Organoids
Butyrates
The glycerol phosphate, dihydroxyacetone phosphate and monoacylglycerol pathways of glycerolipid synthesis in rat adipose-tissue homogenates. (1/15)
1. Fat-free homogenates from the epididymal fat-pads of rats were used to measure the rate of palmitate esterification with different substrates. The effectiveness of the acyl acceptors decreased in the order glycerol phosphate, dihydroxyacetone phosphate, 2-octadecenyl-glycerol and 2-hexadecylglycerol. 2. Glycerol phosphate and dihydroxyacetone phosphate inhibited their rates of esterification in a mutually competitive manner. 3. The esterification of glycerol phosphate was also inhibited in a partially competitive manner by 2-octadecenylglycerol and to a lesser extent by 2-hexadecylglycerol. However, glycerol phosphate did not inhibit the esterification of 2-octadecenylglycerol. 4. The esterification of dihydroxyacetone phosphate and 2-hexadecylglycerol was more sensitive to inhibition by clofenapate than was that of glycerol phosphate. Norfenfluramine was more effective in inhibiting the esterification of 2-hexadecylglycerol than that of glycerol phosphate or dihydroxyacetone phosphate. 5 It is concluded that rat adipose tissue can synthesize glycerolipids by three independent routes. (+info)The nongenotoxic hepatocarcinogens diethylhexylphthalate and methylclofenapate induce DNA synthesis preferentially in octoploid rat hepatocytes. (2/15)
Diethylhexylphthalate (DEHP), a rodent carcinogen, and 1,4-dichlorobenzene (DCB), a noncarcinogen in rat liver, are potent hepatomitogens. We have reported previously that 7-day dosing with DEHP induced a higher bromodeoxyuridine labeling index (LI) in binuclear octoploid (2x4N) rat hepatocytes than did DCB, suggesting that induction of DNA synthesis in 2x4N hepatocytes might represent a more substantial carcinogenic risk. We compared 2 additional rodent hepatocarcinogens, methylclofenapate (MCP) and phenobarbitone, with ethylene thiourea (ETU), a noncarcinogenic hepatomitogen in rat. All 3 chemicals increased hepatic LI; the 8N population had the highest LI, but only the carcinogens increased LI in the 2x4N and 4N populations. To identify the target population for induction of DNA synthesis, we used a 1-hour pulse label at the peak of induction. The results were consistent with the 7-day data, and again the highest LI was in the 8N population. The nongenotoxic rodent carcinogens MCP and DEHP induced a significant increase in the LI in the 2x4N population, whereas ETU and DCB did not. These data support the hypothesis that increased DNA synthesis within the minority 2x4N population may be more significant for subsequent hepatocarcinogenesis. (+info)Drugs affecting the synthesis of glycerides and phospholipids in rat liver. The effects of clofibrate, halofenate, fenfluramine, amphetamine, cinchocaine, chlorpromazine, demethylimipramine, mepyramine and some of their derivatives. (3/15)
The effects on glycerolipid synthesis of a series of compounds including many drugs were investigated in cell-free preparations and slices of rat liver. p-Chlorobenzoate, p-chlorophenoxyisobutyrate, halofenate, D-amphetamine, adrenaline, procaine and N-[2-(4-chloro-3-sulphamoylbenzoyloxy)ethyl]norfenfluramine had little inhibitory effect on any of the systems investigated. Two amphiphilic anions, clofenapate and 2-(p-chlorophenyl)-2-(m-trifluoromethylphenoxy)acetate, both inhibited glycerol phosphate acyltransferase and diacylglycerol acyltransferase at approx. 1.6 and 0.7 mm respectively. Clofenapate (1 mm) also inhibited the incorporation of glycerol into lipids by rat liver slices without altering the relative proportions of the different lipids synthesized. The amphilic amines, mepyramine, fenfluramine, norfenfluramine, hydroxyethylnorfenfluramine, N-(2-benzoyloxyethyl)norfenfluramine, cinchocaine, chlorpromazine and demethylimipramine inhibited phosphatidate phosphohydrolase by 50% at concentrations between 0.2 and 0.9 mm. The last four compounds inhibited glycerol phosphate acyltransferase by 50% at concentrations between 1 and 2.6 mm. None of the amines examined appeared to be an effective inhibitor of diacylglycerol acyltransferase. Norfenfluramine, hydroxyethylnorfenfluramine and N-(2-benzoyloxyethyl)norfenfluramine produced less inhibition of glycerol incorporation into total lipids than was observed with equimolar clofenapate. The major effect of these amines in liver slices was to inhibit triacylglycerol and phosphatidylcholine synthesis and to produce a marked accumulation of phosphatidate. The results are discussed in terms of the control of glycerolipid synthesis. They partly explain the observed effects of the various drugs on lipid metabolism. The possible use of these compounds as biochemical tools with which to investigate the reactions of glycerolipid synthesis is considered. (+info)Potential role for peroxisome proliferator activated receptor (PPAR) in preventing colon cancer. (4/15)
BACKGROUND: Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors involved in genetic control of many cellular processes. PPAR and PPAR have been implicated in colonic malignancy. Here we provide three lines of evidence suggesting an inhibitory role for PPAR in colorectal cancer development. METHODS: Levels of PPAR mRNA and protein in human colorectal cancers were compared with matched non-malignant mucosa using RNAse protection and western blotting. APC(Min)/+ mice were randomised to receive the PPAR activator methylclofenapate 25 mg/kg or vehicle for up to 16 weeks, and small and large intestinal polyps were quantified by image analysis. The effect of methylclofenapate on serum stimulated mitogenesis (thymidine incorporation), linear cell growth, and annexin V and propidium iodide staining were assessed in human colonic epithelial cells. RESULTS: PPAR (mRNA and protein) expression levels were significantly depressed in colorectal cancer compared with matched non-malignant tissue. Methylclofenapate reduced polyp area in the small intestine from 18.7 mm(2) (median (interquartile range 11.1, 26.8)) to 9.90 (4.88, 13.21) mm(2) (p=0.003) and in the colon from 9.15 (6.31, 10.5) mm(2) to 3.71 (2.71, 5.99) mm(2) (p=0.009). Methylclofenapate significantly reduced thymidine incorporation and linear cell growth with no effect on annexin V or propidium iodide staining. CONCLUSIONS: PPAR may inhibit colorectal tumour progression, possibly via inhibition of proliferation, and may be an important therapeutic target. (+info)Differential tissue-specific expression and induction of cytochrome P450IVA1 and acyl-CoA oxidase. (5/15)
We have examined the tissue-specific expression and inducibility of acyl-CoA oxidase and cytochrome P450IVA1 (P450IVA1) RNA in rats. Groups of three rats were dosed daily by gavage with methylclofenapate at 25 mg/kg in 5 ml/kg corn oil for nine weeks, or were administered a vehicle control. P450IVA1 and acyl-CoA oxidase RNA were detected using an RNase protection assay. Similar levels of acyl-CoA oxidase RNA were present in control liver and kidney, but the level of this RNA in lung, muscle and testis was 6-11%, and in pancreas was 0.13%, of that in liver. Treatment of rats with methylclofenapate led to an 11-fold induction of acyl-CoA oxidase RNA in liver and also produced a significant induction of this RNA in kidney, lung, muscle and testis of 1.7-fold, 1.3-fold, 2-fold and 1.7-fold, respectively. Acyl-CoA oxidase RNA was not induced in pancreas. P450IVA1 RNA was present in control liver and also in kidney of control rats at 28% of the level in liver. In contrast to acyl-CoA oxidase RNA, P450IVA1 RNA was not detected in lung, pancreas or testis. Methylclofenapate treatment of rats led to an 18-fold induction of P450IVA1 RNA in liver, and a sevenfold induction in kidney. Induction of P450IVA1 was not detected in any of the other tissues examined. Quantification of the relative amounts of acyl-CoA oxidase and P450IVA1 RNA in control liver revealed that acyl-CoA oxidase RNA was present in a 17.5-fold molar excess over P450IVA1 RNA. Western blotting with an anti-P450IVA IgG revealed two bands of similar apparent molecular mass in liver and kidney microsomes, but not in microsomes from the testis of control rats. Methylclofenapate treatment of rats caused an increase in the intensity of these bands in microsomes from liver, but no induction was obvious in kidney. Immunocytochemical staining for both the microsomal P450IVA and peroxisomal acyl-CoA oxidase proteins was restricted to the proximal convoluted tubule in the kidney cortex, with staining being most intense in the S3 region. (+info)Induction of acyl-CoA oxidase and cytochrome P450IVA1 RNA in rat primary hepatocyte culture by peroxisome proliferators. (6/15)
We have characterized the induction of acyl-CoA oxidase and cytochrome P450IVA1 RNAs in a primary hepatocyte culture system in vitro, using a sensitive and specific RNAse protection assay. Hepatocytes were cultured with a maximal inducing dose of the peroxisome proliferator clofibric acid (1 mM), or vehicle control, for 4 days, and the level of RNAs compared with the level in rats which had been treated with corn oil or clofibric acid (300 mg/kg) for 4 days. The level of acyl-CoA oxidase and P450IVA1 RNAs in 4-day-old control hepatocytes was less than 2% of that in control liver. However, the level of these RNAs in RNA from treated hepatocytes was 61% of that in liver RNA from treated rats. Hepatocytes were treated with the potent peroxisome proliferator methylclofenapate (100 microM), and the induction of RNAs determined at various times after exposure. P450IVA1 RNA was significantly induced 1 h after dosing, rising to 34-fold above control after 8 h, whereas acyl-CoA oxidase RNA was not significantly induced until 4 h, increasing to 5.2-fold above control after 8 h. A similar time course of induction was seen after treatment of hepatocytes with 100 microM-nafenopin, 100 microM-methylclofenapate, 1 mM-clofibric acid or 1 mM-mono(ethylhexyl) phthalate, suggesting that the differential time course of induction of P450IVA1 and acyl-CoA oxidase RNAs is not related to the esterification, structure or potency of the peroxisome proliferator, but is intrinsic to the process of peroxisome proliferation. Hepatocytes were treated with methylclofenapate in the presence and absence of cycloheximide. P450IVA1 RNA was significantly induced by methylclofenapate in the presence of cycloheximide, rising to 17-fold above control after 8 h. However, no induction of acyl-CoA oxidase RNA was detected in the presence of cycloheximide. Therefore we characterize the induction of acyl-CoA oxidase and P450IVA1 RNAs in primary hepatocyte culture in vitro as a faithful model of the induction response in rat liver, and suggest that induction of P450IVA1 RNA is a primary event in the process of peroxisome proliferation. (+info)Localization and differential induction of cytochrome P450IVA and acyl-CoA oxidase in rat liver. (7/15)
The peroxisome proliferators are structurally diverse chemicals which induce hyperplasia, hypertrophy and the proliferation of peroxisomes in the rodent liver. Cytochrome P450IVA1 and peroxisomal enzymes, such as acyl-CoA oxidase, are induced and are early markers of treatment with peroxisome proliferators. In this study, rats were dosed intraperitoneally with the potent peroxisome proliferator methylclofenapate and the hepatic induction response was studied. There was no significant change in the enzyme activities of laurate hydroxylase (cytochrome P450IVA1) or acyl-CoA oxidase in the first 8 h after treatment, but the activities had doubled at 24 h, suggesting that these enzymes are not involved in the mediation of early events in peroxisome proliferation. Hepatic cytochrome P450IVA1 mRNA was significantly increased at 6 and 8 h after treatment, rising to 15-fold above control values at 30 h. In contrast, acyl-CoA oxidase mRNA showed no significant change in the first 8 h, but increased to 13-fold above control values at 24 and 30 h, thereby demonstrating different kinetics of induction of the two mRNAs. In order to determine whether cytochrome P450IVA1 and peroxisomal enzymes were included in the same cells, rats were treated daily with sub-maximal (2 or 5 mg/kg) and maximal (25 mg/kg) inducing doses of methylclofenapate for 4 days. The lobular distribution of induced proteins was determined immunocytochemically with antibodies raised against P450IVA1 and acyl-CoA oxidase. Livers from control animals showed minimal staining for both proteins. However, in the livers of animals treated with 2 or 5 mg of methylclofenapate/kg, both acyl-CoA and P450IVA immunostaining was increased, mainly in the centrilobular area. Immunostaining of serial sections revealed that these proteins were induced in the same region of the lobule. A maximal inducing dose of methylclofenapate (25 mg/kg) caused panlobular induction of both proteins. The results demonstrate that these proteins are induced in a dose-dependent manner in the same, spatially distinct, sensitive region of the liver lobule. (+info)Response of chemically induced hepatocytelike cells in hamster pancreas to methyl clofenapate, a peroxisome proliferator. (8/15)
Administration of N-nitrosobis (2-oxopropyl)amine during peak DNA synthesis of regenerating pancreas in hamsters has been shown to induce hepatocytelike cells in pancreas. We now present evidence to demonstrate that such cells respond to methyl clofenapate, a peroxisome proliferator. The response includes a marked proliferation of peroxisomes and enhanced activity of peroxisomal enzymes enoyl-CoA hydratase (8.5- to 13-fold), [1-14C]-palmitoyl-CoA oxidation (2.8- to 3.9-fold), catalase (1.6 to 3.4-fold), and carnitine acetyltransferase (greater than 2,000-fold). Cytochemical localization of catalase by the alkaline 3,3'-diaminobenzidine procedure and immunofluorescence localization of heat-labile enoyl-CoA hydratase showed that these peroxisome-associated enzymes are localized strictly in pancreatic hepatocytelike cells, while adjacent acinar, duct, and islet cells appeared consistently negative. Morphometric analyses of hepatocytelike cells showed a significant increase in the numerical density and an eightfold increase in the volume density of peroxisomes in methyl clofenapate treated animals. These results demonstrate that the hepatocytelike cells are responsible for the observed peroxisomal enzyme activity in pancreas of hamsters and suggest that the derepressed peroxisome specific genes in these cells respond to a peroxisome proliferator as do parenchymal cells in hamster liver. (+info)
List of MeSH codes (D02)
... clofenapate MeSH D02.241.081.160.140.135.193 - clofibrate MeSH D02.241.081.160.225 - clofibric acid MeSH D02.241.081.160. ... 225.133 - bezafibrate MeSH D02.241.081.160.225.187 - clofenapate MeSH D02.241.081.160.225.195 - clofibrate MeSH D02.241.081.160 ...
Lipid Regulating Agents - MeSH - NCBI
MeSH Browser
Clofenapate Preferred Term Term UI T008652. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Methyl Clofenapate Term UI T008654. Date11/11/1974. LexicalTag NON. ThesaurusID UNK (19XX). ... Clofenapate Preferred Concept UI. M0004581. Registry Number. 21340-68-1. Scope Note. An oral hypolipemic agent primarily used ... Clofenapate. Tree Number(s). D02.241.081.114.968.500.374. D02.355.726.305.374. D02.455.426.559.389.185.210. D02.455.426.559. ...
Morphological transformation and effect on gap junction intercellular communication in Syrian hamster embryo cells as screening...
Biomarkers Search
DeCS
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
MeSH Browser
Clofenapate Preferred Term Term UI T008652. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Methyl Clofenapate Term UI T008654. Date11/11/1974. LexicalTag NON. ThesaurusID UNK (19XX). ... Clofenapate Preferred Concept UI. M0004581. Registry Number. 21340-68-1. Scope Note. An oral hypolipemic agent primarily used ... Clofenapate. Tree Number(s). D02.241.081.114.968.500.374. D02.355.726.305.374. D02.455.426.559.389.185.210. D02.455.426.559. ...
NDF-RT Code NDF-RT Name
ABORTIFACIENT AGENTS ABORTIFACIENT AGENTS
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
Aminobiphenyl Compounds | Profiles RNS
MeSH Browser
TERM
Key Issues in the Modes of Action and Effects of Trichloroethylene Metabolites for Liver and Kidney Tumorigenesis |...
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
MESH TREE NUMBER CHANGES - 2013 MeSH. August 27, 2012
Methyl Clofenapate1
- 24. Evaluation of the genetic toxicity of the peroxisome proliferator and carcinogen methyl clofenapate, including assays using Muta Mouse and Big Blue transgenic mice. (nih.gov)