Chemokine CCL27: A CC-type chemokine with specificity for CCR10 RECEPTORS. It is constitutively expressed in the skin and may play a role in T-CELL trafficking during cutaneous INFLAMMATION.Chemokine CCL21: A CC-type chemokine with specificity for CCR7 RECEPTORS. It has activity towards DENDRITIC CELLS and T-LYMPHOCYTES.Chemokine CCL22: A CC-type chemokine with specificity for CCR4 RECEPTORS. It has activity towards TH2 CELLS and TC2 CELLS.Chemokine CCL17: A CC-type chemokine that is found at high levels in the THYMUS and has specificity for CCR4 RECEPTORS. It is synthesized by DENDRITIC CELLS; ENDOTHELIAL CELLS; KERATINOCYTES; and FIBROBLASTS.Chemokine CCL2: A chemokine that is a chemoattractant for MONOCYTES and may also cause cellular activation of specific functions related to host defense. It is produced by LEUKOCYTES of both monocyte and lymphocyte lineage and by FIBROBLASTS during tissue injury. It has specificity for CCR2 RECEPTORS.Chemokine CCL19: A CC-type chemokine with specificity for CCR7 RECEPTORS. It has activity towards T LYMPHOCYTES and B LYMPHOCYTES.Chemokine CCL5: A CC-type chemokine that is a chemoattractant for EOSINOPHILS; MONOCYTES; and LYMPHOCYTES. It is a potent and selective eosinophil chemotaxin that is stored in and released from PLATELETS and activated T-LYMPHOCYTES. Chemokine CCL5 is specific for CCR1 RECEPTORS; CCR3 RECEPTORS; and CCR5 RECEPTORS. The acronym RANTES refers to Regulated on Activation, Normal T Expressed and Secreted.Chemokine CCL20: A CC-type chemokine with specificity for CCR6 RECEPTORS. It has activity towards DENDRITIC CELLS; T-LYMPHOCYTES; and B-LYMPHOCYTES.Chemokine CCL1: A CC-type chemokine secreted by activated MONOCYTES and T-LYMPHOCYTES. It has specificity for CCR8 RECEPTORS.Chemokines, CC: Group of chemokines with adjacent cysteines that are chemoattractants for lymphocytes, monocytes, eosinophils, basophils but not neutrophils.Receptors, Chemokine: Cell surface glycoproteins that bind to chemokines and thus mediate the migration of pro-inflammatory molecules. The receptors are members of the seven-transmembrane G protein-coupled receptor family. Like the CHEMOKINES themselves, the receptors can be divided into at least three structural branches: CR, CCR, and CXCR, according to variations in a shared cysteine motif.Chemokine CCL3: A CC chemokine with specificity for CCR1 RECEPTORS and CCR5 RECEPTORS. It is a chemoattractant for NK CELLS; MONOCYTES; and a variety of other immune cells. This chemokine is encoded by multiple genes.Chemokine CCL7: A monocyte chemoattractant protein that has activity towards a broad variety of immune cell types. Chemokine CCL7 has specificity for CCR1 RECEPTORS; CCR2 RECEPTORS; and CCR5 RECEPTORS.Chemokines: Class of pro-inflammatory cytokines that have the ability to attract and activate leukocytes. They can be divided into at least three structural branches: C; (CHEMOKINES, C); CC; (CHEMOKINES, CC); and CXC; (CHEMOKINES, CXC); according to variations in a shared cysteine motif.Receptors, CCR10: CCR receptors with specificity for CHEMOKINE CCL27. They may play a specialized role in the cutaneous homing of LYMPHOCYTES.Chemokine CCL4: A CC chemokine with specificity for CCR5 RECEPTORS. It is a chemoattractant for NK CELLS; MONOCYTES and a variety of other immune cells. This chemokine is encoded by multiple genes.Chemokine CXCL12: A CXC chemokine that is chemotactic for T-LYMPHOCYTES and MONOCYTES. It has specificity for CXCR4 RECEPTORS. Two isoforms of CXCL12 are produced by alternative mRNA splicing.Receptors, CCR1: CCR receptors with specificity for a broad variety of CC CHEMOKINES. They are expressed at high levels in MONOCYTES; tissue MACROPHAGES; NEUTROPHILS; and EOSINOPHILS.Chemokine CXCL10: A CXC chemokine that is induced by GAMMA-INTERFERON and is chemotactic for MONOCYTES and T-LYMPHOCYTES. It has specificity for the CXCR3 RECEPTOR.Chemokine CCL8: A monocyte chemoattractant protein that attracts MONOCYTES; LYMPHOCYTES; BASOPHILS; and EOSINOPHILS. Chemokine CCL8 has specificity for CCR3 RECEPTORS and CCR5 RECEPTORS.Receptors, CCR: Chemokine receptors that are specific for CC CHEMOKINES.Receptors, CCR2: CCR receptors with specificity for CHEMOKINE CCL2 and several other CCL2-related chemokines. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; MACROPHAGES; BASOPHILS; and NK CELLS.Chemokine CCL11: A CC-type chemokine that is specific for CCR3 RECEPTORS. It is a potent chemoattractant for EOSINOPHILS.Chemokine CCL24: A CC-type chemokine with specificity for CCR3 RECEPTORS. It is a chemoattractant for EOSINOPHILS.Receptors, CCR7: CCR receptors with specificity for CHEMOKINE CCL19 and CHEMOKINE CCL21. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; and DENDRITIC CELLS.Receptors, CCR8: CCR receptors with specificity for CHEMOKINE CCL1. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; and MACROPHAGES.Chemokine CXCL1: A CXC chemokine with specificity for CXCR2 RECEPTORS. It has growth factor activities and is implicated as a oncogenic factor in several tumor types.Chemotaxis, Leukocyte: The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction.Receptors, CCR4: CCR receptors with specificity for CHEMOKINE CCL17 and CHEMOKINE CCL22. They are expressed at high levels in T-LYMPHOCYTES; MAST CELLS; DENDRITIC CELLS; and NK CELLS.Chemokines, CXC: Group of chemokines with paired cysteines separated by a different amino acid. CXC chemokines are chemoattractants for neutrophils but not monocytes.Chemokine CX3CL1: A CX3C chemokine that is a transmembrane protein found on the surface of cells. The soluble form of chemokine CX3CL1 can be released from cell surface by proteolysis and act as a chemoattractant that may be involved in the extravasation of leukocytes into inflamed tissues. The membrane form of the protein may also play a role in cell adhesion.Macrophage Inflammatory Proteins: Heparin-binding proteins that exhibit a number of inflammatory and immunoregulatory activities. Originally identified as secretory products of MACROPHAGES, these chemokines are produced by a variety of cell types including NEUTROPHILS; FIBROBLASTS; and EPITHELIAL CELLS. They likely play a significant role in respiratory tract defenses.Receptors, CCR5: CCR receptors with specificity for CHEMOKINE CCL3; CHEMOKINE CCL4; and CHEMOKINE CCL5. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; MACROPHAGES; MAST CELLS; and NK CELLS. The CCR5 receptor is used by the HUMAN IMMUNODEFICIENCY VIRUS to infect cells.Receptors, CCR3: CCR receptors with specificity for CHEMOKINE CCL11 and a variety of other CC CHEMOKINES. They are expressed at high levels in T-LYMPHOCYTES; EOSINOPHILS; BASOPHILS; and MAST CELLS.Chemokine CXCL9: An INTEFERON-inducible CXC chemokine that is specific for the CXCR3 RECEPTOR.Mice, Inbred C57BLCell Movement: The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.Chemokine CXCL2: A CXC chemokine that is synthesized by activated MONOCYTES and NEUTROPHILS. It has specificity for CXCR2 RECEPTORS.Chemokine CXCL13: A CXC chemokine that is chemotactic for B-LYMPHOCYTES. It has specificity for CXCR5 RECEPTORS.Receptors, CXCR4: CXCR receptors with specificity for CXCL12 CHEMOKINE. The receptors may play a role in HEMATOPOIESIS regulation and can also function as coreceptors for the HUMAN IMMUNODEFICIENCY VIRUS.Chemokine CXCL11: A CXC chemokine that is induced by GAMMA-INTERFERON. It is a chemotactic factor for activated T-LYMPHOCYTES and has specificity for the CXCR3 RECEPTOR.Chemotaxis: The movement of cells or organisms toward or away from a substance in response to its concentration gradient.Chemokine CXCL6: A CXC chemokine that has stimulatory and chemotactic activities towards NEUTROPHILS. It has specificity for CXCR1 RECEPTORS and CXCR2 RECEPTORS.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Dendritic Cells: Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION).Chemokine CXCL5: A CXC chemokine that is predominantly expressed in EPITHELIAL CELLS. It has specificity for the CXCR2 RECEPTORS and is involved in the recruitment and activation of NEUTROPHILS.Cytokines: Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.Mice, Knockout: Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.Receptors, CXCR3: CXCR receptors that are expressed on the surface of a number of cell types, including T-LYMPHOCYTES; NK CELLS; DENDRITIC CELLS; and a subset of B-LYMPHOCYTES. The receptors are activated by CHEMOKINE CXCL9; CHEMOKINE CXCL10; and CHEMOKINE CXCL11.Mice, Inbred BALB CMonocytes: Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.Macrophages: The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.T-Lymphocytes: Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.Inflammation: A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.Reverse Transcriptase Polymerase Chain Reaction: A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.Enzyme-Linked Immunosorbent Assay: An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.Flow Cytometry: Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.Receptors, Interleukin-8B: High-affinity G-protein-coupled receptors for INTERLEUKIN-8 present on NEUTROPHILS; MONOCYTES; and T-LYMPHOCYTES. These receptors also bind several other CXC CHEMOKINES.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.Dermatitis, Atopic: A chronic inflammatory genetically determined disease of the skin marked by increased ability to form reagin (IgE), with increased susceptibility to allergic rhinitis and asthma, and hereditary disposition to a lowered threshold for pruritus. It is manifested by lichenification, excoriation, and crusting, mainly on the flexural surfaces of the elbow and knee. In infants it is known as infantile eczema.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Up-Regulation: A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Monocyte Chemoattractant Proteins: Chemokines that are chemoattractants for monocytes. These CC chemokines (cysteines adjacent) number at least three including CHEMOKINE CCL2.Disease Models, Animal: Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.Skin: The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.Mice, Transgenic: Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.Interleukin-8: A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells.Ligands: A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)Receptors, CCR6: CCR receptors with specificity for CHEMOKINE CCL20. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; and DENDRITIC CELLS.CD4-Positive T-Lymphocytes: A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.Receptors, Interleukin-8A: High-affinity G-protein-coupled receptors for INTERLEUKIN-8 present on NEUTROPHILS; MONOCYTES; and BASOPHILS.Lymph Nodes: They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system.Receptors, CXCR: Chemokine receptors that are specific for CXC CHEMOKINES.Cell Line, Tumor: A cell line derived from cultured tumor cells.NF-kappa B: Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.Carbon Tetrachloride: A solvent for oils, fats, lacquers, varnishes, rubber waxes, and resins, and a starting material in the manufacturing of organic compounds. Poisoning by inhalation, ingestion or skin absorption is possible and may be fatal. (Merck Index, 11th ed)Immunohistochemistry: Histochemical localization of immunoreactive substances using labeled antibodies as reagents.Receptors, Cytokine: Cell surface proteins that bind cytokines and trigger intracellular changes influencing the behavior of cells.T-Lymphocytes, Regulatory: CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells.Tumor Necrosis Factor-alpha: Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.Chemokines, CX3C: Group of chemokines with the first two cysteines separated by three amino acids. CX3C chemokines are chemotactic for natural killer cells, monocytes, and activated T-cells.Receptors, CXCR5: CXCR receptors isolated initially from BURKITT LYMPHOMA cells. CXCR5 receptors are expressed on mature, recirculating B-LYMPHOCYTES and are specific for CHEMOKINE CXCL13.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Chemotactic Factors: Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult.CD8-Positive T-Lymphocytes: A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes.Endothelial Cells: Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer.Lymphocyte Activation: Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.Monokines: Soluble mediators of the immune response that are neither antibodies nor complement. They are produced largely, but not exclusively, by monocytes and macrophages.Receptors, HIV: Cellular receptors that bind the human immunodeficiency virus that causes AIDS. Included are CD4 ANTIGENS, found on T4 lymphocytes, and monocytes/macrophages, which bind to the HIV ENVELOPE PROTEIN GP120.Carbon Tetrachloride PoisoningDuffy Blood-Group System: A blood group consisting mainly of the antigens Fy(a) and Fy(b), determined by allelic genes, the frequency of which varies profoundly in different human groups; amorphic genes are common.Chemotactic Factors, Eosinophil: Cytotaxins liberated from normal or invading cells that specifically attract eosinophils; they may be complement fragments, lymphokines, neutrophil products, histamine or other; the best known is the tetrapeptide ECF-A, released mainly by mast cells.Neutrophil Infiltration: The diffusion or accumulation of neutrophils in tissues or cells in response to a wide variety of substances released at the sites of inflammatory reactions.Neutrophils: Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.Heterocyclic Compounds: Ring compounds having atoms other than carbon in their nuclei. (Grant & Hackh's Chemical Dictionary, 5th ed)Lung: Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.Leukocytes: White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Inflammation Mediators: The endogenous compounds that mediate inflammation (AUTACOIDS) and related exogenous compounds including the synthetic prostaglandins (PROSTAGLANDINS, SYNTHETIC).Interferon-gamma: The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.Th2 Cells: Subset of helper-inducer T-lymphocytes which synthesize and secrete the interleukins IL-4, IL-5, IL-6, and IL-10. These cytokines influence B-cell development and antibody production as well as augmenting humoral responses.Cell Migration Inhibition: Phenomenon of cell-mediated immunity measured by in vitro inhibition of the migration or phagocytosis of antigen-stimulated LEUKOCYTES or MACROPHAGES. Specific CELL MIGRATION ASSAYS have been developed to estimate levels of migration inhibitory factors, immune reactivity against tumor-associated antigens, and immunosuppressive effects of infectious microorganisms.HIV-1: The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Eosinophils: Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin.Intercellular Signaling Peptides and Proteins: Regulatory proteins and peptides that are signaling molecules involved in the process of PARACRINE COMMUNICATION. They are generally considered factors that are expressed by one cell and are responded to by receptors on another nearby cell. They are distinguished from HORMONES in that their actions are local rather than distal.Lipopolysaccharides: Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)Down-Regulation: A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Epithelial Cells: Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.Leukocytes, Mononuclear: Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules.Cell Adhesion: Adherence of cells to surfaces or to other cells.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Th1 Cells: Subset of helper-inducer T-lymphocytes which synthesize and secrete interleukin-2, gamma-interferon, and interleukin-12. Due to their ability to kill antigen-presenting cells and their lymphokine-mediated effector activity, Th1 cells are associated with vigorous delayed-type hypersensitivity reactions.Lymphoid Tissue: Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS.T-Lymphocyte Subsets: A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells.Gene Expression Profiling: The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.Platelet Factor 4: A CXC chemokine that is found in the alpha granules of PLATELETS. The protein has a molecular size of 7800 kDa and can occur as a monomer, a dimer or a tetramer depending upon its concentration in solution. Platelet factor 4 has a high affinity for HEPARIN and is often found complexed with GLYCOPROTEINS such as PROTEIN C.Stromal Cells: Connective tissue cells of an organ found in the loose connective tissue. These are most often associated with the uterine mucosa and the ovary as well as the hematopoietic system and elsewhere.Time Factors: Elements of limited time intervals, contributing to particular results or situations.Immunity, Innate: The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.Bronchoalveolar Lavage Fluid: Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Drug-Induced Liver Injury: A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, and chemicals from the environment.Endothelium, Lymphatic: Unbroken cellular lining (intima) of the lymph vessels (e.g., the high endothelial lymphatic venules). It is more permeable than vascular endothelium, lacking selective absorption and functioning mainly to remove plasma proteins that have filtered through the capillaries into the tissue spaces.Coculture Techniques: A technique of culturing mixed cell types in vitro to allow their synergistic or antagonistic interactions, such as on CELL DIFFERENTIATION or APOPTOSIS. Coculture can be of different types of cells, tissues, or organs from normal or disease states.

Glucocorticosteroids inhibit mRNA expression for eotaxin, eotaxin-2, and monocyte-chemotactic protein-4 in human airway inflammation with eosinophilia. (1/73)

How eosinophils are preferentially recruited to inflammatory sites remains elusive, but increasing evidence suggests that chemokines that bind to the CCR3 participate in this process. In this study, we investigated the transcript levels and chemotactic activity of CCR3-binding chemokines in nasal polyps, a disorder often showing prominent eosinophilia. We found that mRNA expression for eotaxin, eotaxin-2, and monocyte-chemotactic protein-4 was significantly increased in nasal polyps compared with turbinate mucosa from the same patients, or histologically normal nasal mucosa from control subjects. Interestingly, the novel CCR3-specific chemokine, eotaxin-2, showed the highest transcript levels. Consistent with these mRNA data, polyp tissue fluid exhibited strong chemotactic activity for eosinophils that was significantly inhibited by a blocking Ab against CCR3. When patients were treated systemically with glucocorticosteroids, the mRNA levels in the polyps were reduced to that found in turbinate mucosa for all chemokines. Together, these findings suggested an important role for CCR3-binding chemokines in eosinophil recruitment to nasal polyps. Such chemokines, therefore, most likely contribute significantly in the pathogenesis of eosinophil-related disorders; and the reduced chemokine expression observed after steroid treatment might reflect, at least in part, how steroids inhibit tissue accumulation of eosinophils.  (+info)

Molecular cloning of a novel human CC chemokine (Eotaxin-3) that is a functional ligand of CC chemokine receptor 3. (2/73)

Previously, we mapped the novel CC chemokine myeloid progenitor inhibitory factor 2 (MPIF-2)/eotaxin-2 to chromosome 7q11.23 (Nomiyama, H., Osborne, L. R., Imai, T., Kusuda, J., Miura, R., Tsui, L.-C., and Yoshie, O. (1998) Genomics 49, 339-340). Since chemokine genes tend to be clustered, unknown chemokines may be present in the vicinity of those mapped to new chromosomal loci. Prompted by this hypothesis, we analyzed the genomic region containing the gene for MPIF-2/eotaxin-2 (SCYA24) and have identified a novel CC chemokine termed eotaxin-3. The genes for MPIF-2/eotaxin-2 (SCYA24) and eotaxin-3 (SCYA26) are localized within a region of approximately 40 kilobases. By Northern blot analysis, eotaxin-3 mRNA was constitutively expressed in the heart and ovary. We have generated recombinant eotaxin-3 in a baculovirus expression system. Eotaxin-3 induced transient calcium mobilization specifically in CC chemokine receptor 3 (CCR3)-expressing L1.2 cells with an EC(50) of 3 nM. Eotaxin-3 competed the binding of (125)I-eotaxin to CCR3-expressing L1.2 cells with an IC(50) of 13 nM. Eotaxin-3 was chemotactic for normal peripheral blood eosinophils and basophils at high concentrations. Collectively, eotaxin-3 is yet another functional ligand for CCR3. The potency of eotaxin-3 as a CCR3 ligand seems, however, to be approximately 10-fold less than that of eotaxin. Identification of eotaxin-3 will further promote our understanding of the control of eosinophil trafficking and other CCR3-mediated biological phenomena. The strategy used in this study may also be applicable to identification of other unknown chemokine genes.  (+info)

C-C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects: association of eotaxin with early 6-hour eosinophils, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationship to basophils and other C-C chemokines (monocyte chemoattractant protein-3 and RANTES). (3/73)

The relationship of expression of the C-C chemokines eotaxin, eotaxin 2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4 to the kinetics of infiltrating eosinophils, basophils, and other inflammatory cells was examined in allergen-induced, late-phase allergic reactions in the skin of human atopic subjects. EG2+ eosinophils peaked at 6 h and correlated significantly with eotaxin mRNA and protein, whereas declining eosinophils at 24 h correlated significantly with eotaxin-2 and MCP-4 mRNA. In contrast, no significant correlations were observed between BB1+ basophil infiltrates, which peaked at 24 h, and expression of eotaxin, eotaxin-2, RANTES, MCP-3, and MCP-4 or elastase+ neutrophils (6-h peak), CD3+ and CD4+ T cells (24 h), and CD68+ macrophages (72 h). Furthermore, 83% of eosinophils, 40% of basophils, and 1% of CD3+ cells expressed the eotaxin receptor CCR3, while eotaxin protein was expressed by 43% of macrophages, 81% of endothelial cells, and 6% of T cells (6%). These data suggest that 1) eotaxin has a role in the early 6-h recruitment of eosinophils, while eotaxin-2 and MCP-4 appear to be involved in later 24-h infiltration of these CCR3+ cells; 2) different mechanisms may guide the early vs late eosinophilia; and 3) other chemokines and receptors may be involved in basophil accumulation of allergic tissue reactions in human skin.  (+info)

Migration of eosinophils across endothelial cell monolayers: interactions among IL-5, endothelial-activating cytokines, and C-C chemokines. (4/73)

Eosinophils are the predominant cell type recruited in inflammatory reactions in response to allergen challenge. The mechanisms of selective eosinophil recruitment in allergic reactions are not fully elucidated. In this study, the ability of several C-C chemokines to induce transendothelial migration (TEM) of eosinophils in vitro was assessed. Eotaxin, eotaxin-2, monocyte chemotactic protein (MCP)-4, and RANTES induced eosinophil TEM across unstimulated human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner with the following rank order of potency: eotaxin approximately eotaxin-2 > MCP-4 approximately RANTES. The maximal response induced by eotaxin or eotaxin-2 exceeded that of RANTES or MCP-4. Preincubation of eosinophils with anti-CCR3 Ab (7B11) completely blocked eosinophil TEM induced by eotaxin, MCP-4, and RANTES. Activation of endothelial cells with IL-1beta or TNF-alpha induced concentration-dependent migration of eosinophils, which was enhanced synergistically in the presence of eotaxin and RANTES. Anti-CCR3 also inhibited eotaxin-induced eosinophil TEM across TNF-alpha-stimulated HUVEC. The ability of eosinophil-active cytokines to potentiate eosinophil TEM was assessed by investigating eotaxin or RANTES-induced eosinophil TEM across resting and IL-1beta-stimulated HUVEC in the presence or absence of IL-5. The results showed synergy between IL-5 and the chemokines but not between IL-5 and the endothelial activator IL-1beta. Our data suggest that eotaxin, eotaxin-2, MCP-4, and RANTES induce eosinophil TEM via CCR3 with varied potency and efficacy. Activation of HUVEC by IL-1beta or TNF-alpha or priming of eosinophils by IL-5 both promote CCR3-dependent migration of eosinophils from the vasculature in conjunction with CCR3-active chemokines.  (+info)

CCR3-active chemokines promote rapid detachment of eosinophils from VCAM-1 in vitro. (5/73)

Selective eosinophil recruitment is the result of orchestrated events involving cell adhesion molecules, chemokines, and their receptors. The mechanisms by which chemokines regulate eosinophil adhesion and migration via integrins are not fully understood. In our study, we examined the effect of CCR3-active chemokines on eosinophil adhesion to VCAM-1 and BSA under both static and flow conditions. When eotaxin-2 or other CCR3-active chemokines were added to adherent eosinophils, it induced rapid and sustained eosinophil detachment from VCAM-1 in a concentration-dependent manner. Adhesion was detectably reduced within 3 min and was further reduced at 10-60 min. Simultaneously, eotaxin-2 enhanced eosinophil adhesion to BSA. Preincubation of eosinophils with the CCR3-blocking mAb 7B11 completely prevented chemokine-induced changes in adhesion to VCAM-1 and BSA. Using a different protocol, pretreatment of eosinophils with chemokines for 0-30 min before their use in adhesion assays resulted in inhibition of VCAM-1 adhesion and enhancement of BSA adhesion. By flow cytometry, expression of alpha4 integrins and a beta1 integrin activation epitope on eosinophils was decreased by eotaxin-2. In a flow-based adhesion assay, eotaxin-2 reduced eosinophil accumulation and the strength of attachment to VCAM-1. These results show that eotaxin-2 rapidly reduced alpha4 integrin function while increasing beta2 integrin function. These findings suggest that chemokines facilitate migration of eosinophils by shifting usage away from beta1 integrins toward beta2 integrins.  (+info)

Identification of potent, selective non-peptide CC chemokine receptor-3 antagonist that inhibits eotaxin-, eotaxin-2-, and monocyte chemotactic protein-4-induced eosinophil migration. (6/73)

Eosinophils have been implicated in the pathogenesis of asthma and other allergic diseases. Several CC chemokines including eotaxin (CCL-11), eotaxin-2 (CCL-24), RANTES (CCL-5), and monocyte chemotactic protein-3 (MCP-3, CCL-7) and 4 (MCP-4, CCL-13) are potent eosinophil chemotactic and activating peptides acting through CC chemokine receptor-3 (CCR3). Thus, antagonism of CCR3 could have a therapeutic role in asthma and other eosinophil-mediated diseases. A high throughput, cellular functional screen was configured using RBL-2H3 cells stably expressing CCR3 (RBL-2H3-CCR3) to identify non-peptide receptor antagonists. A small molecule CCR3 antagonist was identified, SK&F 45523, and chemical optimization led to the generation of a number of highly potent, selective CCR3 antagonists including SB-297006 and SB-328437. These compounds were further characterized in vitro and demonstrated high affinity, competitive inhibition of (125)I-eotaxin and (125)I-MCP-4 binding to human eosinophils. The compounds were potent inhibitors of eotaxin- and MCP-4-induced Ca(2+) mobilization in RBL-2H3-CCR3 cells and eosinophils. Additionally, SB-328437 inhibited eosinophil chemotaxis induced by three ligands that activate CCR3 with similar potencies. Selectivity was affirmed using a panel of 10 seven-transmembrane receptors. This is the first description of a non-peptide CCR3 antagonist, which should be useful in further elucidating the pathophysiological role of CCR3 in allergic inflammatory diseases.  (+info)

Murine eotaxin-2: a constitutive eosinophil chemokine induced by allergen challenge and IL-4 overexpression. (7/73)

The generation of tissue eosinophilia is governed in part by chemokines; initial investigation has identified three chemokines in the human genome with eosinophil selectivity, referred to as eotaxin-1, -2, and -3. Elucidation of the role of these chemokines is dependent in part upon analysis of murine homologues; however, only one murine homologue, eotaxin-1, has been identified. We now report the characterization of the murine eotaxin-2 cDNA, gene and protein. The eotaxin-2 cDNA contains an open reading frame that encodes for a 119-amino acid protein. The mature protein, which is predicted to contain 93 amino acids, is most homologous to human eotaxin-2 (59.1% identity), but is only 38.9% identical with murine eotaxin-1. Northern blot analysis reveals three predominant mRNA species and highest constitutive expression in the jejunum and spleen. Additionally, allergen challenge in the lung with Aspergillus fumigatus or OVA revealed marked induction of eotaxin-2 mRNA. Furthermore, eotaxin-2 mRNA was strongly induced by both transgenic over-expression of IL-4 in the lung and administration of intranasal IL-4. Analysis of eotaxin-2 mRNA expression in mice transgenic for IL-4 but genetically deficient in STAT-6 revealed that the IL-4-induced expression was STAT-6 dependent. Recombinant eotaxin-2 protein induced dose-dependent chemotactic responses on murine eosinophils at concentrations between 1-1000 ng/ml, whereas no activity was displayed on murine macrophages or neutrophils. Functional analysis of recombinant protein variants revealed a critical role for the amino terminus. Thus, murine eotaxin-2 is a constitutively expressed eosinophil chemokine likely to be involved in homeostatic, allergen-induced, and IL-4-associated immune responses.  (+info)

Detection of mRNA for eotaxin-2 and eotaxin-3 in human dermal fibroblasts and their distinct activation profile on human eosinophils. (8/73)

As many new biologically active chemokines have been cloned exploring the genomic DNA sequence database in the vicinity of already known chemokine sequences without demonstrating their natural origin, it is important to transfer findings from in vitro experiments with chemokines into the in vivo situation. With respect to eosinophils and fibroblasts that play an important part in the pathogenesis of allergic and autoimmune diseases, the role of the recently discovered members of the eotaxin family, eotaxin-2 and eotaxin-3, is not really understood. In order to elucidate the origin and biologic potency of the eotaxin family this study was performed. Conventional reverse transcription-polymerase chain reaction analysis was suitable to detect mRNA for eotaxin and eotaxin-3 but not for eotaxin-2 in dermal fibroblasts. In contrast to conventional reverse transcription-polymerase chain reaction, LightCycler analysis revealed that dermal fibroblasts constitutively expressed mRNA not only for eotaxin and eotaxin-3 but also for eotaxin-2. Moreover, with this technique we investigated mRNA expression levels after stimulation of fibroblasts with interleukin-4 and interleukin-4 plus tumor necrosis factor-alpha: the rank order of expression levels within the eotaxin family was eotaxin > eotaxin-3 > eotaxin-2. To address the question of the efficacy of eotaxin-3, we compared its activity with eotaxin, eotaxin-2, monocyte chemotactic protein-3, monocyte chemotactic protein-4, and RANTES in different test systems for eosinophils. The efficacy of the CC chemokines at equimolar concentrations with respect to the chemotactic response of human eosinophils was eotaxin-3 = eotaxin = eotaxin-2 > RANTES > monocyte chemotactic protein-4. The rank order of activity with respect to actin polymerization and release of toxic reactive oxygen species was eotaxin-3 = eotaxin = eotaxin-2 and eotaxin = eotaxin-2 > eotaxin-3 = monocyte chemotactic protein-3 = monocyte chemotactic protein-4 = RANTES, respectively. This study indicated a distinct profile in expression levels of the members of the eotaxin family in dermal fibroblasts. Indeed, all three eotaxin ligands demonstrated activation of human eosinophils with similar efficacies for chemotaxis, cytoskeletal rearrangements, activation of Gi proteins and transients of [Ca2+]i, but a distinct profile of activity with respect to the binding to CCR3 and the release of toxic reactive oxygen species. These findings may help to understand further the role of CC chemokines in fibroblast/eosinophil activation, which is of interest particularly in allergic and autoimmune diseases.  (+info)

  • During CNS neurodegeneration, neuronal damage leads to activation of microglia and astrocytes, which in turn can amplify the neuroinflammatory response by chemokine secretion leading to CNS infiltration of peripheral immune cells. (biomedcentral.com)
  • Their homeostatic function in homing is best exemplified by the chemokines CCL19 and CCL21 (expressed within lymph nodes and on lymphatic endothelial cells) and their receptor CCR7 (expressed on cells destined for homing in cells to these organs). (wikipedia.org)
  • Discover related pathways, diseases and genes to CCL24/Eotaxin-2/MPIF-2 ELISA Kit (KA1709). (novusbio.com)
  • Large numbers of responsive cytokines, chemokines and immune regulatory genes linked to innate immune cell recruitment and tumor regression were identified, as were several immunosuppressive factors that may contribute to the observed escape of some tumors from metronomic CPA-induced, immune-based regression. (biomedcentral.com)
  • There has been a great deal of work published on the induction of various chemokines and cytokines using in vitro culture systems. (asm.org)
  • There have been numerous in vitro studies showing that chlamydiae can elicit various chemokines and cytokines from tissue culture cells (reviewed in reference 19 ). (asm.org)
  • The present invention provides a means of inhibiting the growth and metastasis of cancer cells by administering anti-chemokine antibodies. (google.com)
  • Chronic inflammation is characterized by aberrant long-term expression of circulating inflammatory factors such as chemokines, cytokines, and growth factors. (aacrjournals.org)
  • STAT6-mediated chemokine production in the lung is required for Th2 lymphocyte and eosinophil homing into the airways in allergic pulmonary inflammation, and thus is a potential therapeutic target in asthma. (jimmunol.org)
  • Chemokines and their receptor-mediated signal transduction are critical for the recruitment of effector immune cells to the inflammation site. (avivasysbio.com)
  • Subsequent disease models have shown that it can also be stimulated by the simultaneous activation of NFκB and STAT3, functions as a local chemokine inducer, and acts as a mechanism for local inflammation, particularly chronic ones like rheumatoid arthritis and a multiple sclerosis. (ijbs.com)
  • We have since shown in animal models for rheumatoid arthritis, multiple sclerosis (MS), and chronic rejection after transplantation that the IL-6 amplifier is stimulated by simultaneous activation of NFκB and STAT3, functions as a local inducer of chemokines, and acts as a mechanism for the local inflammation [ 13 , 20 - 24 ]. (ijbs.com)
  • Chemokines are a group of related chemoattractant peptides that are essential regulators of the immune system, both during homeostatic and inflammatory conditions. (mdpi.com)
  • On one hand, the chemokine network is used by tumors to evade immune surveillance, resist apoptosis, and metastasize. (mdpi.com)
  • On the other hand, the chemokine system also plays a crucial role in the induction of antitumor immune responses and optimal effector function regulation of immune cells [ 1 , 4 , 5 ]. (mdpi.com)
  • Critical to maintaining hemostasis through hematopoietic differentiation and immune surveillance, chemokines also help orchestrate both innate and adaptive immune responses. (peprotech.com)
  • Chemokine-triggered immune responses often require co-stimulation by primary proinflammatory cytokines, such as IL-1α, IFN-γ and TNF-α. (peprotech.com)
  • Some chemokines control cells of the immune system during processes of immune surveillance, such as directing lymphocytes to the lymph nodes so they can screen for invasion of pathogens by interacting with antigen-presenting cells residing in these tissues. (wikipedia.org)
  • Certain inflammatory chemokines activate cells to initiate an immune response or promote wound healing . (wikipedia.org)
  • Chemokines are involved in the inflammatory response, tumor immune response, proliferation, invasion and metastasis via modulation of various signaling pathways. (spandidos-publications.com)
  • This tract will discuss the contribution of chemokines to the development of innate and adaptive granuloma formation, as well as describe their relationship to more recently evolved cytokines generated during adaptive immune responses. (frontiersin.org)
  • These data reveal that CD11b + myeloid cells in the lung help orchestrate the adaptive immune response in asthma, in part, through the production of STAT6-inducible chemokines and the recruitment of Th2 lymphocytes into the airway. (jimmunol.org)
  • By scavenging chemokines in tissues, on the surfaces of lymphatic vessels, and in placenta, plays an essential role in the resolution (termination) of the inflammatory response and in the regulation of adaptive immune responses. (uniprot.org)
  • This pathway was inferred from Mus musculus pathway "Chemokine signaling pathway", WP2292 revision 89521, with a 91.0% conversion rate. (wikipathways.org)