A common inhabitant of the colon flora in human infants and sometimes in adults. It produces a toxin that causes pseudomembranous enterocolitis (ENTEROCOLITIS, PSEUDOMEMBRANOUS) in patients receiving antibiotic therapy.
Infections with bacteria of the genus CLOSTRIDIUM.
A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
An acute inflammation of the INTESTINAL MUCOSA that is characterized by the presence of pseudomembranes or plaques in the SMALL INTESTINE (pseudomembranous enteritis) and the LARGE INTESTINE (pseudomembranous colitis). It is commonly associated with antibiotic therapy and CLOSTRIDIUM DIFFICILE colonization.
Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases.
RESTRICTION FRAGMENT LENGTH POLYMORPHISM analysis of rRNA genes that is used for differentiating between species or strains.
Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria.
Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
A species of anaerobic, gram-positive, rod-shaped bacteria in the family Clostridiaceae that produces proteins with characteristic neurotoxicity. It is the etiologic agent of BOTULISM in humans, wild fowl, HORSES; and CATTLE. Seven subtypes (sometimes called antigenic types, or strains) exist, each producing a different botulinum toxin (BOTULINUM TOXINS). The organism and its spores are widely distributed in nature.
An increased liquidity or decreased consistency of FECES, such as running stool. Fecal consistency is related to the ratio of water-holding capacity of insoluble solids to total water, rather than the amount of water present. Diarrhea is not hyperdefecation or increased fecal weight.
Substances that are toxic to cells; they may be involved in immunity or may be contained in venoms. These are distinguished from CYTOSTATIC AGENTS in degree of effect. Some of them are used as CYTOTOXIC ANTIBIOTICS. The mechanism of action of many of these are as ALKYLATING AGENTS or MITOSIS MODULATORS.
Proteins found in any species of bacterium.
A nitroimidazole used to treat AMEBIASIS; VAGINITIS; TRICHOMONAS INFECTIONS; GIARDIASIS; ANAEROBIC BACTERIA; and TREPONEMAL INFECTIONS. It has also been proposed as a radiation sensitizer for hypoxic cells. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985, p133), this substance may reasonably be anticipated to be a carcinogen (Merck, 11th ed).
Any infection which a patient contracts in a health-care institution.
Substances that reduce the growth or reproduction of BACTERIA.
Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium.
Antibacterial obtained from Streptomyces orientalis. It is a glycopeptide related to RISTOCETIN that inhibits bacterial cell wall assembly and is toxic to kidneys and the inner ear.
A species of gram-positive bacteria in the family Clostridiaceae, found in INTESTINES and SOIL.
A species of gram-positive bacteria in the family Clostridiaceae, used for the industrial production of SOLVENTS.
Antisera from immunized animals that is purified and used as a passive immunizing agent against specific BACTERIAL TOXINS.
The cause of TETANUS in humans and domestic animals. It is a common inhabitant of human and horse intestines as well as soil. Two components make up its potent exotoxin activity, a neurotoxin and a hemolytic toxin.
An antibacterial agent that is a semisynthetic analog of LINCOMYCIN.
A species of gram-positive, thermophilic, cellulolytic bacteria in the family Clostridaceae. It degrades and ferments CELLOBIOSE and CELLULOSE to ETHANOL in the CELLULOSOME.
Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS.
The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX.
Techniques used in studying bacteria.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Enzymes that transfer the ADP-RIBOSE group of NAD or NADP to proteins or other small molecules. Transfer of ADP-ribose to water (i.e., hydrolysis) is catalyzed by the NADASES. The mono(ADP-ribose)transferases transfer a single ADP-ribose. POLY(ADP-RIBOSE) POLYMERASES transfer multiple units of ADP-ribose to protein targets, building POLY ADENOSINE DIPHOSPHATE RIBOSE in linear or branched chains.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
Pathological developments in the CECUM.
Inflammation of any segment of the SMALL INTESTINE.
'Anaerobic Bacteria' are types of bacteria that do not require oxygen for growth and can often cause diseases in humans, including dental caries, gas gangrene, and tetanus, among others.
Type species of the genus CLOSTRIDIUM, a gram-positive bacteria in the family Clostridiaceae. It is used as a source of PROBIOTICS.
A genus of the family Muridae having three species. The present domesticated strains were developed from individuals brought from Syria. They are widely used in biomedical research.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
Derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated six carbon aliphatic structure.
Preparations of pathogenic organisms or their derivatives made nontoxic and intended for active immunologic prophylaxis. They include deactivated toxins. Anatoxin toxoids are distinct from anatoxins that are TROPANES found in CYANOBACTERIA.
Animals not contaminated by or associated with any foreign organisms.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
'Animal hospitals' are specialized medical facilities primarily dedicated to the diagnosis, treatment, and care of sick, injured, or adopted animals, providing advanced veterinary services, surgeries, and intensive care units, often staffed with trained veterinarians and support personnel.
'Azā compounds' are a class of organic molecules containing at least one nitrogen atom in a five-membered ring, often found in naturally occurring substances and pharmaceuticals, with the name derived from the Arabic word "azZa" meaning 'strong' referring to the ring's aromatic stability.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A species of gram-positive bacteria in the family Clostridiaceae. Infections have a strong association with malignancies and also with GAS GANGRENE.
Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS.
Sudden increase in the incidence of a disease. The concept includes EPIDEMICS and PANDEMICS.
The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE.
Inflammation of the MUCOSA of both the SMALL INTESTINE and the LARGE INTESTINE. Etiology includes ISCHEMIA, infections, allergic, and immune responses.
An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.
Generally refers to the digestive structures stretching from the MOUTH to ANUS, but does not include the accessory glandular organs (LIVER; BILIARY TRACT; PANCREAS).
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
Cresols, also known as hydroxytoluene, are a group of phenolic compounds including ortho-cresol, meta-cresol, and para-cresol, which differ in the position of the hydroxyl group on the benzene ring.
A species of gram-positive bacteria in the family Clostridiaceae, capable of solventogenesis, and isolated from SOIL, infected WOUNDS, fermenting OLIVES, and spoiled CANDY.
A group of ANTI-BACTERIAL AGENTS characterized by a chromophoric naphthohydroquinone group spanned by an aliphatic bridge not previously found in other known ANTI-BACTERIAL AGENTS. They have been isolated from fermentation broths of Streptomyces mediterranei.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
The most common etiologic agent of GAS GANGRENE. It is differentiable into several distinct types based on the distribution of twelve different toxins.
A disease caused by potent protein NEUROTOXINS produced by CLOSTRIDIUM BOTULINUM which interfere with the presynaptic release of ACETYLCHOLINE at the NEUROMUSCULAR JUNCTION. Clinical features include abdominal pain, vomiting, acute PARALYSIS (including respiratory paralysis), blurred vision, and DIPLOPIA. Botulism may be classified into several subtypes (e.g., food-borne, infant, wound, and others). (From Adams et al., Principles of Neurology, 6th ed, p1208)
A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47.
Live microbial DIETARY SUPPLEMENTS which beneficially affect the host animal by improving its intestinal microbial balance. Antibiotics and other related compounds are not included in this definition. In humans, lactobacilli are commonly used as probiotics, either as single species or in mixed culture with other bacteria. Other genera that have been used are bifidobacteria and streptococci. (J. Nutr. 1995;125:1401-12)
Institutions with an organized medical staff which provide medical care to patients.
A genus of gram-positive, coccoid bacteria consisting of organisms causing variable hemolysis that are normal flora of the intestinal tract. Previously thought to be a member of the genus STREPTOCOCCUS, it is now recognized as a separate genus.
The study of microorganisms living in a variety of environments (air, soil, water, etc.) and their pathogenic relationship to other organisms including man.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
3-Acetyl-5-sec-butyl-4-hydroxy-3-pyrrolin-2-one. A metabolite found in a strain of the fungus Alternaria tenuis Auct. which functions as an antibiotic with antiviral and antineoplastic properties, and may also act as a mycotoxin.
Passive agglutination tests in which antigen is adsorbed onto latex particles which then clump in the presence of antibody specific for the adsorbed antigen. (From Stedman, 26th ed)
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A specific streptogramin group B antibiotic produced by Streptomyces graminofaciens and other bacteria.
The functional hereditary units of BACTERIA.
The application of molecular biology to the answering of epidemiological questions. The examination of patterns of changes in DNA to implicate particular carcinogens and the use of molecular markers to predict which individuals are at highest risk for a disease are common examples.
MOLECULAR BIOLOGY techniques used in the diagnosis of disease.
Subtype of CLOSTRIDIUM BOTULINUM that produces BOTULINUM TOXINS, TYPE A which is neurotoxic to humans and animals.
Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection.
Measurable quantity of bacteria in an object, organism, or organism compartment.
Programs of disease surveillance, generally within health care facilities, designed to investigate, prevent, and control the spread of infections and their causative microorganisms.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
The expelling of bacteria from the body. Important routes include the respiratory tract, genital tract, and intestinal tract.
Inflammation of any segment of the ILEUM and the ILEOCECAL VALVE.
The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
A species of gram-positive bacteria in the family Clostridiaceae. It is a cellulolytic, mesophilic species isolated from decayed GRASS.
The condition of harboring an infective organism without manifesting symptoms of infection. The organism must be readily transmissible to another susceptible host.
Genomes of temperate BACTERIOPHAGES integrated into the DNA of their bacterial host cell. The prophages can be duplicated for many cell generations until some stimulus induces its activation and virulence.
The return of a sign, symptom, or disease after a remission.
A CELL LINE derived from the kidney of the African green (vervet) monkey, (CERCOPITHECUS AETHIOPS) used primarily in virus replication studies and plaque assays.
Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI.
The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON.
A species of gram-positive, cellulolytic bacteria in the family Clostridiaceae. It produces CELLULOSOMES which are involved in plant CELL WALL degradation.
A species of gram-positive bacteria in the family Clostridiaceae isolated from infected CATTLE; SHEEP; and other animals. It causes blackleg in cattle and sheep and is transmitted through soil-borne spores.
Human colonic ADENOCARCINOMA cells that are able to express differentiation features characteristic of mature intestinal cells, such as ENTEROCYTES. These cells are valuable in vitro tools for studies related to intestinal cell function and differentiation.
Quinolines are heterocyclic aromatic organic compounds consisting of a two-nitrogened benzene ring fused to a pyridine ring, which have been synthesized and used as building blocks for various medicinal drugs, particularly antibiotics and antimalarials.
Inflammation of the COLON section of the large intestine (INTESTINE, LARGE), usually with symptoms such as DIARRHEA (often with blood and mucus), ABDOMINAL PAIN, and FEVER.
A group of QUINOLONES with at least one fluorine atom and a piperazinyl group.

Antimicrobial activities of synthetic bismuth compounds against Clostridium difficile. (1/1505)

Clostridium difficile is a major nosocomial pathogen responsible for pseudomembranous colitis and many cases of antibiotic-associated diarrhea. Because of potential relapse of disease with current antimicrobial therapy protocols, there is a need for additional and/or alternative antimicrobial agents for the treatment of disease caused by C. difficile. We have synthesized a systematic series of 14 structurally simple bismuth compounds and assessed their biological activities against C. difficile and four other gastrointestinal species, including Helicobacter pylori. Here, we report on the activities of six compounds that exhibit antibacterial activities against C. difficile, and some of the compounds have MICs of less than 1 microgram/ml. Also tested, for comparison, were the activities of bismuth subcitrate and ranitidine bismuth citrate obtained from commercial sources. C. difficile and H. pylori were more sensitive both to the synthetic bismuth compounds and to the commercial products than were Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis, and the last three species were markedly resistant to the commercial bismuth salts. Testing with human foreskin fibroblast cells revealed that some of the synthetic compounds were more cytotoxic than others. Killing curves for C. difficile treated with the more active compounds revealed rapid death, and electron microscopy showed that the bismuth of these compounds was rapidly incorporated by C. difficile. Energy dispersive spectroscopy X-ray microanalysis of C. difficile cells containing electron-dense material confirmed the presence of internalized bismuth. Internalized bismuth was not observed in C. difficile treated with synthetic bismuth compounds that lacked antimicrobial activity, which suggests that the uptake of the metal is required for killing activity. The nature of the carrier would seem to determine whether bismuth is transported into susceptible bacteria like C. difficile.  (+info)

How intestinal bacteria cause disease. (2/1505)

An improved understanding of how intestinal bacteria cause disease has become increasingly important because of the emergence of new enteric pathogens, increasing threats of drug resistance, and a growing awareness of their importance in malnutrition and diarrhea. Reviewed here are the varied ways that intestinal bacteria cause disease, which provide fundamental lessons about microbial pathogenesis as well as cell signaling. Following colonization, enteric pathogens may adhere to or invade the epithelium or may produce secretory exotoxins or cytotoxins. In addition, by direct or indirect effects, they may trigger secondary mediator release of cytokines that attract inflammatory cells, which release further products, such as prostaglandins or platelet-activating factor, which can also trigger secretion. An improved understanding of pathogenesis not only opens new approaches to treatment and control but may also suggest improved simple means of diagnosis and even vaccine development.  (+info)

A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins. (3/1505)

The large clostridial cytotoxins (LCTs) constitute a group of high molecular weight clostridial cytotoxins that inactivate cellular small GTP-binding proteins. We demonstrate that a novel LCT (TcdB-1470) from Clostridium difficile strain 1470 is a functional hybrid between "reference" TcdB-10463 and Clostridium sordellii TcsL-1522. It bound to the same specific receptor as TcdB-10463 but glucosylated the same GTP-binding proteins as TcsL-1522. All three toxins had equal enzymatic potencies but were equally cytotoxic only when microinjected. When applied extracellularly TcdB-1470 and TcdB-10463 were considerably more potent cytotoxins than TcsL-1522. The small GTP-binding protein R-Ras was identified as a target for TcdB-1470 and also for TcsL-1522 but not for TcdB-10463. R-Ras is known to control integrin-extracellular matrix interactions from inside the cell. Its glucosylation may be a major determinant for the cell rounding and detachment induced by the two R-Ras-attacking toxins. In contrast, fibroblasts treated with TcdB-10463 were arborized and remained attached, with phosphotyrosine containing structures located at the cell-to-cell contacts and beta3-integrin remaining at the tips of cellular protrusions. These components were absent from cells treated with the R-Ras-inactivating toxins. The novel hybrid toxin will broaden the utility of the LCTs for clarifying the functions of several small GTPases, now including also R-Ras.  (+info)

Immunogenicity of a Salmonella typhimurium aroA aroD vaccine expressing a nontoxic domain of Clostridium difficile toxin A. (4/1505)

The C-terminal repeat domain of Clostridium difficile toxin A harbors toxin-neutralizing epitopes and is considered to be a candidate component of a vaccine against C. difficile-associated disease (CDAD). Fourteen of the 38 C-terminal toxin A repeats (14CDTA) were cloned into pTECH-1 in frame with the immunogenic fragment C of tetanus toxin (TETC) to generate plasmid p56TETC. Expression of the TETC-14CDTA fusion protein was driven from the anaerobically inducible nirB promoter within attenuated Salmonella typhimurium BRD509 (aroA aroD). The TETC-14CDTA fusion protein was purified and shown to bind to known toxin A receptors found on the surface of rabbit erythrocytes. Intranasal (i.n.) and intragastric (i.g.) immunization with 10(7) and 10(10) CFU, respectively, of BRD509(p56TETC) generated significant (P < 0.05) anti-toxin A serum responses after a single dose. Antibody titers were elevated following a boosting dose with either live vaccine or a subcutaneous injection of 0.5 microgram of purified 14CDTA protein. Importantly, serum from mice immunized with BRD509(p56TETC) neutralized toxin A cytotoxicity. Both i.n. and i.g. immunizations also generated toxin A-specific immunoglobulin A on the pulmonary and intestinal mucosa, respectively. Intranasal vaccination induced consistently higher serum and mucosal anti-toxin A antibody responses. Significant anti-tetanus toxoid serum and mucosal antibodies were also generated by both immunization routes. The availability of live attenuated Salmonella typhi for human use may allow the development of a multivalent mucosal vaccine against CDAD, tetanus, and typhoid.  (+info)

Factors associated with prolonged symptoms and severe disease due to Clostridium difficile. (5/1505)

OBJECTIVE: toxigenic Clostridium difficile is responsible for a spectrum of disease severity ranging from mild diarrhoea to fulminant colitis. This study attempts to determine the proportion of patients in each category of severity and evaluate the risk factors for a more prolonged and complicated course. DESIGN: prospective cohort study. SETTING: university teaching hospital. SUBJECTS: all patients with symptomatic C. difficile infection during 4 months of an outbreak (January-April 1995); n=73; median age 74 years (range 17-91). MEASUREMENTS: incidence of C. difficile-associated disease (CDAD); severity of disease; percentage of patients in each category of severity; risk factors for severe disease/prolonged symptoms (univariate and multivariable analyses). RESULTS: the incidence of CDAD was 0.93%. Of the cases identified, 18 (24.7%) had mild, self-limiting disease; 26 (35.6%) had moderately severe disease; 23 (31.5%) had prolonged symptoms and six (8.2%) had a complicated course. Although CDAD was more common in older patients (P < 0.001), increasing age was not a risk factor for severity. Significant risk factors for severe CDAD included low Barthel and abbreviated mental test scores (P < 0.01, P < 0.001 respectively) and recent endoscopy (P=0.03). Logistic regression analysis revealed the following independent predictors of severe CDAD: endoscopy [odds ratios (OR) 4.0, P=0.03] and cognitive impairment (OR 11.0, P < 0.01). A trend towards significance was noted for nasogastric tube insertion (OR 3.1, P=0.08). Complications of infection included dehydration, malnutrition and faecal incontinence (which was statistically significantly associated with more severe disease; P < 0.01). CONCLUSION: risk factors for severity of CDAD include functional disability, cognitive impairment, and recent endoscopy. Anticipation of severe CDAD may limit morbidity and mortality.  (+info)

Incidence and outcome of Clostridium difficile infection following autologous peripheral blood stem cell transplantation. (6/1505)

A retrospective evaluation of 200 consecutive recipients of autologous peripheral blood stem cell transplantation (PBSCT) was conducted to ascertain the incidence and outcome of infection with Clostridium difficile. The diagnosis was confirmed in 14 patients with diarrhea (15 episodes) at a median of 33 days after stem cell infusion. Five patients were neutropenic at the time of diagnosis. Every individual had adverse known risk factors such as recent or current use of antibiotic, corticosteroid and antiviral therapy, recent administration of myeloablative chemotherapy and numerous, prolonged periods of hospitalization. Diarrhea, frequently hemorrhagic, was the most common presenting feature along with fever, abdominal cramps and abdominal distention. Diagnosis was established by the stool-cytotoxin test. Response to standard treatment with oral vancomycin or metronidazole was prompt despite the presence of several adverse prognostic features in these patients. There was only one instance of relapse which was also treated successfully. Several transplant-related variables such as age, sex, underlying malignancy, myelo-ablative regimen, duration of neutropenia, and prophylactic use of oral ampicillin underwent statistical analysis but failed to be predictive of C. difficile infection in such a setting. Finally, C. difficile is not uncommon after autologous PBSCT and must be included in the differential diagnosis in any such patient with diarrhea.  (+info)

Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. (7/1505)

The impact of various growth conditions on the expression of toxins and other proteins by Clostridium difficile VPI 10463 was studied. During non-starved conditions, the rate of toxin synthesis paralleled that of total protein during both exponential growth and stationary phase, and in both defined and complex media. Biotin limitation reduced growth rate and bulk protein synthesis, whereas toxin expression continued, leading to a 50- to 200-fold increase in intracellular toxin levels. Concomitantly, several 22 kDa proteins were up-regulated as revealed by two-dimensional PAGE analysis. The toxin yield was 30-fold higher in peptone yeast extract (PY) than in PY containing glucose (PYG). By contrast, glucose limitation reduced toxin yields by 20- to 100-fold in defined media. By elevating the buffering capacity and bicarbonate concentration, toxin yields were increased by 10-fold in PY and PYG. The high toxin production by C. difficile during growth in PY was lowered 100-fold by adding a blend of nine amino acids and several 60-100 kDa proteins were concomitantly down-regulated. It was concluded that toxin expression in C. difficile VPI 10463 was not affected by growth rate, growth phase, catabolite repression or the stringent response. Instead the co-expression of toxins and a few specific additional proteins appeared to be influenced by metabolic pathways involving CO2 assimilation, carboxylation reactions and metabolism of certain amino acids.  (+info)

Evaluation of two rapid assays for detection of Clostridium difficile toxin A in stool specimens. (8/1505)

Rapid laboratory diagnosis of Clostridium difficile-associated diarrhea (CDAD) is highly desirable in the setting of hospital cost containment. We tested 654 stool specimens to compare the performance of two assays for rapid detection of toxin A, the Immunocard Toxin A test (Meridian Diagnostics, Inc.) and the Culturette Brand Toxin CD enzyme immunoassay (EIA) (Becton Dickinson Microbiology Systems), with a cytotoxin assay (Cytotoxi Test; Advanced Clinical Diagnostics) and culture on cycloserine-cefoxitin-fructose agar followed by determination of the production of toxins A and B. A chart review was performed for patients whose stool specimens provided positive results on one to three of the assays. With the "gold standard" of all four assays positive or chart review evidence of CDAD, 97 (14.8%) stool specimens were positive by one or more assays and 557 (85.2%) were negative by all methods. Total agreement for all assays was 90.5% (592 of 654). The sensitivity, specificity, positive predictive value, and negative predictive value for toxigenic culture were 94.7, 98.6, 87.1, and 99.5%, respectively, for toxigenic culture; 87.7, 98.6, 86.2, and 98.8%, respectively, for the cytotoxin assay; 71.9, 99.3, 91.1, and 97.3%, respectively, for the Immunocard; and 68.4, 99.1, 88.6, and 96.9%, respectively, for the Culturette EIA. While easy to perform and highly specific, these rapid assays do not appear to be sufficient for accurate diagnosis of CDAD.  (+info)

'Clostridium difficile' (also known as 'C. difficile' or 'C. diff') is a type of Gram-positive, spore-forming bacterium that can be found in the environment, including in soil, water, and human and animal feces. It is a common cause of healthcare-associated infections, particularly in individuals who have recently received antibiotics or have other underlying health conditions that weaken their immune system.

C. difficile produces toxins that can cause a range of symptoms, from mild diarrhea to severe colitis (inflammation of the colon) and potentially life-threatening complications such as sepsis and toxic megacolon. The most common toxins produced by C. difficile are called TcdA and TcdB, which damage the lining of the intestine and cause inflammation.

C. difficile infections (CDIs) can be difficult to treat, particularly in severe cases or in patients who have recurrent infections. Treatment typically involves discontinuing any unnecessary antibiotics, if possible, and administering specific antibiotics that are effective against C. difficile, such as metronidazole, vancomycin, or fidaxomicin. In some cases, fecal microbiota transplantation (FMT) may be recommended as a last resort for patients with recurrent or severe CDIs who have not responded to other treatments.

Preventing the spread of C. difficile is critical in healthcare settings, and includes measures such as hand hygiene, contact precautions, environmental cleaning, and antibiotic stewardship programs that promote the appropriate use of antibiotics.

Clostridium infections are caused by bacteria of the genus Clostridium, which are gram-positive, rod-shaped, spore-forming, and often anaerobic organisms. These bacteria can be found in various environments, including soil, water, and the human gastrointestinal tract. Some Clostridium species can cause severe and potentially life-threatening infections in humans. Here are some of the most common Clostridium infections with their medical definitions:

1. Clostridioides difficile infection (CDI): An infection caused by the bacterium Clostridioides difficile, previously known as Clostridium difficile. It typically occurs after antibiotic use disrupts the normal gut microbiota, allowing C. difficile to overgrow and produce toxins that cause diarrhea, colitis, and other gastrointestinal symptoms. Severe cases can lead to sepsis, toxic megacolon, or even death.
2. Clostridium tetani infection: Also known as tetanus, this infection is caused by the bacterium Clostridium tetani. The spores of this bacterium are commonly found in soil and animal feces. They can enter the body through wounds, cuts, or punctures, germinate, and produce a potent exotoxin called tetanospasmin. This toxin causes muscle stiffness and spasms, particularly in the neck and jaw (lockjaw), which can lead to difficulty swallowing, breathing, and potentially fatal complications.
3. Clostridium botulinum infection: This infection is caused by the bacterium Clostridium botulinum and results in botulism, a rare but severe paralytic illness. The bacteria produce neurotoxins (botulinum toxins) that affect the nervous system, causing symptoms such as double vision, drooping eyelids, slurred speech, difficulty swallowing, dry mouth, and muscle weakness. In severe cases, botulism can lead to respiratory failure and death.
4. Gas gangrene (Clostridium perfringens infection): A rapidly progressing soft tissue infection caused by Clostridium perfringens or other clostridial species. The bacteria produce potent exotoxins that cause tissue destruction, gas production, and widespread necrosis. Gas gangrene is characterized by severe pain, swelling, discoloration, and a foul-smelling discharge. If left untreated, it can lead to sepsis, multi-organ failure, and death.
5. Clostridioides difficile infection (C. difficile infection): Although not caused by a typical clostridial species, C. difficile is a gram-positive, spore-forming bacterium that can cause severe diarrhea and colitis, particularly in hospitalized patients or those who have recently taken antibiotics. The bacteria produce toxins A and B, which damage the intestinal lining and contribute to inflammation and diarrhea. C. difficile infection can range from mild to life-threatening, with complications such as sepsis, toxic megacolon, and bowel perforation.

'Clostridium' is a genus of gram-positive, rod-shaped bacteria that are widely distributed in nature, including in soil, water, and the gastrointestinal tracts of animals and humans. Many species of Clostridium are anaerobic, meaning they can grow and reproduce in environments with little or no oxygen. Some species of Clostridium are capable of producing toxins that can cause serious and sometimes life-threatening illnesses in humans and animals.

Some notable species of Clostridium include:

* Clostridium tetani, which causes tetanus (also known as lockjaw)
* Clostridium botulinum, which produces botulinum toxin, the most potent neurotoxin known and the cause of botulism
* Clostridium difficile, which can cause severe diarrhea and colitis, particularly in people who have recently taken antibiotics
* Clostridium perfringens, which can cause food poisoning and gas gangrene.

It is important to note that not all species of Clostridium are harmful, and some are even beneficial, such as those used in the production of certain fermented foods like sauerkraut and natto. However, due to their ability to produce toxins and cause illness, it is important to handle and dispose of materials contaminated with Clostridium species carefully, especially in healthcare settings.

Pseudomembranous enterocolitis is a medical condition characterized by inflammation of the inner lining of the small intestine (enteritis) and large intestine (colitis), resulting in the formation of pseudomembranes – raised, yellowish-white plaques composed of fibrin, mucus, and inflammatory cells. The condition is most commonly caused by a toxin produced by the bacterium Clostridioides difficile (C. difficile), which can overgrow in the gut following disruption of the normal gut microbiota, often after antibiotic use. Symptoms may include diarrhea, abdominal cramps, fever, nausea, and dehydration. Severe cases can lead to complications such as sepsis, toxic megacolon, or even death if left untreated. Treatment typically involves discontinuing the offending antibiotic, administering oral metronidazole or vancomycin to eliminate C. difficile, and managing symptoms with supportive care. In some cases, fecal microbiota transplantation (FMT) may be considered as a treatment option.

Bacterial toxins are poisonous substances produced and released by bacteria. They can cause damage to the host organism's cells and tissues, leading to illness or disease. Bacterial toxins can be classified into two main types: exotoxins and endotoxins.

Exotoxins are proteins secreted by bacterial cells that can cause harm to the host. They often target specific cellular components or pathways, leading to tissue damage and inflammation. Some examples of exotoxins include botulinum toxin produced by Clostridium botulinum, which causes botulism; diphtheria toxin produced by Corynebacterium diphtheriae, which causes diphtheria; and tetanus toxin produced by Clostridium tetani, which causes tetanus.

Endotoxins, on the other hand, are components of the bacterial cell wall that are released when the bacteria die or divide. They consist of lipopolysaccharides (LPS) and can cause a generalized inflammatory response in the host. Endotoxins can be found in gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa.

Bacterial toxins can cause a wide range of symptoms depending on the type of toxin, the dose, and the site of infection. They can lead to serious illnesses or even death if left untreated. Vaccines and antibiotics are often used to prevent or treat bacterial infections and reduce the risk of severe complications from bacterial toxins.

Ribotyping is a molecular technique used in microbiology to identify and differentiate bacterial strains based on their specific PCR-amplified ribosomal RNA (rRNA) genes. This method involves the use of specific DNA probes or primers to target conserved regions of the rRNA operon, followed by hybridization or sequencing to analyze the resulting patterns. These patterns, known as "ribotypes," are unique to different bacterial species and strains, making ribotyping a valuable tool in epidemiological studies, outbreak investigations, and taxonomic classification of bacteria.

Enterotoxins are types of toxic substances that are produced by certain microorganisms, such as bacteria. These toxins are specifically designed to target and affect the cells in the intestines, leading to symptoms such as diarrhea, vomiting, and abdominal cramps. One well-known example of an enterotoxin is the toxin produced by Staphylococcus aureus bacteria, which can cause food poisoning. Another example is the cholera toxin produced by Vibrio cholerae, which can cause severe diarrhea and dehydration. Enterotoxins work by interfering with the normal functioning of intestinal cells, leading to fluid accumulation in the intestines and subsequent symptoms.

Feces are the solid or semisolid remains of food that could not be digested or absorbed in the small intestine, along with bacteria and other waste products. After being stored in the colon, feces are eliminated from the body through the rectum and anus during defecation. Feces can vary in color, consistency, and odor depending on a person's diet, health status, and other factors.

'Clostridium botulinum' is a gram-positive, rod-shaped, anaerobic bacteria that produces one or more neurotoxins known as botulinum toxins. These toxins are among the most potent naturally occurring biological poisons and can cause a severe form of food poisoning called botulism in humans and animals. Botulism is characterized by symmetrical descending flaccid paralysis, which can lead to respiratory and cardiovascular failure, and ultimately death if not treated promptly.

The bacteria are widely distributed in nature, particularly in soil, sediments, and the intestinal tracts of some animals. They can form spores that are highly resistant to heat, chemicals, and other environmental stresses, allowing them to survive for long periods in adverse conditions. The spores can germinate and produce vegetative cells and toxins when they encounter favorable conditions, such as anaerobic environments with appropriate nutrients.

Human botulism can occur through three main routes of exposure: foodborne, wound, and infant botulism. Foodborne botulism results from consuming contaminated food containing preformed toxins, while wound botulism occurs when the bacteria infect a wound and produce toxins in situ. Infant botulism is caused by the ingestion of spores that colonize the intestines and produce toxins, mainly affecting infants under one year of age.

Prevention measures include proper food handling, storage, and preparation practices, such as cooking and canning foods at appropriate temperatures and for sufficient durations. Wound care and prompt medical attention are crucial in preventing wound botulism. Vaccines and antitoxins are available for prophylaxis and treatment of botulism in high-risk individuals or in cases of confirmed exposure.

Diarrhea is a condition in which an individual experiences loose, watery stools frequently, often exceeding three times a day. It can be acute, lasting for several days, or chronic, persisting for weeks or even months. Diarrhea can result from various factors, including viral, bacterial, or parasitic infections, food intolerances, medications, and underlying medical conditions such as inflammatory bowel disease or irritable bowel syndrome. Dehydration is a potential complication of diarrhea, particularly in severe cases or in vulnerable populations like young children and the elderly.

Cytotoxins are substances that are toxic to cells. They can cause damage and death to cells by disrupting their membranes, interfering with their metabolism, or triggering programmed cell death (apoptosis). Cytotoxins can be produced by various organisms such as bacteria, fungi, plants, and animals, and they can also be synthesized artificially.

In medicine, cytotoxic drugs are used to treat cancer because they selectively target and kill rapidly dividing cells, including cancer cells. Examples of cytotoxic drugs include chemotherapy agents such as doxorubicin, cyclophosphamide, and methotrexate. However, these drugs can also damage normal cells, leading to side effects such as nausea, hair loss, and immune suppression.

It's important to note that cytotoxins are not the same as toxins, which are poisonous substances produced by living organisms that can cause harm to other organisms. While all cytotoxins are toxic to cells, not all toxins are cytotoxic. Some toxins may have systemic effects on organs or tissues rather than directly killing cells.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Metronidazole is an antibiotic and antiprotozoal medication. It is primarily used to treat infections caused by anaerobic bacteria and certain parasites. Metronidazole works by interfering with the DNA of these organisms, which inhibits their ability to grow and multiply.

It is available in various forms, including tablets, capsules, creams, and gels, and is often used to treat conditions such as bacterial vaginosis, pelvic inflammatory disease, amebiasis, giardiasis, and pseudomembranous colitis.

Like all antibiotics, metronidazole should be taken only under the direction of a healthcare provider, as misuse can lead to antibiotic resistance and other complications.

Cross infection, also known as cross-contamination, is the transmission of infectious agents or diseases between patients in a healthcare setting. This can occur through various means such as contaminated equipment, surfaces, hands of healthcare workers, or the air. It is an important concern in medical settings and measures are taken to prevent its occurrence, including proper hand hygiene, use of personal protective equipment (PPE), environmental cleaning and disinfection, and safe injection practices.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

I believe there might be a slight confusion in your question. Bacteria do not produce spores; instead, it is fungi and other types of microorganisms that produce spores for reproduction and survival purposes. Spores are essentially reproductive cells that are resistant to heat, radiation, and chemicals, allowing them to survive under harsh conditions.

If you meant to ask about endospores, those are produced by some bacteria as a protective mechanism during times of stress or nutrient deprivation. Endospores are highly resistant structures containing bacterial DNA, ribosomes, and some enzymes. They can survive for long periods in extreme environments and germinate into vegetative cells when conditions improve.

Here's the medical definition of endospores:

Endospores (also called bacterial spores) are highly resistant, dormant structures produced by certain bacteria belonging to the phyla Firmicutes and Actinobacteria. They contain a core of bacterial DNA, ribosomes, and some enzymes surrounded by a protective layer called the spore coat. Endospores can survive under harsh conditions for extended periods and germinate into vegetative cells when favorable conditions return. Common examples of endospore-forming bacteria include Bacillus species (such as B. anthracis, which causes anthrax) and Clostridium species (such as C. difficile, which can cause severe diarrhea).

Vancomycin is an antibiotic that belongs to the glycopeptide class. It is primarily used to treat severe infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Vancomycin works by inhibiting the synthesis of bacterial cell walls. It is usually administered intravenously in a hospital setting due to its potential nephrotoxicity and ototoxicity. The medical definition of 'Vancomycin' can be summarized as:

"A glycopeptide antibiotic used to treat severe infections caused by Gram-positive bacteria, particularly those that are resistant to other antibiotics. It inhibits bacterial cell wall synthesis and is administered intravenously due to its potential nephrotoxicity and ototoxicity."

'Clostridium sordellii' is a gram-positive, spore-forming, anaerobic rod-shaped bacterium. It is part of the normal microbiota found in the human and animal gastrointestinal tract. However, it can cause severe and potentially fatal infections in humans, such as sepsis, myonecrosis (gas gangrene), and soft tissue infections. These infections are more commonly associated with contaminated wounds, surgical sites, or drug use (particularly black tar heroin). The bacterium produces powerful toxins that contribute to its virulence and can lead to rapid progression of the infection. Immediate medical attention is required for proper diagnosis and treatment, which typically involves antibiotics, surgical debridement, and supportive care.

'Clostridium acetobutylicum' is a gram-positive, spore-forming, rod-shaped bacterium that is commonly found in soil and aquatic environments. It is a species of the genus Clostridium, which includes many bacteria capable of producing industrial chemicals through fermentation.

'Clostridium acetobutylicum' is particularly known for its ability to produce acetic acid and butyric acid, as well as solvents such as acetone and butanol, during the process of anaerobic respiration. This makes it a potential candidate for biotechnological applications in the production of biofuels and other industrial chemicals.

However, like many Clostridium species, 'Clostridium acetobutylicum' can also produce toxins and cause infections in humans and animals under certain circumstances. Therefore, it is important to handle this organism with care and follow appropriate safety protocols when working with it in a laboratory setting.

Antitoxins are substances, typically antibodies, that neutralize toxins produced by bacteria or other harmful organisms. They work by binding to the toxin molecules and rendering them inactive, preventing them from causing harm to the body. Antitoxins can be produced naturally by the immune system during an infection, or they can be administered artificially through immunization or passive immunotherapy. In a medical context, antitoxins are often used as a treatment for certain types of bacterial infections, such as diphtheria and botulism, to help counteract the effects of the toxins produced by the bacteria.

'Clostridium tetani' is a gram-positive, spore-forming, anaerobic bacterium that is the causative agent of tetanus. The bacteria are commonly found in soil, dust, and manure, and can contaminate wounds, leading to the production of a potent neurotoxin called tetanospasmin. This toxin causes muscle spasms and stiffness, particularly in the jaw and neck muscles, as well as autonomic nervous system dysfunction, which can be life-threatening. Tetanus is preventable through vaccination with the tetanus toxoid vaccine.

Clindamycin is a antibiotic medication used to treat a variety of bacterial infections. It is a type of antibiotic known as a lincosamide, which works by binding to the bacterial ribosome and inhibiting protein synthesis. This leads to the death of the bacteria and helps to clear the infection.

Clindamycin is effective against a wide range of gram-positive and some anaerobic bacteria, making it a useful antibiotic for treating many different types of infections, including skin and soft tissue infections, bone and joint infections, respiratory infections, and dental infections. It is also sometimes used to treat certain types of bacterial vaginal infections.

Like all antibiotics, clindamycin should be used only under the direction of a healthcare provider, as misuse can lead to antibiotic resistance. Additionally, clindamycin can cause side effects such as diarrhea, nausea, and vomiting, and it may increase the risk of developing a serious intestinal infection called Clostridioides difficile-associated diarrhea (CDAD). It is important to follow your healthcare provider's instructions carefully when taking this medication.

'Clostridium thermocellum' is a type of anaerobic, gram-positive bacterium that is known for its ability to produce cellulases and break down cellulose. It is thermophilic, meaning it grows optimally at higher temperatures, typically between 55-70°C. This organism is of interest in the field of bioenergy because of its potential to convert plant biomass into useful products such as biofuels. However, it's important to note that this bacterium can also produce harmful metabolic byproducts and can be potentially pathogenic to humans.

Botulinum toxins are neurotoxic proteins produced by the bacterium Clostridium botulinum and related species. They are the most potent naturally occurring toxins, and are responsible for the paralytic illness known as botulism. There are seven distinct botulinum toxin serotypes (A-G), each of which targets specific proteins in the nervous system, leading to inhibition of neurotransmitter release and subsequent muscle paralysis.

In clinical settings, botulinum toxins have been used for therapeutic purposes due to their ability to cause temporary muscle relaxation. Botulinum toxin type A (Botox) is the most commonly used serotype in medical treatments, including management of dystonias, spasticity, migraines, and certain neurological disorders. Additionally, botulinum toxins are widely employed in aesthetic medicine for reducing wrinkles and fine lines by temporarily paralyzing facial muscles.

It is important to note that while botulinum toxins have therapeutic benefits when used appropriately, they can also pose significant health risks if misused or improperly handled. Proper medical training and supervision are essential for safe and effective utilization of these powerful toxins.

The cecum is the first part of the large intestine, located at the junction of the small and large intestines. It is a pouch-like structure that connects to the ileum (the last part of the small intestine) and the ascending colon (the first part of the large intestine). The cecum is where the appendix is attached. Its function is to absorb water and electrolytes, and it also serves as a site for the fermentation of certain types of dietary fiber by gut bacteria. However, the exact functions of the cecum are not fully understood.

Bacteriological techniques refer to the various methods and procedures used in the laboratory for the cultivation, identification, and study of bacteria. These techniques are essential in fields such as medicine, biotechnology, and research. Here are some common bacteriological techniques:

1. **Sterilization**: This is a process that eliminates or kills all forms of life, including bacteria, viruses, fungi, and spores. Common sterilization methods include autoclaving (using steam under pressure), dry heat (in an oven), chemical sterilants, and radiation.

2. **Aseptic Technique**: This refers to practices used to prevent contamination of sterile materials or environments with microorganisms. It includes the use of sterile equipment, gloves, and lab coats, as well as techniques such as flaming, alcohol swabbing, and using aseptic transfer devices.

3. **Media Preparation**: This involves the preparation of nutrient-rich substances that support bacterial growth. There are various types of media, including solid (agar), liquid (broth), and semi-solid (e.g., stab agar). The choice of medium depends on the type of bacteria being cultured and the purpose of the investigation.

4. **Inoculation**: This is the process of introducing a bacterial culture into a medium. It can be done using a loop, swab, or needle. The inoculum should be taken from a pure culture to avoid contamination.

5. **Incubation**: After inoculation, the bacteria are allowed to grow under controlled conditions of temperature, humidity, and atmospheric composition. This process is called incubation.

6. **Staining and Microscopy**: Bacteria are too small to be seen with the naked eye. Therefore, they need to be stained and observed under a microscope. Gram staining is a common method used to differentiate between two major groups of bacteria based on their cell wall composition.

7. **Biochemical Tests**: These are tests used to identify specific bacterial species based on their biochemical characteristics, such as their ability to ferment certain sugars, produce particular enzymes, or resist certain antibiotics.

8. **Molecular Techniques**: Advanced techniques like PCR and DNA sequencing can provide more precise identification of bacteria. They can also be used for genetic analysis and epidemiological studies.

Remember, handling microorganisms requires careful attention to biosafety procedures to prevent accidental infection or environmental contamination.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

ADP Ribose Transferases are a group of enzymes that catalyze the transfer of ADP-ribose groups from donor molecules, such as NAD+ (nicotinamide adenine dinucleotide), to specific acceptor molecules. This transfer process plays a crucial role in various cellular processes, including DNA repair, gene expression regulation, and modulation of protein function.

The reaction catalyzed by ADP Ribose Transferases can be represented as follows:

Donor (NAD+ or NADP+) + Acceptor → Product (NR + ADP-ribosylated acceptor)

There are two main types of ADP Ribose Transferases based on their function and the type of modification they perform:

1. Poly(ADP-ribose) polymerases (PARPs): These enzymes add multiple ADP-ribose units to a single acceptor protein, forming long, linear, or branched chains known as poly(ADP-ribose) (PAR). PARylation is involved in DNA repair, genomic stability, and cell death pathways.
2. Monomeric ADP-ribosyltransferases: These enzymes transfer a single ADP-ribose unit to an acceptor protein, which is called mono(ADP-ribosyl)ation. This modification can regulate protein function, localization, and stability in various cellular processes, such as signal transduction, inflammation, and stress response.

Dysregulation of ADP Ribose Transferases has been implicated in several diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. Therefore, understanding the function and regulation of these enzymes is essential for developing novel therapeutic strategies to target these conditions.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

Cecal diseases refer to medical conditions that affect the cecum, which is a pouch-like structure located at the junction of the small and large intestines. The cecum plays an important role in digestion, particularly in the fermentation of certain types of food.

There are several different types of cecal diseases, including:

1. Cecal volvulus: This is a rare condition in which the cecum twists on itself, cutting off blood flow and causing severe pain and other symptoms.
2. Diverticulitis: This occurs when small pouches called diverticula form in the wall of the cecum and become inflamed or infected.
3. Appendicitis: Although not strictly a cecal disease, the appendix is a small tube-like structure that branches off from the cecum. Inflammation of the appendix (appendicitis) can cause severe pain in the lower right abdomen and may require surgical removal of the appendix.
4. Crohn's disease: This is a chronic inflammatory bowel disease that can affect any part of the digestive tract, including the cecum.
5. Tuberculosis: The cecum can also be affected by tuberculosis, which is a bacterial infection that primarily affects the lungs but can spread to other parts of the body.
6. Cancer: Although rare, cancer can also affect the cecum, leading to symptoms such as abdominal pain, bloating, and changes in bowel habits.

Treatment for cecal diseases depends on the specific condition and its severity. Treatment options may include antibiotics, surgery, or other medical interventions. If you are experiencing symptoms that may be related to a cecal disease, it is important to seek medical attention promptly.

Enteritis is a medical term that refers to inflammation of the small intestine. The small intestine is responsible for digesting and absorbing nutrients from food, so inflammation in this area can interfere with these processes and lead to symptoms such as diarrhea, abdominal pain, nausea, vomiting, and weight loss.

Enteritis can be caused by a variety of factors, including bacterial or viral infections, parasites, autoimmune disorders, medications, and exposure to toxins. In some cases, the cause of enteritis may be unknown. Treatment for enteritis depends on the underlying cause, but may include antibiotics, antiparasitic drugs, anti-inflammatory medications, or supportive care such as fluid replacement therapy.

Anaerobic bacteria are a type of bacteria that do not require oxygen to grow and survive. Instead, they can grow in environments that have little or no oxygen. Some anaerobic bacteria can even be harmed or killed by exposure to oxygen. These bacteria play important roles in many natural processes, such as decomposition and the breakdown of organic matter in the digestive system. However, some anaerobic bacteria can also cause disease in humans and animals, particularly when they infect areas of the body that are normally oxygen-rich. Examples of anaerobic bacterial infections include tetanus, gas gangrene, and dental abscesses.

'Clostridium butyricum' is a gram-positive, spore-forming, rod-shaped bacterium that is commonly found in the environment, including soil and water. It is also part of the normal gut microbiota in humans and animals. This organism produces butyric acid as one of its main fermentation products, hence the name 'butyricum'.

While 'Clostridium butyricum' can sometimes be associated with human diseases, particularly in individuals with weakened immune systems or underlying gastrointestinal disorders, it is also being investigated for its potential probiotic properties. Some studies suggest that certain strains of this bacterium may help prevent and treat various conditions, such as antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. However, more research is needed to confirm these findings and establish the safety and efficacy of 'Clostridium butyricum' as a probiotic.

"Mesocricetus" is a genus of rodents, more commonly known as hamsters. It includes several species of hamsters that are native to various parts of Europe and Asia. The best-known member of this genus is the Syrian hamster, also known as the golden hamster or Mesocricetus auratus, which is a popular pet due to its small size and relatively easy care. These hamsters are burrowing animals and are typically solitary in the wild.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

"Caproates" is not a term commonly used in medical terminology. It appears to be a derivative of "caproic acid," which is an organic compound with the formula CH3CH2CH2CH2CO2H. Caproic acid is one of several saturated fatty acids that are abundant in animal fats and have a distinctive rancid odor when they spoil or break down.

However, I was unable to find any specific medical definition or use of the term "caproates" in the context of medicine or healthcare. It is possible that this term may be used in a different field or context, such as chemistry or biochemistry. If you have more information about the context in which you encountered this term, I may be able to provide a more accurate answer.

Toxoids are inactivated bacterial toxins that have lost their toxicity but retain their antigenicity. They are often used in vaccines to stimulate an immune response and provide protection against certain diseases without causing the harmful effects associated with the active toxin. The process of converting a toxin into a toxoid is called detoxication, which is typically achieved through chemical or heat treatment.

One example of a toxoid-based vaccine is the diphtheria and tetanus toxoids (DT) or diphtheria, tetanus, and pertussis toxoids (DTaP or TdaP) vaccines. These vaccines contain inactivated forms of the diphtheria and tetanus toxins, as well as inactivated pertussis toxin in the case of DTaP or TdaP vaccines. By exposing the immune system to these toxoids, the body learns to recognize and mount a response against the actual toxins produced by the bacteria, thereby providing immunity and protection against the diseases they cause.

A germ-free life refers to an existence in which an individual is not exposed to or colonized by any harmful microorganisms, such as bacteria, viruses, fungi, or parasites. This condition is also known as "sterile" or "aseptic." In a medical context, achieving a germ-free state is often the goal in certain controlled environments, such as operating rooms, laboratories, and intensive care units, where the risk of infection must be minimized. However, it is not possible to maintain a completely germ-free life outside of these settings, as microorganisms are ubiquitous in the environment and are an essential part of the human microbiome. Instead, maintaining good hygiene practices and a healthy immune system is crucial for preventing illness and promoting overall health.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

An animal hospital is a healthcare facility primarily focused on providing medical and surgical services to animals, including pets and other domestic creatures. These establishments are staffed with veterinarians and support personnel who diagnose, treat, and manage various health conditions affecting animals. They may offer emergency care, dental services, diagnostic imaging, laboratory testing, intensive care, and rehabilitation therapy. Some animal hospitals specialize in treating specific species or types of animals, such as exotic pets or large animals like horses.

'Aza compounds' is a general term used in chemistry to describe organic compounds containing a nitrogen atom (denoted by the symbol 'N' or 'aza') that has replaced a carbon atom in a hydrocarbon structure. The term 'aza' comes from the Greek word for nitrogen, 'azote.'

In medicinal chemistry and pharmacology, aza compounds are of particular interest because the presence of the nitrogen atom can significantly affect the chemical and biological properties of the compound. For example, aza compounds may exhibit enhanced bioavailability, metabolic stability, or receptor binding affinity compared to their non-aza counterparts.

Some common examples of aza compounds in medicine include:

1. Aza-aromatic compounds: These are aromatic compounds that contain one or more nitrogen atoms in the ring structure. Examples include pyridine, quinoline, and isoquinoline derivatives, which have been used as anti-malarial, anti-inflammatory, and anti-cancer agents.
2. Aza-heterocyclic compounds: These are non-aromatic compounds that contain one or more nitrogen atoms in a cyclic structure. Examples include azepine, diazepine, and triazole derivatives, which have been used as anxiolytic, anti-viral, and anti-fungal agents.
3. Aza-peptides: These are peptide compounds that contain one or more nitrogen atoms in the backbone structure. Examples include azapeptides and azabicyclopeptides, which have been used as enzyme inhibitors and neuroprotective agents.
4. Aza-sugars: These are sugar derivatives that contain one or more nitrogen atoms in the ring structure. Examples include azasugars and iminosugars, which have been used as glycosidase inhibitors and anti-viral agents.

Overall, aza compounds represent an important class of medicinal agents with diverse chemical structures and biological activities.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

'Clostridium septicum' is a gram-positive, spore-forming, rod-shaped bacterium that is commonly found in soil and the gastrointestinal tracts of animals and humans. It is an obligate anaerobe, meaning it grows best in environments with little or no oxygen.

The bacterium can cause a serious infection known as clostridial myonecrosis or gas gangrene, which is characterized by rapidly spreading tissue death and gas formation in muscles. This condition is often associated with traumatic injuries, surgical wounds, or underlying conditions that compromise the immune system, such as cancer or diabetes.

'Clostridium septicum' infection can also lead to sepsis, a life-threatening condition characterized by overwhelming inflammation throughout the body. Symptoms of 'Clostridium septicum' infection may include fever, severe pain, swelling, and discoloration at the site of infection, as well as systemic symptoms such as low blood pressure, rapid heart rate, and confusion.

Treatment typically involves surgical debridement of infected tissue, along with antibiotic therapy targeting 'Clostridium septicum' and other anaerobic bacteria. Prompt diagnosis and treatment are essential to prevent the spread of infection and reduce the risk of serious complications or death.

Aminoglycosides are a class of antibiotics that are derived from bacteria and are used to treat various types of infections caused by gram-negative and some gram-positive bacteria. These antibiotics work by binding to the 30S subunit of the bacterial ribosome, which inhibits protein synthesis and ultimately leads to bacterial cell death.

Some examples of aminoglycosides include gentamicin, tobramycin, neomycin, and streptomycin. These antibiotics are often used in combination with other antibiotics to treat severe infections, such as sepsis, pneumonia, and urinary tract infections.

Aminoglycosides can have serious side effects, including kidney damage and hearing loss, so they are typically reserved for use in serious infections that cannot be treated with other antibiotics. They are also used topically to treat skin infections and prevent wound infections after surgery.

It's important to note that aminoglycosides should only be used under the supervision of a healthcare professional, as improper use can lead to antibiotic resistance and further health complications.

A disease outbreak is defined as the occurrence of cases of a disease in excess of what would normally be expected in a given time and place. It may affect a small and localized group or a large number of people spread over a wide area, even internationally. An outbreak may be caused by a new agent, a change in the agent's virulence or host susceptibility, or an increase in the size or density of the host population.

Outbreaks can have significant public health and economic impacts, and require prompt investigation and control measures to prevent further spread of the disease. The investigation typically involves identifying the source of the outbreak, determining the mode of transmission, and implementing measures to interrupt the chain of infection. This may include vaccination, isolation or quarantine, and education of the public about the risks and prevention strategies.

Examples of disease outbreaks include foodborne illnesses linked to contaminated food or water, respiratory infections spread through coughing and sneezing, and mosquito-borne diseases such as Zika virus and West Nile virus. Outbreaks can also occur in healthcare settings, such as hospitals and nursing homes, where vulnerable populations may be at increased risk of infection.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

Enterocolitis is a medical condition that involves inflammation of the small intestine (enteritis) and large intestine (colitis). This condition can affect people of all ages, but it is most commonly seen in infants and young children. The symptoms of enterocolitis may include diarrhea, abdominal cramps, bloating, nausea, vomiting, fever, and dehydration.

There are several types of enterocolitis, including:

1. Infectious Enterocolitis: This type is caused by a bacterial, viral, or parasitic infection in the intestines. Common causes include Salmonella, Shigella, Escherichia coli (E. coli), and norovirus.
2. Antibiotic-Associated Enterocolitis: This type is caused by an overgrowth of harmful bacteria in the intestines following the use of antibiotics that kill off beneficial gut bacteria.
3. Pseudomembranous Enterocolitis: This is a severe form of antibiotic-associated enterocolitis caused by the bacterium Clostridioides difficile (C. diff).
4. Necrotizing Enterocolitis: This is a serious condition that primarily affects premature infants, causing inflammation and damage to the intestinal tissue, which can lead to perforations and sepsis.
5. Ischemic Enterocolitis: This type is caused by reduced blood flow to the intestines, often due to conditions such as mesenteric ischemia or vasculitis.
6. Radiation Enterocolitis: This type occurs as a complication of radiation therapy for cancer treatment, which can damage the intestinal lining and lead to inflammation.
7. Eosinophilic Enterocolitis: This is a rare condition characterized by an excessive buildup of eosinophils (a type of white blood cell) in the intestinal tissue, leading to inflammation and symptoms similar to those seen in inflammatory bowel disease.

Treatment for enterocolitis depends on the underlying cause and severity of the condition. It may include antibiotics, antiparasitic medications, probiotics, or surgery in severe cases.

Glutamate Dehydrogenase (GLDH or GDH) is a mitochondrial enzyme that plays a crucial role in the metabolism of amino acids, particularly within liver and kidney tissues. It catalyzes the reversible oxidative deamination of glutamate to alpha-ketoglutarate, which links amino acid metabolism with the citric acid cycle and energy production. This enzyme is significant in clinical settings as its levels in blood serum can be used as a diagnostic marker for diseases that damage liver or kidney cells, since these cells release GLDH into the bloodstream upon damage.

The gastrointestinal (GI) tract, also known as the digestive tract, is a continuous tube that starts at the mouth and ends at the anus. It is responsible for ingesting, digesting, absorbing, and excreting food and waste materials. The GI tract includes the mouth, esophagus, stomach, small intestine (duodenum, jejunum, ileum), large intestine (cecum, colon, rectum, anus), and accessory organs such as the liver, gallbladder, and pancreas. The primary function of this system is to process and extract nutrients from food while also protecting the body from harmful substances, pathogens, and toxins.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Cresols are a group of chemical compounds that are phenolic derivatives of benzene, consisting of methyl substituted cresidines. They have the formula C6H4(OH)(\_3CH3). There are three isomers of cresol, depending on the position of the methyl group: ortho-cresol (m-cresol), meta-cresol (p-cresol), and para-cresol (o-cresol). Cresols are used as disinfectants, antiseptics, and preservatives in various industrial and commercial applications. They have a characteristic odor and are soluble in alcohol and ether. In medical terms, cresols may be used as topical antiseptic agents, but they can also cause skin irritation and sensitization.

'Clostridium beijerinckii' is a species of gram-positive, spore-forming, rod-shaped bacteria found in various environments such as soil, aquatic sediments, and the intestinal tracts of animals. It is named after the Dutch microbiologist Martinus Willem Beijerinck.

This bacterium is capable of fermenting a wide range of organic compounds and producing a variety of metabolic end-products, including butanol, acetone, and ethanol. 'Clostridium beijerinckii' has attracted interest in biotechnology due to its potential for the production of biofuels and industrial chemicals through fermentation processes.

However, it is also known to cause food spoilage and, under certain circumstances, can produce harmful metabolites that may pose a risk to human health. Therefore, proper handling and safety precautions are necessary when working with this bacterium in laboratory or industrial settings.

Rifamycins are a class of antibiotics derived from the bacterium Amycolatopsis rifamycinica. They have a unique chemical structure and mechanism of action, which involves inhibiting bacterial DNA-dependent RNA polymerase. This leads to the prevention of bacterial transcription and ultimately results in bacteriostatic or bactericidal activity, depending on the drug concentration and the susceptibility of the bacteria.

Rifamycins are primarily used in the treatment of various types of infections caused by gram-positive and gram-negative bacteria, as well as mycobacteria. Some examples of rifamycin antibiotics include rifampin (also known as rifampicin), rifabutin, and rifapentine. These drugs are often used to treat tuberculosis, meningitis, and other serious infections. It is important to note that resistance to rifamycins can develop rapidly if the drugs are not used appropriately or if they are used to treat infections caused by bacteria that are already resistant to these antibiotics.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

'Clostridium perfringens' is a type of Gram-positive, rod-shaped, spore-forming bacterium that is commonly found in the environment, including in soil, decaying vegetation, and the intestines of humans and animals. It is a major cause of foodborne illness worldwide, producing several toxins that can lead to symptoms such as diarrhea, abdominal cramps, nausea, and vomiting.

The bacterium can contaminate food during preparation or storage, particularly meat and poultry products. When ingested, the spores of C. perfringens can germinate and produce large numbers of toxin-producing cells in the intestines, leading to food poisoning. The most common form of C. perfringens food poisoning is characterized by symptoms that appear within 6 to 24 hours after ingestion and last for less than 24 hours.

In addition to foodborne illness, C. perfringens can also cause other types of infections, such as gas gangrene, a serious condition that can occur when the bacterium infects a wound and produces toxins that damage surrounding tissues. Gas gangrene is a medical emergency that requires prompt treatment with antibiotics and surgical debridement or amputation of affected tissue.

Prevention measures for C. perfringens food poisoning include proper cooking, handling, and storage of food, as well as rapid cooling of cooked foods to prevent the growth of the bacterium.

Botulism is a rare but serious condition caused by the toxin produced by the bacterium Clostridium botulinum. The neurotoxin causes muscle paralysis, which can lead to respiratory failure and death if not treated promptly. Botulism can occur in three main forms: foodborne, wound, and infant.

Foodborne botulism is caused by consuming contaminated food, usually home-canned or fermented foods with low acid content. Wound botulism occurs when the bacterium infects a wound and produces toxin in the body. Infant botulism affects babies under one year of age who have ingested spores of the bacterium, which then colonize the intestines and produce toxin.

Symptoms of botulism include double vision, drooping eyelids, slurred speech, difficulty swallowing, dry mouth, muscle weakness, and paralysis that progresses downward from the head to the limbs. Treatment typically involves supportive care such as mechanical ventilation, intensive care unit monitoring, and antitoxin therapy. Prevention measures include proper food handling and canning techniques, prompt wound care, and avoiding consumption of known sources of contaminated food.

Rho GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which function as molecular switches in various cellular signaling pathways. These proteins play crucial roles in regulating diverse cellular processes such as actin cytoskeleton dynamics, gene expression, cell cycle progression, and cell migration.

Rho GTP-binding proteins cycle between an active GTP-bound state and an inactive GDP-bound state. In the active state, they interact with various downstream effectors to regulate their respective cellular functions. Guanine nucleotide exchange factors (GEFs) activate Rho GTP-binding proteins by promoting the exchange of GDP for GTP, while GTPase-activating proteins (GAPs) inactivate them by enhancing their intrinsic GTP hydrolysis activity.

There are several members of the Rho GTP-binding protein family, including RhoA, RhoB, RhoC, Rac1, Rac2, Rac3, Cdc42, and Rnd proteins, each with distinct functions and downstream effectors. Dysregulation of Rho GTP-binding proteins has been implicated in various human diseases, including cancer, cardiovascular disease, neurological disorders, and inflammatory diseases.

Probiotics are defined by the World Health Organization (WHO) as "live microorganisms which when administered in adequate amounts confer a health benefit on the host." They are often referred to as "good" or "friendly" bacteria because they help keep your gut healthy. Probiotics are naturally found in certain foods such as fermented foods like yogurt, sauerkraut, and some cheeses, or they can be taken as dietary supplements.

The most common groups of probiotics are lactic acid bacteria (like Lactobacillus) and bifidobacteria. They can help restore the balance of bacteria in your gut when it's been disrupted by things like illness, medication (such as antibiotics), or poor diet. Probiotics have been studied for their potential benefits in a variety of health conditions, including digestive issues, skin conditions, and even mental health disorders, although more research is needed to fully understand their effects and optimal uses.

A hospital is a healthcare facility where patients receive medical treatment, diagnosis, and care for various health conditions, injuries, or diseases. It is typically staffed with medical professionals such as doctors, nurses, and other healthcare workers who provide round-the-clock medical services. Hospitals may offer inpatient (overnight) stays or outpatient (same-day) services, depending on the nature of the treatment required. They are equipped with various medical facilities like operating rooms, diagnostic equipment, intensive care units (ICUs), and emergency departments to handle a wide range of medical situations. Hospitals may specialize in specific areas of medicine, such as pediatrics, geriatrics, oncology, or trauma care.

Enterococcus is a genus of gram-positive, facultatively anaerobic bacteria that are commonly found in the intestinal tracts of humans and animals. They are part of the normal gut microbiota but can also cause a variety of infections, particularly in hospital settings. Enterococci are known for their ability to survive in harsh environments and can be resistant to many antibiotics, making them difficult to treat. Some species, such as Enterococcus faecalis and Enterococcus faecium, are more commonly associated with human infections.

In medical terms, an "Enterococcus infection" refers to an infection caused by any species of the Enterococcus genus. These infections can occur in various parts of the body, including the urinary tract, bloodstream, and abdominal cavity. They can cause symptoms such as fever, chills, and pain, depending on the location of the infection. Treatment typically involves the use of antibiotics that are effective against Enterococcus species, although resistance to multiple antibiotics is a growing concern.

Environmental Microbiology is a branch of microbiology that deals with the study of microorganisms, including bacteria, fungi, viruses, and other microscopic entities, that are found in various environments such as water, soil, air, and organic matter. This field focuses on understanding how these microbes interact with their surroundings, their role in various ecological systems, and their impact on human health and the environment. It also involves studying the genetic and biochemical mechanisms that allow microorganisms to survive and thrive in different environmental conditions, as well as the potential uses of microbes for bioremediation, bioenergy, and other industrial applications.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Tenuazonic acid is a mycotoxin, which is a toxic compound produced by certain types of fungi. It is primarily produced by the fungus Alternaria spp., and can be found in various food sources such as grains, vegetables, and fruits that have been contaminated with this fungus.

Tenuazonic acid has been reported to have several toxic effects, including neurotoxicity, immunotoxicity, and genotoxicity. It has also been shown to inhibit protein synthesis in both prokaryotic and eukaryotic cells, which can lead to cell death. Exposure to tenuazonic acid can occur through the ingestion of contaminated food or inhalation of contaminated air.

It is important to note that exposure to high levels of tenuazonic acid can be harmful to human health, and regulatory bodies have set limits on the allowable levels of this mycotoxin in food and feed. However, further research is needed to fully understand the potential health risks associated with exposure to tenuazonic acid.

Latex fixation tests are diagnostic procedures used to detect the presence of certain antigens or antibodies in a patient's sample, such as blood or serum. These tests use latex particles that are coated with specific antigens or antibodies that can bind to complementary antigens or antibodies present in the sample. When the sample is added to the latex reagent, if the specific antigen or antibody is present, they will bind to the latex particles, forming an agglutination reaction that can be seen as a visible clumping or agglutination of the latex particles.

Latex fixation tests are commonly used in the diagnosis of infectious diseases, autoimmune disorders, and genetic disorders. For example, a latex fixation test may be used to detect the presence of Streptococcus pneumoniae antigens in a patient's sputum sample or to identify the presence of rheumatoid factor (RF) antibodies in a patient's blood sample. These tests are known for their simplicity, speed, and sensitivity, making them a valuable tool in clinical laboratories.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Streptogramin B is not a medical condition or disease, but rather it refers to a type of antibiotic. Streptogramins are a class of antibiotics produced by certain strains of bacteria that inhibit protein synthesis in susceptible organisms. They are composed of two components, streptogramin A and streptogramin B, which work synergistically to bind to the bacterial ribosome and disrupt its function.

Specifically, streptogramin B binds to the peptidyl transferase center of the 50S ribosomal subunit, preventing the formation of peptide bonds between amino acids during protein synthesis. This leads to the inhibition of bacterial growth and replication.

Streptogramins are primarily used to treat infections caused by Gram-positive bacteria that are resistant to other antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). They are often administered in combination with streptogramin A to enhance their activity and reduce the risk of bacterial resistance.

It's important to note that the use of streptogramins is limited due to their potential for causing adverse effects, such as allergic reactions, and their high cost. Additionally, the development of bacterial resistance to streptogramins can occur, which further limits their utility in clinical practice.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Molecular epidemiology is a branch of epidemiology that uses laboratory techniques to identify and analyze the genetic material (DNA, RNA) of pathogens or host cells to understand their distribution, transmission, and disease associations in populations. It combines molecular biology methods with epidemiological approaches to investigate the role of genetic factors in disease occurrence and outcomes. This field has contributed significantly to the identification of infectious disease outbreaks, tracking the spread of antibiotic-resistant bacteria, understanding the transmission dynamics of viruses, and identifying susceptible populations for targeted interventions.

Molecular diagnostic techniques are a group of laboratory methods used to analyze biological markers in DNA, RNA, and proteins to identify specific health conditions or diseases at the molecular level. These techniques include various methods such as polymerase chain reaction (PCR), DNA sequencing, gene expression analysis, fluorescence in situ hybridization (FISH), and mass spectrometry.

Molecular diagnostic techniques are used to detect genetic mutations, chromosomal abnormalities, viral and bacterial infections, and other molecular changes associated with various diseases, including cancer, genetic disorders, infectious diseases, and neurological disorders. These techniques provide valuable information for disease diagnosis, prognosis, treatment planning, and monitoring of treatment response.

Compared to traditional diagnostic methods, molecular diagnostic techniques offer several advantages, such as higher sensitivity, specificity, and speed. They can detect small amounts of genetic material or proteins, even in early stages of the disease, and provide accurate results with a lower risk of false positives or negatives. Additionally, molecular diagnostic techniques can be automated, standardized, and performed in high-throughput formats, making them suitable for large-scale screening and research applications.

'Clostridium botulinum type A' is a gram-positive, anaerobic, spore-forming bacterium that produces a potent neurotoxin known as botulinum toxin type A. This toxin is one of the most deadly substances known, with a lethal dose estimated to be as low as 1 nanogram per kilogram of body weight. The bacterium and its toxin are the causative agents of botulism, a rare but serious paralytic illness in humans and animals.

The neurotoxin produced by Clostridium botulinum type A works by blocking the release of acetylcholine, a neurotransmitter that is essential for muscle contraction. This results in flaccid paralysis, which can affect the muscles used for breathing and lead to respiratory failure and death if not treated promptly.

Botulinum toxin type A has also found therapeutic use in the treatment of various medical conditions, including strabismus, blepharospasm, cervical dystonia, and chronic migraine. It is marketed under the brand names Botox, Dysport, and Xeomin, among others. However, it is important to note that these therapeutic uses involve carefully controlled doses administered by trained medical professionals, and should not be attempted outside of a clinical setting.

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

Bacterial load refers to the total number or concentration of bacteria present in a given sample, tissue, or body fluid. It is a measure used to quantify the amount of bacterial infection or colonization in a particular area. The bacterial load can be expressed as colony-forming units (CFU) per milliliter (ml), gram (g), or other units of measurement depending on the sample type. High bacterial loads are often associated with more severe infections and increased inflammation.

'Infection Control' is a set of practices, procedures, and protocols designed to prevent the spread of infectious agents in healthcare settings. It includes measures to minimize the risk of transmission of pathogens from both recognized and unrecognized sources, such as patients, healthcare workers, visitors, and the environment.

Infection control strategies may include:

* Hand hygiene (handwashing and use of alcohol-based hand sanitizers)
* Use of personal protective equipment (PPE), such as gloves, masks, gowns, and eye protection
* Respiratory etiquette, including covering the mouth and nose when coughing or sneezing
* Environmental cleaning and disinfection
* Isolation precautions for patients with known or suspected infectious diseases
* Immunization of healthcare workers
* Safe injection practices
* Surveillance and reporting of infections and outbreaks

The goal of infection control is to protect patients, healthcare workers, and visitors from acquiring and transmitting infections.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Bacterial shedding refers to the release or discharge of bacteria from an infected individual into their environment. This can occur through various routes, such as respiratory droplets when coughing or sneezing, or through fecal matter. The bacteria can then potentially spread to other individuals, causing infection and disease. It's important to note that not all bacteria that are shed cause illness, and some people may be colonized with certain bacteria without showing symptoms. However, in healthcare settings, bacterial shedding is a concern for the transmission of harmful pathogens, particularly in vulnerable populations such as immunocompromised patients.

Ileitis is a medical term that refers to inflammation of the ileum, which is the last part of the small intestine. The condition can have various causes, including infections, autoimmune disorders, and inflammatory bowel diseases such as Crohn's disease.

The symptoms of ileitis may include abdominal pain, diarrhea, fever, weight loss, and nausea or vomiting. The diagnosis of ileitis typically involves a combination of medical history, physical examination, laboratory tests, and imaging studies such as CT scans or MRI.

Treatment for ileitis depends on the underlying cause of the inflammation. In cases of infectious ileitis, antibiotics may be used to treat the infection. For autoimmune or inflammatory causes, medications that suppress the immune system may be necessary to reduce inflammation and manage symptoms.

In severe cases of ileitis, surgery may be required to remove damaged portions of the intestine or to drain abscesses. It is important to seek medical attention if you experience symptoms of ileitis, as early diagnosis and treatment can help prevent complications and improve outcomes.

The ileum is the third and final segment of the small intestine, located between the jejunum and the cecum (the beginning of the large intestine). It plays a crucial role in nutrient absorption, particularly for vitamin B12 and bile salts. The ileum is characterized by its thin, lined walls and the presence of Peyer's patches, which are part of the immune system and help surveil for pathogens.

'Clostridium cellulolyticum' is a species of gram-positive, rod-shaped, anaerobic bacteria found in soil and aquatic environments. It is known for its ability to break down complex carbohydrates such as cellulose and hemicellulose into simple sugars through the process of fermentation. This makes it a potential candidate for biofuel production from plant biomass.

The bacterium produces a range of enzymes that can degrade these polysaccharides, including cellulases and xylanases. These enzymes work together in a complex system to break down the cellulose and hemicellulose into monosaccharides, which can then be fermented by the bacterium to produce various end products such as acetate, ethanol, hydrogen, and carbon dioxide.

'Clostridium cellulolyticum' is also known to produce a number of other enzymes and metabolites that have potential applications in industry, including amylases, proteases, and lipases. However, further research is needed to fully understand the biology and potential uses of this organism.

A carrier state is a condition in which a person carries and may be able to transmit a genetic disorder or infectious disease, but does not show any symptoms of the disease themselves. This occurs when an individual has a recessive allele for a genetic disorder or is infected with a pathogen, but does not have the necessary combination of genes or other factors required to develop the full-blown disease.

For example, in the case of cystic fibrosis, which is caused by mutations in the CFTR gene, a person who carries one normal allele and one mutated allele for the disease is considered a carrier. They do not have symptoms of cystic fibrosis themselves, but they can pass the mutated allele on to their offspring, who may then develop the disease if they inherit the mutation from both parents.

Similarly, in the case of infectious diseases, a person who is infected with a pathogen but does not show any symptoms may still be able to transmit the infection to others. This is known as being an asymptomatic carrier or a healthy carrier. For example, some people who are infected with hepatitis B virus (HBV) may not develop any symptoms of liver disease, but they can still transmit the virus to others through contact with their blood or other bodily fluids.

It's important to note that in some cases, carriers of certain genetic disorders or infectious diseases may have mild or atypical symptoms that do not meet the full criteria for a diagnosis of the disease. In these cases, they may be considered to have a "reduced penetrance" or "incomplete expression" of the disorder or infection.

A prophage is a bacteriophage (a virus that infects bacteria) genome that is integrated into the chromosome of a bacterium and replicates along with it. The phage genome remains dormant within the bacterial host until an environmental trigger, such as stress or damage to the host cell, induces the prophage to excise itself from the bacterial chromosome and enter a lytic cycle, during which new virions are produced and released by lysing the host cell. This process is known as lysogeny.

Prophages can play important roles in the biology of their bacterial hosts, such as contributing to genetic diversity through horizontal gene transfer, modulating bacterial virulence, and providing resistance to superinfection by other phages. However, they can also have detrimental effects on the host, such as causing lysis or altering bacterial phenotypes in ways that are disadvantageous for survival.

It's worth noting that not all bacteriophages form prophages; some exist exclusively as extrachromosomal elements, while others can integrate into the host genome but do not necessarily become dormant or replicate with the host cell.

Recurrence, in a medical context, refers to the return of symptoms or signs of a disease after a period of improvement or remission. It indicates that the condition has not been fully eradicated and may require further treatment. Recurrence is often used to describe situations where a disease such as cancer comes back after initial treatment, but it can also apply to other medical conditions. The likelihood of recurrence varies depending on the type of disease and individual patient factors.

Vero cells are a line of cultured kidney epithelial cells that were isolated from an African green monkey (Cercopithecus aethiops) in the 1960s. They are named after the location where they were initially developed, the Vervet Research Institute in Japan.

Vero cells have the ability to divide indefinitely under certain laboratory conditions and are often used in scientific research, including virology, as a host cell for viruses to replicate. This allows researchers to study the characteristics of various viruses, such as their growth patterns and interactions with host cells. Vero cells are also used in the production of some vaccines, including those for rabies, polio, and Japanese encephalitis.

It is important to note that while Vero cells have been widely used in research and vaccine production, they can still have variations between different cell lines due to factors like passage number or culture conditions. Therefore, it's essential to specify the exact source and condition of Vero cells when reporting experimental results.

The intestinal mucosa is the innermost layer of the intestines, which comes into direct contact with digested food and microbes. It is a specialized epithelial tissue that plays crucial roles in nutrient absorption, barrier function, and immune defense. The intestinal mucosa is composed of several cell types, including absorptive enterocytes, mucus-secreting goblet cells, hormone-producing enteroendocrine cells, and immune cells such as lymphocytes and macrophages.

The surface of the intestinal mucosa is covered by a single layer of epithelial cells, which are joined together by tight junctions to form a protective barrier against harmful substances and microorganisms. This barrier also allows for the selective absorption of nutrients into the bloodstream. The intestinal mucosa also contains numerous lymphoid follicles, known as Peyer's patches, which are involved in immune surveillance and defense against pathogens.

In addition to its role in absorption and immunity, the intestinal mucosa is also capable of producing hormones that regulate digestion and metabolism. Dysfunction of the intestinal mucosa can lead to various gastrointestinal disorders, such as inflammatory bowel disease, celiac disease, and food allergies.

The colon, also known as the large intestine, is a part of the digestive system in humans and other vertebrates. It is an organ that eliminates waste from the body and is located between the small intestine and the rectum. The main function of the colon is to absorb water and electrolytes from digested food, forming and storing feces until they are eliminated through the anus.

The colon is divided into several regions, including the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, rectum, and anus. The walls of the colon contain a layer of muscle that helps to move waste material through the organ by a process called peristalsis.

The inner surface of the colon is lined with mucous membrane, which secretes mucus to lubricate the passage of feces. The colon also contains a large population of bacteria, known as the gut microbiota, which play an important role in digestion and immunity.

'Clostridium cellulovorans' is a species of gram-positive, rod-shaped, anaerobic bacteria that is commonly found in soil and aquatic environments. It is known for its ability to break down complex carbohydrates, such as cellulose and xylan, into simpler sugars, which it then ferments to produce various end products, including acetate, ethanol, hydrogen, and carbon dioxide.

The bacterium is of interest in the field of bioenergy, as its ability to efficiently convert plant biomass into useful chemicals has potential applications in the production of biofuels and other bioproducts. Additionally, 'C. cellulovorans' has been studied for its potential use in bioremediation, as it is capable of degrading a variety of pollutants, including polycyclic aromatic hydrocarbons (PAHs) and pesticides.

It is important to note that while 'C. cellulovorans' is generally considered to be a non-pathogenic bacterium, it can cause infections in individuals with compromised immune systems or underlying medical conditions. As with any potential pathogen, appropriate precautions should be taken when handling this organism in the laboratory setting.

'Clostridium chauvoei' is a species of gram-positive, spore-forming, anaerobic bacteria that causes a disease called blackleg in ruminants such as cattle, sheep, and goats. The bacteria are commonly found in soil and the intestinal tracts of animals. Blackleg is characterized by rapidly progressive gangrene of the muscles, leading to severe lameness, swelling, and fever. In advanced stages, the affected tissue turns black due to the production of a potent exotoxin called alpha-toxin. The disease can be prevented through vaccination.

Caco-2 cells are a type of human epithelial colorectal adenocarcinoma cell line that is commonly used in scientific research, particularly in the field of drug development and toxicology. These cells are capable of forming a monolayer with tight junctions, which makes them an excellent model for studying intestinal absorption, transport, and metabolism of drugs and other xenobiotic compounds.

Caco-2 cells express many of the transporters and enzymes that are found in the human small intestine, making them a valuable tool for predicting drug absorption and bioavailability in humans. They are also used to study the mechanisms of drug transport across the intestinal epithelium, including passive diffusion and active transport by various transporters.

In addition to their use in drug development, Caco-2 cells are also used to study the toxicological effects of various compounds on human intestinal cells. They can be used to investigate the mechanisms of toxicity, as well as to evaluate the potential for drugs and other compounds to induce intestinal damage or inflammation.

Overall, Caco-2 cells are a widely used and valuable tool in both drug development and toxicology research, providing important insights into the absorption, transport, metabolism, and toxicity of various compounds in the human body.

Quinolines are a class of organic compounds that consist of a bicyclic structure made up of a benzene ring fused to a piperidine ring. They have a wide range of applications, but they are perhaps best known for their use in the synthesis of various medications, including antibiotics and antimalarial drugs.

Quinolone antibiotics, such as ciprofloxacin and levofloxacin, work by inhibiting the bacterial enzymes involved in DNA replication and repair. They are commonly used to treat a variety of bacterial infections, including urinary tract infections, pneumonia, and skin infections.

Quinoline-based antimalarial drugs, such as chloroquine and hydroxychloroquine, work by inhibiting the parasite's ability to digest hemoglobin in the red blood cells. They are commonly used to prevent and treat malaria.

It is important to note that quinolines have been associated with serious side effects, including tendinitis and tendon rupture, nerve damage, and abnormal heart rhythms. As with any medication, it is important to use quinolines only under the supervision of a healthcare provider, and to follow their instructions carefully.

Colitis is a medical term that refers to inflammation of the inner lining of the colon or large intestine. The condition can cause symptoms such as diarrhea, abdominal cramps, and urgency to have a bowel movement. Colitis can be caused by a variety of factors, including infections, inflammatory bowel disease (such as Crohn's disease or ulcerative colitis), microscopic colitis, ischemic colitis, and radiation therapy. The specific symptoms and treatment options for colitis may vary depending on the underlying cause.

Fluoroquinolones are a class of antibiotics that are widely used to treat various types of bacterial infections. They work by interfering with the bacteria's ability to replicate its DNA, which ultimately leads to the death of the bacterial cells. Fluoroquinolones are known for their broad-spectrum activity against both gram-positive and gram-negative bacteria.

Some common fluoroquinolones include ciprofloxacin, levofloxacin, moxifloxacin, and ofloxacin. These antibiotics are often used to treat respiratory infections, urinary tract infections, skin infections, and gastrointestinal infections, among others.

While fluoroquinolones are generally well-tolerated, they can cause serious side effects in some people, including tendonitis, nerve damage, and changes in mood or behavior. As with all antibiotics, it's important to use fluoroquinolones only when necessary and under the guidance of a healthcare provider.

... difficile infection (CDI) can cause symptoms ranging from diarrhea to life-threatening inflammations of the colon. CDI causes ... Paul G. Auwaerter, MD, discusses treatment options for recurrent C difficile, including new FDA-approved fecal microbiota ... FMT in a Pill: FDA OKs Second Product to Prevent Recurrent C difficile ...
Clostridium difficile toxin A (TcdA) is a toxin generated by Clostridioides difficile, formerly known as Clostridium difficile ... Clostridium difficile TcdE Holin Holin Planche T, Aghaizu A, Holliman R, Riley P, Poloniecki J, Breathnach A, Krishna S ( ... Lima AA, Lyerly DM, Wilkins TD, Innes DJ, Guerrant RL (March 1988). "Effects of Clostridium difficile toxins A and B in rabbit ... Tan KS, Wee BY, Song KP (July 2001). "Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile". ...
PRNewswire/ -- Provides understanding and access to the clostridium difficile partnering deals and agreements entered into by ... 17, 2016 /PRNewswire/ -- Provides understanding and access to the clostridium difficile partnering deals and agreements entered ...
C difficile infection (CDI) commonly manifests as mild to moderate diarrhea, occasionally with abdominal cramping. ... Clostridium difficile is a gram-positive, anaerobic, spore-forming bacillus that is responsible for the development of ... Clostridium difficile toxin B induces senescence in enteric glial cells: a potential new mechanism of Clostridium difficile ... encoded search term (Clostridioides (Clostridium) Difficile Colitis) and Clostridioides (Clostridium) Difficile Colitis What to ...
61 - Clostridium Difficile Are you ready to ingest this episode? Pump up the bacteria and get ready to learn about fecal ... Kyles stomach issues dont hold a candle to Clostridium difficile which Tig is intimately acquainted with. Just, please wash ...
This harmful bacteria is called Clostridium difficile, also known as C-diff. Due to this bacterial imbalance, there is ...
Clostridium difficile infection (CDI) remains a major healthcare burden despite recent global falls in its prevalence. The risk ... Faecal transplantation for the treatment of Clostridium difficile infection: a review Int J Antimicrob Agents. 2014 Mar;43(3): ... Clostridium difficile infection (CDI) remains a major healthcare burden despite recent global falls in its prevalence. The risk ... Keywords: Bacteriotherapy; Clostridium difficile; Faecal microbiota transplant; Faecal transplant; Human probiotic infusion. ...
... clostridium difficile toxin - Product Code LLH. Product. Remel Xpect Clostridium difficile Toxin A/B, IVD, 20 clostridium ... Class 2 Device Recall Remel X/pect Clostridium Difficile Toxin A/B (20 tests) *. ... The test kit is a rapid in vitro immunochromatographic test for the direct, qualitative detection of Clostridium difficile ... The test is intended for use as an aid in diagnosis of Clostridium difficile-associated disease.. ...
Figure 1 Flow diagram for cost-effectiveness modeling for Clostridium difficile infection. ... Clostridium difficile. treatment decision-making. World J Clin Cases 2015; 3(11): 935-941 [PMID: 26601096 DOI: 10.12998/wjcc.v3 ... Clostridium difficile. treatment decision-making. World J Clin Cases 2015; 3(11): 935-941 ...
C difficile infection (CDI) commonly manifests as mild to moderate diarrhea, occasionally with abdominal cramping. ... Clostridium difficile is a gram-positive, anaerobic, spore-forming bacillus that is responsible for the development of ... Clostridium difficile toxin B induces senescence in enteric glial cells: a potential new mechanism of Clostridium difficile ... encoded search term (Clostridioides (Clostridium) Difficile Colitis) and Clostridioides (Clostridium) Difficile Colitis What to ...
Laboratory Characterization of C. difficile Isolates. In 2014, a total of 1,122 C. difficile isolates were submitted to CDC for ... 2014 Annual Report for the Emerging Infections Program for Clostridium difficile Infection. ... Frequency of Ribotypes Among Community-Associated C. difficile Isolates, 2014 (n=618). Ribotype. No of isolates. % isolates. ... Frequency of Ribotypes Among Healthcare-Associated C. difficile Isolates, 2014 (n=504). Ribotype. No of isolates. % isolates. ...
"Burden of Clostridium difficile infection in the United States". 2015. New England Journal of Medicine. 1430. 286.0. 234.3. ... "Clostridium difficile - More difficult than ever". 2008. New England Journal of Medicine. 1019. 84.9. 68.1. ... "Duodenal infusion of donor feces for recurrent clostridium difficile". 2013. New England Journal of Medicine. 2140. 305.7. ... "Clostridium difficile infection: New developments in epidemiology and pathogenesis". 2009. Nature Reviews Microbiology. 985. ...
Effect of fiber source on Clostridium difficile 07/11/04 01:32 PM ... Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile.. ... Effect of fiber source on Clostridium difficile Heather. 07/11/04 01:32 PM. ... which modify the environment of the gastrointestinal tract and thus prevent colonization by Clostridium difficile. METHODS: An ...
... report delivers an in-depth understanding of the disease ... 2. Executive Summary of Clostridium Difficile Infections. 3. Clostridium Difficile Infections: Disease Background and Overview ... Clostridium Difficile Infections Treatment and Management. 6.2. Clostridium Difficile Infections Treatment Algorithm. 7. KOL ... Table 2: Clostridium Difficile Infections Diagnosed and Treatable Cases in 7MM (2019-2032). Table 3: Clostridium Difficile ...
Were you diagnosed with Clostridium Difficile (C. diff)? Learn more about your condition including DOs and DONTs for how to ... What Are Clostridium difficile Infections?. The bacterium named Clostridium difficile (or C. diff) causes mild illness such as ...
Recurrent Clostridium Difficile. Endoscopy. Gastroenterology. Learn gastro medical terminology. ... Why Does Clostridium difficile Infection Reccur?. Unfortunately, about 20% of patients with C. difficile infection have a ... Recurrent Clostridium Difficile. (Antibiotic Diarrhea). Modern antibiotics are powerful drugs and often lifesaving, but, as ... But, recurrent C. difficile is difficult to treat because the spores of C. difficile are not susceptible to antibiotic therapy ...
Clostridium difficile (C. difficile) is a bacterium that can cause diarrhea and lead to colitis, other serious intestinal ... FDA approves treatment for Clostridium difficile infection Dificid (fidaxomicin) tablets for the treatment of C. difficile- ... The U.S. Food and Drug Administration today approved Dificid (fidaxomicin) tablets for the treatment of Clostridium difficile- ... "Dificid is an effective new treatment option for patients who develop Clostridium difficile-associated diarrhea." ...
On the enzymatic mechanism of 2-hydroxyisocaproyl-CoA dehydratase from Clostridium difficile Die Gene ldhA und hadA aus ... Clostridium difficile (DSMZ 1296T) wurden kloniert und in Escherichia coli exprimiert. Die erhaltenen Proteine wurden gereinigt ... Zum Mechanismus der 2-Hydroxyglutaryl-CoA Dehydratase aus Clostridium symbiosum by: Hetzel, Marc Published: (2004) ... Substrates and mechanism of 2-hydroxyglutaryl-CoA-dehydratase from Clostridium symbiosum by: Parthasarathy, Anutthaman ...
Clostridium difficile, pathogenicity locus, PaLoc, bacterial evolution, toxin, mobile genetic element. Dates:. *Accepted: 6 ... The symptoms of Clostridium difficile infection are caused by toxins expressed from its 19 kb pathogenicity locus (Pa Loc). ... 12 more authors) (2014) Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biology and Evolution, 6 ... Phylogenetic analyses and annotation of the regions spanning the Pa Loc were performed using C. difficile population- ...
Clostridium difficile, 2019. Clostridioides difficile is an anaerobic, spore-forming, Gram-positive bacillus that produces two ... Find up to date information at,, Clostridium Difficile *Full issue,, Annual Summary of Communicable Diseases Reported to the ... Transmission of C. difficile occurs primarily in healthcare facilities, where environmental contamination by C. difficile ... A CDI case is defined as a positive C. difficile toxin assay on an incident stool specimen from a resident (≥ 1 year of age) of ...
Among them, 544 (1.01%) have clostridium difficile colitis. These people tend to be male, 2-9 old, have been taking the drug ... What is Clostridium difficile colitis?. Clostridium difficile colitis (inflammation of colon by clostridium difficile bacteria ... Do you take Cytarabine and have Clostridium difficile colitis?. Check whether Clostridium difficile colitis is associated with ... All the drugs that are associated with Clostridium difficile colitis:. *Clostridium difficile colitis (2,138 drugs) ...
A04.7: Enterocolitis due to Clostridium difficile * A04.70 Enterocolitis due to Clostridium difficile without toxic megacolon, ... A04.79 Enterocolitis due to Clostridium difficile, unspecified Note In outpatient care, the ICD code on medical documents is ... A04.71 Enterocolitis due to Clostridium difficile without toxic megacolon, with other organ complications ... A04.72 Enterocolitis due to Clostridium difficile with toxic megacolon, without other organ complications ...
Nonsevere Clostridium difficile infection (CDI) and severe CDI, which carries a higher risk than nonsevere CDI for treatment ... Nonsevere Clostridium difficile infection (CDI) and severe CDI, which carries a higher risk than nonsevere CDI for treatment ... Renal failure and leukocytosis are predictors of a complicated course of Clostridium difficile infection if measured on day of ... Renal failure and leukocytosis are predictors of a complicated course of Clostridium difficile infection if measured on day of ...
Clostridium difficile colitis. 12(1). Gould, Carolyn V and McDonald, L Clifford "Bench-to-bedside review: Clostridium difficile ... Anti-Bacterial Agents Clostridium Difficile Clostridium Infections Cross Infection Female Humans Incidence Randomized ... Gould, Carolyn V and McDonald, L Clifford "Bench-to-bedside review: Clostridium difficile colitis" vol. 12, no. 1, 2008. Export ... Title : Bench-to-bedside review: Clostridium difficile colitis Personal Author(s) : Gould, Carolyn V;McDonald, L Clifford; ...
... difficile-Induced Colitis (C. diff) - Learn about the causes, symptoms, diagnosis & treatment from the MSD Manuals - Medical ... Clostridioides difficile and the illness it causes are often called C. difficile or C. diff. ... Clostridioides difficile is bacteria that causes colitis. With colitis, youll have diarrhea (loose, watery poop) and other ...
FAQs (frequently asked questions) about "Clostridium difficile" [Spanish] Clostridium difficile, también conocido como "C. ... Clostridioides difficile (formerly known as Clostridium difficile) is a bacterium that causes diarrhea and colitis (an ... Clostridioides difficile (formerly known as Clostridium difficile ) is a bacterium that causes diarrhea and colitis (an ... 2011). Preguntas frecuentes "Clostridium difficile". National Center for Emerging and Zoonotic Infectious Diseases (U.S.). ...
Difficile Toxins products. Available to buy from Quadratech Diagnostics - UK based provider of quality medical diagnostic & ... Mouse Anti Clostridium Difficile Toxin B Antibody (TB41) (100µg). QTXAB-407-100 ... Mouse Anti Clostridium Difficile Toxin B Antibody (TB75) (100µg). QTXAB-406-100 ... Clostridium Difficile {{ productCount ? productCount : Showing 1-24 of 32 results }} Default sorting. Sort Alphabetically: A- ...
Clostridium botulinus, Clostridium perfringens and Clostridium difficile ; the causes of lockjaw, botulism, gas sphacelus and ... Clostridium difficile infection. Introduction. The genus Clostridium is a group of gm positive rod shaped bacteriums with the ... Recently Clostridium difficile ( CDF ) has come into the limelight due to an increasing happening and badness in CDF associated ... Most of the genus, are obligate anaerobes nevertheless some are aerotolerant ( Clostridium perfringens ) . Some of the ...

No FAQ available that match "clostridium difficile"

No images available that match "clostridium difficile"