Form of epidermolysis bullosa characterized by atrophy of blistered areas, severe scarring, and nail changes. It is most often present at birth or in early infancy and occurs in both autosomal dominant and recessive forms. All forms of dystrophic epidermolysis bullosa result from mutations in COLLAGEN TYPE VII, a major component fibrils of BASEMENT MEMBRANE and EPIDERMIS.
A non-fibrillar collagen involved in anchoring the epidermal BASEMENT MEMBRANE to underlying tissue. It is a homotrimer comprised of C-terminal and N-terminal globular domains connected by a central triple-helical region.
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
The most common form of fibrillar collagen. It is a major constituent of bone (BONE AND BONES) and SKIN and consists of a heterotrimer of two alpha1(I) and one alpha2(I) chains.
Mucopolysaccharidosis characterized by excessive dermatan and heparan sulfates in the urine and Hurler-like features. It is caused by a deficiency of beta-glucuronidase.
Heat- and storage-stable plasma protein that is activated by tissue thromboplastin to form factor VIIa in the extrinsic pathway of blood coagulation. The activated form then catalyzes the activation of factor X to factor Xa.
A fibrillar collagen consisting of three identical alpha1(III) chains that is widely distributed in many tissues containing COLLAGEN TYPE I. It is particularly abundant in BLOOD VESSELS and may play a role in tissues with elastic characteristics.
An autosomal recessive glycogen storage disease in which there is deficient expression of 6-phosphofructose 1-kinase in muscle (PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE) resulting in abnormal deposition of glycogen in muscle tissue. These patients have severe congenital muscular dystrophy and are exercise intolerant.
Form of epidermolysis bullosa characterized by trauma-induced, subepidermal blistering with no family history of the disease. Direct immunofluorescence shows IMMUNOGLOBULIN G deposited at the dermo-epidermal junction.
A non-fibrillar collagen found in the structure of BASEMENT MEMBRANE. Collagen type IV molecules assemble to form a sheet-like network which is involved in maintaining the structural integrity of basement membranes. The predominant form of the protein is comprised of two alpha1(IV) subunits and one alpha2(IV) subunit, however, at least six different alpha subunits can be incorporated into the heterotrimer.
A fibrillar collagen found predominantly in CARTILAGE and vitreous humor. It consists of three identical alpha1(II) chains.
A fibrillar collagen found widely distributed as a minor component in tissues that contain COLLAGEN TYPE I and COLLAGEN TYPE III. It is a heterotrimeric molecule composed of alpha1(V), alpha2(V) and alpha3(V) subunits. Several forms of collagen type V exist depending upon the composition of the subunits that form the trimer.
A family of structurally related collagens that form the characteristic collagen fibril bundles seen in CONNECTIVE TISSUE.
A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers.
A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains.
A non-fibrillar collagen that forms a network of MICROFIBRILS within the EXTRACELLULAR MATRIX of CONNECTIVE TISSUE. The alpha subunits of collagen type VI assemble into antiparallel, overlapping dimers which then align to form tetramers.
A fibrillar collagen found primarily in interstitial CARTILAGE. Collagen type XI is heterotrimer containing alpha1(XI), alpha2(XI) and alpha3(XI) subunits.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Group of genetically determined disorders characterized by the blistering of skin and mucosae. There are four major forms: acquired, simple, junctional, and dystrophic. Each of the latter three has several varieties.
Glucuronidase is an enzyme (specifically, a glycosidase) that catalyzes the hydrolysis of glucuronic acid from various substrates, playing crucial roles in metabolic processes like detoxification and biotransformation within organisms.
Collagen receptors are cell surface receptors that modulate signal transduction between cells and the EXTRACELLULAR MATRIX. They are found in many cell types and are involved in the maintenance and regulation of cell shape and behavior, including PLATELET ACTIVATION and aggregation, through many different signaling pathways and differences in their affinities for collagen isoforms. Collagen receptors include discoidin domain receptors, INTEGRINS, and glycoprotein VI.
An autosomal recessive characteristic or a coagulation disorder acquired in association with VITAMIN K DEFICIENCY. FACTOR VII is a Vitamin K dependent glycoprotein essential to the extrinsic pathway of coagulation.
A heterogeneous group of autosomally inherited COLLAGEN DISEASES caused by defects in the synthesis or structure of FIBRILLAR COLLAGEN. There are numerous subtypes: classical, hypermobility, vascular, and others. Common clinical features include hyperextensible skin and joints, skin fragility and reduced wound healing capability.
A family of non-fibrillar collagens that interact with FIBRILLAR COLLAGENS. They contain short triple helical domains interrupted by short non-helical domains and do not form into collagen fibrils.
Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ).
A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A non-fibrillar collagen found in BASEMENT MEMBRANE. The C-terminal end of the alpha1 chain of collagen type XVIII contains the ENDOSTATIN peptide, which can be released by proteolytic cleavage.
A metalloproteinase which degrades helical regions of native collagen to small fragments. Preferred cleavage is -Gly in the sequence -Pro-Xaa-Gly-Pro-. Six forms (or 2 classes) have been isolated from Clostridium histolyticum that are immunologically cross-reactive but possess different sequences and different specificities. Other variants have been isolated from Bacillus cereus, Empedobacter collagenolyticum, Pseudomonas marinoglutinosa, and species of Vibrio and Streptomyces. EC 3.4.24.3.
The innermost membranous sac that surrounds and protects the developing embryo which is bathed in the AMNIOTIC FLUID. Amnion cells are secretory EPITHELIAL CELLS and contribute to the amniotic fluid.
Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion.
Visible accumulations of fluid within or beneath the epidermis.
A non-fibrillar collagen found primarily in terminally differentiated hypertrophic CHONDROCYTES. It is a homotrimer of three identical alpha1(X) subunits.
A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE.
A fibril-associated collagen found in many tissues bearing high tensile stress, such as TENDONS and LIGAMENTS. It is comprised of a trimer of three identical alpha1(XII) chains.
Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins.
A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation.
Group of lysosomal storage diseases each caused by an inherited deficiency of an enzyme involved in the degradation of glycosaminoglycans (mucopolysaccharides). The diseases are progressive and often display a wide spectrum of clinical severity within one enzyme deficiency.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Historically, a heterogeneous group of acute and chronic diseases, including rheumatoid arthritis, systemic lupus erythematosus, progressive systemic sclerosis, dermatomyositis, etc. This classification was based on the notion that "collagen" was equivalent to "connective tissue", but with the present recognition of the different types of collagen and the aggregates derived from them as distinct entities, the term "collagen diseases" now pertains exclusively to those inherited conditions in which the primary defect is at the gene level and affects collagen biosynthesis, post-translational modification, or extracellular processing directly. (From Cecil Textbook of Medicine, 19th ed, p1494)
The technique of using a cryostat or freezing microtome, in which the temperature is regulated to -20 degrees Celsius, to cut ultrathin frozen sections for microscopic (usually, electron microscopic) examination.
A group of inherited metabolic disorders involving the enzymes responsible for the synthesis and degradation of glycogen. In some patients, prominent liver involvement is presented. In others, more generalized storage of glycogen occurs, sometimes with prominent cardiac involvement.
Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX.
Genes that influence the PHENOTYPE only in the homozygous state.
A small leucine-rich proteoglycan that interacts with FIBRILLAR COLLAGENS and modifies the EXTRACELLULAR MATRIX structure of CONNECTIVE TISSUE. Decorin has also been shown to play additional roles in the regulation of cellular responses to GROWTH FACTORS. The protein contains a single glycosaminoglycan chain and is similar in structure to BIGLYCAN.
A fibril-associated collagen usually found crosslinked to the surface of COLLAGEN TYPE II fibrils. It is a heterotrimer containing alpha1(IX), alpha2(IX) and alpha3(IX) subunits.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury.
Glycoproteins which have a very high polysaccharide content.
A protective layer of firm, flexible cartilage over the articulating ends of bones. It provides a smooth surface for joint movement, protecting the ends of long bones from wear at points of contact.
Polymorphic cells that form cartilage.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed)
A non-fibrillar collagen originally found in DESCEMET MEMBRANE. It is expressed in endothelial cell layers and in tissues undergoing active remodeling. It is heterotrimer comprised of alpha1(VIII) and alpha2(VIII) chains.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
A moderate-growing, photochromogenic species found in aquariums, diseased fish, and swimming pools. It is the cause of cutaneous lesions and granulomas (swimming pool granuloma) in humans. (Dorland, 28th ed)
Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Proteins prepared by recombinant DNA technology.
Enzymes that catalyze the degradation of collagen by acting on the peptide bonds.
Adherence of cells to surfaces or to other cells.
Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
A hydroxylated derivative of the amino acid LYSINE that is present in certain collagens.
A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME.
A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Generating tissue in vitro for clinical applications, such as replacing wounded tissues or impaired organs. The use of TISSUE SCAFFOLDING enables the generation of complex multi-layered tissues and tissue structures.
A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors(RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine or N-acetylgalactosamine.
Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions.
'Elastin' is a highly elastic protein in connective tissue that allows many tissues in the body to resume their shape after stretching or contracting, such as the skin, lungs, and blood vessels.
An integrin alpha subunit that primarily combines with INTEGRIN BETA1 to form the INTEGRIN ALPHA2BETA1 heterodimer. It contains a domain which has homology to collagen-binding domains found in von Willebrand factor.
Basic glycoprotein members of the SERPIN SUPERFAMILY that function as COLLAGEN-specific MOLECULAR CHAPERONES in the ENDOPLASMIC RETICULUM.
The formation of cartilage. This process is directed by CHONDROCYTES which continually divide and lay down matrix during development. It is sometimes a precursor to OSTEOGENESIS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Large HYALURONAN-containing proteoglycans found in articular cartilage (CARTILAGE, ARTICULAR). They form into aggregates that provide tissues with the capacity to resist high compressive and tensile forces.
Integrin alpha1beta1 functions as a receptor for LAMININ and COLLAGEN. It is widely expressed during development, but in the adult is the predominant laminin receptor (RECEPTORS, LAMININ) in mature SMOOTH MUSCLE CELLS, where it is important for maintenance of the differentiated phenotype of these cells. Integrin alpha1beta1 is also found in LYMPHOCYTES and microvascular endothelial cells, and may play a role in angiogenesis. In SCHWANN CELLS and neural crest cells, it is involved in cell migration. Integrin alpha1beta1 is also known as VLA-1 and CD49a-CD29.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
COLLAGEN DISEASES characterized by brittle, osteoporotic, and easily fractured bones. It may also present with blue sclerae, loose joints, and imperfect dentin formation. Most types are autosomal dominant and are associated with mutations in COLLAGEN TYPE I.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A member of the metalloproteinase family of enzymes that is principally responsible for cleaving FIBRILLAR COLLAGEN. It can degrade interstitial collagens, types I, II and III.
Established cell cultures that have the potential to propagate indefinitely.
Tumor or cancer of the MALE GENITALIA.
The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching.
The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces.
A layer of the cornea. It is the basal lamina of the CORNEAL ENDOTHELIUM (from which it is secreted) separating it from the CORNEAL STROMA. It is a homogeneous structure composed of fine collagenous filaments, and slowly increases in thickness with age.
Restoration of integrity to traumatized tissue.
Elements of limited time intervals, contributing to particular results or situations.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY.
Cell growth support structures composed of BIOCOMPATIBLE MATERIALS. They are specially designed solid support matrices for cell attachment in TISSUE ENGINEERING and GUIDED TISSUE REGENERATION uses.
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues.
A mixed-function oxygenase that catalyzes the hydroxylation of peptidyllysine, usually in protocollagen, to peptidylhydroxylysine. The enzyme utilizes molecular oxygen with concomitant oxidative decarboxylation of the cosubstrate 2-oxoglutarate to succinate. EC 1.14.11.4.
A family of structurally-related short-chain collagens that do not form large fibril bundles.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Sweat-producing structures that are embedded in the DERMIS. Each gland consists of a single tube, a coiled body, and a superficial duct.
A small leucine-rich proteoglycan found in a variety of tissues including CAPILLARY ENDOTHELIUM; SKELETAL MUSCLE; CARTILAGE; BONE; and TENDONS. The protein contains two glycosaminoglycan chains and is similar in structure to DECORIN.
A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
A secreted endopeptidase homologous with INTERSTITIAL COLLAGENASE, but which possesses an additional fibronectin-like domain.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
The lamellated connective tissue constituting the thickest layer of the cornea between the Bowman and Descemet membranes.
ARTHRITIS that is induced in experimental animals. Immunological methods and infectious agents can be used to develop experimental arthritis models. These methods include injections of stimulators of the immune response, such as an adjuvant (ADJUVANTS, IMMUNOLOGIC) or COLLAGEN.
Integrin beta-1 chains which are expressed as heterodimers that are noncovalently associated with specific alpha-chains of the CD49 family (CD49a-f). CD29 is expressed on resting and activated leukocytes and is a marker for all of the very late activation antigens on cells. (from: Barclay et al., The Leukocyte Antigen FactsBook, 1993, p164)
A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons.
Antibodies produced by a single clone of cells.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Activated form of factor VII. Factor VIIa activates factor X in the extrinsic pathway of blood coagulation.
A non-fibrillar collagen found as a ubiquitously expressed membrane- associated protein. Type XIII collagen contains both collagenous and non-collagenous domains along with a transmembrane domain within its N-terminal region.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.

Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. (1/98)

Collagen VII is the major structural component of the anchoring fibrils at the dermal-epidermal junction in the skin. It is secreted by keratinocytes as a precursor, procollagen VII, and processed into mature collagen during polymerization of the anchoring fibrils. We show that bone morphogenetic protein-1 (BMP-1), which exhibits procollagen C-proteinase activity, cleaves the C-terminal propeptide from human procollagen VII. The cleavage occurs at the BMP-1 consensus cleavage site SYAA/DTAG within the NC-2 domain. Mammalian tolloid-like (mTLL)-1 and -2, two other proteases of the astacin enzyme family, were able to process procollagen VII at the same site in vitro. Immunohistochemical and genetic evidence supported the involvement of these enzymes in cleaving type VII procollagen in vivo. Both BMP-1 and mTLL-1 are expressed in the skin and in cultured cutaneous cells. A naturally occurring deletion in the human COL7A1 gene, 8523del14, which is associated with dystrophic epidermolysis bullosa and eliminates the BMP-1 consensus sequence, abolished processing of procollagen VII, and in mutant skin procollagen VII accumulated at the dermal-epidermal junction. On the other hand, deficiency of BMP-1 in the skin of knockout mouse embryos did not prevent processing of procollagen VII to mature collagen, suggesting that mTLL-1 and/or mTLL-2 can substitute for BMP-1 in the processing of procollagen VII in situ.  (+info)

The majority of keratinocytes incorporate intradermally injected plasmid DNA regardless of size but only a small proportion of cells can express the gene product. (2/98)

The expression of intradermally injected DNA by keratinocytes is found mainly in the upper and middle layers of the epidermis. To investigate the mechanism of this selective expression, we observed the sequential changes in the distribution of interleukin-6-expressing keratinocytes after the introduction of the interleukin-6 gene. Transgene expression first occurred in basal keratinocytes and subsequently expanded to all epidermal layers and then remained in the upper layers. Semiquantitative analysis indicated that keratinocytes in the lower layers incorporated and lost DNA earlier than those in the upper layers. In order to examine the effect of the DNA size on the transgene expression, we constructed a plasmid containing a full-length 9 kb cDNA of type VII collagen and introduced it into keratinocytes. The expression pattern of type VII collagen in the epidermis was the same as those for smaller genes. This suggests that plasmid size has little or no effect on the expression pattern of the transfected gene. To trace the introduced plasmid, we intradermally injected a green fluorescence protein expression plasmid coupled with a rhodamine flag. Almost all keratinocytes in the injected areas showed rhodamine fluorescence. Furthermore, some cells also expressed green fluorescence protein. A lack of rhodamine fluorescence in the nucleus suggested an impairment of plasmid DNA transport from the cytoplasm to the nucleus. Collectively, our results show that the majority of keratinocytes take up the intradermally injected DNA regardless of its size, but that the transfer of DNA from the cytoplasm to the nucleus is limiting the transgene expression.  (+info)

The epidermolysis bullosa acquisita antigen (type VII collagen) is present in human colon and patients with crohn's disease have autoantibodies to type VII collagen. (3/98)

Epidermolysis bullosa acquisita is an autoimmune blistering disease of the skin characterized by IgG autoantibodies against type VII collagen. Systemic diseases are often associated with epidermolysis bullosa acquisita, Crohn's disease being the most frequent. This study sought to determine if type VII collagen, the epidermolysis bullosa acquisita autoantigen, was present in normal human colon by western blotting and immunofluorescence. The 290 kDa type VII collagen alpha chain was demonstrated by western blotting in four normal intraoperative colon specimens. Antibodies to type VII collagen labeled the junction between the intestinal epithelium and the lamina propria. We also used an enzyme-linked immunosorbent assay to test sera from patients with Crohn's disease (n = 19), ulcerative colitis (n = 31), celiac disease (n = 17), rheumatoid arthritis (n = 15), and normal controls (n = 16). It was found that 13 of 19 patients with Crohn's disease and four of 31 patients with ulcerative colitis demonstrated reactivity to type VII collagen. Sera from control subjects, patients with celiac disease or rheumatoid arthritis were negative. The sera from Crohn's disease patients also reacted with type VII collagen by immunoblot analysis. It was concluded that patients with inflammatory bowel disease may have IgG autoantibodies to type VII collagen, which exists in both the skin and the gut.  (+info)

Autoantibodies to type VII collagen mediate Fcgamma-dependent neutrophil activation and induce dermal-epidermal separation in cryosections of human skin. (4/98)

Epidermolysis bullosa acquisita is an autoimmune subepidermal blistering disease associated with autoantibodies to type VII collagen, the major constituent of anchoring fibrils. Previous attempts to demonstrate the blister-inducing potential of autoantibodies to this protein have failed. To address this question, we used an in vitro model involving cryosections of human skin incubated with patients' autoantibodies and leukocytes from healthy donors. We show that sera from 14 of 16 epidermolysis bullosa acquisita patients, in contrast to sera from healthy controls, induced dermal-epidermal separation in the cryosections. Recruitment and activation of neutrophils at the dermal-epidermal junction was necessary for split induction, whereas mononuclear cells were not required. Importantly, patients' autoantibodies affinity-purified against a recombinant form of the noncollagenous 1 domain of type VII collagen retained their blister-inducing capacity in a dose-dependent manner, whereas patients' IgG that was depleted of reactivity to type VII collagen lost this ability. Monoclonal antibody LH7.2 to the noncollagenous 1 domain of type VII collagen also induced subepidermal splits in the cryosections; F(ab')(2) fragments of autoantibodies to type VII collagen were not pathogenic. We demonstrate the capacity of autoantibodies to type VII collagen to trigger an Fcgamma-dependent inflammation leading to split formation in cryosections of human skin.  (+info)

Genotype-phenotype correlation in italian patients with dystrophic epidermolysis bullosa. (5/98)

Dystrophic epidermolysis bullosa (DEB) is a rare skin disorder that is clinically heterogeneous and is transmitted either in dominant (DDEB) or recessive (RDEB) mode. Nevertheless, all variants of DEB are caused by mutations in type VII collagen gene (COL7A1). We report an analysis of COL7A1 mutations in 51 Italian DEB patients, 27 affected with Hallopeau-Siemens RDEB, 19 with non Hallopeau-Siemens RDEB, two with DDEB, two with pretibial RDEB, and one with inversa RDEB. Forty-one mutations were identified, 18 of which are novel. Mutation consequences were analyzed at the mRNA and protein level and genotype-phenotype correlation was determined. Recessive inheritance of a new case of pretibial RDEB was also established. In RDEB patients, six recurrent mutations were identified: 7344G-->A, 425A-->G, 8441-14del21, 4783-1G-->A, 497insA, and G1664A, the last three being found only in Italian patients. Indeed, haplotype analysis supported propagation of ancestral mutated alleles within the Italian population for these particular mutations. Altogether recurrent mutations account for approximately 43% of RDEB alleles in Italian patients and therefore new DEB patients should first be screened for the presence of these mutations.  (+info)

Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. (6/98)

Current therapeutic strategies for genetic skin disorders rely on the complex process of grafting genetically engineered tissue to recipient wound beds. Because fibroblasts synthesize and secrete extracellular matrix, we explored their utility in recessive dystrophic epidermolysis bullosa (RDEB), a blistering disease due to defective extracellular type VII collagen. Intradermal injection of RDEB fibroblasts overexpressing type VII collagen into intact RDEB skin stably restored correctly localized type VII collagen expression in vivo and normalized hallmark RDEB disease features, including subepidermal blistering and anchoring fibril defects. This article was published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org.  (+info)

Identification of COL7A1 alternative splicing inserting 9 amino acid residues into the fibronectin type III linker domain. (7/98)

Type VII collagen is the major component of anchoring fibrils within the cutaneous basement membrane zone. The large amino-terminal noncollagenous domain of type VII collagen interacts with various extracellular matrix proteins and contributes to the dermal-epidermal attachment. The purpose of this study was to detect alternative splicing of COL7A1 transcript encoding the noncollagenous 1 domain. The alternative splicing in this region may affect interactions of the noncollagenous 1 domain with extracellular matrix proteins and also dermal-epidermal adhesion. Thus we examined expression of the alternative splicing in situations relating to wound healing and skin remodeling that required dermal-epidermal binding and detachment. Amplification of overlapping cDNA from keratinocytes using reverse transcription-polymerase chain reaction identified alternative splicing, which was generated by a different exon 18 acceptor site 27 bp upstream from the common acceptor site. Expression of this alternatively spliced transcript differed among several cell types. The nine amino acid residues GPLTLPLSP from the 27 bp nucleotides were inserted into the linker of fibronectin type III domains. This insertion was suggested to contribute to flexibility of the linker of fibronectin type III domains and may affect the interactions between the noncollagenous 1 domain and extracellular matrix proteins. Treatment with transforming growth factor-beta 1, which is known to promote wound healing and skin remodeling, enhanced the expression of this 27 bp transcript. Furthermore, keratinocyte biopsies from the wound edge of patients with epithelizing skin ulcers showed a significant increase in the 27 bp transcript expression compared with normal keratinocytes from steady-state body sites. These results suggest that amino acid variation of this alternative splicing may have some role in dermal-epidermal adhesion, wound healing, and skin remodeling. To the best of our knowledge, this is the first evidence of alternative splice insertion of a small peptide into the linker region of the fibronectin type III domains, a common motif within modular proteins.  (+info)

Genetic correction of canine dystrophic epidermolysis bullosa mediated by retroviral vectors. (8/98)

We have assessed the suitability of retroviral vectors for gene therapy of recessive dystrophic epidermolysis bullosa (RDEB) in dogs expressing a mutated collagen type VII. Isolation and analysis of the 9 kb dog collagen type VII cDNA identified the causative genetic mutation G1906S and disclosed the interspecies conservation of collagen type VII. Highly efficient transfer of the wild-type collagen type VII cDNA to both dog RDEB and human primary RDEB collagen type VII-null keratinocytes using recombinant vectors derived from LZRS-Ires-zeo and MSCV retroviruses achieved sustained and permanent expression of the transgene product. The expression and post-translational modification profile of the recombinant collagen type VII was comparable to that of the wild-type counterpart. The recombinant canine collagen type VII in human RDEB keratinocytes and dog cells corrected the observable defects caused by RDEB keratinocytes in cell cultures and in vitro reconstructed skin. Hypermotility was fully reverted in human RDEB keratinocytes, and strongly reduced in the dog RDEB cells. This observation suggests that not only infection efficiency but also high expression levels are required to ensure therapeutic efficacy in the presence of mutated gene products. Our results set the basis for preclinical gene therapy assays in the first immune-competent large animal model for an inherited skin disease and broaden the spectrum of preclinical and clinical applications of retroviral vectors in the transfer of large recombinant genes in epithelial cells.  (+info)

Epidermolysis Bullosa Dystrophica (EBD) is a type of inherited skin disorder that belongs to the group of conditions known as Epidermolysis Bullosa. This condition is characterized by the development of fragile, blistering skin that can be caused by minor trauma or friction.

In EBD, the blisters form in the upper layer of the skin (epidermis) and the underlying layer (dermis), leading to scarring and tissue damage. The symptoms of EBD can range from mild to severe and may include:

* Blistering of the skin that can be triggered by friction, heat, or other factors
* Formation of scars, particularly on the hands and feet
* Thickening of the skin (hyperkeratosis)
* Nail abnormalities, such as ridged or brittle nails
* Mouth sores and blisters
* Dental problems, including tooth decay and gum disease

EBD is caused by mutations in the genes that provide instructions for making proteins that help to anchor the skin's layers together. As a result, the skin becomes fragile and prone to blistering.

There are several subtypes of EBD, each with its own specific genetic cause and symptoms. Treatment typically involves wound care, prevention of infection, and management of pain. In severe cases, surgery may be necessary to treat complications such as scarring or contractures.

Collagen type VII is a type of collagen that is a major component of the anchoring fibrils, which are structures that help to attach the epidermis (the outermost layer of the skin) to the dermis (the layer of skin directly below the epidermis). Collagen type VII is composed of three identical chains that are encoded by the COL7A1 gene. Mutations in this gene can lead to a group of inherited blistering disorders known as autosomal recessive dystrophic epidermolysis bullosa, which is characterized by fragile skin and mucous membranes that blister and tear easily, often from minor trauma or friction.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

Collagen Type I is the most abundant form of collagen in the human body, found in various connective tissues such as tendons, ligaments, skin, and bones. It is a structural protein that provides strength and integrity to these tissues. Collagen Type I is composed of three alpha chains, two alpha-1(I) chains, and one alpha-2(I) chain, arranged in a triple helix structure. This type of collagen is often used in medical research and clinical applications, such as tissue engineering and regenerative medicine, due to its excellent mechanical properties and biocompatibility.

Mucopolysaccharidosis (MPS) VII, also known as Sly syndrome, is a rare genetic disorder caused by the deficiency of the enzyme beta-glucuronidase. This enzyme is responsible for breaking down complex sugars called glycosaminoglycans (GAGs), or mucopolysaccharides, in the body. When this enzyme is not present in sufficient amounts, GAGs accumulate in various tissues and organs, leading to progressive damage.

The symptoms of MPS VII can vary widely, but often include coarse facial features, short stature, skeletal abnormalities, hearing loss, heart problems, and intellectual disability. Some individuals with MPS VII may also have cloudy corneas, enlarged liver and spleen, and difficulty breathing due to airway obstruction. The severity of the condition can range from mild to severe, and life expectancy is often reduced in those with more severe symptoms.

MPS VII is inherited in an autosomal recessive manner, which means that an individual must inherit two copies of the mutated gene (one from each parent) in order to develop the condition. Treatment for MPS VII typically involves enzyme replacement therapy, which can help to slow down the progression of the disease and improve some symptoms. However, there is currently no cure for this condition.

Factor VII, also known as proconvertin, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor VII is synthesized in the liver and is activated when it comes into contact with tissue factor, which is exposed when blood vessels are damaged. Activated Factor VII then activates Factor X, leading to the formation of thrombin and ultimately a fibrin clot.

Inherited deficiencies or dysfunctions of Factor VII can lead to an increased risk of bleeding, while elevated levels of Factor VII have been associated with an increased risk of thrombosis (blood clots).

Collagen Type III, also known as Collagen III Alpha 1 (COL3A1), is a type of collagen that is found in various connective tissues throughout the body. It is a fibrillar collagen that is produced by fibroblasts and is a major component of reticular fibers, which provide structural support to organs such as the liver, spleen, and lymph nodes. Collagen Type III is also found in the walls of blood vessels, the skin, and the intestinal tract.

Mutations in the COL3A1 gene can lead to a rare genetic disorder called Ehlers-Danlos syndrome type IV, which is characterized by fragile and elastic skin, easy bruising, and spontaneous rupture of blood vessels. Collagen Type III has been studied for its potential role in various other medical conditions, including fibrosis, cancer, and cardiovascular disease.

Glycogen Storage Disease Type VII, also known as Tarui's disease, is a rare inherited metabolic disorder caused by a deficiency of the enzyme phosphofructokinase (PFK), which is required for glycogenolysis – the breakdown of glycogen to glucose-1-phosphate and ultimately into glucose. This enzyme deficiency results in the accumulation of glycogen, particularly in muscle and red blood cells, leading to symptoms such as exercise-induced muscle cramps, myoglobinuria (the presence of myoglobin in the urine), and hemolytic anemia. The disease can also cause muscle weakness, fatigue, and dark-colored urine after strenuous exercise. It is inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Epidermolysis Bullosa Acquisita (EBA) is a rare autoimmune blistering disorder characterized by the production of autoantibodies against type VII collagen, a protein that plays a crucial role in anchoring the epidermis to the dermis. This results in the formation of blisters and erosions on the skin and mucous membranes, particularly in areas subjected to friction or trauma.

EBA can be classified into two main forms: the mechanobullous form and the inflammatory form. The mechanobullous form is characterized by spontaneous blistering and mechanical fragility of the skin, while the inflammatory form presents with inflammation and erosions in the mucous membranes.

The onset of EBA can occur at any age, but it is more common in adults, particularly those over 40 years old. The diagnosis of EBA is based on clinical presentation, direct immunofluorescence (DIF) studies, and detection of autoantibodies against type VII collagen.

Treatment of EBA typically involves a combination of wound care, prevention of infection, and immunosuppressive therapy to control the production of autoantibodies. The prognosis of EBA varies depending on the severity and extent of skin and mucous membrane involvement, as well as the response to treatment.

Collagen Type IV is a type of collagen that forms the structural basis of basement membranes, which are thin, sheet-like structures that separate and support cells in many types of tissues. It is a major component of the basement membrane's extracellular matrix and provides strength and flexibility to this structure. Collagen Type IV is composed of three chains that form a distinctive, mesh-like structure. Mutations in the genes encoding Collagen Type IV can lead to a variety of inherited disorders affecting the kidneys, eyes, and ears.

Collagen Type II is a specific type of collagen that is a major component of the extracellular matrix in articular cartilage, which is the connective tissue that covers and protects the ends of bones in joints. It is also found in other tissues such as the vitreous humor of the eye and the inner ear.

Collagen Type II is a triple helix molecule composed of three polypeptide chains that contain a high proportion of the amino acids proline and hydroxyproline. This type of collagen provides structural support and elasticity to tissues, and it also plays a role in the regulation of cell behavior and signaling.

Collagen Type II is a target for autoimmune responses in conditions such as rheumatoid arthritis, where the immune system mistakenly attacks the body's own collagen, leading to joint inflammation and damage. It is also a common component of various dietary supplements and therapies used to support joint health and treat osteoarthritis.

Collagen Type V is a specific type of collagen, which is a protein that provides structure and strength to connective tissues in the body. Collagen Type V is found in various tissues, including the cornea, blood vessels, and hair. It plays a crucial role in the formation of collagen fibers and helps regulate the diameter of collagen fibrils. Mutations in the genes that encode for Collagen Type V can lead to various connective tissue disorders, such as Ehlers-Danlos syndrome and osteogenesis imperfecta.

Fibrillar collagens are a type of collagen that form rope-like fibrils in the extracellular matrix of connective tissues. They are composed of three polypeptide chains, called alpha chains, which are coiled together in a triple helix structure. The most common types of fibrillar collagens are Type I, II, III, V, and XI. These collagens provide strength and support to tissues such as tendons, ligaments, skin, and bones. They also play important roles in the regulation of cell behavior and tissue development. Mutations in genes encoding fibrillar collagens can lead to a variety of connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Marfan syndrome.

The basement membrane is a thin, specialized layer of extracellular matrix that provides structural support and separates epithelial cells (which line the outer surfaces of organs and blood vessels) from connective tissue. It is composed of two main layers: the basal lamina, which is produced by the epithelial cells, and the reticular lamina, which is produced by the connective tissue. The basement membrane plays important roles in cell adhesion, migration, differentiation, and survival.

The basal lamina is composed mainly of type IV collagen, laminins, nidogens, and proteoglycans, while the reticular lamina contains type III collagen, fibronectin, and other matrix proteins. The basement membrane also contains a variety of growth factors and cytokines that can influence cell behavior.

Defects in the composition or organization of the basement membrane can lead to various diseases, including kidney disease, eye disease, and skin blistering disorders.

Procollagen is the precursor protein of collagen, which is a major structural protein in the extracellular matrix of various connective tissues, such as tendons, ligaments, skin, and bones. Procollagen is synthesized inside the cell (in the rough endoplasmic reticulum) and then processed by enzymes to remove specific segments, resulting in the formation of tropocollagen, which are the basic units of collagen fibrils.

Procollagen consists of three polypeptide chains (two alpha-1 and one alpha-2 chain), each containing a central triple-helical domain flanked by non-helical regions at both ends. These non-helical regions, called propeptides, are cleaved off during the processing of procollagen to tropocollagen, allowing the individual collagen molecules to align and form fibrils through covalent cross-linking.

Abnormalities in procollagen synthesis or processing can lead to various connective tissue disorders, such as osteogenesis imperfecta (brittle bone disease) and Ehlers-Danlos syndrome (a group of disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility).

Collagen Type VI is a type of collagen that is widely expressed in various tissues, including skeletal muscle, skin, and blood vessels. It is a major component of the extracellular matrix and plays important roles in maintaining tissue structure and function. Collagen Type VI forms microfilaments that provide structural support to the basement membrane and regulate cell-matrix interactions. Mutations in the genes encoding collagen Type VI can lead to several inherited connective tissue disorders, such as Bethlem myopathy and Ullrich congenital muscular dystrophy.

Collagen type XI is a fibrillar collagen that is found in the extracellular matrix of various tissues, including cartilage and the eye. It is a homotrimer made up of three identical alpha 1(XI) chains or a heterotrimer composed of two alpha 1(XI) chains and one alpha 2(XI) chain. Collagen type XI is closely associated with collagen type II fibrils and plays a role in regulating the diameter and organization of these fibrils. Mutations in the genes encoding collagen type XI can lead to skeletal disorders such as stiff skin syndrome and fibrodysplasia ossificans progressiva.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Epidermolysis Bullosa (EB) is a group of rare inherited skin disorders that are characterized by the development of blisters, erosions, and scarring following minor trauma or friction. The condition results from a genetic defect that affects the structural proteins responsible for anchoring the epidermis (outer layer of the skin) to the dermis (inner layer of the skin).

There are several types of EB, which vary in severity and clinical presentation. These include:

1. Epidermolysis Bullosa Simplex (EBS): This is the most common form of EB, and it typically affects the skin's superficial layers. Blistering tends to occur after minor trauma or friction, and healing usually occurs without scarring. There are several subtypes of EBS, which vary in severity.
2. Junctional Epidermolysis Bullosa (JEB): This form of EB affects the deeper layers of the skin, and blistering can occur spontaneously or following minor trauma. Healing often results in scarring, and affected individuals may also experience nail loss, dental abnormalities, and fragile mucous membranes.
3. Dystrophic Epidermolysis Bullosa (DEB): DEB affects the deeper layers of the skin, and blistering can lead to significant scarring, contractures, and fusion of fingers and toes. There are two main subtypes of DEB: recessive DEB (RDEB), which is more severe and associated with a higher risk of skin cancer, and dominant DEB (DDEB), which tends to be milder.
4. Kindler Syndrome: This is a rare form of EB that affects both the epidermis and dermis. Blistering can occur spontaneously or following minor trauma, and affected individuals may experience photosensitivity, poikiloderma (a mottled skin appearance), and oral and gastrointestinal abnormalities.

Treatment for EB typically focuses on managing symptoms, preventing blister formation and infection, and promoting wound healing. There is currently no cure for EB, but research is ongoing to develop new therapies and treatments.

Glucuronidase is an enzyme that catalyzes the hydrolysis of glucuronic acid from various substrates, including molecules that have been conjugated with glucuronic acid as part of the detoxification process in the body. This enzyme plays a role in the breakdown and elimination of certain drugs, toxins, and endogenous compounds, such as bilirubin. It is found in various tissues and organisms, including humans, bacteria, and insects. In clinical contexts, glucuronidase activity may be measured to assess liver function or to identify the presence of certain bacterial infections.

Collagen receptors are a type of cell surface receptor that bind to collagen molecules, which are the most abundant proteins in the extracellular matrix (ECM) of connective tissues. These receptors play important roles in various biological processes, including cell adhesion, migration, differentiation, and survival.

Collagen receptors can be classified into two major groups: integrins and discoidin domain receptors (DDRs). Integrins are heterodimeric transmembrane proteins that consist of an alpha and a beta subunit. They bind to collagens via their arginine-glycine-aspartic acid (RGD) motif, which is located in the triple-helical domain of collagen molecules. Integrins mediate cell-collagen interactions by clustering and forming focal adhesions, which are large protein complexes that connect the ECM to the cytoskeleton.

DDRs are receptor tyrosine kinases (RTKs) that contain a discoidin domain in their extracellular region, which is responsible for collagen binding. DDRs bind to collagens via their non-RGD motifs and induce intracellular signaling pathways that regulate cell behavior.

Abnormalities in collagen receptor function have been implicated in various diseases, including fibrosis, cancer, and inflammation. Therefore, understanding the structure and function of collagen receptors is crucial for developing novel therapeutic strategies to treat these conditions.

Factor VII deficiency is a bleeding disorder that is caused by a deficiency or dysfunction of coagulation factor VII, which is a protein involved in the coagulation cascade and is necessary for the initiation of blood clotting. This condition can lead to prolonged bleeding after injury or surgery, easy bruising, and spontaneous bleeding. The severity of the disorder varies widely, depending on the level of factor VII activity. In severe cases, factor VII activity may be less than 1% of normal, leading to a high risk of bleeding. In milder cases, factor VII activity may be between 5-40% of normal, leading to a lower risk of bleeding. Treatment typically involves replacement therapy with fresh frozen plasma or recombinant factor VIIa to control bleeding episodes and prevent complications.

Ehlers-Danlos syndrome (EDS) is a group of inherited disorders that affect connective tissues, which are the proteins and chemicals in the body that provide structure and support for skin, bones, blood vessels, and other organs. People with EDS have stretching (elastic) skin and joints that are too loose (hypermobile). There are several types of EDS, each with its own set of symptoms and level of severity. Some of the more common types include:

* Classical EDS: This type is characterized by skin that can be stretched far beyond normal and bruises easily. Affected individuals may also have joints that dislocate easily.
* Hypermobile EDS: This type is marked by joint hypermobility, which can lead to frequent dislocations and subluxations (partial dislocations). Some people with this type of EDS also have Marfan syndrome-like features, such as long fingers and a curved spine.
* Vascular EDS: This type is caused by changes in the COL3A1 gene and is characterized by thin, fragile skin that tears or bruises easily. People with vascular EDS are at risk of serious complications, such as arterial rupture and organ perforation.
* Kyphoscoliosis EDS: This type is marked by severe kyphoscoliosis (a forward curvature of the spine) and joint laxity. Affected individuals may also have fragile skin that tears or bruises easily.

EDS is typically inherited in an autosomal dominant manner, meaning that a person only needs to inherit one copy of the altered gene from either parent to develop the condition. However, some types of EDS are inherited in an autosomal recessive manner, which means that a person must inherit two copies of the altered gene (one from each parent) to develop the condition.

There is no cure for EDS, and treatment is focused on managing symptoms and preventing complications. This may include physical therapy to strengthen muscles and improve joint stability, bracing to support joints, and surgery to repair damaged tissues or organs.

Fibril-Associated Collagens (also known as FACIT collagens) are a group of collagen proteins that are characterized by their association with the surface of collagen fibrils. They play a role in the organization, stability, and diameter regulation of collagen fibrils. These collagens include types XII, XIV, XVI, XIX, XXI, and XXII.

Type XII collagen is found in various tissues such as tendons, ligaments, skin, and cornea. It has a triple-helical domain that interacts with the surface of collagen fibrils and a non-collagenous domain that can bind to other extracellular matrix proteins.

Type XIV collagen is also found in various tissues and has a similar structure to type XII collagen, but it has a larger non-collagenous domain. It plays a role in regulating the diameter of collagen fibrils.

Type XVI collagen is primarily found in cartilage and has a unique structure with multiple interruptions in its triple-helical domain. It is involved in the regulation of collagen fibrillogenesis and may also have roles in cell adhesion and signaling.

Types XIX and XXI collagens are similar to each other and are found in various tissues, including skin, tendons, and blood vessels. They have a short triple-helical domain and large non-collagenous domains that contain multiple binding sites for other extracellular matrix proteins.

Type XXII collagen is primarily found in the cornea and has a similar structure to type XIX collagen. It plays a role in regulating the diameter of collagen fibrils and may also have roles in cell adhesion and signaling.

Extracellular matrix (ECM) proteins are a group of structural and functional molecules that provide support, organization, and regulation to the cells in tissues and organs. The ECM is composed of a complex network of proteins, glycoproteins, and carbohydrates that are secreted by the cells and deposited outside of them.

ECM proteins can be classified into several categories based on their structure and function, including:

1. Collagens: These are the most abundant ECM proteins and provide strength and stability to tissues. They form fibrils that can withstand high tensile forces.
2. Proteoglycans: These are complex molecules made up of a core protein and one or more glycosaminoglycan (GAG) chains. The GAG chains attract water, making proteoglycans important for maintaining tissue hydration and resilience.
3. Elastin: This is an elastic protein that allows tissues to stretch and recoil, such as in the lungs and blood vessels.
4. Fibronectins: These are large glycoproteins that bind to cells and ECM components, providing adhesion, migration, and signaling functions.
5. Laminins: These are large proteins found in basement membranes, which provide structural support for epithelial and endothelial cells.
6. Tenascins: These are large glycoproteins that modulate cell adhesion and migration, and regulate ECM assembly and remodeling.

Together, these ECM proteins create a microenvironment that influences cell behavior, differentiation, and function. Dysregulation of ECM proteins has been implicated in various diseases, including fibrosis, cancer, and degenerative disorders.

The extracellular matrix (ECM) is a complex network of biomolecules that provides structural and biochemical support to cells in tissues and organs. It is composed of various proteins, glycoproteins, and polysaccharides, such as collagens, elastin, fibronectin, laminin, and proteoglycans. The ECM plays crucial roles in maintaining tissue architecture, regulating cell behavior, and facilitating communication between cells. It provides a scaffold for cell attachment, migration, and differentiation, and helps to maintain the structural integrity of tissues by resisting mechanical stresses. Additionally, the ECM contains various growth factors, cytokines, and chemokines that can influence cellular processes such as proliferation, survival, and differentiation. Overall, the extracellular matrix is essential for the normal functioning of tissues and organs, and its dysregulation can contribute to various pathological conditions, including fibrosis, cancer, and degenerative diseases.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Pepsin A is defined as a digestive enzyme that is primarily secreted by the chief cells in the stomach's fundic glands. It plays a crucial role in protein catabolism, helping to break down food proteins into smaller peptides during the digestive process. Pepsin A has an optimal pH range of 1.5-2.5 for its enzymatic activity and is activated from its inactive precursor, pepsinogen, upon exposure to acidic conditions in the stomach.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Collagen type XVIII is a type of collagen that is found in the basement membrane, which is a thin layer of extracellular matrix that separates and supports epithelial and endothelial cells. It is a heterotrimeric protein composed of three different chains, alpha1(XVIII), alpha2(XVIII), and alpha3(XVIII). Collagen XVIII is thought to play a role in the maintenance and organization of the basement membrane, as well as in cell adhesion and migration. It also contains a number of distinct domains that are involved in various biological processes, including angiogenesis, tissue repair, and tumor growth. Mutations in the gene that encodes collagen XVIII have been associated with eye diseases such as Knobloch syndrome and familial exudative vitreoretinopathy.

Microbial collagenase is not a medical term per se, but it does refer to an enzyme that is used in various medical and research contexts. Collagenases are a group of enzymes that break down collagen, a structural protein found in connective tissues such as skin, tendons, and ligaments. Microbial collagenase is a type of collagenase that is produced by certain bacteria, such as Clostridium histolyticum.

In medical terms, microbial collagenase is used in various therapeutic and research applications, including:

1. Wound healing: Microbial collagenase can be used to break down and remove necrotic tissue from wounds, which can help promote healing and prevent infection.
2. Dental applications: Collagenases have been used in periodontal therapy to remove calculus and improve the effectiveness of root planing and scaling procedures.
3. Research: Microbial collagenase is a valuable tool for researchers studying the structure and function of collagen and other extracellular matrix proteins. It can be used to digest tissue samples, allowing scientists to study the individual components of the extracellular matrix.

It's important to note that while microbial collagenase has many useful applications, it must be used with care, as excessive or improper use can damage healthy tissues and cause adverse effects.

The amnion is the innermost fetal membrane in mammals, forming a sac that contains and protects the developing embryo and later the fetus within the uterus. It is one of the extraembryonic membranes that are derived from the outer cell mass of the blastocyst during early embryonic development. The amnion is filled with fluid (amniotic fluid) that allows for the freedom of movement and protection of the developing fetus.

The primary function of the amnion is to provide a protective environment for the growing fetus, allowing for expansion and preventing physical damage from outside forces. Additionally, the amniotic fluid serves as a medium for the exchange of waste products and nutrients between the fetal membranes and the placenta. The amnion also contributes to the formation of the umbilical cord and plays a role in the initiation of labor during childbirth.

Laminin is a family of proteins that are an essential component of the basement membrane, which is a specialized type of extracellular matrix. Laminins are large trimeric molecules composed of three different chains: α, β, and γ. There are five different α chains, three different β chains, and three different γ chains that can combine to form at least 15 different laminin isoforms.

Laminins play a crucial role in maintaining the structure and integrity of basement membranes by interacting with other components of the extracellular matrix, such as collagen IV, and cell surface receptors, such as integrins. They are involved in various biological processes, including cell adhesion, differentiation, migration, and survival.

Laminin dysfunction has been implicated in several human diseases, including cancer, diabetic nephropathy, and muscular dystrophy.

A blister is a small fluid-filled bubble that forms on the skin due to friction, burns, or contact with certain chemicals or irritants. Blisters are typically filled with a clear fluid called serum, which is a component of blood. They can also be filled with blood (known as blood blisters) if the blister is caused by a more severe injury.

Blisters act as a natural protective barrier for the underlying skin and tissues, preventing infection and promoting healing. It's generally recommended to leave blisters intact and avoid breaking them, as doing so can increase the risk of infection and delay healing. If a blister is particularly large or painful, medical attention may be necessary to prevent complications.

Collagen type X is a specific type of collagen that is primarily found in the hypertrophic zone of mature cartilage, which is located near the site of bone formation during endochondral ossification. It plays a crucial role in the mineralization process of the cartilage matrix and is essential for the formation of healthy bones. Collagen type X is composed of three identical alpha chains that form a triple helix structure, and it is synthesized by chondrocytes, which are the specialized cells found in cartilage tissue. Mutations in the gene that encodes collagen type X have been associated with certain skeletal disorders, such as Schmid metaphyseal chondrodysplasia.

Cartilage is a type of connective tissue that is found throughout the body in various forms. It is made up of specialized cells called chondrocytes, which are embedded in a firm, flexible matrix composed of collagen fibers and proteoglycans. This unique structure gives cartilage its characteristic properties of being both strong and flexible.

There are three main types of cartilage in the human body: hyaline cartilage, elastic cartilage, and fibrocartilage.

1. Hyaline cartilage is the most common type and is found in areas such as the articular surfaces of bones (where they meet to form joints), the nose, trachea, and larynx. It has a smooth, glassy appearance and provides a smooth, lubricated surface for joint movement.
2. Elastic cartilage contains more elastin fibers than hyaline cartilage, which gives it greater flexibility and resilience. It is found in structures such as the external ear and parts of the larynx and epiglottis.
3. Fibrocartilage has a higher proportion of collagen fibers and fewer chondrocytes than hyaline or elastic cartilage. It is found in areas that require high tensile strength, such as the intervertebral discs, menisci (found in joints like the knee), and the pubic symphysis.

Cartilage plays a crucial role in supporting and protecting various structures within the body, allowing for smooth movement and providing a cushion between bones to absorb shock and prevent wear and tear. However, cartilage has limited capacity for self-repair and regeneration, making damage or degeneration of cartilage tissue a significant concern in conditions such as osteoarthritis.

Collagen type XII is a type of collagen that is found in the extracellular matrix of various tissues, including tendons, ligaments, and skin. It is a fibril-associated collagen that is closely associated with collagens type I and III. Collagen type XII has been shown to play a role in regulating the organization and diameter of collagen fibrils. Mutations in the gene for collagen type XII have been associated with certain types of muscular dystrophy and Bethlem myopathy, which are genetic disorders that affect muscle strength and tone. Additionally, it has been suggested to play a role in the development of osteoarthritis.

Fibronectin is a high molecular weight glycoprotein that is found in many tissues and body fluids, including plasma, connective tissue, and the extracellular matrix. It is composed of two similar subunits that are held together by disulfide bonds. Fibronectin plays an important role in cell adhesion, migration, and differentiation by binding to various cell surface receptors, such as integrins, and other extracellular matrix components, such as collagen and heparan sulfate proteoglycans.

Fibronectin has several isoforms that are produced by alternative splicing of a single gene transcript. These isoforms differ in their biological activities and can be found in different tissues and developmental stages. Fibronectin is involved in various physiological processes, such as wound healing, tissue repair, and embryonic development, and has been implicated in several pathological conditions, including fibrosis, tumor metastasis, and thrombosis.

Hydroxyproline is not a medical term per se, but it is a significant component in the medical field, particularly in the study of connective tissues and collagen. Here's a scientific definition:

Hydroxyproline is a modified amino acid that is formed by the post-translational modification of the amino acid proline in collagen and some other proteins. This process involves the addition of a hydroxyl group (-OH) to the proline residue, which alters its chemical properties and contributes to the stability and structure of collagen fibers. Collagen is the most abundant protein in the human body and is a crucial component of connective tissues such as tendons, ligaments, skin, and bones. The presence and quantity of hydroxyproline can serve as a marker for collagen turnover and degradation, making it relevant to various medical and research contexts, including the study of diseases affecting connective tissues like osteoarthritis, rheumatoid arthritis, and Ehlers-Danlos syndrome.

Mucopolysaccharidoses (MPS) are a group of inherited metabolic disorders caused by the deficiency of specific enzymes needed to break down complex sugars called glycosaminoglycans (GAGs or mucopolysaccharides). As a result, these GAGs accumulate in various tissues and organs, leading to progressive cellular damage and multi-organ dysfunction. There are several types of MPS, including Hurler syndrome, Hunter syndrome, Sanfilippo syndrome, Morquio syndrome, Maroteaux-Lamy syndrome, and Sly syndrome, each resulting from a deficiency in one of the eleven different enzymes involved in GAGs metabolism. The clinical presentation, severity, and prognosis vary among the types but commonly include features such as developmental delay, coarse facial features, skeletal abnormalities, hearing loss, heart problems, and reduced life expectancy.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Collagen diseases, also known as collagen disorders or connective tissue diseases, refer to a group of medical conditions that affect the body's connective tissues. These tissues provide support and structure for various organs and systems in the body, including the skin, joints, muscles, and blood vessels.

Collagen is a major component of connective tissues, and it plays a crucial role in maintaining their strength and elasticity. In collagen diseases, the body's immune system mistakenly attacks healthy collagen, leading to inflammation, pain, and damage to the affected tissues.

There are several types of collagen diseases, including:

1. Systemic Lupus Erythematosus (SLE): This is a chronic autoimmune disease that can affect various organs and systems in the body, including the skin, joints, kidneys, heart, and lungs.
2. Rheumatoid Arthritis (RA): This is a chronic inflammatory disease that primarily affects the joints, causing pain, swelling, and stiffness.
3. Scleroderma: This is a rare autoimmune disorder that causes thickening and hardening of the skin and connective tissues, leading to restricted movement and organ damage.
4. Dermatomyositis: This is an inflammatory muscle disease that can also affect the skin, causing rashes and weakness.
5. Mixed Connective Tissue Disease (MCTD): This is a rare autoimmune disorder that combines symptoms of several collagen diseases, including SLE, RA, scleroderma, and dermatomyositis.

The exact cause of collagen diseases is not fully understood, but they are believed to be related to genetic, environmental, and hormonal factors. Treatment typically involves a combination of medications, lifestyle changes, and physical therapy to manage symptoms and prevent complications.

Cryoultramicrotomy is a specialized microscopy technique used in the field of pathology and biology. It involves cutting extremely thin sections (typically less than 100 nanometers thick) of biological samples that have been frozen and hardened at very low temperatures, often using liquid nitrogen or helium.

The process begins by embedding the sample in a suitable medium, such as a cryoprotectant or a low-temperature wax, to prevent ice crystal formation during freezing. The embedded sample is then mounted on a specimen holder and cooled to a temperature below its glass transition point, typically around -150°C to -196°C.

Once the sample is frozen and hardened, it is cut using an ultramicrotome, a precision instrument that uses a diamond knife to slice the sample into thin sections. These sections are then collected on a grid or other support and can be stained with various dyes or stains to enhance contrast and visualization under an electron microscope.

Cryoultramicrotomy is particularly useful for studying the ultrastructure of biological samples, such as cells, tissues, and organelles, that may be sensitive to heat or chemical fixation methods commonly used in traditional histology techniques. It allows researchers to visualize details at the molecular level, providing valuable insights into cellular processes and disease mechanisms.

Glycogen storage disease (GSD) is a group of rare inherited metabolic disorders that affect the body's ability to break down and store glycogen, a complex carbohydrate that serves as the primary form of energy storage in the body. These diseases are caused by deficiencies or dysfunction in enzymes involved in the synthesis, degradation, or transport of glycogen within cells.

There are several types of GSDs, each with distinct clinical presentations and affected organs. The most common type is von Gierke disease (GSD I), which primarily affects the liver and kidneys. Other types include Pompe disease (GSD II), McArdle disease (GSD V), Cori disease (GSD III), Andersen disease (GSD IV), and others.

Symptoms of GSDs can vary widely depending on the specific type, but may include:

* Hypoglycemia (low blood sugar)
* Growth retardation
* Hepatomegaly (enlarged liver)
* Muscle weakness and cramping
* Cardiomyopathy (heart muscle disease)
* Respiratory distress
* Developmental delays

Treatment for GSDs typically involves dietary management, such as frequent feedings or a high-protein, low-carbohydrate diet. In some cases, enzyme replacement therapy may be used to manage symptoms. The prognosis for individuals with GSDs depends on the specific type and severity of the disorder.

Connective tissue is a type of biological tissue that provides support, strength, and protection to various structures in the body. It is composed of cells called fibroblasts, which produce extracellular matrix components such as collagen, elastin, and proteoglycans. These components give connective tissue its unique properties, including tensile strength, elasticity, and resistance to compression.

There are several types of connective tissue in the body, each with its own specific functions and characteristics. Some examples include:

1. Loose or Areolar Connective Tissue: This type of connective tissue is found throughout the body and provides cushioning and support to organs and other structures. It contains a large amount of ground substance, which allows for the movement and gliding of adjacent tissues.
2. Dense Connective Tissue: This type of connective tissue has a higher concentration of collagen fibers than loose connective tissue, making it stronger and less flexible. Dense connective tissue can be further divided into two categories: regular (or parallel) and irregular. Regular dense connective tissue, such as tendons and ligaments, has collagen fibers that run parallel to each other, providing great tensile strength. Irregular dense connective tissue, such as the dermis of the skin, has collagen fibers arranged in a more haphazard pattern, providing support and flexibility.
3. Adipose Tissue: This type of connective tissue is primarily composed of fat cells called adipocytes. Adipose tissue serves as an energy storage reservoir and provides insulation and cushioning to the body.
4. Cartilage: A firm, flexible type of connective tissue that contains chondrocytes within a matrix of collagen and proteoglycans. Cartilage is found in various parts of the body, including the joints, nose, ears, and trachea.
5. Bone: A specialized form of connective tissue that consists of an organic matrix (mainly collagen) and an inorganic mineral component (hydroxyapatite). Bone provides structural support to the body and serves as a reservoir for calcium and phosphate ions.
6. Blood: Although not traditionally considered connective tissue, blood does contain elements of connective tissue, such as plasma proteins and leukocytes (white blood cells). Blood transports nutrients, oxygen, hormones, and waste products throughout the body.

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

Decorin is a small proteoglycan, a type of protein with a attached sugar chain, that is found in the extracellular matrix of connective tissues in the body. It is composed of a core protein and one or more glycosaminoglycan (GAG) chains, specifically dermatan sulfate. Decorin plays important roles in the organization and biomechanical properties of collagen fibrils, regulation of cell proliferation and migration, and modulation of growth factor activity. It has been studied for its potential role in various physiological and pathological processes, including wound healing, fibrosis, and cancer.

Collagen type IX is a type of collagen that is found in the extracellular matrix, particularly in the cartilage and vitreous humor of the eye. It is a heterotrimeric protein made up of three alpha chains (alpha1, alpha2, and alpha3), which are encoded by different genes (COL9A1, COL9A2, and COL9A3). Collagen type IX is thought to play a role in the organization and stability of collagen fibrils, as well as in the interaction between collagen and other extracellular matrix components. It has been implicated in various connective tissue disorders, such as Stickler syndrome and Marshall syndrome.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Fibrosis is a pathological process characterized by the excessive accumulation and/or altered deposition of extracellular matrix components, particularly collagen, in various tissues and organs. This results in the formation of fibrous scar tissue that can impair organ function and structure. Fibrosis can occur as a result of chronic inflammation, tissue injury, or abnormal repair mechanisms, and it is a common feature of many diseases, including liver cirrhosis, lung fibrosis, heart failure, and kidney disease.

In medical terms, fibrosis is defined as:

"The process of producing scar tissue (consisting of collagen) in response to injury or chronic inflammation in normal connective tissue. This can lead to the thickening and stiffening of affected tissues and organs, impairing their function."

Proteoglycans are complex, highly negatively charged macromolecules that are composed of a core protein covalently linked to one or more glycosaminoglycan (GAG) chains. They are a major component of the extracellular matrix (ECM) and play crucial roles in various biological processes, including cell signaling, regulation of growth factor activity, and maintenance of tissue structure and function.

The GAG chains, which can vary in length and composition, are long, unbranched polysaccharides that are composed of repeating disaccharide units containing a hexuronic acid (either glucuronic or iduronic acid) and a hexosamine (either N-acetylglucosamine or N-acetylgalactosamine). These GAG chains can be sulfated to varying degrees, which contributes to the negative charge of proteoglycans.

Proteoglycans are classified into four major groups based on their core protein structure and GAG composition: heparan sulfate/heparin proteoglycans, chondroitin/dermatan sulfate proteoglycans, keratan sulfate proteoglycans, and hyaluronan-binding proteoglycans. Each group has distinct functions and is found in specific tissues and cell types.

In summary, proteoglycans are complex macromolecules composed of a core protein and one or more GAG chains that play important roles in the ECM and various biological processes, including cell signaling, growth factor regulation, and tissue structure maintenance.

Articular cartilage is the smooth, white tissue that covers the ends of bones where they come together to form joints. It provides a cushion between bones and allows for smooth movement by reducing friction. Articular cartilage also absorbs shock and distributes loads evenly across the joint, protecting the bones from damage. It is avascular, meaning it does not have its own blood supply, and relies on the surrounding synovial fluid for nutrients. Over time, articular cartilage can wear down or become damaged due to injury or disease, leading to conditions such as osteoarthritis.

Chondrocytes are the specialized cells that produce and maintain the extracellular matrix of cartilage tissue. They are responsible for synthesizing and secreting the collagen fibers, proteoglycans, and other components that give cartilage its unique properties, such as elasticity, resiliency, and resistance to compression. Chondrocytes are located within lacunae, or small cavities, in the cartilage matrix, and they receive nutrients and oxygen through diffusion from the surrounding tissue fluid. They are capable of adapting to changes in mechanical stress by modulating the production and organization of the extracellular matrix, which allows cartilage to withstand various loads and maintain its structural integrity. Chondrocytes play a crucial role in the development, maintenance, and repair of cartilaginous tissues throughout the body, including articular cartilage, costal cartilage, and growth plate cartilage.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

The cornea is the clear, dome-shaped surface at the front of the eye. It plays a crucial role in focusing vision. The cornea protects the eye from harmful particles and microorganisms, and it also serves as a barrier against UV light. Its transparency allows light to pass through and get focused onto the retina. The cornea does not contain blood vessels, so it relies on tears and the fluid inside the eye (aqueous humor) for nutrition and oxygen. Any damage or disease that affects its clarity and shape can significantly impact vision and potentially lead to blindness if left untreated.

Collagen type VIII is a less common type of collagen that is found in the eyes, specifically in the basement membrane of the cornea and the blood vessels of the eye. It is a network-forming collagen and is believed to play a role in maintaining the structural integrity and stability of these tissues. Mutations in the genes encoding for collagen type VIII have been associated with certain eye disorders, such as Fuchs' endothelial corneal dystrophy.

Here is a medical definition from the US National Library of Medicine:

"Collagen, type VIII, alpha-1 (COL8A1) is a gene that provides instructions for making one component of a type VIII collagen protein called collagen VIII alpha-1 chain. Collagen proteins are important building blocks for many tissues in the body, including tendons, ligaments, and the cornea, which is the clear outer covering of the eye.

Collagen VIII is found in the basement membrane, a thin layer of protein that surrounds many types of cells and helps to anchor them to surrounding tissue. In the eye, collagen VIII is produced by cells called endothelial cells, which line the inside surface of the cornea. Collagen VIII forms networks with other proteins that help maintain the structural integrity and stability of the cornea.

Mutations in the COL8A1 gene can cause Fuchs' endothelial corneal dystrophy, a progressive eye disorder characterized by the gradual clouding of the cornea." ()

Keratinocytes are the predominant type of cells found in the epidermis, which is the outermost layer of the skin. These cells are responsible for producing keratin, a tough protein that provides structural support and protection to the skin. Keratinocytes undergo constant turnover, with new cells produced in the basal layer of the epidermis and older cells moving upward and eventually becoming flattened and filled with keratin as they reach the surface of the skin, where they are then shed. They also play a role in the immune response and can release cytokines and other signaling molecules to help protect the body from infection and injury.

"Mycobacterium marinum" is a slow-growing, gram-positive bacterium that belongs to the group of nontuberculous mycobacteria (NTM). It is commonly found in fresh and saltwater environments, including aquariums and swimming pools. This pathogen can cause skin infections, known as swimmer's granuloma or fish tank granuloma, in individuals who have exposure to contaminated water. The infection typically occurs through minor cuts or abrasions on the skin, leading to a localized, chronic, and slowly progressive lesion. In some cases, disseminated infection can occur in people with weakened immune systems.

References:
1. Chan, R. C., & Cohen, S. M. (2017). Nontuberculous mycobacterial skin infections. Clinics in dermatology, 35(4), 416-423.
2. Kohler, P., Bloch, A., & Pfyffer, G. E. (2002). Nontuberculous mycobacteria: an overview. Swiss medical weekly, 132(35-36), 548-557.
3. Sanguinetti, M., & Bloch, S. A. (2019). Mycobacterium marinum skin infection. American journal of clinical dermatology, 20(2), 219-226.

A tendon is the strong, flexible band of tissue that connects muscle to bone. It helps transfer the force produced by the muscle to allow various movements of our body parts. Tendons are made up of collagen fibers arranged in parallel bundles and have a poor blood supply, making them prone to injuries and slow to heal. Examples include the Achilles tendon, which connects the calf muscle to the heel bone, and the patellar tendon, which connects the kneecap to the shinbone.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Collagenases are a group of enzymes that have the ability to break down collagen, which is a structural protein found in connective tissues such as tendons, ligaments, and skin. Collagen is an important component of the extracellular matrix, providing strength and support to tissues throughout the body.

Collagenases are produced by various organisms, including bacteria, animals, and humans. In humans, collagenases play a crucial role in normal tissue remodeling and repair processes, such as wound healing and bone resorption. However, excessive or uncontrolled activity of collagenases can contribute to the development of various diseases, including arthritis, periodontitis, and cancer metastasis.

Bacterial collagenases are often used in research and medical applications for their ability to digest collagen quickly and efficiently. For example, they may be used to study the structure and function of collagen or to isolate cells from tissues. However, the clinical use of bacterial collagenases is limited due to concerns about their potential to cause tissue damage and inflammation.

Overall, collagenases are important enzymes that play a critical role in maintaining the health and integrity of connective tissues throughout the body.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

In medical terms, "gels" are semi-solid colloidal systems in which a solid phase is dispersed in a liquid medium. They have a viscous consistency and can be described as a cross between a solid and a liquid. The solid particles, called the gel network, absorb and swell with the liquid component, creating a system that has properties of both solids and liquids.

Gels are widely used in medical applications such as wound dressings, drug delivery systems, and tissue engineering due to their unique properties. They can provide a moist environment for wounds to heal, control the release of drugs over time, and mimic the mechanical properties of natural tissues.

Hydroxylysine is a modified form of the amino acid lysine, which is formed by the addition of a hydroxyl group (-OH) to the lysine molecule. This process is known as hydroxylation and is catalyzed by the enzyme lysyl hydroxylase.

In the human body, hydroxylysine is an important component of collagen, which is a protein that provides structure and strength to tissues such as skin, tendons, ligaments, and bones. Hydroxylysine helps to stabilize the triple-helix structure of collagen by forming cross-links between individual collagen molecules.

Abnormalities in hydroxylysine metabolism can lead to various connective tissue disorders, such as Ehlers-Danlos syndrome and osteogenesis imperfecta, which are characterized by joint hypermobility, skin fragility, and bone fractures.

Transforming Growth Factor-beta 1 (TGF-β1) is a cytokine that belongs to the TGF-β superfamily. It is a multifunctional protein involved in various cellular processes, including cell growth, differentiation, apoptosis, and extracellular matrix production. TGF-β1 plays crucial roles in embryonic development, tissue homeostasis, and repair, as well as in pathological conditions such as fibrosis and cancer. It signals through a heteromeric complex of type I and type II serine/threonine kinase receptors, leading to the activation of intracellular signaling pathways, primarily the Smad-dependent pathway. TGF-β1 has context-dependent functions, acting as a tumor suppressor in normal and early-stage cancer cells but promoting tumor progression and metastasis in advanced cancers.

Transforming Growth Factor-beta (TGF-β) is a type of cytokine, which is a cell signaling protein involved in the regulation of various cellular processes, including cell growth, differentiation, and apoptosis (programmed cell death). TGF-β plays a critical role in embryonic development, tissue homeostasis, and wound healing. It also has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

TGF-β exists in multiple isoforms (TGF-β1, TGF-β2, and TGF-β3) that are produced by many different cell types, including immune cells, epithelial cells, and fibroblasts. The protein is synthesized as a precursor molecule, which is cleaved to release the active TGF-β peptide. Once activated, TGF-β binds to its receptors on the cell surface, leading to the activation of intracellular signaling pathways that regulate gene expression and cell behavior.

In summary, Transforming Growth Factor-beta (TGF-β) is a multifunctional cytokine involved in various cellular processes, including cell growth, differentiation, apoptosis, embryonic development, tissue homeostasis, and wound healing. It has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Tissue engineering is a branch of biomedical engineering that combines the principles of engineering, materials science, and biological sciences to develop functional substitutes for damaged or diseased tissues and organs. It involves the creation of living, three-dimensional structures that can restore, maintain, or improve tissue function. This is typically accomplished through the use of cells, scaffolds (biodegradable matrices), and biologically active molecules. The goal of tissue engineering is to develop biological substitutes that can ultimately restore normal function and structure in damaged tissues or organs.

Integrins are a type of cell-adhesion molecule that play a crucial role in cell-cell and cell-extracellular matrix (ECM) interactions. They are heterodimeric transmembrane receptors composed of non-covalently associated α and β subunits, which form more than 24 distinct integrin heterodimers in humans.

Integrins bind to specific ligands, such as ECM proteins (e.g., collagen, fibronectin, laminin), cell surface molecules, and soluble factors, through their extracellular domains. The intracellular domains of integrins interact with the cytoskeleton and various signaling proteins, allowing them to transduce signals from the ECM into the cell (outside-in signaling) and vice versa (inside-out signaling).

These molecular interactions are essential for numerous biological processes, including cell adhesion, migration, proliferation, differentiation, survival, and angiogenesis. Dysregulation of integrin function has been implicated in various pathological conditions, such as cancer, fibrosis, inflammation, and autoimmune diseases.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Glycosaminoglycans (GAGs) are long, unbranched polysaccharides composed of repeating disaccharide units. They are a major component of the extracellular matrix and connective tissues in the body. GAGs are negatively charged due to the presence of sulfate and carboxyl groups, which allows them to attract positively charged ions and water molecules, contributing to their ability to retain moisture and maintain tissue hydration and elasticity.

GAGs can be categorized into four main groups: heparin/heparan sulfate, chondroitin sulfate/dermatan sulfate, keratan sulfate, and hyaluronic acid. These different types of GAGs have varying structures and functions in the body, including roles in cell signaling, inflammation, and protection against enzymatic degradation.

Heparin is a highly sulfated form of heparan sulfate that is found in mast cells and has anticoagulant properties. Chondroitin sulfate and dermatan sulfate are commonly found in cartilage and contribute to its resiliency and ability to withstand compressive forces. Keratan sulfate is found in corneas, cartilage, and bone, where it plays a role in maintaining the structure and function of these tissues. Hyaluronic acid is a large, nonsulfated GAG that is widely distributed throughout the body, including in synovial fluid, where it provides lubrication and shock absorption for joints.

Genetic therapy, also known as gene therapy, is a medical intervention that involves the use of genetic material, such as DNA or RNA, to treat or prevent diseases. It works by introducing functional genes into cells to replace missing or faulty ones caused by genetic disorders or mutations. The introduced gene is incorporated into the recipient's genome, allowing for the production of a therapeutic protein that can help manage the disease symptoms or even cure the condition.

There are several approaches to genetic therapy, including:

1. Replacing a faulty gene with a healthy one
2. Inactivating or "silencing" a dysfunctional gene causing a disease
3. Introducing a new gene into the body to help fight off a disease, such as cancer

Genetic therapy holds great promise for treating various genetic disorders, including cystic fibrosis, muscular dystrophy, hemophilia, and certain types of cancer. However, it is still an evolving field with many challenges, such as efficient gene delivery, potential immune responses, and ensuring the safety and long-term effectiveness of the therapy.

Elastin is a protein that provides elasticity to tissues and organs, allowing them to resume their shape after stretching or contracting. It is a major component of the extracellular matrix in many tissues, including the skin, lungs, blood vessels, and ligaments. Elastin fibers can stretch up to 1.5 times their original length and then return to their original shape due to the unique properties of this protein. The elastin molecule is made up of cross-linked chains of the protein tropoelastin, which are produced by cells called fibroblasts and then assembled into larger elastin fibers by enzymes called lysyl oxidases. Elastin has a very long half-life, with some estimates suggesting that it can remain in the body for up to 70 years or more.

Integrin alpha2, also known as CD49b or ITGA2, is a type I transmembrane glycoprotein that forms a heterodimer with integrin beta1 to create the collagen receptor very late antigen-2 (VLA-2) or α2β1 integrin. This integrin plays crucial roles in various cellular processes such as adhesion, migration, and signaling during embryonic development, hemostasis, and tissue repair. It specifically binds to collagen types I, II, and IV, contributing to the regulation of cell-matrix interactions in several tissues, including bone, cartilage, and vascular systems. Integrin alpha2 also participates in immune responses by mediating lymphocyte adhesion and activation.

HSP47 (Heat Shock Protein 47) is a type of molecular chaperone that assists in the proper folding and assembly of collagen molecules within the endoplasmic reticulum (ER) of eukaryotic cells. It is also known as SERPINH1, which stands for serine protease inhibitor, clade H (heat shock protein 47).

HSP47 binds to procollagen molecules in a highly specific manner and helps facilitate their correct folding and assembly into higher-order structures. Once the collagen molecules are properly assembled, HSP47 dissociates from them and allows for their transport out of the ER and further processing in the Golgi apparatus.

HSP47 is upregulated under conditions of cellular stress, such as heat shock or oxidative stress, which can lead to an accumulation of misfolded proteins within the ER. This upregulation helps to enhance the protein folding capacity of the ER and prevent the aggregation of misfolded proteins, thereby maintaining cellular homeostasis.

Defects in HSP47 function have been implicated in various connective tissue disorders, such as osteogenesis imperfecta and Ehlers-Danlos syndrome, which are characterized by abnormal collagen structure and function.

Chondrogenesis is the process of cartilage formation during embryonic development and in the healing of certain types of injuries. It involves the differentiation of mesenchymal stem cells into chondrocytes, which are the specialized cells that produce and maintain the extracellular matrix of cartilage.

During chondrogenesis, the mesenchymal stem cells condense and form a template for the future cartilaginous tissue. These cells then differentiate into chondrocytes, which begin to produce and deposit collagen type II, proteoglycans, and other extracellular matrix components that give cartilage its unique biochemical and mechanical properties.

Chondrogenesis is a critical process for the development of various structures in the body, including the skeletal system, where it plays a role in the formation of articular cartilage, growth plates, and other types of cartilage. Understanding the molecular mechanisms that regulate chondrogenesis is important for developing therapies to treat cartilage injuries and degenerative diseases such as osteoarthritis.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Aggrecan is a large, complex proteoglycan molecule found in the extracellular matrix of articular cartilage and other connective tissues. It is a key component of the structural framework of these tissues, helping to provide resiliency, cushioning, and protection to the cells within. Aggrecan contains numerous glycosaminoglycan (GAG) chains, which are negatively charged molecules that attract water and ions, creating a swelling pressure that contributes to the tissue's load-bearing capacity.

The medical definition of 'Aggrecans' can be described as:

1. A large proteoglycan molecule found in articular cartilage and other connective tissues.
2. Composed of a core protein with attached glycosaminoglycan (GAG) chains, primarily chondroitin sulfate and keratan sulfate.
3. Plays a crucial role in the biomechanical properties of articular cartilage by attracting water and ions, creating a swelling pressure that contributes to the tissue's load-bearing capacity.
4. Aggrecan degradation or loss is associated with various joint diseases, such as osteoarthritis, due to reduced structural integrity and shock-absorbing capabilities of articular cartilage.

Integrin α1β1, also known as Very Late Antigen-1 (VLA-1) or CD49a/CD29, is a heterodimeric transmembrane receptor protein composed of α1 and β1 subunits. It belongs to the integrin family of adhesion molecules that play crucial roles in cell-cell and cell-extracellular matrix (ECM) interactions.

Integrin α1β1 is primarily expressed on various cell types, including fibroblasts, endothelial cells, smooth muscle cells, and some immune cells. This integrin binds to several ECM proteins, such as collagens (type I, II, III, IV), laminin, and fibronectin, mediating cell adhesion, migration, proliferation, differentiation, and survival. Additionally, α1β1 integrin has been implicated in various physiological and pathological processes, such as tissue repair, fibrosis, and tumor progression.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Osteogenesis Imperfecta (OI), also known as brittle bone disease, is a group of genetic disorders that mainly affect the bones. It is characterized by bones that break easily, often from little or no apparent cause. This happens because the body produces an insufficient amount of collagen or poor quality collagen, which are crucial for the formation of healthy bones.

The severity of OI can vary greatly, even within the same family. Some people with OI have only a few fractures in their lifetime while others may have hundreds. Other symptoms can include blue or gray sclera (the white part of the eye), hearing loss, short stature, curved or bowed bones, loose joints, and a triangular face shape.

There are several types of OI, each caused by different genetic mutations. Most types of OI are inherited in an autosomal dominant pattern, meaning only one copy of the altered gene is needed to cause the condition. However, some types are inherited in an autosomal recessive pattern, which means that two copies of the altered gene must be present for the condition to occur.

There is no cure for OI, but treatment can help manage symptoms and prevent complications. Treatment may include medication to strengthen bones, physical therapy, bracing, and surgery.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Medical Definition of Matrix Metalloproteinase 1 (MMP-1):

Matrix metalloproteinase 1, also known as collagenase-1 or fibroblast collagenase, is a member of the matrix metalloproteinase family of enzymes. These enzymes are involved in degrading and remodeling extracellular matrix components, such as collagens, gelatins, and other proteins. MMP-1 specifically targets interstitial collagens (types I, II, III, VII, and X) and plays a crucial role in tissue repair, wound healing, and pathological processes like tumor invasion and metastasis. It is secreted as an inactive proenzyme and requires activation before it can carry out its proteolytic functions. MMP-1 activity is regulated at various levels, including transcription, activation, and inhibition by endogenous tissue inhibitors of metalloproteinases (TIMPs). Dysregulation of MMP-1 has been implicated in several diseases, such as arthritis, cancer, and fibrosis.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Genital neoplasms in males refer to abnormal growths or tumors that develop in the male reproductive organs. These can be benign (non-cancerous) or malignant (cancerous).

Malignant genital neoplasms are often referred to as genital cancers. The most common types of male genital cancers include:

1. Penile Cancer: This occurs when cancer cells form in the tissues of the penis.
2. Testicular Cancer: This forms in the testicles (testes), which are located inside the scrotum.
3. Prostate Cancer: This is a common cancer in men, forming in the prostate gland, which is part of the male reproductive system that helps make semen.
4. Scrotal Cancer: This is a rare form of cancer that forms in the skin or tissue of the scrotum.
5. Penile Intraepithelial Neoplasia (PeIN): This is not cancer, but it is considered a pre-cancerous condition of the penis.

Early detection and treatment of genital neoplasms can significantly improve the prognosis. Regular self-examinations and medical check-ups are recommended, especially for individuals with risk factors such as smoking, HIV infection, or a family history of these cancers.

A chick embryo refers to the developing organism that arises from a fertilized chicken egg. It is often used as a model system in biological research, particularly during the stages of development when many of its organs and systems are forming and can be easily observed and manipulated. The study of chick embryos has contributed significantly to our understanding of various aspects of developmental biology, including gastrulation, neurulation, organogenesis, and pattern formation. Researchers may use various techniques to observe and manipulate the chick embryo, such as surgical alterations, cell labeling, and exposure to drugs or other agents.

Platelet adhesiveness refers to the ability of platelets, which are small blood cells that help your body form clots to prevent excessive bleeding, to stick to other cells or surfaces. This process is crucial in hemostasis, the process of stopping bleeding after injury to a blood vessel.

When the endothelium (the lining of blood vessels) is damaged, subendothelial structures are exposed, which can trigger platelet adhesion. Platelets then change shape and release chemical signals that cause other platelets to clump together, forming a platelet plug. This plug helps to seal the damaged vessel and prevent further bleeding.

Platelet adhesiveness is influenced by several factors, including the presence of von Willebrand factor (vWF), a protein in the blood that helps platelets bind to damaged vessels, and the expression of glycoprotein receptors on the surface of platelets. Abnormalities in platelet adhesiveness can lead to bleeding disorders or thrombotic conditions.

The Descemet membrane is the thin, transparent basement membrane that is produced by the corneal endothelial cells. It is located between the corneal stroma and the corneal endothelium, which is the innermost layer of the cornea. The Descemet membrane provides structural support for the corneal endothelium and helps to maintain the proper hydration and clarity of the cornea. It is named after the French physician Jean Descemet, who first described it in 1752.

Wound healing is a complex and dynamic process that occurs after tissue injury, aiming to restore the integrity and functionality of the damaged tissue. It involves a series of overlapping phases: hemostasis, inflammation, proliferation, and remodeling.

1. Hemostasis: This initial phase begins immediately after injury and involves the activation of the coagulation cascade to form a clot, which stabilizes the wound and prevents excessive blood loss.
2. Inflammation: Activated inflammatory cells, such as neutrophils and monocytes/macrophages, infiltrate the wound site to eliminate pathogens, remove debris, and release growth factors that promote healing. This phase typically lasts for 2-5 days post-injury.
3. Proliferation: In this phase, various cell types, including fibroblasts, endothelial cells, and keratinocytes, proliferate and migrate to the wound site to synthesize extracellular matrix (ECM) components, form new blood vessels (angiogenesis), and re-epithelialize the wounded area. This phase can last up to several weeks depending on the size and severity of the wound.
4. Remodeling: The final phase of wound healing involves the maturation and realignment of collagen fibers, leading to the restoration of tensile strength in the healed tissue. This process can continue for months to years after injury, although the tissue may never fully regain its original structure and function.

It is important to note that wound healing can be compromised by several factors, including age, nutrition, comorbidities (e.g., diabetes, vascular disease), and infection, which can result in delayed healing or non-healing chronic wounds.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

Tissue scaffolds, also known as bioactive scaffolds or synthetic extracellular matrices, refer to three-dimensional structures that serve as templates for the growth and organization of cells in tissue engineering and regenerative medicine. These scaffolds are designed to mimic the natural extracellular matrix (ECM) found in biological tissues, providing a supportive environment for cell attachment, proliferation, differentiation, and migration.

Tissue scaffolds can be made from various materials, including naturally derived biopolymers (e.g., collagen, alginate, chitosan, hyaluronic acid), synthetic polymers (e.g., polycaprolactone, polylactic acid, poly(lactic-co-glycolic acid)), or a combination of both. The choice of material depends on the specific application and desired properties, such as biocompatibility, biodegradability, mechanical strength, and porosity.

The primary functions of tissue scaffolds include:

1. Cell attachment: Providing surfaces for cells to adhere, spread, and form stable focal adhesions.
2. Mechanical support: Offering a structural framework that maintains the desired shape and mechanical properties of the engineered tissue.
3. Nutrient diffusion: Ensuring adequate transport of nutrients, oxygen, and waste products throughout the scaffold to support cell survival and function.
4. Guided tissue growth: Directing the organization and differentiation of cells through spatial cues and biochemical signals.
5. Biodegradation: Gradually degrading at a rate that matches tissue regeneration, allowing for the replacement of the scaffold with native ECM produced by the cells.

Tissue scaffolds have been used in various applications, such as wound healing, bone and cartilage repair, cardiovascular tissue engineering, and neural tissue regeneration. The design and fabrication of tissue scaffolds are critical aspects of tissue engineering, aiming to create functional substitutes for damaged or diseased tissues and organs.

Phosphofructokinase-1 (PFK-1) is a rate-limiting enzyme in the glycolytic pathway, which is the metabolic pathway that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. PFK-1 plays a crucial role in regulating the rate of glycolysis by catalyzing the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, using ATP as the phosphate donor.

PFK-1 is allosterically regulated by various metabolites, such as AMP, ADP, and ATP, which act as positive or negative effectors of the enzyme's activity. For example, an increase in the intracellular concentration of AMP or ADP can activate PFK-1, promoting glycolysis and energy production, while an increase in ATP levels can inhibit the enzyme's activity, conserving glucose for use under conditions of low energy demand.

Deficiencies in PFK-1 can lead to a rare genetic disorder called Tarui's disease or glycogen storage disease type VII, which is characterized by exercise intolerance, muscle cramps, and myoglobinuria (the presence of myoglobin in the urine due to muscle damage).

Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase is an enzyme that plays a crucial role in the biosynthesis of collagen. The medical definition of this enzyme is:

"An enzyme that catalyzes the post-translational modification of specific lysine residues in procollagens and related proteins. This enzyme requires Fe2+, 2-oxoglutarate, molecular oxygen, and ascorbic acid as cofactors. It hydroxylates certain lysine residues to form hydroxylysine, which is essential for the stabilization of collagen triple helices and for the formation of covalent cross-links between individual collagen molecules. Mutations in this gene have been associated with several types of Ehlers-Danlos syndrome."

The systematic name for this enzyme is "procollagen-lysine, 2-oxoglutarate 5-dioxygenase (hydroxylating)." It is also known as "procollagen-lysine, lysine hydroxylase," or simply "LH." This enzyme is responsible for the hydroxylation of specific lysine residues in procollagens and related proteins during their biosynthesis. The hydroxylation reaction catalyzed by this enzyme involves the incorporation of a hydroxyl group (-OH) into the lysine side chain, resulting in the formation of hydroxylysine. This modification is essential for the proper folding and stabilization of collagen molecules, as well as for their subsequent cross-linking and assembly into extracellular matrix structures.

Defects or mutations in the gene encoding this enzyme can lead to various types of Ehlers-Danlos syndrome (EDS), a group of heritable connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility.

Non-fibrillar collagens are a type of collagen that do not form fibrous structures, unlike the more common fibrillar collagens. They are a group of structurally diverse collagens that play important roles in various biological processes such as cell adhesion, migration, and differentiation. Non-fibrillar collagens include types IV, VI, VIII, X, XII, XIV, XVI, XIX, XXI, and XXVIII. They are often found in basement membranes and other specialized extracellular matrix structures.

Type IV collagen is a major component of the basement membrane and forms a network-like structure that provides a scaffold for other matrix components. Type VI collagen has a beaded filament structure and is involved in the organization of the extracellular matrix. Type VIII collagen is found in the eyes and helps to maintain the structural integrity of the eye. Type X collagen is associated with cartilage development and bone formation. Type XII and XIV collagens are fibril-associated collagens that help to regulate the organization and diameter of fibrillar collagens. The other non-fibrillar collagens have various functions, including cell adhesion, migration, and differentiation.

Overall, non-fibrillar collagens are important structural components of the extracellular matrix and play critical roles in various biological processes.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Sweat glands are specialized tubular structures in the skin that produce and secrete sweat, also known as perspiration. They are part of the body's thermoregulatory system, helping to maintain optimal body temperature by releasing water and heat through evaporation. There are two main types of sweat glands: eccrine and apocrine.

1. Eccrine sweat glands: These are distributed throughout the body, with a higher concentration on areas like the palms, soles, and forehead. They are responsible for producing a watery, odorless sweat that primarily helps to cool down the body through evaporation.

2. Apocrine sweat glands: These are mainly found in the axillary (armpit) region and around the anogenital area. They become active during puberty and produce a thick, milky fluid that does not have a strong odor on its own but can mix with bacteria on the skin's surface, leading to body odor.

Sweat glands are controlled by the autonomic nervous system, meaning they function involuntarily in response to various stimuli such as emotions, physical activity, or changes in environmental temperature.

Biglycan is a type of small leucine-rich proteoglycan (SLRP) that is found in the extracellular matrix of various tissues, including bone, cartilage, and tendons. It plays important roles in the organization and stabilization of the extracellular matrix, as well as in the regulation of cell behavior and signaling pathways.

Biglycan is composed of a core protein and one or more glycosaminoglycan (GAG) chains, which are long, unbranched polysaccharides made up of repeating disaccharide units. The GAG chains attach to the core protein via specific serine residues, forming a proteoglycan.

In addition to its structural roles, biglycan has been shown to interact with various growth factors and cytokines, modulating their activity and influencing cellular responses such as proliferation, differentiation, and migration. Dysregulation of biglycan expression or function has been implicated in several diseases, including osteoarthritis, cancer, and fibrosis.

Desmosomes are specialized intercellular junctions that provide strong adhesion between adjacent epithelial cells and help maintain the structural integrity and stability of tissues. They are composed of several proteins, including desmoplakin, plakoglobin, and cadherins, which form complex structures that anchor intermediate filaments (such as keratin) to the cell membrane. This creates a network of interconnected cells that can withstand mechanical stresses. Desmosomes are particularly abundant in tissues subjected to high levels of tension, such as the skin and heart.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

Matrix metalloproteinase 2 (MMP-2), also known as gelatinase A, is an enzyme that belongs to the matrix metalloproteinase family. MMPs are involved in the breakdown of extracellular matrix components, and MMP-2 is responsible for degrading type IV collagen, a major component of the basement membrane. This enzyme plays a crucial role in various physiological processes, including tissue remodeling, wound healing, and angiogenesis. However, its dysregulation has been implicated in several pathological conditions, such as cancer, arthritis, and cardiovascular diseases. MMP-2 is synthesized as an inactive proenzyme and requires activation by other proteases or chemical modifications before it can exert its proteolytic activity.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

The corneal stroma, also known as the substantia propria, is the thickest layer of the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea plays a crucial role in focusing vision.

The corneal stroma makes up about 90% of the cornea's thickness and is composed of parallel bundles of collagen fibers that are arranged in regular, repeating patterns. These fibers give the cornea its strength and transparency. The corneal stroma also contains a small number of cells called keratocytes, which produce and maintain the collagen fibers.

Disorders that affect the corneal stroma can cause vision loss or other eye problems. For example, conditions such as keratoconus, in which the cornea becomes thin and bulges outward, can distort vision and make it difficult to see clearly. Other conditions, such as corneal scarring or infection, can also affect the corneal stroma and lead to vision loss or other eye problems.

Experimental arthritis refers to the induction of joint inflammation in animal models for the purpose of studying the disease process and testing potential treatments. This is typically achieved through the use of various methods such as injecting certain chemicals or proteins into the joints, genetically modifying animals to develop arthritis-like symptoms, or immunizing animals to induce an autoimmune response against their own joint tissues. These models are crucial for advancing our understanding of the underlying mechanisms of arthritis and for developing new therapies to treat this debilitating disease.

CD29, also known as integrin β1, is a type of cell surface protein called an integrin that forms heterodimers with various α subunits to form different integrin receptors. These integrin receptors play important roles in various biological processes such as cell adhesion, migration, and signaling.

CD29/integrin β1 is widely expressed on many types of cells including leukocytes, endothelial cells, epithelial cells, and fibroblasts. It can bind to several extracellular matrix proteins such as collagen, laminin, and fibronectin, and mediate cell-matrix interactions. CD29/integrin β1 also participates in intracellular signaling pathways that regulate cell survival, proliferation, differentiation, and migration.

CD29/integrin β1 can function as an antigen, which is a molecule capable of inducing an immune response. Antibodies against CD29/integrin β1 have been found in some autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus (SLE). These antibodies can contribute to the pathogenesis of these diseases by activating complement, inducing inflammation, and damaging tissues.

Therefore, CD29/integrin β1 is an important molecule in both physiological and pathological processes, and its functions as an antigen have been implicated in some autoimmune disorders.

Proline is an organic compound that is classified as a non-essential amino acid, meaning it can be produced by the human body and does not need to be obtained through the diet. It is encoded in the genetic code as the codon CCU, CCC, CCA, or CCG. Proline is a cyclic amino acid, containing an unusual secondary amine group, which forms a ring structure with its carboxyl group.

In proteins, proline acts as a structural helix breaker, disrupting the alpha-helix structure and leading to the formation of turns and bends in the protein chain. This property is important for the proper folding and function of many proteins. Proline also plays a role in the stability of collagen, a major structural protein found in connective tissues such as tendons, ligaments, and skin.

In addition to its role in protein structure, proline has been implicated in various cellular processes, including signal transduction, apoptosis, and oxidative stress response. It is also a precursor for the synthesis of other biologically important compounds such as hydroxyproline, which is found in collagen and elastin, and glutamate, an excitatory neurotransmitter in the brain.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Factor VIIa is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor VIIa is the activated form of factor VII, which is normally activated by tissue factor (TF) when there is damage to the blood vessels. Together, TF and Factor VIIa convert Factor X to its active form, Factor Xa, which then converts prothrombin to thrombin, leading to the formation of a fibrin clot.

In summary, Factor VIIa is an important protein in the coagulation cascade that helps to initiate the formation of a blood clot in response to injury.

Collagen type XIII, also known as alpha-1(XIII) collagen or COL13A1, is a type of collagen that is found in the extracellular matrix of various tissues, including skin, blood vessels, and the eye. It is a homotrimeric protein composed of three identical alpha-1(XIII) chains.

Collagen type XIII has a unique structure, with a short triple-helical domain and a large non-collagenous domain that contains several functional domains, including a von Willebrand factor A (vWA) domain, a thrombospondin type 1 (TSR) domain, and a C-terminal domain.

Collagen type XIII is involved in various biological processes, such as cell adhesion, migration, and differentiation. It has been shown to interact with other extracellular matrix proteins, such as collagens IV and VII, laminin-5, and fibronectin, as well as with integrins and growth factors.

Mutations in the COL13A1 gene have been associated with various human diseases, including dystrophic epidermolysis bullosa, a group of inherited skin fragility disorders characterized by blistering and scarring of the skin and mucous membranes.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

This gene encodes the alpha chain of type VII collagen. The type VII collagen fibril, composed of three identical alpha ... in the collagen type VII alpha 1 chain (COL7A1) gene. Collagen, type VII, alpha 1 forms a complex network with several other ... of type VII collagen is amino-terminal and chimeric. Homology to cartilage matrix protein, the type III domains of fibronectin ... "Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin". The ...
Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions". J. ... Collagen, type I, alpha 1 (COL1A1) Collagen, type II, alpha 1 (COL2A1) Collagen, type III, alpha 1 (COL3A1) Collagen, type V, ... collagen types VI, VII, XII and XIV; and other extracellular proteins. Although the majority of VWA-containing proteins are ... "Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins". ...
Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions". J. ... collagen types VI, VII, XII and XIV; and other extracellular proteins. Although the majority of vWA-containing proteins are ... Colombatti A, Bonaldo P, Doliana R (1993). "Type A modules: interacting domains found in several non-fibrillar collagens and in ... This type A domain is the prototype for a protein superfamily (InterPro: IPR036465; see also Pfam clan). The vWA domain is ...
Type XV collagen is known to be a tumor suppressor that can be used to understand tumor cells environment. Type XV collagen ... This gene encodes the alpha chain of type XV collagen, a member of the FACIT collagen family (fibril-associated collagens with ... "Epitope-defined monoclonal antibodies against multiplexin collagens demonstrate that type XV and XVIII collagens are expressed ... Hägg PM, Hägg PO, Peltonen S, Autio-Harmainen H, Pihlajaniemi T (June 1997). "Location of type XV collagen in human tissues and ...
... (composed largely of type VII collagen) extend from the basal lamina of epithelial cells and attach to the ... Keene, Douglas R.; Sakai, Lynn Y.; Lunstrum, Gregory P.; Morris, Nicholas P.; Burgeson, Robert E. (1987). "Type VII collagen ... Burgeson, Robert E. (1993). "Type VII Collagen, Anchoring Fibrils, and Epidermolysis Bullosa". Journal of Investigative ... Correlation with Type VII Collagen Expression". Journal of Investigative Dermatology. 100 (4): 366-72. doi:10.1111/1523-1747. ...
"Entrez Gene: COL6A1 collagen, type VI, alpha 1". Bertini E, Pepe G (2002). "Collagen type VI and related disorders: Bethlem ... "Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen". J. Biol. Chem. 272 (42): 26522-9 ... The protein encoded by this gene is the alpha 1 subunit of type VI collagen (alpha1(VI) chain). Mutations in the genes that ... 1996). "Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures". Nat. Genet. 14 (1): ...
... type III collagen is also an important regulator of the diameter of type I and II collagen fibrils. Type III collagen is also ... types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of ... Type III collagen could also be important in several other human diseases. Increased amounts of type III collagen are found in ... Type III collagen is one of the fibrillar collagens whose proteins have a long, inflexible, triple-helical domain. Type III ...
"Laminin 5 binds the NC-1 domain of type VII collagen". The Journal of Cell Biology. 138 (3): 719-28. doi:10.1083/jcb.138.3.719 ... Laminins function as heterotrimeric complexes of alpha, beta, and gamma chains, with each chain type representing a different ... collagens I, III, IV, c-myc and p53". Archives of Oral Biology. 46 (6): 545-55. doi:10.1016/S0003-9969(01)00014-0. PMID ... 23 (6): 742-7. doi:10.1165/ajrcmb.23.6.4202. PMID 11104726. Parsons SF, Lee G, Spring FA, Willig TN, Peters LL, Gimm JA, Tanner ...
The collagenases digest Types I, II, III, VII and X collagen. The gelatinases exist in two forms; one digesting Type-IV ... The trophoblast have binding fiber connections, laminin, collagen type IV, and integrins that assist in this adhesion process. ... Both types of cytokines modulate the activity of proteases, including MMPs, plasminogen activators, and cathepsins. It is ... There is an extensive variation in the type of trophoblast cells, and structures of the placenta across the different species ...
... within the human COL7A1 gene encoding the protein type VII collagen (collagen VII). DEB-causing mutations can be either ... Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes". Journal of Medical Genetics. 44 (3 ... which are not related to type VII collagen deficiency. These arise from mutations in the genes encoding other proteins of the ... in the collagen type VII alpha 1 chain (COL7A1) gene. Epidermolysis bullosa Reference, Genetics Home. "dystrophic epidermolysis ...
... within the human COL7A1 gene encoding the protein type VII collagen (collagen VII). DEB-causing mutations can be either ... Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes". Journal of Medical Genetics. 44 (3 ... Loss or diminished function of type VII collagen leads to weakness in the structural architecture of the dermal-epidermal ... Type VII collage formation was observed at the dermis-epidermis junction in significant amounts. A 2020 study demonstrated the ...
"Duplication of type IV collagen COOH-terminal repeats and species-specific expression of alpha 1(IV) and alpha 2(IV) collagen ... "Entrez Gene: COL4A2 collagen, type IV, alpha 2". Hinek A (1995). "Nature and the multiple functions of the 67-kD elastin-/ ... Like the other members of the type IV collagen gene family, this gene is organized in a head-to-head conformation with another ... This gene encodes one of the six subunits of type IV collagen, the major structural component of basement membranes. The C- ...
... types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of ... This gene encodes one of the chains for type I collagen, the fibrillar collagen found in most connective tissues. Mutations in ... Type-I collagen Collagen GRCh38: Ensembl release 89: ENSG00000164692 - Ensembl, May 2017 GRCm38: Ensembl release 89: ... "Entrez Gene: COL1A2 collagen, type I, alpha 2". Byers PH, Wallis GA, Willing MC (1991). "Osteogenesis imperfecta: translation ...
It encodes the alpha chain of type XVII collagen. Collagen XVII is a transmembrane protein, like collagen XIII, XXIII and XXV. ... which in turn causes a type of osteogenesis imperfecta. Collagen, type XVII, alpha 1 has been shown to interact with Keratin 18 ... Collagen XVII is a homotrimer of three alpha1(XVII)-chains and a transmembrane protein in type II orientation. Each 180 kD a- ... 2015). "Mutations in collagen, type XVII, alpha 1 (COL17A1) cause epithelial recurrent erosion dystrophy (ERED)". Hum. Mutat. ...
Type IX collagen, a heterotrimeric molecule, is usually found in tissues containing type II collagen, a fibrillar collagen. ... sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type ... This gene encodes one of the three alpha chains of type IX collagen, the major collagen component of hyaline cartilage. ... "Entrez Gene: COL9A3 collagen, type IX, alpha 3". GeneReviews/NCBI/NIH/UW entry on Multiple Epiphyseal Dysplasia, Dominant ...
"Entrez Gene: COL8A1 collagen, type VIII, alpha 1". Shuttleworth CA (1998). "Type VIII collagen". Int. J. Biochem. Cell Biol. 29 ... This gene encodes one of the two alpha chains of type VIII collagen. The gene product is a short chain collagen and a major ... Plenz GA, Deng MC, Robenek H, Völker W (2003). "Vascular collagens: spotlight on the role of type VIII collagen in ... The type VIII collagen fibril can be either a homo- or a heterotrimer. Alternatively spliced transcript variants encoding the ...
Latvanlehto A, Snellman A, Tu H, Pihlajaniemi T (2003). "Type XIII collagen and some other transmembrane collagens contain two ... Collagen XIII belongs to the transmembranous subfamily of collagens, like collagen XVII, XXIII and XXV. GRCh38: Ensembl release ... 2002). "The type XIII collagen ectodomain is a 150-nm rod and capable of binding to fibronectin, nidogen-2, perlecan, and ... 1998). "Type XIII collagen is identified as a plasma membrane protein". J. Biol. Chem. 273 (25): 15590-7. doi:10.1074/jbc. ...
Type IX collagen is usually found in tissues containing type II collagen, a fibrillar collagen. Studies in knockout mice have ... sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type ... This gene encodes one of the three alpha chains of type IX collagen, a collagen component of hyaline cartilage. ... "Entrez Gene: COL9A1 collagen, type IX, alpha 1". GeneReviews/NCBI/NIH/UW entry on Multiple Epiphyseal Dysplasia, Dominant ...
... types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of ... Collagen, type I, alpha 1, also known as alpha-1 type I collagen, is a protein that in humans is encoded by the COL1A1 gene. ... the structure of type I collagen is compromised. Tissues that are rich in type I collagen, such as the skin, bones, and tendons ... Ehlers-Danlos type IV is most attributed to abnormalities in the reticular fibers (collagen Type III). Ehlers-Danlos syndrome, ...
... related to type XI collagen and it is possible that the collagen chains of types V and XI constitute a single collagen type ... Fibrillar collagen molecules are trimers that can be composed of one or more types of alpha chains. Type V collagen is found in ... type I collagen and appears to regulate the assembly of heterotypic fibers composed of both type I and type V collagen. This ... "Entrez Gene: COL5A3 collagen, type V, alpha 3". van der Rest M, Garrone R (1991). "Collagen family of proteins". FASEB J. 5 (13 ...
... of type IV collagen in synovial capillaries by immunohistochemistry using a monoclonal antibody against human type IV collagen ... Collagen Type-IV collagen Alport syndrome GRCh38: Ensembl release 89: ENSG00000188153 - Ensembl, May 2017 GRCm38: Ensembl ... "Entrez Gene: COL4A5 collagen, type IV, alpha 5 (Alport syndrome)". Lemmink HH, Schröder CH, Monnens LA, Smeets HJ (1997). "The ... Like the other members of the type IV collagen gene family, this gene is organized in a head-to-head conformation with another ...
This protein is an alpha chain of type VI collagen that aids in microfibril formation. As part of type VI collagen, this ... This gene encodes the alpha 3 chain, one of the three alpha chains of type VI collagen, a beaded filament collagen found in ... "The 1.6 A structure of Kunitz-type domain from the alpha 3 chain of human type VI collagen". Journal of Molecular Biology. 246 ... "Anisotropic behaviour of the C-terminal Kunitz-type domain of the alpha3 chain of human type VI collagen at atomic resolution ( ...
... chain of type II collagen. This gene encodes the alpha-1 chain of type II collagen, a fibrillar collagen found in cartilage and ... "A COL2A1 mutation in achondrogenesis type II results in the replacement of type II collagen by type I and III collagens in ... type 2 by affecting tissues that are rich in type II collagen. Platyspondylic lethal skeletal dysplasia, Torrance type:Fewer ... chain that cannot be incorporated into type II collagen fibers. As a result, cells make a reduced amount of type II collagen. ...
This gene encodes the alpha chain of type XIX collagen, a member of the FACIT collagen family (fibril-associated collagens with ... other members of this collagen family are found in association with fibril-forming collagens such as type I and II, and serve ... collagen (COL12A1), alpha 1(IX) collagen (COL9A1), and alpha 1(XIX) collagen (COL19A1) to human chromosome 6q12-q13". Genomics ... "Entrez Gene: COL19A1 collagen, type XIX, alpha 1". Yoshioka H, Zhang H, Ramirez F, et al. (1992). "Synteny between the loci for ...
"Entrez Gene: COL14A1 collagen, type XIV, alpha 1 (undulin)". "COL14A1 - Collagen alpha-1(XIV) chain precursor - Homo sapiens ( ... 2005). "Collagen types XII and XIV are present in basement membrane zones during human embryonic development". J. Mol. Histol. ... Tono-Oka S, Tanase S, Miike T, Tanaka H (1996). "Transient expression of collagen type XIV during muscle development and its ... Collagen alpha-1(XIV) chain is a protein that in humans is encoded by the COL14A1 gene. It likely plays a role in collagen ...
It is ubiquitously expressed in many tissues and cell types. COL4A1 is a subunit of the type IV collagen and plays a role in ... collagen". FEBS Letters. 225 (1-2): 188-94. doi:10.1016/0014-5793(87)81155-9. PMID 3691802. "Entrez Gene: COL4A1 collagen, type ... Type IV collagen is the major structural component of basement membranes, which contains two or three COL4A1 proteins. Thus, ... COL4A1 belongs to the type IV collagen family and contains three domains: a short N-terminal domain, a long triple-helical 7S ...
... related to type XI collagen and it is possible that the collagen chains of types V and XI constitute a single collagen type ... Fibrillar collagen molecules are trimers that can be composed of one or more types of alpha chains. Type V collagen is found in ... "Entrez Gene: COL5A2 collagen, type V, alpha 2". Mann K (1992). "Isolation of the alpha 3-chain of human type V collagen and ... type I collagen and appears to regulate the assembly of heterotypic fibers composed of both type I and type V collagen. This ...
Type XI collagen also helps maintain the spacing and diameter of type II collagen fibrils. Type II collagen is an important ... types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of ... Instead, another type of collagen chain replaces pro-alpha2(XI) to form type XI collagen in the vitreous of the eye. COL11A2 ... The COL11A2 gene produces one component of this type of collagen, called the pro-alpha2(XI) chain. Type XI collagen adds ...
Unlike type VIII collagen, the other short chain collagen, type X collagen is a homotrimer. Type X collagen has a short triple ... types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of ... "Cloning of the human and mouse type X collagen genes and mapping of the mouse type X collagen gene to chromosome 10". Eur. J. ... to type II and X collagen and to chondrocalcin (C-propeptide of type II collagen). Implications for anchoring function between ...
... related to type XI collagen and it is possible that the collagen chains of types V and XI constitute a single collagen type ... Fibrillar collagen molecules are trimers that can be composed of one or more types of alpha chains. Type V collagen is found in ... "Entrez Gene: COL5A1 collagen, type V, alpha 1". Mann K (1992). "Isolation of the alpha 3-chain of human type V collagen and ... type I collagen and appears to regulate the assembly of heterotypic fibers composed of both type I and type V collagen. This ...
This gene encodes the alpha chain of type VII collagen. The type VII collagen fibril, composed of three identical alpha ... in the collagen type VII alpha 1 chain (COL7A1) gene. Collagen, type VII, alpha 1 forms a complex network with several other ... of type VII collagen is amino-terminal and chimeric. Homology to cartilage matrix protein, the type III domains of fibronectin ... "Cleavage of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin". The ...
Mouse COL7(Collagen Type VII) ELISA Kit. Mouse COL7(Collagen Type VII) ELISA Kit ... Description: A sandwich ELISA kit for detection of Collagen Type VII from Mouse in samples from blood, serum, plasma, cell ... Description: A sandwich ELISA kit for detection of Collagen Type VII from Human in samples from blood, serum, plasma, cell ... Description: A sandwich quantitative ELISA assay kit for detection of Human Collagen Type VII (COL7) in samples from serum, ...
COL7A1 elisa Test :: Human collagen, type VII, alpha 1 ELISA Test 24T ... type VII, alpha 1 ELISA Test 24T. https://www.cortex-biochem.com/shop/0544-mbs908240-24t-col7a1-elisa-test-human-collagen-type- ... vii-alpha-1-elisa-test-24t-38315 https://www.cortex-biochem.com/web/image/product.template/38315/image_1920?unique=2e79856 ...
Ito Y, Kasai H, Yoshida T, Saleh MA, Amagai M, Yamagami J. Anti-type VII collagen autoantibodies, detected by enzyme-linked ... Ito, Y., Kasai, H., Yoshida, T., Saleh, M. A., Amagai, M., & Yamagami, J. (2013). Anti-type VII collagen autoantibodies, ... Ito, Y, Kasai, H, Yoshida, T, Saleh, MA, Amagai, M & Yamagami, J 2013, Anti-type VII collagen autoantibodies, detected by ... T1 - Anti-type VII collagen autoantibodies, detected by enzyme-linked immunosorbent assay, fluctuate in parallel with clinical ...
... and collagen types I, III, V, and VII. Increased collagen deposition in tissues is a characteristic feature of systemic ... Increased collagen production or disturbances in its degradation can cause excessive collagen deposition in tissues. ... Excessive collagen deposition causes skin and internal organ changes. Many factors, including environmental factors, can lead ... The prognosis depends on the type of systemic sclerosis (SSc). In lSSc, a patients condition can be stable for years. However ...
These changes affect the production of type VII collagen. Mutations that severely reduce or prevent the production of type VII ... of a larger protein called type VII collagen. Collagens are proteins that give structure and strength to connective tissues. , ... Type VII collagen plays an important role in strengthening and stabilizing the skin. . It is the main component of structures ... When type VII collagen is abnormal or missing, the formation of anchoring fibrils is impaired. A shortage of these fibrils ...
... epinephrine and collagen) in two cohorts of Euro … ... Publication types * Research Support, N.I.H., Extramural * ... Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists Nat Genet. 2010 ... epinephrine and collagen) in two cohorts of European ancestry (N,or=2,753 in the Framingham Heart Study, N,or=1,238 in the ... Genetic Study of Atherosclerosis Risk). We identified associations of seven loci with platelet aggregation near or within GP6 ( ...
Type VII collagen is a major component of anchoring fibrils in the epithelial basement membrane zone (BMZ) that attach the ... is a rare autoantibody-associated blistering disease characterized by the presence of antibodies that target type VII collagen ... ELISAs for type VII collagen antibodies are not entirely specific for EBA and may show increased levels in patients with IBD or ... Type VII collagen serum antibody levels have been shown to correlate with disease activity in patients with EBA. (3- Vorobyev ...
Transfer of patient autoantibodies against Dsg 1 (80, 81) and Dsg 3 (82) and type VII collagen (83) is sufficient to cause skin ... Ryynanen J, Sollberg S, Olsen DR, Uitto J. Transforming growth factor-beta up-regulates type VII collagen gene expression in ... Sitaru C, Kromminga A, Hashimoto T, Brocker EB, Zillikens D. Autoantibodies to type VII collagen mediate Fcgamma-dependent ... Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not ...
... of cases and are caused by mutations in the genes that encode type I collagen, COL1A1 and COL1A2. These types encompass the ... from perinatal lethal type II to progressively deforming type III to mild and diagnostically delayed type I. The rare forms of ... Anabolic therapy with growth hormone to ameliorate short stature in OI is successful for type I and about half of type IV OI ... The classical Sillence types of OI (types I-IV) with autosomal dominant inheritance comprise about 80-85% ...
... carry a mutation that prevents them from making type VII collagen. The babies suffer wounds and excessive bleeding and tend to ...
Type VII collagen is the primary component of anchoring fibrils. Type VII collagen contains a large N-terminal globular domain ... Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa. Nat Med. 2004 ... Type VII collagen chains form a triple helix; then, two molecules join together in an antiparallel fashion. Next, anchoring ... At the most inferior aspect of the BMZ, type VII collagen‒containing anchoring fibrils extend from the lamina densa into the ...
The congenital and progressive orphan skin disease is caused by the deficiency of the protein type VII collagen (COL7). The ... including collagen, that provide structure and support. ...
iPSC-derived keratinocytes were produced with minimal heterogeneity, and these cells secreted wild-type type VII collagen, ... Recessive dystrophic epidermolysis bullosa (RDEB) is a disease caused by genetic mutations in the gene for type VII collagen. ... Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen owing to mutations in the ... Cav1.2(TS) acts in a dominant-negative manner to markedly delay anagen, while L-type channel blockers act through Cav1.2 to ...
Find your collagen supplements today at ProHealth Longevity. ... Decreased collagen production can cause numerous age-related ... What Types of Collagen Are Included in Longevity Collagen Peptides? ProHealths Longevity Collagen Peptides contains types 1,2, ... Multi-Collagen Blend (Beef Collagen, Marine Collagen, Eggshell Membrane Collagen, Chicken Collagen). 20 g. †. ... Longevity Collagen Peptides mixes well in hot or cold liquid. What Flavor is Longevity Collagen Peptides? Longevity Collagen ...
... is characterized by a functional deficit of type VII collagen protein due to gene defects in the type VII collagen gene (COL7A1 ... The irradiation of all epidermal cells making direct contact with a given stoma in both wild type and phot1 phot2 plants does ... proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling [Nat Methods. 2012] ... these tools as competitive inhibitors to dissect the polyubiquitin-linkage dependence of NF-κB activation in several cell types ...
Collagen types I, II, IV, V, and VI Purification Method. Affinity chromatography on type III collagen covalently linked to ... 5. Van Deijnen JH, Van Suylichem PT, Wolters GH, Van Schilfgaarde R. Distribution of collagens type I, type III and type V in ... Reacts with conformational determinants on type III collagen Source. Pooled antisera from goats hyperimmunized with type III ... The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth ...
type. Contribution to journal publication status. published. subject. *Biomaterials Science. keywords. Rats, Animals, ... We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving ... We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving ... We first show that the incorporation of hydroxyapatite in collagen-based BMP delivery systems is pivotal for achieving ...
... and with mutations in the collagen type VII alpha 1 chain (COL7A1) gene. Read More ... May 19, 2023 -- The U.S. Food and Drug Administration (FDA) said on Friday it has approved Vyjuvek, a herpes-simplex virus type ... May 4, 2023 -- The Association of Biomolecular Resource Facilities (ABRF) will hold its Annual Meeting May 7 to May 10 in ...
Chicken Collagen Type VII ELISA kit. E01A89437 BlueGene 96T. 700 EUR Chicken Collagen type I alpha 2, COL1A2/Collagen I GENLISA ... The extracted collagen exhibited high thermal stability (43.9-47.0 °C) and mainly type I structure. The use of ultrasound as ... Furthermore, IM, SC, and IV vaccinations markedly decreased serum levels of anti-typecollagen (CⅡ) IgG antibodies, but only ... A Double-Blind, Randomized, Placebo-Controlled Trial to Evaluate the Efficacy of a Hydrolyzed Chicken Collagen Type II ...
Preventing stretch marks may not be possible, but here are seven things you can try to help reduce your risk. ... The lasers can help stimulate collagen or elastin in your skin to grow. There are various types of laser therapy, and your ... Collagen plays a role in keeping your skin strong and elastic. It helps reduce the appearance of wrinkles, but it may also be ... Vitamin C is an important nutrient for the development of collagen. Vitamin C can be found in many fruits and vegetables. ...
... and life-threatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for ...
Collagen type-2: Collagen type-2 and Incomplete Freunds adjuvant (IFA) are commercially available. Collagen type-2 should be ... Collagen mixture is injected; it initiates the immune response against collagen with T and B-cells activation that produces ... antibodies (predominately IgG2). This antibody targets the collagen and stimulates the autoimmune response against collagen by ... Due to the collagen layers degradation, the cartilage structure will be changed that also increase the levels of synovium and ...
... mutations in one of the two genes encoding type I collagen have been found. In forms recently described (types V, VI, VII), ... At least seven discrete types have been described ranging from mild disease to a lethal form. In a large number of cases, ...
A study of type VII collagen expression in oral squamous cell carcinoma using immunohistochemical staining. Type VII collagen ... This study aimed to evaluate type VII collagen expression in oral SCC compared to normal oral mucosa and its relationship with ... The most diagnosed type of prostate cancer is adenocarcinoma. ETS-like protein 1 (Elk-1) is a member of the ETS-domain ...
Structural and biochemical features of a previously unknown fibrillar collagen from an octocoral indicate its similarities to ... Cartilage type II collagen fibrils show distinctive negative-staining band patterns differences between type II and type I ... Twenty-seven distinct peaks were recorded on the HPLC profile (Fig. 3). Nineteen of these peaks were recognized and quantified ... However, only fibrillar (e.g. type I and II) and network-forming (type IV) types of collagen have been reported in the earliest ...
Type Landscape. 2.5. Legal Landscape. 3. Major Deals And Strategic Alliances Analysis. 3.1. Joint Ventures. 3.2. Mergers and ... 5. Collagen-based astringent. *8. Astringent Market, By Application Historical Analysis and Forecast 2023-2031 (USD Million) * ... 5. Type Overview. 6. Regulatory Framework. 6.1. Reimbursement Framework. 6.2. Standards and Compliances ... To provide with an exhaustive analysis on the Astringent Market By Product Type, By Application and By Region ...
GRAFTJACKET® Matrix Scaffold is composed of biological substrate components including collagen types I, III, IV, and VII, ...
6 Types of Collagen Supplements That Actually Work Everything You Should Know About Collagen Supplements ...
During deep sleep, the body produces collagen, a protein that maintains skins strength and elasticity. Aim for 7-9 hours of ... Wear these 5 types of shapewear if you want to hide your belly fat. ... In this article, well explore seven essential habits that can help you achieve and maintain healthy, glowing skin.. Balanced ... Avoid harsh chemicals and opt for products that are suitable for your skin type. Cleanse, exfoliate, tone, and moisturize ...
  • Type VII collagen is a major component of anchoring fibrils in the epithelial basement membrane zone (BMZ) that attach the epidermis and epithelium to the underlying connective tissue. (arupconsult.com)
  • Type VII collagen is a main component of anchoring fibrils, providing stability to the dermal-epidermal adhesion. (asianarchpath.com)
  • Epidermolysis bullosa acquisita is caused by antibodies targeting type VII collagen, the major component of anchoring fibrils that connect the basement membrane to dermal structures. (medscape.com)
  • In the absence of mutations, however, an autoimmune response against type VII collagen can result in an acquired form of this disease called epidermolysis bullosa acquisita. (wikipedia.org)
  • Epidermolysis bullosa acquisita involves an autoimmune reaction to this form of collagen. (wikipedia.org)
  • Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease caused by autoantibodies against type VII collagen. (elsevierpure.com)
  • Epidermolysis bullosa acquisita (EBA) is a rare autoantibody-associated blistering disease characterized by the presence of antibodies that target type VII collagen. (arupconsult.com)
  • and in epidermolysis bullosa acquisita (EBA) patients have autoantibodies target type VII collagen anchoring fibrils. (frontiersin.org)
  • Additionally, epidermolysis bullosa acquisita, an autoimmune disease associated with autoantibodies against type VII collagen, has several phenotypes including a classical form that mimics dystrophic epidermolysis bullosa, an inflammatory form that mimics BP, or a form more similar to mucous membrane pemphigoid-like lesions ( 2 ). (frontiersin.org)
  • In a published international consensus statement on mucous membrane pemphigoid, an expert panel decided to include this group of patients (previously designated as epidermolysis bullosa acquisita based in part on their autoantibodies to type VII collagen) in the category of mucous membrane pemphigoid. (medscape.com)
  • In canine epidermolysis bullosa acquisita, the immunoglobulin G (IgG) autoantibodies also target the type VII collagen noncollagenous (NC1) domain, which shares greater than 80% homology in amino acid sequence with the human NC1 domain. (medscape.com)
  • Various murine models have contributed to the understanding of the pathogenic role of antitype VII collagen antibodies and pathophysiology of epidermolysis bullosa acquisita. (medscape.com)
  • [ 5 , 6 ] More recently, affinity-purified antitype VII collagen autoantibodies from epidermolysis bullosa acquisita patients have induced blisters in an adult hairless mouse strain (SKH1), further supporting a pathogenic role of antitype collagen VII autoantibodies. (medscape.com)
  • [ 3 ] IgG autoantibodies specific for anchoring fibrils (type VII collagen) of the skin basement membrane have a heterogeneous subclass and light-chain composition, and their complement-activating capacities do not correlate with the inflammatory phenotype. (medscape.com)
  • Furthermore, IM, SC, and IV vaccinations markedly decreased serum levels of anti-type Ⅱ collagen (CⅡ) IgG antibodies, but only IM vaccination significantly reduced serum levels of rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibody. (interbio-sudoe.eu)
  • Initial studies demonstrated that rabbit antimouse type VII collagen antibodies, as well as rabbit antibodies raised against human recombinant protein type VII collagen, were able to induce blisters in mice. (medscape.com)
  • [ 7 ] The failure of rabbit antimouse type VII collagen antibodies to induce blisters in C5-deficient mice supports a role for complement activation in the disease pathogenesis. (medscape.com)
  • Mutations that allow a small amount of normal or partially functional type VII collagen to be produced lead to milder forms of the dystrophic epidermolysis bullosa. (medlineplus.gov)
  • BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a rare, devastating, and life-threatening inherited skin fragility disorder that comes about due to a lack of functional type VII collagen, for which no effective therapy exists. (jci.org)
  • Collagen alpha-1(VII) chain is a protein that in humans is encoded by the COL7A1 gene. (wikipedia.org)
  • In the skin, the type VII collagen protein is synthesized by keratinocytes and dermal fibroblasts. (wikipedia.org)
  • This gene provides instructions for making a protein that forms the pieces (subunits) of a larger protein called type VII collagen. (medlineplus.gov)
  • COL7A1 gene mutations alter the structure or disrupt the production of the type VII collagen subunit protein. (medlineplus.gov)
  • These types encompass the full spectrum of OI severity, from perinatal lethal type II to progressively deforming type III to mild and diagnostically delayed type I. The rare forms of OI (types V-XVIII) delineated in the last decade have (except for type V and some XV) autosomal recessive inheritance and are caused by mutations in genes whose protein products interact with collagen for post-translational modification or folding. (nih.gov)
  • The congenital and progressive orphan skin disease is caused by the deficiency of the protein type VII collagen (COL7). (drugdiscoverynews.com)
  • Collagen is the most abundant protein your body makes. (prohealth.com)
  • Incorporation of hydroxyapatite (HA) in a collagen scaffold dramatically improves bone morphogenic protein (BMP) sequestration via biophysical interactions with BMP, thereby providing more controlled BMP release compared with pristine collagen. (lu.se)
  • During deep sleep, the body produces collagen, a protein that maintains skin's strength and elasticity. (indiatimes.com)
  • Induction of an active model of autoimmunity against type VII collagen in a hairless mouse strain (SKH1) revealed that regulatory T cells, which have been identified for their ability to inhibit the development of autoimmune diseases, do not inhibit the development of autoantibodies against the self-protein mouse-type VII collagen. (medscape.com)
  • All three cases in this study, which were treated successfully, showed titers of anti-type VII collagen autoantibodies detected by ELISA that fluctuated in parallel with disease activity. (elsevierpure.com)
  • A subset of patients have variations in which either IgG autoantibodies bind the central triple-helical collagenous (NC2) domain of type VII collagen, or immunoglobulin A (IgA), rather than IgG, targets type VII collagen. (medscape.com)
  • Several autoantibodies have been identified, including those against BPAG2, laminin-332, and type VII collagen. (msdmanuals.com)
  • Description: A sandwich ELISA kit for detection of Collagen Type VII from Mouse in samples from blood, serum, plasma, cell culture fluid and other biological fluids. (thescientistconnect.com)
  • This study aimed to investigate whether ELISA titers fluctuate with EBA disease activity and to validate the clinical significance of checking ELISA values in EBA by monitoring type VII collagen ELISA titers and disease severity, evaluated in terms of numbers of blisters and erosions as a clinical score, over time in three Japanese patients with EBA. (elsevierpure.com)
  • Purified Anti-Type III Collagen antibody for use in ELISA, immunohistochemistry / immunocytochemistry, electron microscopy, flow cytometry, and western blot assays. (southernbiotech.com)
  • Fibroblasts are the basis of Fibrocell's personalized cell and gene therapy platform because they are the most common cell in skin and connective tissue and are responsible for synthesizing extracellular matrix proteins, including collagen, that provide structure and support. (drugdiscoverynews.com)
  • 2. Kottler UB, Jünemann AG, Aigner T, Zenkel M, Rummelt C, Schlötzer-Schrehardt U. Comparative effects of TGF-β1 and TGF-β2 on extracellular matrix production, proliferation, migration, and collagen contraction of human Tenon's capsule fibroblasts in pseudoexfoliation and primary open-angle glaucoma. (southernbiotech.com)
  • Further evaluation of the molecular mechanisms responsible for this increased osteoinductivity at an early stage in the regeneration process indicated that the CHA+BMP-2/7 enhanced progenitor cell homing at the implantation site, upregulated the key transcriptomic determinants of bone formation, and increased the production of bone extracellular matrix components. (lu.se)
  • Firstly, we examined the extraction of collagen from the cartilage extracellular matrix (ECM) after proteoglycans (PG) had been removed by the action of salts, i.e. (interbio-sudoe.eu)
  • Mutations in COL7A1 cause all types of dystrophic epidermolysis bullosa, and the exact mutations vary based on the specific type or subtype. (wikipedia.org)
  • Recessive dystrophic epidermolysis bullosa, the most severe type of epidermolysis bullosa, has two subtypes, generalized intermediate and generalized severe, which have been linked to different mutations in the COL7A1 gene. (wikipedia.org)
  • The symptoms of dominant dystrophic epidermolysis bullosa are less severe than those of the recessive types, with mild blistering and loss of nails. (wikipedia.org)
  • Beremagene geperpavec (Vyjuvek), is a gene therapy indicated for the treatment of wounds for people with dystrophic epidermolysis bullosa with mutation(s) in the collagen type VII alpha 1 chain (COL7A1) gene. (wikipedia.org)
  • Researchers classify dystrophic epidermolysis bullosa into major types based on the inheritance pattern and features of the condition. (medlineplus.gov)
  • Other types of recessive dystrophic epidermolysis bullosa fall along a spectrum referred to as RDEB-generalized and localized (RDEB-gen and -loc). (medlineplus.gov)
  • Another major type of this condition is known as dominant dystrophic epidermolysis bullosa (DDEB). (medlineplus.gov)
  • Recessive dystrophic epidermolysis bullosa, a rare inherited blistering disorder characterized by the congenital absence of type VII collagen, may also be considered. (arupconsult.com)
  • Recessive dystrophic epidermolysis bullosa (RDEB) is a disease caused by genetic mutations in the gene for type VII collagen. (stanford.edu)
  • May 19, 2023 -- The U.S. Food and Drug Administration (FDA) said on Friday it has approved Vyjuvek, a herpes-simplex virus type 1 (HSV-1) vector-based gene therapy, for the treatment of wounds in patients six months of age and older with dystrophic epidermolysis bullosa (DEB) and with mutations in the collagen type VII alpha 1 chain (COL7A1) gene. (scienceboard.net)
  • In this study, we compared the osteoinductive potential of BMP-2 homodimer with a heterodimer of BMP-2/7, both delivered via a collagen-hydroxyapatite (CHA) scaffold delivery system, with the aim to reduce the overall therapeutic BMP doses and the associated side-effects. (lu.se)
  • Using fluorescently labelled BMP-2/7 and BMP-2, we demonstrated that the CHA scaffold provided a long-term delivery of both molecules for at least 20 days. (lu.se)
  • Our results indicate that the sustained delivery of BMP-2/7 via a CHA scaffold could bring us a step closer in the quest for the use of physiological growth factor doses in fracture healing. (lu.se)
  • An ultra-low dose of BMP-2/7 delivered via a collagen-HA (CHA) scaffold leads to accelerated healing of a critical femoral defect in rats while a 20-times higher BMP-2 dose was required to achieve comparable results. (lu.se)
  • It has been shown that interactions between the NC-1 domain of collagen VII and several other proteins, including laminin-5 and collagen IV, contribute greatly to the overall stability of the basement membrane. (wikipedia.org)
  • Collagen, type VII, alpha 1 forms a complex network with several other proteins in the basement membrane. (wikipedia.org)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Mouse Collagen Type VII (COL7) in serum, plasma and other biological fluids. (thescientistconnect.com)
  • These mutations cause little to no expression of collagen VII, which manifests primarily as generalized blistering in the skin and mucosal membranes. (wikipedia.org)
  • Although the types differ in severity, their features overlap significantly and they are caused by mutations in the same gene. (medlineplus.gov)
  • Mutations that severely reduce or prevent the production of type VII collagen cause RDEB-sev gen. (medlineplus.gov)
  • The classical Sillence types of OI (types I-IV) with autosomal dominant inheritance comprise about 80-85% of cases and are caused by mutations in the genes that encode type I collagen, COL1A1 and COL1A2 . (nih.gov)
  • In a large number of cases, mutations in one of the two genes encoding type I collagen have been found. (orthobullets.com)
  • EBA has been regarded as the prototypic acquired subepidermal immunobullous disease that demonstrates dermal (floor) BMZ antibody localization with split-skin substrate, also known as salt-split skin, and has two different major types: mechanobullous (classical) and nonmechanobullous (inflammatory). (arupconsult.com)
  • Excessive collagen deposition causes skin and internal organ changes. (medscape.com)
  • Increased collagen deposition in tissues is a characteristic feature of systemic sclerosis. (medscape.com)
  • Increased collagen production or disturbances in its degradation can cause excessive collagen deposition in tissues. (medscape.com)
  • Histological examination revealed marked decrease in granuloma formation and less collagen deposition in the lungs of OPN-KO mice compared to WT. (cdc.gov)
  • The type VII collagen fibril, composed of three identical alpha collagen chains, is restricted to the basement zone beneath stratified squamous epithelia. (wikipedia.org)
  • It has been shown to interact with laminin 5 and fibronectin, as well as collagen IV, by binding these proteins in the NC-1 domain. (wikipedia.org)
  • Some of the rare types of arthritis inflammation can be seen in organs, connective tissues and skins [ 2 ]. (ijpsonline.com)
  • However, it has been shown a cytotoxic effect on vital tissues, causing severe inflammatory reactions to the periapex, with the concentration of 5.25% producing more toxic and caustic solutions than 0.5 and 1% (7). (bvsalud.org)
  • 1% sodium bicarbonate (NaHCO ) dis- ions in tissues such as collagen or muscle. (who.int)
  • Nonmechanobullous EBA is further divided into four subtypes, with rare case reports of a fifth immunoglobulin M (IgM) type. (arupconsult.com)
  • The RDEB-gen and -loc types involve scarring in the areas where blisters occur, but these forms of the condition do not cause the severe scarring characteristic of RDEB-sev gen. (medlineplus.gov)
  • Immunization of type VII collagen in athymic nude SJL mice did not induce an autoimmune response, whereas the repletion of T cells from type VII collagen-immunized wild-type mice to the thymic mice showed autoantibody production and resulted in a blistering disease phenotype, supporting the role of T cells in the induction of epidermolysis bullosa acquisita. (medscape.com)
  • Anti-RANK ligand antibody improves bone mineral density in individuals with OI types I, III, IV and VI without accumulating in the bone matrix. (nih.gov)
  • Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. (prohealth.com)
  • The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells. (southernbiotech.com)
  • Collagen offers protection from bone loss and supports healthy bones and joints to allow you to move more freely and painlessly. (prohealth.com)
  • 2. König D, Oesser S, Scharla S, Zdzieblik D, Gollhofer A. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. (prohealth.com)
  • The superior osteoinductive properties of BMP-2/7 are a consequence of its direct positive effect on progenitor cell homing at the implantation site, which consequently leads to upregulation of cartilage and bone related genes and biochemical markers. (lu.se)
  • Relation of JAGGED 1 and collagen type 1 alpha 1 polymorphisms with bone mineral density in Chinese postmenopausal women. (cdc.gov)
  • Materials and Methods: OPN-knockout female mice (OPN-KO) along with their wild-type (WT) counterparts were exposed to single-walled carbon nanotube s (SWCNT) (40 microg/mouse) via pharyngeal aspiration and fibrotic response was assessed 1, 7, and 28 days post-exposure. (cdc.gov)
  • A significant two-fold increase of TGF-beta1 was found in BAL of WT mice at 7 days, while TGF-beta1 levels in OPN-KO animals remained unaltered. (cdc.gov)
  • Here, we used myeloperoxidase knockout B6.129X1-MPO (MPO k/o) mice and showed that oxidation and clearance of single walled carbon nanotubes (SWCNT) from the lungs of these animals after pharyngeal aspiration was markedly less effective whereas the inflammatory response was more robust than in wild-type C57Bl/6 mice. (cdc.gov)
  • B6.129X1-MPO (MPO k/o) vs wild-type C57Bl/6 mice (w/t) and induction of mesotheliomas) [8,9]. (cdc.gov)
  • La teneur faible en ions calcium et magnésium et élevée en ions sodium de l'eau douce affecte négativement les résultats de la coloration de routine à l'hématoxyline-éosine. (who.int)
  • This study aimed to evaluate type VII collagen expression in oral SCC compared to normal oral mucosa and its relationship with cancer stages. (asianarchpath.com)
  • Additionally, the effects of the salt type used for PG and hyaluronic acid removal on the properties of self-assembled fibers in solutions at pH 7.4 and freeze-dried matrices were investigated. (interbio-sudoe.eu)
  • Type VII collagen plays an important role in strengthening and stabilizing the skin . (medlineplus.gov)
  • Collagen supplementation has been shown to support skin health to improve signs of aging, such as wrinkles and decreased puffiness. (prohealth.com)
  • 1. Proksch E, Segger D, Degwert J, Schunck M, Zague V, Oesser S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: a double-blind, placebo-controlled study. (prohealth.com)
  • Collagen plays a role in keeping your skin strong and elastic. (healthline.com)
  • In this article, we'll explore seven essential habits that can help you achieve and maintain healthy, glowing skin. (indiatimes.com)
  • Aim for 7-9 hours of sleep each night to ensure your skin has ample time to rejuvenate. (indiatimes.com)
  • Avoid harsh chemicals and opt for products that are suitable for your skin type. (indiatimes.com)
  • Among these vaccines, the most representative is pcDNA-CCOL2A1, an antigen-specific DNA vaccine encoding chicken type Ⅱ collagen (CCⅡ) with significant therapeutic and prophylactic efficacy in collagen-induced arthritis (CIA) rat models. (interbio-sudoe.eu)
  • An immunohistochemical study of the localization of types I, II and III collagen in the temporomandibular joint of growing monkeys. (southernbiotech.com)
  • The current paradigm of OI is that of a collagen-related disorder. (nih.gov)
  • These changes affect the production of type VII collagen. (medlineplus.gov)
  • Decreased collagen production leads to less support around key bodily processes, including tissue repair and heart health. (prohealth.com)
  • Decreased collagen production can cause numerous age-related effects including wrinkles, shrinking and weak muscles, stiff joints and tendons, joint pain, weakening bones, limited joint mobility, gut imbalances and reduced blood flow. (prohealth.com)
  • Pro-collagen is added to support quality collagen production, which is especially important after age 60. (prohealth.com)
  • Paclitaxel inhibits ureteral smooth muscle cell proliferation and collagen production in the absence of cell toxicity. (southernbiotech.com)
  • We then investigate the molecular mechanisms responsible for increased osteoinductive potential of a heterodimer BMP-2/7 with is clinically used counterpart, the BMP-2 homodimer. (lu.se)
  • This gene encodes the alpha chain of type VII collagen. (wikipedia.org)
  • Collagen has been shown to support heart health blood markers and support healthy wound healing. (prohealth.com)
  • Effect of Collagen Tripeptide on Atherosclerosis in Healthy Humans. (prohealth.com)
  • One of the amino acids found in collagen, glycine, can help improve digestion by increasing stomach acid. (prohealth.com)
  • Hydrolyzed peptides are the most effective form of collagen which allows your body to use it almost immediately. (prohealth.com)
  • To study the effect of tap water `softening' (i.e. calcium extraction) on H&E stains, 5 sets of slides from 30 different paraffin-embedded human pathologic tissue blocks were prepared in the same way except for washing with 5 different types of water. (who.int)
  • Effect of collagen supplementation on osteoarthritis symptoms: a meta-analysis of randomized placebo-controlled trials. (prohealth.com)
  • At least seven discrete types have been described ranging from mild disease to a lethal form. (orthobullets.com)
  • Effects of marine collagen peptides on glucose metabolism and insulin resistance in type 2 diabetic rats. (prohealth.com)
  • Here, we employed MPO knockout genotoxic effects [7] possibly associated with carcinogenesis (e.g. (cdc.gov)
  • Collagen can't be used in its whole form, so it must be broken down into smaller pieces, known as peptides. (prohealth.com)