Chromosomes: In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Chromosome Mapping: Any method used for determining the location of and relative distances between genes on a chromosome.Chromosome Banding: Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping.X Chromosome: The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.Chromosome Aberrations: Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS.Sex Chromosomes: The homologous chromosomes that are dissimilar in the heterogametic sex. There are the X CHROMOSOME, the Y CHROMOSOME, and the W, Z chromosomes (in animals in which the female is the heterogametic sex (the silkworm moth Bombyx mori, for example)). In such cases the W chromosome is the female-determining and the male is ZZ. (From King & Stansfield, A Dictionary of Genetics, 4th ed)Chromosomes, Human, Pair 1: A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.Chromosomes, Human: Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual.Chromosomes, Bacterial: Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell.Chromosome Segregation: The orderly segregation of CHROMOSOMES during MEIOSIS or MITOSIS.Chromosomes, Human, Pair 7: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 11: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 17: A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 6: A specific pair GROUP C CHROMSOMES of the human chromosome classification.Chromosome Deletion: Actual loss of portion of a chromosome.Chromosomes, Human, Pair 9: A specific pair of GROUP C CHROMSOMES of the human chromosome classification.Chromosomes, Human, Pair 21: A specific pair of GROUP G CHROMOSOMES of the human chromosome classification.Chromosomes, Plant: Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.Chromosomes, Fungal: Structures within the nucleus of fungal cells consisting of or containing DNA, which carry genetic information essential to the cell.Chromosomes, Human, 6-12 and X: The medium-sized, submetacentric human chromosomes, called group C in the human chromosome classification. This group consists of chromosome pairs 6, 7, 8, 9, 10, 11, and 12 and the X chromosome.Chromosomes, Human, Pair 2: A specific pair of human chromosomes in group A (CHROMOSOMES, HUMAN, 1-3) of the human chromosome classification.Chromosomes, Human, Pair 16: A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 22: A specific pair of GROUP G CHROMOSOMES of the human chromosome classification.Chromosome Pairing: The alignment of CHROMOSOMES at homologous sequences.Chromosomes, Mammalian: Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of MAMMALS.Chromosomes, Human, Pair 13: A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 4: A specific pair of GROUP B CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 10: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Y: The human male sex chromosome, being the differential sex chromosome carried by half the male gametes and none of the female gametes in humans.Chromosomes, Human, Pair 8: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 19: A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.Chromosome Disorders: Clinical conditions caused by an abnormal chromosome constitution in which there is extra or missing chromosome material (either a whole chromosome or a chromosome segment). (from Thompson et al., Genetics in Medicine, 5th ed, p429)Chromosomes, Artificial, Bacterial: DNA constructs that are composed of, at least, a REPLICATION ORIGIN, for successful replication, propagation to and maintenance as an extra chromosome in bacteria. In addition, they can carry large amounts (about 200 kilobases) of other sequence for a variety of bioengineering purposes.Chromosomes, Human, X: The human female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in humans.Chromosomes, Human, 1-3: The large, metacentric human chromosomes, called group A in the human chromosome classification. This group consists of chromosome pairs 1, 2, and 3.Chromosomes, Human, Pair 12: A specific pair of GROUP C CHROMOSOMES of the human chromosome classification.Chromosome Painting: A technique for visualizing CHROMOSOME ABERRATIONS using fluorescently labeled DNA probes which are hybridized to chromosomal DNA. Multiple fluorochromes may be attached to the probes. Upon hybridization, this produces a multicolored, or painted, effect with a unique color at each site of hybridization. This technique may also be used to identify cross-species homology by labeling probes from one species for hybridization with chromosomes from another species.Chromosomes, Human, Pair 5: One of the two pairs of human chromosomes in the group B class (CHROMOSOMES, HUMAN, 4-5).Chromosomes, Human, Pair 15: A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.Karyotyping: Mapping of the KARYOTYPE of a cell.Chromosomes, Human, Pair 14: A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.Chromosomes, Human, Pair 18: A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.Chromosomes, Human, 16-18: The short, submetacentric human chromosomes, called group E in the human chromosome classification. This group consists of chromosome pairs 16, 17, and 18.In Situ Hybridization, Fluorescence: A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.Chromosomes, Human, Pair 20: A specific pair of GROUP F CHROMOSOMES of the human chromosome classification.Chromosomes, Artificial, Yeast: Chromosomes in which fragments of exogenous DNA ranging in length up to several hundred kilobase pairs have been cloned into yeast through ligation to vector sequences. These artificial chromosomes are used extensively in molecular biology for the construction of comprehensive genomic libraries of higher organisms.Chromosomes, Human, 13-15: The medium-sized, acrocentric human chromosomes, called group D in the human chromosome classification. This group consists of chromosome pairs 13, 14, and 15.Genetic Linkage: The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.Chromosome Breakage: A type of chromosomal aberration involving DNA BREAKS. Chromosome breakage can result in CHROMOSOMAL TRANSLOCATION; CHROMOSOME INVERSION; or SEQUENCE DELETION.Chromosomes, Human, 21-22 and Y: The short, acrocentric human chromosomes, called group G in the human chromosome classification. This group consists of chromosome pairs 21 and 22 and the Y chromosome.Ring Chromosomes: Aberrant chromosomes with no ends, i.e., circular.Chromosome Inversion: An aberration in which a chromosomal segment is deleted and reinserted in the same place but turned 180 degrees from its original orientation, so that the gene sequence for the segment is reversed with respect to that of the rest of the chromosome.Genetic Markers: A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.Chromosome Positioning: The mechanisms of eukaryotic CELLS that place or keep the CHROMOSOMES in a particular SUBNUCLEAR SPACE.Chromosomes, Human, 4-5: The large, submetacentric human chromosomes, called group B in the human chromosome classification. This group consists of chromosome pairs 4 and 5.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.X Chromosome Inactivation: A dosage compensation process occurring at an early embryonic stage in mammalian development whereby, at random, one X CHROMOSOME of the pair is repressed in the somatic cells of females.Centromere: The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Chromosomes, Insect: Structures within the CELL NUCLEUS of insect cells containing DNA.Translocation, Genetic: A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome.Meiosis: A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.Hybrid Cells: Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION.Chromosome Structures: Structures which are contained in or part of CHROMOSOMES.Chromosomes, Human, 19-20: The short, metacentric human chromosomes, called group F in the human chromosome classification. This group consists of chromosome pairs 19 and 20.Aneuploidy: The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1).Metaphase: The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.Mitosis: A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.Recombination, Genetic: Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.Lod Score: The total relative probability, expressed on a logarithmic scale, that a linkage relationship exists among selected loci. Lod is an acronym for "logarithmic odds."Pedigree: The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.Crosses, Genetic: Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Microsatellite Repeats: A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Trisomy: The possession of a third chromosome of any one type in an otherwise diploid cell.Nondisjunction, Genetic: The failure of homologous CHROMOSOMES or CHROMATIDS to segregate during MITOSIS or MEIOSIS with the result that one daughter cell has both of a pair of parental chromosomes or chromatids and the other has none.Chromosomes, Artificial, Human: DNA constructs that are composed of, at least, all elements, such as a REPLICATION ORIGIN; TELOMERE; and CENTROMERE, required for successful replication, propagation to and maintainance in progeny human cells. In addition, they are constructed to carry other sequences for analysis or gene transfer.Kinetochores: Large multiprotein complexes that bind the centromeres of the chromosomes to the microtubules of the mitotic spindle during metaphase in the cell cycle.Nucleic Acid Hybridization: Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)Telomere: A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Chromosome Walking: A technique with which an unknown region of a chromosome can be explored. It is generally used to isolate a locus of interest for which no probe is available but that is known to be linked to a gene which has been identified and cloned. A fragment containing a known gene is selected and used as a probe to identify other overlapping fragments which contain the same gene. The nucleotide sequences of these fragments can then be characterized. This process continues for the length of the chromosome.Chromosomal Proteins, Non-Histone: Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Chromosomal Instability: An increased tendency to acquire CHROMOSOME ABERRATIONS when various processes involved in chromosome replication, repair, or segregation are dysfunctional.Spindle Apparatus: A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.Blotting, Southern: A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.Models, Genetic: Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.Chromosome Fragility: Susceptibility of chromosomes to breakage leading to translocation; CHROMOSOME INVERSION; SEQUENCE DELETION; or other CHROMOSOME BREAKAGE related aberrations.Genotype: The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.Quantitative Trait Loci: Genetic loci associated with a QUANTITATIVE TRAIT.Haplotypes: The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.Chromosome Duplication: An aberration in which an extra chromosome or a chromosomal segment is made.DNA, Satellite: Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION.DNA Probes: Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections.Polymerase Chain Reaction: In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.Drosophila melanogaster: A species of fruit fly much used in genetics because of the large size of its chromosomes.Genes: A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.Repetitive Sequences, Nucleic Acid: Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).Diploidy: The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X.Evolution, Molecular: The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.Chromatids: Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Mosaicism: The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from a single ZYGOTE, as opposed to CHIMERISM in which the different cell populations are derived from more than one zygote.Heterozygote: An individual having different alleles at one or more loci regarding a specific character.Abnormalities, MultiplePolytene Chromosomes: Extra large CHROMOSOMES, each consisting of many identical copies of a chromosome lying next to each other in parallel.Multigene Family: A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)Polyploidy: The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc.DNA Replication: The process by which a DNA molecule is duplicated.Gene Deletion: A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.Prophase: The first phase of cell nucleus division, in which the CHROMOSOMES become visible, the CELL NUCLEUS starts to lose its identity, the SPINDLE APPARATUS appears, and the CENTRIOLES migrate toward opposite poles.Interphase: The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).Gene Dosage: The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage.Loss of Heterozygosity: The loss of one allele at a specific locus, caused by a deletion mutation; or loss of a chromosome from a chromosome pair, resulting in abnormal HEMIZYGOSITY. It is detected when heterozygous markers for a locus appear monomorphic because one of the ALLELES was deleted.Cell Cycle Proteins: Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Genome, Human: The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.Cytogenetic Analysis: Examination of CHROMOSOMES to diagnose, classify, screen for, or manage genetic diseases and abnormalities. Following preparation of the sample, KARYOTYPING is performed and/or the specific chromosomes are analyzed.Genetic Variation: Genotypic differences observed among individuals in a population.Cytogenetics: A subdiscipline of genetics which deals with the cytological and molecular analysis of the CHROMOSOMES, and location of the GENES on chromosomes, and the movements of chromosomes during the CELL CYCLE.Karyotype: The full set of CHROMOSOMES presented as a systematized array of METAPHASE chromosomes from a photomicrograph of a single CELL NUCLEUS arranged in pairs in descending order of size and according to the position of the CENTROMERE. (From Stedman, 25th ed)Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Polymorphism, Genetic: The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.Cosmids: Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles.Chromosome Fragile Sites: Specific loci that show up during KARYOTYPING as a gap (an uncondensed stretch in closer views) on a CHROMATID arm after culturing cells under specific conditions. These sites are associated with an increase in CHROMOSOME FRAGILITY. They are classified as common or rare, and by the specific culture conditions under which they develop. Fragile site loci are named by the letters "FRA" followed by a designation for the specific chromosome, and a letter which refers to which fragile site of that chromosome (e.g. FRAXA refers to fragile site A on the X chromosome. It is a rare, folic acid-sensitive fragile site associated with FRAGILE X SYNDROME.)Gene Rearrangement: The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development.Chromatin: The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.Sex Chromosome Disorders: Clinical conditions caused by an abnormal sex chromosome constitution (SEX CHROMOSOME ABERRATIONS), in which there is extra or missing sex chromosome material (either a whole chromosome or a chromosome segment).Monosomy: The condition in which one chromosome of a pair is missing. In a normally diploid cell it is represented symbolically as 2N-1.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Spermatocytes: Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.Genes, X-Linked: Genes that are located on the X CHROMOSOME.Sequence Tagged Sites: Short tracts of DNA sequence that are used as landmarks in GENOME mapping. In most instances, 200 to 500 base pairs of sequence define a Sequence Tagged Site (STS) that is operationally unique in the human genome (i.e., can be specifically detected by the polymerase chain reaction in the presence of all other genomic sequences). The overwhelming advantage of STSs over mapping landmarks defined in other ways is that the means of testing for the presence of a particular STS can be completely described as information in a database.Polymorphism, Restriction Fragment Length: Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.DNA, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.Genes, Dominant: Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.Species Specificity: The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Polymorphism, Single Nucleotide: A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.DNA Transposable Elements: Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.Genetic Predisposition to Disease: A latent susceptibility to disease at the genetic level, which may be activated under certain conditions.Philadelphia Chromosome: An aberrant form of human CHROMOSOME 22 characterized by translocation of the distal end of chromosome 9 from 9q34, to the long arm of chromosome 22 at 22q11. It is present in the bone marrow cells of 80 to 90 per cent of patients with chronic myelocytic leukemia (LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE).Genes, Recessive: Genes that influence the PHENOTYPE only in the homozygous state.Azure Stains: PHENOTHIAZINES with an amino group at the 3-position that are green crystals or powder. They are used as biological stains.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Chromosomes, Archaeal: Structures within the nucleus of archaeal cells consisting of or containing DNA, which carry genetic information essential to the cell.Sequence Homology, Nucleic Acid: The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.Chromosome Breakpoints: The locations in specific DNA sequences where CHROMOSOME BREAKS have occurred.Contig Mapping: Overlapping of cloned or sequenced DNA to construct a continuous region of a gene, chromosome or genome.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Genome: The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA.Ploidies: The degree of replication of the chromosome set in the karyotype.Homozygote: An individual in which both alleles at a given locus are identical.Haploidy: The chromosomal constitution of cells, in which each type of CHROMOSOME is represented once. Symbol: N.Phylogeny: The relationships of groups of organisms as reflected by their genetic makeup.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Genetic Loci: Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Sex Chromatin: In the interphase nucleus, a condensed mass of chromatin representing an inactivated X chromosome. Each X CHROMOSOME, in excess of one, forms sex chromatin (Barr body) in the mammalian nucleus. (from King & Stansfield, A Dictionary of Genetics, 4th ed)Genomic Imprinting: The variable phenotypic expression of a GENE depending on whether it is of paternal or maternal origin, which is a function of the DNA METHYLATION pattern. Imprinted regions are observed to be more methylated and less transcriptionally active. (Segen, Dictionary of Modern Medicine, 1992)Gene Duplication: Processes occurring in various organisms by which new genes are copied. Gene duplication may result in a MULTIGENE FAMILY; supergenes or PSEUDOGENES.Hybridization, Genetic: The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid.Gene Amplification: A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication.Drosophila: A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.Genes, Lethal: Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Intellectual Disability: Subnormal intellectual functioning which originates during the developmental period. This has multiple potential etiologies, including genetic defects and perinatal insults. Intelligence quotient (IQ) scores are commonly used to determine whether an individual has an intellectual disability. IQ scores between 70 and 79 are in the borderline range. Scores below 67 are in the disabled range. (from Joynt, Clinical Neurology, 1992, Ch55, p28)Genes, Bacterial: The functional hereditary units of BACTERIA.Genome, Plant: The genetic complement of a plant (PLANTS) as represented in its DNA.DNA, Neoplasm: DNA present in neoplastic tissue.Chromosomes, Artificial: DNA constructs that are composed of, at least, elements such as a REPLICATION ORIGIN; TELOMERE; and CENTROMERE, that are required for successful replication, propagation to and maintenance in progeny cells. In addition, they are constructed to carry other sequences for analysis or gene transfer.Sister Chromatid Exchange: An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME.Syndrome: A characteristic symptom complex.Pachytene Stage: The stage in the first meiotic prophase, following ZYGOTENE STAGE, when CROSSING OVER between homologous CHROMOSOMES begins.Microtubules: Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Exons: The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.Histones: Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.DNA, Fungal: Deoxyribonucleic acid that makes up the genetic material of fungi.Genes, Y-Linked: Genes that are located on the Y CHROMOSOME.Euchromatin: Chromosome regions that are loosely packaged and more accessible to RNA polymerases than HETEROCHROMATIN. These regions also stain differentially in CHROMOSOME BANDING preparations.Triticum: A plant genus of the family POACEAE that is the source of EDIBLE GRAIN. A hybrid with rye (SECALE CEREALE) is called TRITICALE. The seed is ground into FLOUR and used to make BREAD, and is the source of WHEAT GERM AGGLUTININS.Genes, Tumor Suppressor: Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible.DNA, Plant: Deoxyribonucleic acid that makes up the genetic material of plants.Aurora Kinases: A family of highly conserved serine-threonine kinases that are involved in the regulation of MITOSIS. They are involved in many aspects of cell division, including centrosome duplication, SPINDLE APPARATUS formation, chromosome alignment, attachment to the spindle, checkpoint activation, and CYTOKINESIS.Sex Determination Processes: The mechanisms by which the SEX of an individual's GONADS are fixed.Down Syndrome: A chromosome disorder associated either with an extra chromosome 21 or an effective trisomy for chromosome 21. Clinical manifestations include hypotonia, short stature, brachycephaly, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, Simian crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213)Genes, Insect: The functional hereditary units of INSECTS.DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.Meiotic Prophase I: The prophase of the first division of MEIOSIS (in which homologous CHROMOSOME SEGREGATION occurs). It is divided into five stages: leptonema, zygonema, PACHYNEMA, diplonema, and diakinesis.Quantitative Trait, Heritable: A characteristic showing quantitative inheritance such as SKIN PIGMENTATION in humans. (From A Dictionary of Genetics, 4th ed)Radiation Hybrid Mapping: A method for ordering genetic loci along CHROMOSOMES. The method involves fusing irradiated donor cells with host cells from another species. Following cell fusion, fragments of DNA from the irradiated cells become integrated into the chromosomes of the host cells. Molecular probing of DNA obtained from the fused cells is used to determine if two or more genetic loci are located within the same fragment of donor cell DNA.Gene Library: A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.Genetic Heterogeneity: The presence of apparently similar characters for which the genetic evidence indicates that different genes or different genetic mechanisms are involved in different pedigrees. In clinical settings genetic heterogeneity refers to the presence of a variety of genetic defects which cause the same disease, often due to mutations at different loci on the same gene, a finding common to many human diseases including ALZHEIMER DISEASE; CYSTIC FIBROSIS; LIPOPROTEIN LIPASE DEFICIENCY, FAMILIAL; and POLYCYSTIC KIDNEY DISEASES. (Rieger, et al., Glossary of Genetics: Classical and Molecular, 5th ed; Segen, Dictionary of Modern Medicine, 1992)DNA Restriction Enzymes: Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.Sex Chromosome Disorders of Sex Development: Congenital conditions of atypical sexual development associated with abnormal sex chromosome constitutions including MONOSOMY; TRISOMY; and MOSAICISM.

Physical map of a 1.5 mb region on 12p11.2 harbouring a synpolydactyly associated chromosomal breakpoint. (1/1638)

Synpolydactyly (SPD) is a rare malformation of the distal limbs known to be caused by mutations in HOXD13. We have previously described a complex form of SPD associated with synostoses in three members of a Belgian family, which co-segregates with a t(12;22)(p11.2;q13.3) chromosomal translocation. The chromosome 12 breakpoint of this translocation maps to 12p11.2 between markers D12S1034 and D12S1596. Here we show that a mutation in the HOXD13 gene is not responsible for the phenotype, and present a physical map of the region around the 12p11.2 breakpoint. Starting from D12S1034 and D12S1596, we have established a contig approximately 1.5 Mb in length, containing 13 YAC clones, 16 BAC clones, and 11 cosmid clones. FISH analysis shows that cosmid LL12NCO1-149H4 maps across the breakpoint, and Southern blot experiments using fragments of this cosmid as probes identify a rearranged BamHI fragment in the patients carrying the translocation. A search for expressed sequences within the contig have so far revealed one CpG island, seven anonymous ESTs and three previously characterised genes, DAD-R, KRAG and HT21, all of which were found not to be directly disrupted by the translocation. The gene represented by EST R72964 was found to be disrupted by the translocation. These findings lay the groundwork for further efforts to characterise a gene critical for normal distal limb development that is perturbed by this translocation.  (+info)

Granulation rescue and developmental marking of juxtaglomerular cells using "piggy-BAC" recombination of the mouse ren locus. (2/1638)

Mice lacking a functional Ren-1(d) gene exhibit a complete lack of renal juxtaglomerular cell granulation and atypical macula densa morphology. Transgenic mice carrying a 145-kilobase BAC clone encompassing the Ren-1(d) and Ren-2 loci were generated, characterized, and backcrossed with Ren-1(d-/-) mice. Homozygous Ren-1(d)-null mice expressing the BAC clone exhibited complete restoration of normal renal structure. Homologous recombination in Escherichia coli was used to generate a modified version of the BAC clone, in which an IRESbeta-geo cassette was inserted specifically into the Ren-1(d) gene. When introduced into the germline, the modified clone provided a marker for juxtaglomerular cell differentiation and beta-geo was expressed appropriately in juxtaglomerular cells throughout development. Parallel backcross experiments onto the Ren-1(d)-null background demonstrated that the juxtaglomerular cells expressed the modified Ren-1(d) locus in the absence of regranulation. These data demonstrate that the nongranulated cells constitute bona fide juxtaglomerular cells despite their altered morphology, that overexpression of renin-2 cannot compensate for the loss of renin-1(d), and that primary structural differences between the two isoforms are responsible for the differences in granulation. The use of BAC modification as part of functional complementation studies illustrates the potential for in vivo molecular dissection of key physiological mechanisms.  (+info)

Effects of 2-G exposure on temperature regulation, circadian rhythms, and adiposity in UCP2/3 transgenic mice. (3/1638)

Altered ambient force environments affect energy expenditure via changes in thermoregulation, metabolism, and body composition. Uncoupling proteins (UCPs) have been implicated as potential enhancers of energy expenditure and may participate in some of the adaptations to a hyperdynamic environment. To test this hypothesis, this study examined the homeostatic and circadian profiles of body temperature (T(b)) and activity and adiposity in wild-type and UCP2/3 transgenic mice exposed to 1 and 2 G. There were no significant differences between the groups in the means, amplitudes, or phases of T(b) and activity rhythms at either the 1- or 2-G level. Percent body fat was significantly lower in transgenic (5.2 +/- 0. 2%) relative to the wild-type mice (6.2 +/- 0.1%) after 2-G exposure; mass-adjusted mesenteric and epididymal fat pads in transgenic mice were also significantly lower (P < 0.05). The data suggest that 1) the actions of two UCPs (UCP2 and UCP3) do not contribute to an altered energy balance at 2 G, although 2) UCP2 and UCP3 do contribute to the utilization of lipids as a fuel substrate at 2 G.  (+info)

Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. (4/1638)

Comparative genome studies are important contributors to our understanding of genome evolution. Most comparative genome studies in plants have been based on genetic mapping of homologous DNA loci in different genomes. Large-scale comparative physical mapping has been hindered by the lack of efficient and affordable techniques. We report here the adaptation of fluorescence in situ hybridization (FISH) techniques for comparative physical mapping between Arabidopsis thaliana and Brassica rapa. A set of six bacterial artificial chromosomes (BACs) representing a 431-kb contiguous region of chromosome 2 of A. thaliana was mapped on both chromosomes and DNA fibers of B. rapa. This DNA fragment has a single location in the A. thaliana genome, but hybridized to four to six B. rapa chromosomes, indicating multiple duplications in the B. rapa genome. The sizes of the fiber-FISH signals from the same BACs were not longer in B. rapa than those in A. thaliana, suggesting that this genomic region is duplicated but not expanded in the B. rapa genome. The comparative fiber-FISH mapping results support that chromosomal duplications, rather than regional expansion due to accumulation of repetitive sequences in the intergenic regions, played the major role in the evolution of the B. rapa genome.  (+info)

Computational and experimental characterization of physically clustered simple sequence repeats in plants. (5/1638)

The type and frequency of simple sequence repeats (SSRs) in plant genomes was investigated using the expanding quantity of DNA sequence data deposited in public databases. In Arabidopsis, 306 genomic DNA sequences longer than 10 kb and 36,199 EST sequences were searched for all possible mono- to pentanucleotide repeats. The average frequency of SSRs was one every 6.04 kb in genomic DNA, decreasing to one every 14 kb in ESTs. SSR frequency and type differed between coding, intronic, and intergenic DNA. Similar frequencies were found in other plant species. On the basis of these findings, an approach is proposed and demonstrated for the targeted isolation of single or multiple, physically clustered SSRs linked to any gene that has been mapped using low-copy DNA-based markers. The approach involves sample sequencing a small number of subclones of selected randomly sheared large insert DNA clones (e.g., BACs). It is shown to be both feasible and practicable, given the probability of fortuitously sequencing through an SSR. The approach is demonstrated in barley where sample sequencing 34 subclones of a single BAC selected by hybridization to the Big1 gene revealed three SSRs. These allowed Big1 to be located at the top of barley linkage group 6HS.  (+info)

Two translocations of chromosome 15q associated with dyslexia. (6/1638)

Developmental dyslexia is characterised by difficulties in learning to read. As reading is a complex cognitive process, multiple genes are expected to contribute to the pathogenesis of dyslexia. The genetics of dyslexia has been a target of molecular studies during recent years, but so far no genes have been identified. However, a locus for dyslexia on chromosome 15q21 (DYX1) has been established in previous linkage studies. We have identified two families with balanced translocations involving the 15q21-q22 region. In one family, the translocation segregates with specific dyslexia in three family members. In the other family, the translocation is associated with dyslexia in one family member. We have performed fluorescence in situ hybridisation (FISH) studies to refine the position of the putative dyslexia locus further. Our results indicate that both translocation breakpoints on 15q map within an interval of approximately 6-8 Mb between markers D15S143 and D15S1029, further supporting the presence of a locus for specific dyslexia on 15q21.  (+info)

Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. (7/1638)

We have identified a type I cytokine receptor, which we have termed novel interleukin receptor (NILR), that is most related to the IL-2 receptor beta chain (IL-2Rbeta) and physically adjacent to the IL-4 receptor alpha chain gene on chromosome 16. NILR mRNA is most highly expressed in thymus and spleen, and is induced by phytohemagglutinin in human peripheral blood mononuclear cells. NILR protein was detected on human T cell lymphotropic virus type I-transformed T cell lines, Raji B cells, and YT natural killer-like cells. Artificial homodimerization of the NILR cytoplasmic domain confers proliferation to Ba/F3 murine pro-B cells but not to 32D myeloid progenitor cells or CTLL-2 murine helper T cells. In these latter cells, heterodimerization of IL-2Rbeta and the common cytokine receptor gamma chain (gamma(c)) cytoplasmic domains allows potent proliferation, whereas such heterodimerization of NILR with gamma(c) does not. This finding suggests that NILR has signaling potential but that a full understanding of its signaling partner(s) is not yet clear. Like IL-2Rbeta, NILR associates with Jak1 and mediates Stat5 activation.  (+info)

MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. (8/1638)

Mouse embryonic stem (ES) cells homozygous for disruption of the MSK1 gene had no detectable MSK1 activity. However, their activators (extracellular signal related kinase (ERK)1/ERK2) were stimulated normally in mitogen- and stress-activated protein kinase (MSK)1-/- and wild type cells in response to tetradecanoylphorbol acetate (TPA) and epidermal growth factor (EGF). TPA and EGF induced the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser-133 and ATF1 at Ser-63 in wild type cells and this was abolished by inhibition of the mitogen-activated protein kinase cascade. In contrast, the TPA- and EGF-induced phosphorylation of CREB/ATF1 was barely detectable in MSK1-/- cells. However, basal and forskolin-induced phosphorylation was similar, indicating that the MSK1 'knockout' did not prevent CREB phosphorylation by cyclic AMP-dependent protein kinase. Thus MSK1 is required for CREB and ATF1 phosphorylation after mitogenic stimulation of ES cells.  (+info)

Herpesvirus of turkey (HVT) is an alphaherpesvirus that is widely used as a live vaccine against Marek's disease because of its antigenic relationship with Marek's disease virus (MDV). In spite of a similar genome structure, HVT has several unique genes, the functions of which are not completely understood. As a first step in carrying out detailed analysis of the functions of the HVT genes, a full-length infectious bacterial artificial chromosome (BAC) clone of HVT was constructed. DNA from two independent BAC clones, upon transfection into chicken embryo fibroblasts, produced plaques similar to those produced by the wild-type virus. Viruses derived from the BAC clones were stable during in vitro passage, but showed differences in in vitro growth kinetics compared with the wild-type virus. Using a one-step mutagenesis protocol to delete the essential glycoprotein B gene from the HVT genome, followed by construction of the revertant virus, BAC clones of HVT were shown to be amenable to standard
Enterohemorrhagic E. coli (EHEC) O157:H7 can cause serious gastrointestinal and systemic disease in humans following direct or indirect exposure to the bacterium excreted in ruminant feces. The main colonization site of EHEC O157:H7 in cattle is the terminal rectum where the bacteria intimately attach to the epithelium and multiply in the intestinal mucus. This study aimed to identify genomic regions of EHEC O157:H7 that contribute to colonization and multiplication at this site. A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. The library contains 1152 clones averaging 150 kbp. To verify the library, clones containing a complete locus of enterocyte effacement (LEE) were identified by DNA hybridization. In line with a previous report, these did not confer a type III secretion capacity to the K-12 host strain. However, conjugation of one of the BAC clones into a strain containing a partial LEE deletion restored type III
The muscle-specific transcription factors Myf5 and Mrf4 are two of the four myogenic regulatory factors involved in the transcriptional cascade responsible for skeletal myogenesis in the vertebrate embryo. Myf5 is the first of these four genes to be expressed in the mouse. We have previously described discrete enhancers that drive Myf5 expression in epaxial and hypaxial somites, branchial arches and central nervous system, and argued that additional elements are required for proper expression (Summerbell, D., Ashby, P. R., Coutelle, O., Cox, D., Yee, S. P. and Rigby, P. W. J. (2000) Development 127, 3745-3757). We have now investigated the transcriptional regulation of both Myf5 and Mrf4 using bacterial artificial chromosome transgenesis. We show that a clone containing Myf5 and 140 kb of upstream sequences is sufficient to recapitulate the known expression patterns of both genes. Our results confirm and reinforce the conclusion of our earlier studies, that Myf5 expression is regulated ...
Citation: Murdoch, B., Fu, A., Meng, Y., Li, C., Hansen, C., Snelling, W.M., Moore, S.S. 2004. Assignment of the SIAT4A gene to bovine chromosome 14 by linkage mapping of an associated microsatellite. Animal Genetics 35:146-147. Interpretive Summary: A new DNA marker for the Sialyltransferase 4A (SIAT4A) gene was developed and mapped. The marker was developed from the CHORI-240 bacterial artificial chromosome library. Cattle from an Angus-based commercial seedstock line, and two USDA-MARC reference families were genotyped. The USDA-MARC reference family genotypes were used to map the marker onto cattle chromosome 14. Technical Abstract: CHORI-240 bovine bacterial artificial chromosome library high density filters were probed with gene-specific overgo primers for Sialyltransferase 4A (SIAT4A). All positive clones were confirmed by polymerase chain reaction (PCR) with different gene-specific primers. Subsequently the clones were digested with Sau3 AI and subcloned into the E. coli cloning vector ...
Mice carrying bacterial artificial chromosome (BAC) transgenes have become important tools for neuroscientists, providing a powerful means of dissecting complex neural circuits in the brain. Recently, it was reported that one popular line of these mice--mice possessing a BAC transgene with a D(2) dopamine receptor (Drd2) promoter construct coupled to an enhanced green fluorescent protein (eGFP) reporter--had abnormal striatal gene expression, physiology, and motor behavior. Unlike most of the work using BAC mice, this interesting study relied upon mice backcrossed on the outbred Swiss Webster (SW) strain that were homozygous for the Drd2-eGFP BAC transgene. The experiments reported here were conducted to determine whether mouse strain or zygosity was a factor in the reported abnormalities. As reported, SW mice were very sensitive to transgene expression. However, in more commonly used inbred strains of mice (C57BL/6, FVB/N) that were hemizygous for the transgene, the Drd2-eGFP BAC transgene did ...
The construction and analysis of metagenomic (microbial community) libraries has provided knowledge of the genetics and biochemistry of noncultivable inhabitants of soil and marine communities (4, 9, 27). We have followed the same technological approach to begin to investigate the metabolic structure of the bowel community and to detect, by a functional screen, enzymes encoded by the genomes of the gut microbiota of mice. Phylogeny of bacterial communities can also be investigated by screening metagenomic libraries for 16S rRNA genes. We did not pursue this option because a catalogue of the murine gut microbiota derived from PCR-amplified 16S rRNA genes has been provided by Salzman et al. (30) and because Béjà et al. (4) have reported that the qualitative phylogenetic representation obtained with a BAC library was in general agreement with previous reports about the recovery of PCR-amplified rRNA genes from a marine community.. As in the case of soil, the digesta contains compounds that ...
How does the genome encode instructions that guide embryonic development? Our research uses genes that are expressed during vertebrate development as systems for investigating this question. We have two long-term goals. The first is to shed light on regulatory events driving bone and cartilage development. This is relevant to understanding birth defects, osteoporosis and arthritis. The second is to locate and understand the function of long-range genomic sequences that control gene regulation. These sequences can act across hundreds of kilobases and are often well conserved. We study these elements using tools such as BAC (Bacterial Artificial Chromosome) transgenesis and genomic sequence comparisons. Currently, we are studying three BMP (Bone Morphogenetic Protein) family genes. All are transcribed in complex patterns during development. Precise regulation of these genes is controlled by multiple, distant cis-regulatory elements. Using transgenic assays in mice and zebrafish, we are charting
To align the developing chicken BAC contig physical maps with the existing linkage map, its necessary to identify BACs corresponding to the DNA-based markers on the latter. Chicken BAC libraries, derived from DNA of a single UCD001 inbred Red Jungle Fowl, have been generated by our collaborators. Characterization of the first BAC library based on BamHI partial digest fragments initially was done by filter hybridization with pools of labeled, PCR-amplified fragments based on marker or gene DNA sequences. Individual marker/BAC assignments were made by Southern hybridization of BAC DNA with individual marker probes and/or PCR analysis. In this manner, 31 markers from 9 linkage groups generated 71 BamHI BAC candidates (2.3 clones per locus). This approach is labor- and cost-intensive. Thus, we began using pools of overgo probes, that are complementary synthetic oligonucleotides extended in vitro to generate ~40 base pair, double-stranded DNA probes. Two BAC libraries were hybridized to pools of 36 ...
BACs are now being utilized to a greater extent in modelling genetic diseases, often alongside transgenic mice. BACs have been useful in this field as complex genes may have several regulatory sequences upstream of the encoding sequence, including various promoter sequences that will govern a genes expression level. BACs have been used to some degree of success with mice when studying neurological diseases such as Alzheimers disease or as in the case of aneuploidy associated with Down syndrome. There have also been instances when they have been used to study specific oncogenes associated with cancers. They are transferred over to these genetic disease models by electroporation/transformation, transfection with a suitable virus or microinjection. BACs can also be utilized to detect genes or large sequences of interest and then used to map them onto the human chromosome using BAC arrays. BACs are preferred for these kind of genetic studies because they accommodate much larger sequences without ...
PubMed comprises more than 30 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
As part of the effort to sequence the genome of Rattus norvegicus, we constructed a physical map comprised of fingerprinted bacterial artificial chromosome (BAC) clones from the CHORI-230 BAC library. These BAC clones provide approximately 13-fold redundant coverage of the genome and have been assembled into 376 fingerprint contigs. A yeast artificial chromosome (YAC) map was also constructed and aligned with the BAC map via fingerprinted BAC and P1 artificial chromosome clones (PACs) sharing interspersed repetitive sequence markers with the YAC-based physical map. We have annotated 95% of the fingerprint map clones in contigs with coordinates on the version 3.1 rat genome sequence assembly, using BAC-end sequences and in silico mapping methods. These coordinates have allowed anchoring 358 of the 376 fingerprint map contigs onto the sequence assembly. Of these, 324 contigs are anchored to rat genome sequences localized to chromosomes, and 34 contigs are anchored to unlocalized portions of the ...
The construction of cDNA clones encoding large-size RNA molecules of biological interest, like coronavirus genomes, which are among the largest mature RNA molecules known to biology, has been hampered by the instability of those cDNAs in bacteria. Herein, we show that the application of two strategi …
Regulatory elements controlling gene expression are often found in separate, sometimes remote, regions around gene loci. Artificial chromosomes offer a means to capture all regulatory elements for study of gene regulation in a near-correct genomic context. The smooth muscle calponin gene (CNN1) encodes for a multifunctional protein involved in signaling, contractile force generation, and growth regulation. While CNN1s physiology has been studied extensively, its transcriptional regulation has proven to be intractable to conventional in vivo assays. Four evolutionarily-conserved serum response factor (SRF) binding sites (called CArG boxes) are present in the first intron of CNN1 and appear to be required for full transcriptional competence of CNN1 in cultured smooth muscle cells (SMC). To assess the functionality of CNN1 CArG elements in vivo, we exploited a 103-kb bacterial artificial chromosome (BAC) containing the human CNN1 locus shown previously to completely recapitulate endogenous mouse ...
BELARMINO, Luis C. et al. Mining plant genome browsers as a means for efficient connection of physical, genetic and cytogenetic mapping: an example using soybean. Genet. Mol. Biol. [online]. 2012, vol.35, n.1, suppl.1, pp.335-347. ISSN 1415-4757. http://dx.doi.org/10.1590/S1415-47572012000200015.. Physical maps are important tools to uncover general chromosome structure as well as to compare different plant lineages and species, helping to elucidate genome structure, evolution and possibilities regarding synteny and colinearity. The increasing production of sequence data has opened an opportunity to link information from mapping studies to the underlying sequences. Genome browsers are invaluable platforms that provide access to these sequences, including tools for genome analysis, allowing the integration of multivariate information, and thus aiding to explain the emergence of complex genomes. The present work presents a tutorial regarding the use of genome browsers to develop targeted physical ...
If you are a society or association member and require assistance with obtaining online access instructions please contact our Journal Customer Services team ...
Citation: Ma, J., Cannon, S.B., Jackson, S.A., Shoemaker, R.C. 2010. Soybean Comparative Genomics. In: Bilyeu, K., Ratnaparkhe, M.B., and Kole, C., editors. Genetics, Genomics, and Breeding of Soybean. Routledge, New York. p. 245-262. Interpretive Summary: Technical Abstract: The soybean (Glycine max L. Merr.) has developed into a reference species complete with a full set of genomic resources. Several Bacterial Artificial Chromosome libraries have been produced and physical maps have been assembled in genotypes representing both Northern and Southern germplasm. High throughput sequencing has already been applied to transcript profiling . A very large Expressed Sequence Tag (EST) collection has been developed. These ESTs have been evaluated to demonstrate that the soybean genome has undergone at least two rounds of large-scale duplication events. Soybean has one of the most dense molecular maps of any crop species. Molecular markers include RFLPs, SSRs and SNPs. The GeneChip by Affymetrix is ...
Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp). Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H. We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar Haruna Nijo. The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome
The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems.
This chapter provides a broad overview of many applications of plasmids for genetic analysis, primarily in bacteria. Ever since DNA sequencing became accessible to most research laboratories, reverse genetic analysis has become a standard experimental approach to study bacterial gene function. Similar suicide vectors have also been used for nontargeted insertional mutagenesis by cloning random chromosomal DNA fragments into the plasmid. The use of suicide vectors also allows for easy identification of the insertion mutations. Plasmids that utilize different combinations of double-counter selective markers have been used for diverse applications, including the search for extremely rare suppressor mutations of essential Escherichia coli genes, and to improve the efficiency of allelic exchange on bacterial artificial chromosomes (BACs). Although temperature-sensitive vectors represent the majority of conditionally replicating plasmids, other plasmids that exhibit conditional replication have been described
Identifying enhancers in genomes is crucial for the understanding of the complexity and mechanisms of gene regulation [50]. Traditionally, regulatory regions have been identified and mapped by cloning candidate sequences upstream of a minimal promoter fused to a reporter gene and testing their transcriptional activity in cell lines or in transgenic organisms. Although more laborious and expensive to make, transgenic animals have the great advantage of providing complete spatio-temporal expression information simultaneously in all tissues and cell types of an overall healthy animal. More and more laboratories map enhancers using 100-200 kb bacterial artificial chromosomes, which allow for the testing of regulatory regions in a context that better resembles the endogenous one, compared with small constructs [51]. Detailed studies using these methods have determined that genes involved in embryonic development are controlled by several enhancers, like the example of the mouse Shh gene mentioned in ...
This track shows the location of fluorescent in situ hybridization (FISH)-mapped clones along the assembly sequence. The locations of these clones were obtained from the NCBI Human BAC Resource here. Earlier versions of this track obtained this information directly from the paper Cheung, et al. (2001). More information about the BAC clones, including how they may be obtained, can be found at the Human BAC Resource and the Clone Registry web sites hosted by NCBI. To view Clone Registry information for a clone, click on the clone name at the top of the details page for that item.. ...
This track shows the location of fluorescent in situ hybridization (FISH)-mapped clones along the assembly sequence. The locations of these clones were obtained from the NCBI Human BAC Resource here. Earlier versions of this track obtained this information directly from the paper Cheung, et al. (2001). More information about the BAC clones, including how they may be obtained, can be found at the Human BAC Resource and the Clone Registry web sites hosted by NCBI. To view Clone Registry information for a clone, click on the clone name at the top of the details page for that item.. ...
Binary Bacterial Artificial Chromosomes (BiBAC) are large insert cloning vectors that contain the necessary features required for Agrobacterium‐mediated transformation
Binary Bacterial Artificial Chromosomes (BiBAC) are large insert cloning vectors that contain the necessary features required for Agrobacterium‐mediated transformation
2. Transfer 50ul of culture to a 50ml flask with 50ml 2XYT + CM (12.5ug/ml), and incubate/shake for 14-16 hours at 250rpm. (14 hour incubation best ...
Thanks again, perneseblue! For yesterdays experiment, I used SW102 cells (modified E. Coli from NCI-Frederick for recombineering) directly from glycerol stock (40% final concentration of glycerol). I didnt specifically prepare the bacteria in the regular way people make electrocompetent cells (by washing sequentially with 10% glycerol) because they are electrocompetent cells already. I used 0.2 cm cuvette (thats the only one i can find in the lab), with capacitance of 25uF, and i got ~3.5 millisecond time constant and an arcing, w/o beeping ...
Targeted disruption of Paip2a. A PCR fragment amplified with a primer set of Paip2a 5′ Fwd and Rev (Supplemental Table 1) was used as a probe to isolate genomic BAC DNA clone 103F10 from the 129/Sv mouse BAC genomic library RPCI-22. The targeting vector was constructed by recombination (55), and routine cloning methods were employed with a 10.5-kbp mouse Paip2a genomic fragment from clone 103F10, as illustrated in Figure 2A. The final targeting fragment was excised from its cloning vector backbone by NotI and electroporated into R1 ES cells. Southern blot analysis was performed with two probes corresponding to the 5′ and 3′ sequences outside the targeting region, as indicated in Figure 2A. To generate the 5′ and 3′ probes, the primer sets (Paip2a 5′ Fwd and Rev for the 5′ probe and Paip2a 3′ Fwd and Rev for the 3′ probe) listed in Supplemental Table 1 were used. After the LoxP-flanked Neo cassette was eliminated by subsequent transient transfection with a cre recombinase ...
Molecular Cloning, also known as Maniatis, has served as the foundation of technical expertise in labs worldwide for 30 years. No other manual has been so popular, or so influential.
Many functional studies require the transfection of bacterial artificial chromosome (BAC) clones into mammalian cells. Because most BAC vectors do not have a mammalian selection marker or do not have...
Department of Genetics, Harvard Medical School, Boston, MA, USA.. A method for construction of bacterial artificial chromosome (BAC) contigs from a yeast artificial chromosome (YAC) physical map is described. An approximately 2 Mb contig, consisting of two large BAC contigs linked by a small YAC, has been assembled in the region around 80 cM of Arabidopsis thaliana chromosome 2. Clones from this contig will facilitate gene isolation in the region and can be used directly as substrates for DNA sequencing.. MeSH Terms ...
The DNA construct for simultaneous generation of a null and a conditional allele for Zfp521 was made using recombineering, essentially as described previously (Liu et al., 2003; Warming et al., 2006). First, a retrieval vector was prepared by three-way ligation of mini-homology arms into pBlight-TK (a plasmid backbone containing the thymidine kinase from HSV) for counter-selection in embryonic stem cells using Ganciclovir (Warming et al., 2006). The homology arms were amplified from a mouse BAC containing the Zfp521 genomic region using the primers listed below. The BAC (CITB 454L20) was identified by screening a 129-based BAC library (CJ7 embryonic stem cell DNA, CITB, Research Genetics/Invitrogen), and BAC DNA was prepared using the BAC Nucleobond kit (Takara Bio Inc., BD). All primers were from Integrated DNA Technologies, and all PCR reactions were performed using Expand High Fidelity (Roche): 5′ retrieval F, 5′-AATAAAGGATCCGTGCTCCAGGCACTATAGAT-3′; 5′ retrieval R, ...
The kits utilize a novel strategy of cloning end-repaired, randomly sheared DNA instead of the conventional approach of cloning fragments generated by partial restriction endonuclease digestion. First, genomic DNA is sheared by passing it through a syringe needle. The sheared DNA is end-repaired to generate 5-phosphorylated blunt ends and size-selected using a low melting point agarose gel. The size-selected DNA is then ligated into the supplied linearized and dephosphorylated pWEB-TNCTM or pWEBTM Cosmid Vector, packaged using ultra-high efficiency MaxPlaxTM Lambda Packaging Extracts (,109 pfu/μg for phage lambda) and plated on phage T1-resistant EPI100TM-T1R E. coli plating cells, all included in the kit. The result is a complete and unbiased primary cosmid library ...
The kits utilize a novel strategy of cloning end-repaired, randomly sheared DNA instead of the conventional approach of cloning fragments generated by partial restriction endonuclease digestion. First, genomic DNA is sheared by passing it through a syringe needle. The sheared DNA is end-repaired to generate 5-phosphorylated blunt ends and size-selected using a low melting point agarose gel. The size-selected DNA is then ligated into the supplied linearized and dephosphorylated pWEB-TNCTM or pWEBTM Cosmid Vector, packaged using ultra-high efficiency MaxPlaxTM Lambda Packaging Extracts (,109 pfu/μg for phage lambda) and plated on phage T1-resistant EPI100TM-T1R E. coli plating cells, all included in the kit. The result is a complete and unbiased primary cosmid library ...
Genomic sequence contigs for unfinished chromosomes are assembled and laid out based largely on the clone tiling path. However, the tiling paths do not specify the orientation of the clone sequences or how they should be joined; therefore, data on the alignment of the input genomic sequences to each other and to other sequences are also used to guide the assembly. Genomic sequences that augment the initial set of genomic contigs based on the tiling path clones are also incorporated ...
P[acman]- developed by Dr. Koen Venken (http://flypush.imgen.bcm.tmc.edu/lab/koenv/index.html) in Bellens laboratory- allows scientists to study large chunks of DNA in living flies. The vector - officially P/phiC31 artificial chromosome for manipulation - combines different technologies: a specially designed bacterial artificial chromosome (BAC) that allows maintenance of large pieces of DNA in bacteria, recombineering that allows the manipulation of large pieces of DNA in bacteria, and the ability to insert the genomic DNA into the genome of the fly at a specific site using phiC31-mediated transgenesis.. Venken adapted the P[acman] vector to create genomic libraries, so that a researcher can choose a gene and find the corresponding clones in the library that cover that gene. Their collaborators at Lawrence Berkeley National Laboratory, Drs. Roger Hoskins and Joseph Carlson, played a key role in the design, construction, and annotation of the libraries. ...
To identify BAC clones containing ULBP genes, filter membranes containing the RPCI-42 male Holstein BAC library (12X genome coverage; Childrens Hospital Oakland Research Institute) were screened by Southern blot hybridization using the full-length ULBP1 [GenBank: AF317556] cDNA clone as a probe. Probe amplification and labelling, membrane hybridization, washing conditions and autoradiography were performed as previously described [1]. ULBP-containing BACs were cultured in 3 ml 2x LB media with 20 μg/ml chloramphenicol (Sigma) overnight at 37°C with shaking. Cultures were centrifuged at 3000 × g for 3 min. The cell pellet was resuspended in 400 μl of a solution containing 0.05 M Tris, 0.01 M EDTA (pH 7.5) and 50 μg/ml RNase A (Sigma), lysed by addition of 400 μl of a solution containing 0.2 N NaOH and 1% SDS, neutralized by addition of 400 μl of a solution containing 4 M guanidine-HCl and 0.75 M KOAc (pH 4.6), and centrifuged at 10,000 × g for 10 min. An 860 μl aliquot of cleared lysate ...
CCUG <- Blood Dept., PHL, Göteborg; SBL 0071/83. Human blood; Sweden. Type strain. Taxonomy/description (8443). Sequence accession no. whole genome shotgun sequence: LBIB00000000. Murein: A11.20 (8443). (Medium 58, 37°C, anaerobic ...
PEISPECTIVES Any Exposure Above Bac ound! Is It Really Causative? A Commentary by Mark G. Zellmer, Partner, Husch Blackwell LLP Author bio on page 8 T he mantra becomes repetitious in many depositions
OPPORTUNITY TO PROPOSE ORGANISMS FOR BAC LIBRARY CONSTRUCTION Release Date: December 19, 2001 NOTICE: NOT-HG-02-004 National Human Genome Research Institute Annual Submission Dates: February 10, June 10 and October 10 Over the past several years, the bacterial artificial chromosome (BAC) has emerged as the vector system of choice for the construction of the large- insert chromosomal DNA libraries that are needed in genomic studies. Because BAC clones are relatively large and appear to faithfully represent an organisms genome, the BAC system will also be the vehicle of choice for the isolation of targeted regions of genomic DNA from additional organisms being used in specific biological studies, a variety of mouse strains, and even from individual humans. With the increasing interest in genomic approaches to biological research, the demand for new BAC libraries is expected to increase rapidly in the next several years. To meet the need to increase the number of available BAC libraries, NHGRI, ...
TY - JOUR. T1 - 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. AU - Greshock, Joel. AU - Naylor, Tara L.. AU - Margolin, Adam. AU - Diskin, Sharon. AU - Cleaver, Stephen H.. AU - Futreal, P. Andrew. AU - deJong, Pieter J.. AU - Zhao, Shaying. AU - Liebman, Michael. AU - Weber, Barbara L.. PY - 2004/1/1. Y1 - 2004/1/1. N2 - Array-based comparative genomic hybridization (aCGH) is a recently developed tool for genome-wide determination of DNA copy number alterations. This technology has tremendous potential for disease-gene discovery in cancer and developmental disorders as well as numerous other applications. However, widespread utilization of aCGH has been limited by the lack of well characterized, high-resolution clone sets optimized for consistent performance in aCGH assays and specifically designed analytic software. We have assembled a set of ∼4100 publicly available human bacterial artificial chromosome (BAC) clones ...
TY - JOUR. T1 - Construction and characterization of a yeast artificial chromosome library containing 1.5 equivalents of human chromosome 21. AU - Potier, M. C.. AU - Kuo, W. L.. AU - Dutriaux, A.. AU - Gray, J.. AU - Goedert, M.. PY - 1992/10. Y1 - 1992/10. N2 - A library of yeast artificaial chromosomes (YACs) was constructed from a human/hamster somatic cell hybrid containing human chromosome 21 (q11-qter). Cells were embedded in agarose, and the DNA was partially digested with EcoRI, released into solution by agarase treatment of the agarose plugs, ligated into pYAC4, and transferred into yeast. Doule screening of the yeast transformants with human and hamster genomic DNA allowed the selection of clones hybridizing only with human DNA. The library consists of 321 clones, amounting to 1.5 equivalents (61 Mb) of chromosome 21. The mean YAC size calculated from 178 clones is 190 ± 100 kb. Screening of the library with eight sequence-tagged sites gave six positives. Among 21 YACs tested by in ...
Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. Result: Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI ) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also ...
Short-lived TCR microclusters and a longer-lived protein kinase Ctheta-focusing central supramolecular activation cluster (cSMAC) have been defined in model immunological synapses (IS). In different model systems, CD28-mediated costimulatory interactions have been detected in microclusters, the cSMAC, or segregated from the TCR forming multiple distinct foci. The relationship between TCR and costimulatory molecules in the physiological IS of T cell-dendritic cell (DC) is obscure. To study the dynamic relationship of CD28-CD80 and TCR interactions in the T cell-DC IS during Ag-specific T cell activation, we generated CD80-eCFP mice using bacterial artificial chromosome transgenic technology. In splenic DCs, endogenous CD80 and CD80-eCFP localized to plasma membrane and Golgi apparatus, and CD80-eCFP was functional in vivo. In the OT-II T cell-DC IS, multiple segregated TCR, CD80, and LFA-1 clusters were detected. In the T cell-DC synapse CD80 clusters were colocalized with CD28 and PKCtheta, a
Cultivated peanut is an allotetraploid with two nuclear genomic components, AA and BB. Although it is generally agreed that these component genomes are derived from diploid wild ancestors, the exact species involved has been a matter of some research and discussion. Although the evidence is not completely clear cut, analysis of data from molecular markers, cytogenetics, morphology and geographical distributions support that A. duranensis and A. ipaënsis are the direct ancestors of cultivated peanut [8, 30].. Genomic in situ hybridization (GISH) of A. hypogaea metaphase chromosomes with total genomic DNA from the AA genome of A. duranensis and the BB genome of A. ipaënsis allowed a clear differentiation of the A and B chromosomes. Firstly, this observation reinforces the evidence of the close relationship between the genomes of A. duranensis, A. ipaënsis and cultivated peanut. Secondly, since GISH relies largely on the hybridization of repetitive sequences, it also indicates that A. duranensis ...
In drug users, drug-related cues alone can induce dopamine release in the dorsal striatum. Instructive cues activate inputs to the striatum from both dopaminergic and cholinergic neurons, which are thought to work together to support motor learning and motivated behaviors. Imbalances in these neuromodulatory influences can impair normal action selection and might thus contribute to pathologically repetitive and compulsive behaviors such as drug addiction. Dopamine and acetylcholine can have either antagonistic or synergistic effects on behavior, depending on the state of the animal and the receptor signaling systems at play. Semi-synchronized activation of cholinergic interneurons in the dorsal striatum drives dopamine release via presynaptic nicotinic acetylcholine receptors located on dopamine terminals. Nicotinic receptor blockade is known to diminish abnormal repetitive behaviors (stereotypies) induced by psychomotor stimulants. By contrast, blockade of postsynaptic acetylcholine muscarinic
Medical definition of bacterial artificial chromosome: a genetically engineered bacterial chromosome that is used as a vector to clone DNA segments, …
Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells ...
Schambra, U.B.,Lauder, J.M., Connelly, B., Centeno, A., Rosen G., and Williams, R.W. http://epmba.org/. Electronic Prenatal Mouse Brain Atlas. 2007 to present. Schambra, U.B., Mackensen, G.B., Stafford Smith, M., Haines, D.E., and Schwinn, D.A. (2005). Neuron Specific a-Adrenergic Receptor Expression in Human Cerebellum: Implications for Emerging Cerebellar Roles in Neurologic Disease. Neuroscience 135:507-523. Gong, S., Zheng, C., Doughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B., Nowak, N.J., Joyner, A., Leblanc, G., Hatten, M.E., Heintz, N. (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917-925. Stafford Smith, M., Schambra, U. B., Wilson, K. H., Page, S. O., and Schwinn, D. A. (1999). a1-Adrenergic receptors in human spinal cord: Specific localized expression of mRNA encoding a1-adrenergic receptor subtypes at four distinct levels. Molecular Brain Research 63, 254-261. Stafford Smith, M., Schambra, U.B., Wilson, K.H., ...
PubMed Central Canada (PMC Canada) provides free access to a stable and permanent online digital archive of full-text, peer-reviewed health and life sciences research publications. It builds on PubMed Central (PMC), the U.S. National Institutes of Health (NIH) free digital archive of biomedical and life sciences journal literature and is a member of the broader PMC International (PMCI) network of e-repositories.
The past decade witnessed the wide spread use of clones from BAC libraries of numerous organisms for functional studies. The large insert DNA size and easy maneuverability of that DNA in bacteria has contributed to the growing popularity of BACs in transgenic animal studies. The realization that many control elements of genes important during vertebrate development are actually located at large distances along the DNA from the coding sequences of the gene have made BACs increasingly indispensable for studies of developmentally regulated genes using transgenic animals. A different area of interest arose from the same attractive features of BACs, and relates to their use as vectors for cloning the very large genomes of several DNA viruses. Faithful propagation and easy mutational analyses of the BAC-viral DNA in bacteria allowed rapid assignment of function(s) to the numerous open reading frames in the viral genome when that BAC-viral DNA was reintroduced into permissive hosts for a productive ...
Empty clones: 1.33 %. Hybridization with labeled total DV92 DNA showed that all the other BAC clones have wheat DNA. 85% of the Not I fragments showed strong hybridization signal suggesting the presence of repetitive sequences.. ...
A major innovation of the Human Genome Project has been the development of BACs, which harbor large, stable genomic fragments of DNA (50). BACs have been the workhorses in the sequencing of the human genome (12, 13, 53). In addition, BACs have been used to complement genetic mutations leading to gene identification (2, 43) and to pinpoint distal regulatory elements that confer cell-restricted gene expression in transgenic mice (37). The latter approach has been of particular interest inasmuch as many muscle-restricted transcription units are governed bycis-acting elements that may reside tens of kilobases away from the core promoter region (9, 47, 57). Defining such distal elements through small phage genomic clones can be time consuming and may have untoward effects on the expression of the reporter transgene (see below). In this report we used a BAC harboring the hSM-Calp transcription unit to show first that the expression of hSM-Calp exhibited similar regulatory expression in an in vitro ...
Laboratoire de Phytopathologie Moleculaire, URA CNRS 1128, Universite Paris-sud, Orsay, France.. A new Arabidopsis thaliana (ecotype Columbia) genomic library has been constructed in Yeast Artificial Chromosomes: the CIC library (for CEPH, INRA and CNRS). Optimization of plant culture conditions and protoplast preparation allowed the recovery of large amounts of viable protoplasts. Mechanical shearing of DNA was minimized by isolation of DNA from protoplasts embedded in agarose. Cloning of large inserts was favored by including two successive size fractionation steps (after partial EcoRI digestion and after ligation with the vector arms), which selected DNA fragments larger than 350 kb. The library consists of 1152 clones with an average insert size of 420 kb. Clones carrying chloroplast DNA and various nuclear repeated sequences have been identified. Twenty-one per cent of the clones are found to contain chloroplast DNA. Therefore, the library represents around four nuclear genome equivalents. ...
Image shows a z-series of a mouse ES cell carrying a multi-copy alpha-globin BAC transgene array. Relative distribution of the BAC sequences, identif...
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
My own research interests which map onto these targets are flowering time, leaf senescence and how plant chemistry affects the conversion efficiency of energy crops. Research tools that have or are being developed include bacterial artificial chromosome (BAC) libraries, genetic, trait and physical maps, the establishment of forward mutation populations, the exploitation of syntenic relationships to associate genotype to phenotype, and the development of high throughput virtual phenotyping methods including the use of infrared spectroscopy for cell wall chemistry.. ...
My own research interests which map onto these targets are flowering time, leaf senescence and how plant chemistry affects the conversion efficiency of energy crops. Research tools that have or are being developed include bacterial artificial chromosome (BAC) libraries, genetic, trait and physical maps, the establishment of forward mutation populations, the exploitation of syntenic relationships to associate genotype to phenotype, and the development of high throughput virtual phenotyping methods including the use of infrared spectroscopy for cell wall chemistry.. ...
Now that weve learned a bit about F factors, you might imagine how a cloning vector could be created that was based on an F factor origin of replication. We call such engineered F plasmids BACs or Bacterial Artificial Chromosomes. BACs are capable of carrying approximately 200 kbp of inserted DNA sequence, and the F factor origin of replication maintains their level at approximately one copy per cell. Of course, we neednt stop there! We can also use YACs which are Yeast Artificial Chromosomes, and depend on being able to replicate and be maintained in Saccharomyces cerevisiae. YACs can carry approximately 500 kbp of foreign DNA, though they are often criticized due to the problem of natural recombination in the host.. Handling DNA of this size is a real problem, as I have mentioned before, due to the potential for shearing. The way this is solved is to embed the cells from which a library is going to be made, in low melting point agarose. The cells can be lysed in the agarose, simply be ...
Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN) proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.
Finds sub-sequences or patterns in the sequence and highlights the matching regions. The tool works with standard single letter nucleotide or protein codes including ambiguities and can match Prosite patterns in protein sequences. More... ...
The chromosome-based HPP aims to expand our understanding of the human proteome with a focus on expanding the understanding of each and every gene on each chromosome. For the most complete and up-to-date information available, visit the C-HPP portal.. ...
Mapping resources The group discussed the benefits of construction of a database of restriction fragment fingerprints for a BAC library. The value of this database will be to reduce the redundancy of the clone sets with which the mappers have to work, thereby simplifying the mapping problem. End sequences from the fingerprinted clones would be very valuable as an additional data set. There is no evidence that fingerprints are a true measure of clone fidelity. The issue was raised as to whether further investment should be made in generating and mapping additional random STSs to assist in long-range mapping. It was agreed that additional markers will be needed but that the most useful ones will be those generated from the ends of contigs, rather than random markers. There was some agreement that there may be a need for rapid RH mapping of such directed markers in a year or so. More importantly, there was general agreement that a long range mapping plan is needed. ...
Complete information for ALPK2 gene (Protein Coding), Alpha Kinase 2, including: function, proteins, disorders, pathways, orthologs, and expression. GeneCards - The Human Gene Compendium
利用者は、研究成果の公表にあたって寄託者の指定する文献を引用する(Genes Genet. Syst. 83, 245-256, 2008)。ショウジョウバエBACクローンを用いた研究成果の公表に当たっては、ナショナルバイオリソースプロジェクト「ショウジョウバエ」に対する謝辞の表明を必要とする ...
We have used massively parallel paired end sequencing strategies to reconstruct the genomic landscape of 24 breast cancer genomes, through the identification and characterization of 2166 somatically acquired genomic rearrangements. These studies have revealed considerable complexity in the patterns of structural variation, identified novel fusion genes and unveiled new insights into the complex structure of amplicons. ...
NCDO <- H.L. Günther <- Techn. Hoogeschool Delft <- C.B. van Niel. Dried American beer yeast. Type strain. Taxonomy/description (1272, 1300, 1317). Sequence accession no. whole genome shotgun sequence: JQBF00000000. Murein: A11.31. (Medium 11, 30°C ...
Screenlist: File Name: lactation_fetish 198.avi | Duration: 21min 47s | File Size: 217 MB | Resolution: 416x320 Download File: lactation_fetish 198.rar
Ive done quite a bit of TOPO cloning and, if it works, is easy, fast and efficient. I did have a problem when trying to subclone a large insert (9.5 kb) as it would always be in the wrong orientation. TOPO is supposed to be a 50/50 for orientation but sometimes (especially with large inserts) it can take on a tertiary structure which inhibits the TOPO ligation. Only way to find out is to try it!. ...
The value listed under genome equivalents is for the amplified library. Coverage was calculated by dividing the number of independent recombinants by the genome equivalents of the unamplified library. This value is 34 ...
The value listed under genome equivalents is for the amplified library. Coverage was calculated by dividing the number of independent recombinants by the genome equivalents of the unamplified library. This value is 53 ...
BioMed Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering a wide range of subjects in life sciences and medicine. The journal is divided into 55 subject-specific sections.
Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C,T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 ...
A human artificial chromosome (HAC) is a microchromosome that can act as a new chromosome in a population of human cells. That is, instead of 46 chromosomes, the cell could have 47 with the 47th being very small, roughly 6-10 megabases (Mb) in size instead of 50-250 Mb for natural chromosomes, and able to carry new genes introduced by human researchers. Ideally, researchers could integrate different genes that perform a variety of functions, including disease defense. Alternative methods of creating transgenes, such as utilizing yeast artificial chromosomes and bacterial artificial chromosomes, lead to unpredictable problems. The genetic material introduced by these vectors not only leads to different expression levels, but the inserts also disrupt the original genome. HACs differ in this regard, as they are entirely separate chromosomes. This separation from existing genetic material assumes that no insertional mutants would arise. This stability and accuracy makes HACs preferable to other ...
To make the CrPKD2-GFP fusion, the C. reinhardtii bacterial artificial chromosome clone 18K16 (https://www.genome.clemson.edu/cgi-bin/orders) was cut with EcoRV and SpeI, generating an ∼18-kb fragment, which included the entire CrPKD2 gene and its promoter. This fragment was subcloned into the EcoRV and SpeI sites of pBluescript II KS+ (Stratagene), generating a plasmid named pHK25. This plasmid was cut with HindIII, generating three fragments. One of these fragments, an 8-kb fragment containing the promoter and most of the genomic DNA encoding CrPKD2, was cloned into the HindIII site of the pBluescript KS+, generating pHK28. A second fragment, a 5.8-kb fragment containing the last two introns, exons, the 3′ UTR of CrPKD2, and the KS+ vector, was religated to produce pHK26.. To tag the CrPKD2 gene, we cloned the GFP gene into a unique EcoRI site in intron 11, flanked by the first intron of RBCS2 (Goldschmidt-Clermont and Rahire, 1986). For this, the two ends of the intron were subcloned as ...
Prof. ZHAO Yaofeng from China Agricultural University Visited Institute of Hydrobiology, Chinese Academy of Sciences (IHB) on Oct. 13th, 2016. During his visit, he gave a presentation with the title of "The IgH gene loci of cattle and mechanism of Ig diversity" for IHB researchers and students. The basic structure of an Immunoglobulin (IG) consists of four polypeptide chains linked by disulphide bridges, two larger structures called heavy chains and two smaller called light chains. Cattle express all of the five classes of IgH genes: IGHM, IGHG, IGHE, IGHA, IGHD. It has been suspected for many years that cattle possess two functional IgH gene loci, located on Bos taurus autosome (BTA) 21 and BTA11, respectively. In his presentation, Prof. Zhao showed us new findings from his research team that all functional bovine IgH genes were located on BTA21, and only a truncated mCH2 exon was present on BTA11. By sequencing of seven bacterial artificial chromosome clones screened from a Hostein cow ...
Get information, facts, and pictures about Yeast Artificial Chromosome (YAC) at Encyclopedia.com. Make research projects and school reports about Yeast Artificial Chromosome (YAC) easy with credible articles from our FREE, online encyclopedia and dictionary.
Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The ...
BACKGROUND: Currently, two main technologies are used for screening of DNA copy number; the BAC (Bacterial Artificial Chromosome) and the recently developed oligonucleotide-based CGH (Chromosomal Comparative Genomic Hybridization) arrays which are capable of detecting small genomic regions with amplification or deletion. The correlation as well as the discriminative power of these platforms has never been compared statistically on a significant set of human patient samples. RESULTS: In this paper, we present an exhaustive comparison between the two CGH platforms, undertaken at two independent sites using the same batch of DNA from 19 advanced prostate cancers. The comparison was performed directly on the raw data and a significant correlation was found between the two platforms. The correlation was greatly improved when the data were averaged over large chromosomic regions using a segmentation algorithm. In addition, this analysis has enabled the development of a statistical model to discriminate BAC
The characterization of the mechanisms through which natural variation in immune genes contributes to the pathogenesis of allergic inflammation and asthma. The approach taken is to assess the impact of genetic polymorphisms on the function and regulation of specific genes, focusing on those shown to be strongly associated with allergic inflammation and asthma phenotypes (Vercelli 2008, Vercelli & Ober 2011). The genes currently under study are IL13 and IL33. After initial in vitro and ex vivo studies (Vladich et al. 2005, LeVan et al. 2001; Cameron et al. 2006, Kiesler et al. 2009, Kiesler et al. 2010, Strempel et al. 2010), the laboratory is pioneering the development of novel, powerful in vivo models based on the generation of humanized BAC transgenic mice that recapitulate alternative haplotypes of the genes of interest and model their expression, epigenetic regulation and phenotypic correlates in vivo.. ...
Feature :. BAC transgenic mouse expresses EGFP under the transcriptional control of the neuronal glycine transporter gene GlyT2 (i.e. in glycinergic neurons).. ...
Salsite, ambystoma, axolotls in research, regeneration, limb regeneration, brain, metamorphosis, paedomorphosis, andersoni, mexicanum, tigrinum, stock center
Recombinant protein production in mammalian cells is an important topic in biotechnology [1]. One of the critical steps in the production of recombinant proteins is the isolation of stable single cell clones expressing high levels of the protein of interest. Commonly, this is achieved by random genomic integration of a vector containing a promoter, a gene of interest and a selectable marker. Although this method is simple and straight forward, it lacks of reproducibility. Expression from such vectors is substantially influenced by the surrounding chromatin to the integration site and tends to be silenced over time. This makes the selection of suitable clones a tedious and time consuming procedure [1]. Several strategies have been developed to overcome the positional effects of the adjacent chromatin. For example, "anti-repressor" elements flanking the vectors [2] have been used or vectors have been integrated specifically into chromosomal loci with open chromatin [3]. Ideally, a vector for ...
BioMed Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering a wide range of subjects in life sciences and medicine. The journal is divided into 55 subject-specific sections.
A bacterial artificial chromosome (BAC) library was made from P. triticina race 1, BBBD and probed with Pt homologs of genes encoding two predicted Pgt secreted effectors and a DNA marker mapping to a region of avirulence. Three BACs, 103 Kb, 112 Kb, and 166 Kb, were sequenced, assembled, and open reading frames were identified. Orthologous genes were identified in Pgt and local conservation of gene order (microsynteny) was observed. Pairwise protein identities ranged from 26 to 99%. One Pt BAC, containing a RAD18 ortholog, shares syntenic regions with two Pgt scaffolds, which could represent both haplotypes of Pgt. Gene sequence is diverged between the species as well as within the two haplotypes. In all three BAC clones, gene order is locally conserved, however, gene shuffling has occurred relative to Pgt. These regions are further diverged by differing insertion loci of LTR-retrotransposon, Gypsy, Copia, Mutator, and Harbinger mobile elements. Uncharacterized Pt open reading frames were also ...
A targeting vector was designed to replace a 5-kb region of the mouse opticin gene that spanned from exon 1 to exon 4, including the endogenous start site with a PGK-neomycin selection cassette flanked by loxP sites (a gift from Dr. R. Behringer, University of Texas). The homologous arms of the targeting vector were generated from PCR reactions using BAC DNA template (BAC clone previously identified from screening a BAC 129S7 library and known to contain the opticin gene). The linearized targeting vector contained an MC-1 TK cassette for negative selection, a 1.96-kb 5′ homologous arm, a floxed neomycin cassette, and a 3.75-kb 3′ homologous arm. The targeting vector was electroporated into AB2.2 embryonic stem (ES) cells (a gift from Dr. A. Bradley, Wellcome Trust Sanger Institute, Hinxton, UK) and cultured under positive and negative selection according to standard procedures. ES clones were screened for successful homologous recombination by Southern blotting with radiolabeled 5′ probe ...
Bacterial origins of replication are species specific, so you could start with a disarmed Ti plasmid in Agrobacterium (disarmed in the sense that it is missing the cis-elements necessary for T-DNA mobilization). The disabled vector would be replication competent, and would carry a target sequence for recombination. This strain of Agrobacterium could be conjugated to E. coli carrying a bacterial artificial chromosome (BAC) or even a BAC library of plant DNA. The E. coli plasmid does not have an origin of replication that would function in A. tumefaciens, so it can only survive by integration into the disabled A. tumefaciens plasmid. This would all be handled by a selectable marker (not shown ...
Description: The library was prepared from 5 ug of poly A+ RNA by oligo-dT priming (5- ACTAGTGCGGCCGCCTAGGCCTCGAGTTTTTTTTTTTTTTTTTTV-3) and Stratascript reverse transcriptase. After ligation of EcoRI adapters (5-AATTCGGCACGAGG-3) followed by kinasing adapters and by XhoI digestion, the cDNA was size selected by chromatography on Sepharose CL-2B columns and fractions containing cDNAs larger than 1000 bp were ligated into EcoRI/XhoI-digested pCS107. Average insert size 1745 bp. Reference for library construction: Current Genomics 4, 635-644. Library constructed by Michelle Tabb and Bruce Blumberg (Dept of Developmental and Cell Biology, University of California, Irvine). ...
Genes encoding for proteins that compose the immune system are constantly evolving in response to selective pressures from pathogens. This rapid host-pathogen co-evolution has led to large families of genes that are highly polymorphic and are often a result of gene duplication and diversification. In GRCh37, the current reference assembly, some chromosome regions encompassing such genes are comprised of components from several different genomic libraries. The lack of a single haplotype and excess allelic variation at such regions hinders haplotype inference using traditional linkage disequilibrium based methodology. In addition, given the polymorphic nature of these genes, paralogs may be missing from the reference assembly. The CHORI-17 BAC library, derived from a hydatidiform mole, is an excellent resource for resolving loci such as these, as it is composed of germline material without any allelic variation. We sequenced clones from CHORI-17 to create a single haplotype across two of these ...
I am a research technician for the ENCyclopedia Of DNA Elements (ENCODE) Project. The goal of the project is to identify all functional elements in the human genome through high-throughput sequencing. This project uses Bacterial Artificial Chromosomes (BAC) Recombineering to tag transcription factors with GFP in order to perform Chromatin Immunoprecipitation Sequencing (ChIP-Seq). Once the BAC is transfected into K562 cells, I maintain the stable cell lines. After I extract the chromatin from the cells, I sonicate the chromatin then perform ChIP. Finally, the purified DNA generated from ChIP is sequenced using next generation sequencing.. ...
Looking for online definition of BACS in the Medical Dictionary? BACS explanation free. What is BACS? Meaning of BACS medical term. What does BACS mean?
Recently developed pre-clinical bacterial artificial chromosome (BAC) transgenic models have provided the field with tools that can be used to systematically investigate roles for LRRK2 during neuronal differentiation. These pre-clinical models express LRRK2, LRRK2 G2019S, or a LRRK2 kinase dead mutant in a cell type specific manner that closely resembles native LRRK2 expression. Native LRRK2 is expressed throughout hippocampus, and hippocampal neurons grown in culture have served as an excellent model system in which to evaluate neural differentiation. The pre-clinical and culture model systems together will permit us to determine definitively the role that LRRK2 plays in neural differentiation.. Relevance to Diagnosis/Treatment of Parkinson s Disease ...
... ,Error-free cloning of BAC (100+kb), fosmid (40kb), and large plasmid insert (10-20kb) DNAs. Greater insert stability than any othe BAC vector. On command 20-50 fold copy amplification for high yields and easy recombinant DNA purification. Available with blue-white screening (pEZ BAC) or transcripti,biological,biology supply,biology supplies,biology product
Blue horizontal bar: chromosome sequence. Blue/green fragments: individual clone and WGS components in the assembly tiling path. Purple bars: assembly-assembly alignments. The p- and q- arms, as well as the location of the centromere and adjacent heterochromatin gaps are marked. Note: in GRCh38, the centromere gap was replaced with sequence. The vertical bars through the alignments highlight sequence from the q-arm of GRCh37 chr. 9 that is now found on the p-arm of GRCh38 ...
One of the most widely used tools in modern biology is molecular cloning with restriction enzymes, which create compatible ends between ...
Distribution of contigs by size of longest ORF. Solid line, contigs with any database homology by BLASTX (1,445). Dotted line, contigs without database homology
Abbe Mongein. See Uvedales St. Germain. Abondance. See Amour. Achan (Black Achan; Black Bess; Red Achan; Winter Beurre). Fruit medium sized, obovate, ...
The drug brand named Bac Septin contains generic salt-Sulfamethoxazole and is manufactured by Gilton do Brasil Industria Quimica e Farmaceutica ...
Title: Physical map construction and physical characterization of channel catfish genome. Name: Xu, Peng. Degree: PhD. Chair: Zhanjiang Liu. Resides: FAA Library. University: Auburn. Location: Auburn, Alabama. Date: 2007. Pages: 111. Keywords: channel catfish genome, gene mapping, genetics. Abstract: Catfish is the major aquaculture species in the United States. To enhance genome studies involving linkage mapping, comparative mapping and linkage map and physical map integration, over 20,000 Bacterial Artificial Chromosome (BAC) end sequences were generated and a BAC-based physical map of the channel catfish (Ictalurus punctatus Rafinesque) genome was constructed using four color fluorescence-based fingerprinting. A total of 25,195 BAC ends were sequenced, generating 20,366 clean BAC end sequences (BES) with an average reading length of 557 bp. The total reading length of 11,414,601 bp represented approximately 1.2% of the catfish genome. Based on this survey, the catfish genome was found to be ...
Molecular genetic studies of the human malaria parasite Plasmodium falciparum have been hampered in part due to difficulties in stably cloning and propagating parasite genomic DNA in bacteria. This is thought to be a result of the unusual A+T bias (|80%) in the parasites DNA. Pulsed-field gel electrophoretic separation of P. falciparum chromosomes has shown that large chromosomal polymorphisms, resulting from the deletion of DNA from chromosome ends, frequently occur. Understanding the biological implications of this chromosomal polymorphism will require the analysis of large regions of genomic, and in particular telomeric, DNA. To overcome the limitations of cloning parasite DNA in bacteria, we have cloned genomic DNA from the P. falciparum strain FCR3 in yeast as artificial chromosomes. A pYAC4 library with an average insert size of approximately 100 kb was established and found to have a three to fourfold redundancy for single-copy genes. Unlike bacterial hosts, yeast stably maintain and propagate
Copy number variation (CNV) comprises a recently discovered kind of variation involving deletion and duplication of DNA segments of variable size, ranging from a few hundred basepairs to several million. By altering gene dosage levels or disrupting proximal or distant regulatory elements CNVs create human diversity. They represent also an important factor in human evolution and play a role in many disorders including cancer. Array-based comparative genomic hybridization as well as expression arrays are powerful and suitable methods for determination of copy number variations or gene expression changes in the human genome. In paper I we established a 32K clone-based genomic array, covering 99% of the current assembly of the human genome with high resolution and applied it in the profiling of 71 healthy individuals from three ethnic groups. Novel and previously reported CNVs, involving ~3.5% of the genome, were identified. Interestingly, 87% of the detected CNV regions overlapped with known genes ...
TY - JOUR. T1 - Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). AU - OMeally, Denis. AU - Sarre, Stephen. AU - Georges, Arthur. AU - Ezaz, Tariq. PY - 2013. Y1 - 2013. N2 - Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs microchromosomes (2n=32), including a female heterogametic ZW sex microchromosome pair. Here, we present a molecular cytogenetic map for P. vitticeps comprising 87 anchor bacterial artificial chromosome clones that together span each macro- and microchromosome. It is the first comprehensive cytogenetic map for any nonavian reptile. We identified an active nucleolus organizer region (NOR) on the sub-telomeric region of 2q by ...
Background: Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results: Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which ...
The chromosome karyotyping of insects included Lepidoptera is very difficult because of the large number of chromosomes, small size, and lack of major constriction structure. This has been a great hindrance to the karyological analysis. In this study, using banding analysis on the pachytene chromosomes, all chromosomes were characterized, and idiograms of Bombyx mori and R mandarina were established. From the testes during meiosis, 81 and 56 cells were examined for the analysis of B. mori and R mandarina, respectively. The best preparation of pachytene chromosomes was obtained on the 3(rd) day of the 3(rd) larva and 2(nd) or 3(rd) day of the 4(th) larva of the B. mori male, and it revealed that there was a characteristic nucleolus structure in the 2(nd) chromosomes, which was supposed to be the Z sex chromosome. The length of the pachytene chromosome was variable during the developmental stage of the cell, so the physical length of each chromosome was relatively converted in comparison to the ...
The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were ...
Abnormal genomic losses detected by array comparative genomic hybridization are prevalent in adults with unexplained intellectual disability. Our data showing abnormalities in 22% and 17% of overall patients and of cases with normal karyotypes, respectively, suggest that the yield of array comparati …
Background: Array CGH is a powerful tool for the detection of copy number changes in the genome. Methods: We have developed a human X and Y chromosome tiling path array for the analysis of sex chromosome aberrations. Results: Normal X and Y chromosome profiles were established by analysis with DNA from normal fertile male and female individuals. Infertile males with known Y deletions confirmed the competence of the array to detect AZFa, AZFb and AZFc deletions and to distinguish between different AZFc lesions. Examples of terminal and interstitial deletions of Xp (previously characterised through cytogenetic and microsatellite analysis - [Lachlan et al, 2006]) have been assessed on the arrays both confirming and refining the established deletion breakpoints. Breakpoints in iso-Yq, iso-Yp and X-Y translocation chromosomes and X-Y interchanges in XX males are also amenable to analysis. Discussion: The resolution of the tiling path clone set used allows breakpoints to be placed within 100-200Kb, ...
P1 artificial chromosomes (PACs) have features of both P1 vectors and Bacterial Artificial Chromosomes (BACs). Similar to P1 ... Bacterial artificial chromosomes (BACs) are circular DNA molecules, usually about 7kb in length, that are capable of holding ... Yoo EY, Kim S, Kim JY, Kim BD (August 2001). "Construction and characterization of a bacterial artificial chromosome library ... Osoegawa K, de Jong PJ, Frengen E, Ioannou PA (May 2001). "Construction of bacterial artificial chromosome (BAC/PAC) libraries ...
"Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome". Microbes Infect. 8 (4 ...
In Bacterial Artificial Chromosomes. Ed P. Chatterjee, In Tech Open Access Publisher, Croatia, p1-22. http://www.canberratimes. ... Deakin, J, Koina, E, Waters, P et al 2008, 'Physical map of two tammar wallaby chromosomes: a strategy for mapping in non-model ... Deakin, J.E. and Graves, J.A.M. (2010). Mapping genes on tammar wallaby target chromosomes. Macropods: The biology of kangaroos ... The status of dosage compensation in the multiple X chromosomes of the platypus', PLoS Genetics, vol. 4, no. 7, pp. 1-13. ...
Bioengineers have created F plasmids that can contain inserted foreign DNA; this is called a bacterial artificial chromosome. ... F' (F-prime) bacteria are formed by incorrect excision from the chromosome, resulting in F plasmid carrying bacterial sequences ... F+ bacteria possess F factor as a plasmid independent of the bacterial genome. The F plasmid contains only F factor DNA and no ... The episome that harbors the F factor can exist as an independent plasmid or integrate into the bacterial cell's genome. There ...
In engineering large constructs of >100 kb, such as the Bacterial Artificial Chromosomes (BACs), or chromosomes, recombineering ... "Rapid modification of bacterial artificial chromosomes by ET- recombination". Nucleic Acids Res. 27: 1555-1557. doi:10.1093/nar ... and for modifying DNA of any source often contained on a bacterial artificial chromosome (BAC), among other applications. ... Recombineering is widely used for bacterial genetics, in the generation of target vectors for making a conditional mouse ...
... Type Replication: a type of bacterial DNA replication specific to circular chromosomes. Threshold value of an artificial ...
RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc Natl Acad Sci U ...
One popular way of studying EBV in vitro is to use bacterial artificial chromosomes. Epstein-Barr virus can be maintained and ...
Shizuya, H; Kouros-Mehr, H (2001). "The development and applications of the bacterial artificial chromosome cloning system". ... "Using bacterial artificial chromosomes in leukemia research: The experience at the university cytogenetics laboratory in Brest ... labelled and mapped from bacterial artificial chromosomes (BACs). BACs were developed during the Human Genome Project as it was ... For CISH to work optimally, chromosomes must be in either interphase or metaphase. Tissue samples are securely attached to a ...
... "bacterial artificial chromosomes", or BACs, which are derived from bacterial chromosomes which have been genetically engineered ... one X chromosome and one Y chromosome) compared to female samples (which contain two X chromosomes). The other 22 chromosomes ( ... "A Bacterial Artificial Chromosome Library for Sequencing the Complete Human Genome". Genome Research. 11 (3): 483-96. doi: ... In May 2006, another milestone was passed on the way to completion of the project, when the sequence of the last chromosome was ...
April 2000). "Construction and characterization of a Schistosoma mansoni bacterial artificial chromosome library". Genomics. 65 ... Chromosomes range in size from 18 to 73 MB and can be distinguished by size, shape, and C banding. In 2000, the first BAC ... Schistosoma mansoni has 8 pairs of chromosomes (2n = 16)-7 autosomal pairs and 1 sex pair. The female schistosome is ... of the bases organised into chromosomes. Schistosome eggs, which may become lodged within the hosts tissues, are the major ...
"Genome-wide Copy Number Profiling on High-density Bacterial Artificial Chromosomes, Single-nucleotide Polymorphisms, and ... In copy-neutral LOH, one allele or whole chromosome from a parent is missing. This problem leads to duplication of the other ...
The assembly of the genome sequence in M. truncatula was based on bacterial artificial chromosomes (BACs). This is the same ...
"Cloning human herpes virus 6A genome into bacterial artificial chromosomes and study of DNA replication intermediates". ... For example, RCA has been successfully used for detecting the existence of viral and bacterial DNA from clinical samples, which ... replication mechanism of HPV may have physiological implications into the integration of the virus into the host chromosome and ...
Borenstein, R.; Frenkel, N. (2009). "Cloning human herpes virus 6A genome into bacterial artificial chromosomes and study of ... 2010). "The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro ... and preferentially does so into the proximal end of chromosomes 9, 17, 18, 19, and 22, but has also occasionally been found in ... chromosomes 10 and 11. Nearly 70 million individuals are suspected to carry chromosomally integrated HHV-6. A number of genes ...
"Cloning human herpes virus 6A genome into bacterial artificial chromosomes and study of DNA replication intermediates". ... and may be seen in the late stage of bacterial infection by phages. As an example, if the genes in the phage DNA are arranged ...
"Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage". Environmental ... recent advances in molecular biological techniques allowed the construction of libraries in bacterial artificial chromosomes ( ... of the reads could be aligned to 194 public human gut bacterial genomes and 7.6-21.2% to bacterial genomes available in GenBank ... In many bacterial communities, natural or engineered (such as bioreactors), there is significant division of labor in ...
The classic strategy to construct an artificial chromosome is bacterial artificial chromosome (BAC). Basically, the target ... the fragments is cloned into plasmids to construct artificial chromosome such as bacterial artificial chromosomes (BAC) which ... Another commonly used artificial chromosome is fosmid. The difference between BAC and fosmids is the size of the DNA inserted. ... ESP can be applied for either with or without constructed artificial chromosome. With BAC, precious samples can be immortalized ...
If the gap is large (,20kb) then the large fragment is cloned in special vectors such as BAC (Bacterial artificial chromosomes ... From this map, a minimal number of fragments that cover the entire chromosome are selected for sequencing.[14] In this way, the ... The amplified genome is first sheared into larger pieces (50-200kb) and cloned into a bacterial host using BACs or PACs. ... Two principal methods are used for this: primer walking (or "chromosome walking") which progresses through the entire strand ...
"Analysis of the 1.1-Mb human alpha/delta T-cell receptor locus with bacterial artificial chromosome clones". Genome Res. 7 (4 ...
Insert size of up to 350 kb can be cloned in bacterial artificial chromosome (BAC). BACs are maintained in E. coli with a copy ... Insert of up to 3,000 kb may be carried by yeast artificial chromosome. Human artificial chromosome may be potentially useful ... and bacterial artificial chromosomes (BACs). Some DNA, however, cannot be stably maintained in E. coli, for example very large ... BACs are based on F plasmid, another artificial chromosome called the PAC is based on the P1 phage. ...
BAC (Bacterial Artificial Chromosome) arrays were historically the first microarray platform to be used for DNA copy number ... then are studied and those that significantly differ from zero value are announced to represent a part of a chromosome with an ...
Mapping and sequencing of the chromosomal region was performed with the aid of bacterial artificial chromosome clones. Around ... in which part of chromosome 7 had become exchanged with part of chromosome 5. The site of breakage of chromosome 7 was located ... The gene is located on chromosome 7 (7q31, at the SPCH1 locus), and is expressed in fetal and adult brain, heart, lung and gut ... non-sex chromosome) acting in a dominant fashion. This is one of the few known examples of Mendelian (monogenic) inheritance ...
"A bacterial artificial chromosome library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni". Memórias ... The chromosomes in this snail are small, and the haploid number of chromosomes is 18. A complete genome sequence from the ... 2015). "A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?"". PLOS Neglected ... Like other species, this snail is "light sensitive" and can be disrupted by artificial light. Biomphalaria glabrata feeds on ...
"Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional ... 1997 ), on chromosome 7, another by igl1, indole-3-glycerol phosphate1(Frey et al. 1997, on chromosome 1, and another by tsah1 ... 2010). AB chromosome translocation analyses place on short arm of chromosome 4 (4S; Simcox and Weber 1985 ). There is close ... The X-ray structure of BX1 protein has been resolved and compared with bacterial TSA (tryptophan synthase alpha subunit, Kulik ...
Technologies for constructing and testing Yeast artificial chromosomes, synthetic yeast genomes (Sc2.0) and virus/phage- ... resistant bacterial genomes have industrial, agricultural and medical applications. The human genome consists of three billion ... This leverages two decades of work on Synthetic Biology and Artificial gene synthesis. The newly created GP-Write project will ...
The bacterial and fungal cultures found in the fermenting piles were found to vary widely from factory to factory throughout ... This notion has recently been refuted through a systematic chromosome analysis of the species attributed to many East Asian ... to be sold as the raw product without the artificial accelerated fermentation process. ... Tian, Jianqing; Zhu, Zixiang; Wu, Bing; Wang, Lin; Liu, Xingzhong (2013-08-19). "Bacterial and fungal communities in Pu'er tea ...
Cosmid/BAC/YAC end sequences use Cosmid/Bacterial artificial chromosome/Yeast artificial chromosome to sequence the genome from ... Vectors Yeast artificial chromosome Venter, J. Craig, Hamilton O. Smith, and Leroy Hood. "A New Cooperative Strategy for ... To get enough chromosome, they need a large number of E. coli culture that 2.5 - 5 litres may be a reasonable amount. Cosmid/ ...
durum (2n = 4× = 28) were used in this study; Langdon LDN#65 for PCR bacterial artificial chromosome (BAC) screening, and OR ... durum (2n = 4× = 28) Langdon LDN#65 genotype was used in this study for PCR Bacterial Artificial Chromosome (BAC) screenings. ... 516,000 clones from the Durum wheat bacterial artificial chromosome (BAC) library, were screened for individual clones ... ABRE, ABA-responsive element; BAC, bacterial artificial chromosome; CRT, C-repeat element; DRE, dehydration-responsive element ...
We confirmed homology of sex chromosomes in the genus by performing FISH of an X‐linked bacterial artificial chromosome (BAC) ... Taken together, these results are consistent with long‐term conservation of sex chromosomes in the group. Our results pave the ... We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of ... We used model‐based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes ...
A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid (or F-plasmid), used for ... The bacterial artificial chromosomes usual insert size is 150-350 kbp.[4] A similar cloning vector called a PAC has also been ... The Big Bad BAC: Bacterial Artificial Chromosomes - a review from the Science Creative Quarterly ... "The development and applications of the bacterial artificial chromosome cloning system" (PDF). Keio J Med. 50 (1): 26-30. doi: ...
... everything you need for studying or teaching Bacterial artificial chromosome. ... Immediately download the Bacterial artificial chromosome summary, chapter-by-chapter analysis, book notes, essays, quotes, ... Bacterial artificial chromosome Summary. Everything you need to understand or teach Bacterial artificial chromosome. ... Bacterial Artificial Chromosome (Bac) Bacterial artificial chromosomes (BACs) involve a cloning system that is derived from a ...
Bacterial Artificial Chromosomes, Second Edition expands upon the previous edition with current, detailed methods developed for ... Bacterial Artificial Chromosomes, Second Edition expands upon the previous edition with current, detailed methods developed for ... Authoritative and cutting-edge, Bacterial Artificial Chromosomes, Second Edition seeks to aid scientists in advancing their ... Herpesvirus Mutagenesis Facilitated by Infectious Bacterial Artificial Chromosomes (iBACs) Karl E. Robinson, Timothy J. Mahony ...
Alonso J.M., Stepanova A.N. (2014) Arabidopsis Transformation with Large Bacterial Artificial Chromosomes. In: Sanchez-Serrano ... Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector ... Generation of a high-quality P1 library of Arabidopsis suitable for chromosome walking. Plant J 7:351-358CrossRefGoogle Scholar ...
... B. Karsten Tischer and ... Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus ...
A. Domi and B. Moss, "Engineering of a vaccinia virus bacterial artificial chromosome in Escherichia coli by bacteriophage λ- ... Viral Bacterial Artificial Chromosomes: Generation, Mutagenesis, and Removal of Mini-F Sequences. B. Karsten Tischer and ... 2. Generation of Bacterial Artificial Chromosomes (BACs). 2.1. Homologous Recombination in Mammalian Cells. One of the most ... A. Domi and B. Moss, "Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery ...
A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.. Gong S1, Zheng C, Doughty ML ... and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer ...
Efficient studies of long-distance Bmp5 gene regulation using bacterial artificial chromosomes.. DiLeone RJ1, Marcus GA, ... Here we describe the use of bacterial artificial chromosome clones to rapidly survey hundreds of kilobases of DNA for potential ... Efficient studies of long-distance Bmp5 gene regulation using bacterial artificial chromosomes ... Efficient studies of long-distance Bmp5 gene regulation using bacterial artificial chromosomes ...
Super-Sized Inserts Bacterial Artificial Chromosomes (BAC) have been developed to hold much larger pieces of DNA than a plasmid ... breed healthier farm animals or even process radioactive waste are just a few examples of what Bacterial Artificial Chromosomes ... With such a vector, it is easier to grow sufficient amounts of the herpes virus for research, since it can live in bacterial ... For instance, there are researchers studying the herpes virus who have made a BAC vector that can be cultured in bacterial ...
... was to test the ability of oligonucleotide-based arrays to reproduce the results of focused bacterial artificial chromosome ( ... platform to give high-resolution coverage of regions within the genome sequence coordinates of BAC/P1 artificial chromosome ( ... P1 artificial chromosomes (PACs), or bacterial artificial chromosomes (BACs), or of polymerase chain reaction products ... Ou, Z., Kang, S., Shaw, C. et al. Bacterial artificial chromosome-emulation oligonucleotide arrays for targeted clinical array- ...
If you are a society or association member and require assistance with obtaining online access instructions please contact our Journal Customer Services team ...
Triticum monococcum bacterial artificial chromosome (BAC) library D. Lijavetzky, G. Muzzi, T. Wicker, B. Keller, R. Wing, and J ...
Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Research. 1999;27(6):1555-1557. [PMC ... Bacterial Artificial Chromosome Mutagenesis Using Recombineering. Kumaran Narayanan 1, 2 * and Qingwen Chen 2 ... Modification of bacterial artificial chromosomes (BACs) and preparation of intact BAC DNA for generation of transgenic mice. [ ... Bacterial artificial chromosomes, or BACs, are fertility- (F-) factor-based plasmid vectors that replicate stably in low copy ...
Bacterial artificial chromosomes or BACS are circular DNA molecules which contain a replicon that is based on the F factor. ... Bacterial artificial chromosomes or BACS are circular DNA molecules which contain a replicon that is based on the F factor. ... Bacterial artificial chromosomes. S. Zhao and M. Stodolsky, editors, Volume 2: Functional Studies, volume 256 of Methods in ... Bacterial artificial chromosomes. S. Zhao and M. Stodolsky, editors, Volume 1: Library Construction, Physical Mapping, and ...
The bacterial artificial chromosome (BAC) (1) is now the most widely utilized vector system to construct large-insert genomic ... Bacterial Artificial Chromosome Positive Clone Bacterial Artificial Chromosome Library Yeast Artificial Chromosome Colony ... The bacterial artificial chromosome (BAC) (1) is now the most widely utilized vector system to construct large-insert genomic ... Yasukochi Y. (2002) PCR-Based Screening for Bacterial Artificial Chromosome Libraries. In: Chen BY., Janes H.W. (eds) PCR ...
... ... and bacterial artificial chromosome (BAC) end sequences; and annotated genes. The contig scaffold is used by TOPAAS for ...
Role of MITF Phosphorylation Sites During Coat Color and Eye Development in Mice Analyzed by Bacterial Artificial Chromosome ... Role of MITF Phosphorylation Sites During Coat Color and Eye Development in Mice Analyzed by Bacterial Artificial Chromosome ... Role of MITF Phosphorylation Sites During Coat Color and Eye Development in Mice Analyzed by Bacterial Artificial Chromosome ... Role of MITF Phosphorylation Sites During Coat Color and Eye Development in Mice Analyzed by Bacterial Artificial Chromosome ...
Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex ... Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex ... Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome ... "Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome ...
A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. ... A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. ... A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. ... Figure 3. Bacterial artificial chromosome-CGH of mucus-cultured clones. E. coli O157:H7 strain Sakai BAC clones were selected ...
Engineering the Largest RNA Virus Genome as an Infectious Bacterial Artificial Chromosome F Almazán 1 , J M González, Z Pénzes ... Engineering the Largest RNA Virus Genome as an Infectious Bacterial Artificial Chromosome F Almazán et al. Proc Natl Acad Sci U ... Bacterial Artificial Chromosome-Based Lambda Red Recombination with the I-SceI Homing Endonuclease for Genetic Alteration of ... Herein, we show that the application of two strategies, cloning of the cDNAs into a bacterial artificial chromosome and nuclear ...
Subsequent reports using either yeast artificial chromosomes, bacterial artificial chromosomes (BACs), or P1 phage artificial ... Here, we report on the use of a bacterial artificial chromosome (BAC) to begin understanding the in vivo regulation of smooth ... Expression of human smooth muscle calponin in transgenic mice revealed with a bacterial artificial chromosome. Joseph M. Miano ... 2000) Point mutation of bacterial artificial chromosomes by ET recombination. EMBO J 1:239-243. ...
Title: Bacterial Artificial Chromosomes: Volume 1: Library Construction, Physical Mapping, and Sequencing (Methods in Molecular ... Bacterial Artificial Chromosomes: Volume 1: Library Construction, Physical Mapping, and Sequencing (Methods in Molecular ...
... BAC libraries are essential resources in model organism research. We are ... Bacterial Artificial Chromosome (BAC) Project ...
  • Murphy ( 9 ) reported the highest frequencies of recombination with linear DNA containing long homologies by transforming in the presence of the bacteriophage λ recombination functions (Exo and Beta) in a bacterial recBCD mutant background. (pnas.org)
  • However, the master regulator encoded by the sex-determining locus ( SD ) on the Y chromosome of most mammalian species, SRY , is not functioning like that in some mammals ( 1 ). (pnas.org)
  • Microsatellite locus UASM014 was mapped onto bovine chromosome 14 at approximately 5.7 cM from marker BM1508. (usda.gov)
  • The cloned DNA fragments are large enough to encode operons and therefore might result in the expression, by a surrogate bacterial host, of several enzymes that could catalyze a relatively complex metabolic process, including the synthesis of secondary metabolites ( 34 ). (asm.org)
  • These fragments were cloned, sequenced, and mapped to chromosome band 14q13. (aacrjournals.org)
  • Bacterial antibiotic resistance cassettes present in the BAC vector backbone allow the selection in E. coli . (hindawi.com)
  • This antibiotic is a bacteriostatic and therefore only prevents bacterial growth. (sigmaaldrich.com)
  • This antibiotic is a bacteriostatic agent that inhibits protein synthesis by binding to the 23S RNA of the 50S subunit of bacterial ribosomes. (sigmaaldrich.com)
  • For several decades, traditional Giemsa banding chromosome analysis and prenatal diagnosis using amniocentesis and chorionic villus sampling have had an integral role in clinical workups that aim to prevent neonatal deaths, stillbirths, and pregnancy losses during the first and second trimesters [ 1 ]. (biomedcentral.com)
  • Chromosome analysis of prenatal samples and products of conception (POC) has conventionally been done by karyotyping (KT). (metasystems-international.com)
  • Shortcomings of KT like high turnaround time and culture failure led to technology innovations, such as the bacterial artificial chromosomes (BAC)s-on-Beads (BoBs)-based tests, Prenatal BoBs (prenatal samples) and KaryoLite BoBs (POC samples). (metasystems-international.com)