A large family of transmembrane proteins found in TIGHT JUNCTIONS. They take part in the formation of paracellular barriers and pores that regulate paracellular permeability.
A ubiquitously-expressed claudin subtype that acts as a general barrier-forming protein in TIGHT JUNCTIONS. Elevated expression of claudin-3 is found in a variety of tumor cell types, suggesting its role as a therapeutic target for specific ANTINEOPLASTIC AGENTS.
An integral membrane protein that is localized to TIGHT JUNCTIONS, where it plays a role in controlling the paracellular permeability of polarized cells. Mutations in the gene for claudin-1 are associated with Neonatal Ichthyosis-Sclerosing Cholangitis (NISCH) Syndrome.
A claudin subtype that takes part in maintaining the barrier-forming property of TIGHT JUNCTIONS. Claudin-4 is found associated with CLAUDIN-8 in the KIDNEY COLLECTING DUCT where it may play a role in paracellular chloride ion reabsorption.
Cell-cell junctions that seal adjacent epithelial cells together, preventing the passage of most dissolved molecules from one side of the epithelial sheet to the other. (Alberts et al., Molecular Biology of the Cell, 2nd ed, p22)
A claudin subtype that is found localized to TIGHT JUNCTIONS in VASCULAR ENDOTHELIAL CELLS. The protein was initially identified as one of several proteins which are deleted in VELOCARDIOFACIAL SYNDROME and may play an important role in maintaining the integrity of the BLOOD-BRAIN BARRIER.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A MARVEL domain protein that plays an important role in the formation and regulation of the TIGHT JUNCTION paracellular permeability barrier.
A 195-kDa zonula occludens protein that is distinguished by the presence of a ZU5 domain at the C-terminal of the molecule.
A zonula occludens protein subtype found in epithelial cell junctions. Several isoforms of zonula occludens-2 protein exist due to use of alternative promoter regions and alternative mRNA splicings.
A claudin subtype that is associated with the formation of cation-selective channels and increased epithelial permeability. It is localized to the TIGHT JUNCTIONS of the PROXIMAL KIDNEY TUBULE and INTESTINAL EPITHELIUM.
A specialized barrier, in the TESTIS, between the interstitial BLOOD compartment and the adluminal compartment of the SEMINIFEROUS TUBULES. The barrier is formed by layers of cells from the VASCULAR ENDOTHELIUM of the capillary BLOOD VESSELS, to the SEMINIFEROUS EPITHELIUM of the seminiferous tubules. TIGHT JUNCTIONS form between adjacent SERTOLI CELLS, as well as between the ENDOTHELIAL CELLS.
Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions.
The resistance to the flow of either alternating or direct electrical current.
The technique of placing cells or tissue in a supporting medium so that thin sections can be cut using a microtome. The medium can be paraffin wax (PARAFFIN EMBEDDING) or plastics (PLASTIC EMBEDDING) such as epoxy resins.
A genus of pufferfish commonly used for research.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Excretion of abnormally high level of CALCIUM in the URINE, greater than 4 mg/kg/day.
An inherited renal disorder characterized by defective NaCl reabsorption in the convoluted DISTAL KIDNEY TUBULE leading to HYPOKALEMIA. In contrast with BARTTER SYNDROME, Gitelman syndrome includes hypomagnesemia and normocalcemic hypocalciuria, and is caused by mutations in the thiazide-sensitive SODIUM-POTASSIUM-CHLORIDE SYMPORTERS.
A condition characterized by calcification of the renal tissue itself. It is usually seen in distal RENAL TUBULAR ACIDOSIS with calcium deposition in the DISTAL KIDNEY TUBULES and the surrounding interstitium. Nephrocalcinosis causes RENAL INSUFFICIENCY.
A quality of cell membranes which permits the passage of solvents and solutes into and out of cells.
Human colonic ADENOCARCINOMA cells that are able to express differentiation features characteristic of mature intestinal cells, such as ENTEROCYTES. These cells are valuable in vitro tools for studies related to intestinal cell function and differentiation.
The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE.
Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica.
Cells of epithelial origin possessing specialized sensory functions. They include cells that are found in the TASTE BUDS; OLFACTORY MUCOSA; COCHLEA; and NEUROEPITHELIAL BODIES.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
Paired respiratory organs of fishes and some amphibians that are analogous to lungs. They are richly supplied with blood vessels by which oxygen and carbon dioxide are exchanged directly with the environment.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Anchoring points where the CYTOSKELETON of neighboring cells are connected to each other. They are composed of specialized areas of the plasma membrane where bundles of the ACTIN CYTOSKELETON attach to the membrane through the transmembrane linkers, CADHERINS, which in turn attach through their extracellular domains to cadherins in the neighboring cell membranes. In sheets of cells, they form into adhesion belts (zonula adherens) that go all the way around a cell.
Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER.
A usually benign glandular tumor composed of oxyphil cells, large cells with small irregular nuclei and dense acidophilic granules due to the presence of abundant MITOCHONDRIA. Oxyphil cells, also known as oncocytes, are found in oncocytomas of the kidney, salivary glands, and endocrine glands. In the thyroid gland, oxyphil cells are known as Hurthle cells and Askanazy cells.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792)
Established cell cultures that have the potential to propagate indefinitely.
Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING.
The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
Degree of saltiness, which is largely the OSMOLAR CONCENTRATION of SODIUM CHLORIDE plus any other SALTS present. It is an ecological factor of considerable importance, influencing the types of organisms that live in an ENVIRONMENT.
The simultaneous analysis of multiple samples of TISSUES or CELLS from BIOPSY or in vitro culture that have been arranged in an array format on slides or microchips.
The most common etiologic agent of GAS GANGRENE. It is differentiable into several distinct types based on the distribution of twelve different toxins.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A general term for the complete or partial loss of the ability to hear from one or both ears.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI.
The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH.
Phenotypic changes of EPITHELIAL CELLS to MESENCHYME type, which increase cell mobility critical in many developmental processes such as NEURAL TUBE development. NEOPLASM METASTASIS and DISEASE PROGRESSION may also induce this transition.
The portion of renal tubule that begins from the enlarged segment of the ascending limb of the LOOP OF HENLE. It reenters the KIDNEY CORTEX and forms the convoluted segments of the distal tubule.
Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria.
Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.
Membrane-limited structures derived from the plasma membrane or various intracellular membranes which function in storage, transport or metabolism.
A malignant neoplasm arising from tenosynovial tissue of the joints and in synovial cells of tendons and bursae. The legs are the most common site, but the tumor can occur in the abdominal wall and other trunk muscles. There are two recognized types: the monophasic (characterized by sheaths of monotonous spindle cells) and the biphasic (characterized by slit-like spaces or clefts within the tumor, lined by cuboidal or tall columnar epithelial cells). These sarcomas occur most commonly in the second and fourth decades of life. (From Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1363)
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The mucous membrane lining the RESPIRATORY TRACT, including the NASAL CAVITY; the LARYNX; the TRACHEA; and the BRONCHI tree. The respiratory mucosa consists of various types of epithelial cells ranging from ciliated columnar to simple squamous, mucous GOBLET CELLS, and glands containing both mucous and serous cells.
Carcinoma that arises from the PANCREATIC DUCTS. It accounts for the majority of cancers derived from the PANCREAS.
Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or body fluids. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including hormones, antigens, amino and nucleic acids, enzymes, polyamines, and specific cell membrane proteins and lipids.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa.
Stratified squamous epithelium that covers the outer surface of the CORNEA. It is smooth and contains many free nerve endings.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
The sequential location of genes on a chromosome.
Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place.
Proteins obtained from the ZEBRAFISH. Many of the proteins in this species have been the subject of studies involving basic embryological development (EMBRYOLOGY).
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body.
A carcinoma discovered by Dr. Margaret R. Lewis of the Wistar Institute in 1951. This tumor originated spontaneously as a carcinoma of the lung of a C57BL mouse. The tumor does not appear to be grossly hemorrhagic and the majority of the tumor tissue is a semifirm homogeneous mass. (From Cancer Chemother Rep 2 1972 Nov;(3)1:325) It is also called 3LL and LLC and is used as a transplantable malignancy.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. They are used in embryological studies and to study the effects of certain chemicals on development.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible.
A cell line derived from cultured tumor cells.
Interruption or suppression of the expression of a gene at transcriptional or translational levels.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells.
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.
Refers to animals in the period of time just after birth.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction.
The relationships of groups of organisms as reflected by their genetic makeup.
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
MAMMARY GLANDS in the non-human MAMMALS.
A nonparametric method of compiling LIFE TABLES or survival tables. It combines calculated probabilities of survival and estimates to allow for observations occurring beyond a measurement threshold, which are assumed to occur randomly. Time intervals are defined as ending each time an event occurs and are therefore unequal. (From Last, A Dictionary of Epidemiology, 1995)
Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Tumors or cancer of the human BREAST.
A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.
Adherence of cells to surfaces or to other cells.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA).
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine.
Proteins prepared by recombinant DNA technology.

Transmembrane proteins in the tight junction barrier. (1/304)

Three types of transmembrane proteins have been identified within the tight junction, but it remains to be determined how they provide the molecular basis for regulating the paracellular permeability for water, solutes, and immune cells. Several of these proteins localize specifically within the continuous cell-to-cell contacts of the tight junction. One of these, occludin, is a cell adhesion molecule that has been demonstrated to influence ion and solute permeability. The claudins are a family of four-membrane spanning proteins; unexpectedly, other members of this family have already been characterized without recognizing their relationship to tight junctions. Junction adhesion molecule, the most recently identified tight junction component, is a member of the Ig superfamily and influences the paracellular transmigration of immune cells. A plaque of cytoplasmic proteins under the junction may be responsible for scaffolding the transmembrane proteins, creating a link to the perijunctional actin cytoskeleton and transducing regulatory signals that control the paracellular barrier.  (+info)

Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. (2/304)

House dust mite (HDM) allergens are important factors in the increasing prevalence of asthma. The lung epithelium forms a barrier that allergens must cross before they can cause sensitization. However, the mechanisms involved are unknown. Here we show that the cysteine proteinase allergen Der p 1 from fecal pellets of the HDM Dermatophagoides pteronyssinus causes disruption of intercellular tight junctions (TJs), which are the principal components of the epithelial paracellular permeability barrier. In confluent airway epithelial cells, Der p 1 led to cleavage of the TJ adhesion protein occludin. Cleavage was attenuated by antipain, but not by inhibitors of serine, aspartic, or matrix metalloproteinases. Putative Der p 1 cleavage sites were found in peptides from an extracellular domain of occludin and in the TJ adhesion protein claudin-1. TJ breakdown nonspecifically increased epithelial permeability, allowing Der p 1 to cross the epithelial barrier. Thus, transepithelial movement of Der p 1 to dendritic antigen-presenting cells via the paracellular pathway may be promoted by the allergen's own proteolytic activity. These results suggest that opening of TJs by environmental proteinases may be the initial step in the development of asthma to a variety of allergens.  (+info)

Connexin-occludin chimeras containing the ZO-binding domain of occludin localize at MDCK tight junctions and NRK cell contacts. (3/304)

Occludin is a transmembrane protein of the tight junction that functions in creating both an intercellular permeability barrier and an intramembrane diffusion barrier. Creation of the barrier requires the precise localization of occludin, and a distinct family of transmembrane proteins called claudins, into continuous linear fibrils visible by freeze-fracture microscopy. Conflicting evidence exists regarding the relative importance of the transmembrane and extracellular versus the cytoplasmic domains in localizing occludin in fibrils. To specifically address whether occludin's COOH-terminal cytoplasmic domain is sufficient to target it into tight junction fibrils, we created chimeras with the transmembrane portions of connexin 32. Despite the gap junction targeting information present in their transmembrane and extracellular domains, these connexin-occludin chimeras localized within fibrils when expressed in MDCK cells, as assessed by immunofluorescence and immunogold freeze-fracture imaging. Localization of chimeras at tight junctions depends on the COOH-terminal ZO-binding domain and not on the membrane proximal domain of occludin. Furthermore, neither endogenous occludin nor claudin is required for targeting to ZO-1-containing cell-cell contacts, since in normal rat kidney fibroblasts targeting of chimeras again required only the ZO-binding domain. These results suggest an important role for cytoplasmic proteins, presumably ZO-1, ZO-2, and ZO-3, in localizing occludin in tight junction fibrils. Such a scaffolding and cytoskeletal coupling function for ZO MAGUKs is analogous to that of other members of the MAGUK family.  (+info)

Ca(2+)-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. (4/304)

In multicellular organisms, various compositionally distinct fluid compartments are established by epithelial and endothelial cellular sheets. For these cells to function as barriers, tight junctions (TJs) are considered to create a primary barrier for the diffusion of solutes through the paracellular pathway [1] [2] [3]. In ultrathin sections viewed under electron microscopy, TJs appear as a series of apparent fusions, involving the outer leaflets of plasma membranes of adjacent cells, to form the so-called kissing points of TJs, where the intercellular space is completely obliterated [4]. Claudins are a family of 16 proteins whose members have been identified as major integral membrane proteins localized exclusively at TJs [5] [6] [7] [8]. It remains unclear, however, whether claudins have the cell-adhesion activity that would explain the unusual intercellular adhesion at TJs. Using mouse L-fibroblast transfectants expressing various amounts of claudin-1, -2 or -3, we found that these claudins possess Ca(2+)-independent cell-adhesion activity. Using ultrathin-section electron microscopy, we observed many kissing points of TJs between adjacent transfectants. Furthermore, the cell-adhesion activity of occludin, another integral membrane protein localized at TJs [9] [10] [11], was negligible when compared with that of claudins. Thus, claudins are responsible for TJ-specific obliteration of the intercellular space.  (+info)

Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. (5/304)

Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.  (+info)

Manner of interaction of heterogeneous claudin species within and between tight junction strands. (6/304)

In tight junctions (TJs), TJ strands are associated laterally with those of adjacent cells to form paired strands to eliminate the extracellular space. Claudin-1 and -2, integral membrane proteins of TJs, reconstitute paired TJ strands when transfected into L fibroblasts. Claudins comprise a multigene family and more than two distinct claudins are coexpressed in single cells, raising the questions of whether heterogeneous claudins form heteromeric TJ strands and whether claudins interact between each of the paired strands in a heterophilic manner. To answer these questions, we cotransfected two of claudin-1, -2, and -3 into L cells, and detected their coconcentration at cell-cell borders as elaborate networks. Immunoreplica EM confirmed that distinct claudins were coincorporated into individual TJ strands. Next, two L transfectants singly expressing claudin-1, -2, or -3 were cocultured and we found that claudin-3 strands laterally associated with claudin-1 and -2 strands to form paired strands, whereas claudin-1 strands did not interact with claudin-2 strands. We concluded that distinct species of claudins can interact within and between TJ strands, except in some combinations. This mode of assembly of claudins could increase the diversity of the structure and functions of TJ strands.  (+info)

Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. (7/304)

ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell-cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.  (+info)

Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. (8/304)

Occludin is an integral membrane protein of the epithelial cell tight junction (TJ). Its potential role in coordinating structural and functional events of TJ formation has been suggested recently. Using a rat salivary gland epithelial cell line (Pa-4) as a model system, we have demonstrated that occludin not only is a critical component of functional TJs but also controls the phenotypic changes associated with epithelium oncogenesis. Transfection of an oncogenic Raf-1 into Pa-4 cells resulted in a complete loss of TJ function and the acquisition of a stratified phenotype that lacked cell-cell contact growth control. The expression of occludin and claudin-1 was downregulated, and the distribution patterns of ZO-1 and E-cadherin were altered. Introduction of the human occludin gene into Raf-1-activated Pa-4 cells resulted in reacquisition of a monolayer phenotype and the formation of functionally intact TJs. In addition, the presence of exogenous occludin protein led to a recovery in claudin-1 protein level, relocation of the zonula occludens 1 protein (ZO-1) to the TJ, and redistribution of E-cadherin to the lateral membrane. Furthermore, the expression of occludin inhibited anchorage-independent growth of Raf-1-activated Pa-4 cells in soft agarose. Thus, occludin may act as a pivotal signaling molecule in oncogenic Raf- 1-induced disruption of TJs, and regulates phenotypic changes associated with epithelial cell transformation.  (+info)

Claudins are a group of proteins that play a crucial role in the formation and function of tight junctions, which are specialized structures found in the cell membranes of epithelial and endothelial cells. Tight junctions serve as barriers to regulate the paracellular movement of ions, solutes, and water between cells, and claudins are one of the major components that contribute to their selective permeability.

There are over 20 different types of claudins identified in various tissues throughout the body, with each type having a unique structure and function. Claudins can form homotypic or heterotypic interactions with other claudin molecules, allowing for the formation of tight junction strands with varying pore sizes and charge selectivity. This diversity in claudin composition enables the regulation of paracellular transport across different tissues, such as the blood-brain barrier, intestinal epithelium, and renal tubules.

Mutations or dysregulation of claudins have been implicated in several diseases, including cancer, inflammatory bowel disease, and neurological disorders. For example, altered expression levels of specific claudins can contribute to the development of drug resistance in certain types of cancer cells, making them more difficult to treat. Additionally, changes in claudin composition or distribution can disrupt tight junction function, leading to increased permeability and the onset of various pathological conditions.

Claudin-3 is a protein that belongs to the family of claudins, which are essential components of tight junctions in cells. Tight junctions are specialized structures that serve as barriers between adjacent cells, controlling the paracellular movement of ions, solutes, and water. Claudin-3 is primarily expressed in epithelial tissues, where it helps maintain cell polarity and regulate the permeability of the intercellular space. Mutations or abnormal expression of claudin-3 have been implicated in various pathological conditions, including cancer and inflammatory diseases.

Claudin-1 is a protein that is a member of the claudin family, which are important components of tight junctions in cells. Tight junctions are specialized structures that help to regulate the paracellular permeability of liquids and solutes between cells, and play a crucial role in maintaining cell polarity and tissue integrity. Claudin-1 is primarily expressed in epithelial and endothelial cells, where it helps to form tight junctions and regulate the movement of molecules across these barriers. Mutations in the gene that encodes claudin-1 have been associated with various human diseases, including skin disorders and cancer.

Claudin-4 is a protein that belongs to the family of claudins, which are major components of tight junctions in cells. Tight junctions are specialized structures that serve as barriers between adjacent cells, controlling the paracellular movement of ions, solutes, and water. Claudin-4 is primarily expressed in epithelial tissues, where it plays a crucial role in maintaining cell-to-cell adhesion and regulating the permeability of tight junctions.

Claudin-4 has been identified as a potential biomarker for various cancers, including ovarian, pancreatic, and gastric cancers. Its overexpression is often associated with increased malignancy, invasiveness, and poor prognosis in these cancers. Additionally, claudin-4 is involved in the regulation of cell signaling pathways, inflammation, and immune responses, making it a target for therapeutic interventions in cancer and other diseases.

Tight junctions, also known as zonula occludens, are specialized types of intercellular junctions that occur in epithelial and endothelial cells. They are located near the apical side of the lateral membranes of adjacent cells, where they form a continuous belt-like structure that seals off the space between the cells.

Tight junctions are composed of several proteins, including occludin, claudins, and junctional adhesion molecules (JAMs), which interact to form a network of strands that create a tight barrier. This barrier regulates the paracellular permeability of ions, solutes, and water, preventing their uncontrolled movement across the epithelial or endothelial layer.

Tight junctions also play an important role in maintaining cell polarity by preventing the mixing of apical and basolateral membrane components. Additionally, they are involved in various signaling pathways that regulate cell proliferation, differentiation, and survival.

Claudin-5 is a protein that is a member of the claudin family, which are tight junction proteins. Tight junctions are specialized structures found in epithelial and endothelial cells that help to form a barrier between different cellular compartments. Claudin-5 is specifically expressed in endothelial cells and plays an important role in the formation of tight junctions in the blood-brain barrier, which helps to regulate the movement of molecules between the blood and the brain. Mutations in the gene that encodes claudin-5 have been associated with various neurological disorders.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Occludin is a protein that is a component of tight junctions, which are structures that form a barrier between adjacent cells in epithelial and endothelial tissues. Tight junctions help to regulate the movement of molecules between cells and play a crucial role in maintaining the integrity of these tissues.

Occludin is composed of four transmembrane domains, two extracellular loops, and intracellular N- and C-termini. The extracellular loops interact with other tight junction proteins to form the intercellular seal, while the intracellular domains interact with various signaling molecules and cytoskeletal components to regulate the assembly and disassembly of tight junctions.

Mutations in the gene that encodes occludin have been associated with various human diseases, including inflammatory bowel disease, liver cirrhosis, and skin disorders. Additionally, changes in occludin expression and localization have been implicated in the development of cancer and neurological disorders.

Zonula Occludens-1 (ZO-1) protein is a tight junction (TJ) protein, which belongs to the membrane-associated guanylate kinase (MAGUK) family. It plays a crucial role in the formation and maintenance of tight junctions, which are complex structures that form a barrier between neighboring cells in epithelial and endothelial tissues.

Tight junctions are composed of several proteins, including transmembrane proteins and cytoplasmic plaque proteins. ZO-1 is one of the major cytoplasmic plaque proteins that interact with both transmembrane proteins (such as occludin and claudins) and other cytoskeletal proteins to form a network of protein interactions that maintain the integrity of tight junctions.

ZO-1 has multiple domains, including PDZ domains, SH3 domains, and a guanylate kinase-like domain, which allow it to interact with various binding partners. It is involved in regulating paracellular permeability, cell polarity, and signal transduction pathways that control cell proliferation, differentiation, and survival.

Mutations or dysfunction of ZO-1 protein have been implicated in several human diseases, including inflammatory bowel disease, cancer, and neurological disorders.

Zonula Occludens-2 (ZO-2) protein is a tight junction protein, which belongs to the membrane-associated guanylate kinase homologs (MAGUKs) family. It plays a crucial role in the formation and maintenance of tight junctions, which are complex structures that form a barrier between neighboring cells in epithelial and endothelial tissues.

ZO-2 protein is localized to the cytoplasmic face of the tight junction and interacts with various proteins, including transmembrane proteins such as occludin and claudins, as well as other cytoskeletal proteins. It contains several functional domains that enable it to interact with these proteins, including PDZ (PSD-95/Dlg/ZO-1) domains, SH3 (Src homology 3) domains, and a guanylate kinase-like domain.

ZO-2 protein has been implicated in various cellular processes, including the regulation of tight junction permeability, cell signaling, and gene expression. Mutations in ZO-2 have been associated with several human diseases, including inflammatory bowel disease, cancer, and neurological disorders.

Claudin-2 is a protein that is a member of the claudin family, which are tight junction proteins involved in forming tight junctions between cells. Tight junctions are complex structures that serve as barriers to prevent the passage of molecules through the spaces between cells, and they also play a role in cell signaling. Claudin-2 is specifically involved in the formation of paracellular channels, which allow for the selective transport of small ions across the tight junction. It has been found to be permeable to cations, including sodium and calcium ions.

Claudin-2 is expressed in a variety of tissues, including the intestine, kidney, and pancreas. In the intestine, claudin-2 is involved in the regulation of water and ion transport, and mutations in the gene that encodes claudin-2 have been associated with various gastrointestinal disorders, such as inflammatory bowel disease and congenital diarrhea. In the kidney, claudin-2 is expressed in the thick ascending limb of the loop of Henle and the distal convoluted tubule, where it helps to regulate sodium and water reabsorption.

In addition to its role in normal physiology, claudin-2 has also been implicated in various disease processes, including cancer. For example, increased expression of claudin-2 has been observed in some types of cancer, such as colon and pancreatic cancer, and it has been suggested that this may contribute to the development and progression of these cancers by promoting cell proliferation and migration.

The Blood-Testis Barrier (BTB) is a unique structural and functional feature of the seminiferous epithelium in the testes, which forms a tight junction between adjacent Sertoli cells in the semi-niferous tubules. This barrier selectively restricts the passage of molecules, including potentially harmful substances and immune cells, from the systemic circulation into the adluminal compartment of the seminiferous epithelium where spermatogenesis occurs. This helps to maintain a immunologically privileged microenvironment that is essential for the survival and maturation of developing sperm cells, preventing an immune response against them. The BTB also regulates the movement of molecules required for spermatogenesis, such as nutrients, hormones, and signaling molecules, from the basal compartment to the adluminal compartment.

In the context of medicine and physiology, permeability refers to the ability of a tissue or membrane to allow the passage of fluids, solutes, or gases. It is often used to describe the property of the capillary walls, which control the exchange of substances between the blood and the surrounding tissues.

The permeability of a membrane can be influenced by various factors, including its molecular structure, charge, and the size of the molecules attempting to pass through it. A more permeable membrane allows for easier passage of substances, while a less permeable membrane restricts the movement of substances.

In some cases, changes in permeability can have significant consequences for health. For example, increased permeability of the blood-brain barrier (a specialized type of capillary that regulates the passage of substances into the brain) has been implicated in a number of neurological conditions, including multiple sclerosis, Alzheimer's disease, and traumatic brain injury.

Electric impedance is a measure of opposition to the flow of alternating current (AC) in an electrical circuit or component, caused by both resistance (ohmic) and reactance (capacitive and inductive). It is expressed as a complex number, with the real part representing resistance and the imaginary part representing reactance. The unit of electric impedance is the ohm (Ω).

In the context of medical devices, electric impedance may be used to measure various physiological parameters, such as tissue conductivity or fluid composition. For example, bioelectrical impedance analysis (BIA) uses electrical impedance to estimate body composition, including fat mass and lean muscle mass. Similarly, electrical impedance tomography (EIT) is a medical imaging technique that uses electric impedance to create images of internal organs and tissues.

Tissue embedding is a process in histology (the study of the microscopic structure of tissues) where biological tissue samples are encased in a supporting medium, typically paraffin wax or plastic resins, to maintain their shape and structural integrity during sectioning. This allows for thin slices of the embedded tissue to be cut using a microtome, mounted on slides, and then stained for further examination under a microscope. The embedding process ensures that the tissue remains intact and does not tear or compress during sectioning, providing clear and consistent samples for analysis.

"Takifugu" is not a medical term, but a genus of pufferfish found in the waters of East Asia. However, some people may use it to refer to "pufferfish poisoning," which is a type of food poisoning caused by the consumption of pufferfish that contain a potent neurotoxin called tetrodotoxin. This toxin is found in the fish's organs, such as the liver and ovaries, and can be deadly if ingested in large quantities. Proper preparation and cooking of pufferfish by trained chefs can make it safe to eat, but it is still considered a delicacy with significant risks.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Hypercalciuria is a medical condition characterized by an excessive amount of calcium in the urine. It can occur when the body absorbs too much calcium from food, or when the bones release more calcium than usual. In some cases, it may be caused by certain medications, kidney disorders, or genetic factors.

Hypercalciuria can increase the risk of developing kidney stones and other kidney problems. It is often diagnosed through a 24-hour urine collection test that measures the amount of calcium in the urine. Treatment may include changes in diet, increased fluid intake, and medications to help reduce the amount of calcium in the urine.

Gitelman Syndrome is a genetic disorder that affects the electrolyte and fluid balance in the body. It is characterized by low levels of potassium, magnesium, and chloride in the blood due to defects in the function of the distal convoluted tubule in the kidney. This results in increased urinary excretion of these ions.

The condition is caused by mutations in the SLC12A3 gene, which provides instructions for making a protein called thiazide-sensitive sodium chloride cotransporter (NCC). The NCC protein is responsible for reabsorbing sodium and chloride ions from the urine back into the bloodstream. In Gitelman Syndrome, the mutations in the SLC12A3 gene lead to reduced function of the NCC protein, resulting in increased excretion of sodium, chloride, potassium, and magnesium in the urine.

Symptoms of Gitelman Syndrome may include muscle weakness, cramps, spasms, fatigue, salt cravings, thirst, and decreased appetite. The condition is usually diagnosed in childhood or adolescence but can also present in adulthood. Treatment typically involves supplementation with potassium and magnesium to correct the electrolyte imbalances. In some cases, a medication called indapamide may be used to increase sodium reabsorption in the kidney and reduce potassium excretion.

Nephrocalcinosis is a medical condition characterized by the deposition of calcium salts in the renal parenchyma, specifically within the tubular epithelial cells and interstitium of the kidneys. This process can lead to chronic inflammation, tissue damage, and ultimately impaired renal function if left untreated.

The condition is often associated with metabolic disorders such as hyperparathyroidism, distal renal tubular acidosis, or hyperoxaluria; medications like loop diuretics, corticosteroids, or calcineurin inhibitors; and chronic kidney diseases. The diagnosis of nephrocalcinosis is typically made through imaging studies such as ultrasound, CT scan, or X-ray. Treatment usually involves addressing the underlying cause, modifying dietary habits, and administering medications to control calcium levels in the body.

Cell membrane permeability refers to the ability of various substances, such as molecules and ions, to pass through the cell membrane. The cell membrane, also known as the plasma membrane, is a thin, flexible barrier that surrounds all cells, controlling what enters and leaves the cell. Its primary function is to protect the cell's internal environment and maintain homeostasis.

The permeability of the cell membrane depends on its structure, which consists of a phospholipid bilayer interspersed with proteins. The hydrophilic (water-loving) heads of the phospholipids face outward, while the hydrophobic (water-fearing) tails face inward, creating a barrier that is generally impermeable to large, polar, or charged molecules.

However, specific proteins within the membrane, called channels and transporters, allow certain substances to cross the membrane. Channels are protein structures that span the membrane and provide a pore for ions or small uncharged molecules to pass through. Transporters, on the other hand, are proteins that bind to specific molecules and facilitate their movement across the membrane, often using energy in the form of ATP.

The permeability of the cell membrane can be influenced by various factors, such as temperature, pH, and the presence of certain chemicals or drugs. Changes in permeability can have significant consequences for the cell's function and survival, as they can disrupt ion balances, nutrient uptake, waste removal, and signal transduction.

Caco-2 cells are a type of human epithelial colorectal adenocarcinoma cell line that is commonly used in scientific research, particularly in the field of drug development and toxicology. These cells are capable of forming a monolayer with tight junctions, which makes them an excellent model for studying intestinal absorption, transport, and metabolism of drugs and other xenobiotic compounds.

Caco-2 cells express many of the transporters and enzymes that are found in the human small intestine, making them a valuable tool for predicting drug absorption and bioavailability in humans. They are also used to study the mechanisms of drug transport across the intestinal epithelium, including passive diffusion and active transport by various transporters.

In addition to their use in drug development, Caco-2 cells are also used to study the toxicological effects of various compounds on human intestinal cells. They can be used to investigate the mechanisms of toxicity, as well as to evaluate the potential for drugs and other compounds to induce intestinal damage or inflammation.

Overall, Caco-2 cells are a widely used and valuable tool in both drug development and toxicology research, providing important insights into the absorption, transport, metabolism, and toxicity of various compounds in the human body.

The Loop of Henle, also known as the Henle's loop or nephron loop, is a hairpin-shaped structure in the nephrons of the mammalian kidney. It is a part of the renal tubule and plays a crucial role in concentrating urine and maintaining water-electrolyte balance in the body.

The Loop of Henle consists of two main segments: the thin descending limb, which dips into the medulla of the kidney, and the thick ascending limb, which returns to the cortex. The loop is responsible for creating a concentration gradient in the medullary interstitium, allowing for the reabsorption of water from the filtrate in the collecting ducts under the influence of antidiuretic hormone (ADH).

In summary, the Loop of Henle is a vital component of the kidney's nephron that facilitates urine concentration and helps regulate fluid balance in the body.

Freeze fracturing is not a medical term itself, but it is a technique used in the field of electron microscopy, which is a type of imaging commonly used in scientific research and medical fields to visualize structures at a very small scale, such as cells and cellular components.

In freeze fracturing, a sample is rapidly frozen to preserve its structure and then fractured or split along a plane of weakness, often along the membrane of a cell. The freshly exposed surface is then shadowed with a thin layer of metal, such as platinum or gold, to create a replica of the surface. This replica can then be examined using an electron microscope to reveal details about the structure and organization of the sample at the molecular level.

Freeze fracturing is particularly useful for studying membrane structures, such as lipid bilayers and protein complexes, because it allows researchers to visualize these structures in their native state, without the need for staining or other chemical treatments that can alter or damage the samples.

Neuroepithelial cells are stem cells that line the developing central nervous system (CNS) in embryos. These cells have the ability to differentiate into various cell types, including neurons and glial cells, which make up the brain and spinal cord. Neuroepithelial cells form a pseudostratified epithelium, meaning that the nuclei of the cells are at varying heights within the cell layer, giving it a striped appearance. These cells play a crucial role in the development and growth of the CNS.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

Gills are specialized respiratory organs found in many aquatic organisms such as fish, crustaceans, and some mollusks. They are typically thin, feathery structures that increase the surface area for gas exchange between the water and the animal's bloodstream. Gills extract oxygen from water while simultaneously expelling carbon dioxide.

In fish, gills are located in the gill chamber, which is covered by opercula or protective bony flaps. Water enters through the mouth, flows over the gills, and exits through the opercular openings. The movement of water over the gills allows for the diffusion of oxygen and carbon dioxide across the gill filaments and lamellae, which are the thin plates where gas exchange occurs.

Gills contain a rich supply of blood vessels, allowing for efficient transport of oxygen to the body's tissues and removal of carbon dioxide. The counter-current flow of water and blood in the gills ensures that the concentration gradient between the water and the blood is maximized, enhancing the efficiency of gas exchange.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Adherens junctions are specialized types of cell-cell contacts that play a crucial role in maintaining the integrity and stability of tissues. They are composed of transmembrane cadherin proteins, which connect to the actin cytoskeleton inside the cell through intracellular adaptor proteins such as catenins.

The cadherins on opposing cells interact with each other to form adhesive bonds that help to anchor the cells together and regulate various cellular processes, including cell growth, differentiation, and migration. Adherens junctions are essential for many physiological processes, such as embryonic development, wound healing, and tissue homeostasis, and their dysfunction has been implicated in a variety of diseases, including cancer and degenerative disorders.

Sertoli cells, also known as sustentacular cells or nurse cells, are specialized cells in the seminiferous tubules of the testis in mammals. They play a crucial role in supporting and nurturing the development of sperm cells (spermatogenesis). Sertoli cells create a microenvironment within the seminiferous tubules that facilitates the differentiation, maturation, and survival of germ cells.

These cells have several essential functions:

1. Blood-testis barrier formation: Sertoli cells form tight junctions with each other, creating a physical barrier called the blood-testis barrier, which separates the seminiferous tubules into basal and adluminal compartments. This barrier protects the developing sperm cells from the immune system and provides an isolated environment for their maturation.
2. Nutrition and support: Sertoli cells provide essential nutrients and growth factors to germ cells, ensuring their proper development and survival. They also engulf and digest residual bodies, which are byproducts of spermatid differentiation.
3. Phagocytosis: Sertoli cells have phagocytic properties, allowing them to remove debris and dead cells within the seminiferous tubules.
4. Hormone metabolism: Sertoli cells express receptors for various hormones, such as follicle-stimulating hormone (FSH), testosterone, and estradiol. They play a role in regulating hormonal signaling within the testis by metabolizing these hormones or producing inhibins, which modulate FSH secretion from the pituitary gland.
5. Regulation of spermatogenesis: Sertoli cells produce and secrete various proteins and growth factors that influence germ cell development and proliferation. They also control the release of mature sperm cells into the epididymis through a process called spermiation.

An oxyphilic adenoma is a type of benign tumor that develops in the endocrine glands, specifically in the parathyroid gland. This type of adenoma is characterized by the presence of cells called oxyphils, which have an abundance of mitochondria and appear pink on histological examination due to their high oxidative enzyme activity. Oxyphilic adenomas are a common cause of primary hyperparathyroidism, a condition in which the parathyroid glands produce too much parathyroid hormone (PTH), leading to an imbalance of calcium and phosphorus metabolism. Symptoms of primary hyperparathyroidism may include fatigue, weakness, bone pain, kidney stones, and psychological disturbances. Treatment typically involves surgical removal of the affected parathyroid gland.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Intercellular junctions are specialized areas of contact between two or more adjacent cells in multicellular organisms. They play crucial roles in maintaining tissue structure and function by regulating the movement of ions, molecules, and even larger cellular structures from one cell to another. There are several types of intercellular junctions, including:

1. Tight Junctions (Zonulae Occludentes): These are the most apical structures in epithelial and endothelial cells, forming a virtually impermeable barrier to prevent the paracellular passage of solutes and water between the cells. They create a tight seal by connecting the transmembrane proteins of adjacent cells, such as occludin and claudins.
2. Adherens Junctions: These are located just below the tight junctions and help maintain cell-to-cell adhesion and tissue integrity. Adherens junctions consist of cadherin proteins that form homophilic interactions with cadherins on adjacent cells, as well as intracellular adaptor proteins like catenins, which connect to the actin cytoskeleton.
3. Desmosomes: These are another type of cell-to-cell adhesion structure, primarily found in tissues that experience mechanical stress, such as the skin and heart. Desmosomes consist of cadherin proteins (desmocadherins) that interact with each other and connect to intermediate filaments (keratin in epithelial cells) via plakoglobin and desmoplakin.
4. Gap Junctions: These are specialized channels that directly connect the cytoplasm of adjacent cells, allowing for the exchange of small molecules, ions, and second messengers. Gap junctions consist of connexin proteins that form hexameric structures called connexons in the plasma membrane of each cell. When two connexons align, they create a continuous pore or channel between the cells.

In summary, intercellular junctions are essential for maintaining tissue structure and function by regulating paracellular transport, cell-to-cell adhesion, and intercellular communication.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Protein isoforms are different forms or variants of a protein that are produced from a single gene through the process of alternative splicing, where different exons (or parts of exons) are included in the mature mRNA molecule. This results in the production of multiple, slightly different proteins that share a common core structure but have distinct sequences and functions. Protein isoforms can also arise from genetic variations such as single nucleotide polymorphisms or mutations that alter the protein-coding sequence of a gene. These differences in protein sequence can affect the stability, localization, activity, or interaction partners of the protein isoform, leading to functional diversity and specialization within cells and organisms.

Gene knockdown techniques are methods used to reduce the expression or function of specific genes in order to study their role in biological processes. These techniques typically involve the use of small RNA molecules, such as siRNAs (small interfering RNAs) or shRNAs (short hairpin RNAs), which bind to and promote the degradation of complementary mRNA transcripts. This results in a decrease in the production of the protein encoded by the targeted gene.

Gene knockdown techniques are often used as an alternative to traditional gene knockout methods, which involve completely removing or disrupting the function of a gene. Knockdown techniques allow for more subtle and reversible manipulation of gene expression, making them useful for studying genes that are essential for cell survival or have redundant functions.

These techniques are widely used in molecular biology research to investigate gene function, genetic interactions, and disease mechanisms. However, it is important to note that gene knockdown can have off-target effects and may not completely eliminate the expression of the targeted gene, so results should be interpreted with caution.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

The Fluorescent Antibody Technique (FAT), Indirect is a type of immunofluorescence assay used to detect the presence of specific antigens in a sample. In this method, the sample is first incubated with a primary antibody that binds to the target antigen. After washing to remove unbound primary antibodies, a secondary fluorescently labeled antibody is added, which recognizes and binds to the primary antibody. This indirect labeling approach allows for amplification of the signal, making it more sensitive than direct methods. The sample is then examined under a fluorescence microscope to visualize the location and amount of antigen based on the emitted light from the fluorescent secondary antibody. It's commonly used in diagnostic laboratories for detection of various bacteria, viruses, and other antigens in clinical specimens.

Salinity is not a term that has a specific medical definition. However, in general terms, salinity refers to the level of salt or sodium content in a substance, usually measured in parts per thousand (ppt). In a medical context, salinity might be discussed in relation to things like the body's fluid balance or the composition of certain bodily fluids, such as sweat or tears.

It is worth noting that in some cases, high salinity levels can have negative effects on health. For example, consuming water with very high salt content can lead to dehydration and electrolyte imbalances, which can be dangerous. Similarly, exposure to high-salinity environments (such as seawater) can cause skin irritation and other problems in some people. However, these are not direct medical definitions of salinity.

Tissue Microarray (TMA) analysis is a surgical pathology technique that allows for the simultaneous analysis of multiple tissue samples (known as "cores") from different patients or even different regions of the same tumor, on a single microscope slide. This technique involves the extraction of small cylindrical samples of tissue, which are then arrayed in a grid-like pattern on a recipient paraffin block. Once the TMA is created, sections can be cut and stained with various histochemical or immunohistochemical stains to evaluate the expression of specific proteins or other molecules of interest.

Tissue Array Analysis has become an important tool in biomedical research, enabling high-throughput analysis of tissue samples for molecular markers, gene expression patterns, and other features that can help inform clinical decision making, drug development, and our understanding of disease processes. It's widely used in cancer research to study the heterogeneity of tumors, identify new therapeutic targets, and evaluate patient prognosis.

'Clostridium perfringens' is a type of Gram-positive, rod-shaped, spore-forming bacterium that is commonly found in the environment, including in soil, decaying vegetation, and the intestines of humans and animals. It is a major cause of foodborne illness worldwide, producing several toxins that can lead to symptoms such as diarrhea, abdominal cramps, nausea, and vomiting.

The bacterium can contaminate food during preparation or storage, particularly meat and poultry products. When ingested, the spores of C. perfringens can germinate and produce large numbers of toxin-producing cells in the intestines, leading to food poisoning. The most common form of C. perfringens food poisoning is characterized by symptoms that appear within 6 to 24 hours after ingestion and last for less than 24 hours.

In addition to foodborne illness, C. perfringens can also cause other types of infections, such as gas gangrene, a serious condition that can occur when the bacterium infects a wound and produces toxins that damage surrounding tissues. Gas gangrene is a medical emergency that requires prompt treatment with antibiotics and surgical debridement or amputation of affected tissue.

Prevention measures for C. perfringens food poisoning include proper cooking, handling, and storage of food, as well as rapid cooling of cooked foods to prevent the growth of the bacterium.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Phosphoproteins are proteins that have been post-translationally modified by the addition of a phosphate group (-PO3H2) onto specific amino acid residues, most commonly serine, threonine, or tyrosine. This process is known as phosphorylation and is mediated by enzymes called kinases. Phosphoproteins play crucial roles in various cellular processes such as signal transduction, cell cycle regulation, metabolism, and gene expression. The addition or removal of a phosphate group can activate or inhibit the function of a protein, thereby serving as a switch to control its activity. Phosphoproteins can be detected and quantified using techniques such as Western blotting, mass spectrometry, and immunofluorescence.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Hearing loss is a partial or total inability to hear sounds in one or both ears. It can occur due to damage to the structures of the ear, including the outer ear, middle ear, inner ear, or nerve pathways that transmit sound to the brain. The degree of hearing loss can vary from mild (difficulty hearing soft sounds) to severe (inability to hear even loud sounds). Hearing loss can be temporary or permanent and may be caused by factors such as exposure to loud noises, genetics, aging, infections, trauma, or certain medical conditions. It is important to note that hearing loss can have significant impacts on a person's communication abilities, social interactions, and overall quality of life.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

The intestinal mucosa is the innermost layer of the intestines, which comes into direct contact with digested food and microbes. It is a specialized epithelial tissue that plays crucial roles in nutrient absorption, barrier function, and immune defense. The intestinal mucosa is composed of several cell types, including absorptive enterocytes, mucus-secreting goblet cells, hormone-producing enteroendocrine cells, and immune cells such as lymphocytes and macrophages.

The surface of the intestinal mucosa is covered by a single layer of epithelial cells, which are joined together by tight junctions to form a protective barrier against harmful substances and microorganisms. This barrier also allows for the selective absorption of nutrients into the bloodstream. The intestinal mucosa also contains numerous lymphoid follicles, known as Peyer's patches, which are involved in immune surveillance and defense against pathogens.

In addition to its role in absorption and immunity, the intestinal mucosa is also capable of producing hormones that regulate digestion and metabolism. Dysfunction of the intestinal mucosa can lead to various gastrointestinal disorders, such as inflammatory bowel disease, celiac disease, and food allergies.

The cochlea is a part of the inner ear that is responsible for hearing. It is a spiral-shaped structure that looks like a snail shell and is filled with fluid. The cochlea contains hair cells, which are specialized sensory cells that convert sound vibrations into electrical signals that are sent to the brain.

The cochlea has three main parts: the vestibular canal, the tympanic canal, and the cochlear duct. Sound waves enter the inner ear and cause the fluid in the cochlea to move, which in turn causes the hair cells to bend. This bending motion stimulates the hair cells to generate electrical signals that are sent to the brain via the auditory nerve.

The brain then interprets these signals as sound, allowing us to hear and understand speech, music, and other sounds in our environment. Damage to the hair cells or other structures in the cochlea can lead to hearing loss or deafness.

Epithelial-mesenchymal transition (EMT) is a biological process that involves the transformation of epithelial cells into mesenchymal cells. This process is characterized by distinct changes in cell shape, behavior, and molecular markers.

Epithelial cells are typically tightly packed together and have a polarized structure with distinct apical and basal surfaces. In contrast, mesenchymal cells are elongated, spindle-shaped cells that can migrate and invade surrounding tissues.

During EMT, epithelial cells lose their polarity and cell-to-cell adhesion molecules, such as E-cadherin, and acquire mesenchymal markers, such as vimentin and N-cadherin. This transition enables the cells to become more motile and invasive, which is critical for embryonic development, wound healing, and cancer metastasis.

EMT is a complex process that involves various signaling pathways, including TGF-β, Wnt, Notch, and Hedgehog, among others. Dysregulation of EMT has been implicated in several diseases, particularly cancer, where it contributes to tumor progression, metastasis, and drug resistance.

Distal kidney tubules are the final segment of the renal tubule in the nephron of the kidney. The nephron is the basic unit of the kidney that filters blood and produces urine. After the filtrate leaves the glomerulus, it enters the proximal tubule where most of the reabsorption of water, electrolytes, and nutrients occurs.

The filtrate then moves into the loop of Henle, which is divided into a thin and thick descending limb and a thin and thick ascending limb. The loop of Henle helps to establish a concentration gradient in the medullary interstitium, allowing for the reabsorption of water in the collecting ducts.

The distal tubule is the last segment of the renal tubule before the filtrate enters the collecting duct. It is a relatively short structure that receives filtrate from the thick ascending limb of the loop of Henle. The distal tubule plays an important role in regulating electrolyte and water balance by actively transporting ions such as sodium, potassium, and chloride.

The distal tubule also contains specialized cells called principal cells and intercalated cells that are responsible for secreting or reabsorbing hydrogen and potassium ions to maintain acid-base balance. Additionally, the distal tubule is a site of action for several hormones, including aldosterone, which stimulates sodium reabsorption and potassium excretion, and vasopressin (antidiuretic hormone), which promotes water reabsorption in the collecting ducts.

Enterotoxins are types of toxic substances that are produced by certain microorganisms, such as bacteria. These toxins are specifically designed to target and affect the cells in the intestines, leading to symptoms such as diarrhea, vomiting, and abdominal cramps. One well-known example of an enterotoxin is the toxin produced by Staphylococcus aureus bacteria, which can cause food poisoning. Another example is the cholera toxin produced by Vibrio cholerae, which can cause severe diarrhea and dehydration. Enterotoxins work by interfering with the normal functioning of intestinal cells, leading to fluid accumulation in the intestines and subsequent symptoms.

Spermatocytes are a type of cell that is involved in the process of spermatogenesis, which is the formation of sperm in the testes. Specifically, spermatocytes are the cells that undergo meiosis, a special type of cell division that results in the production of four haploid daughter cells, each containing half the number of chromosomes as the parent cell.

There are two types of spermatocytes: primary and secondary. Primary spermatocytes are diploid cells that contain 46 chromosomes (23 pairs). During meiosis I, these cells undergo a process called crossing over, in which genetic material is exchanged between homologous chromosomes. After crossing over, the primary spermatocytes divide into two secondary spermatocytes, each containing 23 chromosomes (but still with 23 pairs).

Secondary spermatocytes then undergo meiosis II, which results in the formation of four haploid spermatids. Each spermatid contains 23 single chromosomes and will eventually develop into a mature sperm cell through a process called spermiogenesis.

It's worth noting that spermatocytes are only found in males, as they are specific to the male reproductive system.

Cytoplasmic vesicles are membrane-bound sacs or compartments within the cytoplasm of a cell. They are formed by the pinching off of a portion of the cell membrane (a process called budding) or by the breakdown of larger organelles within the cell. These vesicles can contain various substances, such as proteins, lipids, carbohydrates, and enzymes, and they play a crucial role in many cellular processes, including intracellular transport, membrane trafficking, and waste disposal.

There are several types of cytoplasmic vesicles, including:

1. Endosomes: Vesicles that form when endocytic vesicles fuse with early endosomes, which then mature into late endosomes. These vesicles are involved in the transport and degradation of extracellular molecules that have been taken up by the cell through endocytosis.
2. Lysosomes: Membrane-bound organelles that contain hydrolytic enzymes for breaking down and recycling various biomolecules, such as proteins, carbohydrates, and lipids.
3. Transport vesicles: Small, membrane-bound sacs that transport proteins and other molecules between different cellular compartments. These vesicles can be classified based on their function, such as COPI (coat protein complex I) vesicles, which are involved in retrograde transport from the Golgi apparatus to the endoplasmic reticulum, or COPII (coat protein complex II) vesicles, which are involved in anterograde transport from the endoplasmic reticulum to the Golgi apparatus.
4. Secretory vesicles: Membrane-bound sacs that store proteins and other molecules destined for secretion from the cell. These vesicles fuse with the plasma membrane, releasing their contents into the extracellular space through a process called exocytosis.
5. Autophagosomes: Double-membraned vesicles that form around cytoplasmic components during the process of autophagy, a cellular mechanism for degrading and recycling damaged organelles and protein aggregates. The autophagosome fuses with a lysosome, forming an autolysosome, where the contents are broken down and recycled.
6. Peroxisomes: Membrane-bound organelles that contain enzymes for oxidizing and detoxifying various molecules, such as fatty acids and amino acids. They also play a role in the synthesis of bile acids and plasmalogens, a type of lipid found in cell membranes.
7. Lysosomes: Membrane-bound organelles that contain hydrolytic enzymes for breaking down various biomolecules, such as proteins, carbohydrates, and lipids. They are involved in the degradation of materials delivered to them through endocytosis, phagocytosis, or autophagy.
8. Endosomes: Membrane-bound organelles that form during the process of endocytosis, where extracellular material is internalized into the cell. Early endosomes are involved in sorting and trafficking of internalized molecules, while late endosomes are acidic compartments that mature into lysosomes for degradation of their contents.
9. Golgi apparatus: Membrane-bound organelles that function as a central hub for the processing, modification, and sorting of proteins and lipids. They receive newly synthesized proteins from the endoplasmic reticulum and modify them through various enzymatic reactions before packaging them into vesicles for transport to their final destinations.
10. Endoplasmic reticulum (ER): Membrane-bound organelles that function as a site for protein synthesis, folding, and modification. The ER is continuous with the nuclear membrane and consists of two distinct domains: the rough ER, which contains ribosomes on its surface for protein synthesis, and the smooth ER, which lacks ribosomes and functions in lipid metabolism and detoxification of xenobiotics.
11. Mitochondria: Membrane-bound organelles that function as the powerhouse of the cell, generating ATP through oxidative phosphorylation. They contain their own DNA and are believed to have originated from free-living bacteria that were engulfed by a eukaryotic host cell in an ancient endosymbiotic event.
12. Nucleus: Membrane-bound organelle that contains the genetic material of the cell, including DNA and histone proteins. The nucleus is surrounded by a double membrane called the nuclear envelope, which is perforated by nuclear pores that allow for the selective transport of molecules between the nucleus and the cytoplasm.
13. Cytoskeleton: A network of protein filaments that provide structural support and organization to the cell. The cytoskeleton consists of three main types of filaments: microtubules, intermediate filaments, and actin filaments, which differ in their composition, structure, and function.
14. Plasma membrane: Membrane-bound organelle that surrounds the cell and separates it from its external environment. The plasma membrane is composed of a phospholipid bilayer with embedded proteins and carbohydrate chains, and functions as a selective barrier that regulates the exchange of molecules between the cell and its surroundings.
15. Endoplasmic reticulum (ER): Membrane-bound organelle that consists of an interconnected network of tubules and sacs that extend throughout the cytoplasm. The ER is involved in various cellular processes, including protein synthesis, lipid metabolism, and calcium homeostasis.
16. Golgi apparatus: Membrane-bound organelle that consists of a series of flattened sacs called cisternae, which are arranged in a stack-like structure. The Golgi apparatus is involved in the modification and sorting of proteins and lipids, and plays a key role in the formation of lysosomes, secretory vesicles, and the plasma membrane.
17. Lysosomes: Membrane-bound organelles that contain hydrolytic enzymes that can break down various biomolecules, including proteins, carbohydrates, lipids, and nucleic acids. Lysosomes are involved in the degradation of cellular waste, damaged organelles, and foreign particles, and play a crucial role in the maintenance of cellular homeostasis.
18. Peroxisomes: Membrane-bound organelles that contain various enzymes that are involved in oxidative metabolism, including the breakdown of fatty acids and the detoxification of harmful substances. Peroxisomes also play a role in the biosynthesis of certain lipids and hormones.
19. Mitochondria: Membrane-bound organelles that are involved in energy production, metabolism, and signaling. Mitochondria contain their own DNA and are believed to have originated from ancient bacteria that were engulfed by eukaryotic cells. They consist of an outer membrane, an inner membrane, and a matrix, and are involved in various cellular processes, including oxidative phosphorylation, the citric acid cycle, and the regulation of calcium homeostasis.
20. Nucleus: Membrane-bound organelle that contains the genetic material of the cell, including DNA and histone proteins. The nucleus is involved in various cellular processes, including gene expression, DNA replication, and RNA processing. It is surrounded by a double membrane called the nuclear envelope, which is pierced by numerous pores that allow for the exchange of molecules between the nucleus and the cytoplasm.
21. Endoplasmic reticulum (ER): Membranous network that is involved in protein synthesis, folding, and modification. The ER consists of a system of interconnected tubules and sacs that are continuous with the nuclear envelope. It is divided into two main regions: the rough ER, which is studded with ribosomes and is involved in protein synthesis, and the smooth ER, which lacks ribosomes and is involved in lipid metabolism and detoxification.
22. Golgi apparatus: Membranous organelle that is involved in the sorting, modification, and transport of proteins and lipids. The Golgi apparatus consists of a stack of flattened sacs called cisternae, which are surrounded by vesicles and tubules. It receives proteins and lipids from the ER and modifies them by adding sugar molecules or other modifications before sending them to their final destinations.
23. Lysosomes: Membrane-bound organelles that contain hydrolytic enzymes that break down and recycle cellular waste and foreign materials. Lysosomes are formed by the fusion of vesicles derived

Synovial sarcoma is a rare type of cancer that typically develops in the soft tissues surrounding the joints, such as the synovial membrane, which lines the joint capsules. Despite its name, synovial sarcoma does not necessarily arise from the synovium. It is called so due to its resemblance to this tissue under a microscope.

This form of sarcoma primarily affects young adults and can be found in various parts of the body, but it most commonly occurs in the extremities, particularly near the knees. Synovial sarcoma is characterized by specific genetic changes that result in the formation of fusion proteins, which contribute to uncontrolled cell growth and tumor development.

There are two main subtypes of synovial sarcoma: monophasic and biphasic. Monophasic synovial sarcoma is composed of either spindle-shaped (spaghetti-like) cells or epithelioid (roundish) cells, while biphasic synovial sarcoma contains both types of cells. A third subtype, called poorly differentiated synovial sarcoma, has a more aggressive behavior and is composed of small round cells that do not resemble the typical spindle or epithelioid cells.

Treatment for synovial sarcoma usually involves surgical removal of the tumor, often followed by radiation therapy and/or chemotherapy to reduce the risk of recurrence and metastasis. The prognosis varies depending on factors such as the size and location of the tumor, the patient's age, and the presence of metastases at diagnosis.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Respiratory mucosa refers to the mucous membrane that lines the respiratory tract, including the nose, throat, bronchi, and lungs. It is a specialized type of tissue that is composed of epithelial cells, goblet cells, and glands that produce mucus, which helps to trap inhaled particles such as dust, allergens, and pathogens.

The respiratory mucosa also contains cilia, tiny hair-like structures that move rhythmically to help propel the mucus and trapped particles out of the airways and into the upper part of the throat, where they can be swallowed or coughed up. This defense mechanism is known as the mucociliary clearance system.

In addition to its role in protecting the respiratory tract from harmful substances, the respiratory mucosa also plays a crucial role in immune function by containing various types of immune cells that help to detect and respond to pathogens and other threats.

Pancreatic ductal carcinoma (PDC) is a specific type of cancer that forms in the ducts that carry digestive enzymes out of the pancreas. It's the most common form of exocrine pancreatic cancer, making up about 90% of all cases.

The symptoms of PDC are often vague and can include abdominal pain, jaundice (yellowing of the skin and eyes), unexplained weight loss, and changes in bowel movements. These symptoms can be similar to those caused by other less serious conditions, which can make diagnosis difficult.

Pancreatic ductal carcinoma is often aggressive and difficult to treat. The prognosis for PDC is generally poor, with a five-year survival rate of only about 9%. Treatment options may include surgery, chemotherapy, radiation therapy, or a combination of these approaches. However, because PDC is often not detected until it has advanced, treatment is frequently focused on palliative care to relieve symptoms and improve quality of life.

Tumor markers are substances that can be found in the body and their presence can indicate the presence of certain types of cancer or other conditions. Biological tumor markers refer to those substances that are produced by cancer cells or by other cells in response to cancer or certain benign (non-cancerous) conditions. These markers can be found in various bodily fluids such as blood, urine, or tissue samples.

Examples of biological tumor markers include:

1. Proteins: Some tumor markers are proteins that are produced by cancer cells or by other cells in response to the presence of cancer. For example, prostate-specific antigen (PSA) is a protein produced by normal prostate cells and in higher amounts by prostate cancer cells.
2. Genetic material: Tumor markers can also include genetic material such as DNA, RNA, or microRNA that are shed by cancer cells into bodily fluids. For example, circulating tumor DNA (ctDNA) is genetic material from cancer cells that can be found in the bloodstream.
3. Metabolites: Tumor markers can also include metabolic products produced by cancer cells or by other cells in response to cancer. For example, lactate dehydrogenase (LDH) is an enzyme that is released into the bloodstream when cancer cells break down glucose for energy.

It's important to note that tumor markers are not specific to cancer and can be elevated in non-cancerous conditions as well. Therefore, they should not be used alone to diagnose cancer but rather as a tool in conjunction with other diagnostic tests and clinical evaluations.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

A mucous membrane is a type of moist, protective lining that covers various body surfaces inside the body, including the respiratory, gastrointestinal, and urogenital tracts, as well as the inner surface of the eyelids and the nasal cavity. These membranes are composed of epithelial cells that produce mucus, a slippery secretion that helps trap particles, microorganisms, and other foreign substances, preventing them from entering the body or causing damage to tissues. The mucous membrane functions as a barrier against infection and irritation while also facilitating the exchange of gases, nutrients, and waste products between the body and its environment.

The corneal epithelium is the outermost layer of the cornea, which is the clear, dome-shaped surface at the front of the eye. It is a stratified squamous epithelium, consisting of several layers of flat, scale-like cells that are tightly packed together. The corneal epithelium serves as a barrier to protect the eye from microorganisms, dust, and other foreign particles. It also provides a smooth surface for the refraction of light, contributes to the maintenance of corneal transparency, and plays a role in the eye's sensitivity to touch and pain. The corneal epithelium is constantly being renewed through the process of cell division and shedding, with new cells produced by stem cells located at the limbus, the border between the cornea and the conjunctiva.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

Gene order, in the context of genetics and genomics, refers to the specific sequence or arrangement of genes along a chromosome. The order of genes on a chromosome is not random, but rather, it is highly conserved across species and is often used as a tool for studying evolutionary relationships between organisms.

The study of gene order has also provided valuable insights into genome organization, function, and regulation. For example, the clustering of genes that are involved in specific pathways or functions can provide information about how those pathways or functions have evolved over time. Similarly, the spatial arrangement of genes relative to each other can influence their expression levels and patterns, which can have important consequences for phenotypic traits.

Overall, gene order is an important aspect of genome biology that continues to be a focus of research in fields such as genomics, genetics, evolutionary biology, and bioinformatics.

The Blood-Brain Barrier (BBB) is a highly specialized, selective interface between the central nervous system (CNS) and the circulating blood. It is formed by unique endothelial cells that line the brain's capillaries, along with tight junctions, astrocytic foot processes, and pericytes, which together restrict the passage of substances from the bloodstream into the CNS. This barrier serves to protect the brain from harmful agents and maintain a stable environment for proper neural function. However, it also poses a challenge in delivering therapeutics to the CNS, as most large and hydrophilic molecules cannot cross the BBB.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Pulmonary alveoli, also known as air sacs, are tiny clusters of air-filled pouches located at the end of the bronchioles in the lungs. They play a crucial role in the process of gas exchange during respiration. The thin walls of the alveoli, called alveolar membranes, allow oxygen from inhaled air to pass into the bloodstream and carbon dioxide from the bloodstream to pass into the alveoli to be exhaled out of the body. This vital function enables the lungs to supply oxygen-rich blood to the rest of the body and remove waste products like carbon dioxide.

Zebrafish proteins refer to the diverse range of protein molecules that are produced by the organism Danio rerio, commonly known as the zebrafish. These proteins play crucial roles in various biological processes such as growth, development, reproduction, and response to environmental stimuli. They are involved in cellular functions like enzymatic reactions, signal transduction, structural support, and regulation of gene expression.

Zebrafish is a popular model organism in biomedical research due to its genetic similarity with humans, rapid development, and transparent embryos that allow for easy observation of biological processes. As a result, the study of zebrafish proteins has contributed significantly to our understanding of protein function, structure, and interaction in both zebrafish and human systems.

Some examples of zebrafish proteins include:

* Transcription factors that regulate gene expression during development
* Enzymes involved in metabolic pathways
* Structural proteins that provide support to cells and tissues
* Receptors and signaling molecules that mediate communication between cells
* Heat shock proteins that assist in protein folding and protect against stress

The analysis of zebrafish proteins can be performed using various techniques, including biochemical assays, mass spectrometry, protein crystallography, and computational modeling. These methods help researchers to identify, characterize, and understand the functions of individual proteins and their interactions within complex networks.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Cadherins are a type of cell adhesion molecule that play a crucial role in the development and maintenance of intercellular junctions. They are transmembrane proteins that mediate calcium-dependent homophilic binding between adjacent cells, meaning that they bind to identical cadherin molecules on neighboring cells.

There are several types of cadherins, including classical cadherins, desmosomal cadherins, and protocadherins, each with distinct functions and localization in tissues. Classical cadherins, also known as type I cadherins, are the most well-studied and are essential for the formation of adherens junctions, which help to maintain cell-to-cell contact and tissue architecture.

Desmosomal cadherins, on the other hand, are critical for the formation and maintenance of desmosomes, which are specialized intercellular junctions that provide mechanical strength and stability to tissues. Protocadherins are a diverse family of cadherin-related proteins that have been implicated in various developmental processes, including neuronal connectivity and tissue patterning.

Mutations in cadherin genes have been associated with several human diseases, including cancer, neurological disorders, and heart defects. Therefore, understanding the structure, function, and regulation of cadherins is essential for elucidating their roles in health and disease.

"Carcinoma, Lewis lung" is a term used to describe a specific type of lung cancer that was first discovered in strain C57BL/6J mice by Dr. Margaret R. Lewis in 1951. It is a spontaneously occurring undifferentiated carcinoma that originates from the lung epithelium and is highly invasive and metastatic, making it a popular model for studying cancer biology and testing potential therapies.

The Lewis lung carcinoma (LLC) cells are typically characterized by their rapid growth rate, ability to form tumors when implanted into syngeneic mice, and high levels of vascular endothelial growth factor (VEGF), which promotes angiogenesis and tumor growth.

It is important to note that while the LLC model has been useful for studying certain aspects of lung cancer, it may not fully recapitulate the complexity and heterogeneity of human lung cancers. Therefore, findings from LLC studies should be validated in more clinically relevant models before being translated into human therapies.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

A zebrafish is a freshwater fish species belonging to the family Cyprinidae and the genus Danio. Its name is derived from its distinctive striped pattern that resembles a zebra's. Zebrafish are often used as model organisms in scientific research, particularly in developmental biology, genetics, and toxicology studies. They have a high fecundity rate, transparent embryos, and a rapid development process, making them an ideal choice for researchers. However, it is important to note that providing a medical definition for zebrafish may not be entirely accurate or relevant since they are primarily used in biological research rather than clinical medicine.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Gene silencing is a process by which the expression of a gene is blocked or inhibited, preventing the production of its corresponding protein. This can occur naturally through various mechanisms such as RNA interference (RNAi), where small RNAs bind to and degrade specific mRNAs, or DNA methylation, where methyl groups are added to the DNA molecule, preventing transcription. Gene silencing can also be induced artificially using techniques such as RNAi-based therapies, antisense oligonucleotides, or CRISPR-Cas9 systems, which allow for targeted suppression of gene expression in research and therapeutic applications.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Spermatogenesis is the process by which sperm cells, or spermatozoa, are produced in male organisms. It occurs in the seminiferous tubules of the testes and involves several stages:

1. Spermatocytogenesis: This is the initial stage where diploid spermatogonial stem cells divide mitotically to produce more spermatogonia, some of which will differentiate into primary spermatocytes.
2. Meiosis: The primary spermatocytes undergo meiotic division to form haploid secondary spermatocytes, which then divide again to form haploid spermatids. This process results in the reduction of chromosome number from 46 (diploid) to 23 (haploid).
3. Spermiogenesis: The spermatids differentiate into spermatozoa, undergoing morphological changes such as the formation of a head and tail. During this stage, most of the cytoplasm is discarded, resulting in highly compacted and streamlined sperm cells.
4. Spermation: The final stage where mature sperm are released from the seminiferous tubules into the epididymis for further maturation and storage.

The entire process takes approximately 72-74 days in humans, with continuous production throughout adulthood.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

The transcriptome refers to the complete set of RNA molecules, including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and other non-coding RNAs, that are present in a cell or a population of cells at a given point in time. It reflects the genetic activity and provides information about which genes are being actively transcribed and to what extent. The transcriptome can vary under different conditions, such as during development, in response to environmental stimuli, or in various diseases, making it an important area of study in molecular biology and personalized medicine.

Cell polarity refers to the asymmetric distribution of membrane components, cytoskeleton, and organelles in a cell. This asymmetry is crucial for various cellular functions such as directed transport, cell division, and signal transduction. The plasma membrane of polarized cells exhibits distinct domains with unique protein and lipid compositions that define apical, basal, and lateral surfaces of the cell.

In epithelial cells, for example, the apical surface faces the lumen or external environment, while the basolateral surface interacts with other cells or the extracellular matrix. The establishment and maintenance of cell polarity are regulated by various factors including protein complexes, lipids, and small GTPases. Loss of cell polarity has been implicated in several diseases, including cancer and neurological disorders.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Neoplastic gene expression regulation refers to the processes that control the production of proteins and other molecules from genes in neoplastic cells, or cells that are part of a tumor or cancer. In a normal cell, gene expression is tightly regulated to ensure that the right genes are turned on or off at the right time. However, in cancer cells, this regulation can be disrupted, leading to the overexpression or underexpression of certain genes.

Neoplastic gene expression regulation can be affected by a variety of factors, including genetic mutations, epigenetic changes, and signals from the tumor microenvironment. These changes can lead to the activation of oncogenes (genes that promote cancer growth and development) or the inactivation of tumor suppressor genes (genes that prevent cancer).

Understanding neoplastic gene expression regulation is important for developing new therapies for cancer, as targeting specific genes or pathways involved in this process can help to inhibit cancer growth and progression.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Real-Time Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences in real-time. It is a sensitive and specific method that allows for the quantification of target nucleic acids, such as DNA or RNA, through the use of fluorescent reporter molecules.

The RT-PCR process involves several steps: first, the template DNA is denatured to separate the double-stranded DNA into single strands. Then, primers (short sequences of DNA) specific to the target sequence are added and allowed to anneal to the template DNA. Next, a heat-stable enzyme called Taq polymerase adds nucleotides to the annealed primers, extending them along the template DNA until a new double-stranded DNA molecule is formed.

During each amplification cycle, fluorescent reporter molecules are added that bind specifically to the newly synthesized DNA. As more and more copies of the target sequence are generated, the amount of fluorescence increases in proportion to the number of copies present. This allows for real-time monitoring of the PCR reaction and quantification of the target nucleic acid.

RT-PCR is commonly used in medical diagnostics, research, and forensics to detect and quantify specific DNA or RNA sequences. It has been widely used in the diagnosis of infectious diseases, genetic disorders, and cancer, as well as in the identification of microbial pathogens and the detection of gene expression.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Oligonucleotide Array Sequence Analysis is a type of microarray analysis that allows for the simultaneous measurement of the expression levels of thousands of genes in a single sample. In this technique, oligonucleotides (short DNA sequences) are attached to a solid support, such as a glass slide, in a specific pattern. These oligonucleotides are designed to be complementary to specific target mRNA sequences from the sample being analyzed.

During the analysis, labeled RNA or cDNA from the sample is hybridized to the oligonucleotide array. The level of hybridization is then measured and used to determine the relative abundance of each target sequence in the sample. This information can be used to identify differences in gene expression between samples, which can help researchers understand the underlying biological processes involved in various diseases or developmental stages.

It's important to note that this technique requires specialized equipment and bioinformatics tools for data analysis, as well as careful experimental design and validation to ensure accurate and reproducible results.

Mammary glands are specialized exocrine glands found in mammals, including humans and other animals. These glands are responsible for producing milk, which is used to nurse offspring after birth. The mammary glands are located in the breast region of female mammals and are usually rudimentary or absent in males.

In animals, mammary glands can vary in number and location depending on the species. For example, humans and other primates have two mammary glands, one in each breast. Cows, goats, and sheep, on the other hand, have multiple pairs of mammary glands located in their lower abdominal region.

Mammary glands are made up of several structures, including lobules, ducts, and connective tissue. The lobules contain clusters of milk-secreting cells called alveoli, which produce and store milk. The ducts transport the milk from the lobules to the nipple, where it is released during lactation.

Mammary glands are an essential feature of mammals, as they provide a source of nutrition for newborn offspring. They also play a role in the development and maintenance of the mother-infant bond, as nursing provides opportunities for physical contact and bonding between the mother and her young.

The Kaplan-Meier estimate is a statistical method used to calculate the survival probability over time in a population. It is commonly used in medical research to analyze time-to-event data, such as the time until a patient experiences a specific event like disease progression or death. The Kaplan-Meier estimate takes into account censored data, which occurs when some individuals are lost to follow-up before experiencing the event of interest.

The method involves constructing a survival curve that shows the proportion of subjects still surviving at different time points. At each time point, the survival probability is calculated as the product of the conditional probabilities of surviving from one time point to the next. The Kaplan-Meier estimate provides an unbiased and consistent estimator of the survival function, even when censoring is present.

In summary, the Kaplan-Meier estimate is a crucial tool in medical research for analyzing time-to-event data and estimating survival probabilities over time while accounting for censored observations.

Cell adhesion molecules (CAMs) are a type of protein found on the surface of cells that mediate the attachment or adhesion of cells to either other cells or to the extracellular matrix (ECM), which is the network of proteins and carbohydrates that provides structural and biochemical support to surrounding cells.

CAMs play crucial roles in various biological processes, including tissue development, differentiation, repair, and maintenance of tissue architecture and function. They are also involved in cell signaling, migration, and regulation of the immune response.

There are several types of CAMs, classified based on their structure and function, such as immunoglobulin-like CAMs (IgCAMs), cadherins, integrins, and selectins. Dysregulation of CAMs has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Breast neoplasms refer to abnormal growths in the breast tissue that can be benign or malignant. Benign breast neoplasms are non-cancerous tumors or growths, while malignant breast neoplasms are cancerous tumors that can invade surrounding tissues and spread to other parts of the body.

Breast neoplasms can arise from different types of cells in the breast, including milk ducts, milk sacs (lobules), or connective tissue. The most common type of breast cancer is ductal carcinoma, which starts in the milk ducts and can spread to other parts of the breast and nearby structures.

Breast neoplasms are usually detected through screening methods such as mammography, ultrasound, or MRI, or through self-examination or clinical examination. Treatment options for breast neoplasms depend on several factors, including the type and stage of the tumor, the patient's age and overall health, and personal preferences. Treatment may include surgery, radiation therapy, chemotherapy, hormone therapy, or targeted therapy.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Pancreatic neoplasms refer to abnormal growths in the pancreas that can be benign or malignant. The pancreas is a gland located behind the stomach that produces hormones and digestive enzymes. Pancreatic neoplasms can interfere with the normal functioning of the pancreas, leading to various health complications.

Benign pancreatic neoplasms are non-cancerous growths that do not spread to other parts of the body. They are usually removed through surgery to prevent any potential complications, such as blocking the bile duct or causing pain.

Malignant pancreatic neoplasms, also known as pancreatic cancer, are cancerous growths that can invade and destroy surrounding tissues and organs. They can also spread (metastasize) to other parts of the body, such as the liver, lungs, or bones. Pancreatic cancer is often aggressive and difficult to treat, with a poor prognosis.

There are several types of pancreatic neoplasms, including adenocarcinomas, neuroendocrine tumors, solid pseudopapillary neoplasms, and cystic neoplasms. The specific type of neoplasm is determined through various diagnostic tests, such as imaging studies, biopsies, and blood tests. Treatment options depend on the type, stage, and location of the neoplasm, as well as the patient's overall health and preferences.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Kidney function tests (KFTs) are a group of diagnostic tests that evaluate how well your kidneys are functioning by measuring the levels of various substances in the blood and urine. The tests typically assess the glomerular filtration rate (GFR), which is an indicator of how efficiently the kidneys filter waste from the blood, as well as the levels of electrolytes, waste products, and proteins in the body.

Some common KFTs include:

1. Serum creatinine: A waste product that's produced by normal muscle breakdown and is excreted by the kidneys. Elevated levels may indicate reduced kidney function.
2. Blood urea nitrogen (BUN): Another waste product that's produced when protein is broken down and excreted by the kidneys. Increased BUN levels can suggest impaired kidney function.
3. Estimated glomerular filtration rate (eGFR): A calculation based on serum creatinine, age, sex, and race that estimates the GFR and provides a more precise assessment of kidney function than creatinine alone.
4. Urinalysis: An examination of a urine sample to detect abnormalities such as protein, blood, or bacteria that may indicate kidney disease.
5. Electrolyte levels: Measurement of sodium, potassium, chloride, and bicarbonate in the blood to ensure they're properly balanced, which is essential for normal kidney function.

KFTs are often ordered as part of a routine check-up or when kidney disease is suspected based on symptoms or other diagnostic tests. Regular monitoring of kidney function can help detect and manage kidney disease early, potentially preventing or slowing down its progression.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

"Claudin Cherelus". Alcorn State Braves. "Scouting Jets UDFA linebacker Claudin Cherelus". SB Nation. June 20, 2023. Ventre, ... "Claudin Cherelus". ESPN. Mull, Cory (July 5, 2016). "Power And Speed Needed For Safety". The News-Press. p. C1, C2 - via ... Claudin Cherelus (born February 9, 1999) is an American football linebacker for the Carolina Panthers of the National Football ... DeLuca, Dan (May 9, 2023). "Golden Gate's Claudin Cherelus signs with NY Jets". The Naples Daily News. p. A6 - via Newspapers. ...
... (c. 1490 - 13 October 1562) was a French composer of the Renaissance. Along with Clément Janequin he was one ... Free scores by Claudin de Sermisy at the International Music Score Library Project (IMSLP) Tant que vivray midi file ... ISBN 0-89917-034-X Isabelle Cazeaux, "Claudin de Sermisy", The New Grove Dictionary of Music and Musicians, ed. Stanley Sadie. ... 1527) Tu disais que j'en mourrais Vignon, vignon, vignon, vignette Vive la serpe Aspice, Domine Isabelle Cazeaux, "Claudin d ...
Claudin, P; Andreotti, B (2006). "A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples". Earth and ... Chang, Kenneth (October 1, 2013). "Hitting Pay Dirt on Mars". New York Times. Retrieved October 2, 2013. Meslin, P.-Y.; Forni, ... "MGS-1 Mars Global Simulant , Fact Sheet" (PDF). Exolith Simulants. "NASA Captures Mars' Mesmerizing Blue Sand Dune - but What ... 252 (1-2): 30-44. arXiv:cond-mat/0603656. Bibcode:2006E&PSL.252...30C. doi:10.1016/j.epsl.2006.09.004. S2CID 13910286. Sullivan ...
Bordiec, M.; Carpy, S.; Bourgeois, O.; Herny, C.; Massé, M.; Perret, L.; Claudin, P.; Pochat, S.; Douté, S. (1 December 2020 ... Only about 1% of Antarctic ice area can be considered to be blue-ice area, but they have attracted scientific interest due to ... Blue-ice areas make up only about 1% of the Antarctic surface ice; however, they are locally common and scattered across the ... doi:10.1111/j.1945-5100.2001.tb01918.x. Harvey, Ralph (1 January 2003). "The Origin and Significance of Antarctic Meteorites". ...
Claudin, Philippe; Andreotti, Bruno (2006). "A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples ... 1 m in amplitude. Understanding TAR formation and evolution could offer insight into the winds that created them. In turn, ... 252 (1-2): 30-44. arXiv:cond-mat/0603656. Bibcode:2006E&PSL.252...30C. doi:10.1016/j.epsl.2006.09.004. ISSN 0012-821X. S2CID ... 1-162, doi:10.1130/mem72-p1, hdl:2027/osu.32435000785121, retrieved 2020-09-15 G. Kocurek, M. Townsley, E. Yeh, K. (1992). " ...
Claudin, A. (1894). Les Origines de l'imprimerie à Saint-Lô en Normandie [The origins of printing at Saint-Lô in Normandy] (in ... French). Paris: A. Claudin. Le Clerc, R. (1930). Histoire du Bon Sauveur de Saint-Lô [History of the Bon Sauveur of Saint-Lô] ( ... It is also chef-lieu of an arrondissement and two cantons (Saint-Lô-1 and Saint-Lô-2). The placename derives from that of a ... 1, 1857 Lepingard, Édouard (1866). "Une page de l'histoire de Saint-Lô". Annuaire du Département de la Manche. Miniac, Jean- ...
In mice, Claudin-5 loss during development is lethal and results in size-selective loosening of the BBB. The blood-brain ... February 2018). "claudin 5". Biology Open. 7 (2): bio030494. doi:10.1242/bio.030494. PMC 5861362. PMID 29437557. Abbott NJ, ... May 2003). "Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice". The Journal of Cell Biology. 161 ... such as Claudin-5), junctional adhesion molecule (such as JAM-A). Each of these tight junction proteins is stabilized to the ...
The name claudin comes from Latin word claudere ("to close"), suggesting the barrier role of these proteins. A recent review ... A chimeric claudin was synthesized to help enhance the understanding of both the structure and function of the tight junction. ... All human claudins (with the exception of Claudin 12) have domains that let them bind to PDZ domains of scaffold proteins. The ... There are 23 genes found in the human genome for claudin proteins and there are 27 transmembrane domains across mammals. The ...
Van Itallie CM, Mitic LL, Anderson JM (July 2012). "SUMOylation of claudin-2". Annals of the New York Academy of Sciences. 1258 ... 374 (Pt 1): 1-20. doi:10.1042/BJ20030407. PMC 1223585. PMID 12773095. Liu B, Gross M, ten Hoeve J, Shuai K (March 2001). "A ... 554 (1-2): 111-8. doi:10.1016/s0014-5793(03)01116-5. PMID 14596924. S2CID 23261716. Wong KA, Kim R, Christofk H, Gao J, Lawson ... 229 (1-2): 109-16. doi:10.1016/s0378-1119(99)00033-5. PMID 10095110. Betz A, Lampen N, Martinek S, Young MW, Darnell JE (August ...
Claudin-12 is a protein that in humans is encoded by the CLDN12 gene. It belongs to the group of claudins. GRCh38: Ensembl ... "Entrez Gene: CLDN12 claudin 12". Human CLDN12 genome location and CLDN12 gene details page in the UCSC Genome Browser. Kniesel ... 2001). "claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ...
Claudin-20 is a protein that in humans is encoded by the CLDN20 gene. It belongs to the group of claudins. GRCh38: Ensembl ... "Entrez Gene: CLDN20 claudin 20". Human CLDN20 genome location and CLDN20 gene details page in the UCSC Genome Browser. Kniesel ... Hewitt KJ, Agarwal R, Morin PJ (Aug 2006). "The claudin gene family: expression in normal and neoplastic tissues". BMC Cancer. ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ...
Claudin-17 is a protein that in humans is encoded by the CLDN17 gene. It belongs to the group of claudins; claudins are cell- ... "Entrez Gene: CLDN17 claudin 17". Adil, MS; Narayanan, SP; Somanath, PR (2021). "Cell-cell junctions: structure and regulation ... Krug SM, Günzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, Schulzke JD, Fromm M (2012). "Claudin-17 forms tight junction ... Adil, M; Parvathagiri, V; Verma, A; Liu, F; Rudraraju, M; Narayanan, SP; Somanath, PR (2022). "Claudin-17 Deficiency in Mice ...
Claudin-14 is a protein that in humans is encoded by the CLDN14 gene. It belongs to a related family of proteins called ... "Entrez Gene: CLDN14 claudin 14". Baker M, Reynolds LE, Robinson SD, Lees DM, Parsons M, Elia G, et al. (2013). "Stromal ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ... Sticky cells, blood vessels and cancer - the paradox of Claudin-14 - Marianne Baker, Cancer Research UK Science Update blog, 14 ...
Claudin-7 is a protein that in humans is encoded by the CLDN7 gene. It belongs to the group of claudins. Claudins, such as ... "Entrez Gene: CLDN7 claudin 7". Human CLDN7 genome location and CLDN7 gene details page in the UCSC Genome Browser. Kniesel U, ... 2005). "Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study". Mod. Pathol. 18 (4 ... 2003). "Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and ...
"Entrez Gene: CLDN9 claudin 9". Higashi AY, Higashi T, Furuse K, Ozeki K, Furuse M, Chiba H (Nov 2021). "Claudin-9 constitutes ... 2007). "Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus". J. Virol. 81 (22): 12465-71. doi: ... Claudin-9 is a protein that in humans is encoded by the CLDN9 gene. It belongs to the group of claudins. This gene is expressed ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ...
Claudin-1 is a protein that in humans is encoded by the CLDN1 gene. It belongs to the group of claudins. Tight junctions ... "Entrez Gene: CLDN1 claudin 1". Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG (Nov 2003). "Role of claudin ... The protein encoded by this gene, a member of the claudin family, is an integral membrane protein and a component of tight ... Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H (2001). "Claudin promotes activation of pro-matrix ...
Claudin-8 is a protein that in humans is encoded by the CLDN8 gene. It belongs to the group of claudins. GRCh38: Ensembl ... "Entrez Gene: CLDN8 claudin 8". Human CLDN8 genome location and CLDN8 gene details page in the UCSC Genome Browser. Kniesel U, ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ... Morita K, Furuse M, Fujimoto K, Tsukita S (Mar 1999). "Claudin multigene family encoding four-transmembrane domain protein ...
Claudin-22 is a protein that in humans is encoded by the CLDN22 gene. It belongs to the group of claudins. GRCh38: Ensembl ... "Entrez Gene: CLDN22 claudin 22". Human CLDN22 genome location and CLDN22 gene details page in the UCSC Genome Browser. González ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ... Heiskala M, Peterson PA, Yang Y (2001). "The roles of claudin superfamily proteins in paracellular transport". Traffic. 2 (2): ...
Claudin-16 is a protein that in humans is encoded by the CLDN16 gene. It belongs to the group of claudins. Tight junctions ... The protein encoded by this gene, a member of the claudin family, is an integral membrane protein and a component of tight ... 2004). "A Novel Claudin 16 Mutation Associated with Childhood Hypercalciuria Abolishes Binding to ZO-1 and Results in Lysosomal ... "Entrez Gene: CLDN16 claudin 16". "Salmonella infection data for Cldn16". Wellcome Trust Sanger Institute. "Citrobacter ...
Claudin domain-containing protein 1 is a protein that in humans is encoded by the CLDND1 gene. GRCh38: Ensembl release 89: ... "Entrez Gene: CLDND1 claudin domain containing 1". Human CLDND1 genome location and CLDND1 gene details page in the UCSC Genome ... 289 (1-2): 119-29. doi:10.1016/S0378-1119(02)00507-3. PMID 12036590. Zhang QH, Ye M, Wu XY, et al. (2001). "Cloning and ...
"Entrez Gene: CLDN4 claudin 4". Ohta Y, Sasaki Y, Saito M, Kushima M, Takimoto M, Shiokawa A, Ota H (2013). "Claudin-4 as a ... Claudin 4, also known as CLDN4, is a protein which in humans is encoded by the CLDN4 gene. It belongs to the group of claudins ... Claudin 4 can also be used as a marker for distinguishing malignant mesothelioma from lung cancer and uterine serous carcinoma ... Ohta Y, Sasaki Y, Saito M, Kushima M, Takimoto M, Shiokawa A, Ota H (2013). "Claudin-4 as a marker for distinguishing malignant ...
"Claudin-1 overexpression effect on lung adenocarcinoma cell line". NCBI GEO Profiles. Retrieved 4 May 2015. Vandepoele K, Van ... Neuroblastoma breakpoint family, member 1, or NBPF1, is a protein that is encoded by the gene NBPF1 in humans. This protein is ... The NBPF1 protein is also found to be disrupted by a chromosomal translocation between chromosomes 1 and 17 with in some cases ... Additionally, the inactivation of Far upstream element-binding protein 1 causes a decrease in NBPF1, while the inactivation of ...
Claudin-5 is a protein that in humans is encoded by the CLDN5 gene. It belongs to the group of claudins. This gene encodes a ... "Entrez Gene: CLDN5 claudin 5 (transmembrane protein deleted in velocardiofacial syndrome)". Coyne CB, Gambling TM, Boucher RC, ... Kojima S, Rahner C, Peng S, Rizzolo LJ (2002). "Claudin 5 is transiently expressed during the development of the retinal ... Tsukita S, Furuse M (2002). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ...
It caused by mutations in the Claudin 1 gene. Ichthyosis prematurity syndrome List of cutaneous conditions Rapini, Ronald P.; ... ISBN 978-1-4160-2999-1. "Ichthyosis, leukocyte vacuoles, alopecia, and sclerosing cholangitis - About the Disease - Genetic and ...
Claudin-11 is a protein that in humans is encoded by the CLDN11 gene. It belongs to the group of claudins and was the first ... "Entrez Gene: CLDN11 claudin 11 (oligodendrocyte transmembrane protein)". Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, ... The protein encoded by this gene belongs to the claudin family of tight junction associated proteins and is a major component ... Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM (April 2001). "OSP/claudin-11 forms a ...
Claudin 3, also known as CLDN3, is a protein which in humans is encoded by the CLDN3 gene. It is a member of the claudin ... "Entrez Gene: CLDN3 claudin 3". Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG (Nov 2003). "Role of claudin ... "Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium". Cancer Res ... The protein encoded by this intron-less gene, a member of the claudin family, is an integral membrane protein and a component ...
"Entrez Gene: CLDN18 claudin 18". Niimi T, Nagashima K, Ward JM, et al. (2001). "claudin-18, a Novel Downstream Target Gene for ... Claudin 18.2) is abundant in gastric tumors. Experimental antibody IMAB362 targets Claudin 18.2 to help treat gastric cancers. ... Claudin-18 is a protein that in humans is encoded by the CLDN18 gene. It belongs to the group of claudins. CLDN18 belongs to ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ...
Claudin-19 is a protein that in humans is encoded by the CLDN19 gene. It belongs to the group of claudins. Claudin-19 has been ... "Entrez Gene: CLDN19 claudin 19". Naeem, M.; Hussain, S.; Akhtar, N. (2011). "Mutation in the Tight-Junction Gene Claudin 19 ( ... 2006). "Kidney claudin-19: localization in distal tubules and collecting ducts and dysregulation in polycystic renal disease". ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ...
Claudin-15 is a protein that in humans is encoded by the CLDN15 gene. It belongs to the group of claudins. Among its related ... "Entrez Gene: CLDN15 claudin 15". Database, GeneCards Human Gene. "CLDN15 Gene - GeneCards , CLD15 Protein , CLD15 Antibody". ... Tsukita S, Furuse M (2003). "Claudin-based barrier in simple and stratified cellular sheets". Curr. Opin. Cell Biol. 14 (5): ... Heiskala M, Peterson PA, Yang Y (2001). "The roles of claudin superfamily proteins in paracellular transport". Traffic. 2 (2): ...
Claudin-2 is a protein that in humans is encoded by the CLDN2 gene. It belongs to the group of claudins. Members of the claudin ... Claudin-2 is expressed in cation-leaky epithelia such as that of the kidney proximal tubule. Mice that are deficient in claudin ... "Entrez Gene: CLDN2 claudin 2". Muto, S.; Hata, M.; Taniguchi, J.; Tsuruoka, S.; Moriwaki, K.; Saitou, M.; Furuse, K.; Sasaki, H ... 1998). "Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to ...
Alentis Therapeutics Receives FDA Fast Track Designation for ALE.C04 for the Treatment of Claudin-1 Positive HNSCC Fast Track ... "We continue to advance our pipeline of antibodies against Claudin-1, an extraordinary target with therapeutic potential across ... The ongoing Phase 1/2 clinical trial in HNSCC will give us important information on ALE.C04s safety and pharmacodynamic ... a clinical-stage biotechnology company developing treatments for Claudin-1 positive (CLDN1+) tumors and organ fibrosis, ...
Cases with loss of Claudin expression in ,1/3 of tumor cells were classified as mild loss, whereas cases with loss of Claudin ... Conclusions:Claudin 1, 4, and 7 are important building blocks of paracellular adhesion molecules. Their decreased expression in ... Results:The severe suppression of Claudin 1, 4, and 7 expression was found to be significantly related to the depth of tumor ... In this study, we investigated the importance of loss of Claudin 1, 4, and 7 expression, and their relation to tumor ...
Nitta T, Hata M, Gotoh S, et al: Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. ... Furuse M, Sasaki H and Tsukita S: Manner of interaction of heterogeneous claudin species within and between tight junction ... claudin‑5, occludin, and ZO‑1, following traumatic brain injury in rats. *Authors: *Jianfeng Wen ... claudin‑5, occludin and ZO‑1, were significantly reduced following TBI. Furthermore, the changes in the expression of these ...
"Claudin Cherelus". Alcorn State Braves. "Scouting Jets UDFA linebacker Claudin Cherelus". SB Nation. June 20, 2023. Ventre, ... "Claudin Cherelus". ESPN. Mull, Cory (July 5, 2016). "Power And Speed Needed For Safety". The News-Press. p. C1, C2 - via ... Claudin Cherelus (born February 9, 1999) is an American football linebacker for the Carolina Panthers of the National Football ... DeLuca, Dan (May 9, 2023). "Golden Gates Claudin Cherelus signs with NY Jets". The Naples Daily News. p. A6 - via Newspapers. ...
Source: Claudin Welding Supply. Contributor: Claudin Welding Supply. Acquired: 24 July, 2002. Price: Donated. Size: 1. Purity ... Source: Claudin Welding Supply. Contributor: Claudin Welding Supply. Acquired: 24 July, 2002. Price: Donated. Size: 7. Purity ... Claudin Welding Supply (9). Claudin Welding Supply in downtown Champaign, Illinois is where I get all my plasma cutter tips and ... Source: Claudin Welding Supply. Contributor: Theodore Gray. Acquired: 16 April, 2009. Text Updated: 17 April, 2009. Price: $1. ...
View our 1 Claudin-25 cDNA Clones for your research. ... and their permeability is determined by the profile of claudin ... Claudin-25: Products. Claudins are transmembrane proteins with four membrane-spanning regions that serve as the major cell- ...
Category:Sermisy, Claudin de/Collections (The following text was automatically transcluded from Category:Sermisy, Claudin de.) ... Pages in category "Sermisy, Claudin de/Collections". The following 74 pages are in this category, out of 74 total. ... Chansons françaises polyphoniques à 2 & 3 voix (Sermisy, Claudin de). *27 Chansons musicales a quatre parties (Attaingnant, ... 31 Chansons musicales esleves de plusieurs livres, Livre 1 (Attaingnant, Pierre). *31 Chansons musicales esleves de plusieurs ...
Title: Role of Claudin-1 in Colon Cancer. Principal Investigator: Punita Dhawan. Location: Omaha, NE. Research Service: ...
Due to their limited shelf life, the ImmunoTag™ ELISA kits are not typically stocked as finished goods. Please allow 2-3 weeks for delivery. Upon receipt of an order each kit is assembled and tested to ensure that it meets specifications before shipping. Minor changes may occur to the Range, Sensitivity, and Precision and is reflected in the manual supplied with the kit (online manuals are for reference only). In the event of a significant change the order would be confirmed with the customer before shipping ...
In addition, basal expression levels of tight junction protein-1 encoding ZO1 were lower in R91W;Nrl−/− than in wt retinas. ... Aqp, aquaporin; Tjp, tight junction protein; Cldn, claudin; Il1b, interleukin 1 beta; Tnf, tumor necrosis factor ... Figure 1. Retinal cell death after blue light exposure. (a) Dose-response for blue light-induced damage in the R91W;Nrl−/− all- ... The expression of tight junction protein-1 (Tjp1) dropped in the wt and R91W;Nrl−/− mice 6 h after BLD. Surprisingly, Tjp1 ...
Production, Purification and Characterization of Recombinant, Full-Length Human Claudin-1 Bonander N., Jamshad M., Oberthür D ...
... claudin-2 and either claudin-3 or claudin-10a. I found no effect of claudin-3 overexpression on conductance or sodium ... In contrast, claudin-3 is expressed only within the proximal straight tubule (PST). Furthermore, claudin-2 and claudin-3 ... claudin-2 and claudin-10a form pores in parallel. Next, I tested the hypothesis that deletion of the claudin-2 gene Cldn2 in ... In the PT, claudin-2 is a highly expressed isoform. Claudin-2 increases the calcium permeability of renal epithelial cells upon ...
Claudin-low breast cancer is an aggressive subtype that confers poor prognosis and is found largely within the clinical triple- ... Here, we have shown that intrinsic and immune cell gene signatures distinguish the claudin-low subtype clinically as well as in ... CD4+FoxP3+ Tregs represented a large proportion of the tumor-infiltrating lymphocytes (TILs) in claudin-low tumors, and Tregs ... Despite adaptive immune cell infiltration in claudin-low tumors, treatment with immune checkpoint inhibitory antibodies against ...
When pain is present, it characteristically occurs in the right upper quadrant 30-60 minutes after meals, usually lasts 1-4 ... 1 alpha in persons with acute acalculous cholecystitis and acute calculous cholecystitis, as compared with controls. [70] ...
We now report that TJ function, as well as claudin-1 and occludin expression, change in parallel during late epidermal ... with concurrent upregulation of claudin-1 and occludin. TJ then become more permeable to ions and water as the fetus approaches ...
Heres everything you need to know injury-wise for Week 1. ... LB Claudin Cherelus. • G Nash Jensen. Falcons inactives: • CB ... Week 1: Sundays early slate of games. Bengals vs. Browns: Joe Burrow officially good to go for Bengals. Bengals head coach Zac ... Week 1: Sunday Night Football. Giants vs. Cowboys: Darren Waller in. Tight end Darren Waller, the New York Giants big ... Week 1: Sunday Night Football. Giants vs. Cowboys: TE Darren Waller questionable. The New York Giants listed star tight end ...
Heres everything you need to know injury-wise for Week 1. ... LB Claudin Cherelus. • G Nash Jensen. Falcons inactives: • CB ... Week 1: Sundays early slate of games. Bengals vs. Browns: Joe Burrow officially good to go for Bengals. Bengals head coach Zac ... Week 1: Sunday Night Football. Giants vs. Cowboys: Darren Waller in. Tight end Darren Waller, the New York Giants big ... Week 1: Sunday Night Football. Giants vs. Cowboys: TE Darren Waller questionable. The New York Giants listed star tight end ...
Claudin-based permeability barriers in taste buds. J. Comp. Neurology. 502: 1003-1011. ... depending on the surrounding network of claudin molecules." ... When used as an almost 1:1 replacement of salt in soups, the ... Revised April 1, 2007. 2: 128-130.. Michlig, S., Damak, S., and Le Coutre, J. 2007. ...
Claudin_Dayoposted 12 years ago. How do you habitually start your day? ...
We have publications tested in 1 confirmed species: Mouse.. We have publications tested in 2 applications: IF/IHC, WB.. Submit ... Showing Publications 1 - 4 of 4.. Publications using NBP1-86850. Applications. Species. ... ZO-2 can interact with zona occludens 1 (ZO-1). Furthermore, the PDZ2 domain of ZO-2 was shown to interact with connexin-43, ... They each contain at least one PSD95/Dlg/ZO-1 (PDZ) domain, a Src homology 3 (SH3) domain, and an enzymatically inactive ...
Heres everything you need to know injury-wise for Week 1. ... LB Claudin Cherelus. • G Nash Jensen. Falcons inactives: • CB ... Week 1: Sundays early slate of games. Bengals vs. Browns: Joe Burrow officially good to go for Bengals. Bengals head coach Zac ... Week 1: Sunday Night Football. Giants vs. Cowboys: Darren Waller in. Tight end Darren Waller, the New York Giants big ... Week 1: Sundays late slate of games. Bears vs. Packers: Christian Watson out. Green Bay Packers wide receiver Christian Watson ...
Claudin 18.2 is a target for IMAB362 antibody in pancreatic neoplasms. Wöll S, Schlitter AM, Dhaene K, Roller M, Esposito I, ... 2014 Feb 1;134(3):731-9. doi: 10.1002/ijc.28400. Epub 2013 Sep 16. Int J Cancer. 2014. PMID: 23900716 Free article. ... 2015 Feb;36(1):99-112; quiz 113-4. doi: 10.1007/s00292-014-1971-6. Pathologe. 2015. PMID: 25663186 Review. German. ...
Claudin-1-Dependent Destabilization of the Blood-Brain Barrier in Chronic Stroke Nikola Sladojevic, Svetlana M. Stamatovic, ... Claudin-1-Dependent Destabilization of the Blood-Brain Barrier in Chronic Stroke Nikola Sladojevic, Svetlana M. Stamatovic, ... Claudin-1-Dependent Destabilization of the Blood-Brain Barrier in Chronic Stroke Nikola Sladojevic, Svetlana M. Stamatovic, ... Claudin-1-Dependent Destabilization of the Blood-Brain Barrier in Chronic Stroke Nikola Sladojevic, Svetlana M. Stamatovic, ...
September bis 1. Oktober - » Infos zur Anreise am Wochenende des Köln Marathons ...
Claudin II 199. Wien NB. Gesamtüberlieferung: 1 Exemplar/Fragment in öffentlichen Einrichtungen. ... 3 Ex., 1. Ex.†, 2. Ex.†). Lincoln Cathedr. Linz LB. Lisboa BN. London BL. ×. London BL, IA.49295 ... Leipzig: Melchior Lotter, 1.III.1499. 4°. Reproduktionen: Bethesda NLMed (Digitalisat). München SB (Digitalisat). San Marino ( ... 1 fehlt). Nordhausen BlasiiB. Notre Dame UL. Venezia BNMarc. Wolfenbüttel HerzogAugustB. ×. Wolfenbüttel HerzogAugustB, Li ...
Claudin 6 (5). * Cripto1/CRIPTO (19). * Cyclin D1+beta Catenin+GSK3 beta+LEF1+Axin 2 (1). ... DAPK2+Src+TrkA+FER+c-Kit+PAK1 + PAK2 + PAK3+PDPK1+EGFR+GSK3 beta+AMPK alpha 1+AMPK alpha 2+PIP5K1 al (1). ... Albumin+alpha 2a Adrenergic Receptor (1). * Albumin+COX2 / Cyclooxygenase 2+VR1+Parkin+TPO+COX1 / Cyclooxygenase 1+Rab9+CYP1A1+ ...
The impact of CLAUDIN-1 on follicular thyroid carcinoma aggressiveness In: Endocrine-Related Cancer Jg. 22 (2015) Nr. 5, S. 819 ... Sex-Dependent Claudin-1 Expression in the Liver of Euthyroid and Hypothyroid Mice ... Stanniocalcin 1 Induction by Thyroid Hormone Depends on Thyroid Hormone Receptor β and Phosphatidylinositol 3-kinase Activation ...
Source: Claudin Welding Supply. Contributor: Claudin Welding Supply. Acquired: 24 July, 2002. Price: Donated. Size: 7. Purity: ... Source: Claudin Welding Supply. Contributor: Theodore Gray. Acquired: 8 February, 2009. Text Updated: 8 February, 2009. Price: ... Claudin Welding Supply kindly donated one when I went there looking for Hafnium.. ... Acquired: 1 September, 2004. Text Updated: 8 December, 2007. Price: Donated. Size: 6. Purity: 98% ...
  • The aim of the present study was to determine the changes in BBB permeability and whether pZsGreen1‑N1 mediated overexpression of netrin‑1 increased the expression of the TJ‑associated proteins following traumatic brain injury (TBI). (spandidos-publications.com)
  • Tight junctions restrict the flow of ions and aqueous molecules between cells, and their permeability is determined by the profile of claudin expression and arrangement of claudins with other proteins at the paracellular barrier. (rndsystems.com)
  • Claudin-2 increases the calcium permeability of renal epithelial cells upon overexpression. (ku.edu)
  • I found no effect of claudin-3 overexpression on conductance or sodium permeability (PNa), with or without claudin-2 expression. (ku.edu)
  • In order to test the potential contribution of claudin hetero-oligomerization on these permeability properties, I measured permeability of claudin-2/claudin-10a cells with titrated expression of each protein and with blockage of the claudin-2 pore. (ku.edu)
  • Claudin-5 regulates the paracellular permeability in the blood-brain barrier and is the enriched tight junction protein at the BBB. (elisakits.co.uk)
  • Description: Quantitativesandwich ELISA kit for measuring Human Claudin-2(CLDN2) in samples from serum, plasma, tissue homogenates, cell lysates. (scalegen.com)
  • Human claudin-5 ELISA kit can measure concentrations of CLDN5 (claudin-5, BEC1, CPETRL1, TMVCF1) present is human biological fluids, serum, plasma and tissue homogenate samples. (elisakits.co.uk)
  • For this claudin-5 ELISA kit it is recommended that a standard curve is generated for each assay carried out. (elisakits.co.uk)
  • Claudins are major integral membrane proteins of tight junctions, especially Claudin 1, 4, and 7, which are known as the impermeability Claudins. (medscimonit.com)
  • First, I examined the patterns of claudin expression in the proximal nephron and found that claudins-2 and -10a are expressed throughout the PT, in both convoluted and straight segments. (ku.edu)
  • Then I generated renal epithelial cell lines with inducible expression of PT claudins, claudin-2 and either claudin-3 or claudin-10a. (ku.edu)
  • To understand the association between netrin‑1 and the TJ‑associated proteins, the expression levels of proteins involved in maintaining the integrity of the BBB, including netrin‑1, claudin‑5, occludin and zonula occluden (ZO)‑1, were investigated in the present study using quantitative polymerase chain reaction, western blot analysis and immunofluorescence. (spandidos-publications.com)
  • The results demonstrated that the levels of mRNA transcription and protein expression of the TJ‑associated proteins, claudin‑5, occludin and ZO‑1, were significantly reduced following TBI. (spandidos-publications.com)
  • The present study also demonstrated that netrin‑1 significantly increased the downregulation of claudin‑5, occludin and ZO‑1 expression levels induced by TBI, which provided a basis for further investigation on the role of netrin‑1 in the integrity of TJs and proper functioning of the BBB. (spandidos-publications.com)
  • Haskins J, Gu L, Wittchen ES, Hibbard J and Stevenson BR: ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. (spandidos-publications.com)
  • We now report that TJ function, as well as claudin-1 and occludin expression, change in parallel during late epidermal development. (nih.gov)
  • Specifically, TJ block the paracellular movement of Lanthanum (La(3+)) early in rat in vivo prenatal epidermal development, at gestational days 18-19, with concurrent upregulation of claudin-1 and occludin. (nih.gov)
  • Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles. (elisakits.co.uk)
  • Next, I tested the hypothesis that deletion of the claudin-2 gene Cldn2 in mice causes nephrocalcinosis similar to human kidney stone disease using micro-computed tomography (micro-CT) and histological analyses. (ku.edu)
  • Here, we have shown that intrinsic and immune cell gene signatures distinguish the claudin-low subtype clinically as well as in mouse models of other breast cancer subtypes. (jci.org)
  • Description: Claudin-5, also known as BEC1, is a protein that in humans is encoded by the CLDN5 gene. (exoquick.com)
  • This gene encodes a member of the claudin family. (exoquick.com)
  • It has been determined to be an autosomal recessive disorder with mutation in gene encoding claudin-1 being mapped to chromosome 3q27-q28. (pediatriconcall.com)
  • Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis : a tight junction disease. (pediatriconcall.com)
  • TREATMENT: The plasmid carrying neuropilin-1 (NRP1) gene was transfected into ESC for overexpression. (bvsalud.org)
  • Primary Antibody diluted 1:1000. (novusbio.com)
  • Claudin 18.2 is a target for IMAB362 antibody in pancreatic neoplasms. (nih.gov)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Claudin 2 (CLDN2) in tissue homogenates, cell lysates and other biological fluids. (scalegen.com)
  • Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Claudin 2 (CLDN2) in samples from tissue homogenates, cell lysates and other biological fluids with no significant corss-reactivity with analogues from other species. (scalegen.com)
  • Human IgG antibody Laboratories manufactures the claudin-5 antibody rabbit monoclonal reagents distributed by Genprice. (exoquick.com)
  • The Claudin-5 Antibody Rabbit Monoclonal reagent is RUO (Research Use Only) to test human serum or cell culture lab samples. (exoquick.com)
  • Description: Rabbit Monoclonal MHC class 1 Antibody. (exoquick.com)
  • We continue to advance our pipeline of antibodies against Claudin-1, an extraordinary target with therapeutic potential across indications in oncology and organ fibrosis. (businesswire.com)
  • Despite adaptive immune cell infiltration in claudin-low tumors, treatment with immune checkpoint inhibitory antibodies against cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed death receptor 1 (PD-1) were ineffective in controlling tumor growth. (jci.org)
  • BASEL, Switzerland--( BUSINESS WIRE )--Alentis Therapeutics ("Alentis"), a clinical-stage biotechnology company developing treatments for Claudin-1 positive (CLDN1+) tumors and organ fibrosis, announced today that the US Food and Drug Administration (FDA) has granted Fast Track development program for ALE.C04 for the treatment of patients with recurrent or metastatic, CLDN1-positive HNSCC. (businesswire.com)
  • CD4+FoxP3+ Tregs represented a large proportion of the tumor-infiltrating lymphocytes (TILs) in claudin-low tumors, and Tregs isolated from tumor-bearing mice were able to suppress effector T cell responses. (jci.org)
  • Claudin Welding Supply in downtown Champaign, Illinois is where I get all my plasma cutter tips and electrodes. (theodoregray.com)
  • Claudin Welding Supply kindly donated one when I went there looking for Hafnium. (theodoregray.com)
  • Senior author Professor Penny Lovat, Professor of Cellular Dermatology and Oncology at Newcastle University, and Chief Scientific Officer at AMLo Biosciences, explained: 'AMBRA1, Loricrin and Claudin 1 are all proteins key to maintaining the integrity of the upper layer of the skin,' and that the loss of these proteins causes gaps to develop, allowing the tumour to spread and ulcerate - a process associated with high-risk tumours. (medscape.com)
  • Description: A competitive ELISA for quantitative measurement of Human Claudin 2(CLDN2) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. (scalegen.com)
  • Description: A competitive ELISA for quantitative measurement of Rabbit Claudin 5(CLDN5) in samples from blood, plasma, serum, cell culture supernatant and other biological fluids. (exoquick.com)
  • Claudin-5 consists of 4 transmembrane domains, a short NH2 terminus, two extracellular loops (ECL), a short intracellular loop and a longer COOH terminus. (elisakits.co.uk)
  • Claudin 1, 4, and 7 are important building blocks of paracellular adhesion molecules. (medscimonit.com)
  • Modifying the blood-brain barrier by targeting claudin-5: Safety and risks. (elisakits.co.uk)
  • In addition, basal expression levels of tight junction protein-1 encoding ZO1 were lower in R91W;Nrl −/− than in wt retinas. (nature.com)
  • Next, I used co-immunoprecipitation experiments to show that claudin-2 physically interacts with claudin-3. (ku.edu)
  • Furuse M, Sasaki H and Tsukita S: Manner of interaction of heterogeneous claudin species within and between tight junction strands. (spandidos-publications.com)
  • Anderson J, Fanning A, Lapierre L and Van Itallie CM: Zonula occludens (ZO)-1 and ZO-2: membrane-associated guanylate kinase homologues (MAGuKs) of the tight junction. (spandidos-publications.com)
  • In the PT, claudin-2 is a highly expressed isoform. (ku.edu)
  • Tregs in the tumor microenvironment highly expressed PD-1 and were recruited partly through tumor generation of the chemokine CXCL12. (jci.org)
  • In addition, claudin-2 expression is an important mediator of calcium transport that is associated with kidney stone disease in humans. (ku.edu)
  • particles (norovirus GI.1, the prototype strain) after trans- fection of cultured kidney cells. (cdc.gov)
  • This week's $67 million raise will help advance therapies targeting Claudin-1 for liver and kidney disease into the clinic. (biospace.com)
  • Claudin-25 " has 1 results in Products. (rndsystems.com)
  • My results suggest that, rather than forming a hybrid channel with novel characteristics, claudin-2 and claudin-10a form pores in parallel. (ku.edu)
  • Kaplan-Meier method was used for survival analysis, and the log-rank test was used for univariate analysis of factors affecting the prognosis of patients, and the Cox proportional hazard regression model was used for multivariate analysis.Results:The median overall survival (OS) time of 152 elderly patients with DLBCL was 36 months (32-40 months), and the 1, 2, and 3-year OS rates were 80.26%, 61.84%, and 57.24%, respectively. (bvsalud.org)
  • In this study, we investigated the importance of loss of Claudin 1, 4, and 7 expression, and their relation to tumor progression in colorectal cancer patients. (medscimonit.com)
  • Loss of Claudin 1, 4, and 7 expression was examined by immunohistochemical method in 70 patients diagnosed with colorectal cancer. (medscimonit.com)
  • The severe suppression of Claudin 1, 4, and 7 expression was found to be significantly related to the depth of tumor invasion, positive regional lymph nodes, histological grade, lymphovascular invasion, perineural invasion, and lymphocytic response. (medscimonit.com)
  • Additionally, severity of loss in Claudin 4 expression was found to have a relation with distant metastasis. (medscimonit.com)
  • Furthermore, claudin-2 and claudin-3 expression are found in separate and distinct subpopulations of thin descending limbs. (ku.edu)
  • Importantly, cis-acting expression quantitative trait loci (eQTL) analysis reveals that these same risk variants correlate with reduced claudin-2 mRNA expression in human tissues. (ku.edu)
  • In vitro differentiation of small intestinal epithelium that nausea, vomiting, and watery diarrhea within 12-24 hours approaches physiologic functionality of the in vivo host of exposure and typically remain symptomatic for 1-2 may allow for the development of a pathogenesis model days ( 5 ). (cdc.gov)
  • Claudin-low breast cancer is an aggressive subtype that confers poor prognosis and is found largely within the clinical triple-negative group of breast cancer patients. (jci.org)
  • In addition, it was previously shown that mice with deletion of claudin-2 have increased urinary calcium excretion. (ku.edu)
  • Recently, we engineered an R91W;Nrl −/− mouse model 1 to analyze the impact of a human-blinding mutation found in RPE65 (the R91W) specifically on cone photoreceptors. (nature.com)
  • In classical AR pathophysiology, elevated allergen specific IgE levels and T-helper (Th) 1/Th2 imbalance are considered to be major deviant immune factors ( 4 ). (spandidos-publications.com)
  • We show that, while the axon guidance molecule Netrin-1 promotes nerve invasion by blood vessels via the endothelial receptor UNC5B during embryogenesis, myelinated Schwann cells negatively control intra-nervous vascularization during post-natal period. (elifesciences.org)
  • Other Claudin-5 products are available in stock. (exoquick.com)
  • Title XVIII of the Social Security Act (SSA), §1862(a)(1)(A), states that no Medicare payment shall be made for items or services that are not reasonable and necessary for the diagnosis or treatment of illness or injury or to improve the functioning of a malformed body member. (cms.gov)
  • One of the company's lead molecules, ALE.F02 modulates the function of non-junctional Claudin-1, preventing and even possibly reversing the damaging growth of fibrotic tissue in the liver and kidneys. (biospace.com)
  • Claudin-5: gatekeeper of neurological function. (elisakits.co.uk)
  • The ongoing Phase 1/2 clinical trial in HNSCC will give us important information on ALE.C04's safety and pharmacodynamic profile as well as its anti-tumor efficacy as monotherapy and in combination with pembrolizumab. (businesswire.com)
  • When pain is present, it characteristically occurs in the right upper quadrant 30-60 minutes after meals, usually lasts 1-4 hours, typically does not radiate, and is often exacerbated by greasy and spicy foods. (medscape.com)