A pathological process consisting of the formation of new blood vessels in the CHOROID.
The thin, highly vascular membrane covering most of the posterior of the eye between the RETINA and SCLERA.
Visualization of a vascular system after intravenous injection of a fluorescein solution. The images may be photographed or televised. It is used especially in studying the retinal and uveal vasculature.
Formation of new blood vessels originating from the retinal veins and extending along the inner (vitreal) surface of the retina.
The use of green light-producing LASERS to stop bleeding. The green light is selectively absorbed by HEMOGLOBIN, thus triggering BLOOD COAGULATION.
Degenerative changes in the RETINA usually of older adults which results in a loss of vision in the center of the visual field (the MACULA LUTEA) because of damage to the retina. It occurs in dry and wet forms.
The administration of substances into the VITREOUS BODY of the eye with a hypodermic syringe.
New blood vessels originating from the corneal veins and extending from the limbus into the adjacent CORNEAL STROMA. Neovascularization in the superficial and/or deep corneal stroma is a sequel to numerous inflammatory diseases of the ocular anterior segment, such as TRACHOMA, viral interstitial KERATITIS, microbial KERATOCONJUNCTIVITIS, and the immune response elicited by CORNEAL TRANSPLANTATION.
The inner layer of CHOROID, also called the lamina basalis choroideae, located adjacent to the RETINAL PIGMENT EPITHELIUM; (RPE) of the EYE. It is a membrane composed of the basement membranes of the choriocapillaris ENDOTHELIUM and that of the RPE. The membrane stops at the OPTIC NERVE, as does the RPE.
The single layer of pigment-containing epithelial cells in the RETINA, situated closely to the tips (outer segments) of the RETINAL PHOTORECEPTOR CELLS. These epithelial cells are macroglia that perform essential functions for the photoreceptor cells, such as in nutrient transport, phagocytosis of the shed photoreceptor membranes, and ensuring retinal attachment.
The concave interior of the eye, consisting of the retina, the choroid, the sclera, the optic disk, and blood vessels, seen by means of the ophthalmoscope. (Cline et al., Dictionary of Visual Science, 4th ed)
Inbreed BN (Brown Norway) rats are a strain of laboratory rats that are specifically bred for research purposes, characterized by their uniform genetic makeup and susceptibility to various diseases, which makes them ideal models for studying human physiology and pathophysiology.
The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced.
Small breaks in the elastin-filled tissue of the retina.
Agents and endogenous substances that antagonize or inhibit the development of new blood vessels.
Tumors of the choroid; most common intraocular tumors are malignant melanomas of the choroid. These usually occur after puberty and increase in incidence with advancing age. Most malignant melanomas of the uveal tract develop from benign melanomas (nevi).
An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum.
Disorders of the choroid including hereditary choroidal diseases, neoplasms, and other abnormalities of the vascular layer of the uvea.
A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions.
Excessive axial myopia associated with complications (especially posterior staphyloma and CHOROIDAL NEOVASCULARIZATION) that can lead to BLINDNESS.
Therapy using oral or topical photosensitizing agents with subsequent exposure to light.
A form of RETINAL DEGENERATION in which abnormal CHOROIDAL NEOVASCULARIZATION occurs under the RETINA and MACULA LUTEA, causing bleeding and leaking of fluid. This leads to bulging and or lifting of the macula and the distortion or destruction of central vision.
An area approximately 1.5 millimeters in diameter within the macula lutea where the retina thins out greatly because of the oblique shifting of all layers except the pigment epithelium layer. It includes the sloping walls of the fovea (clivus) and contains a few rods in its periphery. In its center (foveola) are the cones most adapted to yield high visual acuity, each cone being connected to only one ganglion cell. (Cline et al., Dictionary of Visual Science, 4th ed)
The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process.
The blood vessels which supply and drain the RETINA.
A tricarbocyanine dye that is used diagnostically in liver function tests and to determine blood volume and cardiac output.
The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye.
Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Drugs that are pharmacologically inactive but when exposed to ultraviolet radiation or sunlight are converted to their active metabolite to produce a beneficial reaction affecting the diseased tissue. These compounds can be administered topically or systemically and have been used therapeutically to treat psoriasis and various types of neoplasms.
The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent.
The transparent, semigelatinous substance that fills the cavity behind the CRYSTALLINE LENS of the EYE and in front of the RETINA. It is contained in a thin hyaloid membrane and forms about four fifths of the optic globe.
Introduction of substances into the body using a needle and syringe.
A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
An imaging method using LASERS that is used for mapping subsurface structure. When a reflective site in the sample is at the same optical path length (coherence) as the reference mirror, the detector observes interference fringes.
Inflammation of the choroid.
The coagulation of tissue by an intense beam of light, including laser (LASER COAGULATION). In the eye it is used in the treatment of retinal detachments, retinal holes, aneurysms, hemorrhages, and malignant and benign neoplasms. (Dictionary of Visual Science, 3d ed)
Retinal diseases refer to a diverse group of vision-threatening disorders that affect the retina's structure and function, including age-related macular degeneration, diabetic retinopathy, retinal detachment, retinitis pigmentosa, and macular edema, among others.
Bleeding from the vessels of the retina.
Colloid or hyaline bodies lying beneath the retinal pigment epithelium. They may occur either secondary to changes in the choroid that affect the pigment epithelium or as an autosomal dominant disorder of the retinal pigment epithelium.
The administration of substances into the eye with a hypodermic syringe.
A family of serine proteinase inhibitors which are similar in amino acid sequence and mechanism of inhibition, but differ in their specificity toward proteolytic enzymes. This family includes alpha 1-antitrypsin, angiotensinogen, ovalbumin, antiplasmin, alpha 1-antichymotrypsin, thyroxine-binding protein, complement 1 inactivators, antithrombin III, heparin cofactor II, plasminogen inactivators, gene Y protein, placental plasminogen activator inhibitor, and barley Z protein. Some members of the serpin family may be substrates rather than inhibitors of SERINE ENDOPEPTIDASES, and some serpins occur in plants where their function is not known.
Antibodies from non-human species whose protein sequences have been modified to make them nearly identical with human antibodies. If the constant region and part of the variable region are replaced, they are called humanized. If only the constant region is modified they are called chimeric. INN names for humanized antibodies end in -zumab.
A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
Lasers in which a gas lasing medium is stimulated to emit light by an electric current or high-frequency oscillator.
A family of angiogenic proteins that are closely-related to VASCULAR ENDOTHELIAL GROWTH FACTOR A. They play an important role in the growth and differentiation of vascular as well as lymphatic endothelial cells.
A 200-230-kDa tyrosine kinase receptor for vascular endothelial growth factors found primarily in endothelial and hematopoietic cells and their precursors. VEGFR-2 is important for vascular and hematopoietic development, and mediates almost all endothelial cell responses to VEGF.
Infection by a variety of fungi, usually through four possible mechanisms: superficial infection producing conjunctivitis, keratitis, or lacrimal obstruction; extension of infection from neighboring structures - skin, paranasal sinuses, nasopharynx; direct introduction during surgery or accidental penetrating trauma; or via the blood or lymphatic routes in patients with underlying mycoses.
These growth factors are soluble mitogens secreted by a variety of organs. The factors are a mixture of two single chain polypeptides which have affinity to heparin. Their molecular weight are organ and species dependent. They have mitogenic and chemotactic effects and can stimulate endothelial cells to grow and synthesize DNA. The factors are related to both the basic and acidic FIBROBLAST GROWTH FACTORS but have different amino acid sequences.
Lasers with a semiconductor diode as the active medium. Diode lasers transform electric energy to light using the same principle as a light-emitting diode (LED), but with internal reflection capability, thus forming a resonator where a stimulated light can reflect back and forth, allowing only a certain wavelength to be emitted. The emission of a given device is determined by the active compound used (e.g., gallium arsenide crystals doped with aluminum or indium). Typical wavelengths are 810, 1,060 and 1,300 nm. (From UMDNS, 2005)
A form of MACULAR DEGENERATION also known as dry macular degeneration marked by occurrence of a well-defined progressive lesion or atrophy in the central part of the RETINA called the MACULA LUTEA. It is distinguishable from WET MACULAR DEGENERATION in that the latter involves neovascular exudates.
Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer.
Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity.
The use of photothermal effects of LASERS to coagulate, incise, vaporize, resect, dissect, or resurface tissue.
An oval area in the retina, 3 to 5 mm in diameter, usually located temporal to the posterior pole of the eye and slightly below the level of the optic disk. It is characterized by the presence of a yellow pigment diffusely permeating the inner layers, contains the fovea centralis in its center, and provides the best phototropic visual acuity. It is devoid of retinal blood vessels, except in its periphery, and receives nourishment from the choriocapillaris of the choroid. (From Cline et al., Dictionary of Visual Science, 4th ed)
Examination of the interior of the eye with an ophthalmoscope.
An esterified form of TRIAMCINOLONE. It is an anti-inflammatory glucocorticoid used topically in the treatment of various skin disorders. Intralesional, intramuscular, and intra-articular injections are also administered under certain conditions.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
Agents that induce or stimulate PHYSIOLOGIC ANGIOGENESIS or PATHOLOGIC ANGIOGENESIS.
Recording of electric potentials in the retina after stimulation by light.
Optic disk bodies composed primarily of acid mucopolysaccharides that may produce pseudopapilledema (elevation of the optic disk without associated INTRACRANIAL HYPERTENSION) and visual field deficits. Drusen may also occur in the retina (see RETINAL DRUSEN). (Miller et al., Clinical Neuro-Ophthalmology, 4th ed, p355)
A phthalic indicator dye that appears yellow-green in normal tear film and bright green in a more alkaline medium such as the aqueous humor.
Cell adhesion molecules present on virtually all monocytes, platelets, and granulocytes. CD31 is highly expressed on endothelial cells and concentrated at the junctions between them.
Surgery performed on the eye or any of its parts.
'Eye proteins' are structural or functional proteins, such as crystallins, opsins, and collagens, located in various parts of the eye, including the cornea, lens, retina, and aqueous humor, that contribute to maintaining transparency, refractive power, phototransduction, and overall integrity of the visual system.
A 180-kDa VEGF receptor found primarily in endothelial cells that is essential for vasculogenesis and vascular maintenance. It is also known as Flt-1 (fms-like tyrosine kinase receptor-1). A soluble, alternatively spliced isoform of the receptor may serve as a binding protein that regulates the availability of various ligands for VEGF receptor binding and signal transduction.
Separation of the inner layers of the retina (neural retina) from the pigment epithelium. Retinal detachment occurs more commonly in men than in women, in eyes with degenerative myopia, in aging and in aphakia. It may occur after an uncomplicated cataract extraction, but it is seen more often if vitreous humor has been lost during surgery. (Dorland, 27th ed; Newell, Ophthalmology: Principles and Concepts, 7th ed, p310-12).
The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement.
A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION.
Exudates are fluids, CELLS, or other cellular substances that are slowly discharged from BLOOD VESSELS usually from inflamed tissues. Transudates are fluids that pass through a membrane or squeeze through tissue or into the EXTRACELLULAR SPACE of TISSUES. Transudates are thin and watery and contain few cells or PROTEINS.
Congenital anomaly in which some of the structures of the eye are absent due to incomplete fusion of the fetal intraocular fissure during gestation.
Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS.
A product of COMPLEMENT ACTIVATION cascade, regardless of the pathways, that forms transmembrane channels causing disruption of the target CELL MEMBRANE and cell lysis. It is formed by the sequential assembly of terminal complement components (COMPLEMENT C5B; COMPLEMENT C6; COMPLEMENT C7; COMPLEMENT C8; and COMPLEMENT C9) into the target membrane. The resultant C5b-8-poly-C9 is the "membrane attack complex" or MAC.
The minute vessels that connect the arterioles and venules.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall.
A bilateral retinopathy occurring in premature infants treated with excessively high concentrations of oxygen, characterized by vascular dilatation, proliferation, and tortuosity, edema, and retinal detachment, with ultimate conversion of the retina into a fibrous mass that can be seen as a dense retrolental membrane. Usually growth of the eye is arrested and may result in microophthalmia, and blindness may occur. (Dorland, 27th ed)
A family of GTPASE-ACTIVATING PROTEINS that are specific for RAC GTP-BINDING PROTEINS.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Factors which enhance the growth potentialities of sensory and sympathetic nerve cells.
Infection caused by the protozoan parasite TOXOPLASMA in which there is extensive connective tissue proliferation, the retina surrounding the lesions remains normal, and the ocular media remain clear. Chorioretinitis may be associated with all forms of toxoplasmosis, but is usually a late sequel of congenital toxoplasmosis. The severe ocular lesions in infants may lead to blindness.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
Infection resulting from inhalation or ingestion of spores of the fungus of the genus HISTOPLASMA, species H. capsulatum. It is worldwide in distribution and particularly common in the midwestern United States. (From Dorland, 27th ed)
Congenital anomaly of abnormally short fingers or toes.
An important soluble regulator of the alternative pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It is a 139-kDa glycoprotein expressed by the liver and secreted into the blood. It binds to COMPLEMENT C3B and makes iC3b (inactivated complement 3b) susceptible to cleavage by COMPLEMENT FACTOR I. Complement factor H also inhibits the association of C3b with COMPLEMENT FACTOR B to form the C3bB proenzyme, and promotes the dissociation of Bb from the C3bBb complex (COMPLEMENT C3 CONVERTASE, ALTERNATIVE PATHWAY).
The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The aperture in the iris through which light passes.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A refractive error in which rays of light entering the EYE parallel to the optic axis are brought to a focus in front of the RETINA when accommodation (ACCOMMODATION, OCULAR) is relaxed. This results from an overly curved CORNEA or from the eyeball being too long from front to back. It is also called nearsightedness.
The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed)
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
An inherited disorder of connective tissue with extensive degeneration and calcification of ELASTIC TISSUE primarily in the skin, eye, and vasculature. At least two forms exist, autosomal recessive and autosomal dominant. This disorder is caused by mutations of one of the ATP-BINDING CASSETTE TRANSPORTERS. Patients are predisposed to MYOCARDIAL INFARCTION and GASTROINTESTINAL HEMORRHAGE.
Medical treatment involving the use of controlled amounts of X-Rays.
Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs.
A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes.
A method of non-invasive, continuous measurement of MICROCIRCULATION. The technique is based on the values of the DOPPLER EFFECT of low-power laser light scattered randomly by static structures and moving tissue particulates.
A non-fibrillar collagen found in BASEMENT MEMBRANE. The C-terminal end of the alpha1 chain of collagen type XVIII contains the ENDOSTATIN peptide, which can be released by proteolytic cleavage.
A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible.
Nutrient blood vessels which supply the walls of large arteries or veins.
A chemokine that is a chemoattractant for MONOCYTES and may also cause cellular activation of specific functions related to host defense. It is produced by LEUKOCYTES of both monocyte and lymphocyte lineage and by FIBROBLASTS during tissue injury. It has specificity for CCR2 RECEPTORS.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Diseases of the uvea.
The application of drug preparations to the surfaces of the body, especially the skin (ADMINISTRATION, CUTANEOUS) or mucous membranes. This method of treatment is used to avoid systemic side effects when high doses are required at a localized area or as an alternative systemic administration route, to avoid hepatic processing for example.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
A benign tumor composed of bone tissue or a hard tumor of bonelike structure developing on a bone (homoplastic osteoma) or on other structures (heteroplastic osteoma). (From Dorland, 27th ed)
Injury to any part of the eye by extreme heat, chemical agents, or ultraviolet radiation.
Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73)
Antibodies produced by a single clone of cells.
A member of the family of tissue inhibitor of metalloproteinases. Mutations of the gene for TIMP3 PROTEIN causes Sorsby fundus dystrophy.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture.
A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula.
'Chemical burns' is a medical term that refers to injuries resulting from skin or eye contact with harmful substances, such as acids, alkalis, or irritants, which can cause damage ranging from mild irritation to severe necrosis and scarring.
Regulatory proteins and peptides that are signaling molecules involved in the process of PARACRINE COMMUNICATION. They are generally considered factors that are expressed by one cell and are responded to by receptors on another nearby cell. They are distinguished from HORMONES in that their actions are local rather than distal.
Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity.
Method of making images on a sensitized surface by exposure to light or other radiant energy.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
An outbred strain of rats developed in 1915 by crossing several Wistar Institute white females with a wild gray male. Inbred strains have been derived from this original outbred strain, including Long-Evans cinnamon rats (RATS, INBRED LEC) and Otsuka-Long-Evans-Tokushima Fatty rats (RATS, INBRED OLETF), which are models for Wilson's disease and non-insulin dependent diabetes mellitus, respectively.
A genus of the family PARVOVIRIDAE, subfamily PARVOVIRINAE, which are dependent on a coinfection with helper adenoviruses or herpesviruses for their efficient replication. The type species is Adeno-associated virus 2.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
An in situ method for detecting areas of DNA which are nicked during APOPTOSIS. Terminal deoxynucleotidyl transferase is used to add labeled dUTP, in a template-independent manner, to the 3 prime OH ends of either single- or double-stranded DNA. The terminal deoxynucleotidyl transferase nick end labeling, or TUNEL, assay labels apoptosis on a single-cell level, making it more sensitive than agarose gel electrophoresis for analysis of DNA FRAGMENTATION.
The giving of drugs, chemicals, or other substances by mouth.
A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays.

Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. (1/742)

Proteolytic enzymes are involved in generation of a number of endogenous angiogenesis inhibitors. Previously, we reported that angiostatin, a potent angiogenesis inhibitor, is a proteolytic fragment containing the first four kringle modules of plasminogen. In this report, we demonstrate that urokinase-activated plasmin can process plasminogen to release an angiogenesis inhibitor, K1-5 (protease-activated kringles 1-5). K1-5 inhibits endothelial-cell proliferation with a half-maximal concentration of approximately 50 pM. This inhibitory effect is endothelial-cell-specific and appears to be at least approximately 50-fold greater than that of angiostatin. A synergistic efficacy of endothelial inhibition was observed when angiostatin and kringle 5 (K5) were coincubated with capillary endothelial cells. The synergistic effect is comparable to that produced by K1-5 alone. Systemic treatment of mice with K1-5 at a low dose significantly blocked the fibroblast growth factor-induced corneal neovascularization, whereas angiostatin had no effect at the same dose. K1-5 also suppressed angiogenesis in chicken embryos. Systemic administration of K1-5 at a low dose at which angiostatin was ineffective significantly suppressed the growth of a murine T241 fibrosarcoma in mice. The antitumor effect correlates with the reduced neovascularization. These findings suggest that the plasmin-mediated proteolysis may be involved in the negative switch of angiogenesis.  (+info)

Effect of focal X-ray irradiation on experimental choroidal neovascularization. (2/742)

PURPOSE: Radiation therapy has been used to treat choroidal neovascularization (CNV) in patients with age-related macular degeneration. The in vivo effect of applying focal x-ray irradiation to the eye of rabbits with experimental CNV was investigated. METHODS: CNV was induced in the rabbit eyes by subretinal implantation of gelatin hydrogel microspheres impregnated with basic fibroblast growth factor. Three weeks after implantation, 17 of 34 eyes with CNV lesions accompanied by fluorescein leakage were irradiated with a single dose of 20 Gy; the other 17 eyes were not irradiated and served as the controls. The eyes were examined before irradiation and 1, 2, and 4 weeks after irradiation, by indirect ophthalmoscopy and fluorescein angiography. The degree of a decreasing amount of fluorescein leakage from the CNV lesions after irradiation was graded using a computerized image analysis system and was compared in the irradiated and nonirradiated eyes. These eyes were also examined histologically and immunohistochemically. RESULTS: Fluorescein leakage from the CNV lesions had significantly decreased in the eyes irradiated with 20 Gy compared with the control eyes, throughout the study period (P < 0.05). Histologic and immunohistochemical studies at 4 weeks after irradiation demonstrated that the degree of vascular formation and the number of vascular endothelial cells in the subretinal membrane of the irradiated eyes were less than those of the control eyes. CONCLUSIONS: Focal x-ray irradiation at the ocular region effectively reduced experimental CNV activity. These results support the possibility that radiation therapy may be beneficial in treating CNV.  (+info)

Inhibitory effect of TNP-470 on experimental choroidal neovascularization in a rat model. (3/742)

PURPOSE: To determine whether an angiogenic inhibitor, TNP- 470 (TNP), an analogue of fumagillin, inhibits choroidal neovascularization (CNV) induced by diode laser photocoagulation in a rat experimental model. METHODS: Fundus laser photocoagulation was performed on Brown Norway rats to induce CNV. In the treatment group, TNP was administered intraperitoneally at the time of laser photocoagulation and on day 7 (50 mg/kg at each time). The incidence of CNV formation was evaluated by fluorescein angiography. The retina was collected from the rats on days 1, 3, 7, and 14 after laser photocoagulation, and semiquantitative polymerase chain reaction (PCR) analyses for the expression of mRNA of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were carried out. Localization of bFGF mRNA was studied by in situ reverse transcription-PCR (RT-PCR). The numbers of positively labeled cells for bFGF mRNA were compared between the TNP treatment and control groups. RESULTS: The incidence of CNV formation was 22.7% in the TNP-treated rats and that in the control rats was 61.4% (P < 0.001). The semiquantitative PCR analyses showed that bFGF mRNA was upregulated on days 3 and 7 in the control rats, but no significant changes were found in TNP-treated rats. There was no detectable difference in VEGF gene expression between the control and TNP-treated rats. bFGF mRNA was detected by in situ RT-PCR in the regenerated retinal pigment epithelial cells and cells of the outer and inner nuclear layers of the control rats. The number of positive cells for bFGF mRNA in the TNP treatment group was significantly smaller than that of the control group (P < 0.05) on days 3 and 14. CONCLUSIONS: TNP- 470 treatment reduced the incidence of laser-induced CNV formation in this experimental model. The expression of bFGF associated with CNV formation was also significantly reduced by the TNP treatment.  (+info)

Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. (4/742)

The most common cause of new blindness in young patients is retinal neovascularization, and in the elderly is choroidal neovascularization. Therefore, there has been a great deal of attention focused on the development of new treatments for these disease processes. Previous studies have demonstrated partial inhibition of retinal neovascularization in animal models using antagonists of vascular endothelial growth factor or other signaling molecules implicated in the angiogenesis cascade. These studies have indicated potential for drug treatment, but have left many questions unanswered. Is it possible to completely inhibit retinal neovascularization using drug treatment with a mode of administration that is feasible to use in patients? Do agents that inhibit retinal neovascularization have any effect on choroidal neovascularization? In this study, we demonstrate complete inhibition of retinal neovascularization in mice with oxygen-induced ischemic retinopathy by oral administration of a partially selective kinase inhibitor that blocks several members of the protein kinase C family, along with vascular endothelial growth factor and platelet-derived growth factor receptor tyrosine kinases. The drug also blocks normal vascularization of the retina during development but has no identifiable adverse effects on mature retinal vessels. In addition, the kinase inhibitor causes dramatic inhibition of choroidal neovascularization in a laser-induced murine model. These data provide proof of concept that pharmacological treatment is a viable approach for therapy of both retinal and choroidal neovascularization.  (+info)

Indocyanine green guided laser photocoagulation in patients with occult choroidal neovascularisation. (5/742)

AIMS: To determine whether indocyanine green (ICG) guided laser photocoagulation of occult choroidal neovascularisations (OCNV) is beneficial for patients with occult choroidal neovascularisation secondary to age related macular degeneration (AMD). METHODS: A prospective pilot study was performed in 21 eyes with OCNV secondary to AMD that could be identified extrafoveolarly or juxtafoveolarly in an early ICG angiographic study. Laser photocoagulation was applied to the neovascular membrane identified in the early ICG angiographic study. RESULTS: Visual acuity ranged from 20/400 to 20/20 (logMAR 0.54 (SD 0.29) before and hand movements and 20/30 (logMAR 0.81 (0.69)) at the last follow up after laser photocoagulation. During the follow up (30 (13) months) vision improved in four eyes (two lines), in seven eyes the initial visual acuity could be stabilised (two lines), in five eyes vision dropped moderately (three to five lines), and in five eyes vision decreased severely (six or more lines). Recurrences (seven patients) or persistent CNV (six patients) was observed in 13 patients. CONCLUSION: This preliminary study of ICG guided laser photocoagulation of occult extrafoveal and juxtafoveal choroidal neovascularisations suggests that this technique may improve the visual prognosis of these patients. Further prospective controlled studies are necessary to confirm these data.  (+info)

OCT imaging of choroidal neovascularisation and its role in the determination of patients' eligibility for surgery. (6/742)

AIM: To evaluate the optical coherence tomographic characteristics of choroidal neovascularisation (CNV) in age related macular degeneration (AMD) and in idiopathic and inflammatory CNV. The use of this technique in the selection of patients for surgery is discussed. METHODS: Ocular coherence tomography (OCT), fluorescein, and indocyanine green angiography were performed in 23 patients affected by AMD complicated by well defined CNV and in 10 patients affected by inflammatory or idiopathic CNV. The neovascular membrane was surgically removed in five age related CNVs, two inflammatory choroidopathies, and two idiopathic CNVs. RESULTS: In inflammatory and idiopathic CNV, the OCT displayed a neovascularisation on the retinal pigment epithelium (RPE). In three cases the CNV was excised with an improvement of visual acuity equal to or greater than two Snellen lines; in a fourth case, the visual acuity after surgery was unchanged. In the cases of AMD the OCT fell into three different patterns: (A) CNV above the RPE (five cases); (B) focal, irregular thickening of the retinal pigment epithelial band (12 cases); (C) CNV above and below the RPE (six cases). The five pattern A CNV patients underwent the surgical excision of the neovascularisation. In four cases the visual acuity improved by two or more Snellen lines; in the fifth case the visual acuity remained unchanged. CONCLUSIONS: The authors suggest that the surgical removal of early age related CNV could be performed in those cases where the OCT shows a neovascular membrane on the RPE, as in idiopathic and inflammatory CNVs.  (+info)

The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. (7/742)

PURPOSE: To investigate the distribution of inflammatory mediators such as interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha and angiogenic cytokines such as vascular endothelial growth factor (VEGF) and to identify their cellular source in surgically excised choroidal neovascular membranes (CNVMs) of various origins. METHODS: Immunoperoxidase staining was performed on paraffin-embedded sections of 11 surgically excised CNVMs to identify cellular distribution and localization of cytokines. Immunofluorescent double staining was performed to detect the cellular source of cytokines. RESULTS: Cytokeratin-positive cells were detected in the RPE layer, in stromal cells, and around neovascular vessels. Macrophages identified by their cellular marker CD68 showed almost the same distribution as cytokeratin-positive cells, although they were most prominent in the stroma. A substantial number of neovascular vessels were also immunoreactive to IL-1beta and TNF-alpha. Immunofluorescent double staining revealed that the RPE layers immunopositive for cytokeratin were also immunopositive for all cytokines, whereas stromal cells immunostained for CD68 were positive for IL-1beta and TNF-alpha, but not for VEGF. CONCLUSIONS: These results indicate that IL-1beta and TNF-alpha secreted by macrophages may promote, at least in part, angiogenesis in CNVMs by stimulating VEGF production in RPE cells.  (+info)

Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. (8/742)

PURPOSE: To elucidate the potential role of angiopoietins and the Tie2 system in choroidal neovascularization. METHODS: Surgically excised choroidal neovascular membranes (CNVMs) were obtained at vitrectomy from five eyes with age-related macular degeneration, three eyes with idiopathic neovascular maculopathy, and two eyes had degenerative myopia and two eyes had angioid streaks. Light microscopic immunohistochemistry was performed to detect cytokines such as vascular endothelial growth factor (VEGF), Ang1, and Ang2 and cellular components such as retinal pigment epithelial (RPE) cells, macrophages, and endothelial cells. Immunofluorescent double staining using confocal microscopy was performed to identify the cell types that secrete specific cytokines. RESULTS: Ang1 and Ang2 were positive in all surgically excised CNVMs, regardless of the primary disease. Double staining revealed that many of the cytokeratin, CD68 and factor VIII positive cells also had Ang1 and Ang2 immunoreactivities. In contrast to Ang1, Ang2 immunoreactivity tends to be higher in the highly vascularized regions of many CNVMs, and the localization was very similar to that of VEGF staining. Almost all vascular structures had prominent immunoreactivity for Tie2, which was confirmed by double staining for Tie2 and factor VIII. Tie2 immunoreactivity was also observed in the RPE monolayer and in pigmented, polygonal, and fibroblast-like cells in the stroma. CONCLUSIONS: Present findings that Ang2 and VEGF are co-upregulated and that Tie2 is expressed in a variety of cell types in CNVMs further support a crucial role of the interaction between VEGF and Ang2 in pathologic angiogenesis of CNVM formation.  (+info)

Choroidal neovascularization (CNV) is a medical term that refers to the growth of new, abnormal blood vessels in the choroid layer of the eye, which is located between the retina and the sclera. This condition typically occurs as a complication of age-related macular degeneration (AMD), although it can also be caused by other eye diseases or injuries.

In CNV, the new blood vessels that grow into the choroid layer are fragile and can leak fluid or blood, which can cause distortion or damage to the retina, leading to vision loss. Symptoms of CNV may include blurred or distorted vision, a blind spot in the center of the visual field, or changes in color perception.

Treatment for CNV typically involves medications that are designed to stop the growth of new blood vessels, such as anti-VEGF drugs, which target a protein called vascular endothelial growth factor (VEGF) that is involved in the development of new blood vessels. Laser surgery or photodynamic therapy may also be used in some cases to destroy the abnormal blood vessels and prevent further vision loss.

The choroid is a layer of the eye that contains blood vessels that supply oxygen and nutrients to the outer layers of the retina. It lies between the sclera (the white, protective coat of the eye) and the retina (the light-sensitive tissue at the back of the eye). The choroid is essential for maintaining the health and function of the retina, particularly the photoreceptor cells that detect light and transmit visual signals to the brain. Damage to the choroid can lead to vision loss or impairment.

Fluorescein angiography is a medical diagnostic procedure used in ophthalmology to examine the blood flow in the retina and choroid, which are the inner layers of the eye. This test involves injecting a fluorescent dye, Fluorescein, into a patient's arm vein. As the dye reaches the blood vessels in the eye, a specialized camera takes rapid sequences of photographs to capture the dye's circulation through the retina and choroid.

The images produced by fluorescein angiography can help doctors identify any damage to the blood vessels, leakage, or abnormal growth of new blood vessels. This information is crucial in diagnosing and managing various eye conditions such as age-related macular degeneration, diabetic retinopathy, retinal vein occlusions, and inflammatory eye diseases.

It's important to note that while fluorescein angiography is a valuable diagnostic tool, it does carry some risks, including temporary side effects like nausea, vomiting, or allergic reactions to the dye. In rare cases, severe adverse reactions can occur, so patients should discuss these potential risks with their healthcare provider before undergoing the procedure.

Retinal neovascularization is a medical condition characterized by the growth of new, abnormal blood vessels on the surface of the retina, which is the light-sensitive tissue located at the back of the eye. This condition typically occurs in response to an insufficient supply of oxygen and nutrients to the retina, often due to damage or disease, such as diabetic retinopathy or retinal vein occlusion.

The new blood vessels that form during neovascularization are fragile and prone to leakage, which can cause fluid and protein to accumulate in the retina, leading to distorted vision, hemorrhages, and potentially blindness if left untreated. Retinal neovascularization is a serious eye condition that requires prompt medical attention and management to prevent further vision loss.

Laser coagulation, also known as laser photocoagulation, is a medical procedure that uses a laser to seal or destroy abnormal blood vessels or tissue. The laser produces a concentrated beam of light that can be precisely focused on the target area. When the laser energy is absorbed by the tissue, it causes the temperature to rise, which leads to coagulation (the formation of a clot) or destruction of the tissue.

In ophthalmology, laser coagulation is commonly used to treat conditions such as diabetic retinopathy, age-related macular degeneration, and retinal tears or holes. The procedure can help to seal leaking blood vessels, reduce fluid leakage, and prevent further vision loss. It is usually performed as an outpatient procedure and may be repeated if necessary.

In other medical specialties, laser coagulation may be used to control bleeding, destroy tumors, or remove unwanted tissue. The specific technique and parameters of the laser treatment will depend on the individual patient's needs and the condition being treated.

Macular degeneration, also known as age-related macular degeneration (AMD), is a medical condition that affects the central part of the retina, called the macula. The macula is responsible for sharp, detailed vision, which is necessary for activities such as reading, driving, and recognizing faces.

In AMD, there is a breakdown or deterioration of the macula, leading to gradual loss of central vision. There are two main types of AMD: dry (atrophic) and wet (exudative). Dry AMD is more common and progresses more slowly, while wet AMD is less common but can cause rapid and severe vision loss if left untreated.

The exact causes of AMD are not fully understood, but risk factors include age, smoking, family history, high blood pressure, obesity, and exposure to sunlight. While there is no cure for AMD, treatments such as vitamin supplements, laser therapy, and medication injections can help slow its progression and reduce the risk of vision loss.

An intravitreal injection is a medical procedure in which medication is delivered directly into the vitreous cavity of the eye, which is the clear, gel-like substance that fills the space between the lens and the retina. This type of injection is typically used to treat various eye conditions such as age-related macular degeneration, diabetic retinopathy, retinal vein occlusion, and uveitis. The medication administered in intravitreal injections can help to reduce inflammation, inhibit the growth of new blood vessels, or prevent the formation of abnormal blood vessels in the eye.

Intravitreal injections are usually performed in an outpatient setting, and the procedure typically takes only a few minutes. Before the injection, the eye is numbed with anesthetic drops to minimize discomfort. The medication is then injected into the vitreous cavity using a small needle. After the injection, patients may experience some mild discomfort or a scratchy sensation in the eye, but this usually resolves within a few hours.

While intravitreal injections are generally safe, there are some potential risks and complications associated with the procedure, including infection, bleeding, retinal detachment, and increased intraocular pressure. Patients who undergo intravitreal injections should be closely monitored by their eye care provider to ensure that any complications are promptly identified and treated.

Corneal neovascularization is a medical condition that refers to the growth of new, abnormal blood vessels in the cornea, which is the clear, dome-shaped surface at the front of the eye. The cornea typically receives its nutrients from tears and oxygen in the air, so it does not have its own blood vessels. However, when the cornea is damaged or inflamed, it may trigger the growth of new blood vessels from the surrounding tissue into the cornea to promote healing.

Corneal neovascularization can occur due to various eye conditions such as infection, injury, inflammation, degenerative diseases, or contact lens wear. Excessive growth of blood vessels in the cornea can interfere with vision, cause scarring, and increase the risk of corneal transplant rejection. Treatment for corneal neovascularization depends on the underlying cause and may include topical medications, surgery, or other therapies to reduce inflammation, prevent further growth of blood vessels, and preserve vision.

The Bruch membrane is a thin, layered structure that separates the retina from the choroid in the eye. It is composed of five layers: the basement membrane of the retinal pigment epithelium (RPE), the inner collagenous layer, the elastic layer, the outer collagenous layer, and the basement membrane of the choriocapillaris. The Bruch membrane provides structural support to the RPE and serves as a barrier between the retina and the choroid, allowing for the selective transport of nutrients and waste products. It also plays a role in maintaining the health of the photoreceptors in the retina. Damage to the Bruch membrane is associated with age-related macular degeneration (AMD), a leading cause of vision loss in older adults.

The retinal pigment epithelium (RPE) is a single layer of cells located between the photoreceptor cells of the retina and the choroid, which is a part of the eye containing blood vessels. The RPE plays a crucial role in maintaining the health and function of the photoreceptors by providing them with nutrients, removing waste products, and helping to regulate the light-sensitive visual pigments within the photoreceptors.

The RPE cells contain pigment granules that absorb excess light to prevent scattering within the eye and improve visual acuity. They also help to form the blood-retina barrier, which restricts the movement of certain molecules between the retina and the choroid, providing an important protective function for the retina.

Damage to the RPE can lead to a variety of eye conditions, including age-related macular degeneration (AMD), which is a leading cause of vision loss in older adults.

"Fundus Oculi" is a medical term that refers to the back part of the interior of the eye, including the optic disc, macula, fovea, retinal vasculature, and peripheral retina. It is the area where light is focused and then transmitted to the brain via the optic nerve, forming visual images. Examinations of the fundus oculi are crucial for detecting various eye conditions such as diabetic retinopathy, macular degeneration, glaucoma, and other retinal diseases. The examination is typically performed using an ophthalmoscope or a specialized camera called a retinal camera.

"Rats, Inbred BN" are a strain of laboratory rats (Rattus norvegicus) that have been inbred for many generations to maintain a high level of genetic consistency and uniformity within the strain. The "BN" designation refers to the place where they were first developed, Bratislava, Czechoslovakia (now Slovakia).

These rats are often used in biomedical research because their genetic homogeneity makes them useful for studying the effects of specific genes or environmental factors on health and disease. They have been widely used as a model organism to study various physiological and pathophysiological processes, including hypertension, kidney function, immunology, and neuroscience.

Inbred BN rats are known for their low renin-angiotensin system activity, which makes them a useful model for studying hypertension and related disorders. They also have a unique sensitivity to dietary protein, making them a valuable tool for studying the relationship between diet and kidney function.

Overall, Inbred BN rats are an important tool in biomedical research, providing researchers with a consistent and well-characterized model organism for studying various aspects of human health and disease.

Vascular Endothelial Growth Factor A (VEGFA) is a specific isoform of the vascular endothelial growth factor (VEGF) family. It is a well-characterized signaling protein that plays a crucial role in angiogenesis, the process of new blood vessel formation from pre-existing vessels. VEGFA stimulates the proliferation and migration of endothelial cells, which line the interior surface of blood vessels, thereby contributing to the growth and development of new vasculature. This protein is essential for physiological processes such as embryonic development and wound healing, but it has also been implicated in various pathological conditions, including cancer, age-related macular degeneration, and diabetic retinopathy. The regulation of VEGFA expression and activity is critical to maintaining proper vascular function and homeostasis.

Angioid streaks are abnormal, jagged lines or cracks in the delicate tissue at the back of the eye called the retina. These streaks typically occur near the optic nerve and radiate outward toward the edges of the retina. They are caused by degeneration of the underlying tissue, called Bruch's membrane, which separates the retina from the choroid, a layer of blood vessels that provides nutrients to the retina.

Angioid streaks are often associated with various medical conditions, including pseudoxanthoma elasticum, Paget's disease of bone, Ehlers-Danlos syndrome, and sickle cell anemia. They can also be a complication of cataract surgery or other eye trauma.

While angioid streaks themselves do not cause vision loss, they can lead to serious complications such as retinal hemorrhage, scarring, and detachment, which can result in significant vision loss if left untreated. Regular eye examinations are recommended for individuals with angioid streaks to monitor for any changes or complications that may require treatment.

Angiogenesis inhibitors are a class of drugs that block the growth of new blood vessels (angiogenesis). They work by targeting specific molecules involved in the process of angiogenesis, such as vascular endothelial growth factor (VEGF) and its receptors. By blocking these molecules, angiogenesis inhibitors can prevent the development of new blood vessels that feed tumors, thereby slowing or stopping their growth.

Angiogenesis inhibitors are used in the treatment of various types of cancer, including colon, lung, breast, kidney, and ovarian cancer. They may be given alone or in combination with other cancer treatments, such as chemotherapy or radiation therapy. Some examples of angiogenesis inhibitors include bevacizumab (Avastin), sorafenib (Nexavar), sunitinib (Sutent), and pazopanib (Votrient).

It's important to note that while angiogenesis inhibitors can be effective in treating cancer, they can also have serious side effects, such as high blood pressure, bleeding, and damage to the heart or kidneys. Therefore, it's essential that patients receive careful monitoring and management of these potential side effects while undergoing treatment with angiogenesis inhibitors.

Choroid neoplasms are abnormal growths that develop in the choroid, a layer of blood vessels that lies between the retina and the sclera (the white of the eye). These growths can be benign or malignant (cancerous). Benign choroid neoplasms include choroidal hemangiomas and choroidal osteomas. Malignant choroid neoplasms are typically choroidal melanomas, which are the most common primary eye tumors in adults. Other types of malignant choroid neoplasms include metastatic tumors that have spread to the eye from other parts of the body. Symptoms of choroid neoplasms can vary depending on the size and location of the growth, but may include blurred vision, floaters, or a dark spot in the visual field. Treatment options depend on the type, size, and location of the tumor, as well as the patient's overall health and personal preferences.

A laser is not a medical term per se, but a physical concept that has important applications in medicine. The term "LASER" stands for "Light Amplification by Stimulated Emission of Radiation." It refers to a device that produces and amplifies light with specific characteristics, such as monochromaticity (single wavelength), coherence (all waves moving in the same direction), and high intensity.

In medicine, lasers are used for various therapeutic and diagnostic purposes, including surgery, dermatology, ophthalmology, and dentistry. They can be used to cut, coagulate, or vaporize tissues with great precision, minimizing damage to surrounding structures. Additionally, lasers can be used to detect and measure physiological parameters, such as blood flow and oxygen saturation.

It's important to note that while lasers are powerful tools in medicine, they must be used by trained professionals to ensure safe and effective treatment.

The choroid is a part of the eye located between the retina and the sclera, which contains a large number of blood vessels that supply oxygen and nutrients to the outer layers of the retina. Choroid diseases refer to various medical conditions that affect the health and function of the choroid. Here are some examples:

1. Choroidal neovascularization (CNV): This is a condition where new blood vessels grow from the choroid into the retina, leading to fluid accumulation, bleeding, and scarring. CNV can cause vision loss and is often associated with age-related macular degeneration, myopia, and inflammatory eye diseases.
2. Chorioretinitis: This is an infection or inflammation of the choroid and retina, which can be caused by various microorganisms such as bacteria, viruses, fungi, or parasites. Symptoms may include blurred vision, floaters, light sensitivity, and eye pain.
3. Choroidal hemorrhage: This is a rare but serious condition where there is bleeding into the choroid, often caused by trauma, high blood pressure, or blood clotting disorders. It can lead to sudden vision loss and requires urgent medical attention.
4. Choroideremia: This is a genetic disorder that affects the choroid, retina, and optic nerve, leading to progressive vision loss. It is caused by mutations in the CHM gene and primarily affects males.
5. Central serous retinopathy (CSR): This is a condition where fluid accumulates under the retina, often in the macula, causing distortion or blurring of vision. While the exact cause is unknown, CSR is thought to be related to stress, steroid use, and other factors that affect the choroid's ability to regulate fluid.
6. Polypoidal choroidal vasculopathy (PCV): This is a condition where abnormal blood vessels form in the choroid, leading to serous or hemorrhagic detachment of the retina. PCV is often associated with age-related macular degeneration and can cause vision loss if left untreated.

These are just a few examples of choroidal disorders that can affect vision. If you experience any sudden changes in your vision, it's important to seek medical attention promptly.

Pathologic neovascularization is the abnormal growth of new blood vessels in previously avascular tissue or excessive growth within existing vasculature, which occurs as a result of hypoxia, inflammation, or angiogenic stimuli. These newly formed vessels are often disorganized, fragile, and lack proper vessel hierarchy, leading to impaired blood flow and increased vascular permeability. Pathologic neovascularization can be observed in various diseases such as cancer, diabetic retinopathy, age-related macular degeneration, and chronic inflammation. This process contributes to disease progression by promoting tumor growth, metastasis, and edema formation, ultimately leading to tissue damage and organ dysfunction.

Degenerative Myopia is a progressive form of nearsightedness, characterized by excessive elongation of the eyeball, which results in a steep curvature of the cornea and an overly long axial length. This condition causes light to focus in front of the retina instead of directly on it, resulting in blurred distance vision.

In degenerative myopia, this elongation continues throughout adulthood and is often associated with various complications such as thinning of the retinal tissue, stretching of the layers beneath the retina, and abnormal blood vessel growth. These changes can lead to a higher risk of developing retinal detachment, macular holes, glaucoma, and cataracts.

Degenerative myopia is considered a more severe form of myopia than the common or simple myopia, which usually stabilizes in the teenage years. It is also sometimes referred to as pathological myopia or malignant myopia. Regular eye examinations are essential for individuals with degenerative myopia to monitor and manage any potential complications.

Photochemotherapy is a medical treatment that combines the use of drugs and light to treat various skin conditions. The most common type of photochemotherapy is PUVA (Psoralen + UVA), where the patient takes a photosensitizing medication called psoralen, followed by exposure to ultraviolet A (UVA) light.

The psoralen makes the skin more sensitive to the UVA light, which helps to reduce inflammation and suppress the overactive immune response that contributes to many skin conditions. This therapy is often used to treat severe cases of psoriasis, eczema, and mycosis fungoides (a type of cutaneous T-cell lymphoma). It's important to note that photochemotherapy can increase the risk of skin cancer and cataracts, so it should only be administered under the close supervision of a healthcare professional.

Wet macular degeneration, also known as neovascular or exudative age-related macular degeneration (AMD), is a medical condition that affects the central part of the retina called the macula. It's characterized by the growth of new blood vessels (neovascularization) from the choroid layer behind the retina into the macula, which is not typical in healthy eyes. These abnormal blood vessels are fragile and prone to leakage, leading to the accumulation of fluid or blood in the macula, causing distortion or loss of central vision.

The wet form of AMD can progress rapidly and often leads to more severe visual loss compared to the dry form. It's essential to diagnose and treat wet AMD promptly to preserve as much vision as possible. Common treatments include anti-vascular endothelial growth factor (VEGF) injections, photodynamic therapy, or thermal laser treatment, depending on the specific case and individual patient factors.

The fovea centralis, also known as the macula lutea, is a small pit or depression located in the center of the retina, an light-sensitive tissue at the back of the eye. It is responsible for sharp, detailed vision (central vision) and color perception. The fovea contains only cones, the photoreceptor cells that are responsible for color vision and high visual acuity. It has a higher concentration of cones than any other area in the retina, allowing it to provide the greatest detail and color discrimination. The center of the fovea is called the foveola, which contains the highest density of cones and is avascular, meaning it lacks blood vessels to avoid interfering with the light passing through to the photoreceptor cells.

Physiologic neovascularization is the natural and controlled formation of new blood vessels in the body, which occurs as a part of normal growth and development, as well as in response to tissue repair and wound healing. This process involves the activation of endothelial cells, which line the interior surface of blood vessels, and their migration, proliferation, and tube formation to create new capillaries. Physiologic neovascularization is tightly regulated by a balance of pro-angiogenic and anti-angiogenic factors, ensuring that it occurs only when and where it is needed. It plays crucial roles in various physiological processes, such as embryonic development, tissue regeneration, and wound healing.

Retinal vessels refer to the blood vessels that are located in the retina, which is the light-sensitive tissue that lines the inner surface of the eye. The retina contains two types of blood vessels: arteries and veins.

The central retinal artery supplies oxygenated blood to the inner layers of the retina, while the central retinal vein drains deoxygenated blood from the retina. These vessels can be visualized during a routine eye examination using an ophthalmoscope, which allows healthcare professionals to assess their health and any potential abnormalities.

Retinal vessels are essential for maintaining the health and function of the retina, and any damage or changes to these vessels can affect vision and lead to various eye conditions such as diabetic retinopathy, retinal vein occlusion, and hypertensive retinopathy.

Indocyanine green (ICG) is a sterile, water-soluble, tricarbocyanine dye that is used as a diagnostic agent in medical imaging. It is primarily used in ophthalmology for fluorescein angiography to examine blood flow in the retina and choroid, and in cardiac surgery to assess cardiac output and perfusion. When injected into the body, ICG binds to plasma proteins and fluoresces when exposed to near-infrared light, allowing for visualization of various tissues and structures. It is excreted primarily by the liver and has a half-life of approximately 3-4 minutes in the bloodstream.

The pigment epithelium of the eye, also known as the retinal pigment epithelium (RPE), is a layer of cells located between the photoreceptor cells of the retina and the choroid, which is the vascular layer of the eye. The RPE plays a crucial role in maintaining the health and function of the photoreceptors by providing them with nutrients, removing waste products, and helping to regulate the light that enters the eye.

The RPE cells contain pigment granules that absorb excess light, preventing it from scattering within the eye and improving visual acuity. They also help to create a barrier between the retina and the choroid, which is important for maintaining the proper functioning of the photoreceptors. Additionally, the RPE plays a role in the regeneration of visual pigments in the photoreceptor cells, allowing us to see in different light conditions.

Damage to the RPE can lead to various eye diseases and conditions, including age-related macular degeneration (AMD), which is a leading cause of vision loss in older adults.

Visual acuity is a measure of the sharpness or clarity of vision. It is usually tested by reading an eye chart from a specific distance, such as 20 feet (6 meters). The standard eye chart used for this purpose is called the Snellen chart, which contains rows of letters that decrease in size as you read down the chart.

Visual acuity is typically expressed as a fraction, with the numerator representing the testing distance and the denominator indicating the smallest line of type that can be read clearly. For example, if a person can read the line on the eye chart that corresponds to a visual acuity of 20/20, it means they have normal vision at 20 feet. If their visual acuity is 20/40, it means they must be as close as 20 feet to see what someone with normal vision can see at 40 feet.

It's important to note that visual acuity is just one aspect of overall vision and does not necessarily reflect other important factors such as peripheral vision, depth perception, color vision, or contrast sensitivity.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Photosensitizing agents are substances that, when exposed to light, particularly ultraviolet or visible light, can cause chemical reactions leading to the production of reactive oxygen species. These reactive oxygen species can interact with biological tissues, leading to damage and a variety of phototoxic or photoallergic adverse effects.

Photosensitizing agents are used in various medical fields, including dermatology and oncology. In dermatology, they are often used in the treatment of conditions such as psoriasis and eczema, where a photosensitizer is applied to the skin and then activated with light to reduce inflammation and slow the growth of skin cells.

In oncology, photosensitizing agents are used in photodynamic therapy (PDT), a type of cancer treatment that involves administering a photosensitizer, allowing it to accumulate in cancer cells, and then exposing the area to light. The light activates the photosensitizer, which produces reactive oxygen species that damage the cancer cells, leading to their death.

Examples of photosensitizing agents include porphyrins, chlorophyll derivatives, and certain antibiotics such as tetracyclines and fluoroquinolones. It is important for healthcare providers to be aware of the potential for photosensitivity when prescribing these medications and to inform patients of the risks associated with exposure to light.

The retina is the innermost, light-sensitive layer of tissue in the eye of many vertebrates and some cephalopods. It receives light that has been focused by the cornea and lens, converts it into neural signals, and sends these to the brain via the optic nerve. The retina contains several types of photoreceptor cells including rods (which handle vision in low light) and cones (which are active in bright light and are capable of color vision).

In medical terms, any pathological changes or diseases affecting the retinal structure and function can lead to visual impairment or blindness. Examples include age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinitis pigmentosa among others.

The vitreous body, also known simply as the vitreous, is the clear, gel-like substance that fills the space between the lens and the retina in the eye. It is composed mainly of water, but also contains collagen fibers, hyaluronic acid, and other proteins. The vitreous helps to maintain the shape of the eye and provides a transparent medium for light to pass through to reach the retina. With age, the vitreous can become more liquefied and may eventually separate from the retina, leading to symptoms such as floaters or flashes of light.

An injection is a medical procedure in which a medication, vaccine, or other substance is introduced into the body using a needle and syringe. The substance can be delivered into various parts of the body, including into a vein (intravenous), muscle (intramuscular), under the skin (subcutaneous), or into the spinal canal (intrathecal or spinal).

Injections are commonly used to administer medications that cannot be taken orally, have poor oral bioavailability, need to reach the site of action quickly, or require direct delivery to a specific organ or tissue. They can also be used for diagnostic purposes, such as drawing blood samples (venipuncture) or injecting contrast agents for imaging studies.

Proper technique and sterile conditions are essential when administering injections to prevent infection, pain, and other complications. The choice of injection site depends on the type and volume of the substance being administered, as well as the patient's age, health status, and personal preferences.

Porphyrins are complex organic compounds that contain four pyrrole rings joined together by methine bridges (=CH-). They play a crucial role in the biochemistry of many organisms, as they form the core structure of various heme proteins and other metalloproteins. Some examples of these proteins include hemoglobin, myoglobin, cytochromes, and catalases, which are involved in essential processes such as oxygen transport, electron transfer, and oxidative metabolism.

In the human body, porphyrins are synthesized through a series of enzymatic reactions known as the heme biosynthesis pathway. Disruptions in this pathway can lead to an accumulation of porphyrins or their precursors, resulting in various medical conditions called porphyrias. These disorders can manifest as neurological symptoms, skin lesions, and gastrointestinal issues, depending on the specific type of porphyria and the site of enzyme deficiency.

It is important to note that while porphyrins are essential for life, their accumulation in excessive amounts or at inappropriate locations can result in pathological conditions. Therefore, understanding the regulation and function of porphyrin metabolism is crucial for diagnosing and managing porphyrias and other related disorders.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Optical coherence tomography (OCT) is a non-invasive imaging technique that uses low-coherence light to capture high-resolution cross-sectional images of biological tissues, particularly the retina and other ocular structures. OCT works by measuring the echo time delay of light scattered back from different depths within the tissue, creating a detailed map of the tissue's structure. This technique is widely used in ophthalmology to diagnose and monitor various eye conditions such as macular degeneration, diabetic retinopathy, and glaucoma.

Choroiditis is an inflammatory condition that affects the choroid, a layer of blood vessels in the eye located between the retina (the light-sensitive tissue at the back of the eye) and the sclera (the white outer coat of the eye). The choroid provides oxygen and nutrients to the outer layers of the retina.

Choroiditis is characterized by spots or patches of inflammation in the choroid, which can lead to damage and scarring of the tissue. This can result in vision loss if it affects the macula (the central part of the retina responsible for sharp, detailed vision). Symptoms of choroiditis may include blurred vision, floaters, sensitivity to light, and decreased color perception.

There are several types of choroiditis, including:

1. Multifocal choroiditis: This type is characterized by multiple, small areas of inflammation in the choroid, often accompanied by scarring. It can affect both eyes and may cause vision loss if it involves the macula.
2. Serpiginous choroiditis: This is a chronic, relapsing form of choroiditis that affects the outer layers of the retina and the choroid. It typically causes well-defined, wavy or serpentine-shaped lesions in the posterior pole (the back part) of the eye.
3. Birdshot chorioretinopathy: This is a rare form of choroiditis that primarily affects the peripheral retina and choroid. It is characterized by multiple, cream-colored or yellowish spots throughout the fundus (the interior surface of the eye).
4. Sympathetic ophthalmia: This is a rare condition that occurs when one eye is injured, leading to inflammation in both eyes. The choroid and other structures in the uninjured eye become inflamed due to an autoimmune response.
5. Vogt-Koyanagi-Harada (VKH) disease: This is a multisystemic autoimmune disorder that affects the eyes, skin, hair, and inner ear. In the eye, it causes choroiditis, retinal inflammation, and sometimes optic nerve swelling.

Treatment for choroiditis depends on the underlying cause and may include corticosteroids, immunosuppressive medications, or biologic agents to control inflammation. In some cases, laser therapy or surgery might be necessary to address complications such as retinal detachment or cataracts.

"Light coagulation," also known as "laser coagulation," is a medical term that refers to the use of laser technology to cauterize (seal or close) tissue. This procedure uses heat generated by a laser to cut, coagulate, or destroy tissue. In light coagulation, the laser beam is focused on the blood vessels in question, causing the blood within them to clot and the vessels to seal. This can be used for various medical purposes, such as stopping bleeding during surgery, destroying abnormal tissues (like tumors), or treating eye conditions like diabetic retinopathy and age-related macular degeneration.

It's important to note that this is a general definition, and the specific use of light coagulation may vary depending on the medical specialty and the individual patient's needs. As always, it's best to consult with a healthcare professional for more detailed information about any medical procedure or treatment.

Retinal diseases refer to a group of conditions that affect the retina, which is the light-sensitive tissue located at the back of the eye. The retina is responsible for converting light into electrical signals that are sent to the brain and interpreted as visual images. Retinal diseases can cause vision loss or even blindness, depending on their severity and location in the retina.

Some common retinal diseases include:

1. Age-related macular degeneration (AMD): A progressive disease that affects the central part of the retina called the macula, causing blurred or distorted vision.
2. Diabetic retinopathy: A complication of diabetes that can damage the blood vessels in the retina, leading to vision loss.
3. Retinal detachment: A serious condition where the retina becomes separated from its underlying tissue, requiring immediate medical attention.
4. Macular edema: Swelling or thickening of the macula due to fluid accumulation, which can cause blurred vision.
5. Retinitis pigmentosa: A group of inherited eye disorders that affect the retina's ability to respond to light, causing progressive vision loss.
6. Macular hole: A small break in the macula that can cause distorted or blurry vision.
7. Retinal vein occlusion: Blockage of the retinal veins that can lead to bleeding, swelling, and potential vision loss.

Treatment for retinal diseases varies depending on the specific condition and its severity. Some treatments include medication, laser therapy, surgery, or a combination of these options. Regular eye exams are essential for early detection and treatment of retinal diseases.

A retinal hemorrhage is a type of bleeding that occurs in the blood vessels of the retina, which is the light-sensitive tissue located at the back of the eye. This condition can result from various underlying causes, including diabetes, high blood pressure, age-related macular degeneration, or trauma to the eye. Retinal hemorrhages can be categorized into different types based on their location and appearance, such as dot and blot hemorrhages, flame-shaped hemorrhages, or subhyaloid hemorrhages. Depending on the severity and cause of the hemorrhage, treatment options may vary from monitoring to laser therapy, medication, or even surgery. It is essential to consult an ophthalmologist for a proper evaluation and management plan if you suspect a retinal hemorrhage.

Retinal drusen are yellow-white, deposits of extracellular material that accumulate beneath the retina, most commonly in the macula. They are a common age-related finding and can also be seen in various other conditions such as inherited retinal diseases. Drusen can vary in size and number, and their presence is often associated with an increased risk of developing age-related macular degeneration (AMD), a leading cause of vision loss in older adults. However, not all individuals with drusen will develop AMD, and the significance of drusen depends on factors such as size, number, and location. It's important to monitor drusen and have regular eye examinations to assess any changes or progression that may indicate a higher risk for developing AMD.

Intraocular injections are a type of medical procedure where medication is administered directly into the eye. This technique is often used to deliver drugs that treat various eye conditions, such as age-related macular degeneration, diabetic retinopathy, and endophthalmitis. The most common type of intraocular injection is an intravitreal injection, which involves injecting medication into the vitreous cavity, the space inside the eye filled with a clear gel-like substance called the vitreous humor. This procedure is typically performed by an ophthalmologist in a clinical setting and may be repeated at regular intervals depending on the condition being treated.

SERPINs are an acronym for "serine protease inhibitors." They are a group of proteins that inhibit serine proteases, which are enzymes that cut other proteins. SERPINs are found in various tissues and body fluids, including blood, and play important roles in regulating biological processes such as inflammation, blood clotting, and cell death. They do this by forming covalent complexes with their target proteases, thereby preventing them from carrying out their proteolytic activities. Mutations in SERPIN genes have been associated with several genetic disorders, including emphysema, cirrhosis, and dementia.

Monoclonal antibodies are laboratory-produced proteins that mimic the immune system's ability to fight off harmful antigens such as viruses and cancer cells. They are created by fusing a single B cell (the type of white blood cell responsible for producing antibodies) with a tumor cell, resulting in a hybrid cell called a hybridoma. This hybridoma can then be cloned to produce a large number of identical cells, all producing the same antibody, hence "monoclonal."

Humanized monoclonal antibodies are a type of monoclonal antibody that have been genetically engineered to include human components. This is done to reduce the risk of an adverse immune response in patients receiving the treatment. In this process, the variable region of the mouse monoclonal antibody, which contains the antigen-binding site, is grafted onto a human constant region. The resulting humanized monoclonal antibody retains the ability to bind to the target antigen while minimizing the immunogenicity associated with murine (mouse) antibodies.

In summary, "antibodies, monoclonal, humanized" refers to a type of laboratory-produced protein that mimics the immune system's ability to fight off harmful antigens, but with reduced immunogenicity due to the inclusion of human components in their structure.

The Fluorescent Antibody Technique (FAT), Indirect is a type of immunofluorescence assay used to detect the presence of specific antigens in a sample. In this method, the sample is first incubated with a primary antibody that binds to the target antigen. After washing to remove unbound primary antibodies, a secondary fluorescently labeled antibody is added, which recognizes and binds to the primary antibody. This indirect labeling approach allows for amplification of the signal, making it more sensitive than direct methods. The sample is then examined under a fluorescence microscope to visualize the location and amount of antigen based on the emitted light from the fluorescent secondary antibody. It's commonly used in diagnostic laboratories for detection of various bacteria, viruses, and other antigens in clinical specimens.

Gas lasers are a type of laser that uses a gas as the gain medium, or the material through which the laser beam is amplified. In a gas laser, the gas is excited electrically or through the use of a radio frequency (RF) generator, causing the atoms or molecules within the gas to emit light at specific wavelengths.

The most common type of gas laser is the helium-neon (HeNe) laser, which produces a red beam at a wavelength of 632.8 nanometers. Other types of gas lasers include the carbon dioxide (CO2) laser, which produces an infrared beam and is commonly used for industrial cutting and welding applications, and the nitrogen laser, which produces a ultraviolet beam.

Gas lasers are known for their high efficiency, stability, and long lifespan. They are also relatively easy to maintain and operate, making them popular choices for a variety of industrial, scientific, and medical applications. In medicine, gas lasers are used for procedures such as laser surgery, where they can be used to cut or coagulate tissue with high precision.

Vascular Endothelial Growth Factors (VEGFs) are a family of signaling proteins that stimulate the growth and development of new blood vessels, a process known as angiogenesis. They play crucial roles in both physiological and pathological conditions, such as embryonic development, wound healing, and tumor growth. Specifically, VEGFs bind to specific receptors on the surface of endothelial cells, which line the interior surface of blood vessels, triggering a cascade of intracellular signaling events that promote cell proliferation, migration, and survival. Dysregulation of VEGF signaling has been implicated in various diseases, including cancer, age-related macular degeneration, and diabetic retinopathy.

Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) is a tyrosine kinase receptor that is primarily expressed on vascular endothelial cells. It is a crucial regulator of angiogenesis, the process of new blood vessel formation from pre-existing vessels. VEGFR-2 is activated by binding to its ligand, Vascular Endothelial Growth Factor-A (VEGF-A), leading to receptor dimerization and autophosphorylation. This activation triggers a cascade of intracellular signaling events that promote endothelial cell proliferation, migration, survival, and vascular permeability, all essential steps in the angiogenic process.

VEGFR-2 plays a significant role in physiological and pathological conditions associated with angiogenesis, such as embryonic development, wound healing, tumor growth, and retinopathies. Inhibition of VEGFR-2 signaling has been an attractive target for anti-angiogenic therapies in various diseases, including cancer and age-related macular degeneration.

Fungal eye infections, also known as fungal keratitis or ocular fungal infections, are caused by the invasion of fungi into the eye. The most common types of fungi that cause these infections include Fusarium, Aspergillus, and Candida. These infections can affect any part of the eye, including the cornea, conjunctiva, sclera, and vitreous humor.

Fungal eye infections often present with symptoms such as redness, pain, sensitivity to light, tearing, blurred vision, and discharge. In severe cases, they can lead to corneal ulcers, perforation of the eye, and even blindness if left untreated. Risk factors for fungal eye infections include trauma to the eye, contact lens wear, immunosuppression, and pre-existing eye conditions such as dry eye or previous eye surgery.

Diagnosis of fungal eye infections typically involves a thorough eye examination, including visual acuity testing, slit lamp examination, and sometimes corneal scrapings for microbiological culture and sensitivity testing. Treatment usually involves topical antifungal medications, such as natamycin or amphotericin B, and in some cases may require oral or intravenous antifungal therapy. In severe cases, surgical intervention may be necessary to remove infected tissue or repair any damage caused by the infection.

Endothelial growth factors (ECGFs or EGFs) are a group of signaling proteins that stimulate the growth, proliferation, and survival of endothelial cells, which line the interior surface of blood vessels. These growth factors play crucial roles in various physiological processes, including angiogenesis (the formation of new blood vessels), wound healing, and vascular development during embryogenesis.

One of the most well-studied EGFs is the vascular endothelial growth factor (VEGF) family, which consists of several members like VEGFA, VEGFB, VEGFC, VEGFD, and placental growth factor (PlGF). These factors bind to specific receptors on the surface of endothelial cells, leading to a cascade of intracellular signaling events that ultimately result in cell proliferation, migration, and survival.

Other EGFs include fibroblast growth factors (FGFs), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF-β). Dysregulation of endothelial growth factors has been implicated in various pathological conditions, such as cancer, diabetic retinopathy, age-related macular degeneration, and cardiovascular diseases. Therefore, understanding the functions and regulation of EGFs is essential for developing novel therapeutic strategies to treat these disorders.

A semiconductor laser is a type of laser that uses a semiconductor material to produce coherent light. In a semiconductor laser, electrical current is passed through a p-n junction (a junction between p-type and n-type semiconductors) to create a population inversion, which is necessary for laser action. The active region of the laser, where stimulated emission occurs, is typically made up of multiple layers of semiconductor materials that are designed to confine the carriers (electrons and holes) and enhance the optical mode.

Semiconductor lasers are commonly used in a wide range of applications, including data storage, fiber optic communications, laser printers, and medical devices. They are compact, efficient, and can be easily modulated, making them ideal for use in high-speed optical communication systems. Additionally, semiconductor lasers can be made using various materials, such as gallium arsenide (GaAs), indium phosphide (InP), and aluminum gallium arsenide (AlGaAs), which allow for the emission of light at different wavelengths.

Semiconductor lasers are also known as diode lasers or laser diodes, and they can be further classified based on their structure, such as edge-emitting lasers, surface-emitting lasers, vertical cavity surface-emitting lasers (VCSELs), and distributed feedback lasers (DFB).

Geographic atrophy is a medical term used to describe a specific pattern of degeneration of the retinal pigment epithelium (RPE) and the underlying choroidal tissue in the eye. This condition is often associated with age-related macular degeneration (AMD), which is a leading cause of vision loss in older adults.

In geographic atrophy, there are well-defined areas of RPE and choroidal atrophy that appear as pale, irregularly shaped patches in the central part of the retina known as the macula. These patches can grow larger over time and may lead to progressive vision loss. The exact cause of geographic atrophy is not fully understood, but it is thought to be related to oxidative stress, inflammation, and other age-related changes in the eye.

Currently, there are no effective treatments for geographic atrophy, although research is ongoing to find new ways to slow or halt its progression. Regular eye exams and monitoring by an ophthalmologist are important for people with AMD or geographic atrophy to help detect any changes in their vision and manage their condition effectively.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

Lymphokines are a type of cytokines that are produced and released by activated lymphocytes, a type of white blood cell, in response to an antigenic stimulation. They play a crucial role in the regulation of immune responses and inflammation. Lymphokines can mediate various biological activities such as chemotaxis, activation, proliferation, and differentiation of different immune cells including lymphocytes, monocytes, macrophages, and eosinophils. Examples of lymphokines include interleukins (ILs), interferons (IFNs), tumor necrosis factor (TNF), and colony-stimulating factors (CSFs).

Laser therapy, also known as phototherapy or laser photobiomodulation, is a medical treatment that uses low-intensity lasers or light-emitting diodes (LEDs) to stimulate healing, reduce pain, and decrease inflammation. It works by promoting the increase of cellular metabolism, blood flow, and tissue regeneration through the process of photobiomodulation.

The therapy can be used on patients suffering from a variety of acute and chronic conditions, including musculoskeletal injuries, arthritis, neuropathic pain, and wound healing complications. The wavelength and intensity of the laser light are precisely controlled to ensure a safe and effective treatment.

During the procedure, the laser or LED device is placed directly on the skin over the area of injury or discomfort. The non-ionizing light penetrates the tissue without causing heat or damage, interacting with chromophores in the cells to initiate a series of photochemical reactions. This results in increased ATP production, modulation of reactive oxygen species, and activation of transcription factors that lead to improved cellular function and reduced pain.

In summary, laser therapy is a non-invasive, drug-free treatment option for various medical conditions, providing patients with an alternative or complementary approach to traditional therapies.

The macula lutea, often simply referred to as the macula or fovea centralis, is a part of the eye that is responsible for central vision and color perception. It's located in the center of the retina, the light-sensitive tissue at the back of the eye. The macula contains a high concentration of pigments called xanthophylls, which give it a yellowish color and protect the photoreceptor cells in this area from damage by blue light.

The central part of the macula is called the fovea, which is a small depression that contains only cones, the photoreceptor cells responsible for color vision and high visual acuity. The fovea is surrounded by the parafovea and the perifovea, which contain both cones and rods, the photoreceptor cells responsible for low-light vision and peripheral vision.

Damage to the macula can result in a loss of central vision and color perception, a condition known as age-related macular degeneration (AMD), which is a leading cause of blindness in older adults. Other conditions that can affect the macula include macular edema, macular holes, and macular pucker.

Ophthalmoscopy is a medical examination technique used by healthcare professionals to observe the interior structures of the eye, including the retina, optic disc, and vitreous humor. This procedure typically involves using an ophthalmoscope, a handheld device that consists of a light and magnifying lenses. The healthcare provider looks through the ophthalmoscope and directly observes the internal structures of the eye by illuminating them.

There are several types of ophthalmoscopy, including direct ophthalmoscopy, indirect ophthalmoscopy, and slit-lamp biomicroscopy. Each type has its own advantages and disadvantages, and they may be used in different situations depending on the specific clinical situation and the information needed.

Ophthalmoscopy is an important diagnostic tool for detecting and monitoring a wide range of eye conditions, including diabetic retinopathy, glaucoma, age-related macular degeneration, and other retinal disorders. It can also provide valuable information about the overall health of the individual, as changes in the appearance of the retina or optic nerve may indicate the presence of systemic diseases such as hypertension or diabetes.

Triamcinolone Acetonide is a synthetic glucocorticoid, which is a class of corticosteroids. It is used in the form of topical creams, ointments, and sprays to reduce skin inflammation, itching, and allergies. It can also be administered through injection for the treatment of various conditions such as arthritis, bursitis, and tendonitis. Triamcinolone Acetonide works by suppressing the immune system's response, reducing inflammation, and blocking the production of substances that cause allergies.

It is important to note that prolonged use or overuse of triamcinolone acetonide can lead to side effects such as thinning of the skin, easy bruising, and increased susceptibility to infections. Therefore, it should be used under the guidance of a healthcare professional.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Angiogenesis inducing agents are substances or drugs that stimulate the growth of new blood vessels, a process known as angiogenesis. This process is essential for the growth and development of tissues and organs in the body, including wound healing and the formation of blood vessels in the placenta during pregnancy. However, abnormal angiogenesis can also contribute to various diseases, such as cancer, diabetic retinopathy, and age-related macular degeneration.

Angiogenesis inducing agents are being studied for their potential therapeutic benefits in a variety of medical conditions. For example, they may be used to promote wound healing or tissue repair after injury or surgery. In cancer treatment, angiogenesis inhibitors are often used to block the growth of new blood vessels and prevent tumors from growing and spreading. However, angiogenesis inducing agents can have the opposite effect and may potentially be used to enhance the delivery of drugs to tumors or improve the effectiveness of other cancer treatments.

Examples of angiogenesis inducing agents include certain growth factors, such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF). These substances can be administered as drugs to stimulate angiogenesis in specific contexts. Other substances, such as hypoxia-inducible factors (HIFs) and prostaglandins, can also induce angiogenesis under certain conditions.

Electroretinography (ERG) is a medical test used to evaluate the functioning of the retina, which is the light-sensitive tissue located at the back of the eye. The test measures the electrical responses of the retina to light stimulation.

During the procedure, a special contact lens or electrode is placed on the surface of the eye to record the electrical activity generated by the retina's light-sensitive cells (rods and cones) and other cells in the retina. The test typically involves presenting different levels of flashes of light to the eye while the electrical responses are recorded.

The resulting ERG waveform provides information about the overall health and function of the retina, including the condition of the photoreceptors, the integrity of the inner retinal layers, and the health of the retinal ganglion cells. This test is often used to diagnose and monitor various retinal disorders, such as retinitis pigmentosa, macular degeneration, and diabetic retinopathy.

Optic disk drusen are small, calcified deposits that form within the optic nerve head, also known as the optic disc. They are made up of protein and calcium salts and can vary in size and number. These deposits can be seen on ophthalmic examination using an instrument called an ophthalmoscope.

Optic disk drusen are typically asymptomatic and are often discovered during routine eye examinations. However, in some cases, they may cause visual disturbances or even vision loss if they compress the optic nerve fibers. They can also increase the risk of developing other eye conditions such as glaucoma.

Optic disk drusen are more commonly found in individuals with a family history of the condition and tend to occur in younger people, typically before the age of 40. While there is no cure for optic disk drusen, regular eye examinations can help monitor any changes in the condition and manage any associated visual symptoms or complications.

Fluorescein is not a medical condition or term, but rather a diagnostic dye used in various medical tests and procedures. Medically, it is referred to as Fluorescein Sodium, a fluorescent compound that absorbs light at one wavelength and emits light at another longer wavelength when excited.

In the field of ophthalmology (eye care), Fluorescein is commonly used in:

1. Fluorescein angiography: A diagnostic test to examine blood flow in the retina and choroid, often used to diagnose and manage conditions like diabetic retinopathy, age-related macular degeneration, and retinal vessel occlusions.
2. Tear film assessment: Fluorescein dye is used to evaluate the quality of tear film and diagnose dry eye syndrome by observing the staining pattern on the cornea.
3. Corneal abrasions/foreign body detection: Fluorescein dye can help identify corneal injuries, such as abrasions or foreign bodies, under a cobalt blue light.

In other medical fields, fluorescein is also used in procedures like:

1. Urinary tract imaging: To detect urinary tract abnormalities and evaluate kidney function.
2. Lymphangiography: A procedure to visualize the lymphatic system.
3. Surgical navigation: In some surgical procedures, fluorescein is used as a marker for better visualization of specific structures or areas.

CD31 (also known as PECAM-1 or Platelet Endothelial Cell Adhesion Molecule-1) is a type of protein that is found on the surface of certain cells in the body, including platelets, endothelial cells (which line the blood vessels), and some immune cells.

CD31 functions as a cell adhesion molecule, meaning it helps cells stick together and interact with each other. It plays important roles in various physiological processes, such as the regulation of leukocyte migration, angiogenesis (the formation of new blood vessels), hemostasis (the process that stops bleeding), and thrombosis (the formation of a blood clot inside a blood vessel).

As an antigen, CD31 is used in immunological techniques to identify and characterize cells expressing this protein. Antigens are substances that can be recognized by the immune system and stimulate an immune response. In the case of CD31, antibodies specific to this protein can be used to detect its presence on the surface of cells, providing valuable information for research and diagnostic purposes.

Ophthalmologic surgical procedures refer to various types of surgeries performed on the eye and its surrounding structures by trained medical professionals called ophthalmologists. These procedures aim to correct or improve vision, diagnose and treat eye diseases or injuries, and enhance the overall health and functionality of the eye. Some common examples of ophthalmologic surgical procedures include:

1. Cataract Surgery: This procedure involves removing a cloudy lens (cataract) from the eye and replacing it with an artificial intraocular lens (IOL).
2. LASIK (Laser-Assisted In Situ Keratomileusis): A type of refractive surgery that uses a laser to reshape the cornea, correcting nearsightedness, farsightedness, and astigmatism.
3. Glaucoma Surgery: Several surgical options are available for treating glaucoma, including laser trabeculoplasty, traditional trabeculectomy, and various drainage device implantations. These procedures aim to reduce intraocular pressure (IOP) and prevent further optic nerve damage.
4. Corneal Transplant: This procedure involves replacing a damaged or diseased cornea with a healthy donor cornea to restore vision and improve the eye's appearance.
5. Vitreoretinal Surgery: These procedures focus on treating issues within the vitreous humor (gel-like substance filling the eye) and the retina, such as retinal detachment, macular holes, or diabetic retinopathy.
6. Strabismus Surgery: This procedure aims to correct misalignment of the eyes (strabismus) by adjusting the muscles responsible for eye movement.
7. Oculoplastic Surgery: These procedures involve reconstructive, cosmetic, and functional surgeries around the eye, such as eyelid repair, removal of tumors, or orbital fracture repairs.
8. Pediatric Ophthalmologic Procedures: Various surgical interventions are performed on children to treat conditions like congenital cataracts, amblyopia (lazy eye), or blocked tear ducts.

These are just a few examples of ophthalmic surgical procedures. The specific treatment plan will depend on the individual's condition and overall health.

Eye proteins, also known as ocular proteins, are specific proteins that are found within the eye and play crucial roles in maintaining proper eye function and health. These proteins can be found in various parts of the eye, including the cornea, iris, lens, retina, and other structures. They perform a wide range of functions, such as:

1. Structural support: Proteins like collagen and elastin provide strength and flexibility to the eye's tissues, enabling them to maintain their shape and withstand mechanical stress.
2. Light absorption and transmission: Proteins like opsins and crystallins are involved in capturing and transmitting light signals within the eye, which is essential for vision.
3. Protection against damage: Some eye proteins, such as antioxidant enzymes and heat shock proteins, help protect the eye from oxidative stress, UV radiation, and other environmental factors that can cause damage.
4. Regulation of eye growth and development: Various growth factors and signaling molecules, which are protein-based, contribute to the proper growth, differentiation, and maintenance of eye tissues during embryonic development and throughout adulthood.
5. Immune defense: Proteins involved in the immune response, such as complement components and immunoglobulins, help protect the eye from infection and inflammation.
6. Maintenance of transparency: Crystallin proteins in the lens maintain its transparency, allowing light to pass through unobstructed for clear vision.
7. Neuroprotection: Certain eye proteins, like brain-derived neurotrophic factor (BDNF), support the survival and function of neurons within the retina, helping to preserve vision.

Dysfunction or damage to these eye proteins can contribute to various eye disorders and diseases, such as cataracts, age-related macular degeneration, glaucoma, diabetic retinopathy, and others.

Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1), also known as Flt-1 (Fms-like tyrosine kinase-1), is a receptor tyrosine kinase that plays a crucial role in the regulation of angiogenesis, vasculogenesis, and lymphangiogenesis. It is primarily expressed on vascular endothelial cells, hematopoietic stem cells, and monocytes/macrophages. VEGFR-1 binds to several ligands, including Vascular Endothelial Growth Factor-A (VEGF-A), VEGF-B, and Placental Growth Factor (PlGF). The binding of these ligands to VEGFR-1 triggers intracellular signaling cascades that modulate various cellular responses, such as proliferation, migration, survival, and vascular permeability. While VEGFR-1 is known to have a role in promoting angiogenesis under certain conditions, it primarily acts as a negative regulator of angiogenesis by sequestering VEGF-A, preventing its binding to the more proangiogenic VEGFR-2 receptor. Dysregulation of VEGFR-1 signaling has been implicated in various pathological conditions, including cancer, inflammation, and vascular diseases.

Retinal detachment is a serious eye condition that occurs when the retina, a thin layer of tissue at the back of the eye responsible for processing light and sending visual signals to the brain, pulls away from its normal position. This can lead to significant vision loss or even blindness if not promptly treated. Retinal detachment can be caused by various factors such as aging, trauma, eye disease, or an inflammatory condition. Symptoms of retinal detachment may include sudden flashes of light, floaters, a shadow in the peripheral vision, or a curtain-like covering over part of the visual field. Immediate medical attention is necessary to prevent further damage and preserve vision.

Capillary permeability refers to the ability of substances to pass through the walls of capillaries, which are the smallest blood vessels in the body. These tiny vessels connect the arterioles and venules, allowing for the exchange of nutrients, waste products, and gases between the blood and the surrounding tissues.

The capillary wall is composed of a single layer of endothelial cells that are held together by tight junctions. The permeability of these walls varies depending on the size and charge of the molecules attempting to pass through. Small, uncharged molecules such as water, oxygen, and carbon dioxide can easily diffuse through the capillary wall, while larger or charged molecules such as proteins and large ions have more difficulty passing through.

Increased capillary permeability can occur in response to inflammation, infection, or injury, allowing larger molecules and immune cells to enter the surrounding tissues. This can lead to swelling (edema) and tissue damage if not controlled. Decreased capillary permeability, on the other hand, can lead to impaired nutrient exchange and tissue hypoxia.

Overall, the permeability of capillaries is a critical factor in maintaining the health and function of tissues throughout the body.

Ischemia is the medical term used to describe a lack of blood flow to a part of the body, often due to blocked or narrowed blood vessels. This can lead to a shortage of oxygen and nutrients in the tissues, which can cause them to become damaged or die. Ischemia can affect many different parts of the body, including the heart, brain, legs, and intestines. Symptoms of ischemia depend on the location and severity of the blockage, but they may include pain, cramping, numbness, weakness, or coldness in the affected area. In severe cases, ischemia can lead to tissue death (gangrene) or organ failure. Treatment for ischemia typically involves addressing the underlying cause of the blocked blood flow, such as through medication, surgery, or lifestyle changes.

Exudates and transudates are two types of bodily fluids that can accumulate in various body cavities or tissues as a result of injury, inflammation, or other medical conditions. Here are the medical definitions:

1. Exudates: These are fluids that accumulate due to an active inflammatory process. Exudates contain high levels of protein, white blood cells (such as neutrophils and macrophages), and sometimes other cells like red blood cells or cellular debris. They can be yellow, green, or brown in color and may have a foul odor due to the presence of dead cells and bacteria. Exudates are often seen in conditions such as abscesses, pneumonia, pleurisy, or wound infections.

Examples of exudative fluids include pus, purulent discharge, or inflammatory effusions.

2. Transudates: These are fluids that accumulate due to increased hydrostatic pressure or decreased oncotic pressure within the blood vessels. Transudates contain low levels of protein and cells compared to exudates. They are typically clear and pale yellow in color, with no odor. Transudates can be found in conditions such as congestive heart failure, liver cirrhosis, or nephrotic syndrome.

Examples of transudative fluids include ascites, pleural effusions, or pericardial effusions.

It is essential to differentiate between exudates and transudates because their underlying causes and treatment approaches may differ significantly. Medical professionals often use various tests, such as fluid analysis, to determine whether a fluid sample is an exudate or transudate.

A coloboma is a congenital condition that results from incomplete closure of the optic fissure during fetal development. This results in a gap or hole in one or more structures of the eye, such as the iris, retina, choroid, or optic nerve. The size and location of the coloboma can vary widely, and it may affect one or both eyes.

Colobomas can cause a range of visual symptoms, depending on their size and location. Some people with colobomas may have no visual impairment, while others may experience reduced vision, double vision, or sensitivity to light. In severe cases, colobomas can lead to blindness.

Colobomas are usually diagnosed during routine eye exams and are typically not treatable, although some visual symptoms may be managed with glasses, contact lenses, or surgery in certain cases. Colobomas can occur as an isolated condition or as part of a genetic syndrome, so individuals with colobomas may benefit from genetic counseling to understand their risk of passing the condition on to their offspring.

Coloring agents, also known as food dyes or color additives, are substances that are added to foods, medications, and cosmetics to improve their appearance by giving them a specific color. These agents can be made from both synthetic and natural sources. They must be approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) before they can be used in products intended for human consumption.

Coloring agents are used for various reasons, including:

* To replace color lost during food processing or preparation
* To make foods more visually appealing
* To help consumers easily identify certain types of food
* To indicate the flavor of a product (e.g., fruit-flavored candies)

It's important to note that while coloring agents can enhance the appearance of products, they do not affect their taste or nutritional value. Some people may have allergic reactions to certain coloring agents, so it's essential to check product labels if you have any known allergies. Additionally, excessive consumption of some synthetic coloring agents has been linked to health concerns, so moderation is key.

The Complement Membrane Attack Complex (MAC), also known as the Terminal Complement Complex (TCC), is a protein structure that forms in the final stages of the complement system's immune response. The complement system is a part of the innate immune system that helps to eliminate pathogens and damaged cells from the body.

The MAC is composed of several proteins, including C5b, C6, C7, C8, and multiple subunits of C9, which assemble on the surface of target cells. The formation of the MAC creates a pore-like structure in the cell membrane, leading to disruption of the membrane's integrity and ultimately causing cell lysis or damage.

The MAC plays an important role in the immune response by helping to eliminate pathogens that have evaded other immune defenses. However, uncontrolled activation of the complement system and formation of the MAC can also contribute to tissue damage and inflammation in various diseases, such as autoimmune disorders, age-related macular degeneration, and ischemia-reperfusion injury.

Capillaries are the smallest blood vessels in the body, with diameters that range from 5 to 10 micrometers. They form a network of tiny tubes that connect the arterioles (small branches of arteries) and venules (small branches of veins), allowing for the exchange of oxygen, carbon dioxide, nutrients, and waste products between the blood and the surrounding tissues.

Capillaries are composed of a single layer of endothelial cells that surround a hollow lumen through which blood flows. The walls of capillaries are extremely thin, allowing for easy diffusion of molecules between the blood and the surrounding tissue. This is essential for maintaining the health and function of all body tissues.

Capillaries can be classified into three types based on their structure and function: continuous, fenestrated, and sinusoidal. Continuous capillaries have a continuous layer of endothelial cells with tight junctions that restrict the passage of large molecules. Fenestrated capillaries have small pores or "fenestrae" in the endothelial cell walls that allow for the passage of larger molecules, such as proteins and lipids. Sinusoidal capillaries are found in organs with high metabolic activity, such as the liver and spleen, and have large, irregular spaces between the endothelial cells that allow for the exchange of even larger molecules.

Overall, capillaries play a critical role in maintaining the health and function of all body tissues by allowing for the exchange of nutrients, oxygen, and waste products between the blood and surrounding tissues.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

"Intraperitoneal injection" is a medical term that refers to the administration of a substance or medication directly into the peritoneal cavity, which is the space between the lining of the abdominal wall and the organs contained within it. This type of injection is typically used in clinical settings for various purposes, such as delivering chemotherapy drugs, anesthetics, or other medications directly to the abdominal organs.

The procedure involves inserting a needle through the abdominal wall and into the peritoneal cavity, taking care to avoid any vital structures such as blood vessels or nerves. Once the needle is properly positioned, the medication can be injected slowly and carefully to ensure even distribution throughout the cavity.

It's important to note that intraperitoneal injections are typically reserved for situations where other routes of administration are not feasible or effective, as they carry a higher risk of complications such as infection, bleeding, or injury to surrounding organs. As with any medical procedure, it should only be performed by trained healthcare professionals under appropriate clinical circumstances.

Retinopathy of Prematurity (ROP) is a potentially sight-threatening proliferative retinal vascular disorder that primarily affects prematurely born infants, particularly those with low birth weight and/or young gestational age. It is characterized by the abnormal growth and development of retinal blood vessels due to disturbances in the oxygen supply and metabolic demands during critical phases of fetal development.

The condition can be classified into various stages (1-5) based on its severity, with stages 4 and 5 being more severe forms that may lead to retinal detachment and blindness if left untreated. The pathogenesis of ROP involves an initial phase of vessel loss and regression in the central retina, followed by a secondary phase of abnormal neovascularization, which can cause fibrosis, traction, and ultimately, retinal detachment.

ROP is typically managed with a multidisciplinary approach involving ophthalmologists, neonatologists, and pediatricians. Treatment options include laser photocoagulation, cryotherapy, intravitreal anti-VEGF injections, or even surgical interventions to prevent retinal detachment and preserve vision. Regular screening examinations are crucial for early detection and timely management of ROP in at-risk infants.

Chimerin proteins are a group of intracellular signaling proteins that contain a protein kinase C (PKC) phosphorylation site and a GTPase-activating protein (GAP) domain, which regulates Rho GTPases. These proteins play important roles in various cellular processes such as neurite outgrowth, axon guidance, and synaptic plasticity. They are named "chimerin" because they contain domains derived from two different proteins: the N-terminal region is similar to that of a neuronal protein called semaphorin 4D, while the C-terminal region contains the GAP domain found in Ras GTPase-activating proteins. There are several isoforms of chimerin proteins, including Chimerin1 (Chn1), Chimerin2 (Chn2), and Chimerin3 (Chn3), which differ in their tissue distribution and subcellular localization.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Nerve Growth Factors (NGFs) are a family of proteins that play an essential role in the growth, maintenance, and survival of certain neurons (nerve cells). They were first discovered by Rita Levi-Montalcini and Stanley Cohen in 1956. NGF is particularly crucial for the development and function of the peripheral nervous system, which connects the central nervous system to various organs and tissues throughout the body.

NGF supports the differentiation and survival of sympathetic and sensory neurons during embryonic development. In adults, NGF continues to regulate the maintenance and repair of these neurons, contributing to neuroplasticity – the brain's ability to adapt and change over time. Additionally, NGF has been implicated in pain transmission and modulation, as well as inflammatory responses.

Abnormal levels or dysfunctional NGF signaling have been associated with various medical conditions, including neurodegenerative diseases (e.g., Alzheimer's and Parkinson's), chronic pain disorders, and certain cancers (e.g., small cell lung cancer). Therefore, understanding the role of NGF in physiological and pathological processes may provide valuable insights into developing novel therapeutic strategies for these conditions.

Ocular toxoplasmosis is an inflammatory eye disease caused by the parasitic infection of Toxoplasma gondii in the eye's retina. It can lead to lesions and scarring in the retina, resulting in vision loss or impairment. The severity of ocular toxoplasmosis depends on the location and extent of the infection in the eye. In some cases, it may cause only mild symptoms, while in others, it can result in severe damage to the eye. Ocular toxoplasmosis is usually treated with medications that target the Toxoplasma gondii parasite, such as pyrimethamine and sulfadiazine, often combined with corticosteroids to reduce inflammation.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

Histoplasmosis is a pulmonary and systemic disease caused by the dimorphic fungus Histoplasma capsulatum. It is typically acquired through the inhalation of microconidia from contaminated soil, particularly in areas associated with bird or bat droppings. The infection can range from asymptomatic to severe, depending on factors like the individual's immune status and the quantity of inhaled spores.

In acute histoplasmosis, symptoms may include fever, cough, fatigue, chest pain, and headache. Chronic or disseminated forms of the disease can affect various organs, such as the liver, spleen, adrenal glands, and central nervous system, leading to more severe complications. Diagnosis often involves serological tests, cultures, or histopathological examination of tissue samples. Treatment depends on the severity and dissemination of the disease, with antifungal medications like itraconazole or amphotericin B being commonly used for moderate to severe cases.

Brachydactyly is a medical term that describes a condition where the digits (fingers or toes) are abnormally short in length. This condition can affect one or more digits and can be present at birth or develop later in life. Brachydactyly can occur as an isolated trait or as part of a genetic syndrome, such as Apert syndrome or Down syndrome.

The term "brachydactyly" comes from two Greek words: "brachys," which means short, and "daktylos," which means finger or toe. There are several types of brachydactyly, each classified based on the specific bones affected and the pattern of inheritance.

For example, Brachydactyly type A is characterized by shortening of the distal phalanges (the bone at the end of the finger or toe), while Brachydactyly type D involves shortening of the middle phalanges. In some cases, brachydactyly may also be associated with other symptoms such as joint stiffness, nail abnormalities, or curvature of the fingers or toes (clinodactyly).

It is important to note that while brachydactyly can be noticeable and affect the appearance of the hands or feet, it is generally a mild condition that does not typically cause significant functional impairment. However, if you have concerns about brachydactyly or any other medical condition, it is always best to consult with a healthcare professional for further evaluation and guidance.

Complement Factor H is a protein involved in the regulation of the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, Complement Factor H helps to regulate the activation and deactivation of the complement component C3b, preventing excessive or unwanted activation of the complement system and protecting host tissues from damage.

Complement Factor H is a crucial protein in maintaining the balance between the protective effects of the complement system and the potential for harm to the body's own cells and tissues. Deficiencies or mutations in Complement Factor H have been associated with several diseases, including age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and C3 glomerulopathy.

The eye is the organ of sight, primarily responsible for detecting and focusing on visual stimuli. It is a complex structure composed of various parts that work together to enable vision. Here are some of the main components of the eye:

1. Cornea: The clear front part of the eye that refracts light entering the eye and protects the eye from harmful particles and microorganisms.
2. Iris: The colored part of the eye that controls the amount of light reaching the retina by adjusting the size of the pupil.
3. Pupil: The opening in the center of the iris that allows light to enter the eye.
4. Lens: A biconvex structure located behind the iris that further refracts light and focuses it onto the retina.
5. Retina: A layer of light-sensitive cells (rods and cones) at the back of the eye that convert light into electrical signals, which are then transmitted to the brain via the optic nerve.
6. Optic Nerve: The nerve that carries visual information from the retina to the brain.
7. Vitreous: A clear, gel-like substance that fills the space between the lens and the retina, providing structural support to the eye.
8. Conjunctiva: A thin, transparent membrane that covers the front of the eye and the inner surface of the eyelids.
9. Extraocular Muscles: Six muscles that control the movement of the eye, allowing for proper alignment and focus.

The eye is a remarkable organ that allows us to perceive and interact with our surroundings. Various medical specialties, such as ophthalmology and optometry, are dedicated to the diagnosis, treatment, and management of various eye conditions and diseases.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

A pupil, in medical terms, refers to the circular opening in the center of the iris (the colored part of the eye) that allows light to enter and reach the retina. The size of the pupil can change involuntarily in response to light intensity and emotional state, as well as voluntarily through certain eye exercises or with the use of eye drops. Pupillary reactions are important in clinical examinations as they can provide valuable information about the nervous system's functioning, particularly the brainstem and cranial nerves II and III.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Myopia, also known as nearsightedness, is a common refractive error of the eye. It occurs when the eye is either too long or the cornea (the clear front part of the eye) is too curved. As a result, light rays focus in front of the retina instead of directly on it, causing distant objects to appear blurry while close objects remain clear.

Myopia typically develops during childhood and can progress gradually or rapidly until early adulthood. It can be corrected with glasses, contact lenses, or refractive surgery such as LASIK. Regular eye examinations are essential for people with myopia to monitor any changes in their prescription and ensure proper correction.

While myopia is generally not a serious condition, high levels of nearsightedness can increase the risk of certain eye diseases, including cataracts, glaucoma, retinal detachment, and myopic degeneration. Therefore, it's crucial to manage myopia effectively and maintain regular follow-ups with an eye care professional.

The cornea is the clear, dome-shaped surface at the front of the eye. It plays a crucial role in focusing vision. The cornea protects the eye from harmful particles and microorganisms, and it also serves as a barrier against UV light. Its transparency allows light to pass through and get focused onto the retina. The cornea does not contain blood vessels, so it relies on tears and the fluid inside the eye (aqueous humor) for nutrition and oxygen. Any damage or disease that affects its clarity and shape can significantly impact vision and potentially lead to blindness if left untreated.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Pseudoxanthoma Elasticum (PXE) is a rare genetic disorder characterized by the calcification and fragmentation of elastic fibers in the skin, eyes, and cardiovascular system. This causes changes in these tissues, leading to the clinical features of the disease. In the skin, this manifests as yellowish papules and plaques, often located on the neck, axillae, and flexural areas. In the eyes, it can cause angioid streaks, peau d'orange, and choroidal neovascularization, potentially leading to visual loss. In the cardiovascular system, calcification of the elastic fibers in the arterial walls can lead to premature atherosclerosis and increased risk of cardiovascular events. The disease is caused by mutations in the ABCC6 gene.

X-ray therapy, also known as radiation therapy, is a medical treatment that uses high-energy radiation to destroy cancer cells and shrink or control the growth of tumors. The radiation used in x-ray therapy can come from a machine outside the body (external beam radiation) or from radioactive material placed in or near the tumor (internal radiation or brachytherapy).

The goal of x-ray therapy is to kill cancer cells while minimizing harm to normal cells. The treatment is carefully planned and tailored to the size, shape, and location of the tumor, as well as the patient's overall health. X-ray therapy can be used alone or in combination with other cancer treatments, such as surgery and chemotherapy.

It is important to note that x-ray therapy itself does not cause cancer, but it can increase the risk of developing secondary cancers in the future. This risk is generally low and will be weighed against the potential benefits of treatment. Patients should discuss any concerns about this risk with their healthcare provider.

Hyperthermia, induced, is a medically controlled increase in core body temperature beyond the normal range (36.5-37.5°C or 97.7-99.5°F) to a target temperature typically between 38-42°C (100.4-107.6°F). This therapeutic intervention is used in various medical fields, including oncology and critical care medicine. Induced hyperthermia can be achieved through different methods such as whole-body heating or localized heat application, often combined with chemotherapy or radiation therapy to enhance treatment efficacy.

In the context of oncology, hyperthermia is used as a sensitizer for cancer treatments by increasing blood flow to tumors, enhancing drug delivery, and directly damaging cancer cells through protein denaturation and apoptosis at higher temperatures. In critical care settings, induced hyperthermia may be applied in therapeutic hypothermia protocols to protect the brain after cardiac arrest or other neurological injuries by decreasing metabolic demand and reducing oxidative stress.

It is essential to closely monitor patients undergoing induced hyperthermia for potential adverse effects, including cardiovascular instability, electrolyte imbalances, and infections, and manage these complications promptly to ensure patient safety during the procedure.

Dextrans are a type of complex glucose polymers that are formed by the action of certain bacteria on sucrose. They are branched polysaccharides consisting of linear chains of α-1,6 linked D-glucopyranosyl units with occasional α-1,3 branches.

Dextrans have a wide range of applications in medicine and industry. In medicine, dextrans are used as plasma substitutes, volume expanders, and anticoagulants. They are also used as carriers for drugs and diagnostic agents, and in the manufacture of immunoadsorbents for the removal of toxins and pathogens from blood.

Dextrans can be derived from various bacterial sources, but the most common commercial source is Leuconostoc mesenteroides B-512(F) or L. dextranicum. The molecular weight of dextrans can vary widely, ranging from a few thousand to several million Daltons, depending on the method of preparation and purification.

Dextrans are generally biocompatible and non-toxic, but they can cause allergic reactions in some individuals. Therefore, their use as medical products requires careful monitoring and testing for safety and efficacy.

Laser-Doppler flowmetry (LDF) is a non-invasive, investigative technique used to measure microcirculatory blood flow in real time. It is based on the principle of the Doppler effect, which describes the change in frequency or wavelength of light or sound waves as they encounter a moving object or reflect off a moving surface.

In LDF, a low-power laser beam is directed at the skin or other transparent tissue. The light penetrates the tissue and scatters off the moving red blood cells within the microvasculature. As the light scatters, it undergoes a slight frequency shift due to the movement of the red blood cells. This frequency shift is then detected by a photodetector, which converts it into an electrical signal. The magnitude of this signal is directly proportional to the speed and concentration of the moving red blood cells, providing a measure of microcirculatory blood flow.

LDF has various clinical applications, including the assessment of skin perfusion in patients with peripheral arterial disease, burn injuries, and flaps used in reconstructive surgery. It can also be used to study the effects of drugs or other interventions on microcirculation in research settings.

Collagen type XVIII is a type of collagen that is found in the basement membrane, which is a thin layer of extracellular matrix that separates and supports epithelial and endothelial cells. It is a heterotrimeric protein composed of three different chains, alpha1(XVIII), alpha2(XVIII), and alpha3(XVIII). Collagen XVIII is thought to play a role in the maintenance and organization of the basement membrane, as well as in cell adhesion and migration. It also contains a number of distinct domains that are involved in various biological processes, including angiogenesis, tissue repair, and tumor growth. Mutations in the gene that encodes collagen XVIII have been associated with eye diseases such as Knobloch syndrome and familial exudative vitreoretinopathy.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

The vasa vasorum are small blood vessels that supply larger blood vessels, such as the arteries and veins, with oxygen and nutrients. They are located in the outer layers (the adventitia and media) of these larger vessels and form a network of vessels that surround and penetrate the walls of the larger vessels. The vasa vasorum are particularly important in supplying blood to the thicker walls of larger arteries, such as the aorta, where diffusion from the lumen may not be sufficient to meet the metabolic needs of the vessel wall.

Chemokine (C-C motif) ligand 2, also known as monocyte chemoattractant protein-1 (MCP-1), is a small signaling protein that belongs to the chemokine family. Chemokines are a group of cytokines, or regulatory proteins, that play important roles in immune responses and inflammation by recruiting various immune cells to sites of infection or injury.

CCL2 specifically acts as a chemoattractant for monocytes, memory T cells, and dendritic cells, guiding them to migrate towards the source of infection or tissue damage. It does this by binding to its receptor, CCR2, which is expressed on the surface of these immune cells.

CCL2 has been implicated in several pathological conditions, including atherosclerosis, rheumatoid arthritis, and various cancers, where it contributes to the recruitment of immune cells that can exacerbate tissue damage or promote tumor growth and metastasis. Therefore, targeting CCL2 or its signaling pathways has emerged as a potential therapeutic strategy for these diseases.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Uveal diseases refer to a group of medical conditions that affect the uvea, which is the middle layer of the eye located between the sclera (the white of the eye) and the retina (the light-sensitive tissue at the back of the eye). The uvea consists of the iris (the colored part of the eye), the ciliary body (which controls the lens), and the choroid (a layer of blood vessels that provides nutrients to the retina).

Uveal diseases can cause inflammation, damage, or tumors in the uvea, leading to symptoms such as eye pain, redness, light sensitivity, blurred vision, and floaters. Some common uveal diseases include uveitis (inflammation of the uvea), choroidal melanoma (a type of eye cancer that affects the choroid), and iris nevus (a benign growth on the iris). Treatment for uveal diseases depends on the specific condition and may include medications, surgery, or radiation therapy.

Topical administration refers to a route of administering a medication or treatment directly to a specific area of the body, such as the skin, mucous membranes, or eyes. This method allows the drug to be applied directly to the site where it is needed, which can increase its effectiveness and reduce potential side effects compared to systemic administration (taking the medication by mouth or injecting it into a vein or muscle).

Topical medications come in various forms, including creams, ointments, gels, lotions, solutions, sprays, and patches. They may be used to treat localized conditions such as skin infections, rashes, inflammation, or pain, or to deliver medication to the eyes or mucous membranes for local or systemic effects.

When applying topical medications, it is important to follow the instructions carefully to ensure proper absorption and avoid irritation or other adverse reactions. This may include cleaning the area before application, covering the treated area with a dressing, or avoiding exposure to sunlight or water after application, depending on the specific medication and its intended use.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Osteoma is a benign (noncancerous) tumor that is made up of mature bone tissue. It usually grows slowly over a period of years and is most commonly found in the skull or jaw, although it can occur in other bones of the body as well. Osteomas are typically small, but they can grow to be several centimeters in size. They may cause symptoms if they press on nearby tissues or structures, such as nerves or blood vessels. In some cases, osteomas may not cause any symptoms and may only be discovered during routine imaging studies. Treatment for osteoma is typically not necessary unless it is causing problems or growing rapidly. If treatment is needed, it may involve surgical removal of the tumor.

Eye burns typically refer to injuries or damage to the eyes caused by exposure to harmful substances, extreme temperatures, or radiation. This can result in a variety of symptoms, including redness, pain, tearing, swelling, and blurred vision.

Chemical eye burns can occur when the eyes come into contact with strong acids, alkalis, or other irritants. These substances can cause damage to the cornea, conjunctiva, and other structures of the eye. The severity of the burn will depend on the type and concentration of the chemical, as well as the length of time it was in contact with the eye.

Thermal eye burns can result from exposure to hot or cold temperatures, such as steam, flames, or extreme cold. These types of burns can cause damage to the surface of the eye and may require medical attention to prevent further complications.

Radiation eye burns can occur after exposure to high levels of ultraviolet (UV) light, such as from welding torches, sun lamps, or tanning beds. Prolonged exposure to these sources can cause damage to the cornea and other structures of the eye, leading to symptoms like pain, redness, and sensitivity to light.

If you experience symptoms of an eye burn, it is important to seek medical attention as soon as possible. Treatment may include flushing the eyes with water or saline solution, administering medication to relieve pain and inflammation, or in severe cases, surgery to repair damaged tissue.

A hindlimb, also known as a posterior limb, is one of the pair of extremities that are located distally to the trunk in tetrapods (four-legged vertebrates) and include mammals, birds, reptiles, and amphibians. In humans and other primates, hindlimbs are equivalent to the lower limbs, which consist of the thigh, leg, foot, and toes.

The primary function of hindlimbs is locomotion, allowing animals to move from one place to another. However, they also play a role in other activities such as balance, support, and communication. In humans, the hindlimbs are responsible for weight-bearing, standing, walking, running, and jumping.

In medical terminology, the term "hindlimb" is not commonly used to describe human anatomy. Instead, healthcare professionals use terms like lower limbs or lower extremities to refer to the same region of the body. However, in comparative anatomy and veterinary medicine, the term hindlimb is still widely used to describe the corresponding structures in non-human animals.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Tissue Inhibitor of Metalloproteinase-3 (TIMP-3) is a member of the tissue inhibitors of metalloproteinases (TIMPs) family, which are natural inhibitors of matrix metalloproteinases (MMPs), a group of enzymes involved in the degradation and remodeling of extracellular matrix components.

TIMP-3 is unique among TIMPs because it can inhibit all known MMPs and also has the ability to inhibit some members of the ADAM (a disintegrin and metalloproteinase) family, which are involved in protein ectodomain shedding and cell adhesion.

TIMP-3 is a secreted glycoprotein that binds to the extracellular matrix and regulates MMP activity locally. It has been shown to play important roles in various biological processes, including tissue remodeling, angiogenesis, inflammation, and apoptosis. Dysregulation of TIMP-3 expression or function has been implicated in several diseases, such as cancer, fibrosis, and neurodegenerative disorders.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

A drug combination refers to the use of two or more drugs in combination for the treatment of a single medical condition or disease. The rationale behind using drug combinations is to achieve a therapeutic effect that is superior to that obtained with any single agent alone, through various mechanisms such as:

* Complementary modes of action: When different drugs target different aspects of the disease process, their combined effects may be greater than either drug used alone.
* Synergistic interactions: In some cases, the combination of two or more drugs can result in a greater-than-additive effect, where the total response is greater than the sum of the individual responses to each drug.
* Antagonism of adverse effects: Sometimes, the use of one drug can mitigate the side effects of another, allowing for higher doses or longer durations of therapy.

Examples of drug combinations include:

* Highly active antiretroviral therapy (HAART) for HIV infection, which typically involves a combination of three or more antiretroviral drugs to suppress viral replication and prevent the development of drug resistance.
* Chemotherapy regimens for cancer treatment, where combinations of cytotoxic agents are used to target different stages of the cell cycle and increase the likelihood of tumor cell death.
* Fixed-dose combination products, such as those used in the treatment of hypertension or type 2 diabetes, which combine two or more active ingredients into a single formulation for ease of administration and improved adherence to therapy.

However, it's important to note that drug combinations can also increase the risk of adverse effects, drug-drug interactions, and medication errors. Therefore, careful consideration should be given to the selection of appropriate drugs, dosing regimens, and monitoring parameters when using drug combinations in clinical practice.

"Macaca fascicularis" is the scientific name for the crab-eating macaque, also known as the long-tailed macaque. It's a species of monkey that is native to Southeast Asia. They are called "crab-eating" macaques because they are known to eat crabs and other crustaceans. These monkeys are omnivorous and their diet also includes fruits, seeds, insects, and occasionally smaller vertebrates.

Crab-eating macaques are highly adaptable and can be found in a wide range of habitats, including forests, grasslands, and wetlands. They are also known to live in close proximity to human settlements and are often considered pests due to their tendency to raid crops and steal food from humans.

These monkeys are social animals and live in large groups called troops. They have a complex social structure with a clear hierarchy and dominant males. Crab-eating macaques are also known for their intelligence and problem-solving abilities.

In medical research, crab-eating macaques are often used as animal models due to their close genetic relationship to humans. They are used in studies related to infectious diseases, neuroscience, and reproductive biology, among others.

Chemical burns are a type of tissue injury that results from exposure to strong acids, bases, or other corrosive chemicals. These substances can cause damage by reacting chemically with the skin or other tissues, leading to destruction of cells and potentially serious harm. The severity of a chemical burn depends on several factors, including the type and concentration of the chemical, the duration of exposure, and the amount of body surface area affected.

Chemical burns can occur through direct contact with the skin or eyes, inhalation of toxic fumes, or ingestion of harmful substances. Symptoms may include redness, pain, blistering, swelling, and irritation at the site of contact. In severe cases, chemical burns can lead to scarring, disability, or even death.

Immediate medical attention is required for chemical burns, as they can continue to cause damage until the source of the injury is removed, and appropriate first aid measures are taken. Treatment typically involves thorough cleaning and irrigation of the affected area, followed by administration of pain medication and other supportive care as needed. In some cases, skin grafting or other surgical interventions may be required to promote healing and minimize scarring.

Intercellular signaling peptides and proteins are molecules that mediate communication and interaction between different cells in living organisms. They play crucial roles in various biological processes, including cell growth, differentiation, migration, and apoptosis (programmed cell death). These signals can be released into the extracellular space, where they bind to specific receptors on the target cell's surface, triggering intracellular signaling cascades that ultimately lead to a response.

Peptides are short chains of amino acids, while proteins are larger molecules made up of one or more polypeptide chains. Both can function as intercellular signaling molecules by acting as ligands for cell surface receptors or by being cleaved from larger precursor proteins and released into the extracellular space. Examples of intercellular signaling peptides and proteins include growth factors, cytokines, chemokines, hormones, neurotransmitters, and their respective receptors.

These molecules contribute to maintaining homeostasis within an organism by coordinating cellular activities across tissues and organs. Dysregulation of intercellular signaling pathways has been implicated in various diseases, such as cancer, autoimmune disorders, and neurodegenerative conditions. Therefore, understanding the mechanisms underlying intercellular signaling is essential for developing targeted therapies to treat these disorders.

Drug delivery systems (DDS) refer to techniques or technologies that are designed to improve the administration of a pharmaceutical compound in terms of its efficiency, safety, and efficacy. A DDS can modify the drug release profile, target the drug to specific cells or tissues, protect the drug from degradation, and reduce side effects.

The goal of a DDS is to optimize the bioavailability of a drug, which is the amount of the drug that reaches the systemic circulation and is available at the site of action. This can be achieved through various approaches, such as encapsulating the drug in a nanoparticle or attaching it to a biomolecule that targets specific cells or tissues.

Some examples of DDS include:

1. Controlled release systems: These systems are designed to release the drug at a controlled rate over an extended period, reducing the frequency of dosing and improving patient compliance.
2. Targeted delivery systems: These systems use biomolecules such as antibodies or ligands to target the drug to specific cells or tissues, increasing its efficacy and reducing side effects.
3. Nanoparticle-based delivery systems: These systems use nanoparticles made of polymers, lipids, or inorganic materials to encapsulate the drug and protect it from degradation, improve its solubility, and target it to specific cells or tissues.
4. Biodegradable implants: These are small devices that can be implanted under the skin or into body cavities to deliver drugs over an extended period. They can be made of biodegradable materials that gradually break down and release the drug.
5. Inhalation delivery systems: These systems use inhalers or nebulizers to deliver drugs directly to the lungs, bypassing the digestive system and improving bioavailability.

Overall, DDS play a critical role in modern pharmaceutical research and development, enabling the creation of new drugs with improved efficacy, safety, and patient compliance.

I'm sorry for any confusion, but "photography" is not a term typically used in medical definitions. Photography refers to the art, application, or process of creating images by recording light or other electromagnetic radiation, either electronically by means of an image sensor, or chemically by means of a light-sensitive material such as photographic film.

If you're looking for a medical term related to imaging, there are several terms that might be relevant, such as:

1. Radiography: This is a technique using X-rays to visualize the internal structures of the body.
2. Ultrasonography: Also known as ultrasound, this is a diagnostic imaging technique using high-frequency sound waves to create images of the inside of the body.
3. Computed Tomography (CT): A type of imaging that uses X-rays to create detailed cross-sectional images of the body.
4. Magnetic Resonance Imaging (MRI): A type of imaging that uses magnetic fields and radio waves to create detailed images of the organs and tissues within the body.
5. Nuclear Medicine: This is a branch of medical imaging that uses small amounts of radioactive material to diagnose and treat diseases.

If you have any questions related to medical definitions or topics, feel free to ask!

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

"Long-Evans" is a strain of laboratory rats commonly used in scientific research. They are named after their developers, the scientists Long and Evans. This strain is albino, with a brownish-black hood over their eyes and ears, and they have an agouti (salt-and-pepper) color on their backs. They are often used as a model organism due to their size, ease of handling, and genetic similarity to humans. However, I couldn't find any specific medical definition related to "Long-Evans rats" as they are not a medical condition or disease.

A dependovirus, also known as a dependent adenovirus or satellite adenovirus, is a type of virus that requires the presence of another virus, specifically an adenovirus, to replicate. Dependoviruses are small, non-enveloped viruses with a double-stranded DNA genome. They cannot complete their replication cycle without the help of an adenovirus, which provides necessary functions for the dependovirus to replicate.

Dependoviruses are clinically significant because they can cause disease in humans, particularly in individuals with weakened immune systems. In some cases, dependoviruses may also affect the severity and outcome of adenovirus infections. However, it is important to note that not all adenovirus infections are associated with dependovirus co-infections.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

In situ nick-end labeling (ISEL, also known as TUNEL) is a technique used in pathology and molecular biology to detect DNA fragmentation, which is a characteristic of apoptotic cells (cells undergoing programmed cell death). The method involves labeling the 3'-hydroxyl termini of double or single stranded DNA breaks in situ (within tissue sections or individual cells) using modified nucleotides that are coupled to a detectable marker, such as a fluorophore or an enzyme. This technique allows for the direct visualization and quantification of apoptotic cells within complex tissues or cell populations.

Oral administration is a route of giving medications or other substances by mouth. This can be in the form of tablets, capsules, liquids, pastes, or other forms that can be swallowed. Once ingested, the substance is absorbed through the gastrointestinal tract and enters the bloodstream to reach its intended target site in the body. Oral administration is a common and convenient route of medication delivery, but it may not be appropriate for all substances or in certain situations, such as when rapid onset of action is required or when the patient has difficulty swallowing.

Fluorescein is not a medical condition, but rather a diagnostic dye that is used in various medical tests and procedures. It is a fluorescent compound that absorbs light at one wavelength and emits light at another wavelength, which makes it useful for imaging and detecting various conditions.

In ophthalmology, fluorescein is commonly used in eye examinations to evaluate the health of the cornea, conjunctiva, and anterior chamber of the eye. A fluorescein dye is applied to the surface of the eye, and then the eye is examined under a blue light. The dye highlights any damage or abnormalities on the surface of the eye, such as scratches, ulcers, or inflammation.

Fluorescein is also used in angiography, a medical imaging technique used to examine blood vessels in the body. A fluorescein dye is injected into a vein, and then a special camera takes pictures of the dye as it flows through the blood vessels. This can help doctors diagnose and monitor conditions such as cancer, diabetes, and macular degeneration.

Overall, fluorescein is a valuable diagnostic tool that helps medical professionals detect and monitor various conditions in the body.

... (CNV) is the creation of new blood vessels in the choroid layer of the eye. Choroidal ... Zhu Y, Zhang T, Xu G, Peng L (December 2016). "Anti-vascular endothelial growth factor for choroidal neovascularisation in ... CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs ... choroidal neovascularization". Invest Ophthalmol Vis Sci. 54 (10): 6886-92. doi:10.1167/iovs.13-11665. PMID 24084095. Pfau M, ...
Selective treatment of choroidal neovascularization in monkeys". Ophthalmology. 103 (3): 427-438. doi:10.1016/s0161-6420(96) ... Miller, JW (2003). "Photodynamic therapy for choroidal neovascularization. The Jules Gonin Lecture, Montreux, Switzerland, 1 ... Miller, JW (2003). "Photodynamic therapy for choroidal neovascularization. The Jules Gonin Lecture, Montreux, Switzerland, 1 ... 1998). "Photodynamic therapy of subfoveal choroidal neovascularization: clinical and angiographic examples". Graefes Arch Clin ...
Choroidal neovascularization: estimated at 0.33 percent. Uveitis: estimated at 0.18 percent. For climbers - Although the cornea ... sometimes resulting in corneal neovascularization-the growth of blood vessels into the cornea. This causes a slight lengthening ... are made of materials with greater oxygen permeability that help reduce the risk of corneal neovascularization, patients ...
Choroidal Neovascularization Prevention Trial Study Group. Laser burn intensity and the risk for choroidal neovascularization ... Risk factors for choroidal neovascularization and geographic atrophy in the complications of age-related macular degeneration ... Characteristics of choroidal neovascularization in the complications of age-related macular degeneration prevention trial. ... 2001 May;85(5):563-5. Berger JW, Yoken J. Computer-assisted quantitation of choroidal neovascularization for clinical trials. ...
Rarely, choroidal neovascularization may develop as the juxtapapillary nerve fibers are disrupted, with subsequent subretinal ... Sivaprasad S, Moore AT (April 2008). "Choroidal neovascularisation in children". Br J Ophthalmol. 92 (4): 451-54. doi:10.1136/ ... Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser ... Chaudhry NA, Lavaque AJ, Shah A, Liggett PE (2005). "Photodynamic therapy for choroidal neovascular membrane secondary to optic ...
... with choroidal neovascularization; 608161; PRPH2 Fragile X syndrome; 300624; FMR1 Fragile X tremor/ataxia syndrome; 300623; ...
... s are caused by regression of choroidal neovascularization. Since it is a medical sign, treatment is given for the ... or a combination of these are the treatment options of choroidal neovascularization due to pathological myopia. Macular ... It occurs due to proliferation of retinal pigment epithelium associated with choroidal hemorrhage. The size of the spots are ...
... , a protein with many functions, has been suggested to play a clinical role in dry eye, choroidal neovascularization, ... Molecules that shift the balance towards PEDF and away from VEGF may prove useful tools in both choroidal neovascularization ... "Effects of human recombinant PEDF protein and PEDF-derived peptide 34-mer on choroidal neovascularization". Investigative ... "Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization". Journal of Cellular Physiology. 188 (2): ...
Rarely choroidal neovascularization occur as a late onset complication. Since The cause of the inflammation remains unknown, ...
2001). "Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization". J Cell Physiol. 188 (2): 253-263 ... Ocular neovascularization (NV) is the abnormal formation of new capillaries from already existing blood vessels in the eye, and ... In animal model, an AAV with human PEDF cDNA under the control of the CMV promoter prevented choroidal and retinal NV ( 24). ... The naturally occurring form of soluble Flt-1 has been shown to reverse neovascularization in rats, mice, and monkeys. Pigment ...
Yan M, Huang Z, Lian HY, Song YP, Chen X (August 2019). "Conbercept for treatment of choroidal neovascularization secondary to ... It is used for the treatment of neovascular age-related macular degeneration (nAMD), choroidal neovascularization secondary to ... the CFDA approved it for the treatment of pathologic myopia associated choroidal neovascularization (pmCNV) In 2019, the CFDA ... Qu J, Cheng Y, Li X, Yu L, Ke X (May 2016). "EFFICACY OF INTRAVITREAL INJECTION OF CONBERCEPT IN POLYPOIDAL CHOROIDAL ...
Choroidal neovascularization Corneal neovascularization Revascularization Rubeosis iridis Inosculation Neely, Kimberly A.; ... In ophthalmology, choroidal neovascularization is the formation of a microvasculature within the innermost layer of the choroid ... Neovascularization in the eye can cause a type of glaucoma (neovascularization glaucoma) if the new blood vessels' bulk blocks ... Corneal neovascularization is a condition where new blood vessels invade into the cornea from the limbus. It is triggered when ...
The loss of vision in POHS is caused by choroidal neovascularization. The diagnosis of POHS is based on the clinical triad of ... 2009). "Intravitreal bevacizumab for choroidal neovascularization secondary to presumed ocular histoplasmosis syndrome". Retina ... and a maculopathy caused by choroidal neovascularization. Completely distinct from POHS, acute ocular histoplasmosis may rarely ... "Intravitreal anti-vascular endothelial growth factor therapy for choroidal neovascularization secondary to ocular ...
Choroidal neovascularization (CNV) is the most common complication associated with Serpiginous choroiditis. It is crucial to ...
Argon lasers were used to induce choroidal neovascularization (CNV) in rat models. Ursodoxicoltaurine and UDCA were injected ... Woo SJ, Kim JH, Yu HG (2010). "Ursodeoxycholic acid and tauroursodeoxycholic acid suppress choroidal neovascularization in a ...
"Blockade of Sphingosine-1-phosphate Reduces Macrophage Influx and Retinal and Choroidal Neovascularization". Journal of ...
These streaks can have a negative impact on vision due to choroidal neovascularization or choroidal rupture. Also, vision can ... Secondary ocular complications like choroidal neovascularization lead to vision loss, and/or metamorphopsia. If choroidal ... The condition is usually asymptomatic, but decrease in vision may occur due to choroidal neovascularization. Angioid streaks ... neovascularization is present, treatment options like anti-VEGF medication, laser photocoagulation, photodynamic therapy, ...
"Blockade of Sphingosine-1-phosphate Reduces Macrophage Influx and Retinal and Choroidal Neovascularization". Journal of ...
"Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters". Proceedings of the ...
... particularly age-related macular degeneration with choroidal neovascularization. Other conditions that can present with ... complaints of metamorphopsia include: pathological myopia, presumed ocular histoplasmosis syndrome, choroidal rupture and ...
Vine AK, Brewer GJ (2002). "Tetrathiomolybdate as an antiangiogenesis therapy for subfoveal choroidal neovascularization ...
"Intravitreal anti-vascular endothelial growth factor therapy for choroidal neovascularization secondary to ocular ...
"Intravitreal anti-vascular endothelial growth factor therapy for choroidal neovascularization secondary to ocular ...
It is suspected that at least 40% of patients with PIC develop CNV (choroidal neovascularization). This is a complication, ... What happens with PIC depends a lot on the presence or absence of an important complication, Choroidal neovascularization ( ... These can be seen as the body's attempts at repair, but these new blood vessels (neovascularisation) are weak, can spread to ...
"Tetrathiomolybdate as an antiangiogenesis therapy for subfoveal choroidal neovascularization secondary to age-related macular ...
IVAN study investigators) (October 2013). "Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: ... and myopic choroidal neovascularization. In the European Union, ranibizumab is indicated for the treatment of neovascular (wet ... and visual impairment due to choroidal neovascularisation. It is often used for age-related wet macular degeneration. Its ... and visual impairment due to choroidal neovascularization. The applicant for this medicinal product is STADA Arzneimittel AG. ...
... so-called choroidal neovascularization (CNV) leads to pachychoroid neovasculopathy (PNV). If parts of these new vessels bulge ... "Choroidal vasculature imaging with laser Doppler holography." Biomedical optics express 10, no. 2 (2019): 995-1012. Boscia F ( ... Complications include subretinal neovascularization and pigment epithelial detachment. The disease can re-occur causing ... Indocyanine green angiography or laser Doppler imaging can be used to reveal the underlying swollen choroidal vessels under the ...
"Intravitreal Ranibizumab for Choroidal Neovascularization in Best's Vitelliform Macular Dystrophy in a 6-Year-Old Boy". Journal ...
... a negative regulator of the wnt signaling pathway and choroidal neovascularization". J. Biol. Chem. 282 (47): 34420-8. doi: ...
"Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: Ophthalmic findings *: SST report no. ... These trials investigated the risks and benefits of surgery to remove a type of lesion-known as choroidal neovascularization- ... "Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration: Ophthalmic findings: SST report no. ...
Choroidal neovascularization (CNV) is the creation of new blood vessels in the choroid layer of the eye. Choroidal ... Zhu Y, Zhang T, Xu G, Peng L (December 2016). "Anti-vascular endothelial growth factor for choroidal neovascularisation in ... CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs ... choroidal neovascularization". Invest Ophthalmol Vis Sci. 54 (10): 6886-92. doi:10.1167/iovs.13-11665. PMID 24084095. Pfau M, ...
Choroidal neovascularization (CNV) is a major cause of visual loss. ... Choroidal neovascularization describes the growth of new blood vessels that originate from the choroid through a break in the ... encoded search term (Choroidal Neovascularization (CNV)) and Choroidal Neovascularization (CNV) What to Read Next on Medscape ... Choroidal Neovascularization (CNV). Updated: Jan 05, 2023 * Author: Lihteh Wu, MD; Chief Editor: Andrew A Dahl, MD, FACS more ...
Purpose: The purpose of this study was to quantify perfusion in the area of choroidal neovascularization (CNV) using laser ... Assessment of choroidal neovascularization perfusion : a pilot study with laser speckle flowgraphy. ... Assessment of choroidal neovascularization perfusion : a pilot study with laser speckle flowgraphy. Translational Vision ...
Choroidal neovascularization (CNV) is a major cause of visual loss. ... Choroidal neovascularization describes the growth of new blood vessels that originate from the choroid through a break in the ... encoded search term (Choroidal Neovascularization) and Choroidal Neovascularization What to Read Next on Medscape ... Choroidal Neovascularization Differential Diagnoses. Updated: Apr 03, 2014 * Author: Lihteh Wu, MD; Chief Editor: Hampton Roy, ...
Bevacizumab Treatment for Subfoveal Choroidal Neovascularization From Causes Other Than Age-Related Macular Degeneration. Chang ... Cite this: Anti-angiogenesis in Eyes With Choroidal Neovascularization - Medscape - Aug 14, 2008. ... therapy for choroidal neovascularization (CNV) for age-related macular degeneration (AMD) has become standard therapy.[1,2] At ... This retrospective study evaluated the efficacy of bevacizumab in subfoveal neovascularization in non-AMD cases. ...
VEGF-TRAPR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. In: Journal of ... VEGF-TRAPR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. Journal of ... These data confirm that VEGF is a critical stimulus for the development of choroidal neovascularization and indicate that VEGF- ... Dive into the research topics of VEGF-TRAPR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood ...
Lack of thrombospondin 1 and exacerbation of choroidal neovascularization. Arch Ophthalmol. 2012 May;130(5):615-20. doi: ... Author(s): Wang S, Sorenson CM, Sheibani N. Lack of thrombospondin 1 and exacerbation of choroidal neovascularization. Arch ... Lack of thrombospondin 1 and exacerbation of choroidal neovascularization.. Posted on May 1, 2012. ... OBJECTIVES To assess the impact of thrombospondin 1(TSP1) deficiency on choroidal neovascularization (CNV)and to determine ...
Choroidal neovascularization, a condition in which new blood vessels form inside the eye. This condition can cause vision loss. ... Choroidal neovascularization (CNV). For some patients, chorioretinal scarring does not impair vision and only requires routine ... 1 This study also showed that 1 in 4 people with POHS had choroidal neovascularization (new blood vessels inside the eye that ...
Lucentis receives positive CHMP opinion in myopic choroidal neovascularization. June 4, 2013 ...
Results: PNV is a type-1 choroidal neovascularization, overlying focal areas of choroidal thickening and dilated choroidal ... Results: PNV is a type-1 choroidal neovascularization, overlying focal areas of choroidal thickening and dilated choroidal ... Pachychoroid neovasculopathy: a type-1 choroidal neovascularization belonging to the pachychoroid spectrum-pathogenesis, ... The absence of drusen, the presence of pachydrusen, younger age of onset and choroidal thickening distinguish it from ...
... such as ranibizumab and pegaptanib sodium have been shown to be beneficial in the treatment of choroidal neovascularization ( ... role in many diseases of the posterior pole that are characterized by macular edema and/or intraocular neovascularization. ... Choroidal Neovascularization / drug therapy* * Choroidal Neovascularization / physiopathology * Diabetic Retinopathy / drug ...
Dive into the research topics of Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related ... Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration. In: ... Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration. / Lambooij, ... Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration. ...
We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. ... Mfge8(-/-) mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture ... is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two ... We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. ...
CHOROIDAL NEOVASCULARIZATION ASSOCIATED WITH RETINAL PIGMENT EPITHELIAL TEAR IMAGED BY OPT CHOROIDAL NEOVASCULARIZATION ... tear in which optical coherence tomography angiography enabled the visualization of subfoveal choroidal neovascularization (CNV ...
Stage VI - Choroidal neovascularization or CNV: Some researchers consider CNV to be the final stage of Best disease, while ... If you have choroid neovascularization and youve developed a choroid neovascularization membrane, the provider may suggest the ... Neovascularization refers to new blood vessels that grow in the choroid. The choroid is the layer of tissue between the retina ...
Choroidal neovascularisation (CNV) is a leading cause of blindness in the western world. It causes 90% of the visual loss in ... Myopic choroidal neovascularisation (mCNV) is one of the most common causes of permanent central visual loss in patients with ... Choroidal neovascularisation (CNV) is a devastating complication of macular degeneration and a major cause of irreversible ... Photodynamic Therapy for Choroidal Neovascularisation Secondary to Inflammatory Chorioretinal Disease. Jennifer I Lim, ...
The subretinal hemorrhage is most likely due to choroidal neovascularization (CNV). Other causes of subretinal hemorrhages and ... In wet AMD pathologic choroidal neovascular membranes develop under the retina, RPE or both resulting in destruction of retinal ...
The prevalence of myopic choroidal neovascularization in the United States. Ophthalmology 123(8): 1771-1782. ...
Ranibizumab injection products are also used to treat myopic choroidal neovascularization (mCNV; a complication in near-sighted ...
2018). Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Mol. Vis. 24, ... such as choroidal neovascularization (Yan et al., 2018; Feng et al., 2021). In addition, GCs have been proven to be new ... 2021). YAP promotes ocular neovascularization by modifying PFKFB3-driven endothelial glycolysis. Angiogenesis 24, 489-504. doi ... including reductions in choroidal and retinal vascular density (Valamanesh et al., 2009). Endogenous GCs can induce some ...
Intravitreal bevacizumab (Avastin) for myopic choroidal neovascularization: six-month results of a prospective pilot study. ... Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration. Am J ... Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology. 1996;103(8) ... Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. Am J Ophthalmol. 2002;134 ...
Drusen complement components C3a and C5a promote choroidal neovascularization. M Nozaki, BJ Raisler, E Sakurai, JV Sarma, SR ...
Secreted phosphoprotein 1 expression in retinal mononuclear phagocytes links murine to human choroidal neovascularization. ... Comparative transcriptome analysis of human and murine choroidal neovascularization identifies fibroblast growth factor ... Comparative transcriptome analysis of human and murine choroidal neovascularization identifies fibroblast growth factor ... Cannabinoid (JWH-133) therapy could be effective for treatment of corneal neovascularization. Iranian Journal of Medical ...
In patients with this disorder, vision loss often is due to cataracts, glaucoma, and choroidal neovascularization (with this ... Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina. 2011 Mar. 31(3):510-7. [QxMD MEDLINE ... Concomitant choroidal inflammation during anterior segment recurrence in Vogt-Koyanagi-Harada disease. Am J Ophthalmol. 2008 ... Hashizume K, Imamura Y, Fujiwara T, Machida S, Ishida M, Kurosaka D. Choroidal thickness in eyes with posterior recurrence of ...
There was also no choroidal neovascularization detected.. Figure 1. Dilated fundus photo of a patient who presented with a ...
Wet AMD is caused by growth of abnormal blood vessels, also referred to as choroidal neovascularization (CNV), into the macula ... and change in total area of choroidal neovascularization (CNV) lesion and leakage from baseline over time. ...
RETRACTED: Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained ... of albumin on bevacizumab activity and stability in PLGA nanoparticles intended for retinal and choroidal neovascularization ...
established that YC-1 can inhibit HIF-1 expression and laser-induced choroidal neovascularization in rats [49]. On the other ... Inhibitory effect of YC-1, 3-(5′-hydroxymethyl-2-furyl)-1-benzylindazole, on experimental choroidal neovascularization in rat ... Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological ... hand, YC-1 was found to suppress pathological retinal neovascularization and enhance physiologic revascularization of the ...
  • Results: PNV is a type-1 choroidal neovascularization, overlying focal areas of choroidal thickening and dilated choroidal vessels. (unipi.it)
  • Poorly-defined CNV is seen as a diffuse area of choroidal hyperreflectivity that blends into the normal contour of the normal RPE band. (medscape.com)
  • Purpose: The purpose of this study was to quantify perfusion in the area of choroidal neovascularization (CNV) using laser speckle flowgraphy (LSFG) before and after intravitreal anti-vascular endothelial growth factor (VEGF) injection. (ntu.edu.sg)
  • Choroidal neovascularization is a common cause of neovascular degenerative maculopathy (i.e. 'wet' macular degeneration) commonly exacerbated by extreme myopia, malignant myopic degeneration, or age-related developments. (wikipedia.org)
  • CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs primarily in the presence of cracks within the retinal (specifically) macular tissue known as lacquer cracks. (wikipedia.org)
  • In particular, PNV shows a shallow pigment epithelium detachment with an undulating retinal pigment epithelium over a subfoveal choroidal thickening, associated with vein enlargement in Haller's layer (named pachyvessels) and choriocapillaris thinning. (unipi.it)
  • To report a patient presenting a retinal pigment epithelial tear in which optical coherence tomography angiography enabled the visualization of subfoveal choroidal neovascularization (CNV) not evidenced by the fluorescein angiography . (bvsalud.org)
  • Rogers AH, Martidis A, Greenberg PB, Puliafito CA. Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. (medscape.com)
  • Kiss CG, Simader C, Michels S, Schmidt-Erfurth U. Combination of verteporfin photodynamic therapy and ranibizumab: effects on retinal anatomy, choroidal perfusion and visual function in the protect study. (medscape.com)
  • Patients without these findings must have diffuse choroidal thickening-as seen using ultrasonography-with fluorescein angiographic abnormalities, including focal areas of delayed choroidal perfusion, multifocal pinpoint leakage, areas of placoid hyperfluorescence, pooling of subretinal fluid, and optic nerve staining. (medscape.com)
  • Singerman LJ, Masonson H, Patel M, Adamis AP, Buggage R, Cunningham E. Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF Inhibition Study in Ocular Neovascularisation (VISION) trial. (medscape.com)
  • The absence of drusen, the presence of pachydrusen, younger age of onset and choroidal thickening distinguish it from neovascular age-related macular degeneration (AMD). (unipi.it)
  • METHODS: Sixteen eyes (10 enucleated eyes, 4 donor eyes, and 2 surgically removed choroidal neovascular [CNV] membranes) of 15 patients with eyes at different stages of ARM were used for immunohistochemistry. (eyehospital.nl)
  • 14,15 Recombinant humanized antibodies showing activity against all isoforms of VEGF-A, such as bevacizumab, ranibizumab, and pegaptanib, have demonstrated efficacy in the treatment of diabetic retinopathy, diabetic macular edema, and iris neovascularization. (pharmacytimes.com)
  • CNV is conventionally treated with intravitreal injections of angiogenesis inhibitors (also known as "anti-VEGF" drugs) to control neovascularization and reduce the area of fluid below the retinal pigment epithelium. (wikipedia.org)
  • [ 1 ] Choroidal neovascularization (CNV) involves the growth of new blood vessels that originate from the choroid through a break in the Bruch membrane into the sub-retinal pigment epithelium (sub-RPE) or subretinal space. (medscape.com)
  • Because ICG is bound tightly to the plasma proteins, less dye escapes from the choroidal circulation, allowing better definition of choroidal vasculature. (medscape.com)
  • A center wavelength of 1050 nm was used that has been demonstrated to provide better imaging of the deeper structures of the retina below the RPE, such as the choroidal vasculature. (arvojournals.org)
  • Since the US Food and Drug Administration approval of ranibizumab in 2006, antivascular endothelial growth factor (VEGF) therapy for choroidal neovascularization (CNV) for age-related macular degeneration (AMD) has become standard therapy. (medscape.com)
  • Vascular endothelial growth factor (VEGF) plays a central role in the development of retinal neovascularization and diabetic macular edema. (johnshopkins.edu)
  • These data confirm that VEGF is a critical stimulus for the development of choroidal neovascularization and indicate that VEGF-TRAP R1R2 may provide a new agent for consideration for treatment of patients with choroidal neovascularization and diabetic macular edema. (johnshopkins.edu)
  • Vascular endothelial growth factor (VEGF) plays an important role in many diseases of the posterior pole that are characterized by macular edema and/or intraocular neovascularization. (nih.gov)
  • Recently anti-VEGF agents such as ranibizumab and pegaptanib sodium have been shown to be beneficial in the treatment of choroidal neovascularization (CNV) secondary to age-related macular degeneration (ARMD). (nih.gov)
  • To assess the application of optical frequency domain imaging (OFDI) at 1050 nm for the detection of choroidal neovascularization (CNV) in age-related macular degeneration (AMD) and its response to treatment. (arvojournals.org)
  • Intravitreal injection of the TSP1 mimetic peptide was performed on days 1 and 7 postlaser in the mice.For quantitative measurements of neovascularization, intercellular adhesion molecule 2 staining was performed at 14 days postlaser of the choroidal-sclera flat mounts. (wisc.edu)
  • Smoking as a risk factor for choroidal neovascularization secondary to presumed ocular histoplasmosis syndrome. (medscape.com)
  • ICG has a peak absorption and fluorescence in the near infrared range, which allows visualization of choroidal pathology through overlying serosanguineous fluid, pigment, or a thin layer of hemorrhage that usually blocks visualization during FA. (medscape.com)
  • En face images were compiled from cross-sectional OFDI data and correlated with color fundus photography (CF) and fluorescein angiograms (FAs). (arvojournals.org)
  • There is also evidence suggesting that VEGF is an important stimulator for choroidal neovascularization. (johnshopkins.edu)
  • Subcutaneous injections or a single intravitreous injection of VEGF-TRAP R1R2 strongly suppressed choroidal neovascularization in mice with laser-induced rupture of Bruch's membrane. (johnshopkins.edu)
  • Subcutaneous injection of VEGF-TRAP R1R2 also significantly inhibited subretinal neovascularization in transgenic mice that express VEGF in photo-receptors. (johnshopkins.edu)
  • Late stage AMD can be in either the "dry" form (Geographic Atrophy) or the "wet" form which is accompanied by choroidal neovascularisation. (frost.com)
  • RESULTS The TSP1 −/− mice exhibited significantly larger areas of neovascularization on choroidal flat mounts compared with TSP1 +/ mice. (wisc.edu)
  • 5.1 Surgery was stopped in 5% (11/217) of patients because of complications such as posterior capsule rupture in 7 patients, choroidal effusion in 1 patient, choroidal haemorrhage in 2 patients and zonular dehiscence in 1 patient in a non-randomised comparative study of 217 patients. (nice.org.uk)
  • 5.4 Choroidal neovascularization after telescope implantation was reported in 2% (4/206) of patients in the non-randomised comparative study of 217 patients at 2‑year follow-up. (nice.org.uk)
  • Details about management of the neovascularization in the other 3 patients were not reported. (nice.org.uk)
  • 1 This study also showed that 1 in 4 people with POHS had choroidal neovascularization (new blood vessels inside the eye that can cause vision loss). (cdc.gov)
  • Choroidal neovascularization (CNV) is the creation of new blood vessels in the choroid layer of the eye. (wikipedia.org)
  • Choroidal neovascularization, a condition in which new blood vessels form inside the eye. (cdc.gov)
  • Neovascularization refers to new blood vessels that grow in the choroid. (clevelandclinic.org)
  • The role of adult bone marrow-derived stem cells in choroidal neovascularization. (medscape.com)
  • PURPOSE: The growth of ocular neovascularization is regulated by a balance between stimulating and inhibiting growth factors. (eyehospital.nl)
  • Here, we present the mouse laser-induced choroidal neovascularization (CNV) protocol, an experimental model that re-creates the vascular hallmarks of neovascular age-related macular degeneration (AMD). (jove.com)
  • This study aims to explore the functional role of vascular endothelial growth factor (VEGF-A), placental growth factor (PlGF) and VEGF-A/PlGF heterodimer in immune homeostasis and activation during pathological laser-induced choroidal neovascularization (CNV). (researchsquare.com)
  • Herein, we showed attenuation of subretinal fibrosis after regression of laser-induced choroidal neovascularization and a decrease in mesenchymal retinal pigment epithelium cells in alphaB-crystallin knockout mice compared with wild-type mice. (ca.gov)
  • Purpose To determine the pre-treatment ocular factors significantly associated with the visual outcome 24 months after intravitreal bevacizumab (IVB) for myopic choroidal neovascularization (mCNV). (medscape.com)
  • Myopic choroidal neovascularizations (mCNVs) have been shown to develop in 5 to 10% of eyes with pathological myopia, [ 1-3 ] and several studies have shown that mCNVs have a poor natural history. (medscape.com)
  • Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration? (medscape.com)
  • Singerman LJ, Masonson H, Patel M, Adamis AP, Buggage R, Cunningham E. Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF Inhibition Study in Ocular Neovascularisation (VISION) trial. (medscape.com)
  • Pathological ocular neovascularization, characterized by abnormal blood vessel growth in the chorioretinal area, is a leading cause of blindness associated with eye diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). (researchsquare.com)
  • Subretinal fibrosis is an end stage of neovascular age-related macular degeneration, characterized by fibrous membrane formation after choroidal neovascularization. (ca.gov)
  • Our understanding of CNVM [choroidal neovascular membrane] has changed. (consultantlive.com)
  • Choroidal neovascularization (CNV): subretinal vessels growing through cracks in Bruch's membrane. (dermnetnz.org)
  • Tumstatin inhibits Choroidal Neovascularization by Inhibiting MMP-2 activation in-vitro and in vivo. (nih.gov)
  • Choroidal neovascularization and glaucoma may occur in the late stages of the disease. (nih.gov)
  • Choroidal neovascularization (CNV) is a vision-threatening complication in eyes with pathological myopia. (medscape.com)
  • For pathological ocular neovascularization to occur, pro-angiogenic members of vascular endothelial growth factor (VEGF) family are required. (researchsquare.com)
  • Abnormal growth of choroidal blood vessels, or choroidal neovascularization (CNV), is a hallmark of the neovascular (wet) form of advanced AMD and leads to significant vision loss. (nih.gov)
  • Inhibitory Effect of Tumstatin on Corneal Neovascularization Both In-vitro and In-vivo. (nih.gov)
  • Kiss CG, Simader C, Michels S, Schmidt-Erfurth U. Combination of verteporfin photodynamic therapy and ranibizumab: effects on retinal anatomy, choroidal perfusion and visual function in the protect study. (medscape.com)
  • The study is designed to characterize the efficacy of dietary intake of omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFAs) and their regulation of CYP metabolites in the primary mouse model of choroidal neovascularization (CNV). (brightfocus.org)
  • Cytochrome P450 monooxygenase lipid metabolites are significant second messengers in the resolution of choroidal neovascularization. (nih.gov)
  • IQGAP1 causes choroidal neovascularization by sustaining VEGFR2-mediated Rac1 activation. (nih.gov)
  • I'm looking forward to looking at those patients who developed corneal neovascularization in these trials to see what their final visual outcomes were. (consultantlive.com)
  • Although I'm convinced that pegcetacoplan will be safe to give my patients, there's that rate that shows a higher percentage of patients on treatment with pegcetacoplan developing CNV [choroidal neovascularization], both exudative and nonexudative. (consultantlive.com)
  • This report covers detailed insights on Choroidal Neovascularization Drugs under development, targeted therapeutics, assessment by indications, stage of development, mechanism of action (MoA), route of administration (RoA) and molecule type. (datavagyanik.com)
  • The research report titled "Choroidal Neovascularization Drugs Market, Business and Opportunity Analysis" published by Datavagyanik presents a detailed analysis of the Choroidal Neovascularization Drugs Market with country-wise market statistics, drugs under development, qualitative insights, and market player analysis. (datavagyanik.com)
  • Break-down of the Choroidal Neovascularization Drugs under development in terms of potential market segments, targeted therapeutics and assessment by indications. (datavagyanik.com)
  • There are two main types of ocular neovascularization: retinal neovascularization and choroidal neovascularization (CNV) 1 . (researchsquare.com)