A series of hydrocarbons containing both chlorine and fluorine. These have been used as refrigerants, blowing agents, cleaning fluids, solvents, and as fire extinguishing agents. They have been shown to cause stratospheric ozone depletion and have been banned for many uses.
A group of methane-based halogenated hydrocarbons containing one or more fluorine and chlorine atoms.
Compressed gases or vapors in a container which, upon release of pressure and expansion through a valve, carry another substance from the container. They are used for cosmetics, household cleaners, and so on. Examples are BUTANES; CARBON DIOXIDE; FLUOROCARBONS; NITROGEN; and PROPANE. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A group of ethane-based halogenated hydrocarbons containing one or more fluorine and chlorine atoms.
Fluorinated hydrocarbons are organic compounds consisting primarily of carbon and fluorine atoms, where hydrogen atoms may also be present, known for their high stability, chemical resistance, and various industrial applications, including refrigerants, fire extinguishing agents, and electrical insulation materials.

Structural consequences of anesthetic and nonimmobilizer interaction with gramicidin A channels. (1/62)

Although interactions of general anesthetics with soluble proteins have been studied, the specific interactions with membrane bound-proteins that characterize general anesthesia are largely unknown. The structural modulations of anesthetic interactions with synaptic ion channels have not been elucidated. Using gramicidin A as a simplified model for transmembrane ion channels, we have recently demonstrated that a pair of structurally similar volatile anesthetic and nonimmobilizer, 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1,2-dichlorohexafluorocyclobutane (F6), respectively, have distinctly different effects on the channel function. Using high-resolution NMR structural analysis, we show here that neither F3 nor F6 at pharmacologically relevant concentrations can significantly affect the secondary structure of the gramicidin A channel. Although both the anesthetic F3 and the nonimmobilizer F6 can perturb residues at the middle section of the channel deep inside the hydrophobic region in the sodium dodecyl sulfate micelles, only F3, but not F6, can significantly alter the chemical shifts of the tryptophan indole N-H protons near the channel entrances. The results are consistent with the notion that anesthetics cause functional change of the channel by interacting with the amphipathic domains at the peptide-lipid-water interface.  (+info)

Distinctly different interactions of anesthetic and nonimmobilizer with transmembrane channel peptides. (2/62)

Although it plays no clinical role in general anesthesia, gramicidin A, a transmembrane channel peptide, provides an excellent model for studying the specific interaction between volatile anesthetics and membrane proteins at the molecular level. We show here that a pair of structurally similar volatile anesthetic and nonimmobilizer (nonanesthetic), 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1, 2-dichlorohexafluorocyclobutane (F6), respectively, interacts differently with the transmembrane peptide. With 400 microM gramicidin A in a vesicle suspension of 60 mM phosphatidylcholine-phosphatidylglycerol (PC/PG), the intermolecular cross-relaxation rate constants between (19)F of F3 and (1)H in the chemical shift regions for the indole and backbone amide protons were 0.0106 +/- 0.0007 (n = 12) and 0.0105 +/- 0.0014 (n = 8) s(-1), respectively. No cross-relaxation was measurable between (19)F of F6 and protons in these regions. Sodium transport study showed that with 75 microM gramicidin A in a vesicle suspension of 66 mM PC/PG, F3 increased the (23)Na apparent efflux rate constant from 149.7 +/- 7.2 of control (n = 3) to 191.7 +/- 12.2 s(-1) (n = 3), and the apparent influx rate constant from 182.1 +/- 15.4 to 222.8 +/- 21.7 s(-1) (n = 3). In contrast, F6 had no effects on either influx or efflux rate. It is concluded that the ability of general anesthetics to interact with amphipathic residues near the peptide-lipid-water interface and the inability of nonimmobilizer to do the same may represent some characteristics of anesthetic-protein interaction that are of importance to general anesthesia.  (+info)

Challenges in changing to non-chlorofluorocarbon inhalers in the treatment of asthma. (3/62)

The chlorofluorocarbon (CFC)-based metered dose inhaler, which has been the mainstay of the management of obstructive lung diseases, will soon be phased out world wide and replaced by CFC-free devices. Patients will have to be changed to the devices in a co-ordinated manner to avoid any risk to their health and safety. The different shapes and aerosol delivery characteristics of the new inhalers, as well as their distinctive taste, could add to the levels of poor drug use already experienced in asthma. From previous change scenarios in disease management, the potential for unstable asthma control is a real possibility with all the attendant costs. By using the time available before CFC-based inhalers are withdrawn, there is an opportunity to enhance asthma management during this period of change.  (+info)

Review of therapeutically equivalent alternatives to short acting beta(2) adrenoceptor agonists delivered via chlorofluorocarbon-containing inhalers. (4/62)

BACKGROUND: To study the transition from metered dose inhalers using chlorofluorocarbons as propellants (CFC-MDIs) to non-CFC containing devices, a systematic review was conducted of clinical trials which compared the delivery of salbutamol and terbutaline via CFC-MDIs and non-CFC devices. METHODS: Papers were selected by searching electronic databases (Medline, Cochrane, and BIDS) and further information and studies were sought from pharmaceutical companies. The studies were assessed for their methodological quality. RESULTS: Fifty three relevant trials were identified. Most were scientifically flawed in terms of study design, comparison of inappropriate doses, and insufficient power for the determination of therapeutic equivalence. Differences between inhaler devices were categorised according to efficacy and potency. Most trials claimed to show therapeutic equivalence, usually for the same doses from the different devices. Two commercially available salbutamol metered dose inhalers using a novel hydrofluorocarbon HFC-134a as propellant were equally as potent and efficacious as conventional CFC-MDIs, as were the Rotahaler and Clickhaler dry powder inhalers (DPIs). Evidence suggests that a dose of 200 microg salbutamol via CFC-MDI may be substituted with 200 microg and 400 microg of salbutamol via Accuhaler and Diskhaler DPIs, respectively. Terbutaline delivered via a Turbohaler DPI is equally as potent and efficacious as terbutaline delivered via a conventional CFC-MDI. CONCLUSIONS: When substituting non-CFC containing inhalers for CFC-MDIs, attention must be given to differences in inhaler characteristics which may result in variations in pulmonary function.  (+info)

Pharmacokinetics of chlorofluorocarbon and hydrofluoroalkane metered-dose inhaler formulations of beclomethasone dipropionate. (5/62)

AIMS: To compare the pharmacokinetic profile of Beclazone (beclomethasone dipropionate) in its chlorofluorocarbon (CFC)-based and CFC-free formulations. METHODS: Ten healthy adults received a single 1,000 microg nominal dose (ex-valve) of beclomethasone dipropionate from a CFC inhaler (BEC-CFC) or from a CFC-free inhaler containing hydrofluoroalkane (HFA)-134a (BEC-HFA) in an open-label, randomized, two-way, crossover study. Blood samples were collected predose and over 12 h after inhalation. Comparisons were made of maximum plasma concentration of beclomethasone 17-monopropionate (17-BMP) (Cmax), and area under the plasma concentration vs time curve (AUC). RESULTS: The tmax was significantly (P<0.05) earlier with BEC-HFA and plasma levels were significantly higher following administration of BEC-HFA than BEC-CFC. Geometric mean values for AUC were 1.5 fold greater (90% CI 1.3-1.9) and for Cmax were 1.9 fold greater (90% CI 1.6-2.6) following BEC-HFA than BEC-CFC. CONCLUSIONS: Our data in healthy volunteers would not be consistent with the manufacturers' recommendation for a microgram equivalent (1:1) nominal dose switch between these HFA and CFC formulations. Further well designed trials are required in asthmatic patients to properly define their respective dose-response relationships for antiasthmatic and systemic adverse effects.  (+info)

Global warming in the twenty-first century: an alternative scenario. (6/62)

A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO(2) greenhouse gases (GHGs), such as chlorofluorocarbons, CH(4), and N(2)O, not by the products of fossil fuel burning, CO(2) and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO(2) GHGs has declined in the past decade. If sources of CH(4) and O(3) precursors were reduced in the future, the change in climate forcing by non-CO(2) GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO(2) emissions, this reduction of non-CO(2) GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific long-term global monitoring of aerosol properties.  (+info)

Factors affecting the efficiency of aerosol therapy with pressurised metered-dose inhalers through plastic spacers. (7/62)

AIM: The main objective of this study was to compare the in vitro delivery of salbutamol from a chlorofluorocarbon(CFC)-propelled pressurised metered-dose inhaler (pMDI) versus a newly developed hydrofluoroalkane(HFA)-propelled pMDI through various spacers. In addition, we aimed to study the effect on bronchodilator response when using an optimal pMDI/spacer combination for aerosol delivery compared to a suboptimal combination. METHODS: Particle size distribution and output from salbutamol pMDIs containing either CFC propellants (Ventolin) or HFA propellants (Airomir) were measured using a multistage liquid impinger (MSLI) and compared to that through both detergent-coated (non-static) or untreated (static) large volume (Nebuhaler, Volumatic) and small volume (Aerochamber) plastic spacers. Flow-volume curves (FEV1) were obtained from twelve asthmatic children with known significant bronchodilator response (8 males), aged 13-17 years, randomly inhaling salbutamol from a CFC-pMDI through a static spacer (Nebuhaler) and from an HFA-pMDI through a non-static spacer (Nebuhaler). RESULTS: In vitro output of particles in the respirable range (< 6.8 microns) from HFA-pMDIs was significantly higher than that from CFC-pMDIs using various spacers. Removal of electrostatic charge increased output from CFC- and HFA-pMDIs through all spacers by 17-82%. The mean (SD) bronchodilator response after inhalation of salbutamol from a CFC-pMDI through a static spacer was 7.1% (6.3%) compared to 17.5% (7.9%) after inhalation from an HFA-pMDI through a non-static spacer (p = 0.002). CONCLUSIONS: Use of a newly developed HFA-propelled pMDI greatly improves drug delivery through spacers compared to a CFC-propelled pMDI. However, electrostatic charge in plastic spacers remains the key determinant limiting delivery of salbutamol from a pMDI through spacers, and can be reduced by soaking the spacer in a household detergent. Using an optimal pMDI/spacer combination leads to a significantly improved bronchodilator response.  (+info)

Moving from CFC aerosol to HFA aerosol or dry powder inhalers: what do patients think? (8/62)

BACKGROUND/OBJECTIVES: Environmentally friendly hydrofluoroalkane (HFA) pressurised metered-dose inhalers are currently being marketed to replace chlorofluorocarbon (CFC)-driven devices. It is uncertain whether these new formulations with different properties are acceptable to patients. Similarly, switching a patient to a dry powder inhaler (DPI) carries the risk of non-acceptance. METHODS: One hundred patients with obstructive airway disease on regular CFC aerosol inhaler medication underwent a standardised, structured interview. During the interview patients were asked to use a new HFA aerosol inhaler and three DPIs in random order. Patients' notions were recorded. RESULTS: Most patients (96) agreed to change from their CFC to the HFA inhaler, of those, only 12 did so with some reservation. Properties (taste, user-friendliness, design) of the HFA inhaler were rated favourably. DPIs represented an acceptable alternative to aerosol inhalers. In fact, 57 patients preferred a DPI over the HFA inhaler. Not all powder devices were equally acceptable. Replacing the CFC inhaler with patients' preferred alternative devices resulted in a more than 3-fold increase in costs. CONCLUSION: Concerns about the acceptability of reformulated CFC-free aerosol inhalers are ill founded. However, if given the choice, many patients prefer a DPI over the HFA inhaler. The transition offers an opportunity to review patients' current treatment and the proficiency of their inhaling technique. Moving to CFC-free inhalers will have revenue implications.  (+info)

Chlorofluorocarbons (CFCs) are synthetic, volatile organic compounds that consist of carbon atoms, chlorine atoms, and fluorine atoms. They were widely used in various applications such as refrigerants, aerosol propellants, solvents, and fire extinguishing agents due to their non-toxicity, non-flammability, and chemical stability.

However, CFCs have been found to contribute significantly to the depletion of the Earth's ozone layer when released into the atmosphere. This is because they are stable enough to reach the upper atmosphere, where they react with ultraviolet radiation to release chlorine atoms that can destroy ozone molecules. As a result, the production and use of CFCs have been phased out under the Montreal Protocol, an international treaty aimed at protecting the ozone layer.

Chlorofluorocarbons (CFCs) and methane are both greenhouse gases that contribute to global warming and climate change. However, they are distinct substances with different chemical structures and sources.

Chlorofluorocarbons (CFCs) are synthetic compounds made up of carbon, chlorine, and fluorine atoms. They were commonly used in refrigerants, aerosol sprays, and foam blowing agents until they were phased out due to their harmful effects on the ozone layer. CFCs have high global warming potential, meaning that they trap heat in the atmosphere many times more effectively than carbon dioxide.

Methane, on the other hand, is a naturally occurring gas made up of one carbon atom and four hydrogen atoms (CH4). It is produced by the decomposition of organic matter, such as in landfills, wetlands, and the digestive tracts of animals like cattle. Methane is also released during the extraction and transportation of fossil fuels like coal, oil, and natural gas. While methane has a shorter lifespan in the atmosphere than CFCs, it is an even more potent greenhouse gas, trapping heat at a rate 25 times greater than carbon dioxide over a 100-year period.

Therefore, while both CFCs and methane are harmful to the climate, they are distinct substances with different sources and impacts.

Aerosol propellants are substances used to expel aerosolized particles from a container. They are typically gases that are stored under pressure in a container and, when the container is opened or activated, the gas expands and forces the contents out through a small opening. The most commonly used aerosol propellants are hydrocarbons such as butane and propane, although fluorinated hydrocarbons such as difluoroethane and tetrafluoroethane are also used. Aerosol propellants can be found in various products including medical inhalers, cosmetics, and food products. It is important to handle aerosol propellants with care, as they can be flammable or harmful if inhaled or ingested.

Chlorofluorocarbons (CFCs) are a group of synthetic chemicals that were commonly used in refrigerants, aerosol propellants, and foam blowing agents. They consist of carbon atoms bonded to chlorine and fluorine atoms. CFCs are known to contribute to the depletion of the ozone layer in the Earth's atmosphere.

CFC-12, also known as dichlorodifluoromethane, is a specific type of CFC with the chemical formula CF~2Cl2. It was widely used as a refrigerant and aerosol propellant before being phased out due to its ozone-depleting properties.

On the other hand, ethane (C2H6) is a hydrocarbon consisting of two carbon atoms and six hydrogen atoms. It is a colorless gas with a faint sweet odor and is commonly found in natural gas. Ethane is not a CFC and does not contain chlorine or fluorine atoms.

Therefore, there is no medical definition for "Chlorofluorocarbons, Ethane" as it is a combination of two unrelated terms.

Fluorinated hydrocarbons are organic compounds that contain fluorine and carbon atoms. These compounds can be classified into two main groups: fluorocarbons (which consist only of fluorine and carbon) and fluorinated aliphatic or aromatic hydrocarbons (which contain hydrogen in addition to fluorine and carbon).

Fluorocarbons are further divided into three categories: fully fluorinated compounds (perfluorocarbons, PFCs), partially fluorinated compounds (hydrochlorofluorocarbons, HCFCs, and hydrofluorocarbons, HFCs), and chlorofluorocarbons (CFCs). These compounds have been widely used as refrigerants, aerosol propellants, fire extinguishing agents, and cleaning solvents due to their chemical stability, low toxicity, and non-flammability.

Fluorinated aliphatic or aromatic hydrocarbons are organic compounds that contain fluorine, carbon, and hydrogen atoms. Examples include fluorinated alcohols, ethers, amines, and halogenated compounds. These compounds have a wide range of applications in industry, medicine, and research due to their unique chemical properties.

It is important to note that some fluorinated hydrocarbons can contribute to the depletion of the ozone layer and global warming, making it essential to regulate their use and production.

No FAQ available that match "chlorofluorocarbons"

No images available that match "chlorofluorocarbons"