Unstable isotopes of chromium that decay or disintegrate emitting radiation. Cr atoms with atomic weights of 46-49, 51, 55, and 56 are radioactive chromium isotopes.
A trace element that plays a role in glucose metabolism. It has the atomic symbol Cr, atomic number 24, and atomic weight 52. According to the Fourth Annual Report on Carcinogens (NTP85-002,1985), chromium and some of its compounds have been listed as known carcinogens.
Inorganic compounds that contain chromium as an integral part of the molecule.
Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Unstable isotopes of zinc that decay or disintegrate emitting radiation. Zn atoms with atomic weights 60-63, 65, 69, 71, and 72 are radioactive zinc isotopes.
Salts of chromic acid containing the CrO(2-)4 radical.
Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed)
Unstable isotopes of strontium that decay or disintegrate spontaneously emitting radiation. Sr 80-83, 85, and 89-95 are radioactive strontium isotopes.
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
Specific alloys not less than 85% chromium and nickel or cobalt, with traces of either nickel or cobalt, molybdenum, and other substances. They are used in partial dentures, orthopedic implants, etc.
Unstable isotopes of krypton that decay or disintegrate emitting radiation. Kr atoms with atomic weights 74-77, 79, 81, 85, and 87-94 are radioactive krypton isotopes.
Unstable isotopes of indium that decay or disintegrate emitting radiation. In atoms with atomic weights 106-112, 113m, 114, and 116-124 are radioactive indium isotopes.
Picolinic acid is an organic compound that belongs to the class of pyridine derivatives, acting as a chelating agent in mammals, primarily found in the liver and kidneys, and playing a significant role in the metabolism of proteins, vitamins, and minerals.
Unstable isotopes of sodium that decay or disintegrate emitting radiation. Na atoms with atomic weights 20-22 and 24-26 are radioactive sodium isotopes.
The spontaneous transformation of a nuclide into one or more different nuclides, accompanied by either the emission of particles from the nucleus, nuclear capture or ejection of orbital electrons, or fission. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Unstable isotopes of barium that decay or disintegrate emitting radiation. Ba atoms with atomic weights 126-129, 131, 133, and 139-143 are radioactive barium isotopes.
The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph.
Unstable isotopes of yttrium that decay or disintegrate emitting radiation. Y atoms with atomic weights 82-88 and 90-96 are radioactive yttrium isotopes.
Welding is not typically considered a medical term, but rather refers to a process in manufacturing and construction involving the joining of metal components through heat or pressure, which isn't directly related to medicine or healthcare.
Unstable isotopes of tin that decay or disintegrate emitting radiation. Sn atoms with atomic weights 108-111, 113, 120-121, 123 and 125-128 are tin radioisotopes.
Chromic acid (H2Cr2O7), dipotassium salt. A compound having bright orange-red crystals and used in dyeing, staining, tanning leather, as bleach, oxidizer, depolarizer for dry cells, etc. Medically it has been used externally as an astringent, antiseptic, and caustic. When taken internally, it is a corrosive poison.
Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes.
Unstable isotopes of iron that decay or disintegrate emitting radiation. Fe atoms with atomic weights 52, 53, 55, and 59-61 are radioactive iron isotopes.
Unstable isotopes of copper that decay or disintegrate emitting radiation. Cu atoms with atomic weights 58-62, 64, and 66-68 are radioactive copper isotopes.
Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes.
Stable chromium atoms that have the same atomic number as the element chromium, but differ in atomic weight. Cr-50, 53, and 54 are stable chromium isotopes.
Carcinogenic substances that are found in the environment.
High energy POSITRONS or ELECTRONS ejected from a disintegrating atomic nucleus.
A process of preserving animal hides by chemical treatment (using vegetable tannins, metallic sulfates, and sulfurized phenol compounds, or syntans) to make them immune to bacterial attack, and subsequent treatments with fats and greases to make them pliable. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The first artificially produced element and a radioactive fission product of URANIUM. Technetium has the atomic symbol Tc, atomic number 43, and atomic weight 98.91. All technetium isotopes are radioactive. Technetium 99m (m=metastable) which is the decay product of Molybdenum 99, has a half-life of about 6 hours and is used diagnostically as a radioactive imaging agent. Technetium 99 which is a decay product of technetium 99m, has a half-life of 210,000 years.
Unstable isotopes of mercury that decay or disintegrate emitting radiation. Hg atoms with atomic weights 185-195, 197, 203, 205, and 206 are radioactive mercury isotopes.
A gamma-emitting radionuclide imaging agent used for the diagnosis of diseases in many tissues, particularly in the gastrointestinal system, liver, and spleen.
Stable cesium atoms that have the same atomic number as the element cesium, but differ in atomic weight. Cs-133 is a naturally occurring isotope.
Unstable isotopes of cerium that decay or disintegrate emitting radiation. Ce atoms with atomic weights 132-135, 137, 139, and 141-148 are radioactive cerium isotopes.
Stable cobalt atoms that have the same atomic number as the element cobalt, but differ in atomic weight. Co-59 is a stable cobalt isotope.
Hafnium. A metal element of atomic number 72 and atomic weight 178.49, symbol Hf. (From Dorland, 28th ed)
Unstable isotopes of gold that decay or disintegrate emitting radiation. Au 185-196, 198-201, and 203 are radioactive gold isotopes.
Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms.
Unstable isotopes of lead that decay or disintegrate emitting radiation. Pb atoms with atomic weights 194-203, 205, and 209-214 are radioactive lead isotopes.
Any diagnostic evaluation using radioactive (unstable) isotopes. This diagnosis includes many nuclear medicine procedures as well as radioimmunoassay tests.
Stable zinc atoms that have the same atomic number as the element zinc, but differ in atomic weight. Zn-66-68, and 70 are stable zinc isotopes.
Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes.
Unstable isotopes of cadmium that decay or disintegrate emitting radiation. Cd atoms with atomic weights 103-105, 107, 109, 115, and 117-119 are radioactive cadmium isotopes.
Astatine. A radioactive halogen with the atomic symbol At, atomic number 85, and atomic weight 210. Its isotopes range in mass number from 200 to 219 and all have an extremely short half-life. Astatine may be of use in the treatment of hyperthyroidism.
Coating with a metal or alloy by electrolysis.
Radiotherapy where cytotoxic radionuclides are linked to antibodies in order to deliver toxins directly to tumor targets. Therapy with targeted radiation rather than antibody-targeted toxins (IMMUNOTOXINS) has the advantage that adjacent tumor cells, which lack the appropriate antigenic determinants, can be destroyed by radiation cross-fire. Radioimmunotherapy is sometimes called targeted radiotherapy, but this latter term can also refer to radionuclides linked to non-immune molecules (see RADIOTHERAPY).
Lutetium. An element of the rare earth family of metals. It has the atomic symbol Lu, atomic number 71, and atomic weight 175.
Rhenium. A metal, atomic number 75, atomic weight 186.2, symbol Re. (Dorland, 28th ed)
Determination of the energy distribution of gamma rays emitted by nuclei. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Samarium. An element of the rare earth family of metals. It has the atomic symbol Sm, atomic number 62, and atomic weight 150.36. The oxide is used in the control rods of some nuclear reactors.
Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161)
Used as an indicator in titrating iron and for the colorimetric determination of chromium and the detection of cadmium, mercury, magnesium, aldehydes, and emetine.
Pollutants, present in soil, which exhibit radioactivity.
Unstable isotopes of bromine that decay or disintegrate emitting radiation. Br atoms with atomic weights 74-78, 80, and 82-90 are radioactive bromine isotopes.
Detection and counting of scintillations produced in a fluorescent material by ionizing radiation.
Spectrophotometric techniques by which the absorption or emmision spectra of radiation from atoms are produced and analyzed.
Leakage and accumulation of CEREBROSPINAL FLUID in the subdural space which may be associated with an infectious process; CRANIOCEREBRAL TRAUMA; BRAIN NEOPLASMS; INTRACRANIAL HYPOTENSION; and other conditions.
Stable calcium atoms that have the same atomic number as the element calcium, but differ in atomic weight. Ca-42-44, 46, and 48 are stable calcium isotopes.
Liquid, solid, or gaseous waste resulting from mining of radioactive ore, production of reactor fuel materials, reactor operation, processing of irradiated reactor fuels, and related operations, and from use of radioactive materials in research, industry, and medicine. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Metals with high specific gravity, typically larger than 5. They have complex spectra, form colored salts and double salts, have a low electrode potential, are mainly amphoteric, yield weak bases and weak acids, and are oxidizing or reducing agents (From Grant & Hackh's Chemical Dictionary, 5th ed)
Normal human serum albumin mildly iodinated with radioactive iodine (131-I) which has a half-life of 8 days, and emits beta and gamma rays. It is used as a diagnostic aid in blood volume determination. (from Merck Index, 11th ed)
A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
Unstable isotopes of ruthenium that decay or disintegrate emitting radiation. Ru atoms with atomic weights 93-95, 97, 103, and 105-108 are radioactive ruthenium isotopes.
Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water.
Techniques used to determine the age of materials, based on the content and half-lives of the RADIOACTIVE ISOTOPES they contain.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis.
Stainless steel. A steel containing Ni, Cr, or both. It does not tarnish on exposure and is used in corrosive environments. (Grant & Hack's Chemical Dictionary, 5th ed)
Unstable isotopes of selenium that decay or disintegrate emitting radiation. Se atoms with atomic weights 70-73, 75, 79, 81, and 83-85 are radioactive selenium isotopes.
Positively charged particles composed of two protons and two NEUTRONS, i.e. equivalent to HELIUM nuclei, which are emitted during disintegration of heavy ISOTOPES. Alpha rays have very strong ionizing power, but weak penetrability.
A class of organic compounds containing a ring structure made up of more than one kind of atom, usually carbon plus another atom. The ring structure can be aromatic or nonaromatic.
A series of steps taken in order to conduct research.
A gamma-emitting radionuclide imaging agent used for the diagnosis of diseases in many tissues, particularly in the gastrointestinal system, cardiovascular and cerebral circulation, brain, thyroid, and joints.
Tungsten. A metallic element with the atomic symbol W, atomic number 74, and atomic weight 183.85. It is used in many manufacturing applications, including increasing the hardness, toughness, and tensile strength of steel; manufacture of filaments for incandescent light bulbs; and in contact points for automotive and electrical apparatus.
Atomic species differing in mass number but having the same atomic number. (Grant & Hackh's Chemical Dictionary, 5th ed)
A type of high-energy radiotherapy using a beam of gamma-radiation produced by a radioisotope source encapsulated within a teletherapy unit.
An iron chelating agent with properties like EDETIC ACID. DTPA has also been used as a chelator for other metals, such as plutonium.
A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed)
A specialty field of radiology concerned with diagnostic, therapeutic, and investigative use of radioactive compounds in a pharmaceutical form.
A technetium imaging agent used in renal scintigraphy, computed tomography, lung ventilation imaging, gastrointestinal scintigraphy, and many other procedures which employ radionuclide imaging agents.
Inorganic compounds that contain sodium as an integral part of the molecule.
Waste products which threaten life, health, or the environment when improperly treated, stored, transported, disposed of, or otherwise managed.
Uptake of substances through the lining of the INTESTINES.
The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING.
Compounds that contain the triphenylmethane aniline structure found in rosaniline. Many of them have a characteristic magenta color and are used as COLORING AGENTS.
Tritium is an isotope of hydrogen (specifically, hydrogen-3) that contains one proton and two neutrons in its nucleus, making it radioactive with a half-life of about 12.3 years, and is used in various applications including nuclear research, illumination, and dating techniques due to its low energy beta decay.
A form species of spore-producing CYANOBACTERIA, in the family Nostocaceae, order Nostocales. It is an important source of fixed NITROGEN in nutrient-depleted soils. When wet, it appears as a jelly-like mass.
Substances which pollute the soil. Use for soil pollutants in general or for which there is no specific heading.
Air pollutants found in the work area. They are usually produced by the specific nature of the occupation.
Measurement of radioactivity in the entire human body.
Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed)
A group of chemical elements that are needed in minute quantities for the proper growth, development, and physiology of an organism. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Unstable isotopes of potassium that decay or disintegrate emitting radiation. K atoms with atomic weights 37, 38, 40, and 42-45 are radioactive potassium isotopes.
The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.

Potentiation of anti-cancer drug activity at low intratumoral pH induced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) and its analogue benzylguanidine (BG). (1/428)

Tumour-selective acidification is of potential interest for enhanced therapeutic gain of pH sensitive drugs. In this study, we investigated the feasibility of a tumour-selective reduction of the extracellular and intracellular pH and their effect on the tumour response of selected anti-cancer drugs. In an in vitro L1210 leukaemic cell model, we confirmed enhanced cytotoxicity of chlorambucil at low extracellular pH conditions. In contrast, the alkylating drugs melphalan and cisplatin, and bioreductive agents mitomycin C and its derivative EO9, required low intracellular pH conditions for enhanced activation. Furthermore, a strong and pH-independent synergism was observed between the pH-equilibrating drug nigericin and melphalan, of which the mechanism is unclear. In radiation-induced fibrosarcoma (RIF-1) tumour-bearing mice, the extracellular pH was reduced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) or its analogue benzylguanidine (BG) plus glucose. To simultaneously reduce the intracellular pH, MIBG plus glucose were combined with the ionophore nigericin or the Na+/H+ exchanger inhibitor amiloride and the Na+-dependent HCO3-/Cl- exchanger inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). Biochemical studies confirmed an effective reduction of the extracellular pH to approximately 6.2, and anti-tumour responses to the interventions indicated a simultaneous reduction of the intracellular pH below 6.6 for at least 3 h. Combined reduction of extra- and intracellular tumour pH with melphalan increased the tumour regrowth time to 200% of the pretreatment volume from 5.7 +/- 0.6 days for melphalan alone to 8.1 +/- 0.7 days with pH manipulation (P < 0.05). Mitomycin C related tumour growth delay was enhanced by the combined interventions from 3.8 +/- 0.5 to 5.2 +/- 0.5 days (P < 0.05), but only in tumours of relatively large sizes. The interventions were non-toxic alone or in combination with the anti-cancer drugs and did not affect melphalan biodistribution. In conclusion, we have developed non-toxic interventions for sustained and selective reduction of extra- and intracellular tumour pH which potentiated the tumour responses to selected anti-cancer drugs.  (+info)

Effect of obesity on red cell mass results. (2/428)

Measurement of red cell mass with isotope dilution remains an important diagnostic test in the evaluation of patients with suspected polycythemia vera (PCV). Results and reference ranges are typically expressed in units normalized for body weight (mL/kg). Obesity is common in polycythemic patients, and it is important to know how the various published normative ranges compare across a wide range of body weights. METHODS: We retrospectively reviewed 51 consecutive patients referred for red cell mass determination with 51Cr red blood cell dilution. Results were expressed in milliliters per kilogram (mL/kg) by using the actual patient weight and after adiposity adjustments using ideal body weight, body mass index (BMI) and combinations of height-weight, including body surface area. Results were classified as normal, elevated or PCV. RESULTS: There was a high prevalence of obesity in our population (28/51 [55%] with BMI > 27 kg/m2, BMI range 16.0-54.8 kg/m2). The method used to compensate for obesity had a dramatic effect on the derived red cell mass, the fraction of patients with elevated measurements and the fraction of patients meeting criteria for PCV. Concordance for categorization as normal, elevated or PCV by all methods was only 47.1%. CONCLUSION: Obesity is a common confounding factor in the interpretation of red cell mass measurements. Currently published reference ranges generate inconsistent results when extrapolated to obese patients. Further normative data on obese subjects are needed to determine which method (if any) is optimal.  (+info)

Role of antioxidant defenses against ethanol-induced damage in cultured rat gastric epithelial cells. (3/428)

Reactive oxygen species appears to be involved in the pathogenesis of ethanol-induced gastric mucosal injury in vivo. Because ingested ethanol diffuses into the gastric mucosa, targeting both epithelium and endothelium, in the present study we examined the possible protective effect of antioxidants on ethanol damage in gastric epithelial cells and endothelial cells in vitro. Cytotoxicity by ethanol was quantified by measuring 51Cr release. The effects of impairment of the glutathione redox cycle and of inhibition of cellular catalase were examined. The generation of superoxide was assessed by the reduction in cytochrome c. Ethanol caused a time- and dose-dependent increase in 51Cr release from epithelial cells. Incubation of cells with DL-buthionine-(S,R)-sulfoximine, while reducing glutathione production, dose dependently enhanced ethanol-induced injury. 1,3-Bis(chloroethyl)-nitrosourea, while inhibiting glutathione reductase activity, also sensitized cells to ethanol. In contrast, the inhibition of catalase with 3-amino-1,2, 4-triazole did not alter the susceptibility of epithelial cells to ethanol. Ethanol induced damage to endothelial cells in a similar fashion. In endothelial cells, however, neither impairment of the glutathione cycle nor inhibition of catalase influenced ethanol-induced damage. Epithelial cells, when exposed to ethanol, increased superoxide production as a function of ethanol concentration, whereas endothelial cells did not. The glutathione redox cycle, but not cellular catalase, plays a critical role in protecting epithelial cells against ethanol damage, whereas neither antioxidant seems to play a role in protection of endothelial cells. The distinct difference in antioxidant protection against ethanol appears to depend on the capability of each cell to produce cytotoxic oxygen species in response to ethanol exposure.  (+info)

High predictive value of red cell volume measurement using carboxy-haemoglobin in a rabbit model of haemorrhage. (4/428)

We have studied the accuracy of blood volume measurements using carbon monoxide (CO)-labelled haemoglobin (COHb) injection and dilution (CO method) by comparing changes in red cell volume (RCV) measured using the CO method and 51Cr-labelled erythrocyte dilution (51Cr method) in a haemorrhage and infusion model in rabbits. RCV was measured repeatedly using the CO method at four different blood volume stages (stages I-IV). At stages I and IV, RCV was measured simultaneously using the 51Cr method. In comparing the sum of the circulating RCV and extracted RCV (SUM RCV) using the CO method, the values were almost equal and there were no significant differences between the values at the four stages. In comparing circulating RCV measured using the CO method and the 51Cr method, mean difference between the two methods was 0.80 (SD 0.76) ml kg-1 or 4.7 (4.6)%, and a positive correlation was observed (r = 0.91). We conclude that the CO method can be used to measure blood volume during perioperative periods in infants because it avoids use of a radioactive tracer, is simple and repeated measurements are possible.  (+info)

Urokinase receptor (uPAR, CD87) is a platelet receptor important for kinetics and TNF-induced endothelial adhesion in mice. (5/428)

BACKGROUND: Urokinase plasminogen activator receptor (uPAR, CD87) is a widely distributed 55-kD, glycoprotein I-anchored surface receptor. On binding of its ligand uPA, it is known to increase leukocyte adhesion and traffic. Using genetically deficient mice, we explored the role of uPAR in platelet kinetics and TNF-induced platelet consumption. METHODS AND RESULTS: Anti-uPAR antibody stained platelets from normal (+/+) but not from uPAR-/- mice, as seen by fluorescence-activated cell sorter analysis. 51Cr-labeled platelets from uPAR-/- donors survived longer than those from +/+ donors when injected into a +/+ recipient. Intratracheal TNF injection induced thrombocytopenia and a platelet pulmonary localization, pronounced in +/+ but absent in uPAR-/- mice. Aprotinin, a plasmin inhibitor, decreased TNF-induced thrombocytopenia. TNF injection markedly reduced the survival and increased the pulmonary localization of 51Cr-labeled platelets from +/+ but not from uPAR-/- donors, indicating that it is the platelet uPAR that is critical for their response to TNF. As seen by electron microscopy, TNF injection increased the number of platelets and polymorphonuclear neutrophils (PMNs) in the alveolar capillaries of +/+ mice, whereas in uPAR-/- mice, platelet trapping was insignificant and PMN trapping was slightly reduced. Platelets within alveolar capillaries of TNF-injected mice were activated, as judged from their shape, and this was evident in +/+ but not in uPAR-/- mice. CONCLUSIONS: These results demonstrate for the first time the critical role of platelet uPAR for kinetics as well as for activation and endothelium adhesion associated with inflammation.  (+info)

Role of 5-lipoxygenase products in the local accumulation of neutrophils in dermal inflammation in the rabbit. (6/428)

Studies were undertaken to define the role of 5-lipoxygenase (5-LO) products and, in particular, of leukotriene (LT) B4 in the polymorphonuclear leukocyte (PMN) emigration process using a rabbit model of dermal inflammation. Our results show that i.v. administration to rabbits of MK-0591, a compound that inhibits LT biosynthesis in blood and tissues when administered in vivo, significantly reduced 51Cr-labeled PMN accumulation in response to intradermally injected chemotactic agonists, including IL-8, FMLP, C5a, and LTB4 itself. In addition, pretreatment of the labeled PMN with MK-0591 ex vivo before their injection in recipient animals was equally effective in reducing 51Cr-labeled PMN emigration to dermal inflammatory sites. These results support a role for de novo synthesis of 5-LO metabolites by PMN for their chemotactic response to inflammatory mediators. Other studies demonstrated that elevated intravascular concentration of LTB4 interferes with PMN extravasation inasmuch as a continuous i.v. infusion of LTB4, in the range of 5-300 ng/min/kg, dose-dependently inhibited extravascular PMN accumulation to acute inflammatory skin sites elicited by the chemoattractants LTB4, FMLP, C5a, and IL-8 and by TNF-alpha, IL-1beta, and LPS; such phenomena may constitute a natural protective mechanism from massive tissue invasion by activated PMN in specific pathologic conditions such as ischemia (and reperfusion). These studies demonstrate additional functions of 5-LO products in the regulation of PMN trafficking, distinct from the well-characterized chemotactic activity of LTB4 present in the extravascular compartment.  (+info)

Impaired autoregulation of the glomerular filtration rate in patients with nondiabetic nephropathies. (7/428)

BACKGROUND: The ability of the kidney to maintain constancy of the glomerular filtration rate (GFR) over a wide range of renal perfusion pressures is termed autoregulation. Defective autoregulation of GFR has been demonstrated in diabetic nephropathy. Whether this is also the case in patients with nondiabetic nephropathies is not known. METHODS: We investigated the effect of acute lowering of blood pressure (BP) on GFR in 16 (8 males and 8 females) albuminuric subjects suffering from different nondiabetic nephropathies and in 14 (7 males and 7 females) controls matched with respect to sex, age, BP, and baseline GFR. The subjects received in random order an intravenous injection of either clonidine (150 to 225 microg) or saline (0.154 mmol/liter) within two weeks. We measured GFR ([51Cr]-EDTA), albuminuria (enzyme-linked immunosorbent assay; ELISA), and BP (Takeda TM-2420). RESULTS: Clonidine induced similar reductions in mean arterial BP 17 (2) versus 19 (2) mm Hg [mean (SE)] in patients with nephropathy and in controls, respectively. GFR diminished in average from 89 (6) to 82 (5) ml/min/1.73 m2 (P < 0.05), and albuminuria declined from a geometric mean of 1218 (antilog SE 1.3) microg/min to 925 (1.3) in the patients with nondiabetic nephropathies (P < 0.05), whereas these variables remained unchanged in the control group. The mean difference between changes in GFR (95% confidence interval) between the nondiabetic macroalbuminuric and control subjects was 6.1 (-0.03 to 12.21) ml/min/1.73 m2 (P = 0.051). CONCLUSION: Our study suggests that albuminuric patients with nondiabetic nephropathies frequently suffer from impaired autoregulation of GFR.  (+info)

Injurious effect of Helicobacter pylori culture fluid to gastroduodenal mucosa, and its detoxification by sucralfate in the rat. (8/428)

BACKGROUND: Helicobacter pylori plays an important role in the pathogenesis of peptic ulcer. Although several cytotoxins related to H. pylori have been reported, their effects on gastroduodenal mucosa have not been well evaluated in vivo. AIM: To investigate the effects of the combination of acid and toxic substances derived from H. pylori on gastroduodenal mucosa, and to observe the effect of sucralfate on such factors in the rat. METHODS: Male Sprague-Dawley rats were fasted overnight and anaesthetized. The pylorus was ligated, and a double-lumen cannula was inserted into the forestomach for gastric luminal perfusion. In other animals, a cannula was inserted to perfuse the proximal duodenum. 51Cr-EDTA was administered intravenously and mucosal integrity was monitored by measuring the blood-to-lumen 51Cr-EDTA clearance. After 72 h of culture of H. pylori (NCTC11637 and Sydney strain 1), Brucella broth containing 3% FBS was filtered to remove the bacteria (supernate of H. pylori culture fluid; HPsup). HPsup was acidified (pH=2.0) with HCl, and tested for its injurious action on gastric or duodenal mucosa by luminal perfusion. HPsup was incubated with sucralfate for 30 min. The supernate was collected by centrifugation and the pH was readjusted to 2.0. This sucralfate-treated HPsup was used to test the effect of sucralfate against H. pylori-related mucosal injurious factors. RESULTS: Non-acidified and acidified HPsup did not cause any detectable injury to the gastric mucosa. Non-acidified HPsup did not cause injury in the duodenal mucosa. However, acidified HPsup induced a significantly greater increase in 51Cr-EDTA clearance and greater histological damage than in controls. Sucralfate completely reversed this. CONCLUSION: These results suggest that an H. pylori-related toxic substance may aggravate duodenal acid injury by acting on luminal surfaces, and that the detoxification of this substance by sucralfate may contribute to its anti-ulcer action.  (+info)

Chromium radioisotopes are unstable isotopes or variants of the chemical element chromium that emit radiation as they decay into more stable forms. These isotopes have an excess of energy and particles, making them unstable and capable of emitting ionizing radiation in the form of gamma rays or subatomic particles such as alpha or beta particles.

Chromium has several radioisotopes, including chromium-50, chromium-51, and chromium-53, among others. Chromium-51 is one of the most commonly used radioisotopes in medical applications, particularly in diagnostic procedures such as red blood cell labeling and imaging studies.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their potential radiation hazards.

Chromium is an essential trace element that is necessary for human health. It is a key component of the glucose tolerance factor, which helps to enhance the function of insulin in regulating blood sugar levels. Chromium can be found in various foods such as meat, fish, whole grains, and some fruits and vegetables. However, it is also available in dietary supplements for those who may not get adequate amounts through their diet.

The recommended daily intake of chromium varies depending on age and gender. For adults, the adequate intake (AI) is 20-35 micrograms per day for women and 35-50 micrograms per day for men. Chromium deficiency is rare but can lead to impaired glucose tolerance, insulin resistance, and increased risk of developing type 2 diabetes.

It's important to note that while chromium supplements are marketed as a way to improve insulin sensitivity and blood sugar control, there is limited evidence to support these claims. Moreover, excessive intake of chromium can have adverse effects on health, including liver and kidney damage, stomach irritation, and hypoglycemia. Therefore, it's recommended to consult with a healthcare provider before taking any dietary supplements containing chromium.

Chromium compounds refer to combinations of the metallic element chromium with other chemical elements. Chromium is a transition metal that can form compounds in various oxidation states, but the most common ones are +3 (trivalent) and +6 (hexavalent).

Trivalent chromium compounds, such as chromium(III) chloride or chromium(III) sulfate, are essential micronutrients for human health, playing a role in insulin function and glucose metabolism. They are generally considered to be less toxic than hexavalent chromium compounds.

Hexavalent chromium compounds, such as chromium(VI) oxide or sodium dichromate, are much more toxic and carcinogenic than trivalent chromium compounds. They can cause damage to the respiratory system, skin, and eyes, and prolonged exposure has been linked to an increased risk of lung cancer.

It is important to note that while some chromium compounds have beneficial effects on human health, others can be highly toxic and should be handled with care. Exposure to hexavalent chromium compounds, in particular, should be minimized or avoided whenever possible.

Radioisotopes, also known as radioactive isotopes or radionuclides, are variants of chemical elements that have unstable nuclei and emit radiation in the form of alpha particles, beta particles, gamma rays, or conversion electrons. These isotopes are formed when an element's nucleus undergoes natural or artificial radioactive decay.

Radioisotopes can be produced through various processes, including nuclear fission, nuclear fusion, and particle bombardment in a cyclotron or other types of particle accelerators. They have a wide range of applications in medicine, industry, agriculture, research, and energy production. In the medical field, radioisotopes are used for diagnostic imaging, radiation therapy, and in the labeling of molecules for research purposes.

It is important to note that handling and using radioisotopes requires proper training, safety measures, and regulatory compliance due to their ionizing radiation properties, which can pose potential health risks if not handled correctly.

Zinc radioisotopes are unstable isotopes or variants of the element zinc that undergo radioactive decay, emitting radiation in the process. These isotopes have a different number of neutrons than the stable isotope of zinc (zinc-64), which contributes to their instability and tendency to decay.

Examples of zinc radioisotopes include zinc-65, zinc-70, and zinc-72. These isotopes are often used in medical research and diagnostic procedures due to their ability to emit gamma rays or positrons, which can be detected using specialized equipment.

Zinc radioisotopes may be used as tracers to study the metabolism and distribution of zinc in the body, or as therapeutic agents to deliver targeted radiation therapy to cancer cells. However, it is important to note that the use of radioisotopes carries potential risks, including exposure to ionizing radiation and the potential for damage to healthy tissues.

Chromates are the salts or esters of chromic acid (H2CrO4) that contain the chromate ion (CrO4 2-). They are characterized by their yellow or orange color. Chromates are widely used in industry, for example as corrosion inhibitors, pigments, and wood preservatives. However, they are also toxic and carcinogenic, and exposure to chromates can cause a range of health problems, including respiratory issues, skin irritation, and damage to the eyes and mucous membranes. Therefore, their use is regulated in many countries, and appropriate safety measures must be taken when handling them.

The Radioisotope Dilution Technique is a method used in nuclear medicine to measure the volume and flow rate of a particular fluid in the body. It involves introducing a known amount of a radioactive isotope, or radioisotope, into the fluid, such as blood. The isotope mixes with the fluid, and samples are then taken from the fluid at various time points.

By measuring the concentration of the radioisotope in each sample, it is possible to calculate the total volume of the fluid based on the amount of the isotope introduced and the dilution factor. The flow rate can also be calculated by measuring the concentration of the isotope over time and using the formula:

Flow rate = Volume/Time

This technique is commonly used in medical research and clinical settings to measure cardiac output, cerebral blood flow, and renal function, among other applications. It is a safe and reliable method that has been widely used for many years. However, it does require the use of radioactive materials and specialized equipment, so it should only be performed by trained medical professionals in appropriate facilities.

Strontium radioisotopes are radioactive isotopes of the element strontium. Strontium is an alkaline earth metal that is found in nature and has several isotopes, some of which are stable and some of which are radioactive. The radioactive isotopes of strontium, also known as strontium radionuclides, decay and emit radiation in the form of beta particles.

Strontium-89 (^89Sr) and strontium-90 (^90Sr) are two common radioisotopes of strontium that are used in medical applications. Strontium-89 is a pure beta emitter with a half-life of 50.5 days, which makes it useful for the treatment of bone pain associated with metastatic cancer. When administered, strontium-89 is taken up by bones and irradiates the bone tissue, reducing pain and improving quality of life in some patients.

Strontium-90, on the other hand, has a longer half-life of 28.8 years and emits more powerful beta particles than strontium-89. It is used as a component in radioactive waste and in some nuclear weapons, but it is not used in medical applications due to its long half-life and high radiation dose.

It's important to note that exposure to strontium radioisotopes can be harmful to human health, especially if ingested or inhaled. Therefore, handling and disposal of strontium radioisotopes require special precautions and regulations.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Chromium alloys are materials made by combining chromium with other metals, such as nickel, cobalt, or iron. The addition of chromium to these alloys enhances their properties, making them resistant to corrosion and high temperatures. These alloys have a wide range of applications in various industries, including automotive, aerospace, and medical devices.

Chromium alloys can be classified into two main categories: stainless steels and superalloys. Stainless steels are alloys that contain at least 10.5% chromium by weight, which forms a passive oxide layer on the surface of the material, protecting it from corrosion. Superalloys, on the other hand, are high-performance alloys designed to operate in extreme environments, such as jet engines and gas turbines. They contain significant amounts of chromium, along with other elements like nickel, cobalt, and molybdenum.

Chromium alloys have several medical applications due to their excellent properties. For instance, they are used in surgical instruments, dental implants, and orthopedic devices because of their resistance to corrosion and biocompatibility. Additionally, some chromium alloys exhibit superelasticity, a property that allows them to return to their original shape after being deformed, making them suitable for use in stents and other medical devices that require flexibility and durability.

Krypton is a noble gas with the symbol Kr and atomic number 36. It exists in various radioisotopes, which are unstable isotopes of krypton that undergo radioactive decay. A few examples include:

1. Krypton-81: This radioisotope has a half-life of about 2.1 x 10^5 years and decays via electron capture to rubidium-81. It is produced naturally in the atmosphere by cosmic rays.
2. Krypton-83: With a half-life of approximately 85.7 days, this radioisotope decays via beta decay to bromine-83. It can be used in medical imaging for lung ventilation studies.
3. Krypton-85: This radioisotope has a half-life of about 10.7 years and decays via beta decay to rubidium-85. It is produced as a byproduct of nuclear fission and can be found in trace amounts in the atmosphere.
4. Krypton-87: With a half-life of approximately 76.3 minutes, this radioisotope decays via beta decay to rubidium-87. It is not found naturally on Earth but can be produced artificially.

It's important to note that while krypton radioisotopes have medical applications, they are also associated with potential health risks due to their radioactivity. Proper handling and safety precautions must be taken when working with these substances.

Indium radioisotopes refer to specific types of radioactive indium atoms, which are unstable and emit radiation as they decay. Indium is a chemical element with the symbol In and atomic number 49. Its radioisotopes are often used in medical imaging and therapy due to their unique properties.

For instance, one commonly used indium radioisotope is Indium-111 (^111In), which has a half-life of approximately 2.8 days. It emits gamma rays, making it useful for diagnostic imaging techniques such as single-photon emission computed tomography (SPECT). In clinical applications, indium-111 is often attached to specific molecules or antibodies that target particular cells or tissues in the body, allowing medical professionals to monitor biological processes and identify diseases like cancer.

Another example is Indium-113m (^113mIn), which has a half-life of about 99 minutes. It emits low-energy gamma rays and is used as a source for in vivo counting, typically in the form of indium chloride (InCl3) solution. This radioisotope can be used to measure blood flow, ventilation, and other physiological parameters.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their ionizing radiation properties.

Picolinic acid is not specifically classified as a medical term, but it is a type of organic compound that belongs to the class of molecules known as pyridinecarboxylic acids. These are carboxylic acids derived from pyridine by the substitution of a hydrogen atom with a carboxyl group.

Picolinic acid, specifically, is a pyridine derivative with a carboxyl group at the 2-position of the ring. It is naturally produced in the body and can be found in various tissues and fluids, including the brain, where it plays a role in the metabolism of amino acids, particularly tryptophan.

In addition to its physiological functions, picolinic acid has been studied for its potential therapeutic applications. For example, it has been shown to have antibacterial and antifungal properties, and may also play a role in heavy metal chelation and neuroprotection. However, more research is needed to fully understand the medical significance of this compound.

Sodium radioisotopes are unstable forms of sodium, an element naturally occurring in the human body, that emit radiation as they decay over time. These isotopes can be used for medical purposes such as imaging and treatment of various diseases. Commonly used sodium radioisotopes include Sodium-22 (^22Na) and Sodium-24 (^24Na).

It's important to note that the use of radioisotopes in medicine should be under the supervision of trained medical professionals, as improper handling or exposure can pose health risks.

Radioactivity is not typically considered within the realm of medical definitions, but since it does have medical applications and implications, here is a brief explanation:

Radioactivity is a natural property of certain elements (referred to as radioisotopes) that emit particles or electromagnetic waves due to changes in their atomic nuclei. This process can occur spontaneously without any external influence, leading to the emission of alpha particles, beta particles, gamma rays, or neutrons. These emissions can penetrate various materials and ionize atoms along their path, which can cause damage to living tissues.

In a medical context, radioactivity is used in both diagnostic and therapeutic settings:

1. Diagnostic applications include imaging techniques such as positron emission tomography (PET) scans and single-photon emission computed tomography (SPECT), where radioisotopes are introduced into the body to visualize organ function or detect diseases like cancer.
2. Therapeutic uses involve targeting radioisotopes directly at cancer cells, either through external beam radiation therapy or internal radiotherapy, such as brachytherapy, where a radioactive source is placed near or within the tumor.

While radioactivity has significant medical benefits, it also poses risks due to ionizing radiation exposure. Proper handling and safety measures are essential when working with radioactive materials to minimize potential harm.

Barium radioisotopes are radioactive forms of the element barium, which are used in medical imaging procedures to help diagnose various conditions. The radioisotopes emit gamma rays that can be detected by external devices, allowing doctors to visualize the inside of the body. Barium sulfate is often used as a contrast agent in X-rays and CT scans, but when combined with a radioisotope such as barium-133, barium-198, or barium-207, it can provide more detailed images of specific organs or systems.

For example, barium sulfate mixed with barium-133 may be used in a lung scan to help diagnose pulmonary embolism or other respiratory conditions. Barium-207 is sometimes used in bone scans to detect fractures, tumors, or infections.

It's important to note that the use of radioisotopes carries some risks, including exposure to radiation and potential allergic reactions to the barium compound. However, these risks are generally considered low compared to the benefits of accurate diagnosis and effective treatment.

Radionuclide imaging, also known as nuclear medicine, is a medical imaging technique that uses small amounts of radioactive material, called radionuclides or radiopharmaceuticals, to diagnose and treat various diseases and conditions. The radionuclides are introduced into the body through injection, inhalation, or ingestion and accumulate in specific organs or tissues. A special camera then detects the gamma rays emitted by these radionuclides and converts them into images that provide information about the structure and function of the organ or tissue being studied.

Radionuclide imaging can be used to evaluate a wide range of medical conditions, including heart disease, cancer, neurological disorders, gastrointestinal disorders, and bone diseases. The technique is non-invasive and generally safe, with minimal exposure to radiation. However, it should only be performed by qualified healthcare professionals in accordance with established guidelines and regulations.

Yttrium radioisotopes are radioactive isotopes or variants of the element Yttrium, which is a rare earth metal. These radioisotopes are artificially produced and have unstable nuclei that emit radiation in the form of gamma rays or high-speed particles. Examples of yttrium radioisotopes include Yttrium-90 and Yttrium-86, which are used in medical applications such as radiotherapy for cancer treatment and molecular imaging for diagnostic purposes.

Yttrium-90 is a pure beta emitter with a half-life of 64.1 hours, making it useful for targeted radionuclide therapy. It can be used to treat liver tumors, leukemia, and lymphoma by attaching it to monoclonal antibodies or other targeting agents that selectively bind to cancer cells.

Yttrium-86 is a positron emitter with a half-life of 14.7 hours, making it useful for positron emission tomography (PET) imaging. It can be used to label radiopharmaceuticals and track their distribution in the body, providing information on the location and extent of disease.

It is important to note that handling and use of radioisotopes require specialized training and equipment due to their potential radiation hazards.

I must apologize, but "welding" is not a term that is typically used in medical definitions. Welding is a process that is commonly used in manufacturing and construction to join two pieces of metal together by melting them and adding a filler material to form a pool of molten metal (the weld puddle) that cools to become a strong joint.

If you have any questions related to medical terminology or health-related topics, I would be happy to help answer them for you.

Tin radioisotopes refer to specific variants of the element tin that have unstable nuclei and emit radiation as they decay towards a more stable state. These isotopes are often produced in nuclear reactors or particle accelerators and can be used in a variety of medical applications, such as:

1. Medical Imaging: Tin-117m, for example, is used as a radiopharmaceutical in medical imaging studies to help diagnose various conditions, including bone disorders and liver diseases.
2. Radiation Therapy: Tin-125 can be used in the treatment of certain types of cancer, such as prostate cancer, through brachytherapy - a type of radiation therapy that involves placing a radioactive source directly into or near the tumor.
3. Radioisotope Production: Tin-106 is used as a parent isotope in the production of other medical radioisotopes, such as iodine-125 and gallium-67.

It's important to note that handling and using radioisotopes requires specialized training and equipment due to their potential radiation hazards.

Potassium dichromate is an inorganic compound with the chemical formula K2Cr2O7. It is a potassium salt of dichromic acid. In its pure form, potassium dichromate appears as a bright red or deep orange crystalline powder. It is highly soluble in water and has a sweetish, sour taste.

In the medical field, potassium dichromate has been historically used as an antiseptic and astringent, but its use has largely been discontinued due to its high toxicity and potential for causing severe health effects. It can cause skin and eye irritation, respiratory problems, and damage to the kidneys and liver. Long-term exposure has been linked to an increased risk of cancer. Therefore, it is important to handle potassium dichromate with care and use appropriate personal protective equipment when working with this compound.

Carbon radioisotopes are radioactive isotopes of carbon, which is an naturally occurring chemical element with the atomic number 6. The most common and stable isotope of carbon is carbon-12 (^12C), but there are also several radioactive isotopes, including carbon-11 (^11C), carbon-14 (^14C), and carbon-13 (^13C). These radioisotopes have different numbers of neutrons in their nuclei, which makes them unstable and causes them to emit radiation.

Carbon-11 has a half-life of about 20 minutes and is used in medical imaging techniques such as positron emission tomography (PET) scans. It is produced by bombarding nitrogen-14 with protons in a cyclotron.

Carbon-14, also known as radiocarbon, has a half-life of about 5730 years and is used in archaeology and geology to date organic materials. It is produced naturally in the atmosphere by cosmic rays.

Carbon-13 is stable and has a natural abundance of about 1.1% in carbon. It is not radioactive, but it can be used as a tracer in medical research and in the study of metabolic processes.

"Iron radioisotopes" refer to specific forms of the element iron that have unstable nuclei and emit radiation. These isotopes are often used in medical imaging and treatment procedures due to their ability to be detected by specialized equipment. Common iron radioisotopes include Iron-52, Iron-55, Iron-59, and Iron-60. They can be used as tracers to study the distribution, metabolism, or excretion of iron in the body, or for targeted radiation therapy in conditions such as cancer.

Copper radioisotopes are radioactive isotopes or variants of the chemical element copper. These isotopes have an unstable nucleus and emit radiation as they decay over time. Copper has several radioisotopes, including copper-64, copper-67, and copper-60, among others. These radioisotopes are used in various medical applications such as diagnostic imaging, therapy, and research. For example, copper-64 is used in positron emission tomography (PET) scans to help diagnose diseases like cancer, while copper-67 is used in targeted radionuclide therapy for cancer treatment. The use of radioisotopes in medicine requires careful handling and regulation due to their radiation hazards.

Phosphorus radioisotopes are radioactive isotopes or variants of the element phosphorus that emit radiation. Phosphorus has several radioisotopes, with the most common ones being phosphorus-32 (^32P) and phosphorus-33 (^33P). These radioisotopes are used in various medical applications such as cancer treatment and diagnostic procedures.

Phosphorus-32 has a half-life of approximately 14.3 days and emits beta particles, making it useful for treating certain types of cancer, such as leukemia and lymphoma. It can also be used in brachytherapy, a type of radiation therapy that involves placing a radioactive source close to the tumor.

Phosphorus-33 has a shorter half-life of approximately 25.4 days and emits both beta particles and gamma rays. This makes it useful for diagnostic procedures, such as positron emission tomography (PET) scans, where the gamma rays can be detected and used to create images of the body's internal structures.

It is important to note that handling and using radioisotopes requires specialized training and equipment to ensure safety and prevent radiation exposure.

Chromium isotopes are different forms of the chemical element Chromium (Cr), which have different numbers of neutrons in their atomic nuclei. This results in each isotope having a different atomic mass, although they all have the same number of protons (24) and therefore share the same chemical properties.

The most common and stable chromium isotopes are Chromium-52 (Cr-52), Chromium-53 (Cr-53), Chromium-54 (Cr-54), and Chromium-56 (Cr-56). The other less abundant isotopes of Chromium, such as Chromium-50 (Cr-50) and Chromium-51 (Cr-51), are radioactive and undergo decay to become stable isotopes.

Chromium is an essential trace element for human health, playing a role in the metabolism of carbohydrates, lipids, and proteins. It is also used in various industrial applications, such as in the production of stainless steel and other alloys.

Carcinogens are agents that can cause cancer. According to the National Institute of Environmental Health Sciences (NIEHS), environmental carcinogens refer to "cancer-causing agents that people encounter in their daily lives, including substances or exposures in air, water, food, and in the workplace." These carcinogens can increase the risk of cancer by damaging DNA or interfering with cellular processes that control growth.

Examples of environmental carcinogens include:

* Air pollution: Certain pollutants in the air, such as diesel exhaust particles and secondhand smoke, have been linked to an increased risk of lung cancer.
* Radon: A naturally occurring radioactive gas that can accumulate in homes and other buildings, radon is the second leading cause of lung cancer in the United States.
* UV radiation: Exposure to ultraviolet (UV) radiation from the sun or tanning beds can lead to skin cancer.
* Certain chemicals: Some chemicals found in the workplace or in consumer products, such as asbestos, benzene, and vinyl chloride, have been linked to an increased risk of cancer.
* Infectious agents: Certain viruses, bacteria, and parasites can increase the risk of cancer. For example, human papillomavirus (HPV) is a major cause of cervical cancer, and hepatitis B and C viruses are leading causes of liver cancer.

It's important to note that exposure to environmental carcinogens does not guarantee that a person will develop cancer. The risk depends on many factors, including the level and duration of exposure, as well as individual susceptibility. However, reducing exposure to these agents can help reduce the overall risk of cancer.

Beta particles, also known as beta rays, are a type of ionizing radiation that consist of high-energy electrons or positrons emitted from the nucleus of certain radioactive isotopes during their decay process. When a neutron in the nucleus decays into a proton, it results in an excess energy state and one electron is ejected from the atom at high speed. This ejected electron is referred to as a beta particle.

Beta particles can have both positive and negative charges, depending on the type of decay process. Negative beta particles (β−) are equivalent to electrons, while positive beta particles (β+) are equivalent to positrons. They possess kinetic energy that varies in range, with higher energies associated with greater penetrating power.

Beta particles can cause ionization and excitation of atoms and molecules they encounter, leading to chemical reactions and potential damage to living tissues. Therefore, appropriate safety measures must be taken when handling materials that emit beta radiation.

"Tanning" is not a medical term per se, but rather a common term used to describe the process of skin darkening as a result of exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Medically speaking, this process is known as "induction of cutaneous pigmentation."

The UV radiation stimulates the production of melanin, a pigment that absorbs and scatters UV light to protect the skin from further damage. There are two types of melanin: eumelanin (black or brown) and pheomelanin (yellow or red). The type and amount of melanin produced determine the color and tone of an individual's skin, hair, and eyes.

It is important to note that excessive sun exposure and tanning can lead to harmful health effects, including premature aging of the skin, eye damage, and increased risk of skin cancer. Therefore, it is recommended to protect the skin with appropriate clothing, hats, sunglasses, and sunscreen when exposed to UV radiation.

Technetium is not a medical term itself, but it is a chemical element with the symbol Tc and atomic number 43. However, in the field of nuclear medicine, which is a branch of medicine that uses small amounts of radioactive material to diagnose or treat diseases, Technetium-99m (a radioisotope of technetium) is commonly used for various diagnostic procedures.

Technetium-99m is a metastable nuclear isomer of technetium-99, and it emits gamma rays that can be detected outside the body to create images of internal organs or tissues. It has a short half-life of about 6 hours, which makes it ideal for diagnostic imaging since it decays quickly and reduces the patient's exposure to radiation.

Technetium-99m is used in a variety of medical procedures, such as bone scans, lung scans, heart scans, liver-spleen scans, brain scans, and kidney scans, among others. It can be attached to different pharmaceuticals or molecules that target specific organs or tissues, allowing healthcare professionals to assess their function or identify any abnormalities.

Mercury radioisotopes refer to specific variants of the element mercury that have unstable nuclei and emit radiation as they decay towards a more stable state. These isotopes are often produced in nuclear reactors or particle accelerators for various medical, industrial, and research applications. In the medical field, mercury-203 (^203Hg) and mercury-207 (^207Hg) are used as gamma emitters in diagnostic procedures and therapeutic treatments. However, due to environmental and health concerns associated with mercury, its use in medical applications has significantly decreased over time.

Technetium Tc 99m Sulfur Colloid is a radioactive tracer used in medical imaging procedures, specifically in nuclear medicine. It is composed of tiny particles of sulfur colloid that are labeled with the radioisotope Technetium-99m. This compound is typically injected into the patient's body, where it accumulates in certain organs or tissues, depending on the specific medical test being conducted.

The radioactive emissions from Technetium Tc 99m Sulfur Colloid are then detected by a gamma camera, which produces images that can help doctors diagnose various medical conditions, such as liver disease, inflammation, or tumors. The half-life of Technetium-99m is approximately six hours, which means that its radioactivity decreases rapidly and is eliminated from the body within a few days.

Cesium is a chemical element with the atomic number 55 and the symbol Cs. There are several isotopes of cesium, which are variants of the element that have different numbers of neutrons in their nuclei. The most stable and naturally occurring cesium isotope is cesium-133, which has 78 neutrons and a half-life of more than 3 x 10^20 years (effectively stable).

However, there are also radioactive isotopes of cesium, including cesium-134 and cesium-137. Cesium-134 has a half-life of about 2 years, while cesium-137 has a half-life of about 30 years. These isotopes are produced naturally in trace amounts by the decay of uranium and thorium in the Earth's crust, but they can also be produced artificially in nuclear reactors and nuclear weapons tests.

Cesium isotopes are commonly used in medical research and industrial applications. For example, cesium-137 is used as a radiation source in cancer therapy and industrial radiography. However, exposure to high levels of radioactive cesium can be harmful to human health, causing symptoms such as nausea, vomiting, diarrhea, and potentially more serious effects such as damage to the central nervous system and an increased risk of cancer.

Cerium is a naturally occurring element found in the Earth's crust, and it has several radioisotopes, which are radioactive isotopes or forms of cerium. These isotopes have unstable nuclei that emit radiation as they decay into more stable forms. Here are some examples of cerium radioisotopes:

* Cerium-134: This radioisotope has a half-life of about 3.12 days, which means that half of its atoms will decay into other elements in this time period. It decays by emitting beta particles and gamma rays.
* Cerium-137: This is a long-lived radioisotope with a half-life of about 2.5 years. It decays by emitting beta particles and gamma rays, and it can be used in medical imaging and cancer treatment. However, if released into the environment, it can pose a radiation hazard to humans and other organisms.
* Cerium-141: This radioisotope has a half-life of about 32.5 days, and it decays by emitting beta particles and gamma rays. It is produced in nuclear reactors and can be used for research purposes.
* Cerium-144: This radioisotope has a half-life of about 284 days, and it decays by emitting beta particles and gamma rays. It is produced in nuclear reactors and can be used for research purposes.

It's important to note that handling and working with radioisotopes requires proper training and protective measures to ensure safety and prevent radiation exposure.

Cobalt isotopes are variants of the chemical element Cobalt (Co) that have different numbers of neutrons in their atomic nuclei. This results in the different isotopes having slightly different masses and varying levels of stability.

The most naturally occurring stable cobalt isotope is Co-59, which contains 27 neutrons in its nucleus. However, there are also several radioactive isotopes of cobalt, including Co-60, which is a commonly used medical and industrial radioisotope.

Co-60 has 30 neutrons in its nucleus and undergoes beta decay, emitting gamma rays and becoming Nickel-60. It has a half-life of approximately 5.27 years, making it useful for a variety of applications, including cancer treatment, industrial radiography, and sterilization of medical equipment.

Other radioactive isotopes of cobalt include Co-57, which has a half-life of 271.8 days and is used in medical imaging, and Co-56, which has a half-life of just 77.2 seconds and is used in research.

I'm sorry for any confusion, but Hafnium is not a medical term. It is a chemical element with the symbol Hf and atomic number 72. Hafnium is a lustrous, silvery, tetravalent transition metal that chemically resembles zirconium and is found in zirconium minerals.

It has no relevance to medical terminology or healthcare. If you have any questions related to medical definitions or health-related topics, I'd be happy to try to help with those instead!

Gold radioisotopes are unstable forms of gold that emit radiation as they decay into more stable elements. They are not typically used for medical purposes, but there have been some experimental uses in the treatment of cancer. For example, Gold-198 is a radioisotope that has been used in the brachytherapy (internal radiation therapy) of certain types of tumors. It releases high-energy gamma rays and is often used as a sealed source for the treatment of cancer.

It's important to note that the use of radioisotopes in medicine, including gold radioisotopes, should only be performed under the supervision of trained medical professionals and radiation safety experts due to the potential risks associated with radiation exposure.

Isotope labeling is a scientific technique used in the field of medicine, particularly in molecular biology, chemistry, and pharmacology. It involves replacing one or more atoms in a molecule with a radioactive or stable isotope of the same element. This modified molecule can then be traced and analyzed to study its structure, function, metabolism, or interaction with other molecules within biological systems.

Radioisotope labeling uses unstable radioactive isotopes that emit radiation, allowing for detection and quantification of the labeled molecule using various imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT). This approach is particularly useful in tracking the distribution and metabolism of drugs, hormones, or other biomolecules in living organisms.

Stable isotope labeling, on the other hand, employs non-radioactive isotopes that do not emit radiation. These isotopes have different atomic masses compared to their natural counterparts and can be detected using mass spectrometry. Stable isotope labeling is often used in metabolic studies, protein turnover analysis, or for identifying the origin of specific molecules within complex biological samples.

In summary, isotope labeling is a versatile tool in medical research that enables researchers to investigate various aspects of molecular behavior and interactions within biological systems.

Lead radioisotopes refer to specific types of radioactive isotopes (or radionuclides) of the element lead. These isotopes have unstable nuclei and emit radiation as they decay over time, changing into different elements in the process. Examples of lead radioisotopes include lead-210, lead-212, and lead-214. These isotopes are often found in the decay chains of heavier radioactive elements such as uranium and thorium, and they have various applications in fields like nuclear medicine, research, and industrial radiography. However, exposure to high levels of radiation from lead radioisotopes can pose significant health risks, including damage to DNA and increased risk of cancer.

Diagnostic techniques using radioisotopes, also known as nuclear medicine, are medical diagnostic procedures that use small amounts of radioactive material, called radioisotopes or radionuclides, to diagnose and monitor various diseases and conditions. The radioisotopes are introduced into the body through different routes (such as injection, inhalation, or ingestion) and accumulate in specific organs or tissues.

The gamma rays or photons emitted by these radioisotopes are then detected by specialized imaging devices, such as gamma cameras or PET scanners, which generate images that provide information about the structure and function of the organ or tissue being examined. This information helps healthcare professionals to make accurate diagnoses, monitor disease progression, assess treatment response, and plan appropriate therapies.

Common diagnostic techniques using radioisotopes include:

1. Radionuclide imaging (also known as scintigraphy): A gamma camera is used to produce images of specific organs or tissues after the administration of a radioisotope. Examples include bone scans, lung scans, heart scans, and brain scans.
2. Positron emission tomography (PET) scans: A PET scanner detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide, such as fluorodeoxyglucose (FDG), which is often used in oncology to assess metabolic activity and identify cancerous lesions.
3. Single-photon emission computed tomography (SPECT): A specialized gamma camera rotates around the patient, acquiring multiple images from different angles that are then reconstructed into a 3D image, providing detailed information about organ function and structure.

Diagnostic techniques using radioisotopes offer several advantages, including high sensitivity, non-invasiveness, and the ability to assess both anatomical and functional aspects of organs and tissues. However, they also involve exposure to ionizing radiation, so their use should be balanced against potential risks and benefits, and alternative diagnostic methods should be considered when appropriate.

Zinc isotopes refer to variants of the chemical element zinc, each with a different number of neutrons in their atomic nucleus. Zinc has five stable isotopes: zinc-64, zinc-66, zinc-67, zinc-68, and zinc-70. These isotopes have naturally occurring abundances that vary, with zinc-64 being the most abundant at approximately 48.6%.

Additionally, there are also several radioactive isotopes of zinc, including zinc-65, zinc-71, and zinc-72, among others. These isotopes have unstable nuclei that decay over time, emitting radiation in the process. They are not found naturally on Earth and must be produced artificially through nuclear reactions.

Medical Definition: Zinc isotopes refer to variants of the chemical element zinc with different numbers of neutrons in their atomic nucleus, including stable isotopes such as zinc-64, zinc-66, zinc-67, zinc-68, and zinc-70, and radioactive isotopes such as zinc-65, zinc-71, and zinc-72.

Sulfur radioisotopes are unstable forms of the element sulfur that emit radiation as they decay into more stable forms. These isotopes can be used in medical imaging and treatment, such as in the detection and treatment of certain cancers. Common sulfur radioisotopes used in medicine include sulfur-35 and sulfur-32. Sulfur-35 is used in research and diagnostic applications, while sulfur-32 is used in brachytherapy, a type of internal radiation therapy. It's important to note that handling and usage of radioisotopes should be done by trained professionals due to the potential radiation hazards they pose.

Cadmium radioisotopes are unstable forms of the heavy metal cadmium that emit radiation as they decay into more stable elements. These isotopes can be created through various nuclear reactions, such as bombarding a cadmium atom with a high-energy particle. Some common cadmium radioisotopes include cadmium-109, cadmium-113, and cadmium-115.

These radioisotopes have a wide range of applications in medicine, particularly in diagnostic imaging and radiation therapy. For example, cadmium-109 is used as a gamma ray source for medical imaging, while cadmium-115 has been studied as a potential therapeutic agent for cancer treatment.

However, exposure to cadmium radioisotopes can also be hazardous to human health, as they can cause damage to tissues and organs through ionizing radiation. Therefore, handling and disposal of these materials must be done with care and in accordance with established safety protocols.

Astatine is a naturally occurring, radioactive, semi-metallic chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, and the heaviest of the halogens. Astatine is not found free in nature, but is always found in combination with other elements, such as uranium and thorium.

Astatine is a highly reactive element that exists in several allotropic forms and is characterized by its metallic appearance and chemical properties similar to those of iodine. It has a short half-life, ranging from a few hours to a few days, depending on the isotope, and emits alpha, beta, and gamma radiation.

Due to its rarity, radioactivity, and short half-life, astatine has limited practical applications. However, it has been studied for potential use in medical imaging and cancer therapy due to its ability to selectively accumulate in tumors.

Electroplating is not a medical term, but rather a process used in the industrial field. It refers to the process of coating an electrically conductive object with a thin layer of metal through the use of an electrical current. This process involves immersing the object in a solution containing dissolved ions of the metal to be deposited, and then passing an electric current through the solution. The object serves as the cathode, and the metal ions are reduced at its surface, forming a thin layer of pure metal.

While electroplating is not directly related to medicine, it does have some medical applications. For example, medical devices such as pacemakers or implantable defibrillators may be coated with gold or other metals through electroplating to improve their biocompatibility and reduce the risk of corrosion or rejection by the body. Similarly, dental restorations may be electroplated with precious metals to enhance their strength and durability.

Radioimmunotherapy (RIT) is a medical treatment that combines the specificity of antibodies and the therapeutic effects of radiation to target and destroy cancer cells. It involves the use of radioactive isotopes, which are attached to monoclonal antibodies, that recognize and bind to antigens expressed on the surface of cancer cells. Once bound, the radioactivity emitted from the isotope irradiates the cancer cells, causing damage to their DNA and leading to cell death. This targeted approach helps minimize radiation exposure to healthy tissues and reduces side effects compared to conventional radiotherapy techniques. RIT has been used in the treatment of various hematological malignancies, such as non-Hodgkin lymphoma, and is being investigated for solid tumors as well.

Lutetium is a chemical element with the symbol Lu and atomic number 71. It is a rare earth metal that belongs to the lanthanide series. In its pure form, lutetium is a silvery-white metal that is solid at room temperature.

Medically, lutetium is used in the form of radioactive isotopes for diagnostic and therapeutic purposes. For example, lutetium-177 (^177Lu) is a radiopharmaceutical agent that can be used to treat certain types of cancer, such as neuroendocrine tumors. The radioactivity of ^177Lu can be harnessed to destroy cancer cells while minimizing damage to healthy tissue.

It's important to note that the use of lutetium in medical treatments should only be performed under the supervision of trained medical professionals, and with appropriate safety measures in place to protect patients and healthcare workers from radiation exposure.

I'm sorry for any confusion, but "Rhenium" is not a medical term. It is a chemical element with the symbol "Re" and atomic number 75. Rhenium is a heavy, silvery-white, metallic element that is highly resistant to corrosion and is used in high-temperature alloys and electronics.

It does not have any direct medical relevance or application as a drug, treatment, or diagnostic tool in human medicine. However, like many other elements, rhenium compounds are being studied for their potential medicinal uses, such as in cancer therapy. But it's important to note that these are still in the research phase and have not yet been approved for use in humans.

Gamma spectrometry is a type of spectrometry used to identify and measure the energy and intensity of gamma rays emitted by radioactive materials. It utilizes a device called a gamma spectrometer, which typically consists of a scintillation detector or semiconductor detector, coupled with electronic circuitry that records and analyzes the energy of each detected gamma ray.

Gamma rays are a form of ionizing radiation, characterized by their high energy and short wavelength. When they interact with matter, such as the detector in a gamma spectrometer, they can cause the ejection of electrons from atoms or molecules, leading to the creation of charged particles that can be detected and measured.

In gamma spectrometry, the energy of each detected gamma ray is used to identify the radioactive isotope that emitted it, based on the characteristic energy levels associated with different isotopes. The intensity of the gamma rays can also be measured, providing information about the quantity or activity of the radioactive material present.

Gamma spectrometry has a wide range of applications in fields such as nuclear medicine, radiation protection, environmental monitoring, and nuclear non-proliferation.

Samarium is not a medical term itself, but it is a chemical element with the symbol Sm and atomic number 62. It is a silvery-white metallic element that belongs to the lanthanide series in the periodic table.

However, samarium-153 (Sm-153) is a radioactive isotope of samarium that has medical applications. It is used as a therapeutic agent for the treatment of painful bone metastases, particularly in patients with prostate or breast cancer. Sm-153 is combined with a chelating agent to form a complex that can be injected into the patient's bloodstream. The chelating agent helps to ensure that the samarium is distributed throughout the body and is not taken up by healthy tissues. Once inside the body, Sm-153 emits beta particles, which can destroy cancer cells in the bones and relieve pain.

Therefore, while samarium is not a medical term itself, it does have medical applications as a therapeutic agent for the treatment of bone metastases.

Radiopharmaceuticals are defined as pharmaceutical preparations that contain radioactive isotopes and are used for diagnosis or therapy in nuclear medicine. These compounds are designed to interact specifically with certain biological targets, such as cells, tissues, or organs, and emit radiation that can be detected and measured to provide diagnostic information or used to destroy abnormal cells or tissue in therapeutic applications.

The radioactive isotopes used in radiopharmaceuticals have carefully controlled half-lives, which determine how long they remain radioactive and how long the pharmaceutical preparation remains effective. The choice of radioisotope depends on the intended use of the radiopharmaceutical, as well as factors such as its energy, range of emission, and chemical properties.

Radiopharmaceuticals are used in a wide range of medical applications, including imaging, cancer therapy, and treatment of other diseases and conditions. Examples of radiopharmaceuticals include technetium-99m for imaging the heart, lungs, and bones; iodine-131 for treating thyroid cancer; and samarium-153 for palliative treatment of bone metastases.

The use of radiopharmaceuticals requires specialized training and expertise in nuclear medicine, as well as strict adherence to safety protocols to minimize radiation exposure to patients and healthcare workers.

Diphenylcarbazide is a colorimetric reagent that is used in chemistry and in some medical tests. It is an orange, crystalline powder that is soluble in water and alcohol. In chemistry, it is often used as a reducing agent or as a complexing agent. In medicine, it is most commonly used as a reagent in the diphenylcarbazide test for metals such as chromium and nickel. When mixed with solutions containing these metals, diphenylcarbazide reacts to form a purple or violet-colored complex that can be measured and used to determine the concentration of the metal ions in the solution. It is also known as carbazide diethanol or carbazide DEE.

Radioactive soil pollutants refer to radioactive substances that contaminate and negatively impact the chemical, physical, and biological properties of soil. These pollutants can arise from various sources such as nuclear accidents, industrial activities, agricultural practices, and military testing. They include radionuclides such as uranium, plutonium, cesium-137, and strontium-90, among others.

Exposure to radioactive soil pollutants can have serious health consequences for humans and other living organisms. Direct contact with contaminated soil can result in radiation exposure, while ingestion or inhalation of contaminated soil particles can lead to internal radiation exposure. This can increase the risk of cancer, genetic mutations, and other health problems.

Radioactive soil pollutants can also have negative impacts on the environment, such as reducing soil fertility, disrupting ecosystems, and contaminating water sources. Therefore, it is essential to monitor and regulate radioactive soil pollution to protect human health and the environment.

Bromine radioisotopes are unstable forms of the element bromine that emit radiation as they decay into more stable forms. These isotopes can be used in various medical applications, such as diagnostic imaging and cancer treatment. Some commonly used bromine radioisotopes include Bromine-75, Bromine-76, and Bromine-77.

Bromine-75 is a positron-emitting radionuclide that can be used in positron emission tomography (PET) scans to image and diagnose various diseases, including cancer. It has a half-life of about 97 minutes.

Bromine-76 is also a positron-emitting radionuclide with a longer half-life of approximately 16.2 hours. It can be used in PET imaging to study the pharmacokinetics and metabolism of drugs, as well as for tumor imaging.

Bromine-77 is a gamma-emitting radionuclide with a half-life of about 57 hours. It can be used in various medical applications, such as in the labeling of antibodies and other biomolecules for diagnostic purposes.

It's important to note that handling and using radioisotopes require specialized training and equipment due to their potential radiation hazards.

Scintillation counting is a method used in medical physics and nuclear medicine to detect and quantify radioactivity. It relies on the principle that certain materials, known as scintillators, emit light flashes (scintillations) when they absorb ionizing radiation. This light can then be detected and measured to determine the amount of radiation present.

In a scintillation counting system, the sample containing radioisotopes is placed in close proximity to the scintillator. When radiation is emitted from the sample, it interacts with the scintillator material, causing it to emit light. This light is then detected by a photomultiplier tube (PMT), which converts the light into an electrical signal that can be processed and counted by electronic circuits.

The number of counts recorded over a specific period of time is proportional to the amount of radiation emitted by the sample, allowing for the quantification of radioactivity. Scintillation counting is widely used in various applications such as measuring radioactive decay rates, monitoring environmental radiation levels, and analyzing radioisotopes in biological samples.

Atomic spectrophotometry is a type of analytical technique used to determine the concentration of specific atoms or ions in a sample by measuring the intensity of light absorbed or emitted at wavelengths characteristic of those atoms or ions. This technique involves the use of an atomic spectrometer, which uses a source of energy (such as a flame, plasma, or electrode) to excite the atoms or ions in the sample, causing them to emit light at specific wavelengths. The intensity of this emitted light is then measured and used to calculate the concentration of the element of interest.

Atomic spectrophotometry can be further divided into two main categories: atomic absorption spectrophotometry (AAS) and atomic emission spectrophotometry (AES). In AAS, the sample is atomized in a flame or graphite furnace and the light from a lamp that emits light at the same wavelength as one of the elements in the sample is passed through the atoms. The amount of light absorbed by the atoms is then measured and used to determine the concentration of the element. In AES, the sample is atomized and excited to emit its own light, which is then measured and analyzed to determine the concentration of the element.

Atomic spectrophotometry is widely used in various fields such as environmental monitoring, clinical chemistry, forensic science, and industrial quality control for the determination of trace elements in a variety of sample types including liquids, solids, and gases.

A subdural effusion is an abnormal accumulation of fluid in the potential space between the dura mater (the outermost layer of the meninges that covers the brain and spinal cord) and the arachnoid membrane (one of the three layers of the meninges that surround the brain and spinal cord) in the subdural space.

Subdural effusions can occur due to various reasons, including head trauma, infection, or complications from neurosurgical procedures. The fluid accumulation may result from bleeding (subdural hematoma), inflammation, or increased cerebrospinal fluid pressure. Depending on the underlying cause and the amount of fluid accumulated, subdural effusions can cause various symptoms, such as headaches, altered mental status, or neurological deficits.

Subdural effusions are often asymptomatic and may resolve independently; however, in some cases, medical intervention might be necessary to alleviate the pressure on the brain or address the underlying condition. Imaging techniques like computed tomography (CT) or magnetic resonance imaging (MRI) scans are typically used to diagnose and monitor subdural effusions.

Calcium isotopes refer to variants of the chemical element calcium (ca) that have different numbers of neutrons in their atomic nuclei, and therefore differ in their atomic masses while having the same number of protons. The most common and stable calcium isotope is Calcium-40, which contains 20 protons and 20 neutrons. However, calcium has several other isotopes, including Calcium-42, Calcium-43, Calcium-44, and Calcium-46 to -52, each with different numbers of neutrons. Some of these isotopes are radioactive and decay over time. The relative abundances of calcium isotopes can vary in different environments and can provide information about geological and biological processes.

Radioactive waste is defined in the medical context as any material that contains radioactive nuclides in sufficient concentrations or for such durations that it is considered a threat to human health and the environment. It includes materials ranging from used hospital supplies, equipment, and substances contaminated with radionuclides, to liquids and gases released during the reprocessing of spent nuclear fuel.

Radioactive waste can be classified into two main categories:

1. Exempt waste: Waste that does not require long-term management as a radioactive waste due to its low activity and short half-life.
2. Radioactive waste: Waste that requires long-term management as a radioactive waste due to its higher activity or longer half-life, which can pose a threat to human health and the environment for many years.

Radioactive waste management is a critical aspect of nuclear medicine and radiation safety, with regulations in place to ensure proper handling, storage, transportation, and disposal of such materials.

Heavy metals are a group of elements with a specific gravity at least five times greater than that of water. They include metals such as mercury (Hg), cadmium (Cd), arsenic (As), chromium (Cr), thallium (Tl), and lead (Pb). These metals are considered toxic when they accumulate in the body beyond certain levels, interfering with various biological processes and causing damage to cells, tissues, and organs.

Heavy metal exposure can occur through various sources, including occupational exposure, contaminated food, water, or air, and improper disposal of electronic waste. Chronic exposure to heavy metals has been linked to several health issues, such as neurological disorders, kidney damage, developmental problems, and cancer. Monitoring and controlling exposure to these elements is essential for maintaining good health and preventing potential adverse effects.

Radio-iodinated serum albumin refers to human serum albumin that has been chemically bonded with radioactive iodine isotopes, typically I-125 or I-131. This results in a radiolabeled protein that can be used in medical imaging and research to track the distribution and movement of the protein in the body.

In human physiology, serum albumin is the most abundant protein in plasma, synthesized by the liver, and it plays a crucial role in maintaining oncotic pressure and transporting various molecules in the bloodstream. Radio-iodination of serum albumin allows for non-invasive monitoring of its behavior in vivo, which can be useful in evaluating conditions such as protein losing enteropathies, nephrotic syndrome, or liver dysfunction.

It is essential to handle and dispose of radio-iodinated serum albumin with proper radiation safety protocols due to its radioactive nature.

I'm sorry for any confusion, but "Nickel" is not a medical term. It is a chemical element with the symbol Ni and atomic number 28. Nickel is a hard, silvery-white lustrous metal with a slight golden tinge. It is one of four elements that are ferromagnetic and is used as a common component in various alloys due to its properties such as resistance to corrosion and heat.

However, in a medical context, nickel may refer to:

* Nickel allergy: A type of allergic contact dermatitis caused by an immune system response to the presence of nickel in jewelry, clothing fasteners, or other items that come into contact with the skin. Symptoms can include redness, itching, and rash at the site of exposure.
* Nickel carbonyl: A highly toxic chemical compound (Ni(CO)4) that can cause respiratory and neurological problems if inhaled. It is produced during some industrial processes involving nickel and carbon monoxide and poses a health risk to workers if proper safety measures are not taken.

If you have any concerns about exposure to nickel or symptoms related to nickel allergy, it's best to consult with a healthcare professional for further evaluation and treatment.

Ruthenium radioisotopes refer to unstable isotopes of the element ruthenium, which decays or disintegrates spontaneously emitting radiation. Ruthenium is a rare transition metal with the atomic number 44 and has several radioisotopes, including ruthenium-97, ruthenium-103, ruthenium-105, and ruthenium-106. These radioisotopes have medical applications in diagnostic imaging, radiation therapy, and brachytherapy (a type of internal radiation therapy).

For instance, ruthenium-106 is used as a radiation source in ophthalmic treatments for conditions such as neovascular age-related macular degeneration and diabetic retinopathy. Ruthenium-103 is also used in brachytherapy seeds for the treatment of prostate cancer.

It's important to note that handling and using radioisotopes require specialized training, equipment, and safety measures due to their radiation hazards.

Chemical water pollutants refer to harmful chemicals or substances that contaminate bodies of water, making them unsafe for human use and harmful to aquatic life. These pollutants can come from various sources, including industrial and agricultural runoff, sewage and wastewater, oil spills, and improper disposal of hazardous materials.

Examples of chemical water pollutants include heavy metals (such as lead, mercury, and cadmium), pesticides and herbicides, volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and petroleum products. These chemicals can have toxic effects on aquatic organisms, disrupt ecosystems, and pose risks to human health through exposure or consumption.

Regulations and standards are in place to monitor and limit the levels of chemical pollutants in water sources, with the aim of protecting public health and the environment.

Radiometric dating is a method used to determine the age of objects, including rocks and other fossilized materials, based on the decay rates of radioactive isotopes. This technique relies on the fact that certain elements, such as carbon-14, potassium-40, and uranium-238, are unstable and gradually decay into different elements over time.

By measuring the ratio of the remaining radioactive isotope to the stable end product, scientists can calculate the age of a sample using the following formula:

age = (ln(Nf/N0)) / λ

where Nf is the number of atoms of the decayed isotope, N0 is the initial number of atoms of the radioactive isotope, and λ is the decay constant.

Radiometric dating has been used to date objects ranging from a few thousand years old to billions of years old, making it an essential tool for archaeologists, geologists, and other scientists who study the history of our planet.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Cobalt is a chemical element with the symbol Co and atomic number 27. It is a hard, silver-white, lustrous, and brittle metal that is found naturally only in chemically combined form, except for small amounts found in meteorites. Cobalt is used primarily in the production of magnetic, wear-resistant, and high-strength alloys, as well as in the manufacture of batteries, magnets, and pigments.

In a medical context, cobalt is sometimes used in the form of cobalt-60, a radioactive isotope, for cancer treatment through radiation therapy. Cobalt-60 emits gamma rays that can be directed at tumors to destroy cancer cells. Additionally, small amounts of cobalt are present in some vitamin B12 supplements and fortified foods, as cobalt is an essential component of vitamin B12. However, exposure to high levels of cobalt can be harmful and may cause health effects such as allergic reactions, lung damage, heart problems, and neurological issues.

I'm sorry for any confusion, but "Stainless Steel" is not a medical term. It is a type of steel that contains at least 10.5% chromium content by mass, and usually contains nickel as well. The chromium forms a passive film that protects the metal from corrosion and staining. Stainless steel is widely used in various industries including medicine, for example, in medical equipment and surgical instruments due to its resistance to rust and corrosion.

Selenium radioisotopes are unstable forms of the element selenium that emit radiation as they decay into more stable forms. These isotopes can be produced through various nuclear reactions, such as irradiating a stable selenium target with protons or alpha particles. Some examples of selenium radioisotopes include selenium-75, selenium-79, and selenium-81.

Selenium-75 is commonly used in medical imaging to study the function of the thyroid gland, as it accumulates in this gland and can be detected using a gamma camera. Selenium-79 and selenium-81 have potential uses in cancer treatment, as they can be incorporated into compounds that selectively target and destroy cancer cells. However, more research is needed to fully understand the potential benefits and risks of using these radioisotopes in medical treatments.

It's important to note that handling and using radioisotopes requires special training and precautions, as they can be dangerous if not handled properly. Exposure to radiation from radioisotopes can increase the risk of cancer and other health problems, so it's essential to use them only under controlled conditions and with appropriate safety measures in place.

Alpha particles are a type of radiation that consist of two protons and two neutrons. They are essentially the nuclei of helium atoms and are produced during the decay of radioactive isotopes, such as uranium or radon. When an alpha particle is emitted from a radioactive atom, it carries away energy and causes the atom to transform into a different element with a lower atomic number and mass number.

Alpha particles have a positive charge and are relatively massive compared to other types of radiation, such as beta particles (which are high-energy electrons) or gamma rays (which are high-energy photons). Because of their charge and mass, alpha particles can cause significant ionization and damage to biological tissue. However, they have a limited range in air and cannot penetrate the outer layers of human skin, making them generally less hazardous than other forms of radiation if exposure is external.

Internal exposure to alpha-emitting radionuclides, however, can be much more dangerous because alpha particles can cause significant damage to cells and DNA when they are emitted inside the body. This is why inhaling or ingesting radioactive materials that emit alpha particles can pose a serious health risk.

Heterocyclic compounds are organic molecules that contain a ring structure made up of at least one atom that is not carbon, known as a heteroatom. These heteroatoms can include nitrogen, oxygen, sulfur, or other elements. In the case of "1-ring" heterocyclic compounds, the molecule contains a single ring structure composed of these heteroatoms and carbon atoms. Examples of 1-ring heterocyclic compounds include pyridine (contains one nitrogen atom in the ring), furan (contains one oxygen atom in the ring), and thiophene (contains one sulfur atom in the ring). These compounds play important roles in various biological processes and are also found in many drugs, dyes, and materials.

In the context of medical research, "methods" refers to the specific procedures or techniques used in conducting a study or experiment. This includes details on how data was collected, what measurements were taken, and what statistical analyses were performed. The methods section of a medical paper allows other researchers to replicate the study if they choose to do so. It is considered one of the key components of a well-written research article, as it provides transparency and helps establish the validity of the findings.

Sodium Pertechnetate Tc 99m is a radioactive pharmaceutical preparation used in medical diagnostic imaging. It is a technetium-99m radiopharmaceutical, where technetium-99m is a metastable nuclear isomer of technetium-99, which emits gamma rays and has a half-life of 6 hours. Sodium Pertechnetate Tc 99m is used as a contrast agent in various diagnostic procedures, such as imaging of the thyroid, salivary glands, or the brain, to evaluate conditions like inflammation, tumors, or abnormalities in blood flow. It is typically administered intravenously, and its short half-life ensures that the radiation exposure is limited.

I'm sorry for any confusion, but 'Tungsten' is not a medical term. It is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth, and it has many industrial uses due to its hardness, high density, and high melting point.

In the context of medicine or healthcare, tungsten may be encountered in certain medical devices, such as X-ray tubes and electrodes, where its properties are utilized for their durability and heat resistance. However, it is not a term that would typically have a formal medical definition.

Isotopes are variants of a chemical element that have the same number of protons in their atomic nucleus, but a different number of neutrons. This means they have different atomic masses, but share similar chemical properties. Some isotopes are stable and do not decay naturally, while others are unstable and radioactive, undergoing radioactive decay and emitting radiation in the process. These radioisotopes are often used in medical imaging and treatment procedures.

Radioisotope teletherapy is a type of cancer treatment that uses high-energy radiation from a radioisotope to destroy cancer cells. In this procedure, the radioisotope is placed outside the body and aimed at the tumor site, rather than being inserted into the body like in brachytherapy. The radiation travels through space and penetrates the tissue to reach the tumor, where it damages the DNA of cancer cells and inhibits their ability to divide and grow. This type of radiotherapy is often used for larger or more difficult-to-reach tumors, as well as for palliative care in advanced stages of cancer. Examples of radioisotopes commonly used in teletherapy include cobalt-60 and cesium-137.

Pentetic Acid, also known as DTPA (Diethylenetriaminepentaacetic acid), is not a medication itself but a chelating agent used in the preparation of pharmaceutical products. A chelating agent is a compound that can form multiple bonds with metal ions, allowing them to be excreted from the body.

Pentetic Acid is used in medical treatments to remove or decrease the levels of certain toxic metals, such as lead, plutonium, americium, and curium, from the body. It can be given intravenously or orally, depending on the specific situation and the formulation of the medication.

It is important to note that the use of Pentetic Acid should be under the supervision of a healthcare professional, as it can also bind to essential metals like zinc, calcium, and iron, which can lead to deficiencies if not properly managed.

Organometallic compounds are a type of chemical compound that contain at least one metal-carbon bond. This means that the metal is directly attached to carbon atom(s) from an organic molecule. These compounds can be synthesized through various methods, and they have found widespread use in industrial and medicinal applications, including catalysis, polymerization, and pharmaceuticals.

It's worth noting that while organometallic compounds contain metal-carbon bonds, not all compounds with metal-carbon bonds are considered organometallic. For example, in classical inorganic chemistry, simple salts of metal carbonyls (M(CO)n) are not typically classified as organometallic, but rather as metal carbonyl complexes. The distinction between these classes of compounds can sometimes be subtle and is a matter of ongoing debate among chemists.

Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material, called radiopharmaceuticals, to diagnose and treat various diseases. The radiopharmaceuticals are taken internally, usually through injection or oral administration, and accumulate in specific organs or tissues. A special camera then detects the radiation emitted by these substances, which helps create detailed images of the body's internal structures and functions.

The images produced in nuclear medicine can help doctors identify abnormalities such as tumors, fractures, infection, or inflammation. Additionally, some radiopharmaceuticals can be used to treat certain conditions, like hyperthyroidism or cancer, by delivering targeted doses of radiation directly to the affected area. Overall, nuclear medicine provides valuable information for the diagnosis, treatment planning, and monitoring of many medical conditions.

Technetium Tc 99m Pentetate is a radioactive pharmaceutical preparation used as a radiopharmaceutical agent in medical imaging. It is a salt of technetium-99m, a metastable nuclear isomer of technetium-99, which emits gamma rays and has a half-life of 6 hours.

Technetium Tc 99m Pentetate is used in various diagnostic procedures, including renal imaging, brain scans, lung perfusion studies, and bone scans. It is distributed throughout the body after intravenous injection and is excreted primarily by the kidneys, making it useful for evaluating renal function and detecting abnormalities in the urinary tract.

The compound itself is a colorless, sterile, pyrogen-free solution that is typically supplied in a lead shielded container to protect against radiation exposure. It should be used promptly after preparation and handled with care to minimize radiation exposure to healthcare workers and patients.

Sodium compounds are chemical substances that contain the element sodium (Na) combined with one or more other elements. Sodium is an alkali metal and is highly reactive, so it rarely exists in its pure form in nature. Instead, it is typically found combined with other elements in the form of various sodium compounds.

Some common examples of sodium compounds include:

* Sodium chloride (NaCl), also known as table salt, which is a compound formed from the reaction between sodium and chlorine.
* Sodium bicarbonate (NaHCO3), also known as baking soda, which is used as a leavening agent in baking and as a household cleaner.
* Sodium hydroxide (NaOH), also known as lye, which is a strong alkali used in industrial applications such as the manufacture of soap and paper.
* Sodium carbonate (Na2CO3), also known as washing soda, which is used as a water softener and cleaning agent.

Sodium compounds have a variety of uses in medicine, including as electrolytes to help maintain fluid balance in the body, as antacids to neutralize stomach acid, and as laxatives to relieve constipation. However, it is important to use sodium compounds as directed by a healthcare professional, as excessive intake can lead to high blood pressure and other health problems.

Hazardous waste, as defined in the medical context, refers to any waste that poses a substantial danger to public health or the environment. These wastes can be generated from various sources, including industrial processes, healthcare activities, and household items. They often contain properties that make them harmful, such as being toxic, corrosive, reactive, or ignitable.

In the medical field, hazardous waste may include:

1. Infectious waste: Waste contaminated with potentially infectious materials, such as used needles, surgical instruments, and cultures from medical laboratories.
2. Pathological waste: Human or animal tissues, organs, or fluids that may pose a risk of infection.
3. Pharmaceutical waste: Expired, unused, or contaminated medications, including both prescription and over-the-counter drugs.
4. Chemical waste: Including solvents, disinfectants, heavy metals, and other chemicals used in medical laboratories, research facilities, and healthcare settings.
5. Radioactive waste: Materials that emit radiation, such as those used in medical imaging or cancer treatments.

Proper handling, treatment, and disposal of hazardous waste are crucial to minimize the risks they pose to human health and the environment. Regulations governing hazardous waste management vary by country and region but generally require proper labeling, containment, transportation, and disposal methods to ensure safety.

Intestinal absorption refers to the process by which the small intestine absorbs water, nutrients, and electrolytes from food into the bloodstream. This is a critical part of the digestive process, allowing the body to utilize the nutrients it needs and eliminate waste products. The inner wall of the small intestine contains tiny finger-like projections called villi, which increase the surface area for absorption. Nutrients are absorbed into the bloodstream through the walls of the capillaries in these villi, and then transported to other parts of the body for use or storage.

Radiometry is the measurement of electromagnetic radiation, including visible light. It quantifies the amount and characteristics of radiant energy in terms of power or intensity, wavelength, direction, and polarization. In medical physics, radiometry is often used to measure therapeutic and diagnostic radiation beams used in various imaging techniques and cancer treatments such as X-rays, gamma rays, and ultraviolet or infrared light. Radiometric measurements are essential for ensuring the safe and effective use of these medical technologies.

Rosaniline dyes are a type of basic dye that were first synthesized in the late 19th century. They are named after rosaniline, which is a primary chemical used in their production. Rosaniline dyes are characterized by their ability to form complexes with metal ions, which can then bind to proteins and other biological molecules. This property makes them useful as histological stains, which are used to highlight specific structures or features within tissues and cells.

Rosaniline dyes include a range of different chemicals, such as methyl violet, crystal violet, and basic fuchsin. These dyes are often used in combination with other staining techniques to provide contrast and enhance the visibility of specific cellular components. For example, they may be used to stain nuclei, cytoplasm, or other structures within cells, allowing researchers and clinicians to visualize and analyze tissue samples more effectively.

It's worth noting that some rosaniline dyes have been found to have potential health hazards, particularly when used in certain forms or concentrations. Therefore, it's important to follow proper safety protocols when handling these chemicals and to use them only under the guidance of trained professionals.

Tritium is not a medical term, but it is a term used in the field of nuclear physics and chemistry. Tritium (symbol: T or 3H) is a radioactive isotope of hydrogen with two neutrons and one proton in its nucleus. It is also known as heavy hydrogen or superheavy hydrogen.

Tritium has a half-life of about 12.3 years, which means that it decays by emitting a low-energy beta particle (an electron) to become helium-3. Due to its radioactive nature and relatively short half-life, tritium is used in various applications, including nuclear weapons, fusion reactors, luminous paints, and medical research.

In the context of medicine, tritium may be used as a radioactive tracer in some scientific studies or medical research, but it is not a term commonly used to describe a medical condition or treatment.

"Nostoc commune" is not a medical term, but a scientific name for a type of cyanobacteria (blue-green algae). It's commonly found in various environments such as freshwater, soil, and on rocks. This organism can form colonies that appear as slimy, dark green or black mats.

While not a direct medical term, certain species of cyanobacteria, including Nostoc commune, can produce toxins that may pose health risks to humans and animals if ingested, inhaled, or contact skin. These toxins can cause various symptoms, such as rashes, nausea, vomiting, diarrhea, and liver damage. However, not all strains of Nostoc commune produce toxins, and the health risks associated with this specific species are relatively low compared to other cyanobacteria.

Nonetheless, it is essential to be aware of potential health hazards when encountering cyanobacterial blooms in recreational water bodies or drinking water sources and follow local guidelines for reporting and managing such incidents.

I'm sorry for any confusion, but "soil pollutants" is not a term typically used in medical definitions. Soil pollution refers to the presence or accumulation of hazardous substances, chemicals, or other pollutants in soil that can have negative effects on plant life, human health, and the environment.

However, if you're asking about potential health effects of exposure to soil pollutants, it could include a variety of symptoms or diseases, depending on the specific pollutant. For example, exposure to lead-contaminated soil can lead to developmental delays in children, while exposure to certain pesticides or industrial chemicals can cause neurological problems, respiratory issues, and even cancer.

If you have more specific information about a particular substance or context, I may be able to provide a more precise answer.

Occupational air pollutants refer to harmful substances present in the air in workplaces or occupational settings. These pollutants can include dusts, gases, fumes, vapors, or mists that are produced by industrial processes, chemical reactions, or other sources. Examples of occupational air pollutants include:

1. Respirable crystalline silica: A common mineral found in sand, stone, and concrete that can cause lung disease and cancer when inhaled in high concentrations.
2. Asbestos: A naturally occurring mineral fiber that was widely used in construction materials and industrial applications until the 1970s. Exposure to asbestos fibers can cause lung diseases such as asbestosis, lung cancer, and mesothelioma.
3. Welding fumes: Fumes generated during welding processes can contain harmful metals such as manganese, chromium, and nickel that can cause neurological damage and respiratory problems.
4. Isocyanates: Chemicals used in the production of foam insulation, spray-on coatings, and other industrial applications that can cause asthma and other respiratory symptoms.
5. Coal dust: Fine particles generated during coal mining, transportation, and handling that can cause lung disease and other health problems.
6. Diesel exhaust: Emissions from diesel engines that contain harmful particulates and gases that can cause respiratory and cardiovascular problems.

Occupational air pollutants are regulated by various government agencies, including the Occupational Safety and Health Administration (OSHA) in the United States, to protect workers from exposure and minimize health risks.

Whole-body counting is a non-invasive nuclear medicine technique used for the detection and measurement of radioactivity in the human body. It involves the use of sensitive radiation detectors that can measure the gamma rays emitted by radionuclides present within the body tissues.

The individual lies on a table or sits in a chair with their entire body inside a large detector, which is typically a scintillation camera or a NaI(Tl) crystal. The detector measures the number and energy of gamma rays emitted from the body, allowing for the identification and quantification of specific radionuclides present within the body.

Whole-body counting has several clinical applications, including monitoring patients who have received therapeutic radioisotopes, evaluating the effectiveness of radiation therapy, detecting and measuring internal contamination due to accidental exposure or intentional intake, and assessing the distribution and retention of radionuclides in research studies.

It is important to note that whole-body counting does not provide anatomical information like other imaging techniques (e.g., CT, MRI), but rather offers functional data on the presence and quantity of radioactivity within the body.

In the context of medicine, there is no specific medical definition for 'metals.' However, certain metals have significant roles in biological systems and are thus studied in physiology, pathology, and pharmacology. Some metals are essential to life, serving as cofactors for enzymatic reactions, while others are toxic and can cause harm at certain levels.

Examples of essential metals include:

1. Iron (Fe): It is a crucial component of hemoglobin, myoglobin, and various enzymes involved in energy production, DNA synthesis, and electron transport.
2. Zinc (Zn): This metal is vital for immune function, wound healing, protein synthesis, and DNA synthesis. It acts as a cofactor for over 300 enzymes.
3. Copper (Cu): Copper is essential for energy production, iron metabolism, antioxidant defense, and connective tissue formation. It serves as a cofactor for several enzymes.
4. Magnesium (Mg): Magnesium plays a crucial role in many biochemical reactions, including nerve and muscle function, protein synthesis, and blood pressure regulation.
5. Manganese (Mn): This metal is necessary for bone development, protein metabolism, and antioxidant defense. It acts as a cofactor for several enzymes.
6. Molybdenum (Mo): Molybdenum is essential for the function of certain enzymes involved in the metabolism of nucleic acids, proteins, and drugs.
7. Cobalt (Co): Cobalt is a component of vitamin B12, which plays a vital role in DNA synthesis, fatty acid metabolism, and nerve function.

Examples of toxic metals include:

1. Lead (Pb): Exposure to lead can cause neurological damage, anemia, kidney dysfunction, and developmental issues.
2. Mercury (Hg): Mercury is highly toxic and can cause neurological problems, kidney damage, and developmental issues.
3. Arsenic (As): Arsenic exposure can lead to skin lesions, cancer, neurological disorders, and cardiovascular diseases.
4. Cadmium (Cd): Cadmium is toxic and can cause kidney damage, bone demineralization, and lung irritation.
5. Chromium (Cr): Excessive exposure to chromium can lead to skin ulcers, respiratory issues, and kidney and liver damage.

Trace elements are essential minerals that the body needs in very small or tiny amounts, usually less than 100 milligrams per day, for various biological processes. These include elements like iron, zinc, copper, manganese, fluoride, selenium, and iodine. They are vital for maintaining good health and proper functioning of the human body, but they are required in such minute quantities that even a slight excess or deficiency can lead to significant health issues.

Potassium radioisotopes refer to unstable isotopes or variants of the element potassium that emit radiation as they decay towards a stable form. A common example is Potassium-40 (40K), which occurs naturally in small amounts in potassium-containing substances. It decays through beta decay and positron emission, as well as electron capture, with a half-life of approximately 1.25 billion years.

Radioisotopes like 40K have medical applications such as in dating archaeological artifacts or studying certain biological processes. However, exposure to high levels of radiation from potassium radioisotopes can be harmful and potentially lead to health issues like radiation sickness or cancer.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

Radioisotopes Production Facility is capable of producing the following: Chromium-51, through the irradiation of potassium ... Radioisotopes Production Facility (RPF), is a facility for the production of radioisotopes from irradiation of Low enriched ... "Radioisotopes in Medicine". World Nuclear Association. April 2016. Retrieved 11 May 2016. "Radioisotopes production plants". ... The produced radioisotopes are used in medicine, industry and research activities for domestic market. The RPF is owned and ...
Twenty-five radioisotopes have been characterized, ranging from 42Cr to 70Cr; the most stable radioisotope is 51Cr with a half- ... Some other notable chromium(II) compounds include chromium(II) oxide CrO, and chromium(II) sulfate CrSO 4. Many chromium(II) ... A large number of chromium(III) compounds are known, such as chromium(III) nitrate, chromium(III) acetate, and chromium(III) ... Most chromium(I) compounds are obtained solely by oxidation of electron-rich, octahedral chromium(0) complexes. Other chromium( ...
The classical method of detecting this is the Chromium-51 [51Cr] release assay; the Sulfur-35 [35S] release assay is a little ... used radioisotope-based alternative. Target cell lysis is determined by measuring the amount of radiolabel released into the ...
The spleen of each patient was then quantitatively measured using chromium-labeled erythrocytes and radioisotope photoscan of ...
Twenty-two radioisotopes, all of which are entirely synthetic, have been characterized, the most stable being 51Cr with a half- ... Chromium-51 is a synthetic radioactive isotope of chromium having a half-life of 27.7 days and decaying by electron capture ... Isotopes of chromium, Chromium, Lists of isotopes by element). ... The isotopes of chromium range from 42Cr to 70Cr. The primary ... Chromium Cr-51 has been used as a radioactive label for decades. It is used as a diagnostic radiopharmaceutical agent in ...
Chromium crystals and 1 cm3 cube Arsenic, sealed in a container to stop tarnishing Cadmium bar and 1 cm3 cube Mercury being ... heavy metals are also employed as spallation targets for the production of neutrons or radioisotopes such as astatine (using ... Chromium, arsenic, cadmium, mercury, and lead have the greatest potential to cause harm on account of their extensive use, the ... Hexavalent chromium, for example, is highly toxic as are mercury vapour and many mercury compounds. These five elements have a ...
The zirconium-rich phase was found around the pores and on the grain boundaries and contains some iron and chromium in the form ... An eventually present layer of more dense molten metal, containing fewer radioisotopes (Ru, Tc, Pd, etc., initially composed of ... The inclusion of iron and chromium rich regions probably originate from a molten nozzle that did not have enough time to be ... A secondary phase composed of chromium(III) oxide was found in one of the samples. Some metallic inclusions contained silver ...
... cerium radioisotopes MeSH D01.496.180.300 - cesium radioisotopes MeSH D01.496.212.349 - chromium radioisotopes MeSH D01.496. ... cerium radioisotopes MeSH D01.496.749.190 - cesium radioisotopes MeSH D01.496.749.213 - chromium radioisotopes MeSH D01.496. ... iron radioisotopes MeSH D01.496.749.540 - krypton radioisotopes MeSH D01.496.749.560 - lead radioisotopes MeSH D01.496.749.590 ... xenon radioisotopes MeSH D01.496.749.960 - yttrium radioisotopes MeSH D01.496.749.980 - zinc radioisotopes MeSH D01.496.807.800 ...
... the chromium radioisotope 51Cr (chelated with EDTA), and creatinine, have had their utility confirmed in large cohorts of ...
On occasion, the radioisotope is a simple soluble dissolved ion, such as an isotope of gallium(III). Most of the time, though, ... chromium-51 and cobalt-58). These may be imaged using SPECT in order to verify the presence of fuel rods in a stored fuel ... SPECT is more widely available, because the radioisotope used is longer-lasting and far less expensive in SPECT, and the gamma ... In the nuclear power sector, the SPECT technique can be applied to image radioisotope distributions in irradiated nuclear fuels ...
... includes the study of both natural and man-made radioisotopes. All radioisotopes are unstable isotopes of ... Thermoanaerobacter can use chromium(VI), iron(III), cobalt(III), manganese(IV), and uranium(VI) as electron acceptors while ... Radiochemistry also includes the study of the behaviour of radioisotopes in the environment; for instance, a forest or grass ... the action of cosmic rays on the air is responsible for the formation of radioisotopes (such as 14C and 32P), the decay of ...
Online fuel processing can introduce risks of fuel processing accidents,: 15 which can trigger release of radio isotopes. In ... Structural metal such as chromium, nickel, and iron must be removed for corrosion control. A water content reduction ... Corrosion risks include dissolution of chromium by liquid fluoride thorium salts at greater than 700 °C (1,292 °F), hence ...
Radioisotopes can be transformed directly through changes in valence state by acting as acceptors or by acting as cofactors to ... YieF enzyme, for example, naturally catalyzes the reduction of chromium with a very wide range of substrates. Following protein ... The radioisotope interact with binding sites of metabolically active cells and is used as terminal electron acceptor in the ... Several radioisotopes of strontium, for example, are recognized as analogs of calcium and incorporated within Micrococcus ...
Twenty-four artificial radioisotopes have been characterized, ranging in mass number from 40 to 65. The most stable of these ... IN: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, ... chromium) isotopes. The chemistry of vanadium is noteworthy for the accessibility of the four adjacent oxidation states 2-5. In ... incorrectly declared that del Río's new element was an impure sample of chromium. Del Río accepted Collet-Descotils' statement ...
ISBN 978-0-19-515026-1. Radioisotope Power Systems Committee, National Research Council U.S. (2009). Radioisotope power systems ... chromium, and platinum). In 1934, Josef Mattauch finally formulated the isobar rule. One of the indirect consequences of this ... Nuclides were produced in 1941 which were not radioisotopes of neodymium or samarium, and the name "cyclonium" was proposed, ... Duggirala, Rajesh; Lal, Amit; Radhakrishnan, Shankar (2010). Radioisotope Thin-Film Powered Microsystems. Springer. p. 12. ISBN ...
It is a parent radioisotope to the short-lived gamma-emitting daughter radioisotope technetium-99m, a nuclear isomer used in ... Like chromium and some other transition metals, molybdenum forms quadruple bonds, such as in Mo2(CH3COO)4 and [Mo2Cl8]4−. The ... Of the synthetic radioisotopes, the most stable is 93Mo, with a half-life of 4,000 years. The most common isotopic molybdenum ... The relative rarity of molybdenum(III), for example, contrasts with the pervasiveness of the chromium(III) compounds. The ...
Chromium, Chromium, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Chromium. National Academy Press. pp. ... Several radioisotopes have been isolated and described, ranging in atomic weight from 46 u (46Mn) to 72 u (72Mn). The most ... Calvert, J. B. (24 January 2003). "Chromium and Manganese". Archived from the original on 31 December 2016. Retrieved 10 ... Manganese isotopic contents are typically combined with chromium isotopic contents and have found application in isotope ...
26 radioisotopes have been characterized, with the most stable being 53Mn with a half-life of 3.7 million years, 54Mn with a ... Manganese isotopic contents are typically combined with chromium isotopic contents and have found application in isotope ...
24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with the most stable being ... chromium) isotopes. mV - Excited nuclear isomer. ( ) - Uncertainty (1σ) is given in concise form in parentheses after the ...
Zinc, cadmium, magnesium, chromium: metal fume fever can be caused by ingestion of the fumes of these metals and leads to flu- ... 99mTc is the most commonly used radioisotope agent for imaging purposes. It has a short half-life, emits only gamma ray photons ... Nickel, chromium, and cadmium: via metal-DNA interactions, these metals can be carcinogenic. Nickel: allergies to nickel, ... Metal complexes can be used either for radioisotope imaging (from their emitted radiation) or as contrast agents, for example, ...
Deposited hot particles of radioactive fallout and bioaccumulated radioisotopes can be reintroduced into the atmosphere by ... Coal combustion produces emissions containing aluminium, arsenic, chromium, cobalt, copper, iron, mercury, selenium, and ...
"Chromium in Drinking Water". EPA. 2022-03-07. "Hexavalent Chromium; Health Effects". Washington, D.C.: U.S. Occupational Safety ... Once it decays radionuclides turn into radioisotopes. This process emits radiation. Exposure to radiation to lead to acute and ... An example of this chemical causing adverse health issues is through a well-known hexavalent chromium (chromium 6) pollution ... "PG&E Hinkley Chromium Cleanup". South Lake Tahoe, CA: Lahontan Regional Water Quality Control Board. Retrieved 2022-03-13. CA ...
He pointed out that hexavalent chromium in dust can cause dermatitis ulceration on the skin, inflammation of the nasal mucosa ... His early work started an interest in radioisotopes and trace elements that he maintained throughout his working life. While at ...
Here is a list of radioisotopes formed by the action of cosmic rays; the list also contains the production mode of the isotope ... the cosmic-ray spallation of iron produces scandium through chromium on the one hand and helium through boron on the other. ...
In total, 32 radioisotopes have been characterised, which range in mass number from 207 to 238. After 232Th, the most stable of ... Thorium forms eutectic mixtures with chromium and uranium, and it is completely miscible in both solid and liquid states with ... These rely on the fact that 232Th is a primordial radioisotope, but 230Th only occurs as an intermediate decay product in the ... All of these isotopes occur in nature as trace radioisotopes due to their presence in the decay chains of 232Th, 235U, 238U, ...
... and in the stellite alloys the carbon is primarily associated with the chromium to form hard chromium carbide particles which ... There the cobalt would be activated by the neutron flux in the reactor and become cobalt-60, a radioisotope with a five-year ... Stellite alloys are a range of cobalt-based alloys, with significant proportions of chromium (up to 33%) and tungsten (up to 18 ... Stellite is a range of cobalt-chromium alloys designed for wear resistance. The alloys may also contain tungsten or molybdenum ...
Twenty-one radioisotopes have been characterized, with the most stable being 44Ti with a half-life of 60 years, 45Ti with a ... the resulting 44Ti nucleus can then fuse with another alpha particle to form chromium-48. The age of supernovae may be ...
There are also 30 artificial radioisotopes, the longest-lived of which is 194Os with a half-life of six years; all others have ... Other sources of anthropogenic Os include combustion of fossil fuels, smelting chromium ore, and smelting of some sulfide ores ...
... natural beryllium bombarded either by alphas or gammas from a suitable radioisotope is a key component of most radioisotope- ... The green color in gem-quality forms of beryl comes from varying amounts of chromium (about 2% for emerald). The two main ores ... Tritium is a radioisotope of concern in nuclear reactor waste streams. As a metal, beryllium is transparent or translucent to ... Both stable and unstable isotopes of beryllium are created in stars, but the radioisotopes do not last long. It is believed ...
Salted bomb Table of nuclides Manual for reactor produced radioisotopes from the International Atomic Energy Agency Neeb, Karl ... Chromium-51 will form by neutron activation in chrome steel (which contains Cr-50) that is exposed to a typical reactor neutron ... Chromium-55 by Cr-54 neutron capture ORILL : 1D transmutation, fuel depletion, and radiological protection code US Army (1952 ... as a result of the production of neutron-rich radioisotopes.[citation needed] Some atoms require more than one neutron to ...
... JAMA. 1964 Feb 22;187:601-3. doi: 10.1001/jama. ...
Chromium Radioisotopes * Edetic Acid* * Female * Glomerular Filtration Rate / physiology* * Humans * Lung Transplantation / ...
Radioisotopes Production Facility is capable of producing the following: Chromium-51, through the irradiation of potassium ... Radioisotopes Production Facility (RPF), is a facility for the production of radioisotopes from irradiation of Low enriched ... "Radioisotopes in Medicine". World Nuclear Association. April 2016. Retrieved 11 May 2016. "Radioisotopes production plants". ... The produced radioisotopes are used in medicine, industry and research activities for domestic market. The RPF is owned and ...
Beryllium, nickel, copper, chromium, and cadmium have all been implicated in causing lung cancer. ...
Chromium 51 is a synthetic radioisotope of chromium and the 3.4 megacurie source of electron neutrinos. The reaction between ... A set of 26 irradiated disks of chromium 51 are the source of electron neutrinos that react with gallium and produce germanium ... BEST used 26 irradiated disks of chromium 51 to irradiate an inner and outer tank of gallium, a soft, silvery metal also used ... the electron neutrinos from the chromium 51 and the gallium produces the isotope germanium 71. ...
This WebElements periodic table page contains the essentials for the element chromium ... Several Chromium isotopes are used for medical applications. Cr-50 is used for the production of the radioisotope Cr-51 which ... The ground state electronic configuration of neutral chromium is [Ar].3d5.4s1 and the term symbol of chromium is 7S3. ... Chromium: description Your user agent does not support the HTML5 Audio element. 🔊. Chromium is steel-gray, lustrous, hard, ...
Beryllium, nickel, copper, chromium, and cadmium have all been implicated in causing lung cancer. ...
Chromium Radioisotopes; Enzyme Activation / drug effects; Fibroblasts / drug effects; Fibroblasts / metabolism; ...
These methods are unsuitable for the low-cost mass production of elements and produce many undesirable radioisotopes. The ... chromium, manganese, copper, silver, gold, palladium, zirconium, tungsten and others. Currently, the conversion of elements ... chromium, manganese, palladium, gold, silver, tungsten and copper. Thus, atomic transformation has been demonstrated using ...
This is evidence that radioisotopes, in addition to tritium, washed out of the AOG pipe tunnel into the environment with the ... chromium-51, cobalt-58, barium-140 and. lanthanum-140. ... also detected these as well as several other radioisotopes that ... This also meant that other radioisotopes could have contaminated the environment, which soil testing confirmed. Although the ...
Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton ... Radioisotope Power Systems Committee, National Research Council U.S. (2009). Radioisotope power systems: an imperative for ... Duggirala, Rajesh; Lal, Amit; Radhakrishnan, Shankar (2010). Radioisotope Thin-Film Powered Microsystems. Springer. p. 12. ISBN ... Nuclides were produced in 1941 which were not radioisotopes of neodymium or samarium, and the name "cyclonium" was proposed, ...
This objective is addressed using (i) thorium radioisotopes… ... Scavenging and Transport of Thorium Radioisotopes in the North ... Investigating chromium cycling in global oxygen deficient zones with chromium isotopes. *Anthropogenic and natural ... Scavenging and Transport of Thorium Radioisotopes in the North Atlantic Ocean. *Radium Isotopes as Tracers of Boundary Inputs ... Scavenging and Transport of Thorium Radioisotopes in the North Atlantic Ocean. Paul Lerner, Ph.D., 2018. Olivier Marchal, Co- ...
Beryllium, nickel, copper, chromium, and cadmium have all been implicated in causing lung cancer. ...
Animals, Chromium Radioisotopes, Cytotoxicity Tests, Immunologic, Isoantigens, Lymph Nodes, Lymphocyte Culture Test, Mixed, ...
CHROMIUM RADIOISOTOPES but not ISOTOPE LABELING. Allowable Qualifiers:. AE adverse effects. CL classification. EC economics. ES ... restrict to techniques of labeling with isotopes (stable or radioactive): do not use for radioisotope tracer studies of " ...
Chromium. 24 Cr 51.996100000 Chromium See more Chromium products. Chromium (atomic symbol: Cr, atomic number: 24) is a Block D ... Radioactive isotopes of strontium have been used in radioisotope thermoelectric generators (RTGs) and for certain cancer ... The chromium atom has a radius of 128 pm and a Van der Waals radius of 189 pm. In its elemental form, chromium has a lustrous ... Parameter: Total chromium (fume). 10 μg/L. Medium: urine. Time: increase during shift. Parameter: Total chromium (fume). ...
Radioisotope Safety Data Sheets. A radionuclide safety data sheet (RSDS) has been developed by Radiation Safety Services (RSS) ...
Chromium Radioisotopes. * Cytotoxicity Tests, Immunologic. * Cytotoxicity, Immunologic. * Exudates and Transudates. * Female. * ...
Radioisotopes, Cesium use Cesium Radioisotopes Radioisotopes, Chromium use Chromium Radioisotopes Radioisotopes, Cobalt use ... Radioisotope Dilution Technic use Radioisotope Dilution Technique Radioisotope Dilution Technics use Radioisotope Dilution ... Radioisotope Diagnostic Technic use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Technics use Diagnostic ... Radioisotope Diagnostic Technique use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Techniques use Diagnostic ...
Radioisotopes, Cesium use Cesium Radioisotopes Radioisotopes, Chromium use Chromium Radioisotopes Radioisotopes, Cobalt use ... Radioisotope Dilution Technic use Radioisotope Dilution Technique Radioisotope Dilution Technics use Radioisotope Dilution ... Radioisotope Diagnostic Technic use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Technics use Diagnostic ... Radioisotope Diagnostic Technique use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Techniques use Diagnostic ...
Radioisotopes, Cesium use Cesium Radioisotopes Radioisotopes, Chromium use Chromium Radioisotopes Radioisotopes, Cobalt use ... Radioisotope Dilution Technic use Radioisotope Dilution Technique Radioisotope Dilution Technics use Radioisotope Dilution ... Radioisotope Diagnostic Technic use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Technics use Diagnostic ... Radioisotope Diagnostic Technique use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Techniques use Diagnostic ...
Radioisotopes, Cesium use Cesium Radioisotopes Radioisotopes, Chromium use Chromium Radioisotopes Radioisotopes, Cobalt use ... Radioisotope Dilution Technic use Radioisotope Dilution Technique Radioisotope Dilution Technics use Radioisotope Dilution ... Radioisotope Diagnostic Technic use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Technics use Diagnostic ... Radioisotope Diagnostic Technique use Diagnostic Techniques, Radioisotope Radioisotope Diagnostic Techniques use Diagnostic ...
Using the Chromium Next GEM Single Cell 3′Reagent Kit v3.1 from 10x Genomics, Inc., first strand synthesis was performed using ... 2002Monoclonal antibodies conjugated with radioisotopes for the treatment of non-Hodgkins lymphomaPaper presented at: Seminars ... Approximately 200-300 cells from both HCC or benign liver samples were loaded onto the Chromium next GEM chip G, where the ... The captured mRNAs were reverse-transcribed and barcoded using Chromium Next GEM 3 reagent 3.1 kit (10x Genomics). The ...
Radioactive SnF is used as a marker for bone infection radioisotope imagery, proving the affinity of this molecule to the site ... chromium, cadmium, and uranium. After DHEA chelation it usually requires additional supplementation to replace lost Calcium, ... and radio-isotope scans. Tin is not regarded as very toxic. Thus the toothpaste eating. Toothpaste used to come in lead tubes, ... Chromium, Cr; Cobalt, Co; Selenium, Se; Mercury, Hg; Lead, Pb; Silicon, Si; Uranium; U.. ...
Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton ... It is a parent radioisotope to the short-lived gamma-emitting daughter radioisotope technetium-99m, a nuclear isomer used in ... Like chromium and some other transition metals, molybdenum forms quadruple bonds, such as in Mo2(CH3COO)4 and [Mo2Cl8]4−.[22][ ... "Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, ...
Radioisotopes and measuring geological time. Geological time-scale. Stratigraphic procedures of correlation of unfossiliferous ... Occurrence and distribution in India of metalliferous deposits - base metals, iron, manganese, aluminium, chromium, nickel, ...
Fate of radioisotopes in aquatic environments (In Russian). Proceedings of the Biological Institute of the USSR Academy of ... Behavior of chromium in soils, III. Oxidation. J. Environ. Qual. 8: 31-35. ... Phytoextraction of nickel, lead, and chromium from contaminated soil using sunflower, marigold, and spinach: comparison of ...
... decay of radioisotopes from uranium-rich bedrock, and chemical reactions of elements in the air or in the water. ... calcium and chlorides or even chromium in groundwater [36] [37] [38]. Other dissolved constituents such as boron, arsenic and ...
  • Several Chromium isotopes are used for medical applications. (webelements.com)
  • Further data for radioisotopes (radioactive isotopes) of curium are listed (including any which occur naturally) below. (webelements.com)
  • The carcinogenicity of strontium chromate is attributed to the hexavalent chromium ion and not to strontium. (cdc.gov)
  • Tissue accumulation and enzymatic effects of hexavalent chromium in rainbow trout ( Salmo gairdneri ). (innspub.net)
  • Binary compounds with halogens (known as halides), oxygen (known as oxides), hydrogen (known as hydrides), and other compounds of chromium where known. (webelements.com)
  • Radioisotopes Production Facility (RPF), is a facility for the production of radioisotopes from irradiation of Low enriched uranium (LEU) in the Egyptian Second Research Reactor (ETRR-2) Complex. (wikipedia.org)
  • The reaction between the electron neutrinos from the chromium 51 and the gallium produces the isotope germanium 71. (scitechdaily.com)
  • The EPA has not derived reference concentrations (RfCs) or RfDs for radioactive strontium (IRIS 2002), nor does the Integrated Risk Information System (IRIS) database provide cancer assessments for radioisotopes of strontium. (cdc.gov)
  • Emerald is a form of beryl (a beryllium aluminium silicate) which is green because of the inclusion of a little chromium into the beryl crytal lattice in place of some of the aluminium ions. (webelements.com)
  • Similarly, traces of chromium incorporated into the crystal lattice of corundum (crystalline aluminium oxide, Al 2 O 3 ) as a replacement for some of the Al 3+ ions results in another highly coloured gem stone, in this case the red ruby. (webelements.com)
  • Chromium is an essential trace element and has a role in glucose metabolism. (webelements.com)
  • Cr-53 and Cr-54 are used for the study of chromium metabolism and studies into (adult) diabetes. (webelements.com)
  • In 1938, during a nuclear experiment conducted at Ohio State University , a few radioactive nuclides were produced that certainly were not radioisotopes of neodymium or samarium, but there was a lack of chemical proof that element 61 was produced, and the discovery was not generally recognized. (wikipedia.org)
  • Radioactive SnF is used as a marker for bone infection radioisotope imagery, proving the affinity of this molecule to the site of the infection. (ra-infection-connection.com)
  • In anything other than trace amounts, chromium compounds should be regarded as highly toxic. (webelements.com)
  • This is evidence that radioisotopes, in addition to tritium, washed out of the AOG pipe tunnel into the environment with the leaking nuclear reactor water. (healthvermont.org)
  • Multi-Purpose Production hot cell - one hot cell (for compound labeling and production of other radioisotopes). (wikipedia.org)
  • Chromium is useful as a protective plating on plumbing fixtures and automotive detailing. (cooljargon.com)
  • It includes the contamination of skin surface, foodstuff, water and gamma radiations from the spread of radioisotopes in the atmosphere. (researchsquare.com)
  • GTR : 69998883 tenders are invited for introduction of new wear resistant chromium molybdenum steel armor production technology procedure of procurement: consultant service procedure and combination procedure and combination method total budget: 5,175,000,000 ye. (tenderdetail.com)
  • GTR : 69194758 tenders are invited for introduction of new wear resistant chromium molybdenum steel armor production technology. (tenderdetail.com)
  • This also meant that other radioisotopes could have contaminated the environment, which soil testing confirmed. (healthvermont.org)
  • Chromium was selected as a model for studying soil Pu. (unt.edu)
  • Siberian red lead (crocoite, PrCrO 4 ) is a chromium ore prized as a red pigment for oil paints. (webelements.com)
  • Radioisotopes Production Facility (RPF) was initially highlighted during the 2004/2005 investigation by the International Atomic Energy Agency (IAEA), as Egypt declared the new facility which was under construction to the agency. (wikipedia.org)
  • Radioisotopes Production Facility (RPF) is located at the Nuclear Research Center in Inshas, near ETRR-2 research reactor and Fuel Manufacturing Pilot Plant (FMPP) as the three facilities share the same auxiliary services with high degree of integration between ETRR-2 and RPF to ensure safe transfer of the irradiated targets for radioisotope production. (wikipedia.org)
  • Chromium-51 Production Hot Cell - one hot cell. (wikipedia.org)
  • Radioisotopes Production Facility is capable of producing the following: Chromium-51, through the irradiation of potassium chromate targets (0.5 Ci per week), used as injectable medical product. (wikipedia.org)
  • Licensing of digital Instrumentation & Control in Radioisotopes Production Facility" (PDF). (wikipedia.org)
  • Cr-50 is used for the production of the radioisotope Cr-51 which is used for measuring blood volume and red blood cell survival. (webelements.com)
  • GTR : 68522190 quotation are invited for provide labor, part & all necessary item for supply & install roller mold to housing mold & install at the line production for 5 units: spec roller mold: 1.compact mold shunqi compact 2t head material spec: chromium molyb. (tenderdetail.com)
  • For example, in health care, radioisotopes are used to treat medical conditions, while in space exploration, radioisotopes power missions, rovers and probes. (nnl.co.uk)
  • Chromium 51 is a synthetic radioisotope of chromium and the 3.4 megacurie source of electron neutrinos. (scitechdaily.com)
  • A set of 26 irradiated disks of chromium 51 are the source of electron neutrinos that react with gallium and produce germanium 71 at rates that can be measured against predicted rates. (scitechdaily.com)
  • A nuclear disaster leads to both external and internal contamination of the radioisotopes. (researchsquare.com)
  • The major minerals are instrumental in all kinds of life-sustaining activities in your body: magnesium is crucial in calcium absorption, iodine in thyroid function, iron in blood oxygen exchange, and chromium in blood sugar regulation. (vibrantwellnessjournal.com)
  • The produced radioisotopes are used in medicine, industry and research activities for domestic market. (wikipedia.org)
  • Collectively, my findings suggest that spatial variations in Th radioisotope activities observed in the North Atlantic partly reflect variations in the rate at which Th is removed from the water column. (whoi.edu)
  • Unstable isotopes of chromium that decay or disintegrate emitting radiation. (bvsalud.org)
  • Cr atoms with atomic weights of 46-49, 51, 55, and 56 are radioactive chromium isotopes. (bvsalud.org)
  • Further data for radioisotopes (radioactive isotopes) of dubnium are listed (including any which occur naturally) below. (webelements.com)
  • The nickel, chromium, cobalt, and molybdenum alloy enables “the use of high-temperature reactors to meet the United States’ energy security and climate change goals and paves the way for additional advanced alloys to be qualified in the future,†according to the citation. (oakridgetoday.com)
  • Cobalt-60 is a commercially important radioisotope, used as a tracer and in the production of gamma rays for industrial use. (scientificlib.com)
  • Using chelating ethylenediamine ligands in place of ammonia gives tris(ethylenediamine)cobalt(III) chloride ([Co(en)3]Cl), which was one of the first coordination complexes that was resolved into optical isomers. (scientificlib.com)
  • In the complex [Co(en) 3 ] 3+ , there are three bidentate en ligands, and the coordination number of the cobalt(III) ion is six. (cooljargon.com)
  • A set of 26 irradiated disks of chromium 51 are the source of electron neutrinos that react with gallium and produce germanium 71 at rates which can be measured against predicted rates. (newswise.com)
  • More than a mile underground in the Baksan Neutrino Observatory in Russia's Caucasus Mountains, BEST used 26 irradiated disks of chromium 51, a synthetic radioisotope of chromium and the 3.4 megacurie source of electron neutrinos, to irradiate an inner and outer tank of gallium, a soft, silvery metal also used in previous experiments, though previously in a one-tank set-up. (newswise.com)
  • The reaction between the electron neutrinos from the chromium 51 and the gallium produces the isotope germanium 71. (newswise.com)
  • Radioisotopes Production Facility is capable of producing the following: Chromium-51, through the irradiation of potassium chromate targets (0.5 Ci per week), used as injectable medical product. (wikipedia.org)
  • Chinese-hamster ovary cell cultures were incubated with chromium -51 (Cr-51) labeled sodium-chromate (7775113) at a concentration of 60 nanomolar for 2 or 24 hours. (cdc.gov)
  • Chromatographic analyses indicated the presence of at least three different molecular species interacting with chromate or its reduced derivative trivalent chromium (16065831). (cdc.gov)
  • The carcinogenicity of strontium chromate is attributed to the hexavalent chromium ion and not to strontium. (cdc.gov)
  • K are found in all potassium, and it is the most common radioisotope in the human body. (wiki2.org)
  • Pu-238, in pellet form, produces heat converted to electricity by the rover’s multi-mission radioisotope thermoelectric generator, which moves the rover and powers the instruments used on Mars’ surface. (oakridgetoday.com)
  • While neptunium itself has no commercial uses at present, it is used as a precursor for the formation of plutonium-238 , and in radioisotope thermal generators to provide electricity for spacecraft . (cloudfront.net)
  • Distribution and HPLC study of chromium -51 binding sites in Chinese hamster ovary cells. (cdc.gov)
  • Although a more comprehensive picture of the radioisotope content of STPs has emerged from this study, epidemiological evidence suggests that the levels of radionuclides measured in this study appear unlikely to present significant risks to STP users. (biomedcentral.com)
  • a) The ethylenediamine (en) ligand contains two atoms with lone pairs that can coordinate to the metal center. (cooljargon.com)
  • Activity Control Hot Cell - one hot cell (radioisotope calibration and activity control prior to dispatch). (wikipedia.org)