range of pathogens. However, this variation can also lead to compatibility issues in organ transplantation, as the recipient's immune system may recognize the donor's HLA antigens as foreign and attack the transplanted organ.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

The pituitary gland is a small, endocrine gland located at the base of the brain, in the sella turcica of the sphenoid bone. It is often called the "master gland" because it controls other glands and makes the hormones that trigger many body functions. The pituitary gland measures about 0.5 cm in height and 1 cm in width, and it weighs approximately 0.5 grams.

The pituitary gland is divided into two main parts: the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis). The anterior lobe is further divided into three zones: the pars distalis, pars intermedia, and pars tuberalis. Each part of the pituitary gland has distinct functions and produces different hormones.

The anterior pituitary gland produces and releases several important hormones, including:

* Growth hormone (GH), which regulates growth and development in children and helps maintain muscle mass and bone strength in adults.
* Thyroid-stimulating hormone (TSH), which controls the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females.
* Prolactin, which stimulates milk production in pregnant and lactating women.

The posterior pituitary gland stores and releases two hormones that are produced by the hypothalamus:

* Antidiuretic hormone (ADH), which helps regulate water balance in the body by controlling urine production.
* Oxytocin, which stimulates uterine contractions during childbirth and milk release during breastfeeding.

Overall, the pituitary gland plays a critical role in maintaining homeostasis and regulating various bodily functions, including growth, development, metabolism, and reproductive function.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Monocytes are a type of white blood cell that are part of the immune system. They are large cells with a round or oval shape and a nucleus that is typically indented or horseshoe-shaped. Monocytes are produced in the bone marrow and then circulate in the bloodstream, where they can differentiate into other types of immune cells such as macrophages and dendritic cells.

Monocytes play an important role in the body's defense against infection and tissue damage. They are able to engulf and digest foreign particles, microorganisms, and dead or damaged cells, which helps to clear them from the body. Monocytes also produce cytokines, which are signaling molecules that help to coordinate the immune response.

Elevated levels of monocytes in the bloodstream can be a sign of an ongoing infection, inflammation, or other medical conditions such as cancer or autoimmune disorders.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

The Golgi apparatus, also known as the Golgi complex or simply the Golgi, is a membrane-bound organelle found in the cytoplasm of most eukaryotic cells. It plays a crucial role in the processing, sorting, and packaging of proteins and lipids for transport to their final destinations within the cell or for secretion outside the cell.

The Golgi apparatus consists of a series of flattened, disc-shaped sacs called cisternae, which are stacked together in a parallel arrangement. These stacks are often interconnected by tubular structures called tubules or vesicles. The Golgi apparatus has two main faces: the cis face, which is closest to the endoplasmic reticulum (ER) and receives proteins and lipids directly from the ER; and the trans face, which is responsible for sorting and dispatching these molecules to their final destinations.

The Golgi apparatus performs several essential functions in the cell:

1. Protein processing: After proteins are synthesized in the ER, they are transported to the cis face of the Golgi apparatus, where they undergo various post-translational modifications, such as glycosylation (the addition of sugar molecules) and sulfation. These modifications help determine the protein's final structure, function, and targeting.
2. Lipid modification: The Golgi apparatus also modifies lipids by adding or removing different functional groups, which can influence their properties and localization within the cell.
3. Protein sorting and packaging: Once proteins and lipids have been processed, they are sorted and packaged into vesicles at the trans face of the Golgi apparatus. These vesicles then transport their cargo to various destinations, such as lysosomes, plasma membrane, or extracellular space.
4. Intracellular transport: The Golgi apparatus serves as a central hub for intracellular trafficking, coordinating the movement of vesicles and other transport carriers between different organelles and cellular compartments.
5. Cell-cell communication: Some proteins that are processed and packaged in the Golgi apparatus are destined for secretion, playing crucial roles in cell-cell communication and maintaining tissue homeostasis.

In summary, the Golgi apparatus is a vital organelle involved in various cellular processes, including post-translational modification, sorting, packaging, and intracellular transport of proteins and lipids. Its proper functioning is essential for maintaining cellular homeostasis and overall organismal health.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Fibrinogen is a soluble protein present in plasma, synthesized by the liver. It plays an essential role in blood coagulation. When an injury occurs, fibrinogen gets converted into insoluble fibrin by the action of thrombin, forming a fibrin clot that helps to stop bleeding from the injured site. Therefore, fibrinogen is crucial for hemostasis, which is the process of stopping bleeding and starting the healing process after an injury.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

Proteinuria is a medical term that refers to the presence of excess proteins, particularly albumin, in the urine. Under normal circumstances, only small amounts of proteins should be found in the urine because the majority of proteins are too large to pass through the glomeruli, which are the filtering units of the kidneys.

However, when the glomeruli become damaged or diseased, they may allow larger molecules such as proteins to leak into the urine. Persistent proteinuria is often a sign of kidney disease and can indicate damage to the glomeruli. It is usually detected through a routine urinalysis and may be confirmed with further testing.

The severity of proteinuria can vary, and it can be a symptom of various underlying conditions such as diabetes, hypertension, glomerulonephritis, and other kidney diseases. Treatment for proteinuria depends on the underlying cause and may include medications to control blood pressure, manage diabetes, or reduce protein loss in the urine.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Antibody formation, also known as humoral immune response, is the process by which the immune system produces proteins called antibodies in response to the presence of a foreign substance (antigen) in the body. This process involves several steps:

1. Recognition: The antigen is recognized and bound by a type of white blood cell called a B lymphocyte or B cell, which then becomes activated.
2. Differentiation: The activated B cell undergoes differentiation to become a plasma cell, which is a type of cell that produces and secretes large amounts of antibodies.
3. Antibody production: The plasma cells produce and release antibodies, which are proteins made up of four polypeptide chains (two heavy chains and two light chains) arranged in a Y-shape. Each antibody has two binding sites that can recognize and bind to specific regions on the antigen called epitopes.
4. Neutralization or elimination: The antibodies bind to the antigens, neutralizing them or marking them for destruction by other immune cells. This helps to prevent the spread of infection and protect the body from harmful substances.

Antibody formation is an important part of the adaptive immune response, which allows the body to specifically recognize and respond to a wide variety of pathogens and foreign substances.

Streptococcus pneumoniae, also known as the pneumococcus, is a gram-positive, alpha-hemolytic bacterium frequently found in the upper respiratory tract of healthy individuals. It is a leading cause of community-acquired pneumonia and can also cause other infectious diseases such as otitis media (ear infection), sinusitis, meningitis, and bacteremia (bloodstream infection). The bacteria are encapsulated, and there are over 90 serotypes based on variations in the capsular polysaccharide. Some serotypes are more virulent or invasive than others, and the polysaccharide composition is crucial for vaccine development. S. pneumoniae infection can be treated with antibiotics, but the emergence of drug-resistant strains has become a significant global health concern.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Collectins are a group of proteins that belong to the collectin family, which are involved in the innate immune system. They are composed of a collagen-like region and a carbohydrate recognition domain (CRD), which allows them to bind to specific sugars on the surface of microorganisms, cells, and particles. Collectins play a crucial role in the defense against pathogens by promoting the clearance of microbes, modulating inflammation, and regulating immune responses.

Some examples of collectins include:

* Surfactant protein A (SP-A) and surfactant protein D (SP-D), which are found in the lungs and help to maintain the stability of the lung lining and protect against respiratory infections.
* Mannose-binding lectin (MBL), which is a serum protein that binds to mannose sugars on the surface of microorganisms, activating the complement system and promoting phagocytosis.
* Collectin liver 1 (CL-L1) and collectin kidney 1 (CL-K1), which are found in the liver and kidneys, respectively, and play a role in the clearance of apoptotic cells and immune complexes.

Deficiencies or mutations in collectins can lead to increased susceptibility to infections, autoimmune diseases, and other disorders.

Restriction mapping is a technique used in molecular biology to identify the location and arrangement of specific restriction endonuclease recognition sites within a DNA molecule. Restriction endonucleases are enzymes that cut double-stranded DNA at specific sequences, producing fragments of various lengths. By digesting the DNA with different combinations of these enzymes and analyzing the resulting fragment sizes through techniques such as agarose gel electrophoresis, researchers can generate a restriction map - a visual representation of the locations and distances between recognition sites on the DNA molecule. This information is crucial for various applications, including cloning, genome analysis, and genetic engineering.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

A gene is a specific sequence of nucleotides in DNA that carries genetic information. Genes are the fundamental units of heredity and are responsible for the development and function of all living organisms. They code for proteins or RNA molecules, which carry out various functions within cells and are essential for the structure, function, and regulation of the body's tissues and organs.

Each gene has a specific location on a chromosome, and each person inherits two copies of every gene, one from each parent. Variations in the sequence of nucleotides in a gene can lead to differences in traits between individuals, including physical characteristics, susceptibility to disease, and responses to environmental factors.

Medical genetics is the study of genes and their role in health and disease. It involves understanding how genes contribute to the development and progression of various medical conditions, as well as identifying genetic risk factors and developing strategies for prevention, diagnosis, and treatment.

C-reactive protein (CRP) is a protein produced by the liver in response to inflammation or infection in the body. It is named after its ability to bind to the C-polysaccharide of pneumococcus, a type of bacteria. CRP levels can be measured with a simple blood test and are often used as a marker of inflammation or infection. Elevated CRP levels may indicate a variety of conditions, including infections, tissue damage, and chronic diseases such as rheumatoid arthritis and cancer. However, it is important to note that CRP is not specific to any particular condition, so additional tests are usually needed to make a definitive diagnosis.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Steroid hydroxylases are enzymes that catalyze the addition of a hydroxyl group (-OH) to a steroid molecule. These enzymes are located in the endoplasmic reticulum and play a crucial role in the biosynthesis of various steroid hormones, such as cortisol, aldosterone, and sex hormones. The hydroxylation reaction catalyzed by these enzymes increases the polarity and solubility of steroids, allowing them to be further metabolized and excreted from the body.

The most well-known steroid hydroxylases are part of the cytochrome P450 family, specifically CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP19A1, and CYP21A2. Each enzyme has a specific function in steroid biosynthesis, such as converting cholesterol to pregnenolone (CYP11A1), hydroxylating the 11-beta position of steroids (CYP11B1 and CYP11B2), or performing multiple hydroxylation reactions in the synthesis of sex hormones (CYP17A1, CYP19A1, and CYP21A2).

Defects in these enzymes can lead to various genetic disorders, such as congenital adrenal hyperplasia, which is characterized by impaired steroid hormone biosynthesis.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Southern blotting is a type of membrane-based blotting technique that is used in molecular biology to detect and locate specific DNA sequences within a DNA sample. This technique is named after its inventor, Edward M. Southern.

In Southern blotting, the DNA sample is first digested with one or more restriction enzymes, which cut the DNA at specific recognition sites. The resulting DNA fragments are then separated based on their size by gel electrophoresis. After separation, the DNA fragments are denatured to convert them into single-stranded DNA and transferred onto a nitrocellulose or nylon membrane.

Once the DNA has been transferred to the membrane, it is hybridized with a labeled probe that is complementary to the sequence of interest. The probe can be labeled with radioactive isotopes, fluorescent dyes, or chemiluminescent compounds. After hybridization, the membrane is washed to remove any unbound probe and then exposed to X-ray film (in the case of radioactive probes) or scanned (in the case of non-radioactive probes) to detect the location of the labeled probe on the membrane.

The position of the labeled probe on the membrane corresponds to the location of the specific DNA sequence within the original DNA sample. Southern blotting is a powerful tool for identifying and characterizing specific DNA sequences, such as those associated with genetic diseases or gene regulation.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Macular degeneration, also known as age-related macular degeneration (AMD), is a medical condition that affects the central part of the retina, called the macula. The macula is responsible for sharp, detailed vision, which is necessary for activities such as reading, driving, and recognizing faces.

In AMD, there is a breakdown or deterioration of the macula, leading to gradual loss of central vision. There are two main types of AMD: dry (atrophic) and wet (exudative). Dry AMD is more common and progresses more slowly, while wet AMD is less common but can cause rapid and severe vision loss if left untreated.

The exact causes of AMD are not fully understood, but risk factors include age, smoking, family history, high blood pressure, obesity, and exposure to sunlight. While there is no cure for AMD, treatments such as vitamin supplements, laser therapy, and medication injections can help slow its progression and reduce the risk of vision loss.

Disease susceptibility, also known as genetic predisposition or genetic susceptibility, refers to the increased likelihood or risk of developing a particular disease due to inheriting specific genetic variations or mutations. These genetic factors can make an individual more vulnerable to certain diseases compared to those who do not have these genetic changes.

It is important to note that having a genetic predisposition does not guarantee that a person will definitely develop the disease. Other factors, such as environmental exposures, lifestyle choices, and additional genetic variations, can influence whether or not the disease will manifest. In some cases, early detection and intervention may help reduce the risk or delay the onset of the disease in individuals with a known genetic susceptibility.

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is a type of mass spectrometry that is used to analyze large biomolecules such as proteins and peptides. In this technique, the sample is mixed with a matrix compound, which absorbs laser energy and helps to vaporize and ionize the analyte molecules.

The matrix-analyte mixture is then placed on a target plate and hit with a laser beam, causing the matrix and analyte molecules to desorb from the plate and become ionized. The ions are then accelerated through an electric field and into a mass analyzer, which separates them based on their mass-to-charge ratio.

The separated ions are then detected and recorded as a mass spectrum, which can be used to identify and quantify the analyte molecules present in the sample. MALDI-MS is particularly useful for the analysis of complex biological samples, such as tissue extracts or biological fluids, because it allows for the detection and identification of individual components within those mixtures.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

Gene frequency, also known as allele frequency, is a measure in population genetics that reflects the proportion of a particular gene or allele (variant of a gene) in a given population. It is calculated as the number of copies of a specific allele divided by the total number of all alleles at that genetic locus in the population.

For example, if we consider a gene with two possible alleles, A and a, the gene frequency of allele A (denoted as p) can be calculated as follows:

p = (number of copies of allele A) / (total number of all alleles at that locus)

Similarly, the gene frequency of allele a (denoted as q) would be:

q = (number of copies of allele a) / (total number of all alleles at that locus)

Since there are only two possible alleles for this gene in this example, p + q = 1. These frequencies can help researchers understand genetic diversity and evolutionary processes within populations.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

The term "Immune Adherence Reaction" is not widely used in modern immunology or medicine. It appears to be an outdated concept that refers to the attachment of immune complexes (consisting of antigens, antibodies, and complement components) to Fc receptors on phagocytic cells, such as neutrophils and monocytes. This interaction facilitates the clearance of immune complexes from circulation and helps to prevent tissue damage caused by their deposition.

However, it is important to note that this term is not commonly used in current scientific literature or clinical settings. Instead, the processes it describes are typically discussed within the broader context of immune complex-mediated inflammation, complement activation, and phagocytosis.

'DBA' is an abbreviation for 'Database of Genotypes and Phenotypes,' but in the context of "Inbred DBA mice," it refers to a specific strain of laboratory mice that have been inbred for many generations. The DBA strain is one of the oldest inbred strains, and it was established in 1909 by C.C. Little at the Bussey Institute of Harvard University.

The "Inbred DBA" mice are genetically identical mice that have been produced by brother-sister matings for more than 20 generations. This extensive inbreeding results in a homozygous population, where all members of the strain have the same genetic makeup. The DBA strain is further divided into several sub-strains, including DBA/1, DBA/2, and DBA/J, among others.

DBA mice are known for their black coat color, which can fade to gray with age, and they exhibit a range of phenotypic traits that make them useful for research purposes. For example, DBA mice have a high incidence of retinal degeneration, making them a valuable model for studying eye diseases. They also show differences in behavior, immune response, and susceptibility to various diseases compared to other inbred strains.

In summary, "Inbred DBA" mice are a specific strain of laboratory mice that have been inbred for many generations, resulting in a genetically identical population with distinct phenotypic traits. They are widely used in biomedical research to study various diseases and biological processes.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Immunoelectrophoresis (IEP) is a laboratory technique used in the field of clinical pathology and immunology. It is a method for separating and identifying proteins, particularly immunoglobulins or antibodies, in a sample. This technique combines the principles of electrophoresis, which separates proteins based on their electric charge and size, with immunological reactions, which detect specific proteins using antigen-antibody interactions.

In IEP, a protein sample is first separated by electrophoresis in an agarose or agar gel matrix on a glass slide or in a test tube. After separation, an antibody specific to the protein of interest is layered on top of the gel and allowed to diffuse towards the separated proteins. This creates a reaction between the antigen (protein) and the antibody, forming a visible precipitate at the point where they meet. The precipitate line's position and intensity can then be analyzed to identify and quantify the protein of interest.

Immunoelectrophoresis is particularly useful in diagnosing various medical conditions, such as immunodeficiency disorders, monoclonal gammopathies (like multiple myeloma), and other plasma cell dyscrasias. It can help detect abnormal protein patterns, quantify specific immunoglobulins, and identify the presence of M-proteins or Bence Jones proteins, which are indicative of monoclonal gammopathies.

Staphylococcus aureus is a type of gram-positive, round (coccal) bacterium that is commonly found on the skin and mucous membranes of warm-blooded animals and humans. It is a facultative anaerobe, which means it can grow in the presence or absence of oxygen.

Staphylococcus aureus is known to cause a wide range of infections, from mild skin infections such as pimples, impetigo, and furuncles (boils) to more severe and potentially life-threatening infections such as pneumonia, endocarditis, osteomyelitis, and sepsis. It can also cause food poisoning and toxic shock syndrome.

The bacterium is often resistant to multiple antibiotics, including methicillin, which has led to the emergence of methicillin-resistant Staphylococcus aureus (MRSA) strains that are difficult to treat. Proper hand hygiene and infection control practices are critical in preventing the spread of Staphylococcus aureus and MRSA.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects the joints. It is characterized by persistent inflammation, synovial hyperplasia, and subsequent damage to the articular cartilage and bone. The immune system mistakenly attacks the body's own tissues, specifically targeting the synovial membrane lining the joint capsule. This results in swelling, pain, warmth, and stiffness in affected joints, often most severely in the hands and feet.

RA can also have extra-articular manifestations, affecting other organs such as the lungs, heart, skin, eyes, and blood vessels. The exact cause of RA remains unknown, but it is believed to involve a complex interplay between genetic susceptibility and environmental triggers. Early diagnosis and treatment are crucial in managing rheumatoid arthritis to prevent joint damage, disability, and systemic complications.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Proteomics is the large-scale study and analysis of proteins, including their structures, functions, interactions, modifications, and abundance, in a given cell, tissue, or organism. It involves the identification and quantification of all expressed proteins in a biological sample, as well as the characterization of post-translational modifications, protein-protein interactions, and functional pathways. Proteomics can provide valuable insights into various biological processes, diseases, and drug responses, and has applications in basic research, biomedicine, and clinical diagnostics. The field combines various techniques from molecular biology, chemistry, physics, and bioinformatics to study proteins at a systems level.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Genetic predisposition to disease refers to an increased susceptibility or vulnerability to develop a particular illness or condition due to inheriting specific genetic variations or mutations from one's parents. These genetic factors can make it more likely for an individual to develop a certain disease, but it does not guarantee that the person will definitely get the disease. Environmental factors, lifestyle choices, and interactions between genes also play crucial roles in determining if a genetically predisposed person will actually develop the disease. It is essential to understand that having a genetic predisposition only implies a higher risk, not an inevitable outcome.

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder of the blood characterized by the destruction of red blood cells (hemolysis), which can cause symptoms such as fatigue, dark colored urine (especially in the morning), chest pain, shortness of breath, and an increased risk of blood clots. The hemoglobin from the lysed red blood cells appears in the urine, hence the term "hemoglobinuria."

The paroxysmal nature of the disorder refers to the sudden and recurring episodes of hemolysis that can occur at any time, although they may be more frequent at night. The condition is caused by mutations in a gene called PIG-A, which leads to the production of defective red blood cell membranes that are sensitive to destruction by complement, a component of the immune system.

PNH is a serious and potentially life-threatening condition that can lead to complications such as kidney damage, pulmonary hypertension, and thrombosis. Treatment typically involves supportive care, such as blood transfusions, and medications to manage symptoms and prevent complications. In some cases, stem cell transplantation may be considered as a curative treatment option.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

... can be used as an opsonin or bind to either type of C3 convertase to form the trimolecular C5 convertase to activate C5 for the ... Cleavage of complement C3 by a free floating convertase, thrombin, plasmin or even a bacterial enzyme leads to formation of C3a ... Thus, the alternative C3 convertase (C3bBb) is formed and is able to cleave C3 via its dimeric Bb subunit. Since C3 convertases ... both C3 convertases will catalyze the proteolytic cleavage of C3 into C3a and C3b (hence the name "C3-convertase"). The smaller ...
It is the first drug that selectively inhibits factor B, the active component of the complement's C3 and C5 convertases. In ... Iptacopan is also investigated as a drug in other complement-mediated diseases, like age-related macular degeneration and some ... April 2019). "Small-molecule factor B inhibitor for the treatment of complement-mediated diseases". Proceedings of the National ...
... has a cleavage activity and it is essential for forming lectin C3 and C5 convertases and for activation of the complement. For ... Collectin MBL is involved in activation of the lectin complement pathway. There are three serine proteases, MASP-1, 2 and 3 ( ... MBL can bind to microorganisms and this interaction can lead to opsonization through complement activation, or it can opsonize ... Collectins are linked with activation of lectin pathway of complement activation. At the beginning, there is a binding of ...
C3b binds to the C3 convertase (C4b2b), to form C5 convertase (C4b2b3b). C5 convertase then cleaves C5 into C5a and C5b. Like ... The C3b component of the cleaved C3 binds to C3 convertase (C4b2b) to generate C5 convertase (C4b2b3b), which cleaves the C5 ... In addition, the C5 convertase initiates the terminal phase of the complement system, leading to the assembly of the membrane ... Alternative complement pathway - another complement system pathway Lectin pathway - another complement system pathway Noris, ...
... a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases". Blood ... These SNPs were located in the gene encoding complement factor H, which was an unexpected finding in the research of ARMD. The ... April 2005). "Complement factor H polymorphism in age-related macular degeneration". Science. 308 (5720): 385-9. Bibcode: ... "Complement factor H variant increases the risk of age-related macular degeneration". Science. 308 (5720): 419-21. Bibcode: ...
Bb remains bound to C3(H2O) to form C3(H2O)Bb. This complex is also known as a fluid-phase C3-convertase. This convertase, the ... a stable compound which can bind an additional C3b to form alternative pathway C5-convertase. The C5-convertase of the ... Complement Factor H can inhibit the formation of the C3 convertase by competing with factor B for binding to C3b; accelerate ... C5-convertase cleaves C5 into C5a and C5b. C5b binds sequentially to C6, C7, C8 and then to multiple molecules of C9 to form ...
The term C3 convertase may refer to: C3-convertase, an enzyme Alternative-complement-pathway C3/C5 convertase, an enzyme This ...
For example: ARMD14 C3/C5 convertase CO2 complement component 2 complement component C2 ENSG00000235017, ENSG00000235696, ... In the classical and lectin pathways of complement activation, formation of the C3-convertase and C5-convertases requires ... making the C3 convertase C4b2b, whereas older sources refer to the larger fragment of C2 as C2a, making the C3 convertase C4b2a ... It binds to MBL or ficolins to form the C3 convertase C4b2a. In C2 deficiency, C3 is not efficiently cleaved, leading to ...
Arnaout was the first to show that C3 nephritic factor is an autoantibody to the complement C3bBb convertase that activates the ... alternative complement pathway, a finding that suggested the potential of B cell or complement C5 depletion as adjunct ...
... classical-complement-pathway C3/C5 convertase EC 3.4.21.44: Now EC 3.4.21.43, classical-complement-pathway C3/C5 convertase EC ... 3.4.21.45: complement factor I EC 3.4.21.46: complement factor D EC 3.4.21.47: alternative-complement-pathway C3/C5 convertase ... proprotein convertase 1 EC 3.4.21.94: proprotein convertase 2 EC 3.4.21.95: snake venom factor V activator EC 3.4.21.96: ... Complement subcomponent C1r EC 3.4.21.42: complement subcomponent C1s EC 3.4.21.43: ...
... which promotes cleavage of C3 into C3a and C3b. C3b later joins with C4b2b to make C5 convertase (C4b2b3b complex). The ... This process prevents the formation of C3 convertase and halts the progression of the complement cascade. C3-convertase also ... Polymorphisms of complement component 3, complement factor B, and complement factor I, as well as deletion of complement factor ... The three pathways of activation all generate homologous variants of the protease C3-convertase. The classical complement ...
... iC3b C5 - C5a C3-convertase C5-convertase Late stage Membrane attack complex (MAC) C6 C7 C8 C9 Complement pathway inhibitors C1 ... system Complement system Classical complement pathway Mannan-binding lectin pathway Alternate complement pathway Complement ... MASP2 Mannan-binding lectin Alternative complement pathway Factor B Factor D Factor P (Properdin) Middle stage C3 - C3a / C3b ... see complement proteins section) Collectins Mannan-binding lectin (MBL) Surfactant protein A (SP-A) Surfactant protein D (SP-D ...
The target of C5 convertase is complement protein C5. C5 is a two-chain (α, β) plasma glycoprotein (Mr = 196,000). C5 and C3 ... Cell-bound C3 and C5 convertase differ in their C3b requirement. C3-convertase (C3bBb) need only one molecule of C3b to form, ... The complement component C5 can be also activated by fluid phase C5 convertase. C5 is activated by CVFBb in the presence of ... CVFBb does not require C3 for cleavage of C5, whereas C4b2boxy need native C3 for cleavage of C5 protein. The modified C5 ...
... pathogens and bind to C3 convertase to catalyze the formation of C5 convertase to produce C5a and C5b for terminal complement ... The formation of complement proteins (C3a, C3b, C5a, C5b, etc.) ultimately congregates into a membrane-attack complex to lyse ... C1 protein attaches to the pathogen surface and the antibody-antigen complex that culminates in the generation of C3 convertase ... Warwick, Charles A.; Keyes, Alex L.; Woodruff, Trent M.; Usachev, Yuriy M. (1 September 2021). "The complement cascade in the ...
This protein binds to bacterial cell walls and dying human cells to stabilize the C3 and C5-convertase enzyme complexes to form ... Hourcade D (2006). "The Role of Properdin in the Assembly of the Alternative Pathway C3 Convertases of Complement". J Biol Chem ... It binds to preformed alternative pathway C3-convertases. Properdin also inhibits the Factor H - mediated cleavage of C3b by ... Properdin is a protein that in humans is encoded by the CFP (complement factor properdin) gene. Properdin is plasma ...
Rawal N, Pangburn MK (March 2001). "Structure/function of C5 convertases of complement". International Immunopharmacology. 1 (3 ... components of the alternative-pathway C3 convertase of complement". The Biochemical Journal. 253 (3): 667-75. doi:10.1042/ ... The active subunit Bb is a serine protease that associates with C3b to form the alternative pathway C3 convertase. Bb is ... Complement factor B is a protein that in humans is encoded by the CFB gene. This gene encodes complement factor B, a component ...
C3 is cleaved into its a and b subunits, and C3b binds the convertase. These together are called the C5 convertase. Similarly ... Complement receptors, collectins, ficolins, pentraxins such as serum amyloid and C-reactive protein, lipid transferases, ... Together, MBL, C4b and C2a are known as the C3 convertase. ... C5, C6, C7, C8 and C9 form the membrane attack complex (MAC). ... Once bound to the ligands MBL and Ficolin oligomers recruit MASP1 and MASP2 and initiate the lectin pathway of complement ...
Additionally, C3b plays a role in forming a C3 convertase when bound to Factor B (C3bBb complex), or a C5 convertase when bound ... C3a - the other fragment C3 is cleaved into along with C3b Liszewski, M. Kathryn; Atkinson, John P. (2015-06-10). "Complement ... Incorporation of an additional C3b into the C3bBb C3 convertase leads to the formation of C3Bb3b C5 convertase. Once cleaved ... Formation of a C3 convertase functions as a positive feedback loop, so as more C3b is cleaved, more C3 convertases are formed, ...
... complement c3-c5 convertases MeSH D12.776.124.486.274.860.387.500 - complement c3-c5 convertases, alternative pathway MeSH ... complement c3-c5 convertases, classical pathway MeSH D12.776.124.486.274.860.387.750.500 - complement c3 convertase, classical ... complement c3 convertase, alternative pathway MeSH D12.776.124.486.274.860.387.500.750 - complement c5 convertase, alternative ... complement c3 MeSH D12.776.124.486.274.250.250 - complement c3a MeSH D12.776.124.486.274.250.260 - complement c3b MeSH D12.776. ...
... the C4b-C2a complex with protease activity has been termed the C3 convertase. Protein 4b can be further cleaved into 4c and 4d ... C5 binding sites, 4) private allelic residues. Additionally, the same study identified the expression of human complement C4 ... Complement component 4A Complement component 4B HLA A1-B8-DR3-DQ2 haplotype Complement system Complement deficiency Sekar A, ... All three pathways converge at a step in which complement protein C3 is cleaved into proteins C3a and C3b, which results in a ...
... which disrupts formation of C3-convertase, and protectin (CD59/MIRL/MAC-IP), which binds the membrane attack complex and ... Since the complement cascade attacks the red blood cells within the blood vessels of the circulatory system, the red blood cell ... The drug interferes with the formation of the membrane attack complex in erythrocytes by binding to C5, compensating for the ... The complement system is part of the innate immune system and has a variety of functions, from destroying invading ...
... such as complement factor H-related genes, as well as in other complement proteins (e.g. factor I, C2/factor B, and C3) have ... January 2011). "The development of atypical hemolytic uremic syndrome depends on complement C5". Journal of the American ... and decay accelerating activity against the alternative pathway C3-convertase, C3bBb. Factor H exerts its protective action on ... Moreover, the complement inhibitory activities of factor H, and other complement regulators, are often used by pathogens to ...
... can be used as an opsonin or bind to either type of C3 convertase to form the trimolecular C5 convertase to activate C5 for the ... Cleavage of complement C3 by a free floating convertase, thrombin, plasmin or even a bacterial enzyme leads to formation of C3a ... Thus, the alternative C3 convertase (C3bBb) is formed and is able to cleave C3 via its dimeric Bb subunit. Since C3 convertases ... both C3 convertases will catalyze the proteolytic cleavage of C3 into C3a and C3b (hence the name "C3-convertase"). The smaller ...
... and C5-convertase of human complement. 2odq. Complement component C2a, the catalytic fragment of C3- and C5-convertase of human ... Complement component C2a, the catalytic fragment of C3- ... C3 convertase (C3bBb) stabilized by SCIN. 2ww8. Structure of ... Complement component C2a. 2ica. CD11a (LFA1) I-domain complexed with BMS-587101 aka 5-[(5S, 9R)-9-(4-cyanophenyl)-3-(3,5- ... Integrin I domain of complement receptor 3 in complex with C3d. 4mmx. Integrin AlphaVBeta3 ectodomain bound to the tenth domain ...
C5-9).The IgG antibody, C3Nef, prevents the alternative complement C3-convertase C3Bb from dissociative inactivation, resulting ... C5-9).The IgG antibody, C3Nef, prevents the alternative complement C3-convertase C3Bb from dissociative inactivation, resulting ... low C3 serum complement levels, and the presence of a C3 nephritic factor. C3 nephritic factor is a serum immunoglobulin G that ... C3 nephritic factor induces the lysis of adipocytes that secrete adipsin, a product identical to complement factor D. The ...
Luminogenic substrate for complement component C3/C5 convertases, coagulation factor Xa, macropain, and soybean trypsin-like ... the complement system, apoptosis pathways, and the invertebrate prophenoloxidase-activating cascade). Proteases can either ...
C5-9).The IgG antibody, C3NeF, prevents the alternative complement C3-convertase C3Bb from dissociative inactivation, resulting ... due to complement activation and consumption of C3). Low C3 levels may impair complement-mediated phagocytosis and bacterial ... 4] Patients with MPGN are more likely to have low C3 levels and the presence of C3 nephritic factor (C3NeF). [6, 7, 8] ... Adipocytes synthesize factor D, the limiting component of the alternative complement pathway, which cleaves C3-bound factor B ...
This process is mediated chiefly by C3-convertases that are assembled from complement constituents such as C2, C4, CFB, and CFD ... If left to propagate, the accumulation of C3b triggers cleavage of C5 to produce C5a and C5b, with the latter inducing the ... Therapeutic control of complement activation at the level of the central component C3. Immunobiology. 2016; 221:740-6. [PMID: ... Retinal Macrophages Synthesize C3 and Activate Complement in AMD and in Models of Focal Retinal Degeneration. Invest Ophthalmol ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Complement 3 Convertase. Complement C3-C5 Convertases. Growth Substances, Pigments, and Vitamins. Growth Substances. ...
Alternative Complement Pathway C3 C5 Convertase Pharmacology, Toxicology and Pharmaceutical Science 85% ...
The complement convertases probably recognises their substrates C3 and C5 in a manner similar to this, see Laursen et al (2011 ... Figure. Models of the very large proteolytic complexes cleaving C3, C4 and C5. Left, A model of C5 (blue) bound to the cobra ... We have determined structures of the key proteins C3, C4, and C5 in a variety of functional states, and hereby been able to ... Structure-Guided Engineering of a Complement Component C3-Binding Nanobody Improves Specificity and Adds Cofactor Activity. ...
C2a, a serine protease, then combines with complement factor 4b to generate the C3 or C5 convertase. ... Cleaves C3 in the alpha-chain to yield C3a and C3b. Cleaves C5 in the alpha-chain to yield C5a and C5b. Both cleavages take ... Component C2 which is part of the classical pathway of the complement system is cleaved by activated factor C1 into two ...
Many novel terminal complement inhibitors are now in clinical development: they all target C5 (as eculizumab), potentially ... At the moment there are three strategies of proximal complement inhibition: anti-C3 agents, anti-factor D agents and anti- ... Many novel terminal complement inhibitors are now in clinical development: they all target C5 (as eculizumab), potentially ... Indeed, we envision a new scenario of therapeutic complement inhibition, where proximal inhibitors (either anti-C3, anti-FD or ...
Alternative Complement Pathway C3 C5 Convertase 11% * Interleukin 1 11% * Side Effect 11% ...
Alternative Complement Pathway C3 C5 Convertase 10% * Nuclear Factor 10% * Protein 10% ...
Alternative Complement Pathway C3 C5 Convertase 100% * Transcription Factor RUNX2 100% * Aorta 74% ...
Alternative Complement Pathway C3 C5 Convertase 50% * Nicotinamide Adenine Dinucleotide Adenosine Diphosphate ...
Complement C3-C5 Convertases Medicin och livsvetenskap 36% Visa fullständigt fingeravtryck Samarbeten och ledande ... Nuclear roles of complement proteins CD59 and C3 in genetic regulation of cell function. Maziarz, K., King, B. & Blom, A. ... I am currently studying novel roles of complement proteins, with focuses on C3 and CD59 and how they affect cellular function ... The complement receptor C3AR constitutes a novel therapeutic target in NPM1-mutated AML. von Palffy, S., Thorsson, H., Peña- ...
  • These enzymes are involved in a multitude of physiological reactions from simple digestion of food proteins to highly regulated cascades (e.g., the blood-clotting cascade, the complement system, apoptosis pathways, and the invertebrate prophenoloxidase-activating cascade). (stratech.co.uk)
  • An important component in the innate immune system is the complement system, formed by more than 50 soluble and membrane bound proteins. (au.dk)
  • The soluble proteins are present in extracellular fluids, while the membrane proteins are located in membranes surrounding many of our cells, where they transmit the extracellular danger signal into intracellular signaling, protect our own cells from complement, and contributes to clearance of pathogens and host cells targeted by complement opsonization. (au.dk)
  • We have determined structures of the key proteins C3, C4, and C5 in a variety of functional states, and hereby been able to propose how these proteins are proteolytically cleaved by enzymes assembled and activated in response to danger signals (see figure). (au.dk)
  • I am currently studying novel roles of complement proteins, with focuses on C3 and CD59 and how they affect cellular function in various systems, with particular focus within the pancreatic islet. (lu.se)
  • In vivo, regulation of complement at the C3 and C5 activation steps is provided by both plasma and membrane proteins. (justia.com)
  • The plasma protein inhibitors are factor H and C4-binding protein, and the regulatory membrane proteins located on cell surfaces are complement receptors 1 (CR1), decay-accelerating factor (DAF), and membrane cofactor protein (MCP). (justia.com)
  • These proteins inhibit the C3 and C5 convertases (multi-subunit proteases), by promoting dissociation of the multisubunit complexes and/or by inactivating the complexes through proteolysis (catalyzed by factor I). Several pharmacological agents that regulate or modulate complement activity have been identified by in vitro assay, but most have been shown in vivo to be of low activity or toxic. (justia.com)
  • In order to understand the structural basis for the physico-chemical stability of CVF,Bb, we have created recombinant hybrid proteins of CVF and human C3, based on structural differences between CVF and human C3b in the C-terminal C345C domain. (bvsalud.org)
  • Here we describe three human C3/CVF hybrid proteins which differ in only one, two, or five amino acid residues from earlier described hybrid proteins. (bvsalud.org)
  • In all three cases, the hybrid proteins containing CVF residues form more stable convertases, and exhibit stronger complement-depletion activity than hybrid proteins with human C3 residues. (bvsalud.org)
  • 10 This distinction is not absolute because genetic defects in complement proteins have been identified in secondary TMA. (jrheum.org)
  • The complement system is simply a collection of small proteins, dispersed in blood plasma in their inactive forms like mines in a minefield, waiting to be triggered by immune complexes, foreign material, damaged cells, etc. (ncl.ac.uk)
  • In this chaotic cascade of protein-protein interactions, regulatory proteins exist to inactivate complement and prevent 'unwanted explosions', much like a dedicated bomb defusal squad. (ncl.ac.uk)
  • But imagine if these 'bombs' could somehow go rogue, perhaps through mutations that result in an altered protein function, or autoantibodies against regulatory proteins that tip the balance of complement control. (ncl.ac.uk)
  • E.g. loss of CFH inhibition (mutations in CFH or auto-antibodies to CFH), CFH deregulation (from altered CFHR proteins), autoantibodies that stabilize C3 convertase (C3 nephritic factor), or impaired inactivation of C3b. (glomcon.org)
  • This results in overactivity of C3 convertase and then C5 convertase, with resulting deposition of complement proteins in the glomerulus. (glomcon.org)
  • 2 The resulting C3bBb can bind to other C3 proteins, leading to a positive feedback loop of complement activation. (drugbank.com)
  • Purified human complement Factor B. Factor B is one of the proteins unique to the Alternative Complement Pathway. (quidel.com)
  • The complement system consists of more than 35 soluble and cell-bound proteins, 12 of which are directly involved in the complement pathways. (dadamo.com)
  • The functions of the complement proteins of innate immunity are governed by the weak interactions between the activated proteins and their regulators. (silverchair.com)
  • In HAE types I and II, complement proteins C2 and C4 are low. (mastattack.org)
  • In blood, complement proteins are a major component and perhaps therefore most of these were identified already decades ago. (lu.se)
  • Considering the destructive potential of the complement system, it is no surprise that nearly half of the system's proteins are involved in its inhibition. (lu.se)
  • Some microorganisms either produce a functional mimic of a complement regulatory protein or hijack host's regulatory proteins. (lu.se)
  • C3 convertase can be used to refer to the form produced in the alternative pathway (C3bBb) or the classical and lectin pathways (C4bC2b, formerly C4b2a). (wikipedia.org)
  • Since C3 convertases cleave C3 to produce C3b which can then form an additional C3 convertase through the alternative pathway, this is a potential mechanism of signal amplification in the complement cascade resulting in the deposition of large numbers of C3b molecules on the surface of activating particles, enabling opsonisation and acute local inflammation. (wikipedia.org)
  • It is a membrane protein and regulates also C5 convertase of the classical and alternative pathway. (wikipedia.org)
  • C4 binding protein (C4BP) interferes with the assembly of the membrane-bound C3 convertase of the classical pathway. (wikipedia.org)
  • C3 nephritic factor is a serum immunoglobulin G that interacts with the C3bBb alternative pathway convertase to activate C3. (medscape.com)
  • Adipocytes synthesize C3, factor B, and factor D (adipsin), which allows C3bBb to be formed locally, but which usually does not result in the activation of the terminal lytic part of the complement pathway (C5-9).The IgG antibody, C3Nef, prevents the alternative complement C3-convertase C3Bb from dissociative inactivation, resulting in adipocyte lysis. (medscape.com)
  • Adipocytes synthesize factor D, the limiting component of the alternative complement pathway, which cleaves C3-bound factor B to its active enzymatic form. (medscape.com)
  • Activation of alternate complement pathway has been demonstrated in most patients. (medscape.com)
  • Activation of an alternate complement pathway, C3 hypocomplementemia with lysis of adipocytes induced by C3NeF, has been implicated. (medscape.com)
  • Another form of lipodystrophy that fits the classification of "acquired partial" not involving the complement pathway is associated with hematopoietic stem cell transplantation (HSCT) to treat leukemia or neuroblastoma. (medscape.com)
  • Component C2 which is part of the classical pathway of the complement system is cleaved by activated factor C1 into two fragments: C2b and C2a. (lu.se)
  • Here, we present the first evidence that T. cruzi activates the complement lectin pathway. (herts.ac.uk)
  • In addition, we demonstrate that the infectious stage of T. cruzi inhibits the lectin pathway activation and complement killing expressing the complement C2 receptor inhibitor trispanning (CRIT) protein. (herts.ac.uk)
  • Our findings establish that the complement lectin pathway recognizes T. cruzi and provide molecular insights into how the infectious stage inhibits this activation to resist complement system killing. (herts.ac.uk)
  • Activation of C3 by complement pathway C3 convertases and its subsequent attachment to target surface leads to assembly of the membrane attack complex and ultimately to damage or lysis of the target cells. (justia.com)
  • [1] The protein encoded by this gene is part of the classical pathway of the complement system , acting as a multi-domain serine protease. (wikidoc.org)
  • Most importantly, it associates with its 'maker' to form C5 convertase that drives the terminal pathway, ultimately creating a membrane attack complex that literally rips a hole on a targeted membrane! (ncl.ac.uk)
  • A major breakthrough in complement therapeutics came in 2007, with the release of eculizumab (Soliris), a terminal pathway inhibitor that proved to be effective in treating aHUS and PNH. (ncl.ac.uk)
  • This interaction results in the formation of C4b2a, which is the classic pathway C3b convertase. (medscape.com)
  • The alternative pathway utilizes C3 and factors B and D to form the alternative pathway convertase C3b,Bb. (medscape.com)
  • Small amounts of C3b are constantly being formed in the circulation, which are inactivated by factors H and I. The binding of C3b to a foreign antigen decreases its affinity for factor H and allows for the formation of increasing amounts of the alternate pathway convertase. (medscape.com)
  • The classic and alternate pathway convertases cause C3 activation, forming C3a and C3b. (medscape.com)
  • C3b is an opsonin itself, and C3 convertase facilitates the activation of the terminal pathway and the formation of the membrane attack complex C5b-9. (medscape.com)
  • The underlying pathophysiology of C3 glomerulopathy involves dysregulation and overactivation of the alternative pathway of the complement system. (glomcon.org)
  • In particular, the lectin pathway of complement is activated by damage-associated molecular patterns (DAMPs) on the surface of injured endothelial cells. (biomedcentral.com)
  • In this article, we review the role of the complement system in HSCT-TMA pathogenesis, with a focus on the lectin pathway. (biomedcentral.com)
  • Endothelial injury triggers activation of the complement system-significantly through the lectin pathway-via altered cell-surface patterns on injured endothelial cells, initiating an inflammatory response [ 7 ]. (biomedcentral.com)
  • Here we discuss evidence for the role of lectin pathway activation in endothelial injury-associated complications of HSCT and how targeting complement activity may provide therapeutic benefit for patients with HSCT-TMA. (biomedcentral.com)
  • The alternative complement system pathway is spontaneously activated due to the absence of CD55, leading to activation of a C3 convertase that that cleaves C3 into C3a and C3b. (drugbank.com)
  • Bb can then become the enzymatically active constituent of the C3 and C5 alternative pathway convertases. (quidel.com)
  • the classical pathway initiated by antibodies bound to the surface of foreign bodies and the alternative and lectin pathways that provide an antibody-independent mechanism for complement activation, induced by the presence of bacteria and other micro-organisms. (abcam.com)
  • C2a remains associated with C4b to form the classical pathway C3 convertase (C4b2a). (abcam.com)
  • The latter binds to the C3 convertase complex to form C4b2a3b, the classical pathway C5 convertase. (abcam.com)
  • Mannan-binding lectin (MBL) and MBL-associated serine proteases (MASPs) are involved in the initial step of the lectin pathway of complement activation. (abcam.com)
  • Following these cleavage events, complement pathway activation continues as in the classical pathway. (abcam.com)
  • The alternative pathway of complement activation is in a constant state of low-level activation (known as tickover). (abcam.com)
  • C4A: C4 plays a central role in the activation of the classical pathway of the complement system. (assaygenie.com)
  • The remaining alpha chain fragment C4b is the major activation product and is an essential subunit of the C3 convertase (C4b2a) and the C5 convertase (C3bC4b2a) enzymes of the classical complement pathway. (assaygenie.com)
  • A rare defect of the complement classical pathway associated with the development of autoimmune disorders, mainly systemic lupus with or without associated glomerulonephritis. (assaygenie.com)
  • This gene encodes the basic form of complement factor 4, part of the classical activation pathway. (assaygenie.com)
  • It is important in regulating the complement pathway, preventing unnecessary inflammation which can damage the host tissue. (bio-rad-antibodies.com)
  • Deficiencies of an early component of the classical complement pathway (C1q, C1r, C1s, C2, C4) have been associated with lupus like autoimmune conditions. (mastattack.org)
  • The classical, lectin, and alternative pathways converge into a final common pathway when C3 convertase (C3 con) cleaves C3 into C3a and C3b. (msdmanuals.com)
  • Classical pathway components are labeled with a C and a number (eg, C1, C3), based on the order in which they were identified. (msdmanuals.com)
  • Alternate pathway activation occurs when components of microbial cell surfaces (eg, yeast walls, bacterial cell wall lipopolysaccharide [endotoxin]) or immunoglobulin (eg, nephritic factor, aggregated IgA) cleave small amounts of C3. (msdmanuals.com)
  • Invading pathogens activate complement either spontaneously due to differences in envelope/membrane composition compared to host (alternative and lectin pathways) or through antibody binding (classical pathway). (lu.se)
  • Cleaves C3 in the alpha-chain to yield C3a and C3b. (lu.se)
  • Cleaves C5 in the alpha-chain to yield C5a and C5b. (lu.se)
  • This complex is a C3/C5 convertase that cleaves both complement components C3 and C5. (expasy.org)
  • CVF, like C3b, forms a convertase with factor B. This bimolecular complex CVF, Bb is an enzyme that cleaves C3 and C5. (bvsalud.org)
  • C3b cleaves C5 into C5a and C5b. (drugbank.com)
  • C2a in the convertase complex cleaves C3 releasing C3a and C3b. (abcam.com)
  • This complex cleaves C5 leading to the release of C5a and C5b. (abcam.com)
  • Cleavage of complement C3 by a free floating convertase, thrombin, plasmin or even a bacterial enzyme leads to formation of C3a and C3b fragments. (wikipedia.org)
  • The C3 convertase formed in the classical or lectin pathways is formed of C4b and C2b instead (NB: C2b, the larger fragment of C2 cleavage, was formerly known as C2a). (wikipedia.org)
  • Three activating pathways comprise the complement cascade (classical, mannose-binding lectin, and alternative), and all converge on the proteolytic cleavage of C3 to generate an arsenal of inflammatory mediators, including the opsonin C3b and the anaphylatoxin C3a. (molvis.org)
  • If left to propagate, the accumulation of C3b triggers cleavage of C5 to produce C5a and C5b, with the latter inducing the assembly of a membrane attack complex (MAC) that binds to cell surfaces, forming transmembrane channels that cause cytolysis or apoptosis of the target cells. (molvis.org)
  • The current dogma of CFH function is to downregulate the complement cascade, by inhibiting cleavage of C3, limiting the generation of byproducts that spur inflammation. (molvis.org)
  • Biochemical studies revealed that the CRIT extracellular domain 1 inhibits MASP2 cleavage of C2 factor and thereby impairs C3 convertase formation. (herts.ac.uk)
  • Complement iC3b, Human, is a native form that is formed by the cleavage of C3b by Factor I in the presence of Factor H, CR1, or membrane cofactor protein. (emdmillipore.com)
  • In both C3GN and DDD, C3dg was the predominant C3 cleavage product detected. (glomcon.org)
  • Complement factor H functions as a cofactor in the inactivation of C3b by factor I. It makes C3b susceptible to cleavage by factor I, resulting in iC3b. (bio-rad-antibodies.com)
  • C3 cleavage may result in formation of the membrane attack complex (MAC), the cytotoxic component of the complement system. (msdmanuals.com)
  • Most inhibitors act on complement convertases through increased dissociation of these enzymatic complexes (acceleration of decay) or through promoting enzymatic cleavage of activated complement factors C3b or C4b by a serine proteinase factor I (FI). (lu.se)
  • C3 convertase (C4bC2b, formerly C4b2a) belongs to family of serine proteases and is necessary in innate immunity as a part of the complement system which eventuate in opsonisation of particles, release of inflammatory peptides, C5 convertase formation and cell lysis. (wikipedia.org)
  • The larger C2b produced by C2 hydrolysis attaches to the C4b to form the classical C3 convertase, C4b2b (formerly called C4b2a). (wikipedia.org)
  • some sources now refer to the larger fragment of C2 as C2b, making the C3 convertase C4b2b, whereas older sources refer to the larger fragment of C2 as C2a, making the C3 convertase C4b2a). (wikidoc.org)
  • The long term aim of our research is therefore also to develop selective inhibitors of the complement and other branches of innate immunity. (au.dk)
  • These two latter pathogenic mechanisms are the target of novel strategies of anti-complement treatments, which can be split into terminal and proximal complement inhibitors. (frontiersin.org)
  • Many novel terminal complement inhibitors are now in clinical development: they all target C5 (as eculizumab), potentially paralleling the efficacy and safety profile of eculizumab. (frontiersin.org)
  • Indeed, proximal inhibitors are designed to interfere with early phases of complement activation, eventually preventing C3-mediated extravascular hemolysis in addition to intravascular hemolysis. (frontiersin.org)
  • Indeed, we envision a new scenario of therapeutic complement inhibition, where proximal inhibitors (either anti-C3, anti-FD or anti-FB) may prove effective for the treatment of PNH, either in monotherapy or in combination with anti-C5 agents, eventually leading to drastic improvement of hematological response. (frontiersin.org)
  • To date, there are no inhibitors of complement activation used in the clinic, though certain candidates for clinical use exist, specifically, a recombinant form of complement receptor 1 known as soluble complement receptor 1 (sCR1) and a humanized monoclonal anti-C5 antibody (5G1.1-scFv). (justia.com)
  • Advancements in the understanding of the etiopathogenesis of aHUS paved the way for the successful development of anticomplement therapies (complement C5 inhibitors), which have revolutionized the treatment of aHUS. (jrheum.org)
  • Several complement inhibitors targeting various complement pathways are in clinical trials for the treatment of HSCT-TMA. (biomedcentral.com)
  • Learn about the three pathways lead to complement activation and some of their key inhibitors. (abcam.com)
  • Several of these inhibitors circulate in blood whereas others are expressed on virtually all cells of the body to protect self-tissue from complement attack. (lu.se)
  • Model of the adipocyte destruction in acquired partial lipodystrophy showing complement activation at the adipocyte surface resulting in adipocyte lysis. (medscape.com)
  • Properdin (Factor P) is the only known positive regulator of complement activation that stabilizes the alternative C3 convertase (C3bBb). (wikipedia.org)
  • Decay-accelerating factor (DAF) is another negative regulator of C3 convertase. (wikipedia.org)
  • Lipodystrophy is often associated with glomerulonephritis, low C3 serum complement levels, and the presence of a C3 nephritic factor. (medscape.com)
  • C3 nephritic factor induces the lysis of adipocytes that secrete adipsin, a product identical to complement factor D. The distribution of the lipoatrophy is postulated to be dictated by the variable amounts of adipsin secreted by the adipocytes at different locations. (medscape.com)
  • [ 4 ] Patients with MPGN are more likely to have low C3 levels and the presence of C3 nephritic factor (C3NeF). (medscape.com)
  • The C3 KO mice exhibited protection against photoreceptor cell death following photo-oxidative damage, which was associated with a reduction in immunoreactivity for the stress-related factor GFAP. (molvis.org)
  • The activation of an immune cascade known as the complement system is a crucial factor in the etiology of age-related macular degeneration (AMD). (molvis.org)
  • Left, A model of C5 (blue) bound to the cobra venom factor (orange) and the catalytically active serine protase Bb (grey). (au.dk)
  • C2a, a serine protease, then combines with complement factor 4b to generate the C3 or C5 convertase. (lu.se)
  • At the moment there are three strategies of proximal complement inhibition: anti-C3 agents, anti-factor D agents and anti-factor B agents. (frontiersin.org)
  • Cobra venom factor (CVF) is the complement-activating protein in cobra venom. (bvsalud.org)
  • Three bonds between CVF residues and Factor Bb residues could be identified by crystallographic modeling that contribute to the greater stability of the convertases. (bvsalud.org)
  • C3 nephritic factor and SLE: report of four cases and review of the literature. (medscape.com)
  • A further complicating factor is the cross-talk between complement, neutrophils, and coagulation pathways in the pathophysiology of TMA. (jrheum.org)
  • 7 - 9 A TMA is called "primary" when a genetic or acquired defect in a complement protein is identified (as in atypical hemolytic uremic syndrome [aHUS]) or "secondary" when occurring in the context of another disease process or factor such as infection, autoimmune disease, malignancy, or drugs. (jrheum.org)
  • One of these stories began in 1891, when Hans Ernst August Buchner discovered a blood serum factor responsible for killing bacteria, naming it 'alexin', later renamed as ' complement ' by Paul Erlich at the turn of the 20th century. (ncl.ac.uk)
  • The second group of receptors reacts with small complement fragments (C4a, C3a, C5a) as well as with C1q, Ba, Bb and factor H. Stimulation of these receptors results in various biological effects (chemotaxis, secretion of vasoactive amines, mediators of the inflammatory and anaphylactic reaction etc. (dadamo.com)
  • Mouse anti Human Complement Factor H antibody, clone 028B-244.2.10X (10-10) recognizes human complement factor H which exists in 2 forms. (bio-rad-antibodies.com)
  • Factor H also inhibits the formation of the C3bBb complex (C3 convertase) and increases the rate of dissociation of both C3 convertase and the (C3b)NBB complex (C5 convertase). (bio-rad-antibodies.com)
  • Anaphylatoxins are proteolytic products of the serine proteases of the complement system: C3a, C4a and C5a. (dadamo.com)
  • through activation of the complement system via MBL-associated serine proteases (MASPs). (silverchair.com)
  • Type I human complement C2 deficiency. (wikidoc.org)
  • Primary structure of human complement component C2. (wikidoc.org)
  • Quidel's purified human complement components are useful in a wide variety of immunochemical and research applications. (quidel.com)
  • Our group investigates the physiological regulation of human complement system as well as pathologic situations when this regulation fails. (lu.se)
  • These data improve our understanding of the impact of C3 inhibition in subretinal inflammation and inform the development of treatments for targeting complement activation in diseases such as AMD. (molvis.org)
  • In this review we discuss current evidence that complement activation contributes to progression of CKD, how complement could cause renal inflammation and whether complement inhibition would slow progression of renal disease. (wjgnet.com)
  • Complement activation occurs in progressive chronic kidney disease and may contribute to the chronic inflammation that is characteristically found in the kidney. (wjgnet.com)
  • It is therefore possible that inhibiting complement activation would reduce inflammation, lead to reduced fibrosis and preservation of renal function. (wjgnet.com)
  • As part of the innate immune system, complement enhances the ability of antibodies and other immune cells to clear pathogens, also playing roles in inflammation and killing of microbes. (ncl.ac.uk)
  • Endothelial injury can trigger activation of the complement system, promoting inflammation and the development of endothelial injury syndromes, ultimately leading to organ damage and failure. (biomedcentral.com)
  • The complement system is a potent mechanism for initiating and amplifying inflammation. (dadamo.com)
  • Inflammation of the renal glomeruli ( KIDNEY GLOMERULUS ) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. (lookformedical.com)
  • emerged implicating molecules canonically involved in the immune system and inflammation accompanying neurodegeneration (e.g. classical complement cascade) as important players in the normal elimination of synapses in the developing nervous system. (silverchair.com)
  • Thus, the alternative C3 convertase (C3bBb) is formed and is able to cleave C3 via its dimeric Bb subunit. (wikipedia.org)
  • describes the use of a phage-displayed combinatorial random peptide library to identify a 27-residue peptide that binds to C3 and inhibits complement activation. (justia.com)
  • It binds to a number of micro-organisms and promotes killing of these through complement activation either directly or through opsonization. (silverchair.com)
  • Inappropriate activation of complement may lead to host cell damage. (justia.com)
  • Together, activation of complement and the coagulation cascade lead to a procoagulant state that may result in development of HSCT-TMA. (biomedcentral.com)
  • Complement activation is known to occur in many diverse renal diseases, including glomerulonephritis, thrombotic microangiopathies and transplant rejection. (wjgnet.com)
  • The physiological relevance of complement is demonstrated by diseases affecting patients lacking complement components: recurrent infections, autoimmune diseases and glomerulonephritis. (lu.se)
  • Regrettably, uncontrolled complement activation also contributes significantly to pathology of many diseases (some examples: rheumatoid arthritis, ischemia/reperfusion injury, glomerulonephritis, multiple sclerosis, Alzheimer´s, hyperacute rejection of grafts) due to the fact that complement sometimes misdirects its activities towards own tissues. (lu.se)
  • Whereas both, CVF, Bb and C3b, Bb exhibit spontaneous decay-dissociation into the respective subunits, thereby eliminating the enzymatic activity, the CVF, Bb convertase is physico-chemically far more stable, decaying with a half-life that is more than two orders of magnitude slower than that of C3b,Bb. (bvsalud.org)
  • C3b, the larger fragment, becomes covalently attached to the microbial surface or to the antibody molecules through the thioester domain at the site of complement activation. (wikipedia.org)
  • 8 , 11 - 14 Numerous stimuli can drive the activation of the complement system, including apoptotic debris, pathogens, and antibody-antigen complexes, in addition to ischemia-reperfusion injuries associated with organ transplantation. (jrheum.org)
  • The trimer provides a surface for interaction between the antigen-antibody complex and other complement components. (assaygenie.com)
  • T. cruzi infectious stages resist complement-mediated killing by expressing surface receptors, which dissociate or prevent C3 convertase formation. (herts.ac.uk)
  • Different fragments, released from individual components during complement activation, operate by a non-cytolytic mechanism through specific receptors present on various cell types. (dadamo.com)
  • From the functional standpoint, complement receptors can be divided into two types: the adherent type and the other receptors. (dadamo.com)
  • I completed my PhD within the field of cancer immunotherapy, working with cytotoxic T cells, before moving to Sweden and starting to work with the complement system. (lu.se)
  • The complement system is the first line of defence against pathogen infection and can be activated by the classic, alternative and lectin pathways. (herts.ac.uk)
  • Trypanosoma cruzi, the causative agent of Chagas disease, has to evade complement system killing and invade the host cells to progress in infection. (herts.ac.uk)
  • In mammals , complement component C3 is the most important protein of the complement system as it is activated by all three pathways (classical, lectin, and alternative pathways), and its various activation products are crucial for mediating, directly or indirectly, virtually all biological functions of complement. (expasy.org)
  • The complement system is the first line of immunological defense against foreign pathogens. (justia.com)
  • The complement system is an integral part of the innate immune system but also augments adaptive immune responses. (wjgnet.com)
  • The innate immune system comprises physical, chemical, and biological barriers (e.g., the skin , gastric acid , commensal organisms ) and both cellular (e.g., granulocytes , natural killer cells , mast cells ) and humoral ( complement system ) defense mechanisms . (amboss.com)
  • Now, we know that complement system, protecting the host through innate immune system, could trigger harmful endothelial pathogenesis. (biomedcentral.com)
  • The complement system is a tightly regulated, cascading protein network representing a key component linking the innate and humoral immune systems. (jrheum.org)
  • Therefore, a clearer understanding of the role of the complement system in TMA associated with other conditions will help to identify patients who would benefit from these therapies. (jrheum.org)
  • The complement system is a tightly regulated, cascading protein network that performs multiple roles in homeostasis and disease prevention and is a key component of both the innate and the humoral immune systems. (jrheum.org)
  • Activation of the complement system occurs through the classical (CP), lectin (LP), or alternative (AP) pathways. (jrheum.org)
  • All three activation pathways in this complex system lead to the generation of C3 convertase, a protease made up of other activated complement protein fragments, cleaving C3 to make C3a and C3b . (ncl.ac.uk)
  • The normal complement system consists of the classic and alternative pathways. (medscape.com)
  • The complement system is a heat-labile component of blood that confers bactericidal properties. (abcam.com)
  • The complement system helps clear pathogens from an organism. (dadamo.com)
  • The actions of the complement system affect both innate immunity and acquired immunity. (dadamo.com)
  • The complement system influence the activity of numerous cells, tissues and physiological mechanism of the body. (dadamo.com)
  • In addition, the following are also involved: antimicrobial peptides, natural antibodies, the complement system, NK cells, and gamma delta T lymphocytes [ 3 ] . (encyclopedia.pub)
  • Another inflammatory process associated with postprandial lipaemia is the activation of the complement system. (silverchair.com)
  • The complement system is an enzyme cascade that helps defend against infection. (msdmanuals.com)
  • Dysregulation of the complement cascade contributes to a variety of retinal dystrophies, including age-related macular degeneration (AMD). (molvis.org)
  • This invention relates to activation of the complement cascade in the body. (justia.com)
  • C1 is the first molecule in the classical complement cascade and comprises C1q and two molecules of C1r and C1s respectively. (abcam.com)
  • Activation of the complement cascade, with the formation of the effector MAC unit, results in cytotoxic and cytolytic reactions. (dadamo.com)
  • The main functions of the complement cascade and its role in the acute inflammatory reaction are summarized in Table 1. (dadamo.com)
  • with disease relevance are candidates for therapeutic intervention, namely caspase-mediated apoptosis, blood coagulation, the matrix metalloproteinase cascade and the complement cascade. (silverchair.com)
  • This leads to initiation of cascade of enzymatic cleavages and formation of crucial enzymatic complexes (C3 and C5 convertases), release of pro-inflammatory anaphylatoxins (C5a, C3a) that attract white blood cells and finally formation of membrane attack complex (MAC, pore in a membrane). (lu.se)
  • Compounds comprising peptides and peptidomimetics capable of binding the C3 protein and inhibiting complement activation are disclosed. (justia.com)
  • In particular, this invention provides peptides and peptidomimetics capable of binding the C3 protein and inhibiting complement activation. (justia.com)
  • Also Mg2+ ions are necessary for forming a functional C3 convertase. (wikipedia.org)
  • In venom , complement C3 homolog is a structural and functional analog of complement component C3b, the activated form of C3. (expasy.org)
  • CVF is a structural and functional analog of complement component C3. (bvsalud.org)
  • All Quidel complement components are tested for functional activity in a standard lytic or applicable functional assay and for biochemical purity by SDS- polyacrylamide gel electrophoresis. (quidel.com)
  • Pegcetacoplan is a complement inhibitor indicated in the treatment of adults with paroxysmal nocturnal hemoglobinuria. (drugbank.com)
  • Pegcetacoplan is a complement inhibitor indicated in the treatment of paroxysmal nocturnal hemoglobinuria (PNH). (drugbank.com)
  • Pegcetacoplan is a complement C3 inhibitor that prevents complement-mediated hemolysis of red blood cells in patients with paroxysomal nocturnal hemoglobinuria. (drugbank.com)
  • In a Mayo clinic cohort of patients with C3 glomerulopathy, three basic triggers were identified: monoclonal Ig (especially in DDD), infections, and autoimmune disease. (glomcon.org)
  • 4 , 13 Complement plays a crucial role in host defense against foreign bodies by promoting phagocyte-mediated clearance of cell debris through activation of an inflammatory response, opsonization of pathogens, and lysis of susceptible bacteria and cells. (jrheum.org)
  • Complement is effective in attacking pathogens, but not the human host, and imbalances in this process can lead to disease conditions. (silverchair.com)
  • However, only in recent years it has become apparent that complement not only plays a major role in innate defense against pathogens but also identifies foreign materials and removes waste (immune complexes and dying cells). (lu.se)
  • The functions of complement include the attraction of inflammatory cells, opsonization to promote phagocytosis, immune complex clearance and direct microbial killing through the formation of the membrane attack complex (MAC). (abcam.com)
  • Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hematological disorder characterized by complement-mediated intravascular hemolysis, bone marrow failure, and severe thrombophilia ( 1 ). (frontiersin.org)
  • Models of the very large proteolytic complexes cleaving C3, C4 and C5. (au.dk)
  • C3 is unique in that it possesses a rich architecture that provides a multiplicity of diverse ligand binding sites that are important in immune surveillance and immune response pathways. (justia.com)
  • By modulating and reducing complement activity rather than turning it off, homeostasis could be restored thus treating disease while simultaneously maintaining the role of complement in immune defense! (ncl.ac.uk)
  • CR1 on erythrocytes may bind circulating immune complexes (that had activated complement) and transport them to the liver where the immune complexes are partially degraded and thus become more soluble. (dadamo.com)
  • The results show that the absence of C3 mitigates the phagocytosis of photoreceptors by macrophages in the outer retina, and the net impact of C3 depletion is neuroprotective in the context of photo-oxidative damage. (molvis.org)
  • Therefore, CVF continuously activates complement, resulting in the depletion of complement activity. (expasy.org)
  • In addition, CVF, Bb is completely resistant to inactivation by Factors H and I. These two properties of CVF, Bb allow continuous activation of C3 and C5, and complement depletion in serum. (bvsalud.org)
  • Anti-complement Treatment for Paroxysmal Nocturnal Hemoglobinuria: Time for Proximal Complement Inhibition? (frontiersin.org)
  • However, novel anti-C5 agents do not improve hematological response to eculizumab, even if some seem associated with a lower risk of breakthrough hemolysis caused by pharmacokinetic reasons (it remains unclear whether more effective inhibition of C5 is possible and clinically beneficial). (frontiersin.org)
  • Preliminary data clearly demonstrate that proximal complement inhibition is pharmacologically feasible and apparently safe, and may drastically improve the hematological response to complement inhibition in PNH. (frontiersin.org)
  • But in the end, complement-mediated diseases constantly beg the question of the level of inhibition required, raising much interest as an ideal therapeutic choice. (ncl.ac.uk)
  • The involvement of complement is the reason behind complications such as age-related macular degeneration, atypical haemolytic uraemic syndrome (aHUS) and especially paroxysmal nocturnal haemoglobinuria (PNH), characterised by complement-mediated destruction of red blood cells! (ncl.ac.uk)
  • The role of complement dysregulation on vascular endothelial cells has been well established in atypical hemolytic uremic syndrome (aHUS), a thrombotic microangiopathy (TMA) characterized by microangiopathic hemolytic anemia, thrombocytopenia, and target organ injury. (jrheum.org)
  • The smaller fragment called C3a serves to increase vascular permeability and promote extravasation of phagocytes, while the larger C3b fragment can be used as an opsonin or bind to either type of C3 convertase to form the trimolecular C5 convertase to activate C5 for the membrane attack complex. (wikipedia.org)
  • Defects in C4A are the cause of complement component 4A deficiency (C4AD). (assaygenie.com)
  • Venom complement C3 homologs are heterotrimers composed of alpha, beta and gamma chains that are processed from a single precursor. (expasy.org)
  • Complement is implicated in several disease states, including various autoimmune diseases, and has been found to contribute to other clinical conditions such as adult respiratory syndrome, heart attack, rejection following xenotransplantation and burn injuries. (justia.com)
  • This review aims to provide an assessment of the nature and extent of complement involvement in TMA associated with autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, and scleroderma renal crisis. (jrheum.org)
  • 10 This review aims to provide an assessment of the nature and extent of complement involvement in the underlying pathophysiology of TMA associated with autoimmune diseases that will help to stratify patients for targeted therapy. (jrheum.org)
  • When expanding the autoimmune profile to include "lupus-like" conditions such as those often associated with complement deficiencies, a much higher prevalence of autoantibodies was found in HAE patients. (mastattack.org)
  • C3 convertase formation can occur in three different pathways: the classical, lectin, and alternative pathways. (wikipedia.org)
  • The central component of complement, C3, is expressed in abundance by macrophages in the outer retina, and its ablation suppresses photoreceptor death in experimental photo-oxidative damage. (molvis.org)
  • Complement component C3 plays a central role in activation of all three pathways. (justia.com)
  • Interindividual copy- number variation (CNV) of complement component C4 and associated polymorphisms result in different susceptibilities to SLE. (assaygenie.com)
  • Its central component C3 has been associated with obesity, coronary sclerosis, the metabolic. (silverchair.com)
  • We investigate the effect of C3 ablation on macrophage activity and phagocytosis by outer retinal macrophages during photo-oxidative damage. (molvis.org)
  • Macrophage abundance and phagocytosis were assessed with immunolabeling for pan-macrophage and phagocytic markers, in conjunction with TUNEL staining in cohorts of C3 KO and WT mice. (molvis.org)
  • MBL may also influence phagocytosis in the absence of complement activation through. (silverchair.com)