CitrullineOrnithine: An amino acid produced in the urea cycle by the splitting off of urea from arginine.Arginine: An essential amino acid that is physiologically active in the L-form.Citrullus: A plant genus of the family CUCURBITACEAE known for the edible fruit.Ornithine Carbamoyltransferase: A urea cycle enzyme that catalyzes the formation of orthophosphate and L-citrulline (CITRULLINE) from CARBAMOYL PHOSPHATE and L-ornithine (ORNITHINE). Deficiency of this enzyme may be transmitted as an X-linked trait. EC 2.1.3.3.Hydrolases: Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3.Nitrogen Isotopes: Stable nitrogen atoms that have the same atomic number as the element nitrogen, but differ in atomic weight. N-15 is a stable nitrogen isotope.Glutamine: A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.Carbamyl Phosphate: The monoanhydride of carbamic acid with PHOSPHORIC ACID. It is an important intermediate metabolite and is synthesized enzymatically by CARBAMYL-PHOSPHATE SYNTHASE (AMMONIA) and CARBAMOYL-PHOSPHATE SYNTHASE (GLUTAMINE-HYDROLYZING).Nitric Oxide Synthase: An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.Citrullinemia: A group of diseases related to a deficiency of the enzyme ARGININOSUCCINATE SYNTHASE which causes an elevation of serum levels of CITRULLINE. In neonates, clinical manifestations include lethargy, hypotonia, and SEIZURES. Milder forms also occur. Childhood and adult forms may present with recurrent episodes of intermittent weakness, lethargy, ATAXIA, behavioral changes, and DYSARTHRIA. (From Menkes, Textbook of Child Neurology, 5th ed, p49)Argininosuccinate Lyase: An enzyme of the urea cycle which splits argininosuccinate to fumarate plus arginine. Its absence leads to the metabolic disease ARGININOSUCCINIC ACIDURIA in man. EC 4.3.2.1.Arginase: A ureahydrolase that catalyzes the hydrolysis of arginine or canavanine to yield L-ornithine (ORNITHINE) and urea. Deficiency of this enzyme causes HYPERARGININEMIA. EC 3.5.3.1.Proline: A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons.Ammonia: A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.Argininosuccinic Acid: This amino acid is formed during the urea cycle from citrulline, aspartate and ATP. This reaction is catalyzed by argininosuccinic acid synthetase.Nitric Oxide: A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.Amino Acid Oxidoreductases: A class of enzymes that catalyze oxidation-reduction reactions of amino acids.Urea: A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids.Carbamoyl-Phosphate Synthase (Ammonia): An enzyme that catalyzes the formation of carbamoyl phosphate from ATP, carbon dioxide, and ammonia. This enzyme is specific for arginine biosynthesis or the urea cycle. Absence or lack of this enzyme may cause CARBAMOYL-PHOSPHATE SYNTHASE I DEFICIENCY DISEASE. EC 6.3.4.16.Catecholamine Plasma Membrane Transport Proteins: A group of membrane transport proteins that transport biogenic amine derivatives of catechol across the PLASMA MEMBRANE. Catecholamine plasma membrane transporter proteins regulate neural transmission as well as catecholamine metabolism and recycling.Mouth Abnormalities: Congenital absence of or defects in structures of the mouth.Amino Acids: Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.Short Bowel Syndrome: A malabsorption syndrome resulting from extensive operative resection of the SMALL INTESTINE, the absorptive region of the GASTROINTESTINAL TRACT.Glutamates: Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.Mitochondria, Liver: Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)Enterocytes: Absorptive cells in the lining of the INTESTINAL MUCOSA. They are differentiated EPITHELIAL CELLS with apical MICROVILLI facing the intestinal lumen. Enterocytes are more abundant in the SMALL INTESTINE than in the LARGE INTESTINE. Their microvilli greatly increase the luminal surface area of the cell by 14- to 40 fold.Amino Acids, DiaminoRenal Aminoacidurias: A group of inherited kidney disorders characterized by the abnormally elevated levels of AMINO ACIDS in URINE. Genetic mutations of transport proteins result in the defective reabsorption of free amino acids at the PROXIMAL RENAL TUBULES. Renal aminoaciduria are classified by the specific amino acid or acids involved.Ornithine-Oxo-Acid Transaminase: A pyridoxal phosphate enzyme that catalyzes the formation of glutamate gamma-semialdehyde and an L-amino acid from L-ornithine and a 2-keto-acid. EC 2.6.1.13.Amino Acid Transport Systems, Basic: Amino acid transporter systems capable of transporting basic amino acids (AMINO ACIDS, BASIC).Ornithine Carbamoyltransferase Deficiency Disease: An inherited urea cycle disorder associated with deficiency of the enzyme ORNITHINE CARBAMOYLTRANSFERASE, transmitted as an X-linked trait and featuring elevations of amino acids and ammonia in the serum. Clinical features, which are more prominent in males, include seizures, behavioral alterations, episodic vomiting, lethargy, and coma. (Menkes, Textbook of Child Neurology, 5th ed, pp49-50)Carbon Isotopes: Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.Biopterin: A natural product that has been considered as a growth factor for some insects.Nitrites: Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M=metal) are all insoluble, except the alkali nitrites. The organic nitrites may be isomeric, but not identical with the corresponding nitro compounds. (Grant & Hackh's Chemical Dictionary, 5th ed)PhenylbutyratesOrotic AcidAcid-Base Equilibrium: The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance.MalatesSwitzerlandHyperammonemia: Elevated level of AMMONIA in the blood. It is a sign of defective CATABOLISM of AMINO ACIDS or ammonia to UREA.Hepatic Encephalopathy: A syndrome characterized by central nervous system dysfunction in association with LIVER FAILURE, including portal-systemic shunts. Clinical features include lethargy and CONFUSION (frequently progressing to COMA); ASTERIXIS; NYSTAGMUS, PATHOLOGIC; brisk oculovestibular reflexes; decorticate and decerebrate posturing; MUSCLE SPASTICITY; and bilateral extensor plantar reflexes (see REFLEX, BABINSKI). ELECTROENCEPHALOGRAPHY may demonstrate triphasic waves. (From Adams et al., Principles of Neurology, 6th ed, pp1117-20; Plum & Posner, Diagnosis of Stupor and Coma, 3rd ed, p222-5)Antibodies: Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).Arthritis, Rheumatoid: A chronic systemic disease, primarily of the joints, marked by inflammatory changes in the synovial membranes and articular structures, widespread fibrinoid degeneration of the collagen fibers in mesenchymal tissues, and by atrophy and rarefaction of bony structures. Etiology is unknown, but autoimmune mechanisms have been implicated.Antibody Specificity: The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.Antibodies, Viral: Immunoglobulins produced in response to VIRAL ANTIGENS.Antibodies, Bacterial: Immunoglobulins produced in a response to BACTERIAL ANTIGENS.Sepsis: Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.Acute Lung Injury: A condition of lung damage that is characterized by bilateral pulmonary infiltrates (PULMONARY EDEMA) rich in NEUTROPHILS, and in the absence of clinical HEART FAILURE. This can represent a spectrum of pulmonary lesions, endothelial and epithelial, due to numerous factors (physical, chemical, or biological).Lung Injury: Damage to any compartment of the lung caused by physical, chemical, or biological agents which characteristically elicit inflammatory reaction. These inflammatory reactions can either be acute and dominated by NEUTROPHILS, or chronic and dominated by LYMPHOCYTES and MACROPHAGES.Shock, Septic: Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include, but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status.Respiratory Distress Syndrome, Adult: A syndrome characterized by progressive life-threatening RESPIRATORY INSUFFICIENCY in the absence of known LUNG DISEASES, usually following a systemic insult such as surgery or major TRAUMA.Lung: Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.

L-Ascorbic acid potentiates nitric oxide synthesis in endothelial cells. (1/917)

Ascorbic acid has been shown to enhance impaired endothelium-dependent vasodilation in patients with atherosclerosis by a mechanism that is thought to involve protection of nitric oxide (NO) from inactivation by free oxygen radicals. The present study in human endothelial cells from umbilical veins and coronary arteries investigates whether L-ascorbic acid additionally affects cellular NO synthesis. Endothelial cells were incubated for 24 h with 0.1-100 microM ascorbic acid and were subsequently stimulated for 15 min with ionomycin (2 microM) or thrombin (1 unit/ml) in the absence of extracellular ascorbate. Ascorbate pretreatment led to a 3-fold increase of the cellular production of NO measured as the formation of its co-product citrulline and as the accumulation of its effector molecule cGMP. The effect was saturated at 100 microM and followed a similar kinetics as seen for the uptake of ascorbate into the cells. The investigation of the precursor molecule L-gulonolactone and of different ascorbic acid derivatives suggests that the enediol structure of ascorbate is essential for its effect on NO synthesis. Ascorbic acid did not induce the expression of the NO synthase (NOS) protein nor enhance the uptake of the NOS substrate L-arginine into endothelial cells. The ascorbic acid effect was minimal when the citrulline formation was measured in cell lysates from ascorbate-pretreated cells in the presence of known cofactors for NOS activity. However, when the cofactor tetrahydrobiopterin was omitted from the assay, a similar potentiating effect of ascorbate pretreatment as seen in intact cells was demonstrated, suggesting that ascorbic acid may either enhance the availability of tetrahydrobiopterin or increase its affinity for the endothelial NOS. Our data suggest that intracellular ascorbic acid enhances NO synthesis in endothelial cells and that this may explain, in part, the beneficial vascular effects of ascorbic acid.  (+info)

Effect of ornithine and lactate on urea synthesis in isolated hepatocytes. (2/917)

1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline.  (+info)

Hepatocyte gene therapy in a large animal: a neonatal bovine model of citrullinemia. (3/917)

The development of gene-replacement therapy for inborn errors of metabolism has been hindered by the limited number of suitable large-animal models of these diseases and by inadequate methods of assessing the efficacy of treatment. Such methods should provide sensitive detection of expression in vivo and should be unaffected by concurrent pharmacologic and dietary regimens. We present the results of studies in a neonatal bovine model of citrullinemia, an inborn error of urea-cycle metabolism characterized by deficiency of argininosuccinate synthetase and consequent life-threatening hyperammonemia. Measurements of the flux of nitrogen from orally administered 15NH4 to [15N]urea were used to determine urea-cycle activity in vivo. In control animals, these isotopic measurements proved to be unaffected by pharmacologic treatments. Systemic administration of a first-generation E1-deleted adenoviral vector expressing human argininosuccinate synthetase resulted in transduction of hepatocytes and partial correction of the enzyme defect. The isotopic method showed significant restoration of urea synthesis. Moreover, the calves showed clinical improvement and normalization of plasma glutamine levels after treatment. The results show the clinical efficacy of treating a large-animal model of an inborn error of hepatocyte metabolism in conjunction with a method for sensitively measuring correction in vivo. These studies will be applicable to human trials of the treatment of this disorder and other related urea-cycle disorders.  (+info)

Arginine biosynthesis in Neisseria gonorrhoeae: enzymes catalyzing the formation of ornithine and citrulline. (4/917)

Many of the Neisseria gonorrhoeae strains isolated from patients require arginine for growth in a defined medium. As a basis for genetic studies of these Arg- strains, we examined two biosynthetic enzymes of Arg+ (nonrequiring) gonococci. Cell-free extracts contained (i) glutamate acetyltransferase, which catalyzes the formation of L-ornithine from alpha-N-acetyl-L-ornithine, and (ii) ornithine transcaramylase, which catalyzes the reaction between L-ornithine and carbamyl phosphate, yielding L-citrulline. Arg- strains were unable to utilze alpha-N-acetyl-L-ornithine for growth lacked significant activity of glutamate acetyltransferase, and activity was gained by Arg+ clones derived by DNA-mediated transformation. Some of the Arg- patient isolates were unable to use either alpha-N-acetyl-L-ornithine or L-ornithine in place of arginine, and two separate steps of genetic transformation were required to yield Arg+ cells. Extracts of these doubly auxotrophic cells lacked glutamate acetyltransferase activity, but, unexpectedly, they displayed normal ornithine transcarbamylase activity. This finding illustrates the importance of identifying the products specified by arg loci during genetic studies of arginine auxotrophy.  (+info)

Effects of ethanol on intraovarian nitric oxide production in the prepubertal rat. (5/917)

Nitric oxide (NO) has been shown to contribute to ovarian development and function. In non-ovarian tissues NO can be altered by ethanol (ETOH), a drug considered to be a gonadal toxin in men as well as male and female rats. The present study was undertaken to determine if some of the detrimental effects of chronic ETOH exposure on prepubertal ovarian function could be due to ETOH-induced alterations in the intraovarian NO system. Rats were implanted with intragastric cannulae on day 24 and began receiving control or ETOH diets on day 29. All rats were killed on day 34, determined to be in the late juvenile stage of development, and their ovaries and blood were collected. We analyzed the expression of the two constitutive forms of nitric oxide synthase (NOS), i.e. neuronal (n) NOS and endothelial (e) NOS, as well as the inducible (i) form of NOS protein in the ovaries of control and ETOH-treated rats by Western immunoblotting. Results demonstrate that eNOS protein increased markedly (P<0.02; 140 kDa) in ETOH-treated rats compared with controls. ETOH treatment did not alter the protein expression of nNOS (155 kDa) and only slightly increased that of iNOS (130 kDa). We also assessed NOS activity as determined by nitrite accumulation and by the conversion of L-[14C]arginine to L-[14C]citrulline. In this regard, the ETOH-treated animals showed an increase in ovarian nitrite generation (P<0.05), as well as an increase in ovarian citrulline formation (P<0.0001), when compared with control animals. Along with the above described ETOH-induced increases in ovarian eNOS and NO activity, the serum levels of estradiol were concomitantly suppressed (P<0.001) in the ETOH-treated rats. These results demonstrate for the first time the ETOH-induced changes in the prepubertal ovarian NO/NOS system, and suggest that these alterations contribute to the detrimental actions of the drug on prepubertal ovarian development and function.  (+info)

Cholinergic and GABAergic regulation of nitric oxide synthesis in the guinea pig ileum. (6/917)

Nitric oxide (NO) synthesis was examined in intact longitudinal muscle-myenteric plexus preparations of the guinea pig ileum by determining the formation of [3H]citrulline during incubation with [3H]arginine. Spontaneous [3H]citrulline production after 30 min was 80-90 dpm/mg, which constituted approximately 1% of the tissue radioactivity. Electrical stimulation (10 Hz) led to a threefold increase in [3H]citrulline formation. Removal of calcium from the medium or addition of NG-nitro-L-arginine strongly inhibited both spontaneous and electrically induced production of [3H]citrulline. TTX reduced the electrically induced but not spontaneous [3H]citrulline formation. The electrically induced formation of [3H]citrulline was diminished by (+)-tubocurarine and mecamylamine and enhanced by scopolamine, which suggests that endogenous ACh inhibits, via muscarinic receptors, and stimulates, via nicotinic receptors, the NO synthesis in the myenteric plexus. The GABAA receptor agonist muscimol and GABA also reduced the electrically evoked formation of [3H]citrulline, whereas baclofen was without effect. Bicuculline antagonized the inhibitory effect of GABA. It is concluded that nitrergic myenteric neurons are equipped with GABAA receptors, which mediate inhibition of NO synthesis.  (+info)

Nitric oxide production is reduced in patients with chronic renal failure. (7/917)

In patients with chronic renal failure (CRF), atherosclerosis is a major cause of cardiovascular morbidity and mortality. Generally, atherosclerosis has been associated with a reduced bioavailability of nitric oxide (NO). Experimental studies have indicated the presence of enhanced NO degradation by reactive oxygen species as well as decreased NO production as possible causes for this reduced NO bioavailability. So far, the question whether or not NO production is impaired in patients with CRF has never been investigated. Therefore, we measured whole body NO production in 7 patients with CRF, and in 7 matched healthy subjects. To assess the relative importance of a dysfunction of NO synthase (NOS), we compared the NO production of these patients to that of 2 other groups known to have endothelial dysfunction, ie, 7 patients with familial hypercholesterolemia (FH) who did not yet have signs of clinical cardiovascular disease (all nonsmokers), and 5 cigarette smokers. These groups were also compared with 7 nonsmoking, age-matched healthy subjects. Whole body NO production, determined as in vivo arginine-to-citrulline conversion, was assessed by giving an intravenous infusion of [15N2]-arginine as a substrate for NOS and measuring isotopic plasma enrichment of [15N]-citrulline by LC-MS. NO production in the CRF patients (0.13+/-0.02 micromol. kg-1. h-1) was significantly lower (P<0.05) than in the corresponding control group (0.23+/-0.09 micromol. kg-1. h-1). NO production also tended to be lower in the FH patients (0.16+/-0.04 micromol. kg-1. h-1), but the difference with the corresponding control group did not reach significance (0.22+/-0.06 micromol. kg-1. h-1). In the group of smokers, NO production was similar to that in nonsmokers (0. 22+/-0.09 micromol. kg-1. h-1). In conclusion, it is demonstrated for the first time that basal whole body NO production is reduced in patients with CRF. This finding implies that therapeutic interventions to endothelial dysfunction in these patients should be primarily directed toward improvement of NO production. The finding of only a tendency toward reduction of NO production in patients with FH and the absence of a reduction in cigarette smokers suggests that other mechanisms such as enhanced NO degradation may be involved in the decrease of NO bioavailability in these groups.  (+info)

Lactate inhibits citrulline and arginine synthesis from proline in pig enterocytes. (8/917)

Hypocitrullinemia and hypoargininemia but hyperprolinemia are associated with elevated plasma concentration of lactate in infants. Because the small intestine may be a major organ for initiating proline catabolism via proline oxidase in the body and is the major source of circulating citrulline and arginine in neonates, we hypothesized that lactate is an inhibitor of intestinal synthesis of citrulline and arginine from proline. To test this hypothesis, jejunum was obtained from 14-day-old suckling pigs for preparation of enterocyte mitochondria and metabolic studies. Mitochondria were used for measuring proline oxidase activity in the presence of 0-10 mM L-lactate. For metabolic studies, enterocytes were incubated at 37 degrees C for 30 min in Krebs bicarbonate buffer (pH 7.4) containing 5 mM D-glucose, 2 mM L-glutamine, 2 mM L-[U-14C]proline, and 0, 1, 5, or 10 mM L-lactate. Kinetics analysis revealed noncompetitive inhibition of intestinal proline oxidase by lactate (decreased maximal velocity and unaltered Michaelis constant). Lactate had no effect on either activities of other enzymes for arginine synthesis from proline or proline uptake by enterocytes but decreased the synthesis of ornithine, citrulline, and arginine from proline in a concentration-dependent manner. These results demonstrate that lactate decreased intestinal synthesis of citrulline and arginine from proline via an inhibition of proline oxidase and provide a biochemical basis for explaining hyperprolinemia, hypocitrullinemia, and hypoargininemia in infants with hyperlactacidemia.  (+info)

  • L-Citrulline helps to rid the body of ammonia, a toxic byproduct of protein metabolism and provides a readily available substrate for arginine production. (shopteamprime.com)
  • Citrulline has been shown in research to play a key role in aerobic and anaerobic pathways of energy metabolism, as well as nitric oxide production, demonstrating its ability to enhance energy, reduce fatigue, and pump muscles up during workouts! (supplementsuperstore.ca)
  • Scientific studies have actually shown that citrulline malate does a better job at increasing arginine levels than an actual arginine supplement, making it the more efficient way to boost energy supplies to the muscles. (sportsfuel.co.nz)
  • Vigorous exercises can help consumers build up the strength in their muscles and bones, as high amounts of Citrulline are released during workouts and when nitric oxide is created. (nitricoxidecenter.com)
  • When you compare this in the context of workouts, the intake of Citrulline helps in supplying your exercising muscles with the required nutrients as well as oxygen that is required for optimum performance. (bestpreworkoutforwomen.net)
  • Another advantage of taking Citrulline is the fact it reduces the soreness of muscles that people usually experience days after their workouts or exercises. (bestpreworkoutforwomen.net)
  • L-Citrulline is considered a nonessential amino acid, which means it's not necessary to ingest as the body can create it from other sources. (ralphs.com)
  • Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. (ox.ac.uk)
  • Citrulline and homocitrulline residues in enolase and vimentin were analysed by partial purification by gel electrophoresis followed by mass spectrometry in 12 of the lung samples and one from each control tissues. (ox.ac.uk)
  • There were no citrulline or homocitrulline residues demonstrated in α-enolase. (ox.ac.uk)
  • Very few studies which proved the benefit of L-Arginine in healthy individuals, also administered other amino acids, specially L-Citrulline, leucine, lysine, etc. to the subjects. (werstupid.com)
  • One of the research conducted found out that cyclists who took Citrulline lasted 12% longer before getting exhausted in comparison to those who were on placebo. (bestpreworkoutforwomen.net)
  • The participants who took Citrulline were able to perform 53% more of the repetitions in comparison to those who took placebo. (bestpreworkoutforwomen.net)
  • Ultimately, rheumatoid arthritis is diagnosed based on a combination of the presentation of the joints involved, characteristic joint swelling and stiffness in the morning, the presence of blood rheumatoid factor (RF test or RA test) and citrulline antibody, as well as findings of rheumatoid nodules and radiographic changes (X-ray testing). (medicinenet.com)