Citrate (si)-Synthase
Citric Acid
Potassium Citrate
Oxo-Acid-Lyases
Glycogen Synthase
Thymidylate Synthase
Glycogen Synthase Kinase 3
Nitric Oxide Synthase Type I
Calcium Citrate
Nitric Oxide
Clomiphene
Malate Synthase
Molecular Sequence Data
Tryptophan Synthase
Glutamate Synthase
Hydroxymethylglutaryl-CoA Synthase
Tricarboxylic Acids
Enzyme Inhibitors
Thromboxane-A Synthase
Silicon
Amino Acid Oxidoreductases
Amino Acid Sequence
Oxaloacetates
Glucosyltransferases
Mitochondrial Proton-Translocating ATPases
Alkyl and Aryl Transferases
Starch Synthase
Escherichia coli
Fatty Acid Synthases
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase
NG-Nitroarginine Methyl Ester
Acetolactate Synthase
Spermidine Synthase
Gallium Radioisotopes
Base Sequence
Aconitate Hydratase
3-Deoxy-7-Phosphoheptulonate Synthase
Spermine Synthase
Riboflavin Synthase
Aluminum
RNA, Messenger
Cloning, Molecular
Anthranilate Synthase
Acetyl Coenzyme A
Oxaloacetic Acid
Isocitrate Dehydrogenase
5-Aminolevulinate Synthetase
Lyases
Hydrogen-Ion Concentration
Ketoglutaric Acids
Proton-Translocating ATPases
Aldosterone Synthase
Rats, Sprague-Dawley
Cysteine Synthase
Enzyme Induction
ATP Synthetase Complexes
Cells, Cultured
Mutation
Multienzyme Complexes
Glucose
Nitrites
Acetates
Mitochondria
Geranyltranstransferase
Malate Dehydrogenase
Substrate Specificity
Transferases
Dihydropteroate Synthase
Myo-Inositol-1-Phosphate Synthase
Liver
Rats, Wistar
Transferases (Other Substituted Phosphate Groups)
Enzyme Activation
Sequence Homology, Amino Acid
Dose-Response Relationship, Drug
Endothelium, Vascular
Oxidation-Reduction
Acyltransferases
Isoenzymes
Nitrates
Polyketide Synthases
Prostaglandin-Endoperoxide Synthases
2-Isopropylmalate Synthase
Iron
Farnesyl-Diphosphate Farnesyltransferase
Nitroarginine
Binding Sites
Blotting, Western
Purines
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase
Catalysis
Adenosine Triphosphate
Carboxylic Acids
Phosphorylation
Sucrase-Isomaltase Complex
Phosphofructokinase-1
Hydro-Lyases
Gallium
Dicarboxylic Acid Transporters
Intramolecular Transferases
Geranylgeranyl-Diphosphate Geranylgeranyltransferase
DNA Primers
Ranitidine
Acetyl-CoA Carboxylase
Models, Molecular
Carboxy-Lyases
Muscle, Skeletal
Biological Transport
Nitric Oxide Donors
Plant Proteins
Phosphorus-Oxygen Lyases
Hydroxymethylbilane Synthase
Porphobilinogen Synthase
Protein Binding
Cattle
Cyclic GMP
Sequence Alignment
Glutamates
Ligases
Carrier Proteins
Leuconostoc
Culture Media
Gene Expression
Vasodilation
Pyruvic Acid
Oxidoreductases
Intramolecular Lyases
Saccharomyces cerevisiae
Crystallography, X-Ray
3-Phosphoshikimate 1-Carboxyvinyltransferase
Rabbits
Oxygen Consumption
Electrophoresis, Polyacrylamide Gel
Insulin
Acyl Coenzyme A
Myocardium
Swine
Fatty Acids
Transcription, Genetic
Carbon-Carbon Lyases
Mice, Knockout
Plasmids
Self-Incompatibility in Flowering Plants
Plant Roots
Lipopolysaccharides
NADPH Dehydrogenase
Glycolysis
Magnesium
Reverse Transcriptase Polymerase Chain Reaction
Mutagenesis, Site-Directed
DNA, Complementary
Immunohistochemistry
Genetic Complementation Test
Chromatography, High Pressure Liquid
Carbon Isotopes
Uridine Diphosphate Glucose
Membrane Proteins
Protein Conformation
Gene Expression Regulation, Bacterial
Cyclooxygenase 2
Acyl Carrier Protein
Succinates
Molecular Structure
CDPdiacylglycerol-Serine O-Phosphatidyltransferase
Calcium
Mitochondria, Liver
3-Hydroxyacyl CoA Dehydrogenases
Gene Expression Regulation, Plant
Disease Models, Animal
Glutamine
Guanidines
Polymerase Chain Reaction
Temperature
Kidney Calculi
1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.
2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.
3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.
4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.
5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.
6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.
7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.
8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.
9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.
10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.
There are several types of kidney calculi, including:
1. Calcium oxalate calculi: These are the most common type of calculus and are often associated with conditions such as hyperparathyroidism or excessive intake of calcium supplements.
2. Uric acid calculi: These are more common in people with gout or a diet high in meat and sugar.
3. Cystine calculi: These are rare and usually associated with a genetic disorder called cystinuria.
4. Struvite calculi: These are often seen in women with urinary tract infections (UTIs).
Symptoms of kidney calculi may include:
1. Flank pain (pain in the side or back)
2. Pain while urinating
3. Blood in the urine
4. Cloudy or strong-smelling urine
5. Fever and chills
6. Nausea and vomiting
Kidney calculi are diagnosed through a combination of physical examination, medical history, and diagnostic tests such as X-rays, CT scans, or ultrasound. Treatment options for kidney calculi depend on the size and location of the calculus, as well as the severity of any underlying conditions. Small calculi may be treated with conservative measures such as fluid intake and medication to help flush out the crystals, while larger calculi may require surgical intervention to remove them.
Preventive measures for kidney calculi include staying hydrated to help flush out excess minerals in the urine, maintaining a balanced diet low in oxalate and animal protein, and avoiding certain medications that can increase the risk of calculus formation. Early detection and treatment of underlying conditions such as hyperparathyroidism or gout can also help prevent the development of kidney calculi.
Overall, kidney calculi are a common condition that can be managed with proper diagnosis and treatment. However, they can cause significant discomfort and potentially lead to complications if left untreated, so it is important to seek medical attention if symptoms persist or worsen over time.
Nephrolithiasis can be caused by a variety of factors, including genetics, diet, dehydration, and certain medical conditions such as gout or inflammatory bowel disease. The most common types of kidney stones are made of calcium oxalate, uric acid, cystine, or other substances.
Symptoms of nephrolithiasis can include severe pain in the side or back, nausea and vomiting, fever, chills, and blood in the urine. Treatment options for nephrolithiasis depend on the size and location of the kidney stones, as well as the severity of the symptoms.
Small stones may pass on their own with plenty of fluids, while larger stones may require medication or surgical intervention to remove them. In some cases, nephrolithiasis may lead to complications such as chronic kidney disease or sepsis, which can be life-threatening.
Preventative measures for nephrolithiasis include staying hydrated by drinking plenty of water, limiting salt and animal protein intake, and managing underlying medical conditions such as high blood pressure or diabetes. If you suspect you have a kidney stone, it is important to seek medical attention promptly to receive proper diagnosis and treatment.
1. Polycystic ovary syndrome (PCOS): This is the most common cause of anovulation, affecting up to 75% of women with PCOS.
2. Hypothalamic dysfunction: The hypothalamus regulates hormonal signals that stimulate ovulation. Disruptions in these signals can lead to anovulation.
3. Thyroid disorders: Both hypothyroidism (underactive thyroid) and hyperthyroidism (overactive thyroid) can disrupt hormone levels and lead to anovulation.
4. Premature ovarian failure (POF): This condition is characterized by the premature loss of ovarian function before age 40.
5. Ovarian insufficiency: This occurs when the ovaries lose their ability to produce eggs, often due to aging or medical treatment.
6. Chronic diseases: Certain conditions like diabetes, hypertension, and obesity can increase the risk of anovulation.
7. Luteal phase defect: This occurs when the uterine lining does not properly thicken during the second half of the menstrual cycle, making it difficult for a fertilized egg to implant.
8. Ovulatory disorders: Disorders such as ovarian cysts, endometriosis, and pelvic inflammatory disease can interfere with ovulation.
9. Genetic factors: Some genetic mutations can affect ovulation, such as those associated with Turner syndrome or other rare genetic conditions.
10. Medications: Certain medications, such as hormonal contraceptives and antidepressants, can disrupt ovulation.
Anovulation is typically diagnosed through a combination of medical history, physical examination, and laboratory tests, including hormone levels and imaging studies. Treatment options for anovulation depend on the underlying cause and may include:
1. Hormonal medications to stimulate ovulation
2. Intrauterine insemination (IUI) or in vitro fertilization (IVF) to increase the chances of conception
3. Lifestyle modifications, such as weight loss and stress management
4. Surgery to correct anatomical abnormalities or remove any blockages in the reproductive tract
5. Assisted reproductive technologies (ART), such as IVF with egg donation or surrogacy.
It's important for women experiencing irregular periods or anovulation to seek medical attention, as timely diagnosis and treatment can improve their chances of conceiving and reduce the risk of complications during pregnancy.
Types of Urinary Calculi:
1. Calcium oxalate stones: These are the most common type of kidney stone and are often caused by excess calcium and oxalate in the urine.
2. Uric acid stones: These stones are often associated with gout or a diet high in meat and seafood.
3. Cystine stones: These stones are rare and usually occur in people with a genetic disorder that affects the transport of cystine in the kidneys.
4. Struvite stones: These stones are often associated with urinary tract infections.
Causes and Risk Factors:
1. Dehydration: Not drinking enough water can cause a decrease in urine production, which can increase the concentration of minerals in the urine and increase the risk of stone formation.
2. Diet: A diet high in animal protein, sodium, and sugar can increase the risk of stone formation.
3. Medical conditions: Certain medical conditions such as gout, kidney disease, and inflammatory bowel disease can increase the risk of developing urinary calculi.
4. Genetics: A family history of kidney stones can increase an individual's risk.
5. Other factors: Other factors that can increase the risk of developing urinary calculi include a high body mass index (BMI), a sedentary lifestyle, and certain medications such as certain antibiotics and diuretics.
Symptoms:
1. Severe pain in the side or back, below the ribs
2. Pain that radiates to the lower abdomen or groin
3. Nausea and vomiting
4. Blood in the urine (hematuria)
5. Cloudy or strong-smelling urine
6. Frequent urination or a burning sensation during urination
Diagnosis:
1. Medical history and physical examination
2. Urinalysis to check for blood, protein, and white blood cells in the urine
3. Imaging tests such as X-rays, CT scans, or ultrasound to confirm the presence of calculi
4. Laboratory tests to check for underlying medical conditions such as kidney disease or infection
Treatment:
1. Drinking plenty of water to help flush out small calculi
2. Pain management with medication
3. Medical expulsive therapy with medication to help pass larger calculi
4. Shock wave lithotripsy to break down larger calculi into smaller pieces that can be passed more easily
5. Surgery to remove large or unbreakable calculi
Prevention:
1. Drinking plenty of water to stay hydrated and help prevent the formation of calculi
2. Limiting the intake of animal protein, sodium, and sugar
3. Managing underlying medical conditions such as gout, kidney disease, and inflammatory bowel disease
4. Maintaining a healthy weight and exercise regularly
5. Avoiding certain medications that can increase the risk of calculus formation.
There are several potential causes of ED, including:
1. Aging: As men age, the blood vessels that supply the penis with blood can become less responsive, leading to ED.
2. Heart disease: Men with heart disease are at a higher risk for developing ED.
3. Diabetes: Men with diabetes are also at a higher risk for developing ED.
4. Prostate surgery or treatment: Surgery or treatment for prostate cancer can sometimes cause ED.
5. Medications: Certain medications, such as antidepressants and blood pressure drugs, can cause ED as a side effect.
6. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a lack of exercise can contribute to ED.
7. Psychological factors: Psychological factors such as stress, anxiety, and relationship issues can also contribute to ED.
8. Neurological disorders: Certain neurological disorders, such as multiple sclerosis or Parkinson's disease, can cause ED.
9. Peyronie's disease: A condition in which scar tissue inside the penis causes it to curve and become less responsive to stimulation.
10. Trauma: Injury to the penis or nerves that control erections can cause ED.
11. Venous leak: A condition in which the veins that empty blood from the penis are damaged, leading to a weak or inconsistent erection.
There are several treatment options available for ED, including:
1. Medications: Drugs such as sildenafil (Viagra), tadalafil (Cialis), and vardenafil (Levitra) can help improve blood flow to the penis and achieve an erection.
2. Vacuum constriction devices: These devices are placed over the penis and use vacuum pressure to increase blood flow and create an erection.
3. Penile injections: Alprostadil (Caverject) is a medication that can be injected into the penis to increase blood flow and achieve an erection.
4. Penile implants: A surgically implanted device that can be inflated with saline solution to create an erection.
5. Lifestyle changes: Improving physical activity, losing weight, quitting smoking, and reducing stress can help improve blood flow and reduce the risk of ED.
6. Counseling and therapy: Addressing relationship issues or psychological factors that may be contributing to ED can also be helpful.
It's important to note that ED is a common condition and can affect men of all ages and backgrounds. If you are experiencing erectile dysfunction, it's important to speak with a healthcare provider to determine the underlying cause and develop an appropriate treatment plan.
There are several types of alkalosis, including:
1. Respiratory alkalosis: This type is caused by an excessive breathing of carbon dioxide into the lungs, which increases the bicarbonate levels in the blood.
2. Metabolic alkalosis: This type is caused by a decrease in the production of acid in the body, such as in diabetic ketoacidosis or liver disease.
3. Inherited alkalosis: This type is caused by inherited genetic disorders that affect the regulation of acid-base homeostasis.
4. Drug-induced alkalosis: Certain medications, such as antacids and diuretics, can increase bicarbonate levels in the blood.
5. Post-operative alkalosis: This type can occur after surgery, particularly gastrointestinal surgery, due to the release of bicarbonate from damaged tissues.
The symptoms of alkalosis can vary depending on the severity and duration of the condition. They may include:
* Nausea and vomiting
* Abdominal pain
* Headache
* Fatigue
* Muscle weakness
* Tingling sensations in the extremities
* Confusion and disorientation
If left untreated, alkalosis can lead to more severe complications such as:
* Respiratory acidosis (a decrease in blood pH due to a lack of oxygen)
* Cardiac arrhythmias (irregular heartbeats)
* Seizures
* Coma
Diagnosis of alkalosis is based on a combination of physical examination, medical history, and laboratory tests. Laboratory tests may include:
* Arterial blood gas (ABG) analysis to measure the pH and PCO2 levels in the blood
* Serum electrolyte levels to assess the levels of sodium, potassium, and chloride
* Urine testing to assess the levels of bicarbonate and other electrolytes
Treatment of alkalosis depends on the underlying cause and severity of the condition. General measures may include:
* Correction of any underlying metabolic disorders, such as diabetes or kidney disease
* Discontinuation of medications that may be contributing to the alkalosis
* Fluid and electrolyte replacement to correct dehydration or imbalances
* Oxygen therapy to treat respiratory acidosis
In severe cases, hospitalization may be necessary to monitor and treat the condition. In some cases, medications such as sodium bicarbonate may be prescribed to help restore acid-base balance. Surgery may be required in cases where the alkalosis is caused by a structural problem, such as a hiatal hernia.
Prognosis for alkalosis depends on the underlying cause and severity of the condition. In general, early diagnosis and treatment can improve outcomes. However, untreated severe alkalosis can lead to complications such as seizures, coma, and cardiac arrhythmias.
Prevention of alkalosis involves identifying and treating underlying conditions that may contribute to the development of the condition. This includes managing chronic diseases such as diabetes and kidney disease, and avoiding medications that may cause alkalosis. Additionally, maintaining a balanced diet and staying hydrated can help prevent electrolyte imbalances that can lead to alkalosis.
In conclusion, alkalosis is a condition characterized by an excess of base in the body, which can lead to respiratory and metabolic disturbances. The diagnosis of alkalosis is based on a combination of physical examination, medical history, and laboratory tests. Treatment depends on the underlying cause and severity of the condition, and may include fluid and electrolyte replacement, medication, and addressing any underlying conditions. Early diagnosis and treatment can improve outcomes for patients with alkalosis.
Starvation is a condition where an individual's body does not receive enough nutrients to maintain proper bodily functions and growth. It can be caused by a lack of access to food, poverty, poor nutrition, or other factors that prevent the intake of sufficient calories and essential nutrients. Starvation can lead to severe health consequences, including weight loss, weakness, fatigue, and even death.
Types of Starvation:
There are several types of starvation, each with different causes and effects. These include:
1. Acute starvation: This occurs when an individual suddenly stops eating or has a limited access to food for a short period of time.
2. Chronic starvation: This occurs when an individual consistently does not consume enough calories and nutrients over a longer period of time, leading to gradual weight loss and other health problems.
3. Malnutrition starvation: This occurs when an individual's diet is deficient in essential nutrients, leading to malnutrition and other health problems.
4. Marasmus: This is a severe form of starvation that occurs in children, characterized by extreme weight loss, weakness, and wasting of muscles and organs.
5. Kwashiorkor: This is a form of malnutrition caused by a diet lacking in protein, leading to edema, diarrhea, and other health problems.
Effects of Starvation on the Body:
Starvation can have severe effects on the body, including:
1. Weight loss: Starvation causes weight loss, which can lead to a decrease in muscle mass and a loss of essential nutrients.
2. Fatigue: Starvation can cause fatigue, weakness, and a lack of energy, making it difficult to perform daily activities.
3. Weakened immune system: Starvation can weaken the immune system, making an individual more susceptible to illnesses and infections.
4. Nutrient deficiencies: Starvation can lead to a deficiency of essential nutrients, including vitamins and minerals, which can cause a range of health problems.
5. Increased risk of disease: Starvation can increase the risk of diseases such as tuberculosis, pellagra, and other infections.
6. Mental health issues: Starvation can lead to mental health issues such as depression, anxiety, and irritability.
7. Reproductive problems: Starvation can cause reproductive problems, including infertility and miscarriage.
8. Hair loss: Starvation can cause hair loss, which can be a sign of malnutrition.
9. Skin problems: Starvation can cause skin problems, such as dryness, irritation, and infections.
10. Increased risk of death: Starvation can lead to increased risk of death, especially in children and the elderly.
It is important to note that these effects can be reversed with proper nutrition and care. If you or someone you know is experiencing starvation, it is essential to seek medical attention immediately.
Types of Experimental Diabetes Mellitus include:
1. Streptozotocin-induced diabetes: This type of EDM is caused by administration of streptozotocin, a chemical that damages the insulin-producing beta cells in the pancreas, leading to high blood sugar levels.
2. Alloxan-induced diabetes: This type of EDM is caused by administration of alloxan, a chemical that also damages the insulin-producing beta cells in the pancreas.
3. Pancreatectomy-induced diabetes: In this type of EDM, the pancreas is surgically removed or damaged, leading to loss of insulin production and high blood sugar levels.
Experimental Diabetes Mellitus has several applications in research, including:
1. Testing new drugs and therapies for diabetes treatment: EDM allows researchers to evaluate the effectiveness of new treatments on blood sugar control and other physiological processes.
2. Studying the pathophysiology of diabetes: By inducing EDM in animals, researchers can study the progression of diabetes and its effects on various organs and tissues.
3. Investigating the role of genetics in diabetes: Researchers can use EDM to study the effects of genetic mutations on diabetes development and progression.
4. Evaluating the efficacy of new diagnostic techniques: EDM allows researchers to test new methods for diagnosing diabetes and monitoring blood sugar levels.
5. Investigating the complications of diabetes: By inducing EDM in animals, researchers can study the development of complications such as retinopathy, nephropathy, and cardiovascular disease.
In conclusion, Experimental Diabetes Mellitus is a valuable tool for researchers studying diabetes and its complications. The technique allows for precise control over blood sugar levels and has numerous applications in testing new treatments, studying the pathophysiology of diabetes, investigating the role of genetics, evaluating new diagnostic techniques, and investigating complications.
Causes of Female Infertility
--------------------------
There are several potential causes of female infertility, including:
1. Hormonal imbalances: Disorders such as polycystic ovary syndrome (PCOS), thyroid dysfunction, and premature ovarian failure can affect hormone levels and ovulation.
2. Ovulatory disorders: Problems with ovulation, such as anovulation or oligoovulation, can make it difficult to conceive.
3. Tubal damage: Damage to the fallopian tubes due to pelvic inflammatory disease, ectopic pregnancy, or surgery can prevent the egg from traveling through the tube and being fertilized.
4. Endometriosis: This condition occurs when tissue similar to the lining of the uterus grows outside of the uterus, causing inflammation and scarring that can lead to infertility.
5. Fibroids: Noncancerous growths in the uterus can interfere with implantation of a fertilized egg or disrupt ovulation.
6. Pelvic adhesions: Scar tissue in the pelvis can cause fallopian tubes to become damaged or blocked, making it difficult for an egg to travel through the tube and be fertilized.
7. Uterine or cervical abnormalities: Abnormalities such as a bicornuate uterus or a narrow cervix can make it difficult for a fertilized egg to implant in the uterus.
8. Age: A woman's age can affect her fertility, as the quality and quantity of her eggs decline with age.
9. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and being overweight or underweight can affect fertility.
10. Stress: Chronic stress can disrupt hormone levels and ovulation, making it more difficult to conceive.
It's important to note that many of these factors can be treated with medical assistance, such as medication, surgery, or assisted reproductive technology (ART) like in vitro fertilization (IVF). If you are experiencing difficulty getting pregnant, it is recommended that you speak with a healthcare provider to determine the cause of your infertility and discuss potential treatment options.
Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.
There are several ways to measure body weight, including:
1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.
It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.
There are several types of acidosis, including:
1. Respiratory acidosis: This occurs when the lung's ability to remove carbon dioxide from the blood is impaired, leading to an increase in blood acidity.
2. Metabolic acidosis: This type of acidosis occurs when there is an excessive production of acid in the body due to factors such as diabetes, starvation, or kidney disease.
3. Mixed acidosis: This type of acidosis is a combination of respiratory and metabolic acidosis.
4. Severe acute respiratory acidosis (SARA): This is a life-threatening condition that occurs suddenly, usually due to a severe lung injury or aspiration of a corrosive substance.
The symptoms of acidosis can vary depending on the type and severity of the condition. Common symptoms include:
1. Fatigue
2. Weakness
3. Confusion
4. Headaches
5. Nausea and vomiting
6. Abdominal pain
7. Difficulty breathing
8. Rapid heart rate
9. Muscle twitching
If left untreated, acidosis can lead to complications such as:
1. Kidney damage
2. Seizures
3. Coma
4. Heart arrhythmias
5. Respiratory failure
Treatment of acidosis depends on the underlying cause and the severity of the condition. Some common treatments include:
1. Oxygen therapy
2. Medications to help regulate breathing and heart rate
3. Fluid and electrolyte replacement
4. Dietary changes
5. Surgery, in severe cases.
In conclusion, acidosis is a serious medical condition that can have severe consequences if left untreated. It is important to seek medical attention immediately if you suspect that you or someone else may have acidosis. With prompt and appropriate treatment, it is possible to effectively manage the condition and prevent complications.
A burn that is caused by direct contact with a chemical substance or agent, such as a strong acid or base, and results in damage to the skin and underlying tissues. Chemical burns can be particularly severe and may require extensive treatment, including surgery and skin grafting.
Examples of how Burns, Chemical is used in medical literature:
1. "The patient sustained a chemical burn on her hand when she spilled a beaker of sulfuric acid."
2. "The burn team was called in to treat the victim of a chemical explosion, who had suffered extensive burns, including chemical burns to his face and arms."
3. "The patient was admitted with severe chemical burns on her legs and feet, caused by exposure to a corrosive substance at work."
4. "Chemical burns can be difficult to treat, as they may require specialized equipment and techniques to remove the damaged tissue and promote healing."
5. "The patient required multiple debridements and skin grafting procedures to treat her chemical burns, which had resulted in extensive scarring and disfigurement."
There are several types of eye burns, including:
1. Chemical burns: These occur when the eye comes into contact with a corrosive substance, such as bleach or drain cleaner.
2. Thermal burns: These occur when the eye is exposed to heat or flames, such as from a fire or a hot surface.
3. Ultraviolet (UV) burns: These occur when the eye is exposed to UV radiation, such as from the sun or a tanning bed.
4. Radiation burns: These occur when the eye is exposed to ionizing radiation, such as from a nuclear accident or cancer treatment.
Symptoms of eye burns can include:
* Pain and redness in the eye
* Discharge or crusting around the eye
* Blurred vision or sensitivity to light
* Swelling of the eyelids or the surface of the eye
* Increased tearing or dryness
Treatment for eye burns depends on the cause and severity of the injury. Mild cases may require only topical medications, such as antibiotic ointments or anti-inflammatory drops. More severe cases may require more aggressive treatment, such as oral medications, patching, or even surgery. In some cases, eye burns can lead to long-term vision problems or scarring, so it is important to seek medical attention if symptoms persist or worsen over time.
1. Irregular menstrual cycles, or amenorrhea (the absence of periods).
2. Cysts on the ovaries, which are fluid-filled sacs that can be detected by ultrasound.
3. Elevated levels of androgens (male hormones) in the body, which can cause a range of symptoms including acne, excessive hair growth, and male pattern baldness.
4. Insulin resistance, which is a condition in which the body's cells do not respond properly to insulin, leading to high blood sugar levels.
PCOS is a complex disorder, and there is no single cause. However, genetics, hormonal imbalances, and insulin resistance are thought to play a role in its development. It is estimated that 5-10% of women of childbearing age have PCOS, making it one of the most common endocrine disorders affecting women.
There are several symptoms of PCOS, including:
1. Irregular menstrual cycles or amenorrhea
2. Weight gain or obesity
3. Acne
4. Excessive hair growth on the face, chest, and back
5. Male pattern baldness
6. Infertility or difficulty getting pregnant
7. Mood changes, such as depression and anxiety
8. Sleep apnea
PCOS can be diagnosed through a combination of physical examination, medical history, and laboratory tests, including:
1. Pelvic exam: A doctor will examine the ovaries and uterus to look for cysts or other abnormalities.
2. Ultrasound: An ultrasound can be used to detect cysts on the ovaries and to evaluate the thickness of the uterine lining.
3. Hormone testing: Blood tests can be used to measure levels of androgens, estrogen, and progesterone.
4. Glucose tolerance test: This test is used to check for insulin resistance, which is a common finding in women with PCOS.
5. Laparoscopy: A small camera inserted through a small incision in the abdomen can be used to visualize the ovaries and uterus and to diagnose PCOS.
There is no cure for PCOS, but it can be managed with lifestyle changes and medication. Treatment options include:
1. Weight loss: Losing weight can improve insulin sensitivity and reduce androgen levels.
2. Hormonal birth control: Birth control pills or other hormonal contraceptives can help regulate menstrual cycles and reduce androgen levels.
3. Fertility medications: Clomiphene citrate and letrozole are commonly used to stimulate ovulation in women with PCOS.
4. Injectable fertility medications: Gonadotropins, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), can be used to stimulate ovulation.
5. Surgery: Laparoscopic ovarian drilling or laser surgery can improve ovulation and fertility in women with PCOS.
6. Assisted reproductive technology (ART): In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) can be used to help women with PCOS conceive.
7. Alternative therapies: Some complementary and alternative therapies, such as acupuncture and herbal supplements, may be helpful in managing symptoms of PCOS.
It is important for women with PCOS to work closely with their healthcare provider to develop a treatment plan that meets their individual needs and goals. With appropriate treatment, many women with PCOS can improve their menstrual regularity, fertility, and overall health.
The most common types of urolithiasis are:
1. Kidney stones (nephrolithiasis): These are formed in the kidneys and can be made of various substances such as calcium oxalate, uric acid, or cystine.
2. Bladder stones (cystolithiasis): These are formed in the bladder and are typically made of calcium oxalate or magnesium ammonium phosphate.
3. Ureteral stones (ureterolithiasis): These are formed in the ureters, the narrow tubes that connect the kidneys to the bladder.
4. Urethral stones (urethrolithiasis): These are formed in the urethra, the tube that carries urine out of the body.
Urolithiasis can cause a range of symptoms, including:
1. Pain in the abdomen or back
2. Frequent urination
3. Painful urination
4. Blood in the urine
5. Cloudy or strong-smelling urine
6. Fever and chills
7. Nausea and vomiting
Treatment for urolithiasis depends on the type of stone, its size, and the severity of symptoms. Small stones may pass on their own, while larger stones may require medical intervention such as shock wave lithotripsy (SWL) to break them up or surgery to remove them. Preventive measures include drinking plenty of water, maintaining a healthy diet, and avoiding certain foods that can increase the risk of stone formation.
There are several key features of inflammation:
1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.
Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.
There are several types of inflammation, including:
1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.
There are several ways to reduce inflammation, including:
1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.
It's important to note that chronic inflammation can lead to a range of health problems, including:
1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.
Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.
There are several factors that can contribute to the development of insulin resistance, including:
1. Genetics: Insulin resistance can be inherited, and some people may be more prone to developing the condition based on their genetic makeup.
2. Obesity: Excess body fat, particularly around the abdominal area, can contribute to insulin resistance.
3. Physical inactivity: A sedentary lifestyle can lead to insulin resistance.
4. Poor diet: Consuming a diet high in refined carbohydrates and sugar can contribute to insulin resistance.
5. Other medical conditions: Certain medical conditions, such as polycystic ovary syndrome (PCOS) and Cushing's syndrome, can increase the risk of developing insulin resistance.
6. Medications: Certain medications, such as steroids and some antipsychotic drugs, can increase insulin resistance.
7. Hormonal imbalances: Hormonal changes during pregnancy or menopause can lead to insulin resistance.
8. Sleep apnea: Sleep apnea can contribute to insulin resistance.
9. Chronic stress: Chronic stress can lead to insulin resistance.
10. Aging: Insulin resistance tends to increase with age, particularly after the age of 45.
There are several ways to diagnose insulin resistance, including:
1. Fasting blood sugar test: This test measures the level of glucose in the blood after an overnight fast.
2. Glucose tolerance test: This test measures the body's ability to regulate blood sugar levels after consuming a sugary drink.
3. Insulin sensitivity test: This test measures the body's ability to respond to insulin.
4. Homeostatic model assessment (HOMA): This is a mathematical formula that uses the results of a fasting glucose and insulin test to estimate insulin resistance.
5. Adiponectin test: This test measures the level of adiponectin, a protein produced by fat cells that helps regulate blood sugar levels. Low levels of adiponectin are associated with insulin resistance.
There is no cure for insulin resistance, but it can be managed through lifestyle changes and medication. Lifestyle changes include:
1. Diet: A healthy diet that is low in processed carbohydrates and added sugars can help improve insulin sensitivity.
2. Exercise: Regular physical activity, such as aerobic exercise and strength training, can improve insulin sensitivity.
3. Weight loss: Losing weight, particularly around the abdominal area, can improve insulin sensitivity.
4. Stress management: Strategies to manage stress, such as meditation or yoga, can help improve insulin sensitivity.
5. Sleep: Getting adequate sleep is important for maintaining healthy insulin levels.
Medications that may be used to treat insulin resistance include:
1. Metformin: This is a commonly used medication to treat type 2 diabetes and improve insulin sensitivity.
2. Thiazolidinediones (TZDs): These medications, such as pioglitazone, improve insulin sensitivity by increasing the body's ability to use insulin.
3. Sulfonylureas: These medications stimulate the release of insulin from the pancreas, which can help improve insulin sensitivity.
4. DPP-4 inhibitors: These medications, such as sitagliptin, work by reducing the breakdown of the hormone incretin, which helps to increase insulin secretion and improve insulin sensitivity.
5. GLP-1 receptor agonists: These medications, such as exenatide, mimic the action of the hormone GLP-1 and help to improve insulin sensitivity.
It is important to note that these medications may have side effects, so it is important to discuss the potential benefits and risks with your healthcare provider before starting treatment. Additionally, lifestyle modifications such as diet and exercise can also be effective in improving insulin sensitivity and managing blood sugar levels.
There are two types of hypertension:
1. Primary Hypertension: This type of hypertension has no identifiable cause and is also known as essential hypertension. It accounts for about 90% of all cases of hypertension.
2. Secondary Hypertension: This type of hypertension is caused by an underlying medical condition or medication. It accounts for about 10% of all cases of hypertension.
Some common causes of secondary hypertension include:
* Kidney disease
* Adrenal gland disorders
* Hormonal imbalances
* Certain medications
* Sleep apnea
* Cocaine use
There are also several risk factors for hypertension, including:
* Age (the risk increases with age)
* Family history of hypertension
* Obesity
* Lack of exercise
* High sodium intake
* Low potassium intake
* Stress
Hypertension is often asymptomatic, and it can cause damage to the blood vessels and organs over time. Some potential complications of hypertension include:
* Heart disease (e.g., heart attacks, heart failure)
* Stroke
* Kidney disease (e.g., chronic kidney disease, end-stage renal disease)
* Vision loss (e.g., retinopathy)
* Peripheral artery disease
Hypertension is typically diagnosed through blood pressure readings taken over a period of time. Treatment for hypertension may include lifestyle changes (e.g., diet, exercise, stress management), medications, or a combination of both. The goal of treatment is to reduce the risk of complications and improve quality of life.
The symptoms of MSK can vary depending on the severity of the condition, but may include:
* High blood pressure
* Kidney pain
* Proteinuria (excess protein in the urine)
* Hematuria (blood in the urine)
* Decreased kidney function
* Increased risk of kidney failure
The exact cause of MSK is not known, but it is believed to be related to genetic mutations that affect the development and growth of the kidneys. The condition is usually diagnosed in adulthood, but can sometimes be present at birth.
There is no cure for MSK, but treatment options may include:
* Medications to control high blood pressure and slow the progression of kidney disease
* Dialysis to filter waste products from the blood when the kidneys are no longer able to do so
* Kidney transplantation
The prognosis for MSK is generally poor, with a median survival age of around 50 years. However, with appropriate treatment and management, some individuals with MSK can live into their 60s or 70s.
In summary, Medullary Sponge Kidney is a rare and inherited kidney disorder characterized by cysts in the medulla of the kidneys, which can cause chronic kidney disease, high blood pressure, and other complications. While there is no cure for MSK, treatment options are available to manage symptoms and slow the progression of the disease.
There are different types of anoxia, including:
1. Cerebral anoxia: This occurs when the brain does not receive enough oxygen, leading to cognitive impairment, confusion, and loss of consciousness.
2. Pulmonary anoxia: This occurs when the lungs do not receive enough oxygen, leading to shortness of breath, coughing, and chest pain.
3. Cardiac anoxia: This occurs when the heart does not receive enough oxygen, leading to cardiac arrest and potentially death.
4. Global anoxia: This is a complete lack of oxygen to the entire body, leading to widespread tissue damage and death.
Treatment for anoxia depends on the underlying cause and the severity of the condition. In some cases, hospitalization may be necessary to provide oxygen therapy, pain management, and other supportive care. In severe cases, anoxia can lead to long-term disability or death.
Prevention of anoxia is important, and this includes managing underlying medical conditions such as heart disease, diabetes, and respiratory problems. It also involves avoiding activities that can lead to oxygen deprivation, such as scuba diving or high-altitude climbing, without proper training and equipment.
In summary, anoxia is a serious medical condition that occurs when there is a lack of oxygen in the body or specific tissues or organs. It can cause cell death and tissue damage, leading to serious health complications and even death if left untreated. Early diagnosis and treatment are crucial to prevent long-term disability or death.
The normal range of oxalate in the urine is between 2-5 mg/day. If the level of oxalate in the urine exceeds this range, it can lead to a variety of health problems, including:
1. Kidney stones: Excessive oxalate in the urine can lead to the formation of kidney stones, which can cause severe pain, nausea, and vomiting.
2. Nephrocalcinosis: This is a condition where there is an accumulation of calcium deposits in the kidneys, which can lead to damage and scarring of the kidneys.
3. Chronic kidney disease: Prolonged exposure to high levels of oxalate can cause damage to the kidneys, leading to chronic kidney disease and potentially end-stage renal disease.
4. Gastrointestinal symptoms: Some people with hyperoxaluria may experience gastrointestinal symptoms such as bloating, abdominal pain, and diarrhea.
There are several causes of hyperoxaluria, including:
1. Primary hyperoxaluria: This is a rare genetic disorder that affects the liver's ability to produce oxalate.
2. Enteric hyperoxaluria: This occurs when there is an overgrowth of oxalate-producing bacteria in the gut.
3. Dietary factors: Consuming high amounts of oxalate-rich foods can lead to hyperoxaluria.
4. Intestinal diseases: Certain conditions such as inflammatory bowel disease, Crohn's disease, and ulcerative colitis can increase the amount of oxalate in the gut and lead to hyperoxaluria.
The diagnosis of hyperoxaluria typically involves a combination of urine tests and imaging studies, such as a kidney-ureter-bladder (KUB) x-ray or a CT scan. A 24-hour urine oxalate test can measure the amount of oxalate in the urine, while a blood test can check for elevated levels of oxalate in the blood.
Treatment for hyperoxaluria depends on the underlying cause and may include:
1. Dietary modifications: Avoiding oxalate-rich foods and reducing the intake of vitamin C, magnesium, and calcium can help lower oxalate levels.
2. Medications: Drugs such as sodium alginate or potassium citrate can help bind oxalate in the gut and reduce its absorption into the bloodstream.
3. Dialysis: In advanced cases of hyperoxaluria, dialysis may be necessary to remove excess oxalate from the blood.
4. Liver transplantation: In cases of primary hyperoxaluria, a liver transplant may be necessary to correct the underlying genetic defect.
In conclusion, hyperoxaluria is a condition characterized by excessive levels of oxalate in the body, which can lead to kidney damage and other complications. Early detection and treatment are essential to prevent long-term damage and improve outcomes for patients with this condition."
Treatment for hypercalciuria typically involves addressing the underlying cause of the condition. In some cases, this may involve medication to lower calcium levels or surgery to remove any kidney stones or tumors that may be contributing to the condition. It is important for individuals with hypercalciuria to work closely with their healthcare provider to develop a personalized treatment plan and monitor their calcium levels regularly.
If you suspect you may have hypercalciuria, it is important to speak with your healthcare provider as soon as possible. They can perform tests to confirm the diagnosis and recommend appropriate treatment. With proper treatment, it is possible to manage hypercalciuria and prevent any complications.
2-methylcitrate synthase
List of EC numbers (EC 4)
Capric acid
List of MeSH codes (D08)
List of EC numbers (EC 2)
Lipogenesis
Steven M. Smith
Green sulfur bacteria
Gastroparesis
Isoleucine
Iron response element
Morpheein
Biological carbon fixation
VDAC3
Adenosine triphosphate
Bacillus cereus
Phosphofructokinase 2
Aspirin
FGF21
CS
- Early...
DeCS
Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle - Fingerprint - Mayo Clinic
Pesquisa | Portal Regional da BVS
MeSH Browser
Renal Tubular Acidosis - NIDDK
Braz J Med Biol Res - Metabolic fate of glutamine in lymphocytes, macrophages and neutrophils
Free 20/10 Video Upsell Page | Home Workout Revolution
Publications
N-acetilcisteína (NAC): MedlinePlus suplementos
Stiff Days The UK INFORMATIVNI DAN
22 | març | 2023 | 3esoenglish
Volume 14, Number 7-July 2008 - Emerging Infectious Diseases journal - CDC
Global gene expression in two potato cultivars in response to 'Candidatus Liberibacter solanacearum' infection | BMC Genomics |...
Anti‑photoaging effect of fermented agricultural by‑products on ultraviolet B‑irradiated hairless mouse skin
GFAPδ/GFAPα ratio directs astrocytoma gene expression towards a more malignant profile | Oncotarget
Items where Subject is "Q Science | QH Natural history | QH301 Biology" - IBB PAS Repository
August | 2019 | Jak 1 Inhibitor
Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and...
In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow...
Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages
Aerosols. Medical search
Search Subject Areas | Preprints.org
CDC Science Clips
Search Results | AlzPED
DeCS 2017 - December 21, 2017 version
Fatty acid syn7
- 2. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. (nih.gov)
- 3. Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of gamma-linolenic acid-induced toxicity to tumor cells: an extension to Nwankwo's hypothesis. (nih.gov)
- 5. Mitochondrial dysfunction is responsible for fatty acid synthase inhibition-induced apoptosis in breast cancer cells by PdpaMn. (nih.gov)
- 7. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in de novo fatty acid synthesis. (nih.gov)
- 10. A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism. (nih.gov)
- 12. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. (nih.gov)
- be unfavorable side effectsThe supplement has potent stimulants that can cause anxiousness Super HD with components like Amla fruit and Yohimbe extract, Cellucor Super HD is formulated to burn fat through its inhibitors of fatty acid synthase. (sc-celje.si)
Oxaloacetate and acetyl2
- From NCBI Gene: The protein encoded by this gene is a Krebs tricarboxylic acid cycle enzyme that catalyzes the synthesis of citrate from oxaloacetate and acetyl coenzyme A. The enzyme is found in nearly all cells capable of oxidative metablism. (nih.gov)
- It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. (nih.gov)
Mitochondrial1
- 8. Quantitative metabolic flux analysis reveals an unconventional pathway of fatty acid synthesis in cancer cells deficient for the mitochondrial citrate transport protein. (nih.gov)
Gene1
- The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. (bvsalud.org)
Catalyzes1
- also known as hydroxymethylbilane synthase [HMBS]), which catalyzes the conversion of porphobilinogen to hydroxymethylbilane. (medscape.com)
Oxaloacetate3
- rather, CO(2) is assimilated via two reactions, conversion of acetyl-coenzyme A (acetyl coenzyme A [acetyl-CoA]) to pyruvate catalyzed by pyruvate synthase (DET0724-0727) and pyruvate conversion to oxaloacetate via pyruvate carboxylase (DET0119-0120). (nih.gov)
- From NCBI Gene: The protein encoded by this gene is a Krebs tricarboxylic acid cycle enzyme that catalyzes the synthesis of citrate from oxaloacetate and acetyl coenzyme A. The enzyme is found in nearly all cells capable of oxidative metablism. (nih.gov)
- It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. (nih.gov)