A class of C-type lectins that target the carbohydrate structures found on invading pathogens. Binding of collectins to microorganisms results in their agglutination and enhanced clearance. Collectins form trimers that may assemble into larger oligomers. Each collectin polypeptide chain consists of four regions: a relatively short N-terminal region, a collagen-like region, an alpha-helical coiled-coil region, and carbohydrate-binding region.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens and enhances their opsinization and killing by phagocytic cells. Surfactant protein D contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens, resulting in their opsinization. It also stimulates MACROPHAGES to undergo PHAGOCYTOSIS of microorganisms. Surfactant protein A contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
All blood proteins except albumin ( = SERUM ALBUMIN, which is not a globulin) and FIBRINOGEN (which is not in the serum). The serum globulins are subdivided into ALPHA-GLOBULINS; BETA-GLOBULINS; and GAMMA-GLOBULINS on the basis of their electrophoretic mobilities. (From Dorland, 28th ed)
Proteins found in the LUNG that act as PULMONARY SURFACTANTS.
Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI.
A specific mannose-binding member of the collectin family of lectins. It binds to carbohydrate groups on invading pathogens and plays a key role in the MANNOSE-BINDING LECTIN COMPLEMENT PATHWAY.
Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
Polysaccharides consisting of mannose units.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
A subcomponent of complement C1, composed of six copies of three polypeptide chains (A, B, and C), each encoded by a separate gene (C1QA; C1QB; C1QC). This complex is arranged in nine subunits (six disulfide-linked dimers of A and B, and three disulfide-linked homodimers of C). C1q has binding sites for antibodies (the heavy chain of IMMUNOGLOBULIN G or IMMUNOGLOBULIN M). The interaction of C1q and immunoglobulin activates the two proenzymes COMPLEMENT C1R and COMPLEMENT C1S, thus initiating the cascade of COMPLEMENT ACTIVATION via the CLASSICAL COMPLEMENT PATHWAY.
Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate.
The aggregation of ERYTHROCYTES by AGGLUTININS, including antibodies, lectins, and viral proteins (HEMAGGLUTINATION, VIRAL).
Round, granular, mononuclear phagocytes found in the alveoli of the lungs. They ingest small inhaled particles resulting in degradation and presentation of the antigen to immunocompetent cells.
The type species of the genus INFLUENZAVIRUS A that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces.
Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Simple sugars, carbohydrates which cannot be decomposed by hydrolysis. They are colorless crystalline substances with a sweet taste and have the same general formula CnH2nOn. (From Dorland, 28th ed)
The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES).
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
A bacterium causing tuberculosis in domestic fowl and other birds. In pigs, it may cause localized and sometimes disseminated disease. The organism occurs occasionally in sheep and cattle. It should be distinguished from the M. avium complex, which infects primarily humans.
Transport proteins that carry specific substances in the blood or across cell membranes.
The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.
A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding.
The mucous membrane lining the RESPIRATORY TRACT, including the NASAL CAVITY; the LARYNX; the TRACHEA; and the BRONCHI tree. The respiratory mucosa consists of various types of epithelial cells ranging from ciliated columnar to simple squamous, mucous GOBLET CELLS, and glands containing both mucous and serous cells.
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
Proteins prepared by recombinant DNA technology.

Two constituents of the initiation complex of the mannan-binding lectin activation pathway of complement are encoded by a single structural gene. (1/252)

Mannan-binding lectin (MBL) forms a multimolecular complex with at least two MBL-associated serine proteases, MASP-1 and MASP-2. This complex initiates the MBL pathway of complement activation by binding to carbohydrate structures present on bacteria, yeast, and viruses. MASP-1 and MASP-2 are composed of modular structural motifs similar to those of the C1q-associated serine proteases C1r and C1s. Another protein of 19 kDa with the same N-terminal sequence as the 76-kDa MASP-2 protein is consistently detected as part of the MBL/MASP complex. In this study, we present the primary structure of this novel MBL-associated plasma protein of 19 kDa, MAp19, and demonstrate that MAp19 and MASP-2 are encoded by two different mRNA species generated by alternative splicing/polyadenylation from one structural gene.  (+info)

C1qRP is a heavily O-glycosylated cell surface protein involved in the regulation of phagocytic activity. (2/252)

C1q, mannose-binding lectin (MBL), and pulmonary surfactant protein A (SPA) interact with human monocytes and macrophages, resulting in the enhancement of phagocytosis of suboptimally opsonized targets. mAbs that recognize a cell surface molecule of 126,000 Mr, designated C1qRP, have been shown to inhibit C1q- and MBL-mediated enhancement of phagocytosis. Similar inhibition of the SPA-mediated enhancement of phagocytosis by these mAbs now suggests that C1qRP is a common component of a receptor for these macromolecules. Ligation of human monocytes with immobilized R3, a IgM mAb recognizing C1qRP, also triggers enhanced phagocytic capacity of these cells in the absence of ligand, verifying the direct involvement of this polypeptide in the regulation of phagocytosis. While the cDNA for C1qRP encodes a 631 amino acid membrane protein, Chinese hamster ovary cells transfected with the cDNA of the C1qRP coding region express a surface glycoprotein with the identical 126,000 Mr in SDS-PAGE as the native C1qRP. Use of glycosylation inhibitors, cleavage of the mature C1qRP with specific glycosidases, and in vitro translation of C1qRP cDNA demonstrated that both posttranslational glycosylation and the nature of the amino acid sequence of the protein contribute to the difference between its predicted m.w. and its migration on SDS-PAGE. These results verify that the cDNA cloned codes for the mature C1qRP, that C1qRP contains a relatively high degree of O-linked glycoslyation, and that C1qRP cross-linked directly by monoclonal anti-C1qRP or engaged as a result of cell surface ligation of SPA, as well as C1q and MBL, enhances phagocytosis.  (+info)

KM+, a mannose-binding lectin from Artocarpus integrifolia: amino acid sequence, predicted tertiary structure, carbohydrate recognition, and analysis of the beta-prism fold. (3/252)

The complete amino acid sequence of the lectin KM+ from Artocarpus integrifolia (jackfruit), which contains 149 residues/mol, is reported and compared to those of other members of the Moraceae family, particularly that of jacalin, also from jackfruit, with which it shares 52% sequence identity. KM+ presents an acetyl-blocked N-terminus and is not posttranslationally modified by proteolytic cleavage as is the case for jacalin. Rather, it possesses a short, glycine-rich linker that unites the regions homologous to the alpha- and beta-chains of jacalin. The results of homology modeling implicate the linker sequence in sterically impeding rotation of the side chain of Asp141 within the binding site pocket. As a consequence, the aspartic acid is locked into a conformation adequate only for the recognition of equatorial hydroxyl groups on the C4 epimeric center (alpha-D-mannose, alpha-D-glucose, and their derivatives). In contrast, the internal cleavage of the jacalin chain permits free rotation of the homologous aspartic acid, rendering it capable of accepting hydrogen bonds from both possible hydroxyl configurations on C4. We suggest that, together with direct recognition of epimeric hydroxyls and the steric exclusion of disfavored ligands, conformational restriction of the lectin should be considered to be a new mechanism by which selectivity may be built into carbohydrate binding sites. Jacalin and KM+ adopt the beta-prism fold already observed in two unrelated protein families. Despite presenting little or no sequence similarity, an analysis of the beta-prism reveals a canonical feature repeatedly present in all such structures, which is based on six largely hydrophobic residues within a beta-hairpin containing two classic-type beta-bulges. We suggest the term beta-prism motif to describe this feature.  (+info)

Molecular cloning of a novel human collectin from liver (CL-L1). (4/252)

Collectins are a C-lectin family with collagen-like sequences and carbohydrate recognition domains. These proteins can bind to carbohydrate antigens of microorganisms and inhibit their infection by direct neutralization and agglutination, the activation of complement through the lectin pathway, and opsonization by collectin receptors. Here we report the cloning of a cDNA encoding human collectin from liver (CL-L1 (collectin liver 1)) that has typical collectin structural characteristics, consisting of an N-terminal cysteine-rich domain, a collagen-like domain, a neck domain, and a carbohydrate recognition domain. The cDNA has an insert of 831 base pairs coding for a protein of 277 amino acid residues. The deduced amino acid sequence shows that this collectin has a unique repeat of four lysine residues in its C-terminal area. Northern blot, Western blot, and reverse transcription-polymerase chain reaction analyses showed that CL-L1 is present mainly in liver as a cytosolic protein and at low levels in placenta. More sensitive analyses by reverse transcription-polymerase chain reactions showed that most tissues (except skeletal muscle) have CL-L1 mRNA. Zoo-blot analysis indicated that CL-L1 is limited to mammals and birds. A chromosomal localization study indicated that the CL-L1 gene localizes to chromosome 8q23-q24.1, different from chromosome 10 of other human collectin genes. Expression studies of fusion proteins lacking the collagen and N-terminal domains produced in Escherichia coli affirmed that CL-L1 binds mannose weakly. CL-L1 and recombinant CL-L1 fusion proteins do not bind to mannan columns. Analysis of the phylogenetic tree of CL-L1 and other collectins indicated that CL-L1 belongs to a fourth subfamily of collectins following the mannan-binding protein, surfactant protein A, and surfactant protein D subfamilies including bovine conglutinin and collectin-43 (CL-43). These findings indicate that CL-L1 may be involved in different biological functions.  (+info)

Isolation, characterization, molecular cloning and molecular modelling of two lectins of different specificities from bluebell (Scilla campanulata) bulbs. (5/252)

Two lectins have been isolated from bluebell (Scilla campanulata) bulbs. From their isolation by affinity chromatography, they are characterized as a mannose-binding lectin (SCAman) and a fetuin-binding lectin (SCAfet). SCAman preferentially binds oligosaccharides with alpha(1,3)- and alpha(1,6)-linked mannopyranosides. It is a tetramer of four identical protomers of approx. 13 kDa containing 119 amino acid residues; it is not glycosylated. The fetuin-binding lectin (SCAfet), which is not inhibited by any simple sugars, is also unglycosylated. It is a tetramer of four identical subunits of approx. 28 kDa containing 244 residues. Each 28 kDa subunit is composed of two 14 kDa domains. Both lectins have been cloned from a cDNA library and sequenced. X-ray crystallographic analysis and molecular modelling studies have demonstrated close relationships in sequence and structure between these lectins and other monocot mannose-binding lectins. A refined model of the molecular evolution of the monocot mannose-binding lectins is proposed.  (+info)

Glomerular deposition of mannose-binding lectin in human glomerulonephritis. (6/252)

BACKGROUND: Mannose-binding lectin (MBL), a member of the collectin family, binds to various oligosaccharides and activates the classical pathway of complement independent from C1q. At present it is unknown whether this so-called lectin pathway of complement activation plays a role in the pathogenesis of human glomerulonephritis. METHODS: Direct immunofluorescence of 84 renal biopsies using an MBL-specific monoclonal antibody and antibodies directed against IgG, IgA, IgM, C1q, C3, and terminal complement complex (TCC) was performed. Serum MBL levels of 50 patients were determined by enzyme-linked immunosorbent assay. RESULTS: MBL was detected in the glomeruli of patients with lupus nephropathy (15 of 16), membranous nephropathy (10/15), membranoproliferative glomerulonephritis type I (5/6) and anti-GBM nephritis (2/4). MBL deposition paralleled that of immunoglobulins, C1q, C3, and TCC but was less intense as compared to C1q. Focal segmental deposits of MBL were present in focal segmental glomerulosclerosis (4/6), IgA nephropathy (3/11), amyloidosis AL (1/4), and advanced renal fibrosis (2/2). Here MBL staining was identical to IgM and C3 and considered an unspecific entrapment of MBL in sclerotic lesions in these cases. No significant difference in MBL serum levels was observed between normal controls and patients with lupus nephritis, membranous nephropathy, membranoproliferative glomerulonephritis, focal segmental sclerosis, minimal change disease or IgA nephropathy. In patients suffering from membranous nephropathy with (n=10) or without (n=5) glomerular MBL deposits serum creatinine, C3, C4, serum protein, and proteinuria were not statistically different. CONCLUSION: MBL is present in the glomeruli of patients with glomerulonephritis involving deposition of IgG and activation of the classical pathway of complement. We propose that MBL binds to agalactosyl oligosaccharides of IgG that terminate in N-acetylglucosamine. The extent to which the lectin pathway of complement contributes to overall complement activation in the glomeruli remains unknown, but is likely to be marginal.  (+info)

The significance of IgG subclasses and mannan-binding lectin (MBL) for susceptibility to infection in apparently healthy adults with IgA deficiency. (7/252)

The aim of this study was to investigate the significance of IgG subclasses and MBL for susceptibility to infection in association with IgA deficiency. The study population consisted of 139 apparently healthy adult blood donors with IgA deficiency and normal serum levels of IgG and IgM, and an increased susceptibility to infection demonstrated at a population level. Additionally, 216 controls matched for age and sex were investigated. IgG4 deficiency was more common and the mean level of IgG4 lower in persons with IgA deficiency than in the controls. No significant associations could be demonstrated between overt IgG subclass deficiencies and increased susceptibility to infection. However, when the mean concentrations of IgG subclasses were analysed with regard to medical history, that of IgG1 was lower in persons who reported recurrent viral respiratory infections, that of IgG3 in persons who had episodes of severe infection in their history, and that of IgG4 in persons who had recurrent mild respiratory infections, compared with those who had no particular history of infections. In contrast, MBL deficiency-alone or combined with that of the IgG subclass-was not associated with increased susceptibility to infection in persons with IgA deficiency. The results indicate that the proneness to infections observed in a population of otherwise healthy persons with IgA deficiency can only for a small part be accounted for by concomitant deficiencies of IgG subclasses. Contrary to expectations, no synergism between the deficiencies of IgA and MBL could be demonstrated.  (+info)

Antibody-independent classical complement pathway activation and homologous C3 deposition in xeroderma pigmentosum cell lines. (8/252)

Of human malignantly transformed cell lines, xeroderma pigmentosum (XP) cell lines were found to be highly susceptible to homologous complement (C): cells were opsonized by C3 fragments on incubation with diluted normal human serum. C3 fragment deposition on XP cells was Ca2+-dependent and occurred on live cells but not UV-irradiated apoptotic cells. (Ca2+ is required for activation of the classical C pathway via C1q and the lactin pathway via mannose binding lectin (MBL), and the surface of apoptotic cells usually activates the alternative C pathway.) In this study we tested which of the pathways participates in XP cell C3 deposition. In seven cell lines that allowed C3 deposition (i), Clq was shown to be essential but MBL played no role in C activation, (ii) Cls but not MASP bound XP cells for activation, (iii) no antibodies recognizing XP cells were required for homologous C3 deposition, and (iv) the alternative pathway barely participated in C3 deposition. Furthermore, the levels of C-regulatory proteins for host cell protection against C, decay-accelerating factor (DAF, CD55) and membrane cofactor protein (MCP, CD46), were found to be relatively low in almost all XP cell lines compared with normal cells. These results indicate that XP cells activate the classical C pathway in an antibody-independent manner through the expression of a molecule which directly attracts C1q in a C-activating form, and that relatively low levels of DAF and MCP on XP cells facilitate effective C3 deposition. The possible relationship between the pathogenesis of XP and our findings is discussed.  (+info)

Collectins are a group of proteins that belong to the collectin family, which are involved in the innate immune system. They are composed of a collagen-like region and a carbohydrate recognition domain (CRD), which allows them to bind to specific sugars on the surface of microorganisms, cells, and particles. Collectins play a crucial role in the defense against pathogens by promoting the clearance of microbes, modulating inflammation, and regulating immune responses.

Some examples of collectins include:

* Surfactant protein A (SP-A) and surfactant protein D (SP-D), which are found in the lungs and help to maintain the stability of the lung lining and protect against respiratory infections.
* Mannose-binding lectin (MBL), which is a serum protein that binds to mannose sugars on the surface of microorganisms, activating the complement system and promoting phagocytosis.
* Collectin liver 1 (CL-L1) and collectin kidney 1 (CL-K1), which are found in the liver and kidneys, respectively, and play a role in the clearance of apoptotic cells and immune complexes.

Deficiencies or mutations in collectins can lead to increased susceptibility to infections, autoimmune diseases, and other disorders.

Pulmonary Surfactant-Associated Protein D, also known as SP-D or surfactant protein D, is a protein that belongs to the collectin family. It is produced by specialized cells called type II alveolar epithelial cells and is found in the lungs, where it plays an important role in maintaining lung homeostasis and host defense.

SP-D has several functions in the lungs, including:

1. Reducing surface tension: SP-D helps to reduce surface tension in the alveoli, which facilitates breathing by preventing the collapse of the lungs during expiration.
2. Host defense: SP-D plays a crucial role in innate immunity by recognizing and binding to pathogens such as bacteria, viruses, and fungi. This helps to neutralize and clear these microorganisms from the lungs.
3. Inflammation regulation: SP-D has anti-inflammatory properties and can help to regulate the immune response in the lungs. It does this by modulating the activation of immune cells such as macrophages and neutrophils.
4. Tissue repair: SP-D may also play a role in tissue repair and remodeling in the lungs, although its exact mechanisms are not fully understood.

Abnormalities in SP-D have been implicated in several lung diseases, including respiratory distress syndrome, asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung diseases.

Pulmonary Surfactant-Associated Protein A (SP-A) is a protein that is a major component of pulmonary surfactant, which is a complex mixture of lipids and proteins found in the alveoli of the lungs. SP-A is produced by specialized cells called type II alveolar epithelial cells and has several important functions in the lung.

SP-A plays a role in innate immunity by binding to pathogens, such as bacteria and viruses, and facilitating their clearance from the lungs. It also helps to regulate surfactant homeostasis by participating in the reuptake and recycling of surfactant components. Additionally, SP-A has been shown to have anti-inflammatory effects and may help to modulate the immune response in the lung.

Deficiencies or mutations in SP-A have been associated with various respiratory diseases, including acute respiratory distress syndrome (ARDS), pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD).

Serum globulins are a group of proteins present in the liquid portion of blood, known as serum. They are produced by the immune system in response to foreign substances such as bacteria, viruses, and allergens. Serum globulins include several types of immunoglobulins (antibodies), complement components, and other proteins involved in the immune response.

The serum globulin level is often measured as part of a complete blood count (CBC) or a protein electrophoresis test. An elevated serum globulin level may indicate an ongoing infection, inflammation, or an autoimmune disorder. Conversely, a decreased level may suggest a liver or kidney disease, or a malnutrition condition. It is important to note that the interpretation of serum globulin levels should be done in conjunction with other laboratory and clinical findings.

Pulmonary surfactant-associated proteins are a group of proteins that are found in the pulmonary surfactant, a complex mixture of lipids and proteins that coats the inside surfaces of the alveoli in the lungs. The primary function of pulmonary surfactant is to reduce the surface tension at the air-liquid interface in the alveoli, which facilitates breathing by preventing collapse of the alveoli during expiration.

There are four main pulmonary surfactant-associated proteins, designated as SP-A, SP-B, SP-C, and SP-D. These proteins play important roles in maintaining the stability and function of the pulmonary surfactant film, as well as participating in host defense mechanisms in the lungs.

SP-A and SP-D are members of the collectin family of proteins and have been shown to have immunomodulatory functions, including binding to pathogens and modulating immune cell responses. SP-B and SP-C are hydrophobic proteins that play critical roles in reducing surface tension at the air-liquid interface and maintaining the stability of the surfactant film.

Deficiencies or dysfunction of pulmonary surfactant-associated proteins have been implicated in various lung diseases, including respiratory distress syndrome (RDS) in premature infants, chronic interstitial lung diseases, and pulmonary fibrosis.

Pulmonary surfactants are a complex mixture of lipids and proteins that are produced by the alveolar type II cells in the lungs. They play a crucial role in reducing the surface tension at the air-liquid interface within the alveoli, which helps to prevent collapse of the lungs during expiration. Surfactants also have important immunological functions, such as inhibiting the growth of certain bacteria and modulating the immune response. Deficiency or dysfunction of pulmonary surfactants can lead to respiratory distress syndrome (RDS) in premature infants and other lung diseases.

Mannose-Binding Lectin (MBL) is a protein that belongs to the collectin family and plays a crucial role in the innate immune system. It's primarily produced by the liver and secreted into the bloodstream. MBL binds to carbohydrate structures, such as mannose, found on the surface of various microorganisms, including bacteria, viruses, fungi, and parasites.

Once MBL binds to these microorganisms, it activates the complement system through the lectin pathway, which leads to the destruction of the pathogens by opsonization (marking for phagocytosis) or direct lysis. Additionally, MBL can also initiate other immune responses, such as inflammation and immune cell activation, helping to protect the host from infections.

Deficiencies in MBL have been associated with increased susceptibility to certain infectious diseases, autoimmune disorders, and allergies. However, more research is needed to fully understand the complex role of MBL in human health and disease.

Proteolipids are a type of complex lipid-containing proteins that are insoluble in water and have a high content of hydrophobic amino acids. They are primarily found in the plasma membrane of cells, where they play important roles in maintaining the structural integrity and function of the membrane. Proteolipids are also found in various organelles, including mitochondria, lysosomes, and peroxisomes.

Proteolipids are composed of a hydrophobic protein core that is tightly associated with a lipid bilayer through non-covalent interactions. The protein component of proteolipids typically contains several transmembrane domains that span the lipid bilayer, as well as hydrophilic regions that face the cytoplasm or the lumen of organelles.

Proteolipids have been implicated in various cellular processes, including signal transduction, membrane trafficking, and ion transport. They are also associated with several neurological disorders, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The study of proteolipids is an active area of research in biochemistry and cell biology, with potential implications for the development of new therapies for neurological disorders.

Mannans are a type of complex carbohydrate, specifically a heteropolysaccharide, that are found in the cell walls of certain plants, algae, and fungi. They consist of chains of mannose sugars linked together, often with other sugar molecules such as glucose or galactose.

Mannans have various biological functions, including serving as a source of energy for microorganisms that can break them down. In some cases, mannans can also play a role in the immune response and are used as a component of vaccines to stimulate an immune response.

In the context of medicine, mannans may be relevant in certain conditions such as gut dysbiosis or allergic reactions to foods containing mannans. Additionally, some research has explored the potential use of mannans as a delivery vehicle for drugs or other therapeutic agents.

Lectins are a type of proteins that bind specifically to carbohydrates and have been found in various plant and animal sources. They play important roles in biological recognition events, such as cell-cell adhesion, and can also be involved in the immune response. Some lectins can agglutinate certain types of cells or precipitate glycoproteins, while others may have a more direct effect on cellular processes. In some cases, lectins from plants can cause adverse effects in humans if ingested, such as digestive discomfort or allergic reactions.

Complement C1q is a protein that is part of the complement system, which is a group of proteins in the blood that help to eliminate pathogens and damaged cells from the body. C1q is the first component of the classical complement pathway, which is activated by the binding of C1q to antibodies that are attached to the surface of a pathogen or damaged cell.

C1q is composed of six identical polypeptide chains, each containing a collagen-like region and a globular head region. The globular heads can bind to various structures, including the Fc regions of certain antibodies, immune complexes, and some types of cells. When C1q binds to an activating surface, it triggers a series of proteolytic reactions that lead to the activation of other complement components and the formation of the membrane attack complex (MAC), which can punch holes in the membranes of pathogens or damaged cells, leading to their destruction.

In addition to its role in the immune system, C1q has also been found to have roles in various physiological processes, including tissue remodeling, angiogenesis, and the clearance of apoptotic cells. Dysregulation of the complement system, including abnormalities in C1q function, has been implicated in a variety of diseases, including autoimmune disorders, inflammatory diseases, and neurodegenerative conditions.

Opsonins are proteins found in the blood that help enhance the immune system's response to foreign substances, such as bacteria and viruses. They do this by coating the surface of these pathogens, making them more recognizable to immune cells like neutrophils and macrophages. This process, known as opsonization, facilitates the phagocytosis (engulfing and destroying) of the pathogen by these immune cells.

There are two main types of opsonins:

1. IgG antibodies: These are a type of antibody produced by the immune system in response to an infection. They bind to specific antigens on the surface of the pathogen, marking them for destruction by phagocytic cells.
2. Complement proteins: The complement system is a group of proteins that work together to help eliminate pathogens. When activated, the complement system can produce various proteins that act as opsonins, including C3b and C4b. These proteins bind to the surface of the pathogen, making it easier for phagocytic cells to recognize and destroy them.

In summary, opsonin proteins are crucial components of the immune system's response to infections, helping to mark foreign substances for destruction by immune cells like neutrophils and macrophages.

Hemagglutination is a medical term that refers to the agglutination or clumping together of red blood cells (RBCs) in the presence of an agglutinin, which is typically a protein or a polysaccharide found on the surface of certain viruses, bacteria, or incompatible blood types.

In simpler terms, hemagglutination occurs when the agglutinin binds to specific antigens on the surface of RBCs, causing them to clump together and form visible clumps or aggregates. This reaction is often used in diagnostic tests to identify the presence of certain viruses or bacteria, such as influenza or HIV, by mixing a sample of blood or other bodily fluid with a known agglutinin and observing whether hemagglutination occurs.

Hemagglutination inhibition (HI) assays are also commonly used to measure the titer or concentration of antibodies in a serum sample, by adding serial dilutions of the serum to a fixed amount of agglutinin and observing the highest dilution that still prevents hemagglutination. This can help determine whether a person has been previously exposed to a particular pathogen and has developed immunity to it.

Alveolar macrophages are a type of macrophage (a large phagocytic cell) that are found in the alveoli of the lungs. They play a crucial role in the immune defense system of the lungs by engulfing and destroying any foreign particles, such as dust, microorganisms, and pathogens, that enter the lungs through the process of inhalation. Alveolar macrophages also produce cytokines, which are signaling molecules that help to coordinate the immune response. They are important for maintaining the health and function of the lungs by removing debris and preventing infection.

Influenza A virus is defined as a negative-sense, single-stranded, segmented RNA virus belonging to the family Orthomyxoviridae. It is responsible for causing epidemic and pandemic influenza in humans and is also known to infect various animal species, such as birds, pigs, horses, and seals. The viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), are the primary targets for antiviral drugs and vaccines. There are 18 different HA subtypes and 11 known NA subtypes, which contribute to the diversity and antigenic drift of Influenza A viruses. The zoonotic nature of this virus allows for genetic reassortment between human and animal strains, leading to the emergence of novel variants with pandemic potential.

Hemagglutination inhibition (HI) tests are a type of serological assay used in medical laboratories to detect and measure the amount of antibodies present in a patient's serum. These tests are commonly used to diagnose viral infections, such as influenza or HIV, by identifying the presence of antibodies that bind to specific viral antigens and prevent hemagglutination (the agglutination or clumping together of red blood cells).

In an HI test, a small amount of the patient's serum is mixed with a known quantity of the viral antigen, which has been treated to attach to red blood cells. If the patient's serum contains antibodies that bind to the viral antigen, they will prevent the antigen from attaching to the red blood cells and inhibit hemagglutination. The degree of hemagglutination inhibition can be measured and used to estimate the amount of antibody present in the patient's serum.

HI tests are relatively simple and inexpensive to perform, but they have some limitations. For example, they may not detect early-stage infections before the body has had a chance to produce antibodies, and they may not be able to distinguish between different strains of the same virus. Nonetheless, HI tests remain an important tool for diagnosing viral infections and monitoring immune responses to vaccination or infection.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Monosaccharides are simple sugars that cannot be broken down into simpler units by hydrolysis. They are the most basic unit of carbohydrates and are often referred to as "simple sugars." Monosaccharides typically contain three to seven atoms of carbon, but the most common monosaccharides contain five or six carbon atoms.

The general formula for a monosaccharide is (CH2O)n, where n is the number of carbon atoms in the molecule. The majority of monosaccharides have a carbonyl group (aldehyde or ketone) and multiple hydroxyl groups. These functional groups give monosaccharides their characteristic sweet taste and chemical properties.

The most common monosaccharides include glucose, fructose, and galactose, all of which contain six carbon atoms and are known as hexoses. Other important monosaccharides include pentoses (five-carbon sugars) such as ribose and deoxyribose, which play crucial roles in the structure and function of nucleic acids (DNA and RNA).

Monosaccharides can exist in various forms, including linear and cyclic structures. In aqueous solutions, monosaccharides often form cyclic structures through a reaction between the carbonyl group and a hydroxyl group, creating a hemiacetal or hemiketal linkage. These cyclic structures can adopt different conformations, known as anomers, depending on the orientation of the hydroxyl group attached to the anomeric carbon atom.

Monosaccharides serve as essential building blocks for complex carbohydrates, such as disaccharides (e.g., sucrose, lactose, and maltose) and polysaccharides (e.g., starch, cellulose, and glycogen). They also participate in various biological processes, including energy metabolism, cell recognition, and protein glycosylation.

Carbohydrates are a major nutrient class consisting of organic compounds that primarily contain carbon, hydrogen, and oxygen atoms. They are classified as saccharides, which include monosaccharides (simple sugars), disaccharides (double sugars), oligosaccharides (short-chain sugars), and polysaccharides (complex carbohydrates).

Monosaccharides, such as glucose, fructose, and galactose, are the simplest form of carbohydrates. They consist of a single sugar molecule that cannot be broken down further by hydrolysis. Disaccharides, like sucrose (table sugar), lactose (milk sugar), and maltose (malt sugar), are formed from two monosaccharide units joined together.

Oligosaccharides contain a small number of monosaccharide units, typically less than 20, while polysaccharides consist of long chains of hundreds to thousands of monosaccharide units. Polysaccharides can be further classified into starch (found in plants), glycogen (found in animals), and non-starchy polysaccharides like cellulose, chitin, and pectin.

Carbohydrates play a crucial role in providing energy to the body, with glucose being the primary source of energy for most cells. They also serve as structural components in plants (cellulose) and animals (chitin), participate in various metabolic processes, and contribute to the taste, texture, and preservation of foods.

Phagocytosis is the process by which certain cells in the body, known as phagocytes, engulf and destroy foreign particles, bacteria, or dead cells. This mechanism plays a crucial role in the immune system's response to infection and inflammation. Phagocytes, such as neutrophils, monocytes, and macrophages, have receptors on their surface that recognize and bind to specific molecules (known as antigens) on the target particles or microorganisms.

Once attached, the phagocyte extends pseudopodia (cell extensions) around the particle, forming a vesicle called a phagosome that completely encloses it. The phagosome then fuses with a lysosome, an intracellular organelle containing digestive enzymes and other chemicals. This fusion results in the formation of a phagolysosome, where the engulfed particle is broken down by the action of these enzymes, neutralizing its harmful effects and allowing for the removal of cellular debris or pathogens.

Phagocytosis not only serves as a crucial defense mechanism against infections but also contributes to tissue homeostasis by removing dead cells and debris.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

"Mycobacterium avium is a species of gram-positive, aerobic bacteria that belongs to the family Mycobacteriaceae. It is a slow-growing mycobacterium that is widely distributed in the environment, particularly in soil and water. M. avium is an opportunistic pathogen that can cause pulmonary disease, lymphadenitis, and disseminated infection in individuals with compromised immune systems, such as those with HIV/AIDS. It is also known to cause pulmonary disease in elderly people with structural lung damage. The bacteria are resistant to many common disinfectants and can survive in hostile environments for extended periods."

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

Surface Plasmon Resonance (SPR) is a physical phenomenon that occurs at the interface between a metal and a dielectric material, when electromagnetic radiation (usually light) is shone on it. It involves the collective oscillation of free electrons in the metal, known as surface plasmons, which are excited by the incident light. The resonance condition is met when the momentum and energy of the photons match those of the surface plasmons, leading to a strong absorption of light and an evanescent wave that extends into the dielectric material.

In the context of medical diagnostics and research, SPR is often used as a sensitive and label-free detection technique for biomolecular interactions. By immobilizing one binding partner (e.g., a receptor or antibody) onto the metal surface and flowing the other partner (e.g., a ligand or antigen) over it, changes in the refractive index at the interface can be measured in real-time as the plasmons are disturbed by the presence of bound molecules. This allows for the quantification of binding affinities, kinetics, and specificity with high sensitivity and selectivity.

Respiratory mucosa refers to the mucous membrane that lines the respiratory tract, including the nose, throat, bronchi, and lungs. It is a specialized type of tissue that is composed of epithelial cells, goblet cells, and glands that produce mucus, which helps to trap inhaled particles such as dust, allergens, and pathogens.

The respiratory mucosa also contains cilia, tiny hair-like structures that move rhythmically to help propel the mucus and trapped particles out of the airways and into the upper part of the throat, where they can be swallowed or coughed up. This defense mechanism is known as the mucociliary clearance system.

In addition to its role in protecting the respiratory tract from harmful substances, the respiratory mucosa also plays a crucial role in immune function by containing various types of immune cells that help to detect and respond to pathogens and other threats.

Glycosylation is the enzymatic process of adding a sugar group, or glycan, to a protein, lipid, or other organic molecule. This post-translational modification plays a crucial role in modulating various biological functions, such as protein stability, trafficking, and ligand binding. The structure and composition of the attached glycans can significantly influence the functional properties of the modified molecule, contributing to cell-cell recognition, signal transduction, and immune response regulation. Abnormal glycosylation patterns have been implicated in several disease states, including cancer, diabetes, and neurodegenerative disorders.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

... collectin liver 1 CL-P1 = collectin placenta 1 CL-43 = Collectin of 43 kDa CL-46 = collectin of 46 kDa CL-K1 = collectin kidney ... Collectins SP-A and SP-D enhance clearance of apoptotic cells by macrophages. Collectins are linked with activation of lectin ... Collectins can act as opsonins. There is a specific interaction between collectins and receptors on phagocytic cells which can ... At the beginning, there is a binding of collectin to PAMPs or DAMPs. Collectin MBL is involved in activation of the lectin ...
29/08/2023 The CollecTin® More contactless donation box is a flexible and easy way to collect contactless donations. Whats ... CollecTin® is a trademark of CollecTin Ltd, 1 Bermondsey Square, London, SE1 3UN ... The Give A Little App comes pre-installed on the CollecTin More and gives donors the ability to choose from up to six donation ... The CollecTin® More comes with a removable rechargeable battery, a lanyard, a SumUp reader (AIR1E205) and a charging cable. An ...
Memento collect OffiDocs Chromium to be run free as Chrome web store extension
Other members of the collectin family, including human surfactant protein D, bovine collectin-43, and conglutinin also showed ... In humans, the collectins mannose-binding lectin (MBL) and surfactant proteins A and D (SP-A, SP-D) have important roles in ... The collectins are a small family of soluble oligomeric proteins containing collagenous regions and C-type lectin domains. They ... SALSA binds to many types of microbes and host defence molecules like IgA, C1q and collectin molecules. We here describe the ...
Giving a title to posts before written can be a daunting task. So, this is a writing exercise wherein the title may or may not reveal itself. Lets begin with a question. Do you recycle? I recycled before recycling was cool. Back in the day we called it Waste Not Want Not. For me as an artist in the last 13 years of blogging these "4Rs" became my motto...RePurpose-Recycle-ReNew-ReSale. The Broachability of R#4 or R#5...Resale or Rubish is an example post supporting "4Rs".. Moving on to 2022. In order to minimize waste another R has been added to the Resource Conservation and Recovery Acts slogan Reduce-Reuse-Recycle to include Rethink!. So...Ive been Rethinking my wine drinking. Still about pinot noir and cost with careful consideration to bottle shape and color. Since glass has been taken off the recycle bin list, Im Rethinking how to Reuse and Recycle wine bottles and of course other glass items. ...
Nude and Fabulous BBW collectin - Porn Pics BBW. ... Related best porn galleries for Nude and Fabulous BBW collectin ...
New collection between Maria Maleta and Pedro Pedro at Vogue. Vogue Portugal with the new bag models from the new collection Maria Maleta by Pedro Pedro.
I won this beautiful bundle of fabric from an adorable blogger over at CollectIn Texas Gals site. She was generously giving it ...
Blood Collectin Tube , Vacuum Blood Collectin Tube , Collectin Tube - Wellmien (Suzhou) Imp. & Exp. Trading Co., Ltd. ... find complete details about Vacuum Blood Collectin Tube Disposable for Clinical Use, ... Vacuum Blood Collectin Tube Disposable for Clinical Use, ... Blood Collectin Tube Vacuum Blood Collectin Tube Collectin Tube ...
We are very excited to announce that we are giving away a limited edition Front Row Card Show COLLECTIN COLIN card at our ... Limited Edition Front Row Card Show Collectin Colin Card November 15, 2022. Share Share Link. ... We are very excited to announce that we are giving away a limited edition Front Row Card Show COLLECTIN COLIN card at our ...
Acest creion pentru unghii este ajutorul perfect pentru o manichiura frantuzeasca de calitate! Cum se foloseste? Este foarte simplu! Trebuie doar sa te dai cu creionul pe varful unghiei, pe partea fara oja si gata!
Sign up to receive the latest news, updates, and special offers ...
Sign up to receive the latest news, updates, and special offers! ...
Sign up to receive the latest news, updates, and special offers! ...
System Of A Down Amplified Collectin - Ripples Tričko černá. 825.00 Kč. System Of A Down Amplified Collectin - Ripples Tričko ... Buďte první, kdo ohodnotí „System Of A Down Amplified Collectin - Ripples Tričko černá" Zrušit odpověď na komentář. Vaše e- ...
Chengiz Box Office Collection Day 3: See Chengiz Day 3 Box Office Collectin and Occupancy. April 24, 2023. ... Reading: Chengiz Box Office Collection Day 4: See Chengiz Day 4 Box Office Collectin and Occupancy ... Chengiz Box Office Collection Day 3: See Chengiz Day 3 Box Office Collectin and Occupancy. ...
COLEC10: collectin subfamily member 10. *COLEC11: collectin subfamily member 11. *COLQ: collagen like tail subunit of ...
Jake Boggs, Re/Collecting, (ceramics). Kalani Largusa, I too am here, (painting). Kamran Samimi, Passage, (print media and ...
Collectin subfamily member 10 (C-type lectin). isoform CRA_a OS = Homo sapiens GN = COLEC10 PE = 4 SV = 1. tr,A0A024R9J3, ...
There are lots of cool illustrations that can be found on the net which can be a good basis to get some inspirations. Just like the 50+ Cute and Adorable
Git ther gal, too! This is what I call collectin toll, all right!" Ariettas horse had been seized by the bit, and a ruffianly ...
Been Collectin Jaws. A post shared by Sugar Sean OMalley (@sugaseanmma) on Jun 21, 2020 at 9:59am PDT. ...
"You collectin these before or at the game?" Ron asked for clarification. ...
... only for the killing of microorganisms through the interaction of carbohydrates on their surfaces and MBP or other collectins ( ...
Tears collectin in a pothole. First time in my life I ever see that boy cry. I didnt know what to say. What was there to say? ...
Information Collectin Rule (ICR) microbial monitoring summary. Article. Participating Agencies and Organizations American ...
And my queen killa-bees just collectin that cheese. Overseas, gettin ready for the year 2G, DVs. (Poison Clan rocks the world) ...
I rolled down the window and he said (Limerick accent) "soddy, kid, not movin anywhere furra whoyle; collectin dyoungfla.". I ...
Just a reminder, always carry Quick clot when you re taking blood thinners! Cheap insurance!
  • Nine types of collectins have been defined: MBL = mannan-binding lectin (mannose-binding lectin) SP-A = surfactant protein A SP-D = surfactant protein D CL-L1 = collectin liver 1 CL-P1 = collectin placenta 1 CL-43 = Collectin of 43 kDa CL-46 = collectin of 46 kDa CL-K1 = collectin kidney 1 Conglutinin CL-43, CL-46 and conglutinin are found in bovine. (wikipedia.org)
  • Recently, "novel collectins", different from "classical collectins" consisting of mannan-binding lectin (MBL) and surfactant proteins A and D (SP-A and SP-D), have been found by reverse genetics. (nih.gov)
  • Mannan-binding lectin (MBL) is a serum collectin which is believed to be an opsonin of the innate immune defence against various microorganisms. (dtu.dk)
  • Collectins are linked with activation of lectin pathway of complement activation. (wikipedia.org)
  • Collectin MBL is involved in activation of the lectin complement pathway. (wikipedia.org)
  • Collectins are characterized by a collagen-like sequence and a carbohydrate recognition domain and are members of the vertebrate C-type lectin superfamily. (nih.gov)
  • We show that soluble respiratory proteins [collectins, surfactant proteins D (SP-D) and mannose binding lectin (MBL), H-ficolin and LL-37] inhibit replication of seasonal IAV in human monocytes. (nebraska.edu)
  • Collectins are a family of collagenous lectin molecules present in blood and mucosal (including respiratory) secretions that are able to recognize distinctive patterns of carbohydrates decorating the surface of viruses, bacteria, fungi and protozoa. (medscape.com)
  • Collectin subfamily member 10 (C-type lectin). (cdc.gov)
  • CD93 is a 130-140kD C-type lectin like type I transmembrane protein, also known as complement component 1, q subcomponent (C1qR1), C1qRp collectin receptor (C1qRp), or AA4 antigen. (biolegend.com)
  • These "novel collectins" consist of collectin liver 1 (CL-L1), collectin kidney 1 (CL-K1), and collectin placenta 1 (CL-P1) and are encoded by three separate genes. (nih.gov)
  • The pulmonary collectins, surfactant proteins A (SP-A) and D (SP-D), have been reported to bind lipopolysaccharide (LPS), opsonize microorganisms, and enhance the clearance of lung pathogens. (nih.gov)
  • SP-A and SP-D are hydrophilic surfactant proteins and are members of the collectin family. (novusbio.com)
  • Pan troglodytes collectin subfamily member 12 (COLEC12), mRNA. (genscript.com)
  • Functionally collectins are trimers. (wikipedia.org)
  • In general, collectins form higher-order multimers through disulfide bonding between trimers at the N-terminus. (medscape.com)
  • Collectins form trimers that may assemble into larger oligomers. (bvsalud.org)
  • Collectins (collagen-containing C-type lectins) are a part of the innate immune system. (wikipedia.org)
  • Experimental findings on human and animal collectins have shown that both novel collectins and classical collectins play an important role in innate immunity. (nih.gov)
  • Deletion of the E. coli OmpA gene from a collectin-resistant smooth E. coli strain enhanced SP-A and SP-D-mediated growth inhibition. (nih.gov)
  • Binding of collectins to microorganisms may trigger elimination of microorganisms by aggregation, complement activation, opsonization, activation of phagocytosis, or inhibition of microbial growth. (wikipedia.org)
  • Articles on Collectins, Defensins, Phagocytosis. (bvsalud.org)
  • Collectins are soluble pattern recognition receptors (PRRs). (wikipedia.org)
  • Collectins can bind to the surface of microorganisms and between carbohydrate ligands. (wikipedia.org)
  • There is a specific interaction between collectins and receptors on phagocytic cells which can lead to increased clearance of microorganisms. (wikipedia.org)
  • Binding of collectins to microorganisms results in their agglutination and enhanced clearance. (bvsalud.org)
  • [ 10 ] Our laboratory has studied the interactions of collectins with influenza virus extensively so we will provide a fairly comprehensive discussion of their antiviral activities. (medscape.com)
  • Collectins bind to and directly neutralize influenza virus. (medscape.com)
  • [ 13 ] The collectins appear to play important roles in restricting influenza replication in the early phase of infection and in preventing excessive inflammation. (medscape.com)
  • The first evidence of the role of collectins in immunity against influenza virus was the observation that mammalian serum β-inhibitors of the virus are collectins. (medscape.com)
  • 16. Inhibition of influenza viral neuraminidase activity by collectins. (nih.gov)
  • Effect of lung surfactant collectins on bronchoalveolar macrophage int" by Madhavi Lekkala, Ann Marie LeVine et al. (wustl.edu)
  • Effect of Lung Surfactant Collectins on Bronchoalveolar Macrophage Interaction with Blastomyces dermatitidis: Inhibition of Tumor Necrosis Factor Alpha Production by Surfactant Protein D Madhavi Lekkala, Ann Marie LeVine, Michael J. Linke, Erika C. Crouch, Bruce Linders, Elmer Brummer, and David A. Stevens Infect. (wustl.edu)
  • and Stevens, David A., "Effect of lung surfactant collectins on bronchoalveolar macrophage interaction with Blastomyces dermatitidis: Inhibition of tumor necrosis factor alpha production by surfactant protein D." Infection and Immunology. (wustl.edu)
  • In addition to learning about how the virus infects lung cells, this PA specifically encourages in vitro research on the role of lung collectins and other extracellular lung host factors. (nih.gov)
  • Collectins SP-A and SP-D have anti-allergic effects: they inhibit IgE binding to allergens, decrease histamine release from basophils, and inhibit T-lymphocyte production in the late phase of the inflammation. (wikipedia.org)
  • Other functions of collectins are modulation of inflammatory, allergic responses, adaptive immune system and clearance of apoptotic cells. (wikipedia.org)
  • Collectins also bind to inflammatory cells and can modulate activation of these cells, resulting in either an increase or decrease in activation. (medscape.com)
  • The Role of Complement Activating Collectins and Associated Serine Proteases in Patients With Hematological Malignancies, Receiving High-Dose Chemotherapy, and Autologous Hematopoietic Stem Cell Transplantations (Auto-HSCT). (cdc.gov)
  • The collectins and H-ficolin also increased viral uptake by the cells, while LL-37 did not. (nebraska.edu)
  • In general, rough E. coli strains were more susceptible than smooth strains, and collectin-mediated growth inhibition was partially blocked by coincubation with rough LPS vesicles. (nih.gov)
  • Each collectin polypeptide chain consists of four regions: a relatively short N-terminal region, a collagen-like region, an alpha-helical coiled-coil region, and carbohydrate-binding region. (bvsalud.org)
  • Collectins have effect on microorganism survival. (wikipedia.org)
  • C1q is a glycoprotein that belongs to the collectin family, having a molecular weight of about 410-462 kDa. (prospecbio.com)
  • The Ice Bucket Challenge worked for the same reason that the CollecTin works: these avenues for donation mix charity with self-expression. (getcollectin.com)
  • Little work to date has examined the effect of such collectins in response to organic dusts. (cdc.gov)
  • Serbs and War in Yugoslavia 1941 : thematic collectin of articles. (inz.si)
  • godine: tematski izbor radova - Serbs and War in Yugoslavia 1941 : thematic collectin of articles. (inz.si)
  • You can even use product demonstration videos to show how new donation technologies like CollecTin can work. (getcollectin.com)
  • Circulating glycoproteins such as alpha-fetoprotein, alpha-2-macroglobulin, galectin-3-binding protein, and collectin-10 show association to failing heart and CRT treatment model. (nih.gov)
  • Collectins SP-A and SP-D enhance clearance of apoptotic cells by macrophages. (wikipedia.org)
  • Based on our recent results and those of others, in this paper, we summarize the new biological functions of these novel collectins in embryonic morphogenesis and development. (nih.gov)
  • [ 11 , 12 ] The basic structural unit of collectins is a trimer composed of a disulfide containing a N-terminus, a structurally important collagen domain, a trimerizing neck domain and a carbohydrate-recognition domain (CRD) that mediates attachment to carbohydrates. (medscape.com)
  • Just download an app from your payment partner, set the fixed donation amount in that app, put the appropriate panel on your CollecTin® and you're good to go. (collectin.com)
  • Both CollecTin and Payaz devices use the 'Give a Little' App to provide the user experience and SumUp to process payments. (bathandwells.org.uk)

No images available that match "collectins"