Chromosomes: In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Chromosome Mapping: Any method used for determining the location of and relative distances between genes on a chromosome.Chromosome Banding: Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping.X Chromosome: The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.Chromosome Aberrations: Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS.Sex Chromosomes: The homologous chromosomes that are dissimilar in the heterogametic sex. There are the X CHROMOSOME, the Y CHROMOSOME, and the W, Z chromosomes (in animals in which the female is the heterogametic sex (the silkworm moth Bombyx mori, for example)). In such cases the W chromosome is the female-determining and the male is ZZ. (From King & Stansfield, A Dictionary of Genetics, 4th ed)Chromosomes, Human, Pair 1: A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.Chromosomes, Human: Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual.Chromosomes, Bacterial: Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell.Chromosome Segregation: The orderly segregation of CHROMOSOMES during MEIOSIS or MITOSIS.Chromosomes, Human, Pair 7: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 11: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 17: A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 6: A specific pair GROUP C CHROMSOMES of the human chromosome classification.Chromosome Deletion: Actual loss of portion of a chromosome.Chromosomes, Human, Pair 9: A specific pair of GROUP C CHROMSOMES of the human chromosome classification.Chromosomes, Human, Pair 21: A specific pair of GROUP G CHROMOSOMES of the human chromosome classification.Chromosomes, Plant: Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.Chromosomes, Fungal: Structures within the nucleus of fungal cells consisting of or containing DNA, which carry genetic information essential to the cell.Chromosomes, Human, 6-12 and X: The medium-sized, submetacentric human chromosomes, called group C in the human chromosome classification. This group consists of chromosome pairs 6, 7, 8, 9, 10, 11, and 12 and the X chromosome.Chromosomes, Human, Pair 2: A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.Chromosomes, Human, Pair 16: A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 22: A specific pair of GROUP G CHROMOSOMES of the human chromosome classification.Chromosome Pairing: The alignment of CHROMOSOMES at homologous sequences.Chromosomes, Mammalian: Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of MAMMALS.Chromosomes, Human, Pair 13: A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 4: A specific pair of GROUP B CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 10: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Y: The human male sex chromosome, being the differential sex chromosome carried by half the male gametes and none of the female gametes in humans.Chromosomes, Human, Pair 8: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 19: A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.Chromosome Disorders: Clinical conditions caused by an abnormal chromosome constitution in which there is extra or missing chromosome material (either a whole chromosome or a chromosome segment). (from Thompson et al., Genetics in Medicine, 5th ed, p429)Chromosomes, Artificial, Bacterial: DNA constructs that are composed of, at least, a REPLICATION ORIGIN, for successful replication, propagation to and maintenance as an extra chromosome in bacteria. In addition, they can carry large amounts (about 200 kilobases) of other sequence for a variety of bioengineering purposes.Chromosomes, Human, X: The human female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in humans.Chromosomes, Human, 1-3: The large, metacentric human chromosomes, called group A in the human chromosome classification. This group consists of chromosome pairs 1, 2, and 3.Chromosomes, Human, Pair 12: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosome Painting: A technique for visualizing CHROMOSOME ABERRATIONS using fluorescently labeled DNA probes which are hybridized to chromosomal DNA. Multiple fluorochromes may be attached to the probes. Upon hybridization, this produces a multicolored, or painted, effect with a unique color at each site of hybridization. This technique may also be used to identify cross-species homology by labeling probes from one species for hybridization with chromosomes from another species.Chromosomes, Human, Pair 5: One of the two pairs of human chromosomes in the group B class (CHROMOSOMES, HUMAN, 4-5).Chromosomes, Human, Pair 15: A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.Karyotyping: Mapping of the KARYOTYPE of a cell.Chromosomes, Human, Pair 14: A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 18: A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.Chromosomes, Human, 16-18: The short, submetacentric human chromosomes, called group E in the human chromosome classification. This group consists of chromosome pairs 16, 17, and 18.In Situ Hybridization, Fluorescence: A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.Chromosomes, Human, Pair 20: A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.Chromosomes, Artificial, Yeast: Chromosomes in which fragments of exogenous DNA ranging in length up to several hundred kilobase pairs have been cloned into yeast through ligation to vector sequences. These artificial chromosomes are used extensively in molecular biology for the construction of comprehensive genomic libraries of higher organisms.Chromosomes, Human, 13-15: The medium-sized, acrocentric human chromosomes, called group D in the human chromosome classification. This group consists of chromosome pairs 13, 14, and 15.Genetic Linkage: The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.Chromosome Breakage: A type of chromosomal aberration involving DNA BREAKS. Chromosome breakage can result in CHROMOSOMAL TRANSLOCATION; CHROMOSOME INVERSION; or SEQUENCE DELETION.Chromosomes, Human, 21-22 and Y: The short, acrocentric human chromosomes, called group G in the human chromosome classification. This group consists of chromosome pairs 21 and 22 and the Y chromosome.Ring Chromosomes: Aberrant chromosomes with no ends, i.e., circular.Chromosome Inversion: An aberration in which a chromosomal segment is deleted and reinserted in the same place but turned 180 degrees from its original orientation, so that the gene sequence for the segment is reversed with respect to that of the rest of the chromosome.Genetic Markers: A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.Chromosome Positioning: The mechanisms of eukaryotic CELLS that place or keep the CHROMOSOMES in a particular SUBNUCLEAR SPACE.Chromosomes, Human, 4-5: The large, submetacentric human chromosomes, called group B in the human chromosome classification. This group consists of chromosome pairs 4 and 5.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.X Chromosome Inactivation: A dosage compensation process occurring at an early embryonic stage in mammalian development whereby, at random, one X CHROMOSOME of the pair is repressed in the somatic cells of females.Centromere: The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Chromosomes, Insect: Structures within the CELL NUCLEUS of insect cells containing DNA.Translocation, Genetic: A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome.Meiosis: A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.Hybrid Cells: Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION.Chromosome Structures: Structures which are contained in or part of CHROMOSOMES.Chromosomes, Human, 19-20: The short, metacentric human chromosomes, called group F in the human chromosome classification. This group consists of chromosome pairs 19 and 20.Aneuploidy: The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1).Metaphase: The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.Mitosis: A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.Recombination, Genetic: Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.Lod Score: The total relative probability, expressed on a logarithmic scale, that a linkage relationship exists among selected loci. Lod is an acronym for "logarithmic odds."Pedigree: The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.Crosses, Genetic: Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Microsatellite Repeats: A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Trisomy: The possession of a third chromosome of any one type in an otherwise diploid cell.Nondisjunction, Genetic: The failure of homologous CHROMOSOMES or CHROMATIDS to segregate during MITOSIS or MEIOSIS with the result that one daughter cell has both of a pair of parental chromosomes or chromatids and the other has none.Chromosomes, Artificial, Human: DNA constructs that are composed of, at least, all elements, such as a REPLICATION ORIGIN; TELOMERE; and CENTROMERE, required for successful replication, propagation to and maintainance in progeny human cells. In addition, they are constructed to carry other sequences for analysis or gene transfer.Kinetochores: Large multiprotein complexes that bind the centromeres of the chromosomes to the microtubules of the mitotic spindle during metaphase in the cell cycle.Nucleic Acid Hybridization: Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)Telomere: A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Chromosome Walking: A technique with which an unknown region of a chromosome can be explored. It is generally used to isolate a locus of interest for which no probe is available but that is known to be linked to a gene which has been identified and cloned. A fragment containing a known gene is selected and used as a probe to identify other overlapping fragments which contain the same gene. The nucleotide sequences of these fragments can then be characterized. This process continues for the length of the chromosome.Chromosomal Proteins, Non-Histone: Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Chromosomal Instability: An increased tendency to acquire CHROMOSOME ABERRATIONS when various processes involved in chromosome replication, repair, or segregation are dysfunctional.Spindle Apparatus: A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.Blotting, Southern: A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.Models, Genetic: Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.Chromosome Fragility: Susceptibility of chromosomes to breakage leading to translocation; CHROMOSOME INVERSION; SEQUENCE DELETION; or other CHROMOSOME BREAKAGE related aberrations.Genotype: The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.Quantitative Trait Loci: Genetic loci associated with a QUANTITATIVE TRAIT.Haplotypes: The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.Chromosome Duplication: An aberration in which an extra chromosome or a chromosomal segment is made.DNA, Satellite: Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION.DNA Probes: Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections.Polymerase Chain Reaction: In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.Drosophila melanogaster: A species of fruit fly much used in genetics because of the large size of its chromosomes.Genes: A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.Repetitive Sequences, Nucleic Acid: Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).Diploidy: The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X.Evolution, Molecular: The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.Chromatids: Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Mosaicism: The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from a single ZYGOTE, as opposed to CHIMERISM in which the different cell populations are derived from more than one zygote.Heterozygote: An individual having different alleles at one or more loci regarding a specific character.Abnormalities, MultiplePolytene Chromosomes: Extra large CHROMOSOMES, each consisting of many identical copies of a chromosome lying next to each other in parallel.Multigene Family: A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)Polyploidy: The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc.DNA Replication: The process by which a DNA molecule is duplicated.Gene Deletion: A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.Prophase: The first phase of cell nucleus division, in which the CHROMOSOMES become visible, the CELL NUCLEUS starts to lose its identity, the SPINDLE APPARATUS appears, and the CENTRIOLES migrate toward opposite poles.Interphase: The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).Gene Dosage: The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage.Loss of Heterozygosity: The loss of one allele at a specific locus, caused by a deletion mutation; or loss of a chromosome from a chromosome pair, resulting in abnormal HEMIZYGOSITY. It is detected when heterozygous markers for a locus appear monomorphic because one of the ALLELES was deleted.Cell Cycle Proteins: Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Genome, Human: The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.Cytogenetic Analysis: Examination of CHROMOSOMES to diagnose, classify, screen for, or manage genetic diseases and abnormalities. Following preparation of the sample, KARYOTYPING is performed and/or the specific chromosomes are analyzed.Genetic Variation: Genotypic differences observed among individuals in a population.Cytogenetics: A subdiscipline of genetics which deals with the cytological and molecular analysis of the CHROMOSOMES, and location of the GENES on chromosomes, and the movements of chromosomes during the CELL CYCLE.Karyotype: The full set of CHROMOSOMES presented as a systematized array of METAPHASE chromosomes from a photomicrograph of a single CELL NUCLEUS arranged in pairs in descending order of size and according to the position of the CENTROMERE. (From Stedman, 25th ed)Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Polymorphism, Genetic: The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.Cosmids: Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles.Chromosome Fragile Sites: Specific loci that show up during KARYOTYPING as a gap (an uncondensed stretch in closer views) on a CHROMATID arm after culturing cells under specific conditions. These sites are associated with an increase in CHROMOSOME FRAGILITY. They are classified as common or rare, and by the specific culture conditions under which they develop. Fragile site loci are named by the letters "FRA" followed by a designation for the specific chromosome, and a letter which refers to which fragile site of that chromosome (e.g. FRAXA refers to fragile site A on the X chromosome. It is a rare, folic acid-sensitive fragile site associated with FRAGILE X SYNDROME.)Gene Rearrangement: The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development.Chromatin: The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.Sex Chromosome Disorders: Clinical conditions caused by an abnormal sex chromosome constitution (SEX CHROMOSOME ABERRATIONS), in which there is extra or missing sex chromosome material (either a whole chromosome or a chromosome segment).Monosomy: The condition in which one chromosome of a pair is missing. In a normally diploid cell it is represented symbolically as 2N-1.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Spermatocytes: Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.Genes, X-Linked: Genes that are located on the X CHROMOSOME.Sequence Tagged Sites: Short tracts of DNA sequence that are used as landmarks in GENOME mapping. In most instances, 200 to 500 base pairs of sequence define a Sequence Tagged Site (STS) that is operationally unique in the human genome (i.e., can be specifically detected by the polymerase chain reaction in the presence of all other genomic sequences). The overwhelming advantage of STSs over mapping landmarks defined in other ways is that the means of testing for the presence of a particular STS can be completely described as information in a database.Polymorphism, Restriction Fragment Length: Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.DNA, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.Genes, Dominant: Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.Species Specificity: The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Polymorphism, Single Nucleotide: A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.DNA Transposable Elements: Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.Genetic Predisposition to Disease: A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.Philadelphia Chromosome: An aberrant form of human CHROMOSOME 22 characterized by translocation of the distal end of chromosome 9 from 9q34, to the long arm of chromosome 22 at 22q11. It is present in the bone marrow cells of 80 to 90 per cent of patients with chronic myelocytic leukemia (LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE).Genes, Recessive: Genes that influence the PHENOTYPE only in the homozygous state.Azure Stains: PHENOTHIAZINES with an amino group at the 3-position that are green crystals or powder. They are used as biological stains.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Chromosomes, Archaeal: Structures within the nucleus of archaeal cells consisting of or containing DNA, which carry genetic information essential to the cell.Sequence Homology, Nucleic Acid: The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.Chromosome Breakpoints: The locations in specific DNA sequences where CHROMOSOME BREAKS have occurred.Contig Mapping: Overlapping of cloned or sequenced DNA to construct a continuous region of a gene, chromosome or genome.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Genome: The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA.Ploidies: The degree of replication of the chromosome set in the karyotype.Homozygote: An individual in which both alleles at a given locus are identical.Haploidy: The chromosomal constitution of cells, in which each type of CHROMOSOME is represented once. Symbol: N.Phylogeny: The relationships of groups of organisms as reflected by their genetic makeup.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Genetic Loci: Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Sex Chromatin: In the interphase nucleus, a condensed mass of chromatin representing an inactivated X chromosome. Each X CHROMOSOME, in excess of one, forms sex chromatin (Barr body) in the mammalian nucleus. (from King & Stansfield, A Dictionary of Genetics, 4th ed)Genomic Imprinting: The variable phenotypic expression of a GENE depending on whether it is of paternal or maternal origin, which is a function of the DNA METHYLATION pattern. Imprinted regions are observed to be more methylated and less transcriptionally active. (Segen, Dictionary of Modern Medicine, 1992)Gene Duplication: Processes occurring in various organisms by which new genes are copied. Gene duplication may result in a MULTIGENE FAMILY; supergenes or PSEUDOGENES.Hybridization, Genetic: The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid.Gene Amplification: A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication.Drosophila: A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.Genes, Lethal: Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Intellectual Disability: Subnormal intellectual functioning which originates during the developmental period. This has multiple potential etiologies, including genetic defects and perinatal insults. Intelligence quotient (IQ) scores are commonly used to determine whether an individual has an intellectual disability. IQ scores between 70 and 79 are in the borderline range. Scores below 67 are in the disabled range. (from Joynt, Clinical Neurology, 1992, Ch55, p28)Genes, Bacterial: The functional hereditary units of BACTERIA.Genome, Plant: The genetic complement of a plant (PLANTS) as represented in its DNA.DNA, Neoplasm: DNA present in neoplastic tissue.Chromosomes, Artificial: DNA constructs that are composed of, at least, elements such as a REPLICATION ORIGIN; TELOMERE; and CENTROMERE, that are required for successful replication, propagation to and maintenance in progeny cells. In addition, they are constructed to carry other sequences for analysis or gene transfer.Sister Chromatid Exchange: An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME.Syndrome: A characteristic symptom complex.Pachytene Stage: The stage in the first meiotic prophase, following ZYGOTENE STAGE, when CROSSING OVER between homologous CHROMOSOMES begins.Microtubules: Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Exons: The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.Histones: Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.DNA, Fungal: Deoxyribonucleic acid that makes up the genetic material of fungi.Genes, Y-Linked: Genes that are located on the Y CHROMOSOME.Euchromatin: Chromosome regions that are loosely packaged and more accessible to RNA polymerases than HETEROCHROMATIN. These regions also stain differentially in CHROMOSOME BANDING preparations.Triticum: A plant genus of the family POACEAE that is the source of EDIBLE GRAIN. A hybrid with rye (SECALE CEREALE) is called TRITICALE. The seed is ground into FLOUR and used to make BREAD, and is the source of WHEAT GERM AGGLUTININS.Genes, Tumor Suppressor: Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible.DNA, Plant: Deoxyribonucleic acid that makes up the genetic material of plants.Aurora Kinases: A family of highly conserved serine-threonine kinases that are involved in the regulation of MITOSIS. They are involved in many aspects of cell division, including centrosome duplication, SPINDLE APPARATUS formation, chromosome alignment, attachment to the spindle, checkpoint activation, and CYTOKINESIS.Sex Determination Processes: The mechanisms by which the SEX of an individual's GONADS are fixed.Down Syndrome: A chromosome disorder associated either with an extra chromosome 21 or an effective trisomy for chromosome 21. Clinical manifestations include hypotonia, short stature, brachycephaly, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, Simian crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213)Genes, Insect: The functional hereditary units of INSECTS.DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.Meiotic Prophase I: The prophase of the first division of MEIOSIS (in which homologous CHROMOSOME SEGREGATION occurs). It is divided into five stages: leptonema, zygonema, PACHYNEMA, diplonema, and diakinesis.Quantitative Trait, Heritable: A characteristic showing quantitative inheritance such as SKIN PIGMENTATION in humans. (From A Dictionary of Genetics, 4th ed)Radiation Hybrid Mapping: A method for ordering genetic loci along CHROMOSOMES. The method involves fusing irradiated donor cells with host cells from another species. Following cell fusion, fragments of DNA from the irradiated cells become integrated into the chromosomes of the host cells. Molecular probing of DNA obtained from the fused cells is used to determine if two or more genetic loci are located within the same fragment of donor cell DNA.Gene Library: A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.Genetic Heterogeneity: The presence of apparently similar characters for which the genetic evidence indicates that different genes or different genetic mechanisms are involved in different pedigrees. In clinical settings genetic heterogeneity refers to the presence of a variety of genetic defects which cause the same disease, often due to mutations at different loci on the same gene, a finding common to many human diseases including ALZHEIMER DISEASE; CYSTIC FIBROSIS; LIPOPROTEIN LIPASE DEFICIENCY, FAMILIAL; and POLYCYSTIC KIDNEY DISEASES. (Rieger, et al., Glossary of Genetics: Classical and Molecular, 5th ed; Segen, Dictionary of Modern Medicine, 1992)DNA Restriction Enzymes: Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.Sex Chromosome Disorders of Sex Development: Congenital conditions of atypical sexual development associated with abnormal sex chromosome constitutions including MONOSOMY; TRISOMY; and MOSAICISM.

Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts. (1/2035)

BACKGROUND: Coiled bodies are nuclear organelles that are highly enriched in small nuclear ribonucleoproteins (snRNPs) and certain basal transcription factors. Surprisingly, coiled bodies not only contain mature U snRNPs but also associate with specific chromosomal loci, including gene clusters that encode U snRNAs and histone messenger RNAs. The mechanism(s) by which coiled bodies associate with these genes is completely unknown. RESULTS: Using stable cell lines, we show that artificial tandem arrays of human U1 and U2 snRNA genes colocalize with coiled bodies and that the frequency of the colocalization depends directly on the transcriptional activity of the array. Association of the genes with coiled bodies was abolished when the artificial U2 arrays contained promoter mutations that prevent transcription or when RNA polymerase II transcription was globally inhibited by alpha-amanitin. Remarkably, the association was also abolished when the U2 snRNA coding regions were replaced by heterologous sequences. CONCLUSIONS: The requirement for the U2 snRNA coding region indicates that association of snRNA genes with coiled bodies is mediated by the nascent U2 RNA itself, not by DNA or DNA-bound proteins. Our data provide the first evidence that association of genes with a nuclear organelle can be directed by an RNA and suggest an autogenous feedback regulation model.  (+info)

Karyotyping of human oocytes by chromosomal analysis of the second polar bodies. (2/2035)

This paper describes a method for obtaining metaphase chromosomes from human second polar bodies. The second polar body nucleus was injected into the cytoplasm of an enucleated oocyte, which is activated shortly after injection. When the polar body nucleus is transformed into a haploid pronucleus, treatment with okadaic acid was used to induce premature chromosome condensation. A total of 25 analysable chromosome plates were obtained from 38 polar bodies karyotyped using this technique. Whole chromosome painting was used to detect second polar bodies (and respectively, oocytes) with unbalanced translocations. In combination with the first polar body analysis, this technique may be useful in preimplantation genetic diagnosis for patients carrying maternal translocations.  (+info)

Preimplantation diagnosis by fluorescence in situ hybridization using 13-, 16-, 18-, 21-, 22-, X-, and Y-chromosome probes. (3/2035)

PURPOSE: Our purpose was to select the proper chromosomes for preimplantation diagnosis based on aneuploidy distribution in abortuses and to carry out a feasibility study of preimplantation diagnosis for embryos using multiple-probe fluorescence in situ hybridization (FISH) on the selected chromosomes of biopsied blastomeres. METHODS: After determining the frequency distribution of aneuploidy found in abortuses, seven chromosomes were selected for FISH probes. Blastomeres were obtained from 33 abnormal or excess embryos. The chromosome complements of both the biopsied blastomeres and the remaining sibling blastomeres in each embryo were determined by FISH and compared to evaluate their preimplantation diagnostic potential. RESULTS: Chromosomes (16, 22, X, Y) and (13, 18, 21) were selected on the basis of the high aneuploid prevalence in abortuses for the former group and the presence of trisomy in the newborn for the latter. Thirty-six (72%) of 50 blastomeres gave signals to permit a diagnosis. Diagnoses made from biopsied blastomeres were consistent with the diagnoses made from the remaining sibling blastomeres in 18 embryos. In only 2 of 20 cases did the biopsied blastomere diagnosis and the embryo diagnosis not match. CONCLUSIONS: If FISH of biopsied blastomere was successful, a preimplantation diagnosis could be made with 10% error. When a combination of chromosome-13, -16, -18, -21, -22, -X, and -Y probes was used, up to 65% of the embryos destined to be aborted could be detected.  (+info)

Mutation and haplotype studies of familial Mediterranean fever reveal new ancestral relationships and evidence for a high carrier frequency with reduced penetrance in the Ashkenazi Jewish population. (4/2035)

Familial Mediterranean fever (FMF) is a recessive disorder characterized by episodes of fever with serositis or synovitis. The FMF gene (MEFV) was cloned recently, and four missense mutations were identified. Here we present data from non-Ashkenazi Jewish and Arab patients in whom we had not originally found mutations and from a new, more ethnically diverse panel. Among 90 symptomatic mutation-positive individuals, 11 mutations accounted for 79% of carrier chromosomes. Of the two mutations that are novel, one alters the same residue (680) as a previously known mutation, and the other (P369S) is located in exon 3. Consistent with another recent report, the E148Q mutation was observed in patients of several ethnicities and on multiple microsatellite haplotypes, but haplotype data indicate an ancestral relationships between non-Jewish Italian and Ashkenazi Jewish patients with FMF and other affected populations. Among approximately 200 anonymous Ashkenazi Jewish DNA samples, the MEFV carrier frequency was 21%, with E148Q the most common mutation. Several lines of evidence indicate reduced penetrance among Ashkenazi Jews, especially for E148Q, P369S, and K695R. Nevertheless, E148Q helps account for recessive inheritance in an Ashkenazi family previously reported as an unusual case of dominantly inherited FMF. The presence of three frequent MEFV mutations in multiple Mediterranean populations strongly suggests a heterozygote advantage in this geographic region.  (+info)

Age estimates of two common mutations causing factor XI deficiency: recent genetic drift is not necessary for elevated disease incidence among Ashkenazi Jews. (5/2035)

The type II and type III mutations at the FXI locus, which cause coagulation factor XI deficiency, have high frequencies in Jewish populations. The type III mutation is largely restricted to Ashkenazi Jews, but the type II mutation is observed at high frequency in both Ashkenazi and Iraqi Jews, suggesting the possibility that the mutation appeared before the separation of these communities. Here we report estimates of the ages of the type II and type III mutations, based on the observed distribution of allelic variants at a flanking microsatellite marker (D4S171). The results are consistent with a recent origin for the type III mutation but suggest that the type II mutation appeared >120 generations ago. This finding demonstrates that the high frequency of the type II mutation among Jews is independent of the demographic upheavals among Ashkenazi Jews in the 16th and 17th centuries.  (+info)

New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. (6/2035)

Multicolour in situ hybridisation (MFISH) is increasingly applied to karyotyping and detection of chromosomal abnormalities. So far 27 colour analyses have been described using fluorescently labelled chromosome painting probes in a so-called combinatorial approach. In this paper a new strategy is presented to use efficiently the currently available number of spectrally separated fluorophores in order to increase the multiplicity of MFISH. We introduce the principle of COBRA (COmbined Binary RAtio labelling), which is based on the simultaneous use of combinatorial labelling and ratio labelling. Human chromosome painting in 24 colours is accomplished using four fluorophores only. Three fluorophores are used pair wise for ratio labelling of a set of 12 chromosome painting probes. The second set of 12 probes is labelled identically but is also given a binary label (fourth fluorophore). The COBRA method is demonstrated on normal human chromosomes and on a lymphoma (JVM) cell line, using probes enzymatically labelled with fluorescein, lissamine and cy5 as primary fluorophores, and diethylaminocoumarin (DEAC), a blue dye, as combinatorial fourth label to demonstrate incorporated digoxigenin. In addition, the principle was tested using chemical labelling. The first set of 12 painting probes was therefore labelled by ULS (Universal Linkage System), using DEAC, cy3 and cy5 as primary labels, and the second set was labelled similarly, but also contained a digoxigenin-ULS label, which was indirectly stained with fluorescein. Subsequently, a mathematical analysis is presented and methods are indicated for achieving an MFISH multiplicity of 48, 96 or even higher using existing technology.  (+info)

Evidence for a relatively random array of human chromosomes on the mitotic ring. (7/2035)

We used fluorescence in situ hybridization (FISH) to study the positions of human chromosomes on the mitotic rings of cultured human lymphocytes, MRC-5 fibroblasts, and CCD-34Lu fibroblasts. The homologous chromosomes of all three cell types had relatively random positions with respect to each other on the mitotic rings of prometaphase rosettes and anaphase cells. Also, the positions of the X and Y chromosomes, colocalized with the somatic homologues in male cells, were highly variable from one mitotic ring to another. Although random chromosomal positions were found in different pairs of CCD-34Lu and MRC-5 late-anaphases, the separations between the same homologous chromosomes in paired late-anaphase and telophase chromosomal masses were highly correlated. Thus, although some loose spatial associations of chromosomes secondary to interphase positioning may exist on the mitotic rings of some cells, a fixed order of human chromosomes and/or a rigorous separation of homologous chromosomes on the mitotic ring are not necessary for normal mitosis. Furthermore, the relative chromosomal positions on each individual metaphase plate are most likely carried through anaphase into telophase.  (+info)

Mapping EBNA-1 domains involved in binding to metaphase chromosomes. (8/2035)

The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids.  (+info)

*Philadelphia chromosome

The chromosomal defect in the Philadelphia chromosome is a translocation, in which parts of two chromosomes, 9 and 22, swap places. The result is that a fusion gene is created by juxtaposing the ABL1 gene on chromosome 9 (region q34) to a part of the BCR (breakpoint cluster region) gene on chromosome 22 (region q11). This is a reciprocal translocation, creating an elongated chromosome 9 (termed a derivative chromosome, or der 9), and a truncated chromosome 22 (the Philadelphia chromosome, 22q-).[3][4] In agreement with the International System for Human Cytogenetic Nomenclature (ISCN), this chromosomal translocation is designated as t(9;22)(q34;q11). The symbol ABL is derived from Abelson, the name of a leukemia virus which carries a similar protein.. Translocation results in an oncogenic BCR-ABL gene fusion that can be found on the shorter derivative 22 chromosome. This gene encodes for a Bcr-abl fusion protein. Depending on the precise location of fusion, the molecular ...

*Human artificial chromosome

A human artificial chromosome (HAC) is a microchromosome that can act as a new chromosome in a population of human cells. That is, instead of 46 chromosomes, the cell could have 47 with the 47th being very small, roughly 6-10 megabases (Mb) in size instead of 50-250 Mb for natural chromosomes, and able to carry new genes introduced by human researchers. Ideally, researchers could integrate different genes that perform a variety of functions, including disease defense. Alternative methods of creating transgenes, such as utilizing yeast artificial chromosomes and bacterial artificial chromosomes, lead to unpredictable problems. The genetic material introduced by these vectors not only leads to different expression levels, but the inserts also disrupt the original genome. HACs differ in this regard, as they are entirely separate chromosomes. This separation from existing ...

*Eukaryotic chromosome fine structure

... refers to the structure of sequences for eukaryotic chromosomes. Some fine sequences are included in more than one class, so the classification listed is not intended to be completely separate. Some sequences are required for a properly functioning chromosome: Centromere: Used during cell division as the attachment point for the spindle fibers. Telomere: Used to maintain chromosomal integrity by capping off the ends of the linear chromosomes. This region is a microsatellite, but its function is more specific than a simple tandem repeat. Throughout the eukaryotic kingdom, the overall structure of chromosome ends is conserved and is characterized by the telomeric tract - a series of short G-rich repeats. This is succeeded by an extensive subtelomeric region consisting of various types and lengths of repeats - the telomere associated sequences (TAS). These regions are generally low in gene density, low in transcription, low in recombination, late replicating, ...

*Microchromosome

A microchromosome is a type of very small chromosome which is a typical component of the karyotype of birds, some reptiles, fish, and amphibians; they tend to be absent in mammals. They are less than 20 Mb in size; chromosomes which are greater than 40 Mb in size are known as macrochromosomes, while those between 20 and 40 Mb are classified as intermediate chromosomes. Microchromosomes are characteristically very small and often cytogenetically indistinguishable in a karyotype. While originally thought to be insignificant fragments of chromosomes, in species where they have been studied they have been found to be rich in genes. In chickens, microchromosomes have been estimated to contain between 50 and 75% of all genes. The presence of microchromosomes makes ordering and identifying chromosomes into a coherent karyotype particularly difficult. During metaphase, they appear ...

*Allosome

An allosome (also referred to as a sex chromosome, heterotypical chromosome, heterochromosome, or idiochromosome) is a chromosome that differs from an ordinary autosome in form, size, and behavior. The human sex chromosomes, a typical pair of mammal allosomes, determine the sex of an individual created in sexual reproduction. Autosomes differ from allosomes because autosomes appear in pairs whose members have the same form but differ from other pairs in a diploid cell, whereas members of an allosome pair may differ from one another and thereby determine sex. In humans, each cell nucleus contains 23 pairs of chromosomes, a total of 46 chromosomes. The first 22 pairs are called autosomes. Autosomes are homologous chromosomes i.e. chromosomes which contain the same genes (regions of DNA) in the same order along their chromosomal arms. The chromosomes of the 23rd pair are called ...

*Y chromosome

The Y chromosome is ane o twa sex chromosomes (allosomes) in mammals, includin humans, an mony ither ainimals. The ither is the X chromosome. Y is the sex-determinin chromosome in mony species, syne it is the presence or absence o Y that determines the male or female sex o offspring produced in sexual reproduction. In mammals, the Y chromosome contains the gene SRY, which causes testis development. ...

*Spindle checkpoint

During the process of cell division, the spindle checkpoint prevents separation of the duplicated chromosomes until each chromosome is properly attached to the spindle apparatus. In order to preserve the cell's identity and proper function, it is necessary to maintain the appropriate number of chromosomes after each cell division. An error in generating daughter cells with fewer or greater number of chromosomes than expected (a situation termed aneuploidy), may lead in best case to cell death, or alternatively it may generate catastrophic phenotypic results. Examples include: In cancer cells, aneuploidy is a frequent event, indicating that these cells present a defect in the machinery involved in chromosome segregation, as well as in the mechanism ensuring that segregation is correctly performed. In humans, Down syndrome appears in children carrying in their cells one extra copy of chromosome 21, as a result of a defect in chromosome ...

*Meiosis - Simple English Wikipedia, the free encyclopedia

Meiosis is a special type of cell division. Unlike mitosis, the way normal body cells divide, meiosis results in cells that only have half the usual number of chromosomes, one from each pair. For that reason, meiosis is often called reduction division. In the long run, meiosis increases genetic variation, in a way which will be explained later. Sexual reproduction takes place when a sperm fertilizes an egg. The eggs and sperm are special cells called gametes, or sex cells. Gametes are haploid; they have only half the number of chromosomes as a normal body cell (called a somatic cell). Fertilization restores the chromosomes in body cells to the diploid number. The basic number of chromosomes in the body cells of a species is called the somatic number and is labelled 2n. In humans 2n = 46: we have 46 chromosomes. In the sex cells the chromosome number is n (humans: n = 23).[1] So, in normal ...

*Fusion gene

A fusion gene is a hybrid gene formed from two previously separate genes. It can occur as a result of: translocation, interstitial deletion, or chromosomal inversion. The first fusion gene was described in cancer cells in the early 1980s. The finding was based on the discovery in 1960 by Peter Nowell and David Hungerford in Philadelphia of a small abnormal marker chromosome in patients with chronic myeloid leukemia-the first consistent chromosome abnormality detected in a human malignancy, later designated the Philadelphia chromosome. In 1973, Janet Rowley in Chicago showed that the Philadelphia chromosome had originated through a translocation between chromosomes 9 and 22, and not through a simple deletion of chromosome 22 as was previously thought. Several investigators in the early 1980s showed that the Philadelphia chromosome translocation led to the formation of a new BCR/ABL1 fusion gene, composed of the 3' part of the ABL1 gene in the breakpoint on chromosome 9 and ...

*Gene map

... s help describe the spatial arrangement of genes on a chromosome. Genes are designated to a specific location on a chromosome known as the locus and can be used as molecular markers to find the distance between other genes on a chromosome. Maps provide researchers with the opportunity to predict the inheritance patterns of specific traits, which can eventually lead to a better understanding of disease-linked traits. The genetic basis to gene maps is to provide an outline that can potentially help researchers carry out DNA sequencing. A gene map helps point out the relative positions of genes and allows researchers to locate regions of interest in the genome. Genes can then be identified quickly and sequenced quickly. Two approaches to generating gene maps include physical mapping and genetic mapping. Physical mapping utilizes molecular biology techniques to inspect chromosomes. These techniques consequently allow researchers to observe chromosomes directly so that a map ...

*Multi expression programming

... (MEP) is a genetic programming variant encoding multiple solutions in the same chromosome. MEP representation is not specific (multiple representations have been tested). In the simplest variant, MEP chromosomes are linear strings of instructions. This representation was inspired by Three-address code. MEP strength consists in the ability to encode multiple solutions, of a problem, in the same chromosome. In this way one can explore larger zones of the search space. For most of the problems this advantage comes with no running-time penalty compared with genetic programming variants encoding a single solution in a chromosome.[1][2][3]. ...

*Chromosome combing

... (also known as molecular combing or DNA combing) is a technique used to produce an array of uniformly stretched DNA that is then highly suitable for nucleic acid hybridization studies such as fluorescent in situ hybridisation (FISH) which benefit from the uniformity of stretching, the easy access to the hybridisation target sequences, and the resolution offered by the large distance between two probes, which is due to the stretching of the DNA by a factor of 1.5 times the crystallographic length of DNA. DNA in solution (i.e. with a randomly-coiled structure) is stretched by retracting the meniscus of the solution at a constant rate (typically 300 µm/s). The ends of DNA strands, which are thought to be frayed (i.e. open and exposing polar groups) bind to ionisable groups coating a silanized glass plate at a pH below the pKa of the ionizable groups (ensuring they are charged enough to interact with the ends of DNA). The rest of the DNA, which is mostly dsDNA, cannot form these ...

*Sexual reproduction - Simple English Wikipedia, the free encyclopedia

Assortment is when the double set of chromosomes becomes a single set in each gamete. In each pair of chromosomes, which one goes into a single gamete is random. Because the gene alleles on each chromosome are not always the same, this means that there is genetic variation between gametes. This process was Mendel's 'first law', the law of segregation. ...
Preparation Methods of Human Metaphase Chromosomes for their Proteome Analysis.: Chromosomes are supermolecules that contain most of the DNA within a cell and a
TY - JOUR. T1 - Evidence that unrejoined DNA double-strand breaks are not predominantly responsible for chromosomal radiosensitivity of AT fibroblasts. AU - Loucas, Bradford. AU - Cornforth, Michael. PY - 2004/11. Y1 - 2004/11. N2 - To examine more fully the nature of chromosomal radiosensitivity in ataxia telangiectasia (AT) cells, we employed 24-color combinatorial painting to visualize 137CS γ-ray-induced chromosome-type aberrations in cells of two AT and one normal primary human fibroblast strains irradiated in log-phase growth. As a measure of misrejoined radiation-induced DSBs, we quantified exchange breakpoints associated with both simple and complex exchanges. As a measure of unrejoined DSBs, we quantified breakpoints from terminal deletions as well as deletions associated with incomplete exchange. For each of these end points, the frequency of damage per unit dose was markedly higher in AT cells compared to normal cells, although the proportion of total breaks that remained unrejoined ...
The spatial arrangement of some genetic elements relative to chromosome territories and in parallel with the cell nucleus was investigated in human lymphocytes. The structure of the chromosome territories was studied in chromosomes containing regions ( clusters) of highly expressed genes (HSA 9, 17) and those without such clusters ( HSA 8, 13). In chromosomes containing highly expressed regions, the elements pertaining to these regions were found close to the centre of the nucleus on the inner sides of chromosome territories; those pertaining to regions with low expression were localized close to the nuclear membrane on the opposite sides of the territories. In chromosomes with generally low expression ( HSA 8, 13), the elements investigated were found symmetrically distributed over the territories. Based on the investigations of the chromosome structure, the following conclusions are suggested: (1) Chromosome territories have a non-random internal 3D structure with defined average mutual ...
dear bionetters, I am a graduate student working on DNA sequencing, but as a side project I am interested in subjecting metaphase chromosomes to electron microscopy. I understanding how to arrest the cells in metaphase --I am working with a borrowed culture of a human lymphocytes-- but am unclear on how to extract and purify the chromosomes. Basically I am looking for two procedures: 1. how to break open the cells gently, and 2. how to isolate the chromosomes from the remains of the cell. (A few papers mentioned centrifugation, but fewer still provided the exact conditions!) Any advice on procedures or even references would be greatly apreciated. Thanks! David (DHC at BIOCH.OX.AC.UK ...
Ross argues that the chromosomal evidence that humans and the higher apes have a different number of chromosomes is invalid or misunderstood. In the early 1990s, it was discovered that human chromosome two is an end-to-end-fusion of two ape chromosomes. A close examination of chromosome two revealed that, while the other twenty-two chromosomes have one centromere, or central segment, human chromosome two has an extra non-functional centromere. Furthermore, while every chromosome has end segments known as telomeres, human chromosome two has inactive adjacent telomere segments in the middle of the chromosome. It is argued that, sometime in our early past, there was a translocation of two chromosomes to form Chromosome two. Ross argues that such a translocation could not possibly have happened because this would be "catastrophic for the organism" and would result in death ...
Olecular characterization of MAR, a multiple aberration area on human chromosome segment 12q13q15 implicated in a variety of strong tumors. Genes Chromosomes
A microfluorimetric method has been developed for determination of DNA content in individual human chromosomes. The method is based on a preliminary identification of chromosomes with Hoechst 33258 followed by staining of the chromosomes with Feulgen reaction by using Schiffs reagent type ethidium bromide-SO2 and then by measuring the fluorescence intensity of the chromosomes by using an image analyzer. The method allows determining the DNA content of individual chromosomes with an accuracy up to 4.5 fg. The DNA content of individual human chromosomes and their p-and q-arms, as well as homologous chromosomes, were measured by using the developed method. It has been shown that the DNA content in chromosomes of the normal human karyotype is unstable and can fluctuate in some chromosomes within 35-40 fg.
Humans have 46 chromosomes, whereas chimpanzee, gorilla, and orangutan have 48. This major karyotypic difference was caused by the fusion of two ancestral chromosomes to form human chromosome 2 and subsequent inactivation of one of the two original centromeres (Yunis and Prakash 1982). As a result of this fusion, sequences that once resided near the ends of the ancestral chromosomes are now located in the middle of chromosome 2, near the borders of bands 2q13 and 2q14.1. For brevity, we refer henceforth to the region surrounding the fusion as 2qFus. Two head-to-head arrays of degenerate telomere repeats are found at this site; their head-to-head orientation indicates that chromosome 2 resulted from a telomere to telomere fusion. (Emphasis mine). [4] ...
Read "The costimulatory genes Cd80 and Cd86 are linked on mouse chromosome 16 and human chromosome 3, Mammalian Genome" on DeepDyve, the largest online rental service for scholarly research with thousands of academic publications available at your fingertips.
University of Washington. The University of Washingtons Department of Laboratory Medicine has now developed a whole blood qPCR for HHV-6 that aids in the diagnosis of ciHHV-6. The group is running this test in parallel with a newly developed rapid and accurate droplet digital PCR (ddPCR) assay for diagnosis of patients with ciHHV-6. Most quantitative PCR assays are not precise enough to give an accurate ratio of HHV-6 DNA copies per cell. The ddPCR can provide a ratio of HHV-6 DNA copies per cell with great precision, and will be the first clinical test in the USA able to determine definitively if a patient has ciHHV-6. Download the requisition form HERE.. Coppe Labs. In addition, three important tests for HHV-6 are available through Coppe Labs, including two assays that are not available commercially at any other location in the US: the mRNA test for assessing active infection and immunohistochemistry analysis for biopsy samples. The company utilizes the reverse transcription polymerase chain ...
Seroussi, E., Kedra, D., Kost-Alimova, M., Sandberg-Nordqvist, A., Fransson, I., Jacobs, J., ... Dumanski, J. (1999). TOM1 Genes Map to Human Chromosome 22q13.1 and Mouse Chromosome 8C1 and Encode Proteins Similar to the Endosomal Proteins HGS and STAM. Genomics, 57, 380 - 388 ...
View Notes - Reproduction and Chromosome Transmission from BIO 325 at University of Texas. To prepare human chromosomes for viewing (Figure 3.2a): Somatic cells are obtained from the blood. The cells
Three region-specific libraries for the entire human chromosome 18 were constructed using microdissection and MboI linker-adaptor microcloning techniques. The libraries included 18pter-p11.1...
talk , contribs) (New page: This is a new project for which we have one position open for someone interested in constructing totally programmable human chromosomes.) ...
You can use this work for any purpose, as long as it is not primarily intended for or directed to commercial advantage or monetary compensation. You should also provide attribution to the original work, source and licence.. Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) terms and conditions https://creativecommons.org/licenses/by-nc/4.0 ...
Chapter 14 The Human Genome Section 14 1 Human Heredity (pages ) This section explains what scientists know about human chromosomes, as well as the inheritance of certain human traits and disorders.
We integrated WGS data from over 2600 tumours spanning more than 30 cancer types," says Isidro Cortés-Ciriano, Group Leader at EMBL-EBI and a former postdoctoral researcher at Harvard Medical School.. "From this we discovered that chromothripsis events and other types of complex genome rearrangements are pervasive across human cancers, with frequencies greater than 50% of tumours in some cancer types.". Using WGS datasets gave the researchers an enhanced view of chromothripsis events in the cancer genome. Previous studies looking at the role of chromothripsis in cancer and congenital diseases often used low-resolution array-based technologies.. Here the researchers were able to show that chromothripsis events are much more prevalent in cancer than previously estimated. They also characterised the patterns of massive genome alterations across cancer types, and studied the DNA repair mechanisms involved in their generation.. "This study is yet another demonstration of the power of large-scale ...
The research presented in this dissertation consists of four papers that revolve around the structure of human chromosomes and their relationship to birth defects.. A new technique is described to produce spiralization of human metaphase chromosomes. The important feature is heat followed by trypsin treatment. By varying conditions, it is possible to produce bands, spirals and intermediate states.. An investigation of human metaphase chromosomes reveals identical lateral bands in sister chromatids when stained with Quinacrine mustard or Giemsa-trypsin. A hybrid of these two methods produces banding patterns which are different in sister chromatids yet may be repeated in homologous chromatids.. A case study is presented in which a 3l-year old white female with a history of ovarian dysfunction and infertility delivered a male infant with trisomy 13. Her cultured leucocytes were mosaic for trisomy X. The natures of trisomy X and trisomy 13 are discussed with particular emphasis on the genetic ...
Chromothripsis is the phenomenon by which up to thousands of clustered chromosomal rearrangements occur in a single event in localised and confined genomic regions in one or a few chromosomes, and is known to be involved in both cancer and congenital diseases. It occurs through one massive genomic rearrangement during a single catastrophic event in the cells history. It is believed that for the cell to be able to withstand such a destructive event, the occurrence of such an event must be the upper limit of what a cell can tolerate and survive. The chromothripsis phenomenon opposes the conventional theory that cancer is the gradual acquisition of genomic rearrangements and somatic mutations over time. The simplest model as to how these rearrangements occur is through the simultaneous fragmentation of distinct chromosomal regions (breakpoints show a non-random distribution) and then subsequent imperfect reassembly by DNA repair pathways or aberrant DNA replication mechanisms. Chromothripsis ...
In collaboration with The Open University, The Wellcome Trust Centre for Cell Biology and the Wellcome Trust Sanger Institute.. This pack uses a primate genome puzzle to explore differences and similarities between human and chimpanzee chromosomes. The materials can be applied flexibly to themes on heredity, chromosome structure, duplication, deletion, translocation or inversion and even the formation of chromosome-2 by fusion of ancestral ape chromosomes (as featured in the new Scottish Higher qualification). Try hybridising a chimp and human with our puzzle - see what happens!. Chimpanzee & Human Chromosomes Teachers Guide - PDF document (0.8MB). Chimpanzee and Human Chromosomes Links to Scottish Curriculum - PDF document (0.2MB). Chimpanzee & Human Chromosomes Student Activity Sheets - PDF document (0.4MB). This puzzle has been formated for printing on card or paper at around A3. See our Public Engagement with Science review for images of our giant version available in the zoo and at various ...
In collaboration with The Open University, The Wellcome Trust Centre for Cell Biology and the Wellcome Trust Sanger Institute.. This pack uses a primate genome puzzle to explore differences and similarities between human and chimpanzee chromosomes. The materials can be applied flexibly to themes on heredity, chromosome structure, duplication, deletion, translocation or inversion and even the formation of chromosome-2 by fusion of ancestral ape chromosomes (as featured in the new Scottish Higher qualification). Try hybridising a chimp and human with our puzzle - see what happens!. Chimpanzee & Human Chromosomes Teachers Guide - PDF document (0.8MB). Chimpanzee and Human Chromosomes Links to Scottish Curriculum - PDF document (0.2MB). Chimpanzee & Human Chromosomes Student Activity Sheets - PDF document (0.4MB). This puzzle has been formated for printing on card or paper at around A3. See our Public Engagement with Science review for images of our giant version available in the zoo and at various ...
A report is presented on the advantages of the rapid interphase chromosome assay (RICA) and the difficulties that may be met while implementing this method for application in biological dosimetry. The RICA test can be applied on unstimulated human lymphocytes; this is an advantage in comparison with the dicentric chromosomes or micronucleus tests. In the former two tests, stimulated lymphocytes are examined and hence, 48 h more are needed to obtain cells traversing the cell cycle. Due to the use of unstimulated nondividing cells, higher numbers of cells are available for RICA analysis than for dicentric chromosomes or micronuclei tests. Moreover, the method can be applied after exposure to ionizing radiation doses in excess of 5 Gy. Such doses cause a significant cell cycle delay or result in the loss of G2 phase and mitotic cells because of apoptosis. Therefore, the traditional biodosimetry based on the evaluation of the incidence of damage to chromosomes is very difficult to carry out. This is ...
Chromosomes are dark-staining, threadlike structures in the cell nucleus composed of DNA and chromatin that carry genetic information (definition after Nussbaum et al and Mueller and Young). Formalized standard nomenclature for human chromosomes dates from 1960 and, since 1978, has been known as the International System for Human Cytogenetic Nomenclature (ISCN). Material in this section is based on recommendations in ISCN 2005. Earlier reports have also been consulted. Human chromosomes are numbered from largest to smallest from 1 to 22. There are 2 additional chromosomes, X and Y. The numbered chromosomes are known as autosomes, X and Y as the
Chromosomes are dark-staining, threadlike structures in the cell nucleus composed of DNA and chromatin that carry genetic information (definition after Nussbaum et al and Mueller and Young). Formalized standard nomenclature for human chromosomes dates from 1960 and, since 1978, has been known as the International System for Human Cytogenetic Nomenclature (ISCN). Material in this section is based on recommendations in ISCN 2005. Earlier reports have also been consulted. Human chromosomes are numbered from largest to smallest from 1 to 22. There are 2 additional chromosomes, X and Y. The numbered chromosomes are known as autosomes, X and Y as the
Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves …
Humans and great apes differ in chromosome numbers-humans have 46 while apes have 48. The difference is claimed to be due to the "end-to-end fusion" of two small, ape-like chromosomes in a human-ape ancestor that joined in the distant past and formed human chromosome 2. This idea was first proposed by researchers who noticed that humans and chimps share similar chromosomal staining patterns when observed under a microscope.1 However, humans and chimps also have regions of their chromosomes that do not share common staining patterns.. Supposed proof for the alleged fusion came in 1991, when researchers discovered a fusion-like DNA sequence about 800 bases in length on human chromosome 2.2 However, it was unexpectedly small in size and extremely degenerate. More importantly, this new fusion-like sequence wasnt what the researchers were expecting to find since it contained a signature never seen before. All known fusions in living animals are associated with a sequence called satellite DNA ...
Read "Genetic mapping of CHRNA3 and CHRNB4 to pig Chromosome 7 extends the syntenic conservation with human Chromosome 15 and mouse Chromosome 9, Mammalian Genome" on DeepDyve, the largest online rental service for scholarly research with thousands of academic publications available at your fingertips.
Ross argues that the chromosomal evidence that humans and the higher apes have a different number of chromosomes is invalid or misunderstood. In the early 1990s, it was discovered that human chromosome two is an end-to-end-fusion of two ape chromosomes. A close examination of chromosome two revealed that, while the other twenty-two chromosomes have one centromere, or central segment, human chromosome two has an extra non-functional centromere. Furthermore, while every chromosome has end segments known as telomeres, human chromosome two has inactive adjacent telomere segments in the middle of the chromosome. It is argued that, sometime in our early past, there was a translocation of two chromosomes to form Chromosome two. Ross argues that such a translocation could not possibly have happened because this would be "catastrophic for the organism" and would result in death ...
This gene encodes a DNA damage response protein. The encoded protein may play a role in G2/M checkpoint arrest via maintenance of inhibitory phosphorylation of cyclin-dependent kinase 1. Mutations in this gene have been associated with primary autosomal recessive microcephaly 1 and premature chromosome condensation syndrome. Alternatively spliced transcript variants have been described. [provided by RefSeq, Feb 2010 ...
TY - CHAP. T1 - Centromeric index versus DNA content flow karyotypes of human chromosomes measured by means of slit-scan flow cytometry. AU - Lucas, J. N.. AU - Gray, Joe. PY - 1987. Y1 - 1987. UR - http://www.scopus.com/inward/record.url?scp=0023254655&partnerID=8YFLogxK. UR - http://www.scopus.com/inward/citedby.url?scp=0023254655&partnerID=8YFLogxK. M3 - Chapter. C2 - 3595351. AN - SCOPUS:0023254655. VL - 8. SP - 273. EP - 279. BT - Cytometry. ER - ...
The term refers to the light and dark pattern, seen after staining with a dye, of individual chromosomes identified in metaphase. It is only in meiosis and mitosis during metaphase that chromosomes can be easily identified, during the normal cell life (interphase) the chromosomes are unravelled and distributed within the nucleus in chromosome territories. A band is that part of a chromosome which is clearly distinguishable from nearby regions by appearing darker or brighter with one or more banding techniques. Depending on the type of stain used a number of different banding patterns can be seen: ...
The term refers to the light and dark pattern, seen after staining with a dye, of individual chromosomes identified in metaphase. It is only in meiosis and mitosis during metaphase that chromosomes can be easily identified, during the normal cell life (interphase) the chromosomes are unravelled and distributed within the nucleus in chromosome territories. A band is that part of a chromosome which is clearly distinguishable from nearby regions by appearing darker or brighter with one or more banding techniques. Depending on the type of stain used a number of different banding patterns can be seen: ...
antibody-antibodies.com is the marketplace for research antibodies. Find the right antibody for your research needs. Human chromosome 7: DNA sequence and biology.
Multicolor fluorescence in-situ hybridization (M-FISH) techniques provide color karyotyping that allows simultaneous analysis of numerical and structural abnormalities of whole human chromosomes. Chromosomes are stained ...
Canine chromosomes contains more mathematical germinal cell possibilities than the human chromosome! Amazing! Genetics depend on genes that contain DNA, strung into a chromosome that...
We additional showed the mTOR pathway to be essential in regulating OXPHOS in breast cancer cells and observed that manipu lation Maraviroc CCR5 阻害剤 of express
Replication times for all important chromosome bands, of both types R and Q (277 structures) are analysed. - The R-bands form a group of structures whose DNA replicates during the early S-phase, while
M-FISH images are difficult to interpret because the emis-sion spectra of fluorochrome marked DNA probes over-lap with each other and with the tissues intrinsic auto-fluorescence.
One of the most popularized molecular arguments for human-primate evolution is the hypothetical prehistoric head-to-head fusion of two primate chromosomes (corresponding to 2A and 2B in chimpanzee) to form human chromosome number 2. 1,2 Popular reviews on this subject often include a simplified drawing depicting how the putative fusion of two small acrocentric5 ape-like precursor…
qty added to cart.. An error occurred while trying to add to the cart.. Added all items to the cart.. An error occurred while trying to add the items to the cart. ...
qty added to cart.. An error occurred while trying to add to the cart.. Added all items to the cart.. An error occurred while trying to add the items to the cart. ...
You are examining three different genes, a, b, and c. They all reside on the same chromosome and you want to know the order of the genes along the chromosome. You determine that genes a and b are 10 cM apart, b and c are 2 cM apart and that a and c are 8 cM apart. What is the order of these genes ...
Looking for chromosome congression? Find out information about chromosome congression. congression Explanation of chromosome congression
Each chromosome is a pair of distinct, separate DNA molecules. A chromosome of an eukaryotic cell nucleus is a (long) helix of two linear molecules and so has two ends, which are called telomeres. DNA naturally forms a double helix with its complementary DNA molecule, and the double helix can further curl in what are called supercoils.. In humans, the chromosomes occur in 23 pairs (totaling 46). Except for the sex chromosome pair, each member of the pair is identical in appearance in a karyotype (picture) and each such pair has a number assigned from 1 to 22; the numbering generally follows the size of the chromosome, with chromosome 1 being the longest. In mammals, the sex chromosomes in a male are quite different in size and are labelled X and Y; a female has two identical X chromosomes.. ...
Human chromosome 20 has not been sufficiently mapped, as only four DNA probes detecting RFLPs and 18 genes have been assigned to this chromosome. Using a chromosome 20-specific library to isolate and characterize new low-copy DNA probes, we found a new polymorphic DNA probe (pS43), which is assigned to human chromosome 20q13.. Note: Institut fur Humangenetik der Universitat, Gottingen, Federal Republic of Germany.. ...
Two simple models can be envisaged: either cohesins are needed to activate condensin function or, alternatively, cohesins are required to ensure correct chromosome folding by condensins. These models can be distinguished by following the state of the mitotic chromosomes after a loss of cohesin activity. In the first scenario, the chromosomes remain in an interphase state, and thus would condense upon the readdition of cohesin and the subsequent "activation" of condensin. In contrast, the latter scenario predicts that misfolded chromosomes would result from the inappropriate action of condensin, and these would likely prove refractory to refolding. To test this, we asked whether chromosome condensation is reversible in the cohesin mutant mcd1-1. In contrast to both the brn1-9 and ycg1-2 condensin mutants, the condensation defect in the mcd1-1 strain was not reversible (Fig. 7 B). One trivial explanation is that no new functional Mcd1-1p protein is made after the shift to the permissive ...
The Robertsonsian fusion that formed human chromosome number two (from ancestral 2A and 2B, as it is preserved in the other apes) should have caused a serious reproductive barrier, overcome only by consanguity of the highest order; mating amongst first-degree relatives. Any breeding outside the immediate family would have lead to unacceptable chromosomal imbalances. No aneuploidy of human #2 (p or q or all) has ever survived. I cannot imagine a scenario in which this fusion (2a and 2b) could have survived, and become fixed in our species, unless immediately followed by consanguity in our lineage. I often mention this paradox to my Genetics students and I have searched the literature but I have never found a better explanation nor a statement in a textbook that all of us (humans) are descendants from an incestuous family. Yet it is apparent from the facts (explained above) that we are. The explanation that the complete chromosome two is ancestral and that the lineages of the other apes ...
Gentaur molecular products has all kinds of products like :search , EIAab \ Chc1l,Chromosome condensation 1-like,Rat,Rattus norvegicus,Rcbtb2,RCC1 and BTB domain-containing protein 2,Regulator of chromosome condensation and BTB domain-containing protein 2 \ EIAAB34100 for more molecular products just contact us
The goals of the human genome project did not include sequencing of the heterochromatic regions. We describe here an initial sequence of 1.1 Mb of the short arm of human chromosome 21 (HSA21p), estimated to be 10% of 21p. This region contains extensive euchromatic-like sequence and includes on average one transcript every 100 kb. These transcripts show multiple inter- and intrachromosomal copies, and extensive copy number and sequence variability. The sequencing of the "heterochromatic" regions of the human genome is likely to reveal many additional functional elements and provide important evolutionary information ...
Oracle Health Sciences Omics Data Bank - Version 3.0.1 and laterUnable to Extract Variant into VCF File for a Specific Chromosome Position
Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes.
An anonymous reader writes Two scientists have rendered amazing pictures using datafiles from the human genome project. They assigned different colors to the DNA and rendered images showing interesting patterns and strange structures of our chromosomes. It might be a groundbreaking new idea for dis...
Chromosomes can be classified based on the following except ____. a) centromere location b) centromere size c) number of centromeres d) centromere duration
Karyotyping Karyotype Chromosomal aberration Size-ordered chart of the metaphase chromosomes of an individual cell Chromosomal aberration A mutation that is large enough to see under a light microscope
Like a cars front and back bumpers, your cells chromosomes are capped by telomeres that protect this genetic material against deterioration. Still, after enough replications, a chromosomes telomeres break down and once ...
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. ...
The chromosome view lists portions of five human chromosomes together with the locations of the RFLP probes. The goal is for students to try to map the trait within this portion of the genome using the recombination data obtained from the large family pedigrees. The pointer for the trait can be dragged to the inferred location. The chromosome map can be exported to a web page for printing or saving.. ...
... Giemsa stain is the most commonly used staining method that allow identification of each individual chromosome, on the basis of a distinctive and reliable pattern of alternate light and dark ban
TY - JOUR. T1 - Interphase chromosome profiling a method for conventional banded chromosome analysis using interphase nuclei. AU - Babu, Ramesh. AU - Van Dyke, Daniel L.. AU - Dev, Vaithilingam G.. AU - Koduru, Prasad. AU - Rao, Nagesh. AU - Mitter, Navnit S.. AU - Liu, Mingya. AU - Fuentes, Ernesto. AU - Fuentes, Sarah. AU - Papa, Stephen. PY - 2018/2/1. Y1 - 2018/2/1. N2 - Context.-Chromosome analysis on bone marrow or peripheral blood samples fails in a small proportion of attempts. A method that is more reliable, with similar or better resolution, would be a welcome addition to the armamentarium of the cytogenetics laboratory. Objective.-To develop a method similar to banded metaphase chromosome analysis that relies only on interphase nuclei. Design.-To label multiple targets in an equidistant fashion along the entire length of each chromosome, including landmark subtelomere and centromere regions. Each label so generated by using cloned bacterial artificial chromosome probes is molecularly ...
A number of chemical agents known to influence the key cell cycle regulatory factors were used to assess the requirements of hydroxyurea-treated root meristem cells of Vicia faba for premature condensation of chromosomes (PCC). These included caffeine and 2-aminopurine (inhibitors of ATM/ATR sensor kinases activated by DNA damage or stalled replication forks), inhibitors of protein kinases (staurosporine and wortmannin), inhibitors of protein phosphatases (sodium vanadate and calyculin A), and other compounds like 1,2-dioctyl-sn-glycerol, an activator of protein kinase C, 5-azacytidine, an inhibitor of DNA methyltransferase, dithiothreitol and N-etylmaleimide, capable to up- and down-regulate the activity of Cdc25 phosphatase. Cytological parameters used to evaluate quantitative aspects of PCC allowed us to discriminate various phenotypes of cells and, consistent with the extent of chromosomal fragmentation, to classify them as S- or G2-PCC. Two significant aspects relevant to the induction of premature
TY - JOUR. T1 - Equine synteny mapping of comparative anchor tagged sequences (CATS) from human Chromosome 5. AU - Caetano, Alexandre R.. AU - Lyons, Leslie A. AU - Laughlin, Thomas F.. AU - OBrien, Stephen J.. AU - Murray, James D.. AU - Bowling, Ann T.. PY - 1999. Y1 - 1999. N2 - Comparative anchor tagged sequences (CATS) from human Chromosome 5 (HSA5) were used as PCR primers to produce molecular markers for synteny mapping in the horse. Primer sets for 21 genes yielded eight horse-specific markers, which were mapped with the UC Davis horse-mouse somatic cell hybrid panel into two synteny groups: UCD14 and UCD21. These data, in conjunction with earlier human chromosome painting studies of the horse karyotype and synteny mapping of horse microsatellite markers physically mapped by FISH, confirm the assignment of UCD21 to ECA21 and suggest that UCD14 is located on ECA14. In addition, our results can be used to substantiate previously published data which indicate that ECA21 contains material ...
The three-dimensional (3D) organization of the genome (chromatin) plays an important role in key cellular processes such as DNA replication, repair, transcription [1], and epigenetic inheritance [2]. Links between chromatin architecture and diseases such as cancer are being established [3]. Unlike most proteins that adopt the same unique 3D shapes in all cells, the conformational states of the chromatin fiber are not nearly as compact or ordered and are stochastic to some degree. Remarkably, several features of chromatin folding appear to be universal. Chromosomal territories, in which each chromosome occupies a distinct region of the nucleus, have been observed in numerous organisms and cell types, such as yeast [4], human [5], D. melanogaster (fruit fly) [6-8], mouse [9], and Arabidopsis [10]. Chromosome interactions, both within (intra) chromosomes and between (inter) chromosomes, have been observed microscopically [6, 8] and inferred using cross-linking techniques [11] such as the Hi-C ...
Do you look a bit like your brothers and sisters? Do you look a bit like your parents? The similarities are because, unless you were adopted, you and the other members of your family have genetic material in common.. Some characteristics, or traits, result from interactions with the environment, others are determined from the genetic material in your chromosomes. Chromosomes are the keepers of the genetic material in eukaryotic cells. An organism has the same chromosomes for its entire life. The chromosomes are located within each cell nucleus. They provide the directions for how the cell is supposed to function and determine some characteristics about how the individual looks. Each chromosome contains a very complex molecule called DNA. The DNA molecule contains genes, which direct how an organisms body is built and maintained.. Heredity is the passage of DNA from the chromosomes of one generation to the chromosomes of the next. Chromosomes in your body are in pairs. One chromosome of each ...
Human chromosome 16 is the main focus of the mapping efforts at Los Alamos. The large photomicrograph on these opening pages illustrates the starting point for those mapping efforts, the evaluation of our chromosome-16-specific library of cloned fragments. Among the 23 pairs of human chromosomes, one pair, chromosome 16, is identified by fluorescence in-situ hybridization. Thousands of yellow fluorescent probes derived from the clone library have hybridized to both copies of chromosome 16. The high density and uniform coverage of the fluorescent signals were a strong indication that we could use the library to construct a map of overlapping cloned fragments spanning the entire length of the chromosome.
We present several lines of evidence in support of a central role for cohesin in the organization of chromosomal domain structure. Using Hi‐C in NSC and AST cells, we show that chromosomal domain architecture is tightly correlated with cohesin/CTCF binding sites, and that in cells lacking functional cohesin complexes, the stability of this architecture is perturbed. Using 3D DNA FISH, we demonstrate that the changes in domain structure of cohesin‐deficient cells identified by Hi‐C reflect domain decompaction. Using high‐resolution 4C‐seq, we show that cohesin/CTCF sites interact preferentially to define both intricate loop structures within domains and the borders of megabase‐scale chromosomal domains. In Rad21‐deficient cells, many of these preferential contacts are lost, accompanied by a general relaxation of the chromosomal domain structure. Thus, domain decompaction comes about as a result of the reduction in cohesin/CTCF distal contacts, which in turn results in more ...
View Notes - Lecture03-S11 from BIS 101 at UC Davis. DNA is packaged into chromatin Nucleosome Human Chromosomes (short arm) (long arm) Chromosome Terminology Sister Chromatids Genes (The metaphase
January 1st, 2003. This is the very first version of the Home page for The Human Chromosome 14 Annotation. We plan to improve and update it regularly in order to provide more detailed information about the gene content. This is the entry point for the updated data for the Human Chromosome 14 Annotation, published as an Advanced Online Publication (AOP) by Nature (published electronically on January 1st 2003, 19:00 GMT). Data are shown using the Lincoln Steins Generic Genome Browser. Specific annotations stored in Genoscopes internal database (i.e. virtual cDNAs in the Proposed Structure track) can be viewed beside the browser by clicking objects in the browser window.. Click here for direct access to the browser. The browser is highly configurable, and uses cookies to save your settings across your visits, this is the only use of cookies by the browser. No other use of cookies are made here. Click on the Reset (red) button on the browser page to return to default settings. Please note that ...
Schmutz J., Martin J., Terry A., Couronne O., Grimwood J., Lowry S., Gordon L.A., Scott D., Xie G., Huang W., Hellsten U., Tran-Gyamfi M., She X., Prabhakar S., Aerts A., Altherr M., Bajorek E., Black S., Branscomb E., Caoile C., Challacombe J.F., Chan Y.M., Denys M., Detter J.C., Escobar J., Flowers D., Fotopulos D., Glavina T., Gomez M., Gonzales E., Goodstein D., Grigoriev I., Groza M., Hammon N., Hawkins T., Haydu L., Israni S., Jett J., Kadner K., Kimball H., Kobayashi A., Lopez F., Lou Y., Martinez D., Medina C., Morgan J., Nandkeshwar R., Noonan J.P., Pitluck S., Pollard M., Predki P., Priest J., Ramirez L., Retterer J., Rodriguez A., Rogers S., Salamov A., Salazar A., Thayer N., Tice H., Tsai M., Ustaszewska A., Vo N., Wheeler J., Wu K., Yang J., Dickson M., Cheng J.-F., Eichler E.E., Olsen A., Pennacchio L.A., Rokhsar D.S., Richardson P., Lucas S.M., Myers R.M., Rubin E.M.. Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it ...
Chromosomes are structures within cells that carry DNA, RNA, and proteins. Each chromosome is DNA tightly wound around proteins that support its structure. Chromosomes are not visible in the cell unless the cell is dividing and much of the knowledge concerning chromosomes is learned by observing cells during division. In humans, chromosomes are classified in two ways:
Description of disease Banding of chromosomes. Treatment Banding of chromosomes. Symptoms and causes Banding of chromosomes Prophylaxis Banding of chromosomes
Did humans inherit their DNA sequence from an ape-like ancestor? One of the common evolutionary arguments for shared ancestry between humans and chimpanzees is the existence of a so-called human "chromosome 2 fusion.". But what is a chromosome fusion? If we think of DNA sequence as a language consisting of four letters, the complete DNA sequence in a human is a molecular "book" that is 3,000,000,000 letters long. Books have chapter divisions, and the human DNA sequence has 46 "chapters" or chromosomes. If, in the process of electronically editing a book, the division between two chapters were somehow lost, the two chapters would run together or "fuse" into essentially a single chapter.. This is, in essence, what evolutionists think has happened for human chromosome 2 with one additional detail: Evolutionists believe the second chapter also "flipped"-its top-to-bottom textual orientation was reversed sometime in the past. These scientists believe there were more than 46 chromosomes in the ...
The chromosomes The chromosomes are threadlike bodies present in the cells nuclei, and they represent the genetic material of the living organisms , They are
Reference.com says that the function of chromosomes is to carry hereditary information. Chromosomes are located in the nucleus of a cell, and when a cell divides, so do the...
Chromosome Structure | Scientific research info incl meetings, conferences, seminars, symposia,tradeshows,jobs,jobfairs, professional tips and more.
Anti-S phase agents like doxorubicin, gemcitabine, cytarabine and hydroxyurea are in extensive use for the treatment of cancers and of hematological diseases su...
Lone chromosomes stranded outside the nucleus where their fellow chromosomes reside are thought to be the Robinson Crusoes of the intracellular world.
I created a sam file by aligning reads, using bwa. I want to create a new sam file that contains all reads except ones that are on a particular chromosome or have an alternative alignment on that chromosome.. How can I do it?. ...
This journal offers high quality papers on all aspects of chromosome and nuclear biology. Coverage emphasizes accounts of experimental studies of chromosome ...
By studying processes that occur at the ends of chromosomes, a team of Heidelberg researchers has unravelled an important mechanism towards a better understanding of cellular aging. The scientists focused on the length of ...
In terms of the human genome, the chromosome 7 pair represents more than 5 percent of all DNA and is estimated to contain up to 1,000 genes that are responsible for the production of proteins with...
C1orf129, 0.1 ml. Chromosome 1 is the largest human chromosome spanning about 260 million base pairs and making up 8% of the human genome.
Sex is determined by the presence or absence of certain chromosomes, and it differs between humans (mammals) and other members of the animal kingdom.
Chromosome: X (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y) *pink background: your gene is a core gene. , green backgroup: your gene is not a core gene. , yellow background: core genes in the chromosomoe. ...
Chromosome: X (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y) *pink background: your gene is a core gene. , green backgroup: your gene is not a core gene. , yellow background: core genes in the chromosomoe. ...
Susumo Ohno had three great loves. The first was the horses. It was a childhood love that accompanied him all his life. And this love would take him -calling- to his next two loves. The second love was his wife Midori Aoyama. Together they cared for and raised horses - and three children.. Studying the horses - still in his adolescence -, Susumo realized that "when a horse is not good, there is not much else to do". A vision somewhat deterministic but that, according to Ohno, initiated its interest in genetics. This would become his third love.. In the 1950s, Ohno immigrated to the United States -from Japan- with the opportunity to start a new laboratory at the City of Hope Medical Center in California. In a time when experiments were becoming increasingly complicated and required more and more specialized equipment, Ohno spent his days simply looking at photographs of chromosomes.. When Ohno observed the human chromosomes in his photographs, he noticed - like many others before him - that they ...
USC scientists have discovered how two different structural apparatuses collaborate to protect repetitive DNA when it is at its most vulnerable - while it is being unzipped for replication.
Chromosomes were isolated from Chinese hamster x human hybrid cell lines containing four and nine human chromosomes. Human genomic DNA was biotinylated by nick translation and used to label the human chromosomes by in situ hybridization in suspension. Streptavidin was covalently coupled to the surface of magnetic beads and these were incubated with the hybridized chromosomes. The human chromosomes were bound to the magnetic beads through the strong biotin-streptavidin complex and then rapidly separated from nonlabeled Chinese hamster chromosomes by a simple permanent magnet. The hybridization was visualized by additional binding of avidin-FITC (fluorescein) to the unoccupied biotinylated human DNA bound to the human chromosomes. After magnetic separation, up to 98% of the individual chromosomes attached to magnetic beads were classified as human chromosomes by fluorescence microscopy. ...
Telomeres are specialized structures at the ends of linear chromosomes and are essential for normal cellular function. Telomeres prevent degradation and aberrant recombination of chromosome termini and facilitate appropriate replication of chromosome ends. In this work, the telomere dynamics was followed in the immortal mouse cell strain A9 in comparison with A9+1. The latter is derived from A9 cells by introduction of human chromosome 1. In spite of the telomerase presence, a great decrease in telomere lengths was noticed in A9+1 compared to A9 cells. Behavior of individual human and mouse telomeres was also followed under the conditions of the observed gross telomere shortening. Human chromosome I followed the overall telomere length in hybrid cells. It is suggested that telomere lengths are primarily determined by the cell protein background.. ...
Chromosomes are the primary objects studied in cytogenetics. Recent efforts have been devoted to automating the analysis of banded metaphase chromosomes. Feature extraction is the first step to identify a chromosome. Many useful features, such as the length and the number of bands of a chromosome, can be measured along with the chromosomes longitudinal symmetric axis. Therefore, finding this axis is a necessary precursor to making those measurements. In this paper, a new algorithm for finding a symmetric axis of a chromosome is discussed. The author introduced a concept of local symmetric property of an oblong object, and, then, applied this concept to a chromosome to find the symmetric axis after the boundary of the chromosome has been found. The results of the experiments show that the algorithm works well for both straight and bent chromosomes. Since the algorithms is based on the geometric properties of an object rather than its biological properties, it also can be used to find the ...
Since these early discoveries, the techniques for analysis of human chromosomes, and DNA in general, have gone through several revolutions, and with each technical advancement, our understanding of the role of chromosomal abnormalities in human disease has expanded. While early studies in the 1950s and 1960s easily identified abnormalities of chromosome number (aneuploidy) and large structural alterations such as deletions (chromosomes with missing regions), duplications (extra copies of chromosome regions), or translocations (where portions of the chromosomes are rearranged), many other types of structural alterations could only be identified as techniques improved. The first important technical advance was the introduction of chromosome banding in the late 1960s, a technique that allowed for the staining of the chromosomes, so that each chromosome could be recognized by its pattern of alternating dark and light (or fluorescent and nonfluorescent) bands. Other technical innovations ranged from ...
Forms of leukemia can be found on six different chromosomes. Acute leukemias can be found on chromosomes 1, 2, and 13, T-Cell developmental leukemia is found on chromosomes 3 and X, and the cause of myelogenous leukemia is in a protein coded for in chromosome 11 at 11p11.9. Chromosome 11 contains 134 million bases. Chromosome 11 has been identified with 151 diseases. Only chromosomes 1, 2, and X contain more currently identified diseases. Chromosome 11 has the most cancerous conditions of all of the chromosomes associated with it ...
sundoc Migration; Titel: Chromosome painting and arrangement of interphase chromosome territories in Arabidopsis thaliana, Verfasser: Pecinka, Ales, 2005 ; Halle, Saale : Universitäts- und Landesbibliothek
Since different chromosomes showed varying degrees of gain or loss in the T-ALLs (Fig. 3d-h and Additional file 9: Figure S6b, c), we wondered whether calculating the aneuploidy and heterogeneity scores for individual chromosomes would reveal whether specific chromosomes more often showed changes in copy number than others. To this end, we plotted both scores per chromosome for all samples that were analysed by single-cell sequencing. For the control thymus, all chromosomes clustered together in the bottom left, indicating that none of the cells displayed chromosome copy number alterations (Fig. 4b, control thymus). In contrast, in the tumours we identified three types of chromosomes: (1) chromosomes that were (virtually) never lost or gained (Fig. 4b, green chromosomes in T260 and T158), presumably due to lethality associated with such gain/loss events; (2) chromosomes that show a high heterogeneity rate, but low aneuploidy rate, for which copy number changes are presumably not selected for ...
Louise Hughes is raising funds for Human Chromosome Jewellery Collection on Kickstarter! A jewellery collection created from the shape of human chromosomes. 3D prints made from microscopy data.
Human Chromosome Jewelry Collection - Human Chromosome Jewelry Collection is easily one of the geekiest, if not the geekiest, jewelry sets ever made. Electron microscopist Louise Hughes...
Chromosome of supercoiled DNA, conceptual image. Computer artwork of a human chromosome, representing how DNA (deoxyribonucleic acid) is supercoiled (spirals) to be packaged within it. Chromosomes are composed of DNA strands that contain sections, called genes, which encode the bodys genetic information. Each chromosome consists of two chromatids joined at their centres by the centromere, which is involved in cell division. - Stock Image C016/8433
Gene research into breast cancer. A grid of DNA fragments is seen, making up human chromosome 17. Scientists have isolated chromosome 17 to be the site of a defective gene responsible for many cases of inherited breast cancer. This grid represents 20,736 (144x144) pieces of DNA, each of 40 kilobase length, which have been spotted onto filter paper. An X-ray plate has been superimposed onto the grid, showing some DNA fragments tagged with a radioactive marker (dark spots). These tagged DNA fragments, which may correspond to genes, have been hybridised (attached) to specific parts of chromosome 17. It is a technique which enables researchers to map genes on a chromosome. - Stock Image G210/0464
Semantic Scholar extracted view of [Morphology of chromosome lesions and variations of marker chromosomes in the cell population of Ehrlich ascitic tumor after irradiation]. by P F Giriodi
According to one study, the putative ancestral primate chromosome 3 homolog is conserved in the Brown lemur, from which a pericentric inversion led to the ancestral Old World primate homolog conserved in the Bornean orangutan (49). Human/African ape homologs would differ from this chromosome form by two inversions. An even more complex scenario involving several recurrent sites of new centromere seeding was proposed by Ventura et al. (50), according to which human and Bornean orangutan would differ by three inversions. A third hypothesis suggested that from the ancestral simian homolog a common derived and two independent inversions would lead to Bornean orangutan and human chromosome 3 homologs (51). In conclusion, the evolutionary history of human chromosome 3 is probably the most dynamic and complex of all human chromosomes studied in detail so far.. ...

Comparative chromosome painting of pronghorn (Antilocapra americana) and saola (Pseudoryx nghetinhensis) karyotypes with human...Comparative chromosome painting of pronghorn (Antilocapra americana) and saola (Pseudoryx nghetinhensis) karyotypes with human...

Comparative chromosome painting of pronghorn (Antilocapra americana) and saola (Pseudoryx nghetinhensis) karyotypes with human ... Pronghorn; Antilocapra americana; Saola; Pseudoryx nghetinhensis; Comparative cytogenetics; Pecora; Phylogeny; Chromosome ...
more infohttps://www.research-collection.ethz.ch/handle/20.500.11850/86423

chromosomes human Protocols and Video...'chromosomes human' Protocols and Video...

Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary ... Chromosomes, Human: Very long DNA molecules and associated proteins, Histones, and non-histone chromosomal proteins ( ...
more infohttps://www.jove.com/keyword/chromosomes+human

chromosomes human x Protocols and Video...'chromosomes human x' Protocols and Video...

Chromosomes, Human, X: The human female sex chromosome, being the differential sex chromosome carried by half the male gametes ...
more infohttps://www.jove.com/keyword/chromosomes+human+x

Evolution: Library: Human Chromosome 2Evolution: Library: Human Chromosome 2

... chimp chromosome 2 and an extra chromosome that does not match any other human chromosome). Second, a chromosome normally has ... While great apes all have 48 chromosomes (24 pairs), humans have only 46 (23 pairs). If humans and apes shared a common ... First, the banding (or dye pattern) of human chromosome 2 closely matches that of two separate chromosomes found in apes ( ... it explains that humans have one fewer chromosome pair in their cells than apes, due to a mutation found in chromosome number 2 ...
more infohttps://www.pbs.org/wgbh/evolution/library/07/3/l_073_47.html

Human Chromosomes | Orlando J. Miller | SpringerHuman Chromosomes | Orlando J. Miller | Springer

The explosion of information on human genetic diseases has meant that there is a greater need than ever for students, ... This is the fourth edition of an acclaimed introductory textbook on the structure and function of human chromosomes. ... This is the fourth edition of an acclaimed introductory textbook on the structure and function of human chromosomes. The ... "Each word "tells" in this concise gem of a human cytogenetics text...Superb organization makes this an excellent text...for any ...
more infohttps://www.springer.com/gp/book/9780387950310?utm_medium=referral&utm_source=mihe&utm_campaign=3_pier05_ppbuybutton&utm_content=en_09012018

Two Human Chromosomes Entirely Mapped | Science NewsTwo Human Chromosomes Entirely Mapped | Science News

10 SN: Real benefits of virtual therapy, monkey malaria in humans, round electrons disappoint, mouse pups with two dads, bats ...
more infohttps://www.sciencenews.org/archive/two-human-chromosomes-entirely-mapped?mode=magazine&context=742

Category:Human chromosome 10 - Wikimedia CommonsCategory:Human chromosome 10 - Wikimedia Commons

... human chromosome (en) 10. kromozom (tr); Chromosome 10 (human), Chromosome 10 (tl); chr10, kromosom 10 (nn); chr10 (nb); ... Media in category "Human chromosome 10". The following 30 files are in this category, out of 30 total. ... Human chromosome 10 with ASD genes from IJMS-16-06464.png 606 × 1,510; 183 KB. ... Human chromosome 10 from Gene Gateway - with label.png 1,439 × 1,654; 102 KB. ...
more infohttps://commons.wikimedia.org/wiki/Category:Human_chromosome_10

Category:Human chromosome 21 - Wikimedia CommonsCategory:Human chromosome 21 - Wikimedia Commons

Media in category "Human chromosome 21". The following 28 files are in this category, out of 28 total. ... Human chromosome 21 with ASD genes from IJMS-16-06464.png 552 × 634; 81 KB. ... 24-Color 3D FISH Representation and Classification of Chromosomes in a Human G0 Fibroblast Nucleus 10.1371 journal.pbio.0030157 ... Human chromosome 21 - ideogram from NCBI Map viewer.png 320 × 2,040; 3 KB. ...
more infohttps://commons.wikimedia.org/wiki/Category:Human_chromosome_21

human-chromosomeshuman-chromosomes

Be the first to comment on "human-chromosomes". Leave a comment Cancel reply. Email address is optional. If provided, your ... Researchers Use Human Stem Cells to Create Model of the Human Kidney Glomerulus ... MIT Biological Engineers Program Human Cells to Store Complex Histories in Their DNA ... Voyager May Become the First Human-Made Object to Enter Interstellar Space ...
more infohttps://scitechdaily.com/prolific-changes-in-the-human-genome-in-the-past-5000-years/human-chromosomes/

The Human Chromosome 14The Human Chromosome 14

This is the very first version of the Home page for The Human Chromosome 14 Annotation. We plan to improve and update it ... This is the entry point for the updated data for the Human Chromosome 14 Annotation, published as an Advanced Online ... The other participating groups in the Chromosome 14 Project include the Institute for Systems Biology (Seattle, Washington, USA ...
more infohttp://www.genoscope.cns.fr/externe/Download/Projets/Projet_BS/annotation/

Cows with human chromosomes enlisted to fight hantavirus | Science | AAASCows with human chromosomes enlisted to fight hantavirus | Science | AAAS

Researchers have genetically engineered cows to produce human antibodies against the deadly hantavirus and possibly other ... Creating human antibodies in an animal model is no small feat. Scientists combined parts of human chromosome 14 and human ... Cows with human chromosomes enlisted to fight hantavirus. By David Shultz. Nov. 26, 2014 , 2:00 PM. ... The work is preliminary and needs to be tested in people, but the team calls it a "proof-of-concept" that human antibodies can ...
more infohttp://www.sciencemag.org/news/2014/11/cows-human-chromosomes-enlisted-fight-hantavirus?ref=em

Human Chromosome Jewellery Collection by Louise Hughes - 
KickstarterHuman Chromosome Jewellery Collection by Louise Hughes - Kickstarter

A jewellery collection created from the shape of human chromosomes. 3D prints made from microscopy data. ... Louise Hughes is raising funds for Human Chromosome Jewellery Collection on Kickstarter! ... One of these pairs forms the chromosomes that determine our sex, the X and Y chromosomes. Two x chromosomes, XX, gives rise to ... Karyotype 1 has the chromosomes arranged with two xx chromosomes and one y chromosome in the middle, followed by all the other ...
more infohttps://www.kickstarter.com/projects/1627392371/human-chromosome-jewellery-collection

Human Chromosome 11 Blast Server - Wellcome Sanger InstituteHuman Chromosome 11 Blast Server - Wellcome Sanger Institute

Human Chromosome 11 Blast Server. Find out more about wu-blast Retrieve result for BLAST job id:. ... Unfinished human genomic sequence. Unfinished sequence contigs over a 1000 bases.. CpG island sequences. Sequence data from the ... Finished human genomic sequence. Sequence submitted to the EMBL database and all unsubmitted finished sequence.. ... This Blast server searches our DNA database containing all human sequence data available from the Sanger Institute. ...
more infohttp://www.sanger.ac.uk/cgi-bin/blast/submitblast/chr11

Genetic Code Cufflinks : Human Chromosome Jewelry CollectionGenetic Code Cufflinks : Human Chromosome Jewelry Collection

Human Chromosome Jewelry Collection is easily one of the geekiest, if not the geekiest, jewelry sets ever made. Electron ... Human Chromosome Jewelry Collection is easily one of the geekiest, if not the geekiest, jewelry sets ever made. Electron ... The Human Chromosome Jewelry Collection is Inspired by DNA. Michael Hines - February 3, 2014 - Tech ... In addition to creating the Human Chromosome Jewelry Collection, Hughes has also made microscopy art and even a calendar that ...
more infohttps://www.trendhunter.com/trends/human-chromosome-jewelry-collection

The DNA sequence of human chromosome 21.  - PubMed - NCBIThe DNA sequence of human chromosome 21. - PubMed - NCBI

Chromosome 21 is the smallest human autosome. An extra copy of chromosome 21 causes Down syndrome, the most frequent genetic ... The DNA sequence of human chromosome 21.. Hattori M1, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, ... Here we report the sequence and gene catalogue of the long arm of chromosome 21. We have sequenced 33,546,361 base pairs (bp) ... Analysis of the chromosome revealed 127 known genes, 98 predicted genes and 59 pseudogenes. ...
more infohttps://www.ncbi.nlm.nih.gov/pubmed/10830953?dopt=Abstract

GNN - Chimp and Human Chromosomes Are ComparedGNN - Chimp and Human Chromosomes Are Compared

Scientists have completed the DNA sequence of a chimpanzee chromosome and lined it up side by side the DNA sequence of its ... RIKEN had sequenced human chromosome 21 in 2000 as part of the Human Genome Project. ... More than 98 percent of the DNA on chimp chromosome 22 is present on human chromosome 21. ... Scientists in Japan have completed the DNA sequence of a chimpanzee chromosome and lined it up alongside its human counterpart ...
more infohttp://www.genomenewsnetwork.org/articles/2004/05/27/chimp.php

Human Chromosomes - AMA Manual of StyleHuman Chromosomes - AMA Manual of Style

Human chromosomes are numbered from largest to smallest from 1 to 22. There are 2 additional chromosomes, X and Y. The numbered ... Formalized standard nomenclature for human chromosomes dates from 1960 and, since 1978, has been known as the International ... System for Human Cytogenetic Nomenclature (ISCN). Material in this section is based on recommendations in ISCN 2005. Earlier ... Chromosomes are dark-staining, threadlike structures in the cell nucleus composed of DNA and chromatin that carry genetic ...
more infohttp://www.amamanualofstyle.com/view/10.1093/jama/9780195176339.001.0001/med-9780195176339-div2-419?rskey=6kc7gW&result=1&q=

Human Chromosomes - AMA Manual of StyleHuman Chromosomes - AMA Manual of Style

Human chromosomes are numbered from largest to smallest from 1 to 22. There are 2 additional chromosomes, X and Y. The numbered ... Formalized standard nomenclature for human chromosomes dates from 1960 and, since 1978, has been known as the International ... System for Human Cytogenetic Nomenclature (ISCN). Material in this section is based on recommendations in ISCN 2005. Earlier ... Chromosomes are dark-staining, threadlike structures in the cell nucleus composed of DNA and chromatin that carry genetic ...
more infohttps://www.amamanualofstyle.com/abstract/10.1093/jama/9780195176339.001.0001/med-9780195176339-div2-419?rskey=oXkADe&result=1

Case Westerners Construct First Artificial Human Chromosomes | BioWorldCase Westerners Construct First Artificial Human Chromosomes | BioWorld

BioWorld Online is the news service of record for the biotechnology industry and is updated every business morning. BioWorld Online will keep you up to date on all of the industrys business, science and regulatory news -- mergers and collaborations, FDA hearings and results, breakthroughs in research and much more.
more infohttp://www.bioworld.com/content/case-westerners-construct-first-artificial-human-chromosomes

Localization of Sister Chromatid Exchanges in Human Chromosomes | ScienceLocalization of Sister Chromatid Exchanges in Human Chromosomes | Science

Localization of Sister Chromatid Exchanges in Human Chromosomes Message Subject. (Your Name) has forwarded a page to you from ... The frequency of sister chromatid exchanges among chromosomes correlates with chromosome length. Exchanges appear to occur ... of 33258 Hoechst fluorescence allows microfluorometric analysis of sister chromatid exchanges in human metaphase chromosomes. ... 1Department of Pediatrics and Center for Human Genetics, Harvard Medical School, Clinical Genetics Division, Childrens ...
more infohttp://science.sciencemag.org/content/185/4145/74

Mapping Novel Pancreatic Islet Genes to Human Chromosomes | DiabetesMapping Novel Pancreatic Islet Genes to Human Chromosomes | Diabetes

Mapping Novel Pancreatic Islet Genes to Human Chromosomes. Jorge Ferrer, Jonathon Wasson, Kathleen D Schoor, Michael Mueckler, ... Mapping Novel Pancreatic Islet Genes to Human Chromosomes. Jorge Ferrer, Jonathon Wasson, Kathleen D Schoor, Michael Mueckler, ... Mapping Novel Pancreatic Islet Genes to Human Chromosomes Message Subject (Your Name) has forwarded a page to you from Diabetes ... Sequencetagged sites developed from 19 islet cDNAs were used to map these genes to human chromosomes using a combination of ...
more infohttp://diabetes.diabetesjournals.org/content/46/3/386

Human Chromosomes ( Video ) | Biology
 | CK-12 FoundationHuman Chromosomes ( Video ) | Biology | CK-12 Foundation

Robin Ball explains how the secret lies in X chromosome inactivation. ... Robin Ball explains how the secret lies in X chromosome inactivation. ...
more infohttps://www.ck12.org/c/biology/human-chromosomes/lecture/Secrets-of-The-X-Chromosome/

Molecular structure of human chromosomes | Wellcome CollectionMolecular structure of human chromosomes | Wellcome Collection

Molecular structure of human chromosomes. Credit: Wellcome Collection. Attribution-NonCommercial 4.0 International (CC BY-NC ...
more infohttps://wellcomecollection.org/works/q2qyvy6w/download?sierraId=b1802080x

OpGen, Hitachi Developing Human Chromosome Mapping Analytical Service | GenomeWebOpGen, Hitachi Developing Human Chromosome Mapping Analytical Service | GenomeWeb

OpGen and Hitachi High-Technologies said today they will combine their technologies to develop a comprehensive human chromosome ... OpGen and Hitachi High-Technologies said today they will combine their technologies to develop a comprehensive human chromosome ... include bioinformatic tools to complete a human genome sequence and to detect and analyze structural variations in chromosomes ...
more infohttps://www.genomeweb.com/sequencing/opgen-hitachi-developing-human-chromosome-mapping-analytical-service

The finished DNA sequence of human chromosome 12.The finished DNA sequence of human chromosome 12.

Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The ... The finished DNA sequence of human chromosome 12.. Scherer S.E., Muzny D.M., Buhay C.J., Chen R., Cree A., Ding Y., Dugan-Rocha ... of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments ... Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately ...
more infohttp://www.uniprot.org/citations/16541075
  • It seems that there is no escape from mutation rate controversies in human genetics. (blogspot.com)
  • We could also detect a correlation between loss of the Y chromosome and risk of cancer mortality ", says Lars Forsberg, researcher at the Department of Immunology, Genetics and Pathology, Uppsala University, who has led the study. (medicalxpress.com)
  • We believe that analyses of the Y chromosome could in the future become a useful general marker to predict the risk for men to develop cancer", says Jan Dumanski, professor at the Department of Immunology, Genetics and Pathology, Uppsala University, and responsible for the study. (medicalxpress.com)
  • Differential evolution of specific heterochromatin classes (and presumably of highly repetitive DNA classes), as revealed by chromosome banding techniques was not linked to domestication. (springer.com)
  • Considering that our analysis focused on approximately 8.97 Mbp of sequence from the Y chromosome X-degenerated region, this rate is equivalent to 0.53 × 10−9 bp−1 year−1. (blogspot.com)
  • It was occupied by a diverse sequence of human cultures that were different from both the farming populations of the Yellow River Valley and the nomads of the Eurasian steppe [ 1 ]. (biomedcentral.com)
  • Acquired ring chromosomes have been found in most types of human neoplasia, with a frequency approaching 10% in malignant mesenchymal tumours. (nih.gov)
  • Here we demonstrate, for the first time, that CT is feasible in hiPSCs: normal exogenous X chromosome was first transferred using an improved chromosome transfer system and the extra sex chromosome was spontaneously lost. (x-mol.com)
  • Constitutional ring chromosomes and most rings in leukaemias belong to this group, whereas only a few mesenchymal tumours exhibit rings of this type. (nih.gov)
  • In this study, the composition and dynamics of ring chromosomes were analysed in eight cases of acute myelogenous leukaemia, 17 solid tumours, and five cases with constitutional rings. (nih.gov)
  • The group of men was studied for many years and the researchers could detect a correlation between the loss of the Y chromosome and shorter survival. (medicalxpress.com)
  • You have probably heard before that the Y chromosome is small, insignificant and contains very little genetic information. (medicalxpress.com)
  • Our results indicate that the Y chromosome has a role in tumour suppression and they might explain why men get cancer more often than women. (medicalxpress.com)
  • It is entirely coincidental that the Y chromosome, during mitosis , has two very short branches which can look merged under the microscope and appear as the descender of a Y-shape. (wikidoc.org)
  • We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. (biomedcentral.com)
  • Chromosomes are so named because of their ability to take up staining ( chroma in Greek means color ). (wikidoc.org)
  • They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations. (biomedcentral.com)