The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA.
Undifferentiated cells resulting from cleavage of a fertilized egg (ZYGOTE). Inside the intact ZONA PELLUCIDA, each cleavage yields two blastomeres of about half size of the parent cell. Up to the 8-cell stage, all of the blastomeres are totipotent. The 16-cell MORULA contains outer cells and inner cells.
A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper.
A mature haploid female germ cell extruded from the OVARY at OVULATION.
The technique of maintaining or growing mammalian EMBRYOS in vitro. This method offers an opportunity to observe EMBRYONIC DEVELOPMENT; METABOLISM; and susceptibility to TERATOGENS.
The transfer of mammalian embryos from an in vivo or in vitro environment to a suitable host to improve pregnancy or gestational outcome in human or animal. In human fertility treatment programs, preimplantation embryos ranging from the 4-cell stage to the blastocyst stage are transferred to the uterine cavity between 3-5 days after FERTILIZATION IN VITRO.
Morphological and physiological development of EMBRYOS.
The transformation of a liquid to a glassy solid i.e., without the formation of crystals during the cooling process.
The fertilized OVUM resulting from the fusion of a male and a female gamete.
Determination of the nature of a pathological condition or disease in the OVUM; ZYGOTE; or BLASTOCYST prior to implantation. CYTOGENETIC ANALYSIS is performed to determine the presence or absence of genetic disease.
The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO.
An assisted reproductive technique that includes the direct handling and manipulation of oocytes and sperm to achieve fertilization in vitro.
Endometrial implantation of EMBRYO, MAMMALIAN at the BLASTOCYST stage.
Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens.
Minute cells produced during development of an OOCYTE as it undergoes MEIOSIS. A polar body contains one of the nuclei derived from the first or second meiotic CELL DIVISION. Polar bodies have practically no CYTOPLASM. They are eventually discarded by the oocyte. (from King & Stansfield, A Dictionary of Genetics, 4th ed)
An early non-mammalian embryo that follows the MORULA stage. A blastula resembles a hollow ball with the layer of cells surrounding a fluid-filled cavity (blastocele). The layer of cells is called BLASTODERM.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
A subphylum of chordates intermediate between the invertebrates and the true vertebrates. It includes the Ascidians.
An albumin obtained from the white of eggs. It is a member of the serpin superfamily.
Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT.
Transport of the OVUM or fertilized ovum (ZYGOTE) from the mammalian oviduct (FALLOPIAN TUBES) to the site of EMBRYO IMPLANTATION in the UTERUS.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
An early embryo that is a compact mass of about 16 BLASTOMERES. It resembles a cluster of mulberries with two types of cells, outer cells and inner cells. Morula is the stage before BLASTULA in non-mammalian animals or a BLASTOCYST in mammals.
The ratio of the number of conceptions (CONCEPTION) including LIVE BIRTH; STILLBIRTH; and fetal losses, to the mean number of females of reproductive age in a population during a set time period.
The potential of the FETUS to survive outside the UTERUS after birth, natural or induced. Fetal viability depends largely on the FETAL ORGAN MATURITY, and environmental conditions.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism.
Morphological and physiological development of EMBRYOS or FETUSES.
The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
The three primary germinal layers (ECTODERM; ENDODERM; and MESODERM) developed during GASTRULATION that provide tissues and body plan of a mature organism. They derive from two early layers, hypoblast and epiblast.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS).
Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.
A reaction that severs one of the covalent sugar-phosphate linkages between NUCLEOTIDES that compose the sugar phosphate backbone of DNA. It is catalyzed enzymatically, chemically or by radiation. Cleavage may be exonucleolytic - removing the end nucleotide, or endonucleolytic - splitting the strand in two.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1).
An assisted fertilization technique consisting of the microinjection of a single viable sperm into an extracted ovum. It is used principally to overcome low sperm count, low sperm motility, inability of sperm to penetrate the egg, or other conditions related to male infertility (INFERTILITY, MALE).
An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc.
The outer of the three germ layers of an embryo.
An octamer transcription factor that is expressed primarily in totipotent embryonic STEM CELLS and GERM CELLS and is down-regulated during CELL DIFFERENTIATION.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A reaction that severs one of the sugar-phosphate linkages of the phosphodiester backbone of RNA. It is catalyzed enzymatically, chemically, or by radiation. Cleavage may be exonucleolytic, or endonucleolytic.
The condition of carrying two or more FETUSES simultaneously.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. They are used in embryological studies and to study the effects of certain chemicals on development.
The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM).
Elements of limited time intervals, contributing to particular results or situations.
The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube.
Proteins obtained from the ZEBRAFISH. Many of the proteins in this species have been the subject of studies involving basic embryological development (EMBRYOLOGY).
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
The process of cleaving a chemical compound by the addition of a molecule of water.
The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)
A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
The rate dynamics in chemical or physical systems.
A proprotein convertase with specificity for the proproteins of PROALBUMIN; COMPLEMENT 3C; and VON WILLEBRAND FACTOR. It has specificity for cleavage near paired ARGININE residues that are separated by two amino acids.
A family of intracellular CYSTEINE ENDOPEPTIDASES that play a role in regulating INFLAMMATION and APOPTOSIS. They specifically cleave peptides at a CYSTEINE amino acid that follows an ASPARTIC ACID residue. Caspases are activated by proteolytic cleavage of a precursor form to yield large and small subunits that form the enzyme. Since the cleavage site within precursors matches the specificity of caspases, sequential activation of precursors by activated caspases can occur.
Factors that are involved in directing the cleavage and POLYADENYLATION of the of MESSENGER RNA near the site of the RNA 3' POLYADENYLATION SIGNALS.
Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis.
An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Antigen-type substances that produce immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification, such as cleavage, to produce the active functional protein or peptide hormone.
Established cell cultures that have the potential to propagate indefinitely.
Proteins prepared by recombinant DNA technology.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Tendency of the smooth muscle of the tracheobronchial tree to contract more intensely in response to a given stimulus than it does in the response seen in normal individuals. This condition is present in virtually all symptomatic patients with asthma. The most prominent manifestation of this smooth muscle contraction is a decrease in airway caliber that can be readily measured in the pulmonary function laboratory.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.
A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
RNA that has catalytic activity. The catalytic RNA sequence folds to form a complex surface that can function as an enzyme in reactions with itself and other molecules. It may function even in the absence of protein. There are numerous examples of RNA species that are acted upon by catalytic RNA, however the scope of this enzyme class is not limited to a particular type of substrate.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
A form of hypersensitivity affecting the respiratory tract. It includes ASTHMA and RHINITIS, ALLERGIC, SEASONAL.
ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-.
Substances that are recognized by the immune system and induce an immune reaction.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES.
A mitochondrial cytochrome P450 enzyme that catalyzes the side-chain cleavage of C27 cholesterol to C21 pregnenolone in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP11A1 gene, catalyzes the breakage between C20 and C22 which is the initial and rate-limiting step in the biosynthesis of various gonadal and adrenal steroid hormones.
A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.-
Cleavage of proteins into smaller peptides or amino acids either by PROTEASES or non-enzymatically (e.g., Hydrolysis). It does not include Protein Processing, Post-Translational.
Endopeptidases that are specific for AMYLOID PROTEIN PRECURSOR. Three secretase subtypes referred to as alpha, beta, and gamma have been identified based upon the region of amyloid protein precursor they cleave.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
The sum of the weight of all the atoms in a molecule.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity.
Subset of helper-inducer T-lymphocytes which synthesize and secrete the interleukins IL-4, IL-5, IL-6, and IL-10. These cytokines influence B-cell development and antibody production as well as augmenting humoral responses.
ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism.
A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL).
Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Altered reactivity to an antigen, which can result in pathologic reactions upon subsequent exposure to that particular antigen.
Occurrence or induction of release of more ova than are normally released at the same time in a given species. The term applies to both animals and humans.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Proteins found in any species of virus.
RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
A condition characterized by infiltration of the lung with EOSINOPHILS due to inflammation or other disease processes. Major eosinophilic lung diseases are the eosinophilic pneumonias caused by infections, allergens, or toxic agents.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein.
Cysteine proteinase found in many tissues. Hydrolyzes a variety of endogenous proteins including NEUROPEPTIDES; CYTOSKELETAL PROTEINS; proteins from SMOOTH MUSCLE; CARDIAC MUSCLE; liver; platelets; and erythrocytes. Two subclasses having high and low calcium sensitivity are known. Removes Z-discs and M-lines from myofibrils. Activates phosphorylase kinase and cyclic nucleotide-independent protein kinase. This enzyme was formerly listed as EC
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC
The discharge of an OVUM from a rupturing follicle in the OVARY.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc.
Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE.
DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
The process by which antigen is presented to lymphocytes in a form they can recognize. This is performed by antigen presenting cells (APCs). Some antigens require processing before they can be recognized. Antigen processing consists of ingestion and partial digestion of the antigen by the APC, followed by presentation of fragments on the cell surface. (From Rosen et al., Dictionary of Immunology, 1989)
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity.
Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES).
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.
A family of membrane-anchored glycoproteins that contain a disintegrin and metalloprotease domain. They are responsible for the proteolytic cleavage of many transmembrane proteins and the release of their extracellular domain.
Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-.
Physiologically inactive substances that can be converted to active enzymes.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.

Chromosome abnormalities in human embryos. (1/708)

The presence of numerical chromosome abnormalities in human embryos was studied using fluorescence in-situ hybridization with four or more chromosome-specific probes. When most cells of an embryo are analysed, this technique allows differentiation to be made between aneuploidy, mosaicism, haploidy and polyploidy. Abnormal types of fertilization, such as unipronucleated, tripronucleated zygotes and zygotes with uneven pronuclei, were studied using this technique. We have found a strong correlation between some types of dysmorphism with chromosomal abnormalities. In addition, the more impaired the development of an embryo, the more chromosomal abnormalities were detected in those embryos. Maternal age and other factors were linked to an increase in chromosome abnormalities (hormonal regimes, temperature changes), but not to intracytoplasmic sperm injection.  (+info)

Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. (2/708)

This study examined the relationship between blastomere fragmentation in cultured human embryos obtained by in-vitro fertilization and the effect of fragmentation on the distribution of the following eight regulatory proteins found to be: (i) localized in the mature oocyte in subplasmalemmal, polarized domains; and (ii) unequally inherited by the blastomeres during cleavage: leptin, signal transducer and activator of transcription 3 (STAT3), Bax, Bcl-x, transforming growth factor beta 2 (TGF beta 2), vascular endothelial growth factor (VEGF), c-kit and epidermal growth factor R (EGF-R). Four basic patterns of fragmentation were observed. The severity of the impact of each type of fragmentation on the affected blastomere(s) and the developmental competence of the embryo appeared to be a function of the unique temporal and spatial features associated with the particular fragmentation pattern(s) involved in each instance. The findings demonstrate that certain patterns of fragmentation can result in the partial or near total loss of the eight regulatory proteins from specific blastomeres and that the developmental potential of the affected embryo can be particularly compromised if it occurs during the 1- or 2-cell stages. In contrast, fragmentation from portions of a fertilized egg or a blastomere(s) in a 2-cell embryo that do not contain the protein domains, or the complete loss by fragmentation of a regulatory protein domain-containing blastomere after the 4-cell stage does not necessarily preclude continued development to the blastocyst, although the normality and developmental potential of the embryo may be compromised. The possible association between fragmentation and apoptosis was examined by annexin V staining of plasma membrane phosphatidylserine and TUNEL analysis of blastomere DNA. No direct correlation between fragmentation and apoptosis was found following the analyses of fragmented embryos with these two markers. However, while we suggest that changes in cell physiology unrelated to apoptosis are the more likely causes of fragmentation, we cannot exclude the possibility that fragmentation itself may be an initiator of apoptosis if critical ratios or levels of developmentally important proteins are altered by partial or complete elimination of their polarized domains. The findings are discussed with respect to the possible developmental significance of regulatory protein polarization in human oocytes and preimplantation stage embryos.  (+info)

Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos. (3/708)

Several homeobox genes are expressed in the sea urchin embryo but their roles in development have yet to be elucidated. Of particular interest are homologues of homeobox genes that in mouse and Drosophila are involved in patterning the developing central nervous system (CNS). Here, we report the cloning of an orthopedia (Otp)-related gene from Paracentrotus lividus, PlOtp. Otp is a single copy zygotic gene that presents a unique and highly restricted expression pattern. Transcripts were first detected at the mid-gastrula stage in two pairs of oral ectoderm cells located in a ventrolateral position, overlying primary mesenchyme cell (PMC) clusters. Increases in both transcript abundance and the number of Otp-expressing cells were observed at prism and pluteus stages. Otp transcripts are symmetrically distributed in a few ectodermal cells of the oral field. Labelled cells were observed close to sites of active skeletal rod growth (tips of the budding oral and anal arms), and at the juxtaposition of stomodeum and foregut. Chemicals known to perturb PMC patterning along animal-vegetal and oral-aboral axes altered the pattern of Otp expression. Vegetalization by LiCl caused a shift in Otp-expressing cells toward the animal pole, adjacent to shifted PMC aggregates. Nickel treatment induced expression of the Otp gene in an increased number of ectodermal cells, which adopted a radialized pattern. Finally, ectopic expression of Otp mRNA affected patterning along the oral-aboral axis and caused skeletal abnormalities that resembled those exhibited by nickel-treated embryos. From these results, we conclude that the Otp homeodomain gene is involved in short-range cell signalling within the oral ectoderm for patterning the endoskeleton of the larva through epithelial-mesenchymal interactions.  (+info)

The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo. (4/708)

Many kinds of animal embryos exhibit stereotyped cleavage patterns during early embryogenesis. In the ascidian Halocynthia roretzi, cleavage patterns are invariant but they are complicated by successive unequal cleavages that occur in the posterior region. Here we report the essential roles of a novel structure, called the centrosome-attracting body (CAB), which exists in the posterior pole cortex of cleaving embryos, in generating unequal cleavages. By removing and transplanting posterior egg cytoplasm and by treatment with sodium dodecyl sulfate, we demonstrated that loss of the CAB resulted in abolishment of unequal cleavage, while ectopic formation of the CAB caused ectopic unequal cleavages to occur. Experiments with a microtubule inhibitor demonstrated that the centrosome and nucleus were attracted toward the posterior cortex, where the CAB is located, by shortening of microtubule bundles formed between the centrosome and the CAB. Consequently, the mitotic apparatus was positioned asymmetrically, resulting in unequal cleavage. Immunohistochemistry provided evidence that a microtubule motor protein, a kinesin or kinesin-like molecule, may be associated with the CAB. Formation of the CAB during the early cleavage stage was resistant to treatment with the microtubule inhibitor. In contrast, the integrity of the CAB was lost upon treatment with a microfilament inhibitor. We propose that the CAB plays key roles in the orientation and positioning of cleavage planes during unequal cell division.  (+info)

Identification of two major histocompatibility complex class Ib genes, Q7 and Q9, as the Ped gene in the mouse. (5/708)

The Ped (preimplantation embryonic development) gene influences the rate of preimplantation embryonic development and subsequent embryonic survival. The protein product of the Ped gene, the Qa-2 protein, is a major histocompatibility complex (MHC) class Ib protein. There are two alleles of the Ped gene, fast (Qa-2 [+]) and slow (Qa-2 [-]). Qa-2 is encoded by four very similar MHC class Ib genes: Q6, Q7, Q8, and Q9. Recent research in our laboratory has shown that the Ped phenotype is potentially encoded by the Q7 and/or Q9 gene because the Q7 and Q9 genes, but not the Q6 or Q8 gene, are expressed during preimplantation mouse embryonic development. In this study we utilized microinjection of transgenes to assess the functional roles of both the Q7 and Q9 genes in control of the rate of preimplantation development. The Q7 gene, the Q9 gene, and a combination of the Q7 and Q9 genes were microinjected into Ped slow zygotes, and the Ped phenotype and cell surface expression of Qa-2 protein were assayed after a 72-h or 96-h incubation period. We found that the microinjected individual Q7 and Q9 genes increased the rate of preimplantation development. Simultaneous injection of the Q7 and Q9 genes did not have a synergistic effect on the Ped phenotype. Microinjection of the Q7 and/or Q9 genes resulted in protein expression in 10-25% of the microinjected embryos. These results show that both the Q7 and Q9 genes encode the mouse Ped phenotype.  (+info)

Cytoskeletal mechanisms of ooplasmic segregation in annelid eggs. (6/708)

Annelid embryos are comprised of yolk-deficient animal and yolk-filled vegetal blastomeres. This "unipolar" organization along the animal-vegetal axis (in terms of ooplasmic distribution) is generated via selective segregation of yolk-free, clear cytoplasm to the animal blastomeres. The pathway that leads to the unipolar organization is different between polychaetes and clitellates (i.e., oligochaetes and hirudinidans). In polychaetes, the clear cytoplasm domain, which is established through ooplasmic segregation at the animal side of the egg, is simply cut up by unequal equatorial cleavage. In clitellates, localization of clear cytoplasm to animal blastomeres is preceded by unification of the initially separated polar domains of clear cytoplasm, which result from bipolar ooplasmic segregation. In this article, I have reviewed recent studies on cytoskeletal mechanisms for ooplasmic localization during early annelid development. Annelid eggs accomplish ooplasmic rearrangements through various combinations of three cytoskeletal mechanisms, which are mediated by actin microfilaments, microtubules and mitotic asters, respectively. One of the unique features of annelid eggs isthat a homologous process is driven by distinct cytoskeletal elements. Annelid eggs may provide an intriguing system to investigate not only mechanical aspects of ooplasmic segregation but also evolutionary divergence of cytoskeletal mechanisms that operate in a homologous process.  (+info)

Characterization of novel F-actin envelopes surrounding nuclei during cleavage of a polychaete worm. (7/708)

F-actin accumulations and their possible functions were investigated during cleavage of the polychaete Ophryotrocha puerilis. Unusual cytoplasmic accumulations of F-actin were detected which have never been described before in animal embryos. As shown by TRITC-phalloidin labeling, envelopes of F-actin surrounded late prophase nuclei for a short period of time. DTAF-immunofluorescence of beta-tubulin showed that the F-actin envelope was closely associated with microtubules of the developing spindle apparatus. However, experimental disassembly of microtubules by nocodazole did not prevent the assembly of the F-actin envelope. Disturbance of F-actin envelope formation by cytochalasin B did not alter the course of mitotic events, i.e. position of the nuclei and orientation of the spindle apparatus were not affected, although the respective blastomeres remained uncleaved. However, disassembly of the F-actin envelope correlated temporally with breakdown of the nuclear envelope. Therefore, it is suggested that this new structure plays a role in fragmentation of the nuclear envelope during cleavage of Ophryotrocha puerilis.  (+info)

Comparison of human blastulation rates and total cell number in sequential culture media with and without co-culture. (8/708)

Recent interest in delayed embryo transfers necessitated the evaluation of two improved in-vitro systems that could generate viable blastocysts. A total of 178 two-pronucleated embryos (entire cohorts) from 19 patients was cultured in IVF50 medium (100 microl) under oil for 24 h until day 2. Each patient's day 2 embryos were then equally allotted to two in-vitro systems. Embryos in system A were grown until the morning of day 3 on Vero cells covered with IVF50 medium (100 microl) under oil. The medium was then replaced on day 3 with a 1:1 mixture (100 microl) of IVF50:S2 medium and on day 4 with S2 medium only. The same culture protocol was used for system B without Vero cells. Throughout the 5 days all dishes were housed in sealed humidified modular chambers containing a triple gas atmosphere. Separately, 175 spare embryos from 80 patients were grown in system A and B up to days 6 and 7 for total cell number (TCN) analysis. Blastulation rates were not significantly different between system A and B (67.4 versus 68.5%; P > 0.01) although co-cultured embryos cleaved slightly faster by day 4. The overall pregnancy and implantation rates were 52.0% and 32.1% for the 19 patients each of whom received a mixed cohort of three day 5 embryos from both systems. TCN values for the day 6 and 7 blastocysts from both systems were high and increased steadily from days 6-7 and from expanded to hatching stages. There were no significant differences in TCN for day 6 expanded blastocysts between the two systems although day 6 hatching and hatched co-cultured blastocysts had greater values than non-co-cultured blastocysts (246.0 +/- 18.5 and 236.7 +/- 17.8 versus 173.0 +/- 13.5 and 166.5 +/- 16.0; P < 0.01). The results demonstrated that the culture protocol using the sequential IVF50-S2 media combination was a good substitute for Vero cell co-culture for the transfer of viable day 3-6 embryos.  (+info)

The cleavage stage of an ovum, also known as a fertilized egg, refers to the series of rapid cell divisions that occur after fertilization. During this stage, the single cell (zygote) divides into multiple cells, forming a blastomere. This process occurs in the fallopian tube and continues until the blastocyst reaches the uterus, typically around 5-6 days after fertilization. The cleavage stage is a critical period in early embryonic development, as any abnormalities during this time can lead to implantation failure or developmental defects.

Blastomeres are early stage embryonic cells that result from the initial rounds of cell division in a fertilized egg, also known as a zygote. These cells are typically smaller and have a more simple organization compared to more mature cells. They are important for the normal development of the embryo and contribute to the formation of the blastocyst, which is an early stage embryonic structure that will eventually give rise to the fetus. The process of cell division that produces blastomeres is called cleavage.

A blastocyst is a stage in the early development of a fertilized egg, or embryo, in mammals. It occurs about 5-6 days after fertilization and consists of an outer layer of cells called trophoblasts, which will eventually form the placenta, and an inner cell mass, which will give rise to the fetus. The blastocyst is characterized by a fluid-filled cavity called the blastocoel. This stage is critical for the implantation of the embryo into the uterine lining.

An ovum is the female reproductive cell, or gamete, produced in the ovaries. It is also known as an egg cell and is released from the ovary during ovulation. When fertilized by a sperm, it becomes a zygote, which can develop into a fetus. The ovum contains half the genetic material necessary to create a new individual.

Embryo culture techniques refer to the methods and procedures used to maintain and support the growth and development of an embryo outside of the womb, typically in a laboratory setting. These techniques are often used in the context of assisted reproductive technologies (ART), such as in vitro fertilization (IVF).

The process typically involves fertilizing an egg with sperm in a laboratory dish and then carefully monitoring and maintaining the resulting embryo in a specialized culture medium that provides the necessary nutrients, hormones, and other factors to support its development. The culture medium is usually contained within an incubator that maintains optimal temperature, humidity, and gas concentrations to mimic the environment inside the body.

Embryologists may use various embryo culture techniques depending on the stage of development and the specific needs of the embryo. For example, some techniques involve culturing the embryo in a single layer, while others may use a technique called "co-culture" that involves growing the embryo on a layer of cells to provide additional support and nutrients.

The goal of embryo culture techniques is to promote the healthy growth and development of the embryo, increasing the chances of a successful pregnancy and live birth. However, it's important to note that these techniques are not without risk, and there are potential ethical considerations surrounding the use of ART and embryo culture.

Embryo transfer is a medical procedure that involves the transfer of an embryo, which is typically created through in vitro fertilization (IVF), into the uterus of a woman with the aim of establishing a pregnancy. The embryo may be created using the intended parent's own sperm and eggs or those from donors. After fertilization and early cell division, the resulting embryo is transferred into the uterus of the recipient mother through a thin catheter that is inserted through the cervix. This procedure is typically performed under ultrasound guidance to ensure proper placement of the embryo. Embryo transfer is a key step in assisted reproductive technology (ART) and is often used as a treatment for infertility.

Embryonic development is the series of growth and developmental stages that occur during the formation and early growth of the embryo. In humans, this stage begins at fertilization (when the sperm and egg cell combine) and continues until the end of the 8th week of pregnancy. During this time, the fertilized egg (now called a zygote) divides and forms a blastocyst, which then implants into the uterus. The cells in the blastocyst begin to differentiate and form the three germ layers: the ectoderm, mesoderm, and endoderm. These germ layers will eventually give rise to all of the different tissues and organs in the body.

Embryonic development is a complex and highly regulated process that involves the coordinated interaction of genetic and environmental factors. It is characterized by rapid cell division, migration, and differentiation, as well as programmed cell death (apoptosis) and tissue remodeling. Abnormalities in embryonic development can lead to birth defects or other developmental disorders.

It's important to note that the term "embryo" is used to describe the developing organism from fertilization until the end of the 8th week of pregnancy in humans, after which it is called a fetus.

Vitrification is a process used in cryopreservation, where a liquid or semi-liquid biological material is transformed into a glass-like solid state by cooling it to extremely low temperatures at a rate that suppresses the formation of ice crystals. This technique is often used in assisted reproductive technology (ART) for preserving oocytes (human eggs), embryos, and ovarian or testicular tissues.

During vitrification, the biological material is exposed to high concentrations of cryoprotectants, which help prevent ice crystal formation and minimize cellular damage during cooling. The sample is then rapidly cooled using liquid nitrogen, achieving temperatures below -150°C (-238°F) in a matter of seconds or minutes.

The primary advantage of vitrification over traditional slow-freezing methods is the elimination of ice crystal formation, which can cause significant damage to cellular structures and organelles. Vitrified samples maintain their structural integrity and have higher survival rates upon thawing, making them more suitable for use in ART procedures.

However, it's important to note that vitrification also has potential risks, such as the toxicity of high cryoprotectant concentrations and the possibility of cracking during cooling or warming due to thermal stress. Proper technique and careful handling are crucial to ensure successful vitrification and subsequent use in clinical applications.

A zygote is the initial cell formed when a sperm fertilizes an egg, also known as an oocyte. This occurs in the process of human reproduction and marks the beginning of a new genetic identity, containing 46 chromosomes - 23 from the sperm and 23 from the egg. The zygote starts the journey of cell division and growth, eventually developing into a blastocyst, then an embryo, and finally a fetus over the course of pregnancy.

Preimplantation Diagnosis (PID) is a genetic testing procedure performed on embryos created through in vitro fertilization (IVF), before they are implanted in the uterus. The purpose of PID is to identify genetic disorders or chromosomal abnormalities in the embryos, allowing only those free of such issues to be transferred to the uterus, thereby reducing the risk of passing on genetic diseases to offspring. It involves biopsying one or more cells from an embryo and analyzing its DNA for specific genetic disorders or chromosomal abnormalities. PID is often recommended for couples with a known history of genetic disorders or those who have experienced multiple miscarriages or failed IVF cycles.

A nonmammalian embryo refers to the developing organism in animals other than mammals, from the fertilized egg (zygote) stage until hatching or birth. In nonmammalian species, the developmental stages and terminology differ from those used in mammals. The term "embryo" is generally applied to the developing organism up until a specific stage of development that is characterized by the formation of major organs and structures. After this point, the developing organism is referred to as a "larva," "juvenile," or other species-specific terminology.

The study of nonmammalian embryos has played an important role in our understanding of developmental biology and evolutionary developmental biology (evo-devo). By comparing the developmental processes across different animal groups, researchers can gain insights into the evolutionary origins and diversification of body plans and structures. Additionally, nonmammalian embryos are often used as model systems for studying basic biological processes, such as cell division, gene regulation, and pattern formation.

Fertilization in vitro, also known as in-vitro fertilization (IVF), is a medical procedure where an egg (oocyte) and sperm are combined in a laboratory dish to facilitate fertilization. The fertilized egg (embryo) is then transferred to a uterus with the hope of establishing a successful pregnancy. This procedure is often used when other assisted reproductive technologies have been unsuccessful or are not applicable, such as in cases of blocked fallopian tubes, severe male factor infertility, and unexplained infertility. The process involves ovarian stimulation, egg retrieval, fertilization, embryo culture, and embryo transfer. In some cases, additional techniques such as intracytoplasmic sperm injection (ICSI) or preimplantation genetic testing (PGT) may be used to increase the chances of success.

Embryo implantation is the process by which a fertilized egg, or embryo, becomes attached to the wall of the uterus (endometrium) and begins to receive nutrients from the mother's blood supply. This process typically occurs about 6-10 days after fertilization and is a critical step in the establishment of a successful pregnancy.

During implantation, the embryo secretes enzymes that help it to burrow into the endometrium, while the endometrium responds by producing receptors for the embryo's enzymes and increasing blood flow to the area. The embryo then begins to grow and develop, eventually forming the placenta, which will provide nutrients and oxygen to the developing fetus throughout pregnancy.

Implantation is a complex process that requires precise timing and coordination between the embryo and the mother's body. Factors such as age, hormonal imbalances, and uterine abnormalities can affect implantation and increase the risk of miscarriage or difficulty becoming pregnant.

Cryopreservation is a medical procedure that involves the preservation of cells, tissues, or organs by cooling them to very low temperatures, typically below -150°C. This is usually achieved using liquid nitrogen. The low temperature slows down or stops biological activity, including chemical reactions and cellular metabolism, which helps to prevent damage and decay.

The cells, tissues, or organs that are being cryopreserved must be treated with a cryoprotectant solution before cooling to prevent the formation of ice crystals, which can cause significant damage. Once cooled, the samples are stored in specialized containers or tanks until they are needed for use.

Cryopreservation is commonly used in assisted reproductive technologies, such as the preservation of sperm, eggs, and embryos for fertility treatments. It is also used in research, including the storage of cell lines and stem cells, and in clinical settings, such as the preservation of skin grafts and corneas for transplantation.

Polar bodies are small, non-functional cells that are produced during the process of female meiosis, which results in the formation of an egg cell. They are formed when cytoplasmic divisions occur without subsequent cytokinesis, resulting in the separation of a small amount of cytoplasm and organelles from the main cell.

In the first meiotic division, a primary oocyte divides into a larger secondary oocyte and a smaller polar body, which contains half the number of chromosomes as the original cell. During the second meiotic division, the secondary oocyte divides into a larger ovum (egg) and another smaller polar body, again with half the number of chromosomes.

Polar bodies are typically extruded from the main cell and eventually disintegrate or are absorbed by surrounding cells. They do not contribute to the genetic makeup of the resulting egg or any offspring that may be produced from it. The formation of polar bodies helps ensure that the egg contains the correct number of chromosomes for normal development.

A blastula is a stage in the early development of many animals, including mammals. It is a hollow ball of cells that forms as a result of cleavage, which is the process of cell division during embryonic development. The blastula is typically characterized by the presence of a fluid-filled cavity called the blastocoel, which is surrounded by a single layer of cells known as the blastoderm.

In mammals, the blastula stage follows the morula stage, which is a solid mass of cells that results from cleavage of the fertilized egg. During further cell division and rearrangement, the cells in the morula become organized into an inner cell mass and an outer layer of cells, called the trophoblast. The inner cell mass will eventually give rise to the embryo proper, while the trophoblast will contribute to the formation of the placenta.

As the morula continues to divide and expand, it forms a cavity within the inner cell mass, which becomes the blastocoel. The single layer of cells surrounding the blastocoel is called the blastoderm. At this stage, the blastula is capable of further development through a process called gastrulation, during which the three germ layers of the embryo (ectoderm, mesoderm, and endoderm) are formed.

It's important to note that not all animals go through a blastula stage in their development. Some animals, such as insects and nematodes, have different patterns of early development that do not include a blastula stage.

A mammalian embryo is the developing offspring of a mammal, from the time of implantation of the fertilized egg (blastocyst) in the uterus until the end of the eighth week of gestation. During this period, the embryo undergoes rapid cell division and organ differentiation to form a complex structure with all the major organs and systems in place. This stage is followed by fetal development, which continues until birth. The study of mammalian embryos is important for understanding human development, evolution, and reproductive biology.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Urochordata is a phylum in the animal kingdom that includes sessile, marine organisms commonly known as tunicates or sea squirts. The name "Urochordata" means "tail-cord animals," which refers to the notochord, a flexible, rod-like structure found in the tails of these animals during their larval stage.

Tunicates are filter feeders that draw water into their bodies through a siphon and extract plankton and other organic particles for nutrition. They have a simple body plan, consisting of a protective outer covering called a tunic, an inner body mass with a muscular pharynx, and a tail-like structure called the post-anal tail.

Urochordates are of particular interest to biologists because they are considered to be the closest living relatives to vertebrates (animals with backbones), sharing a common ancestor with them around 550 million years ago. Despite their simple appearance, tunicates have complex developmental processes that involve the formation of notochords, dorsal nerve cords, and other structures that are similar to those found in vertebrate embryos.

Overall, Urochordata is a fascinating phylum that provides important insights into the evolutionary history of animals and their diverse body plans.

Ovalbumin is the major protein found in egg white, making up about 54-60% of its total protein content. It is a glycoprotein with a molecular weight of around 45 kDa and has both hydrophilic and hydrophobic regions. Ovalbumin is a single polypeptide chain consisting of 385 amino acids, including four disulfide bridges that contribute to its structure.

Ovalbumin is often used in research as a model antigen for studying immune responses and allergies. In its native form, ovalbumin is not allergenic; however, when it is denatured or degraded into smaller peptides through cooking or digestion, it can become an allergen for some individuals.

In addition to being a food allergen, ovalbumin has been used in various medical and research applications, such as vaccine development, immunological studies, and protein structure-function analysis.

I'm happy to help! However, it seems there might be a bit of confusion here. "Sea urchins" is a common name that refers to a type of marine invertebrate animal, typically characterized by their round, spiny shells. They belong to the class Echinoidea within the phylum Echinodermata.

Medically speaking, there isn't a specific definition for "sea urchins." However, if you come into contact with sea urchins while swimming or diving and accidentally step on them, their spines can puncture your skin and potentially cause an infection. In this case, medical attention may be necessary to remove the embedded spines and treat any resulting infection.

If you were referring to a specific medical term related to sea urchins, could you please clarify? I'm here to help!

'Ovum transport' refers to the movement of an egg or ovum from the mature follicle within the ovary, through the fallopian tube, and ultimately to the uterus. This process is a critical part of the female reproductive system and occurs during each menstrual cycle.

The ovulation phase of the menstrual cycle triggers the release of a mature egg from the follicle in the ovary. The fimbriated end of the fallopian tube captures the egg and transports it into the tube, where it may encounter sperm for fertilization. Cilia lining the inside of the fallopian tubes create wave-like motions that help propel the egg towards the uterus.

If fertilization occurs, the resulting zygote will continue to travel down the fallopian tube and implant itself into the uterine lining, initiating pregnancy. If fertilization does not occur, the egg will be shed along with the uterine lining during menstruation.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

A morula is a term used in embryology, which refers to the early stage of development in mammalian embryos. It is formed after fertilization when the zygote (a single cell resulting from the fusion of sperm and egg) undergoes several rounds of mitotic divisions to form a solid mass of 16 or more cells called blastomeres. At this stage, the cells are tightly packed together and have a compact, mulberry-like appearance, hence the name "morula" which is derived from the Latin word for "mulberry."

The morula stage typically occurs about 4-5 days after fertilization in humans and is marked by the beginning of blastulation, where the cells start to differentiate and become organized into an outer layer (trophoblast) and an inner cell mass. The trophoblast will eventually form the placenta, while the inner cell mass will give rise to the embryo proper.

It's important to note that the morula stage is a transient phase in embryonic development, and it represents a critical period of growth and differentiation as the embryo prepares for implantation into the uterine wall.

The pregnancy rate is a measure used in reproductive medicine to determine the frequency or efficiency of conception following certain treatments, interventions, or under specific conditions. It is typically defined as the number of pregnancies per 100 women exposed to the condition being studied over a specified period of time. A pregnancy is confirmed when a woman has a positive result on a pregnancy test or through the detection of a gestational sac on an ultrasound exam.

In clinical trials and research, the pregnancy rate helps healthcare professionals evaluate the effectiveness of various fertility treatments such as in vitro fertilization (IVF), intrauterine insemination (IUI), or ovulation induction medications. The pregnancy rate can also be used to assess the impact of lifestyle factors, environmental exposures, or medical conditions on fertility and conception.

It is important to note that pregnancy rates may vary depending on several factors, including age, the cause of infertility, the type and quality of treatment provided, and individual patient characteristics. Therefore, comparing pregnancy rates between different studies should be done cautiously, considering these potential confounding variables.

Fetal viability is the point in pregnancy at which a fetus is considered capable of surviving outside the uterus, given appropriate medical support. Although there is no precise gestational age that defines fetal viability, it is generally considered to occur between 24 and 28 weeks of gestation. At this stage, the fetus has developed sufficient lung maturity and body weight, and the risk of neonatal mortality and morbidity significantly decreases. However, the exact definition of fetal viability may vary depending on regional standards, medical facilities, and individual clinical assessments.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A gastrula is a stage in the early development of many animals, including humans, that occurs following fertilization and cleavage of the zygote. During this stage, the embryo undergoes a process called gastrulation, which involves a series of cell movements that reorganize the embryo into three distinct layers: the ectoderm, mesoderm, and endoderm. These germ layers give rise to all the different tissues and organs in the developing organism.

The gastrula is characterized by the presence of a central cavity called the archenteron, which will eventually become the gut or gastrointestinal tract. The opening of the archenteron is called the blastopore, which will give rise to either the mouth or anus, depending on the animal group.

In summary, a gastrula is a developmental stage in which an embryo undergoes gastrulation to form three germ layers and a central cavity, which will eventually develop into various organs and tissues of the body.

Embryonic and fetal development is the process of growth and development that occurs from fertilization of the egg (conception) to birth. The terms "embryo" and "fetus" are used to describe different stages of this development:

* Embryonic development: This stage begins at fertilization and continues until the end of the 8th week of pregnancy. During this time, the fertilized egg (zygote) divides and forms a blastocyst, which implants in the uterus and begins to develop into a complex structure called an embryo. The embryo consists of three layers of cells that will eventually form all of the organs and tissues of the body. During this stage, the basic structures of the body, including the nervous system, heart, and gastrointestinal tract, begin to form.
* Fetal development: This stage begins at the end of the 8th week of pregnancy and continues until birth. During this time, the embryo is called a fetus, and it grows and develops rapidly. The organs and tissues that were formed during the embryonic stage continue to mature and become more complex. The fetus also begins to move and kick, and it can hear and respond to sounds from outside the womb.

Overall, embryonic and fetal development is a complex and highly regulated process that involves the coordinated growth and differentiation of cells and tissues. It is a critical period of development that lays the foundation for the health and well-being of the individual throughout their life.

Fertilization is the process by which a sperm cell (spermatozoon) penetrates and fuses with an egg cell (ovum), resulting in the formation of a zygote. This fusion of genetic material from both the male and female gametes initiates the development of a new organism. In human biology, fertilization typically occurs in the fallopian tube after sexual intercourse, when a single sperm out of millions is able to reach and penetrate the egg released from the ovary during ovulation. The successful fusion of these two gametes marks the beginning of pregnancy.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Germ layers refer to the primary layers of cells that form during embryonic development and give rise to the various tissues and organs in the body. In humans, there are three germ layers: the ectoderm, mesoderm, and endoderm. Each germ layer differentiates into distinct cell types and structures during the process of gastrulation. The ectoderm gives rise to the nervous system, sensory organs, and skin; the mesoderm forms muscles, bones, blood vessels, and the circulatory system; and the endoderm develops into the respiratory and digestive systems, including the lungs, liver, and pancreas.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

"Xenopus laevis" is not a medical term itself, but it refers to a specific species of African clawed frog that is often used in scientific research, including biomedical and developmental studies. Therefore, its relevance to medicine comes from its role as a model organism in laboratories.

In a broader sense, Xenopus laevis has contributed significantly to various medical discoveries, such as the understanding of embryonic development, cell cycle regulation, and genetic research. For instance, the Nobel Prize in Physiology or Medicine was awarded in 1963 to John R. B. Gurdon and Sir Michael J. Bishop for their discoveries concerning the genetic mechanisms of organism development using Xenopus laevis as a model system.

Embryonic induction is a process that occurs during the development of a multicellular organism, where one group of cells in the embryo signals and influences the developmental fate of another group of cells. This interaction leads to the formation of specific structures or organs in the developing embryo. The signaling cells that initiate the process are called organizers, and they release signaling molecules known as morphogens that bind to receptors on the target cells and trigger a cascade of intracellular signals that ultimately lead to changes in gene expression and cell fate. Embryonic induction is a crucial step in the development of complex organisms and plays a key role in establishing the body plan and organizing the different tissues and organs in the developing embryo.

"Xenopus proteins" refer to the proteins that are expressed or isolated from the Xenopus species, which are primarily used as model organisms in biological and biomedical research. The most commonly used Xenopus species for research are the African clawed frogs, Xenopus laevis and Xenopus tropicalis. These proteins play crucial roles in various cellular processes and functions, and they serve as valuable tools to study different aspects of molecular biology, developmental biology, genetics, and biochemistry.

Some examples of Xenopus proteins that are widely studied include:

1. Xenopus Histones: These are the proteins that package DNA into nucleosomes, which are the fundamental units of chromatin in eukaryotic cells. They play a significant role in gene regulation and epigenetic modifications.
2. Xenopus Cyclins and Cyclin-dependent kinases (CDKs): These proteins regulate the cell cycle and control cell division, differentiation, and apoptosis.
3. Xenopus Transcription factors: These proteins bind to specific DNA sequences and regulate gene expression during development and in response to various stimuli.
4. Xenopus Signaling molecules: These proteins are involved in intracellular signaling pathways that control various cellular processes, such as cell growth, differentiation, migration, and survival.
5. Xenopus Cytoskeletal proteins: These proteins provide structural support to the cells and regulate their shape, motility, and organization.
6. Xenopus Enzymes: These proteins catalyze various biochemical reactions in the cell, such as metabolic pathways, DNA replication, transcription, and translation.

Overall, Xenopus proteins are essential tools for understanding fundamental biological processes and have contributed significantly to our current knowledge of molecular biology, genetics, and developmental biology.

DNA cleavage is the breaking of the phosphodiester bonds in the DNA molecule, resulting in the separation of the two strands of the double helix. This process can occur through chemical or enzymatic reactions and can result in various types of damage to the DNA molecule, including single-strand breaks, double-strand breaks, and base modifications.

Enzymatic DNA cleavage is typically carried out by endonucleases, which are enzymes that cut DNA molecules at specific sequences or structures. There are two main types of endonucleases: restriction endonucleases and repair endonucleases. Restriction endonucleases recognize and cleave specific DNA sequences, often used in molecular biology techniques such as genetic engineering and cloning. Repair endonucleases, on the other hand, are involved in DNA repair processes and recognize and cleave damaged or abnormal DNA structures.

Chemical DNA cleavage can occur through various mechanisms, including oxidation, alkylation, or hydrolysis of the phosphodiester bonds. Chemical agents such as hydrogen peroxide, formaldehyde, or hydrazine can induce chemical DNA cleavage and are often used in laboratory settings for various purposes, such as DNA fragmentation or labeling.

Overall, DNA cleavage is an essential process in many biological functions, including DNA replication, repair, and recombination. However, excessive or improper DNA cleavage can lead to genomic instability, mutations, and cell death.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Aneuploidy is a medical term that refers to an abnormal number of chromosomes in a cell. Chromosomes are thread-like structures located inside the nucleus of cells that contain genetic information in the form of genes.

In humans, the normal number of chromosomes in a cell is 46, arranged in 23 pairs. Aneuploidy occurs when there is an extra or missing chromosome in one or more of these pairs. For example, Down syndrome is a condition that results from an extra copy of chromosome 21, also known as trisomy 21.

Aneuploidy can arise during the formation of gametes (sperm or egg cells) due to errors in the process of cell division called meiosis. These errors can result in eggs or sperm with an abnormal number of chromosomes, which can then lead to aneuploidy in the resulting embryo.

Aneuploidy is a significant cause of birth defects and miscarriages. The severity of the condition depends on which chromosomes are affected and the extent of the abnormality. In some cases, aneuploidy may have no noticeable effects, while in others it can lead to serious health problems or developmental delays.

Intracytoplasmic Sperm Injection (ICSI) is a specialized form of assisted reproductive technology (ART), specifically used in the context of in vitro fertilization (IVF). It involves the direct injection of a single sperm into the cytoplasm of a mature egg (oocyte) to facilitate fertilization. This technique is often used when there are issues with male infertility, such as low sperm count or poor sperm motility, to increase the chances of successful fertilization. The resulting embryos can then be transferred to the uterus in hopes of achieving a pregnancy.

"Xenopus" is not a medical term, but it is a genus of highly invasive aquatic frogs native to sub-Saharan Africa. They are often used in scientific research, particularly in developmental biology and genetics. The most commonly studied species is Xenopus laevis, also known as the African clawed frog.

In a medical context, Xenopus might be mentioned when discussing their use in research or as a model organism to study various biological processes or diseases.

"Body patterning" is a general term that refers to the process of forming and organizing various tissues and structures into specific patterns during embryonic development. This complex process involves a variety of molecular mechanisms, including gene expression, cell signaling, and cell-cell interactions. It results in the creation of distinct body regions, such as the head, trunk, and limbs, as well as the organization of internal organs and systems.

In medical terminology, "body patterning" may refer to specific developmental processes or abnormalities related to embryonic development. For example, in genetic disorders such as Poland syndrome or Holt-Oram syndrome, mutations in certain genes can lead to abnormal body patterning, resulting in the absence or underdevelopment of certain muscles, bones, or other structures.

It's important to note that "body patterning" is not a formal medical term with a specific definition, but rather a general concept used in developmental biology and genetics.

Ectoderm is the outermost of the three primary germ layers in a developing embryo, along with the endoderm and mesoderm. The ectoderm gives rise to the outer covering of the body, including the skin, hair, nails, glands, and the nervous system, which includes the brain, spinal cord, and peripheral nerves. It also forms the lining of the mouth, anus, nose, and ears. Essentially, the ectoderm is responsible for producing all the epidermal structures and the neural crest cells that contribute to various derivatives such as melanocytes, adrenal medulla, smooth muscle, and peripheral nervous system components.

Octamer Transcription Factor-3 (OTF-3 or Oct3) is a specific protein that belongs to the class of POU domain transcription factors. These proteins play crucial roles in the regulation of gene expression during cell growth, development, and differentiation. The "POU" name refers to the presence of two conserved domains - a POU-specific domain and a POU homeodomain - that recognize and bind to specific DNA sequences called octamer motifs, which are involved in controlling the transcription of target genes.

Oct3, encoded by the Pou2f1 gene, is widely expressed in various tissues, including lymphoid cells, neurons, and embryonic stem cells. It has been shown to regulate the expression of several genes that are essential for cell survival, proliferation, and differentiation. Dysregulation of Oct3 has been implicated in several diseases, such as cancers and neurological disorders.

In summary, Octamer Transcription Factor-3 (Oct3) is a POU domain transcription factor that binds to octamer motifs in DNA and regulates the expression of target genes involved in cell growth, development, and differentiation.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

RNA cleavage is a biological process in which RNA molecules are cut or split into smaller fragments by enzymes known as ribonucleases (RNases). This process can occur co-transcriptionally, during splicing, or as a means of regulation of RNA stability and function. Cleavage sites are often defined by specific sequences or structures within the RNA molecule. The cleavage products may have various fates, including degradation, further processing, or serving as functional RNA molecules.

Multiple pregnancy is a type of gestation where more than one fetus is carried simultaneously in the uterus. The most common forms of multiple pregnancies are twins (two fetuses), triplets (three fetuses), and quadruplets (four fetuses). Multiple pregnancies can occur when a single fertilized egg splits into two or more embryos (monozygotic) or when more than one egg is released and gets fertilized during ovulation (dizygotic). The risk of multiple pregnancies increases with the use of assisted reproductive technologies, such as in vitro fertilization. Multiple pregnancies are associated with higher risks for both the mother and the fetuses, including preterm labor, low birth weight, and other complications.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Oogenesis is the biological process of formation and maturation of female gametes, or ova or egg cells, in the ovary. It begins during fetal development and continues throughout a woman's reproductive years. The process involves the division and differentiation of a germ cell (oogonium) into an immature ovum (oocyte), which then undergoes meiotic division to form a mature ovum capable of being fertilized by sperm.

The main steps in oogenesis include:

1. Multiplication phase: The oogonia divide mitotically to increase their number.
2. Growth phase: One of the oogonia becomes primary oocyte and starts to grow, accumulating nutrients and organelles required for future development.
3. First meiotic division: The primary oocyte undergoes an incomplete first meiotic division, resulting in two haploid cells - a secondary oocyte and a smaller cell called the first polar body. This division is arrested in prophase I until puberty.
4. Second meiotic division: At ovulation or just before fertilization, the secondary oocyte completes the second meiotic division, producing another small cell, the second polar body, and a mature ovum (egg) with 23 chromosomes.
5. Fertilization: The mature ovum can be fertilized by a sperm, restoring the normal diploid number of chromosomes in the resulting zygote.

Oogenesis is a complex and highly regulated process that involves various hormonal signals and cellular interactions to ensure proper development and maturation of female gametes for successful reproduction.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

In medical and embryological terms, the mesoderm is one of the three primary germ layers in the very early stages of embryonic development. It forms between the ectoderm and endoderm during gastrulation, and it gives rise to a wide variety of cell types, tissues, and organs in the developing embryo.

The mesoderm contributes to the formation of structures such as:

1. The connective tissues (including tendons, ligaments, and most of the bones)
2. Muscular system (skeletal, smooth, and cardiac muscles)
3. Circulatory system (heart, blood vessels, and blood cells)
4. Excretory system (kidneys and associated structures)
5. Reproductive system (gonads, including ovaries and testes)
6. Dermis of the skin
7. Parts of the eye and inner ear
8. Several organs in the urogenital system

Dysfunctions or abnormalities in mesoderm development can lead to various congenital disorders and birth defects, highlighting its importance during embryogenesis.

Zebrafish proteins refer to the diverse range of protein molecules that are produced by the organism Danio rerio, commonly known as the zebrafish. These proteins play crucial roles in various biological processes such as growth, development, reproduction, and response to environmental stimuli. They are involved in cellular functions like enzymatic reactions, signal transduction, structural support, and regulation of gene expression.

Zebrafish is a popular model organism in biomedical research due to its genetic similarity with humans, rapid development, and transparent embryos that allow for easy observation of biological processes. As a result, the study of zebrafish proteins has contributed significantly to our understanding of protein function, structure, and interaction in both zebrafish and human systems.

Some examples of zebrafish proteins include:

* Transcription factors that regulate gene expression during development
* Enzymes involved in metabolic pathways
* Structural proteins that provide support to cells and tissues
* Receptors and signaling molecules that mediate communication between cells
* Heat shock proteins that assist in protein folding and protect against stress

The analysis of zebrafish proteins can be performed using various techniques, including biochemical assays, mass spectrometry, protein crystallography, and computational modeling. These methods help researchers to identify, characterize, and understand the functions of individual proteins and their interactions within complex networks.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Cytoplasm is the material within a eukaryotic cell (a cell with a true nucleus) that lies between the nuclear membrane and the cell membrane. It is composed of an aqueous solution called cytosol, in which various organelles such as mitochondria, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, and vacuoles are suspended. Cytoplasm also contains a variety of dissolved nutrients, metabolites, ions, and enzymes that are involved in various cellular processes such as metabolism, signaling, and transport. It is where most of the cell's metabolic activities take place, and it plays a crucial role in maintaining the structure and function of the cell.

Endopeptidases are a type of enzyme that breaks down proteins by cleaving peptide bonds inside the polypeptide chain. They are also known as proteinases or endoproteinases. These enzymes work within the interior of the protein molecule, cutting it at specific points along its length, as opposed to exopeptidases, which remove individual amino acids from the ends of the protein chain.

Endopeptidases play a crucial role in various biological processes, such as digestion, blood coagulation, and programmed cell death (apoptosis). They are classified based on their catalytic mechanism and the structure of their active site. Some examples of endopeptidase families include serine proteases, cysteine proteases, aspartic proteases, and metalloproteases.

It is important to note that while endopeptidases are essential for normal physiological functions, they can also contribute to disease processes when their activity is unregulated or misdirected. For instance, excessive endopeptidase activity has been implicated in the pathogenesis of neurodegenerative disorders, cancer, and inflammatory conditions.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Morphogenesis is a term used in developmental biology and refers to the process by which cells give rise to tissues and organs with specific shapes, structures, and patterns during embryonic development. This process involves complex interactions between genes, cells, and the extracellular environment that result in the coordinated movement and differentiation of cells into specialized functional units.

Morphogenesis is a dynamic and highly regulated process that involves several mechanisms, including cell proliferation, death, migration, adhesion, and differentiation. These processes are controlled by genetic programs and signaling pathways that respond to environmental cues and regulate the behavior of individual cells within a developing tissue or organ.

The study of morphogenesis is important for understanding how complex biological structures form during development and how these processes can go awry in disease states such as cancer, birth defects, and degenerative disorders.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Post-translational protein processing refers to the modifications and changes that proteins undergo after their synthesis on ribosomes, which are complex molecular machines responsible for protein synthesis. These modifications occur through various biochemical processes and play a crucial role in determining the final structure, function, and stability of the protein.

The process begins with the translation of messenger RNA (mRNA) into a linear polypeptide chain, which is then subjected to several post-translational modifications. These modifications can include:

1. Proteolytic cleavage: The removal of specific segments or domains from the polypeptide chain by proteases, resulting in the formation of mature, functional protein subunits.
2. Chemical modifications: Addition or modification of chemical groups to the side chains of amino acids, such as phosphorylation (addition of a phosphate group), glycosylation (addition of sugar moieties), methylation (addition of a methyl group), acetylation (addition of an acetyl group), and ubiquitination (addition of a ubiquitin protein).
3. Disulfide bond formation: The oxidation of specific cysteine residues within the polypeptide chain, leading to the formation of disulfide bonds between them. This process helps stabilize the three-dimensional structure of proteins, particularly in extracellular environments.
4. Folding and assembly: The acquisition of a specific three-dimensional conformation by the polypeptide chain, which is essential for its function. Chaperone proteins assist in this process to ensure proper folding and prevent aggregation.
5. Protein targeting: The directed transport of proteins to their appropriate cellular locations, such as the nucleus, mitochondria, endoplasmic reticulum, or plasma membrane. This is often facilitated by specific signal sequences within the protein that are recognized and bound by transport machinery.

Collectively, these post-translational modifications contribute to the functional diversity of proteins in living organisms, allowing them to perform a wide range of cellular processes, including signaling, catalysis, regulation, and structural support.

In situ hybridization, fluorescence (FISH) is a type of molecular cytogenetic technique used to detect and localize the presence or absence of specific DNA sequences on chromosomes through the use of fluorescent probes. This technique allows for the direct visualization of genetic material at a cellular level, making it possible to identify chromosomal abnormalities such as deletions, duplications, translocations, and other rearrangements.

The process involves denaturing the DNA in the sample to separate the double-stranded molecules into single strands, then adding fluorescently labeled probes that are complementary to the target DNA sequence. The probe hybridizes to the complementary sequence in the sample, and the location of the probe is detected by fluorescence microscopy.

FISH has a wide range of applications in both clinical and research settings, including prenatal diagnosis, cancer diagnosis and monitoring, and the study of gene expression and regulation. It is a powerful tool for identifying genetic abnormalities and understanding their role in human disease.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Furin is not a medical condition or disease, but rather it is a type of enzyme that belongs to the group of proteases. It's also known as paired basic amino acid cleaving enzyme (PACE) or convertase 6.

Furin plays an essential role in processing and activating various proteins in the body, particularly those involved in cell signaling, growth regulation, and viral infectivity. Furin works by cutting or cleaving specific amino acid sequences in proteins, allowing them to become active and perform their functions.

In a medical context, furin is often discussed in relation to its role in activating certain viruses, such as HIV, influenza, and coronaviruses (including SARS-CoV-2). Inhibiting furin activity has been explored as a potential therapeutic strategy for treating these viral infections.

Caspases are a family of protease enzymes that play essential roles in programmed cell death, also known as apoptosis. These enzymes are produced as inactive precursors and are activated when cells receive signals to undergo apoptosis. Once activated, caspases cleave specific protein substrates, leading to the characteristic morphological changes and DNA fragmentation associated with apoptotic cell death. Caspases also play roles in other cellular processes, including inflammation and differentiation. There are two types of caspases: initiator caspases (caspase-2, -8, -9, and -10) and effector caspases (caspase-3, -6, and -7). Initiator caspases are activated in response to various apoptotic signals and then activate the effector caspases, which carry out the proteolytic cleavage of cellular proteins. Dysregulation of caspase activity has been implicated in a variety of diseases, including neurodegenerative disorders, ischemic injury, and cancer.

mRNA cleavage and polyadenylation factors are a group of proteins that play a crucial role in the post-transcriptional modification of messenger RNA (mRNA). This process involves two main steps: mRNA cleavage and polyadenylation.

1. Cleavage: During this step, the mRNA molecule is cut at a specific site, resulting in the formation of two separate fragments. The fragment that will become the mature mRNA is called the 3' untranslated region (3' UTR).

2. Polyadenylation: Following cleavage, a string of adenine nucleotides (poly(A) tail) is added to the 3' end of the newly formed 3' UTR. This poly(A) tail plays an essential role in mRNA stability, transport from the nucleus to the cytoplasm, and translation initiation.

mRNA cleavage and polyadenylation factors include various proteins that orchestrate these events, such as:

* Cleavage and polyadenylation specificity factor (CPSF) complex: This complex recognizes and binds to the polyadenylation signal sequence in the pre-mRNA. It contains several subunits, including CPSF1, CPSF2, CPSF3, CPSF4, and CPSF7.
* Cleavage stimulation factor (CstF) complex: This complex recognizes and binds to the GU-rich region downstream of the polyadenylation signal sequence. It contains several subunits, including CstF50, CstF64, CstF77, and CstF80.
* Cleavage factors I (CFIm) and II (CFIIm): These complexes help position the CPSF complex at the correct site for cleavage and polyadenylation. CFIm contains the subunits CFIm25, CFIm59, and CFIm68, while CFIIm consists of the subunits CLIP1 and PAP73.
* Poly(A) polymerase (PAP): This enzyme adds the string of adenine residues to the 3' end of the pre-mRNA after cleavage.

Together, these factors work together to ensure accurate and efficient cleavage and polyadenylation of pre-mRNAs during gene expression.

Serine endopeptidases are a type of enzymes that cleave peptide bonds within proteins (endopeptidases) and utilize serine as the nucleophilic amino acid in their active site for catalysis. These enzymes play crucial roles in various biological processes, including digestion, blood coagulation, and programmed cell death (apoptosis). Examples of serine endopeptidases include trypsin, chymotrypsin, thrombin, and elastase.

Immunoglobulin E (IgE) is a type of antibody that plays a key role in the immune response to parasitic infections and allergies. It is produced by B cells in response to stimulation by antigens, such as pollen, pet dander, or certain foods. Once produced, IgE binds to receptors on the surface of mast cells and basophils, which are immune cells found in tissues and blood respectively. When an individual with IgE antibodies encounters the allergen again, the cross-linking of IgE molecules bound to the FcεRI receptor triggers the release of mediators such as histamine, leukotrienes, prostaglandins, and various cytokines from these cells. These mediators cause the symptoms of an allergic reaction, such as itching, swelling, and redness. IgE also plays a role in protecting against certain parasitic infections by activating eosinophils, which can kill the parasites.

In summary, Immunoglobulin E (IgE) is a type of antibody that plays a crucial role in the immune response to allergens and parasitic infections, it binds to receptors on the surface of mast cells and basophils, when an individual with IgE antibodies encounters the allergen again, it triggers the release of mediators from these cells causing the symptoms of an allergic reaction.

An allergen is a substance that can cause an allergic reaction in some people. These substances are typically harmless to most people, but for those with allergies, the immune system mistakenly identifies them as threats and overreacts, leading to the release of histamines and other chemicals that cause symptoms such as itching, sneezing, runny nose, rashes, hives, and difficulty breathing. Common allergens include pollen, dust mites, mold spores, pet dander, insect venom, and certain foods or medications. When a person comes into contact with an allergen, they may experience symptoms that range from mild to severe, depending on the individual's sensitivity to the substance and the amount of exposure.

Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification to become active. These modifications typically include cleavage of the precursor protein by specific enzymes, resulting in the release of the active protein. This process allows for the regulation and control of protein activity within the body. Protein precursors can be found in various biological processes, including the endocrine system where they serve as inactive hormones that can be converted into their active forms when needed.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Bronchial hyperresponsiveness (BHR) or bronchial hyperreactivity (BH) is a medical term that refers to the increased sensitivity and exaggerated response of the airways to various stimuli. In people with BHR, the airways narrow (constrict) more than usual in response to certain triggers such as allergens, cold air, exercise, or irritants like smoke or fumes. This narrowing can cause symptoms such as wheezing, coughing, chest tightness, and shortness of breath.

BHR is often associated with asthma and other respiratory conditions, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. It is typically diagnosed through a series of tests that measure the degree of airway narrowing in response to various stimuli. These tests may include spirometry, methacholine challenge test, or histamine challenge test.

BHR can be managed with medications such as bronchodilators and anti-inflammatory drugs, which help to relax the muscles around the airways and reduce inflammation. It is also important to avoid triggers that can exacerbate symptoms and make BHR worse.

Nucleic acid conformation refers to the three-dimensional structure that nucleic acids (DNA and RNA) adopt as a result of the bonding patterns between the atoms within the molecule. The primary structure of nucleic acids is determined by the sequence of nucleotides, while the conformation is influenced by factors such as the sugar-phosphate backbone, base stacking, and hydrogen bonding.

Two common conformations of DNA are the B-form and the A-form. The B-form is a right-handed helix with a diameter of about 20 Å and a pitch of 34 Å, while the A-form has a smaller diameter (about 18 Å) and a shorter pitch (about 25 Å). RNA typically adopts an A-form conformation.

The conformation of nucleic acids can have significant implications for their function, as it can affect their ability to interact with other molecules such as proteins or drugs. Understanding the conformational properties of nucleic acids is therefore an important area of research in molecular biology and medicine.

Caspase-3 is a type of protease enzyme that plays a central role in the execution-phase of cell apoptosis, or programmed cell death. It's also known as CPP32 (CPP for ced-3 protease precursor) or apopain. Caspase-3 is produced as an inactive protein that is activated when cleaved by other caspases during the early stages of apoptosis. Once activated, it cleaves a variety of cellular proteins, including structural proteins, enzymes, and signal transduction proteins, leading to the characteristic morphological and biochemical changes associated with apoptotic cell death. Caspase-3 is often referred to as the "death protease" because of its crucial role in executing the cell death program.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

A catalytic RNA, often referred to as a ribozyme, is a type of RNA molecule that has the ability to act as an enzyme and catalyze chemical reactions. These RNA molecules contain specific sequences and structures that allow them to bind to other molecules and accelerate chemical reactions without being consumed in the process.

Ribozymes play important roles in various biological processes, such as RNA splicing, translation regulation, and gene expression. One of the most well-known ribozymes is the self-splicing intron found in certain RNA molecules, which can excise itself from the host RNA and then ligase the flanking exons together.

The discovery of catalytic RNAs challenged the central dogma of molecular biology, which held that proteins were solely responsible for carrying out biological catalysis. The finding that RNA could also function as an enzyme opened up new avenues of research and expanded our understanding of the complexity and versatility of biological systems.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Respiratory hypersensitivity, also known as respiratory allergies or hypersensitive pneumonitis, refers to an exaggerated immune response in the lungs to inhaled substances or allergens. This condition occurs when the body's immune system overreacts to harmless particles, leading to inflammation and damage in the airways and alveoli (air sacs) of the lungs.

There are two types of respiratory hypersensitivity: immediate and delayed. Immediate hypersensitivity, also known as type I hypersensitivity, is mediated by immunoglobulin E (IgE) antibodies and results in symptoms such as sneezing, runny nose, and asthma-like symptoms within minutes to hours of exposure to the allergen. Delayed hypersensitivity, also known as type III or type IV hypersensitivity, is mediated by other immune mechanisms and can take several hours to days to develop after exposure to the allergen.

Common causes of respiratory hypersensitivity include mold spores, animal dander, dust mites, pollen, and chemicals found in certain occupations. Symptoms may include coughing, wheezing, shortness of breath, chest tightness, and fatigue. Treatment typically involves avoiding the allergen, if possible, and using medications such as corticosteroids, bronchodilators, or antihistamines to manage symptoms. In severe cases, immunotherapy (allergy shots) may be recommended to help desensitize the immune system to the allergen.

Cysteine endopeptidases are a type of enzymes that cleave peptide bonds within proteins. They are also known as cysteine proteases or cysteine proteinases. These enzymes contain a catalytic triad consisting of three amino acids: cysteine, histidine, and aspartate. The thiol group (-SH) of the cysteine residue acts as a nucleophile and attacks the carbonyl carbon of the peptide bond, leading to its cleavage.

Cysteine endopeptidases play important roles in various biological processes, including protein degradation, cell signaling, and inflammation. They are involved in many physiological and pathological conditions, such as apoptosis, immune response, and cancer. Some examples of cysteine endopeptidases include cathepsins, caspases, and calpains.

It is important to note that these enzymes require a reducing environment to maintain the reduced state of their active site cysteine residue. Therefore, they are sensitive to oxidizing agents and inhibitors that target the thiol group. Understanding the structure and function of cysteine endopeptidases is crucial for developing therapeutic strategies that target these enzymes in various diseases.

Endoribonucleases are enzymes that cleave RNA molecules internally, meaning they cut the phosphodiester bond between nucleotides within the RNA chain. These enzymes play crucial roles in various cellular processes, such as RNA processing, degradation, and quality control. Different endoribonucleases recognize specific sequences or structural features in RNA substrates, allowing them to target particular regions for cleavage. Some well-known examples of endoribonucleases include RNase III, RNase T1, and RNase A, each with distinct substrate preferences and functions.

An antigen is a substance (usually a protein) that is recognized as foreign by the immune system and stimulates an immune response, leading to the production of antibodies or activation of T-cells. Antigens can be derived from various sources, including bacteria, viruses, fungi, parasites, and tumor cells. They can also come from non-living substances such as pollen, dust mites, or chemicals.

Antigens contain epitopes, which are specific regions on the antigen molecule that are recognized by the immune system. The immune system's response to an antigen depends on several factors, including the type of antigen, its size, and its location in the body.

In general, antigens can be classified into two main categories:

1. T-dependent antigens: These require the help of T-cells to stimulate an immune response. They are typically larger, more complex molecules that contain multiple epitopes capable of binding to both MHC class II molecules on antigen-presenting cells and T-cell receptors on CD4+ T-cells.
2. T-independent antigens: These do not require the help of T-cells to stimulate an immune response. They are usually smaller, simpler molecules that contain repetitive epitopes capable of cross-linking B-cell receptors and activating them directly.

Understanding antigens and their properties is crucial for developing vaccines, diagnostic tests, and immunotherapies.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Peptide hydrolases, also known as proteases or peptidases, are a group of enzymes that catalyze the hydrolysis of peptide bonds in proteins and peptides. They play a crucial role in various biological processes such as protein degradation, digestion, cell signaling, and regulation of various physiological functions. Based on their catalytic mechanism and the specificity for the peptide bond, they are classified into several types, including serine proteases, cysteine proteases, aspartic proteases, and metalloproteases. These enzymes have important clinical applications in the diagnosis and treatment of various diseases, such as cancer, viral infections, and inflammatory disorders.

The Cholesterol Side-Chain Cleavage Enzyme, also known as Steroidogenic Acute Regulatory (StAR) protein or P450scc, is a complex enzymatic system that plays a crucial role in the production of steroid hormones. It is located in the inner mitochondrial membrane of steroid-producing cells, such as those found in the adrenal glands, gonads, and placenta.

The Cholesterol Side-Chain Cleavage Enzyme is responsible for converting cholesterol into pregnenolone, which is the first step in the biosynthesis of all steroid hormones, including cortisol, aldosterone, sex hormones, and vitamin D. This enzymatic complex consists of two components: a flavoprotein called NADPH-cytochrome P450 oxidoreductase, which provides electrons for the reaction, and a cytochrome P450 protein called CYP11A1, which catalyzes the actual cleavage of the cholesterol side chain.

Defects in the Cholesterol Side-Chain Cleavage Enzyme can lead to various genetic disorders, such as congenital lipoid adrenal hyperplasia (CLAH), a rare autosomal recessive disorder characterized by impaired steroidogenesis and accumulation of cholesteryl esters in the adrenal glands and gonads.

Subtilisins are a group of serine proteases that are produced by certain bacteria, including Bacillus subtilis. They are named after the bacterium and the Latin word "subtilis," which means delicate or finely made. Subtilisins are alkaline proteases, meaning they work best in slightly basic conditions.

Subtilisins have a broad specificity for cleaving peptide bonds and can hydrolyze a wide range of protein substrates. They are widely used in industry for various applications such as detergents, food processing, leather treatment, and biotechnology due to their ability to function at high temperatures and in the presence of denaturing agents.

In medicine, subtilisins have been studied for their potential use in therapeutic applications, including as anti-inflammatory agents and in wound healing. However, more research is needed to fully understand their mechanisms of action and potential benefits.

Proteolysis is the biological process of breaking down proteins into smaller polypeptides or individual amino acids by the action of enzymes called proteases. This process is essential for various physiological functions, including digestion, protein catabolism, cell signaling, and regulation of numerous biological activities. Dysregulation of proteolysis can contribute to several pathological conditions, such as cancer, neurodegenerative diseases, and inflammatory disorders.

Amyloid precursor protein (APP) secretases are enzymes that are responsible for cleaving the amyloid precursor protein into various smaller proteins. There are two types of APP secretases: α-secretase and β-secretase.

α-Secretase is a member of the ADAM (a disintegrin and metalloproteinase) family, specifically ADAM10 and ADAM17. When APP is cleaved by α-secretase, it produces a large ectodomain called sAPPα and a membrane-bound C-terminal fragment called C83. This pathway is known as the non-amyloidogenic pathway because it prevents the formation of amyloid-β (Aβ) peptides, which are associated with Alzheimer's disease.

β-Secretase, also known as β-site APP cleaving enzyme 1 (BACE1), is a type II transmembrane aspartic protease. When APP is cleaved by β-secretase, it produces a large ectodomain called sAPPβ and a membrane-bound C-terminal fragment called C99. Subsequently, C99 is further cleaved by γ-secretase to generate Aβ peptides, including the highly neurotoxic Aβ42. This pathway is known as the amyloidogenic pathway because it leads to the formation of Aβ peptides and the development of Alzheimer's disease.

Therefore, APP secretases play a crucial role in the regulation of APP processing and have been the focus of extensive research in the context of Alzheimer's disease and other neurodegenerative disorders.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Bronchoalveolar lavage (BAL) fluid is a type of clinical specimen obtained through a procedure called bronchoalveolar lavage. This procedure involves inserting a bronchoscope into the lungs and instilling a small amount of saline solution into a specific area of the lung, then gently aspirating the fluid back out. The fluid that is recovered is called bronchoalveolar lavage fluid.

BAL fluid contains cells and other substances that are present in the lower respiratory tract, including the alveoli (the tiny air sacs where gas exchange occurs). By analyzing BAL fluid, doctors can diagnose various lung conditions, such as pneumonia, interstitial lung disease, and lung cancer. They can also monitor the effectiveness of treatments for these conditions by comparing the composition of BAL fluid before and after treatment.

BAL fluid is typically analyzed for its cellular content, including the number and type of white blood cells present, as well as for the presence of bacteria, viruses, or other microorganisms. The fluid may also be tested for various proteins, enzymes, and other biomarkers that can provide additional information about lung health and disease.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Aspartic acid endopeptidases are a type of enzyme that cleave peptide bonds within proteins. They are also known as aspartyl proteases or aspartic proteinases. These enzymes contain two catalytic aspartic acid residues in their active site, which work together to hydrolyze the peptide bond.

Aspartic acid endopeptidases play important roles in various biological processes, including protein degradation, processing, and activation. They are found in many organisms, including viruses, bacteria, fungi, plants, and animals. Some well-known examples of aspartic acid endopeptidases include pepsin, cathepsin D, and HIV protease.

Pepsin is a digestive enzyme found in the stomach that helps break down proteins in food. Cathepsin D is a lysosomal enzyme that plays a role in protein turnover and degradation within cells. HIV protease is an essential enzyme for the replication of the human immunodeficiency virus (HIV), which causes AIDS. Inhibitors of HIV protease are used as antiretroviral drugs to treat HIV infection.

Th2 cells, or T helper 2 cells, are a type of CD4+ T cell that plays a key role in the immune response to parasites and allergens. They produce cytokines such as IL-4, IL-5, IL-13 which promote the activation and proliferation of eosinophils, mast cells, and B cells, leading to the production of antibodies such as IgE. Th2 cells also play a role in the pathogenesis of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis.

It's important to note that an imbalance in Th1/Th2 response can lead to immune dysregulation and disease states. For example, an overactive Th2 response can lead to allergic reactions while an underactive Th2 response can lead to decreased ability to fight off parasitic infections.

It's also worth noting that there are other subsets of CD4+ T cells such as Th1, Th17, Treg and others, each with their own specific functions and cytokine production profiles.

Metalloendopeptidases are a type of enzymes that cleave peptide bonds in proteins, specifically at interior positions within the polypeptide chain. They require metal ions as cofactors for their catalytic activity, typically zinc (Zn2+) or cobalt (Co2+). These enzymes play important roles in various biological processes such as protein degradation, processing, and signaling. Examples of metalloendopeptidases include thermolysin, matrix metalloproteinases (MMPs), and neutrophil elastase.

Asthma is a chronic respiratory disease characterized by inflammation and narrowing of the airways, leading to symptoms such as wheezing, coughing, shortness of breath, and chest tightness. The airway obstruction in asthma is usually reversible, either spontaneously or with treatment.

The underlying cause of asthma involves a combination of genetic and environmental factors that result in hypersensitivity of the airways to certain triggers, such as allergens, irritants, viruses, exercise, and emotional stress. When these triggers are encountered, the airways constrict due to smooth muscle spasm, swell due to inflammation, and produce excess mucus, leading to the characteristic symptoms of asthma.

Asthma is typically managed with a combination of medications that include bronchodilators to relax the airway muscles, corticosteroids to reduce inflammation, and leukotriene modifiers or mast cell stabilizers to prevent allergic reactions. Avoiding triggers and monitoring symptoms are also important components of asthma management.

There are several types of asthma, including allergic asthma, non-allergic asthma, exercise-induced asthma, occupational asthma, and nocturnal asthma, each with its own set of triggers and treatment approaches. Proper diagnosis and management of asthma can help prevent exacerbations, improve quality of life, and reduce the risk of long-term complications.

Eosinophils are a type of white blood cell that play an important role in the body's immune response. They are produced in the bone marrow and released into the bloodstream, where they can travel to different tissues and organs throughout the body. Eosinophils are characterized by their granules, which contain various proteins and enzymes that are toxic to parasites and can contribute to inflammation.

Eosinophils are typically associated with allergic reactions, asthma, and other inflammatory conditions. They can also be involved in the body's response to certain infections, particularly those caused by parasites such as worms. In some cases, elevated levels of eosinophils in the blood or tissues (a condition called eosinophilia) can indicate an underlying medical condition, such as a parasitic infection, autoimmune disorder, or cancer.

Eosinophils are named for their staining properties - they readily take up eosin dye, which is why they appear pink or red under the microscope. They make up only about 1-6% of circulating white blood cells in healthy individuals, but their numbers can increase significantly in response to certain triggers.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Hypersensitivity is an exaggerated or inappropriate immune response to a substance that is generally harmless to most people. It's also known as an allergic reaction. This abnormal response can be caused by various types of immunological mechanisms, including antibody-mediated reactions (types I, II, and III) and cell-mediated reactions (type IV). The severity of the hypersensitivity reaction can range from mild discomfort to life-threatening conditions. Common examples of hypersensitivity reactions include allergic rhinitis, asthma, atopic dermatitis, food allergies, and anaphylaxis.

Superovulation, also known as controlled ovarian stimulation (COS), refers to the process of inducing the development and release of multiple mature ova (eggs) from the ovaries during a single reproductive cycle. This is achieved through the administration of exogenous gonadotropins or other fertility medications, which stimulate the ovarian follicles to grow and mature beyond the normal number. Superovulation is commonly used in assisted reproductive technologies (ART) such as in vitro fertilization (IVF) to increase the chances of successful conception by obtaining a larger number of ova for fertilization and embryo transfer.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

RNA precursors, also known as primary transcripts or pre-messenger RNAs (pre-mRNAs), refer to the initial RNA molecules that are synthesized during the transcription process in which DNA is copied into RNA. These precursor molecules still contain non-coding sequences and introns, which need to be removed through a process called splicing, before they can become mature and functional RNAs such as messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), or transfer RNAs (tRNAs).

Pre-mRNAs undergo several processing steps, including 5' capping, 3' polyadenylation, and splicing, to generate mature mRNA molecules that can be translated into proteins. The accurate and efficient production of RNA precursors and their subsequent processing are crucial for gene expression and regulation in cells.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Pulmonary eosinophilia is a condition characterized by an increased number of eosinophils, a type of white blood cell, in the lungs or pulmonary tissues. Eosinophils play a role in the body's immune response to parasites and allergens, but an overabundance can contribute to inflammation and damage in the lungs.

The condition may be associated with various underlying causes, such as:

1. Asthma or allergic bronchopulmonary aspergillosis (ABPA)
2. Eosinophilic lung diseases, like eosinophilic pneumonia or idiopathic hypereosinophilic syndrome
3. Parasitic infections, such as ascariasis or strongyloidiasis
4. Drug reactions, including certain antibiotics and anti-inflammatory drugs
5. Connective tissue disorders, like rheumatoid arthritis or Churg-Strauss syndrome
6. Malignancies, such as lymphoma or leukemia
7. Other less common conditions, like tropical pulmonary eosinophilia or cryptogenic organizing pneumonia

Symptoms of pulmonary eosinophilia can vary but often include cough, shortness of breath, wheezing, and chest discomfort. Diagnosis typically involves a combination of clinical evaluation, imaging studies, and laboratory tests, such as complete blood count (CBC) with differential, bronchoalveolar lavage (BAL), or lung biopsy. Treatment depends on the underlying cause and may include corticosteroids, antibiotics, or antiparasitic medications.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Post-transcriptional RNA processing refers to the modifications and regulations that occur on RNA molecules after the transcription of DNA into RNA. This process includes several steps:

1. 5' capping: The addition of a cap structure, usually a methylated guanosine triphosphate (GTP), to the 5' end of the RNA molecule. This helps protect the RNA from degradation and plays a role in its transport, stability, and translation.
2. 3' polyadenylation: The addition of a string of adenosine residues (poly(A) tail) to the 3' end of the RNA molecule. This process is important for mRNA stability, export from the nucleus, and translation initiation.
3. Intron removal and exon ligation: Eukaryotic pre-messenger RNAs (pre-mRNAs) contain intronic sequences that do not code for proteins. These introns are removed by a process called splicing, where the flanking exons are joined together to form a continuous mRNA sequence. Alternative splicing can lead to different mature mRNAs from a single pre-mRNA, increasing transcriptomic and proteomic diversity.
4. RNA editing: Specific nucleotide changes in RNA molecules that alter the coding potential or regulatory functions of RNA. This process is catalyzed by enzymes like ADAR (Adenosine Deaminases Acting on RNA) and APOBEC (Apolipoprotein B mRNA Editing Catalytic Polypeptide-like).
5. Chemical modifications: Various chemical modifications can occur on RNA nucleotides, such as methylation, pseudouridination, and isomerization. These modifications can influence RNA stability, localization, and interaction with proteins or other RNAs.
6. Transport and localization: Mature mRNAs are transported from the nucleus to the cytoplasm for translation. In some cases, specific mRNAs are localized to particular cellular compartments to ensure local protein synthesis.
7. Degradation: RNA molecules have finite lifetimes and undergo degradation by various ribonucleases (RNases). The rate of degradation can be influenced by factors such as RNA structure, modifications, or interactions with proteins.

Calpains are a family of calcium-dependent cysteine proteases that play important roles in various cellular processes, including signal transduction, cell death, and remodeling of the cytoskeleton. They are present in most tissues and can be activated by an increase in intracellular calcium levels. There are at least 15 different calpain isoforms identified in humans, which are categorized into two groups based on their calcium requirements for activation: classical calpains (calpain-1 and calpain-2) and non-classical calpains (calpain-3 to calpain-15). Dysregulation of calpain activity has been implicated in several pathological conditions, such as neurodegenerative diseases, muscular dystrophies, and cancer.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Deoxyribonucleases, Type II Site-Specific are a type of enzymes that cleave phosphodiester bonds in DNA molecules at specific recognition sites. They are called "site-specific" because they cut DNA at particular sequences, rather than at random or nonspecific locations. These enzymes belong to the class of endonucleases and play crucial roles in various biological processes such as DNA recombination, repair, and restriction.

Type II deoxyribonucleases are further classified into several subtypes based on their cofactor requirements, recognition site sequences, and cleavage patterns. The most well-known examples of Type II deoxyribonucleases are the restriction endonucleases, which recognize specific DNA motifs in double-stranded DNA and cleave them, generating sticky ends or blunt ends. These enzymes are widely used in molecular biology research for various applications such as genetic engineering, cloning, and genome analysis.

It is important to note that the term "Deoxyribonucleases, Type II Site-Specific" refers to a broad category of enzymes with similar properties and functions, rather than a specific enzyme or family of enzymes. Therefore, providing a concise medical definition for this term can be challenging, as it covers a wide range of enzymes with distinct characteristics and applications.

Ovulation is the medical term for the release of a mature egg from an ovary during a woman's menstrual cycle. The released egg travels through the fallopian tube where it may be fertilized by sperm if sexual intercourse has occurred recently. If the egg is not fertilized, it will break down and leave the body along with the uterine lining during menstruation. Ovulation typically occurs around day 14 of a 28-day menstrual cycle, but the timing can vary widely from woman to woman and even from cycle to cycle in the same woman.

During ovulation, there are several physical changes that may occur in a woman's body, such as an increase in basal body temperature, changes in cervical mucus, and mild cramping or discomfort on one side of the lower abdomen (known as mittelschmerz). These symptoms can be used to help predict ovulation and improve the chances of conception.

It's worth noting that some medical conditions, such as polycystic ovary syndrome (PCOS) or premature ovarian failure, may affect ovulation and make it difficult for a woman to become pregnant. In these cases, medical intervention may be necessary to help promote ovulation and increase the chances of conception.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

Immune tolerance, also known as immunological tolerance or specific immune tolerance, is a state of unresponsiveness or non-reactivity of the immune system towards a particular substance (antigen) that has the potential to elicit an immune response. This occurs when the immune system learns to distinguish "self" from "non-self" and does not attack the body's own cells, tissues, and organs.

In the context of transplantation, immune tolerance refers to the absence of a destructive immune response towards the transplanted organ or tissue, allowing for long-term graft survival without the need for immunosuppressive therapy. Immune tolerance can be achieved through various strategies, including hematopoietic stem cell transplantation, costimulation blockade, and regulatory T cell induction.

In summary, immune tolerance is a critical mechanism that prevents the immune system from attacking the body's own structures while maintaining the ability to respond appropriately to foreign pathogens and antigens.

DNA topoisomerases are enzymes that regulate the topological state of DNA during various cellular processes such as replication, transcription, and repair. They do this by introducing temporary breaks in the DNA strands and allowing the strands to rotate around each other, thereby relieving torsional stress and supercoiling. Topoisomerases are classified into two types: type I and type II.

Type II topoisomerases are further divided into two subtypes: type IIA and type IIB. These enzymes function by forming a covalent bond with the DNA strands, cleaving them, and then passing another segment of DNA through the break before resealing the original strands. This process allows for the removal of both positive and negative supercoils from DNA as well as the separation of interlinked circular DNA molecules (catenanes) or knotted DNA structures.

Type II topoisomerases are essential for cell viability, and their dysfunction has been linked to various human diseases, including cancer and neurodegenerative disorders. They have also emerged as important targets for the development of anticancer drugs that inhibit their activity and induce DNA damage leading to cell death. Examples of type II topoisomerase inhibitors include etoposide, doxorubicin, and mitoxantrone.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Antigen presentation is the process by which certain cells in the immune system, known as antigen presenting cells (APCs), display foreign or abnormal proteins (antigens) on their surface to other immune cells, such as T-cells. This process allows the immune system to recognize and mount a response against harmful pathogens, infected or damaged cells.

There are two main types of antigen presentation: major histocompatibility complex (MHC) class I and MHC class II presentation.

1. MHC class I presentation: APCs, such as dendritic cells, macrophages, and B-cells, process and load antigens onto MHC class I molecules, which are expressed on the surface of almost all nucleated cells in the body. The MHC class I-antigen complex is then recognized by CD8+ T-cells (cytotoxic T-cells), leading to the destruction of infected or damaged cells.
2. MHC class II presentation: APCs, particularly dendritic cells and B-cells, process and load antigens onto MHC class II molecules, which are mainly expressed on the surface of professional APCs. The MHC class II-antigen complex is then recognized by CD4+ T-cells (helper T-cells), leading to the activation of other immune cells, such as B-cells and macrophages, to eliminate the pathogen or damaged cells.

In summary, antigen presentation is a crucial step in the adaptive immune response, allowing for the recognition and elimination of foreign or abnormal substances that could potentially harm the body.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Immunologic adjuvants are substances that are added to a vaccine to enhance the body's immune response to the antigens contained in the vaccine. They work by stimulating the immune system and promoting the production of antibodies and activating immune cells, such as T-cells and macrophages, which help to provide a stronger and more sustained immune response to the vaccine.

Immunologic adjuvants can be derived from various sources, including bacteria, viruses, and chemicals. Some common examples include aluminum salts (alum), oil-in-water emulsions (such as MF59), and bacterial components (such as lipopolysaccharide or LPS).

The use of immunologic adjuvants in vaccines can help to improve the efficacy of the vaccine, particularly for vaccines that contain weak or poorly immunogenic antigens. They can also help to reduce the amount of antigen needed in a vaccine, which can be beneficial for vaccines that are difficult or expensive to produce.

It's important to note that while adjuvants can enhance the immune response to a vaccine, they can also increase the risk of adverse reactions, such as inflammation and pain at the injection site. Therefore, the use of immunologic adjuvants must be carefully balanced against their potential benefits and risks.

Protease inhibitors are a class of antiviral drugs that are used to treat infections caused by retroviruses, such as the human immunodeficiency virus (HIV), which is responsible for causing AIDS. These drugs work by blocking the activity of protease enzymes, which are necessary for the replication and multiplication of the virus within infected cells.

Protease enzymes play a crucial role in the life cycle of retroviruses by cleaving viral polyproteins into functional units that are required for the assembly of new viral particles. By inhibiting the activity of these enzymes, protease inhibitors prevent the virus from replicating and spreading to other cells, thereby slowing down the progression of the infection.

Protease inhibitors are often used in combination with other antiretroviral drugs as part of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS. Common examples of protease inhibitors include saquinavir, ritonavir, indinavir, and atazanavir. While these drugs have been successful in improving the outcomes of people living with HIV/AIDS, they can also cause side effects such as nausea, diarrhea, headaches, and lipodystrophy (changes in body fat distribution).

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

DNA restriction enzymes, also known as restriction endonucleases, are a type of enzyme that cut double-stranded DNA at specific recognition sites. These enzymes are produced by bacteria and archaea as a defense mechanism against foreign DNA, such as that found in bacteriophages (viruses that infect bacteria).

Restriction enzymes recognize specific sequences of nucleotides (the building blocks of DNA) and cleave the phosphodiester bonds between them. The recognition sites for these enzymes are usually palindromic, meaning that the sequence reads the same in both directions when facing the opposite strands of DNA.

Restriction enzymes are widely used in molecular biology research for various applications such as genetic engineering, genome mapping, and DNA fingerprinting. They allow scientists to cut DNA at specific sites, creating precise fragments that can be manipulated and analyzed. The use of restriction enzymes has been instrumental in the development of recombinant DNA technology and the Human Genome Project.

ADAM (A Disintegrin And Metalloprotease) proteins are a family of type I transmembrane proteins that contain several distinct domains, including a prodomain, a metalloprotease domain, a disintegrin-like domain, a cysteine-rich domain, a transmembrane domain, and a cytoplasmic tail. These proteins are involved in various biological processes such as cell adhesion, migration, proteolysis, and signal transduction.

ADAM proteins have been found to play important roles in many physiological and pathological conditions, including fertilization, neurodevelopment, inflammation, and cancer metastasis. For example, ADAM12 is involved in the fusion of myoblasts during muscle development, while ADAM17 (also known as TACE) plays a crucial role in the shedding of membrane-bound proteins such as tumor necrosis factor-alpha and epidermal growth factor receptor ligands.

Abnormalities in ADAM protein function have been implicated in various diseases, including cancer, Alzheimer's disease, and arthritis. Therefore, understanding the structure and function of these proteins has important implications for the development of novel therapeutic strategies.

Endonucleases are enzymes that cleave, or cut, phosphodiester bonds within a polynucleotide chain, specifically within the same molecule of DNA or RNA. They can be found in all living organisms and play crucial roles in various biological processes, such as DNA replication, repair, and recombination.

Endonucleases can recognize specific nucleotide sequences (sequence-specific endonucleases) or have no sequence preference (non-specific endonucleases). Some endonucleases generate sticky ends, overhangs of single-stranded DNA after cleavage, while others produce blunt ends without any overhang.

These enzymes are widely used in molecular biology techniques, such as restriction digestion, cloning, and genome editing (e.g., CRISPR-Cas9 system). Restriction endonucleases recognize specific DNA sequences called restriction sites and cleave the phosphodiester bonds at or near these sites, generating defined fragment sizes that can be separated by agarose gel electrophoresis. This property is essential for various applications in genetic engineering and biotechnology.

Enzyme precursors are typically referred to as zymogens or proenzymes. These are inactive forms of enzymes that can be activated under specific conditions. When the need for the enzyme's function arises, the proenzyme is converted into its active form through a process called proteolysis, where it is cleaved by another enzyme. This mechanism helps control and regulate the activation of certain enzymes in the body, preventing unwanted or premature reactions. A well-known example of an enzyme precursor is trypsinogen, which is converted into its active form, trypsin, in the digestive system.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

This mitosis is also known as cleavage. A hollow cavity forms marking the blastocyst stage. (day 1.5-3 of fertilization.) The ... Fertilization of the ovum to form a new human organism, the human zygote. (day 1 of fertilization) The zygote undergoes mitotic ... Wagner F, Erdösová B, Kylarová D (December 2004). "Degradation phase of apoptosis during the early stages of human metanephros ...
Fertilization occurs when the sperm reaches the ovum. The zygote experiences radial holoblastic cleavage and eventually forms ... Euplectella experiences two main life stages: the larval stage or the adult stage. In the larval stage, the larvae is free ... In the adult stage, Euplectella are sessile and attached firmly to rocks through spicules. It is unclear how long Euplectella ...
Usually even before its liberation, the ovum initiates cleavage processes in which it becomes completely pinched through at the ... Development beyond this 256-cell stage has not yet been observed. Trichoplax lack a homologue of the Boule protein that appears ... Once maturation of the ovum is complete, the rest of the animal degenerates, liberating the ovum itself. Small, unciliated ... In the protected interior space, the ventral cells form an ovum surrounded by a special envelope, the fertilisation membrane; ...
The ova is yellowish in color. The egg is about 70-85 μm long by 44 μm wide, and the early stages of cleavage contain between ... and L2 juvenile stages by feeding on bacteria in the dung. The L1 stage usually occurs within four to six days under the ... "The role of the sheath in resistance of Haemonchus contortus infective stage larvae to proteolytic digestion". Veterinary ...
The different cells derived from cleavage, up to the blastula stage, are called blastomeres. Depending mostly on the amount of ... The inner cell mass remains in contact, however, with the trophoblast at one pole of the ovum; this is named the embryonic pole ... Meroblastic cleavage occurs in animals whose eggs have more yolk (i.e. birds and reptiles). Because cleavage is impeded in the ... In holoblastic eggs, the first cleavage always occurs along the vegetal-animal axis of the egg, and the second cleavage is ...
... cleavage stage, ovum MeSH A16.254.300.600.274 - blastula MeSH A16.254.300.600.550 - morula MeSH A16.254.300.800 - yolk sac MeSH ... cleavage stage, ovum MeSH A16.254.270.274 - blastula MeSH A16.254.270.550 - morula MeSH A16.254.283 - cloaca MeSH A16.254.300 ...
The germinal stage takes around 10 days. During this stage, the zygote begins to divide, in a process called cleavage. A ... With the sperm adhered to the ovum, the third process of acrosomal reaction takes place; the front part of the spermatozoan ... Cleavage itself is the first stage in blastulation, the process of forming the blastocyst. Cells differentiate into an outer ... The germinal stage refers to the time from fertilization through the development of the early embryo until implantation is ...
"blastocoel...[blaso- + -coele] the fluid-filled cavity of the mass of cells (blastula) produced by cleavage of fertilized ovum ... cell stage is considered a blastula as the blastocoel in the embryo becomes apparent during this stage. The fluid-filled cavity ... At this stage there is no cavity within the morula; the embryo is still a ball of dividing cells. In a process called ... At this stage in mammals the blastula develops into the blastocyst containing an inner cell mass, and outer trophectoderm. It ...
The germinal stage takes around 10 days. During this stage, the zygote begins to divide, in a process called cleavage. A ... Fertilization occurs when the sperm cell successfully enters and fuses with an egg cell (ovum). The genetic material of the ... Embryonic development has four stages: the morula stage, the blastula stage, the gastrula stage, and the neurula stage. Prior ... The egg becomes a zygote and the germinal stage of embryonic development begins. The germinal stage refers to the time from ...
Soma line is the vegetative stage. During early cleavage stages of the embryo limited chromosomes are eliminated. The number of ... In the formation ova of the females the 1st ovarian division is monocentric mitosis, the maternal and paternal homologous ... In the next stage of cleavage one paternal X chromosome is eliminated. Hence female soma line cells have 3 pairs of autosomes ... Some special chromosomes called limited chromosomes are present in certain stages. The zygote has 3 pairs of autosomes a one or ...
Spermatozoa fuse with the ova in the fertilisation duct, where the zygotes are produced. The zygote undergoes holoblastic and ... However, humans can also act as secondary hosts, which is a more pathological, harmful stage triggered by oral contamination. ... unequal cleavage resulting in three cell types, small, medium and large (micromeres, mesomeres, megameres). Megameres develop ... Humans are colonised by the larval stage, the cysticercus, from undercooked pork or other meat. Each microscopic cysticercus is ...
Temporary gonoducts (ducts from which the ova or sperm are emitted), one per gonad, are built when the ova and sperm are ready ... This larval stage is unique in that there are no Hox genes involved during development, which are only found in the juveniles ... The fertilized egg divides by spiral cleavage and grows by determinate development, in which the fate of a cell can usually be ... The planuliform larva stage may be short-lived and lecithotrophic ("yolky") before becoming a juvenile, or may be ...
Stage of a cell division Metaphase - Stage of cell division Mitosis - Process in which replicated chromosomes are separated ... constricting the cell membrane to form a cleavage furrow. Continued hydrolysis causes this cleavage furrow to ingress (move ... for example in oogenesis in animals the ovum takes almost all the cytoplasm and organelles. This leaves very little for the ... The stages of cell plate formation include (1) creation of the phragmoplast, an array of microtubules that guides and supports ...
"Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy". ... Fertilisation occurs when an ovum fuses with a sperm, forming a zygote. Normally, the genomes of the two parents assort into ...
... of a motile stage. The zygote or the ovum itself or the sessile organic vessel containing the developing embryo may be called ... The yolk is evenly distributed, so the cleavage of the egg cell cuts through and divides the egg into cells of fairly similar ... In cnidarians, this stage is called the planula, and either develops directly into the adult animals or forms new adult ... The fetus instead develops as a plate-like structure on top of the yolk mass, and only envelopes it at a later stage. A portion ...
By the morula stage, these cells have become flattened and have begun to develop stronger cell-to-cell adhesion, as well as to ... cleavage concealed ovulation conception delamination deuterostome developmental biology diakinesis dioestrus In the mammalian ... oocyte oogenesis organogenesis ovary oviduct ovulation ovum pachynema parthenogenesis parturition placenta polar body ... gastrula gastrulation A stage in the embryonic development of most animals defined by the formation of the gastrula, following ...
This stage has also been referred to as the pre-embryo in legal discourses including relevance to the use of embryonic stem ... In the fertilized daughter, DNA is then replicated in the two separate pronuclei derived from the sperm and ovum, making the ... in a process called cleavage. After four divisions, the conceptus consists of 16 blastomeres, and it is known as the morula. ... Between the stages of fertilization and implantation, the developing embryo is sometimes termed as a preimplantation-conceptus ...
Coeloblastula is the next stage of development for eggs that undergo this radial cleavage. In mammals, because the isolecithal ... Isolecithal (Greek iso = equal, lekithos = yolk) refers to the even distribution of yolk in the cytoplasm of ova of mammals and ... and rotational holoblastic cleavage. These holoblastic cleavage planes pass all the way through isolecithal zygotes during the ... In the absence of a large concentration of yolk, four major cleavage types can be observed in isolecithal cells: radial ...
Yolk cells travel in a duct system to the oviduct, where, in a modified region, the ovum is enclosed in a shell with yolk cells ... After the scolex has differentiated and matured in the larval stage, growth will stop until a vertebrate eats the intermediate ... The initial six-hooked embryo, known as an oncosphere or hexacanth, forms through cleavage. In the order Pseudophyllidea, it ... Eucestoda ontogenesis continues through metamorphosing in different larval stages inside different hosts. ...
Holoblastic cleavage can be radial (see: Radial cleavage), spiral (see: Spiral cleavage), bilateral (see: Bilateral cleavage), ... In the first stage, the semen predominates. In the second stage, the embryo is filled with blood. In the third stage, the main ... Until the birth of modern embryology through observation of the mammalian ovum by Karl Ernst von Baer in 1827, there was no ... Meroblastic cleavage can be bilateral (see: Bilateral cleavage), discoidal (see: Discoidal cleavage), or centrolecithal (see: ...
The popularity of OVA (Original Video Animation) direct-to-video series in Japan has been a major factor in the unique blend of ... Nudity has almost universally not been permitted on stage, but sheer or simulated nudity may have been. Devices used included ... The Hays Code was so strict that even the display of cleavage was controversial. Producer Howard Hughes created controversy by ... The Japanese-Peruvian Internet music star Sebastian Castro (the stage-name of Benjamin Brian Castro) also appears in the film, ...
... stages of meiosis. The long period of meiotic arrest at the four chromatid dictyate stage of meiosis may facilitate ... Germ cell specification begins during cleavage in many animals or in the epiblast during gastrulation in birds and mammals. ... ovum). The unfertilized egg of most animals is asymmetrical: different regions of the cytoplasm contain different amounts of ... The mouse oocyte in the dictyate (prolonged diplotene) stage of meiosis actively repairs DNA damage, whereas DNA repair was not ...
... cleavage) (photograph). By 8-9 hours, it has reached the 64-cell stage. Some molecular and histological evidence suggests the ... In section, they are very different, with the ovaries densely filled with nutrient-packed ova (see ovum and photograph) and the ... To this stage, the larva has been virtually transparent, but the posterior section is now opaque with the initial development ... Juveniles of A. planci that had reached the stage of feeding on coral were then reared for some years in the same large closed- ...
It is optimally performed at the 6- to 8-cell stage, where it can be used as an expansion of IVF to increase the number of ... Dolly's embryo was created by taking the cell and inserting it into a sheep ovum. It took 435 attempts before an embryo was ... and Parton is known for her ample cleavage. The modern cloning techniques involving nuclear transfer have been successfully ... At an early growth stage when colonies consist of only a few cells, sterile polystyrene rings (cloning rings), which have been ...
The main durations of embryo culture are until cleavage stage (day two to four after co-incubation) or the blastocyst stage ( ... removing an ovum or ova (egg or eggs) from her ovaries and letting sperm fertilise them in a culture medium in a laboratory. ... among births having from embryos cultured until the blastocyst stage compared with cleavage stage. Laboratories have developed ... On the contrary, for women of advanced maternal age, PGS with cleavage-stage biopsy significantly lowers the live birth rate. ...
After the fertilization, the cleavage of the embryo leads to the formation of the germinal disc. As food, the chicken egg yolk ... All bony fish, some sharks and rays have yolk sacs at some stage of development, with all oviparous fish retaining the sac ... The yolk mass, together with the ovum proper (after fertilization, the embryo) are enclosed by the vitelline membrane, whose ... contrary to the claim that the avian ovum (in strict sense) and its yolk are a single giant cell. ...
The first stage of prophase I is the leptotene stage, also known as leptonema, from Greek words meaning "thin threads".: 27 In ... which enlarges to become an ovum. Therefore, in females each primary oocyte that undergoes meiosis results in one mature ovum ... Nuclear envelopes re-form and cleavage or cell plate formation eventually produces a total of four daughter cells, each with a ... 27 is the stage at which all autosomal chromosomes have synapsed. In this stage homologous recombination, including chromosomal ...
The oral-aboral axis is specified early in cleavage, and the left-right axis appears at the late gastrula stage. In most cases ... The transparency of the urchin's eggs enabled them to be used to observe that sperm cells actually fertilize ova. They continue ... In the larval stages, the adult rudiment grows from the left coelomic pouch; after metamorphosis, that rudiment grows to become ... During cleavage, mesoderm and small micromeres are specified. At the end of gastrulation, cells of these two types form ...
After the stages of resection, strand invasion and DNA synthesis, the DSBR and SDSA pathways become distinct. The DSBR pathway ... This cleavage is done by RuvAB complex interacting with RuvC, which together form the RuvABC complex. RuvC is an endonuclease ... In turn, nondisjunction can cause sperm and ova to have too few or too many chromosomes. Down's syndrome, which is caused by an ... Mimitou EP, Symington LS (May 2009). "Nucleases and helicases take center stage in homologous recombination". Trends in ...
Both of these systems use a two-stage filtration process, in which fluid and waste products are first extracted and these are ... Most polychaetes whose reproduction has been studied lack permanent gonads, and it is uncertain how they produce ova and sperm ... Hence this development pattern is often described as "spiral determinate cleavage". Fossil discoveries lead to the hypothesis ... When their cells divide after the 4-cell stage, descendants of these four cells form a spiral pattern. In these phyla the " ...

No FAQ available that match "cleavage stage ovum"