Neutral glycosphingolipids that contain a monosaccharide, normally glucose or galactose, in 1-ortho-beta-glycosidic linkage with the primary alcohol of an N-acyl sphingoid (ceramide). In plants the monosaccharide is normally glucose and the sphingoid usually phytosphingosine. In animals, the monosaccharide is usually galactose, though this may vary with the tissue and the sphingoid is usually sphingosine or dihydrosphingosine. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1st ed)
An enzyme that catalyzes the hydrolysis of cerebroside 3-sulfate (sulfatide) to yield a cerebroside and inorganic sulfate. A marked deficiency of arylsulfatase A, which is considered the heat-labile component of cerebroside sulfatase, has been demonstrated in all forms of metachromatic leukodystrophy (LEUKODYSTROPHY, METACHROMATIC). EC 3.1.6.8.
An autosomal recessive metabolic disease caused by a deficiency of CEREBROSIDE-SULFATASE leading to intralysosomal accumulation of cerebroside sulfate (SULFOGLYCOSPHINGOLIPIDS) in the nervous system and other organs. Pathological features include diffuse demyelination, and metachromatically-staining granules in many cell types such as the GLIAL CELLS. There are several allelic and nonallelic forms with a variety of neurological symptoms.
Sulfatases are a group of enzymes that catalyze the hydrolysis of sulfate ester bonds in various substrates, playing crucial roles in the metabolism and homeostasis of carbohydrates, proteoglycans, neurotransmitters, and steroid hormones within the body.
An arylsulfatase with high specificity towards sulfated steroids. Defects in this enzyme are the cause of ICHTHYOSIS, X-LINKED.
An enzyme that specifically cleaves the ester sulfate of iduronic acid. Its deficiency has been demonstrated in Hunter's syndrome, which is characterized by an excess of dermatan sulfate and heparan sulfate. EC 3.1.6.13.
An enzyme from the sulfuric ester hydrolase class that breaks down one of the products of the chondroitin lyase II reaction. EC 3.1.6.9.
Enzymes that catalyze the hydrolysis of a phenol sulfate to yield a phenol and sulfate. Arylsulfatase A, B, and C have been separated. A deficiency of arylsulfatases is one of the causes of metachromatic leukodystrophy (LEUKODYSTROPHY, METACHROMATIC). EC 3.1.6.1.
An arylsulfatase that catalyzes the hydrolysis of the 4-sulfate groups of the N-acetyl-D-galactosamine 4-sulfate units of chondroitin sulfate and dermatan sulfate. A deficiency of this enzyme is responsible for the inherited lysosomal disease, Maroteaux-Lamy syndrome (MUCOPOLYSACCHARIDOSIS VI). EC 3.1.6.12.
GLYCOSPHINGOLIPIDS with a sulfate group esterified to one of the sugar groups.
A group of enzymes that catalyze the hydrolysis of various sulfate bonds of chondroitin sulfate. EC 3.1.6.-.
Systemic lysosomal storage disease marked by progressive physical deterioration and caused by a deficiency of L-sulfoiduronate sulfatase. This disease differs from MUCOPOLYSACCHARIDOSIS I by slower progression, lack of corneal clouding, and X-linked rather than autosomal recessive inheritance. The mild form produces near-normal intelligence and life span. The severe form usually causes death by age 15.
An inherited metabolic disorder characterized by the intralysosomal accumulation of sulfur-containing lipids (sulfatides) and MUCOPOLYSACCHARIDES. Excess levels of both substrates are present in urine. This is a disorder of multiple sulfatase (arylsulfatases A, B, and C) deficiency which is caused by the mutation of sulfatase-modifying factor-1. Neurological deterioration is rapid.
Chronic form of ichthyosis that is inherited as a sex-linked recessive trait carried on the X-chromosome and transmitted to the male offspring. It is characterized by severe scaling, especially on the extremities, and is associated with steroid sulfatase deficiency.
Cerebrosides which contain as their polar head group a glucose moiety bound in glycosidic linkage to the hydroxyl group of ceramides. Their accumulation in tissue, due to a defect in beta-glucosidase, is the cause of Gaucher's disease.
Enzymes which transfer sulfate groups to various acceptor molecules. They are involved in posttranslational sulfation of proteins and sulfate conjugation of exogenous chemicals and bile acids. EC 2.8.2.
Genetic disorder of mucopolysaccharide metabolism characterized by skeletal abnormalities, joint instability, development of cervical myelopathy, and excessive urinary keratan sulfate. There are two biochemically distinct forms, each due to a deficiency of a different enzyme.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A class of Echinodermata characterized by long, slender bodies.
Any of several generalized skin disorders characterized by dryness, roughness, and scaliness, due to hypertrophy of the stratum corneum epidermis. Most are genetic, but some are acquired, developing in association with other systemic disease or genetic syndrome.
A paleotropical genus of fungi in the family Tricholomataceae. They are obligate symbionts of termites.
Cerebrosides which contain as their polar head group a galactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in beta-galactosidase, is the cause of galactosylceramide lipidosis or globoid cell leukodystrophy.
An enzyme that catalyzes the conversion of UDP-galactose and N-acylsphingosine to D-galactosylceramide and UDP.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage)
A genus of fleshy shelf basidiomycetous fungi, family Schizophyllaceae, order POLYPORALES, growing on woody substrata. It is pathogenic in humans.
A family of glycoprotein cofactors that are required for the efficient catabolization of SPHINGOLIPIDS by specific acid hydrolases such as GLUCOSYLCERAMIDASE; GALACTOCEREBROSIDASE; BETA-N-ACETYLHEXOSAMINIDASE; and CEREBROSIDE-SULFATASE.
Mucopolysaccharidosis with excessive CHONDROITIN SULFATE B in urine, characterized by dwarfism and deafness. It is caused by a deficiency of N-ACETYLGALACTOSAMINE-4-SULFATASE (arylsulfatase B).
A class of membrane lipids that have a polar head and two nonpolar tails. They are composed of one molecule of the long-chain amino alcohol sphingosine (4-sphingenine) or one of its derivatives, one molecule of a long-chain acid, a polar head alcohol and sometimes phosphoric acid in diester linkage at the polar head group. (Lehninger et al, Principles of Biochemistry, 2nd ed)
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
A sebaceous gland that, in some animals, acts as an accessory to the lacrimal gland. The harderian gland excretes fluid that facilitates movement of the third eyelid.
An autosomal recessive disorder caused by a deficiency of acid beta-glucosidase (GLUCOSYLCERAMIDASE) leading to intralysosomal accumulation of glycosylceramide mainly in cells of the MONONUCLEAR PHAGOCYTE SYSTEM. The characteristic Gaucher cells, glycosphingolipid-filled HISTIOCYTES, displace normal cells in BONE MARROW and visceral organs causing skeletal deterioration, hepatosplenomegaly, and organ dysfunction. There are several subtypes based on the presence and severity of neurological involvement.
Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage)
Hexoses are simple monosaccharides, specifically six-carbon sugars, which include glucose, fructose, and galactose, and play crucial roles in biological processes such as energy production and storage, and structural components of cells.
The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem.
A group of four homologous sphingolipid activator proteins that are formed from proteolytic cleavage of a common protein precursor molecule referred to as prosaposin.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
A genus of STARFISH in the family Asteriidae. One species, Asterias rubens, is the most common in the north-east Atlantic region.
Inorganic and organic derivatives of sulfuric acid (H2SO4). The salts and esters of sulfuric acid are known as SULFATES and SULFURIC ACID ESTERS respectively.
An intermediate in the biosynthesis of cerebrosides. It is formed by reaction of sphingosine with UDP-galactose and then itself reacts with fatty acid-Coenzyme A to form the cerebroside.
Compounds possessing both a hydroxyl (-OH) and an amino group (-NH2).
A group of inherited metabolic disorders characterized by the intralysosomal accumulation of SPHINGOLIPIDS primarily in the CENTRAL NERVOUS SYSTEM and to a variable degree in the visceral organs. They are classified by the enzyme defect in the degradation pathway and the substrate accumulation (or storage). Clinical features vary in subtypes but neurodegeneration is a common sign.
A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997)
Organic compounds containing both the hydroxyl and carboxyl radicals.
Loss of water by diffusion through the skin and by evaporation from the respiratory tract.
Glycosphingolipids which contain as their polar head group a lactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in lactosylceramide beta-galactosidase, is the cause of lactosylceramidosis.
Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE.
An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women.
A plant genus of the family STERCULIACEAE. S. urens is the source of KARAYA GUM which is sometimes called Indian tragacanth, which is different from the true TRAGACANTH which comes from ASTRAGALUS GUMMIFER.
Glycosphingolipids containing N-acetylglucosamine (paragloboside) or N-acetylgalactosamine (globoside). Globoside is the P antigen on erythrocytes and paragloboside is an intermediate in the biosynthesis of erythrocyte blood group ABH and P 1 glycosphingolipid antigens. The accumulation of globoside in tissue, due to a defect in hexosaminidases A and B, is the cause of Sandhoff disease.
A chronic, congenital ichthyosis inherited as an autosomal recessive trait. Infants are usually born encased in a collodion membrane which sheds within a few weeks. Scaling is generalized and marked with grayish-brown quadrilateral scales, adherent at their centers and free at the edges. In some cases, scales are so thick that they resemble armored plate.
Most common form of ICHTHYOSIS characterized by prominent scaling especially on the exterior surfaces of the extremities. It is inherited as an autosomal dominant trait.
Inanimate objects that carry pathogenic microorganisms and thus can serve as the source of infection. Microorganisms typically survive on fomites for minutes or hours. Common fomites include CLOTHING, tissue paper, hairbrushes, and COOKING AND EATING UTENSILS.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
Designation for several severe forms of ichthyosis, present at birth, that are characterized by hyperkeratotic scaling. Infants may be born encased in a collodion membrane which begins shedding within 24 hours. This is followed in about two weeks by persistent generalized scaling. The forms include bullous (HYPERKERATOSIS, EPIDERMOLYTIC), non-bullous (ICHTHYOSIS, LAMELLAR), wet type, and dry type.

Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. (1/165)

Sulfatases carry at their catalytic site a unique post-translational modification, an alpha-formylglycine residue that is essential for enzyme activity. Formylglycine is generated by oxidation of a conserved cysteine or, in some prokaryotic sulfatases, serine residue. In eukaryotes, this oxidation occurs in the endoplasmic reticulum during or shortly after import of the nascent sulfatase polypeptide. The modification of arylsulfatase A was studied in vitro and was found to be directed by a short linear sequence, CTPSR, starting with the cysteine to be modified. Mutational analyses showed that the cysteine, proline and arginine are the key residues within this motif, whereas formylglycine formation tolerated the individual, but not the simultaneous substitution of the threonine or serine. The CTPSR motif was transferred to a heterologous protein leading to low-efficient formylglycine formation. The efficiency reached control values when seven additional residues (AALLTGR) directly following the CTPSR motif in arylsulfatase A were present. Mutating up to four residues simultaneously within this heptamer sequence inhibited the modification only moderately. AALLTGR may, therefore, have an auxiliary function in presenting the core motif to the modifying enzyme. Within the two motifs, the key residues are fully, and other residues are highly conserved among all known members of the sulfatase family.  (+info)

Amino acid residues forming the active site of arylsulfatase A. Role in catalytic activity and substrate binding. (2/165)

Arylsulfatase A belongs to the sulfatase family whose members carry a Calpha-formylglycine that is post-translationally generated by oxidation of a conserved cysteine or serine residue. The formylglycine acts as an aldehyde hydrate with two geminal hydroxyls being involved in catalysis of sulfate ester cleavage. In arylsulfatase A and N-acetylgalactosamine 4-sulfatase this formylglycine was found to form the active site together with a divalent cation and a number of polar residues, tightly interconnected by a net of hydrogen bonds. Most of these putative active site residues are highly conserved among the eukaryotic and prokaryotic members of the sulfatase family. To analyze their function in binding and cleaving sulfate esters, we substituted a total of nine putative active site residues of human ASA by alanine (Asp29, Asp30, Asp281, Asn282, His125, His229, Lys123, Lys302, and Ser150). In addition the Mg2+-complexing residues (Asp29, Asp30, Asp281, and Asn282) were substituted conservatively by either asparagine or aspartate. In all mutants Vmax was decreased to 1-26% of wild type activity. The Km was more than 10-fold increased in K123A and K302A and up to 5-fold in the other mutants. In all mutants the pH optimum was increased from 4.5 by 0.2-0.8 units. These results indicate that each of the nine residues examined is critical for catalytic activity, Lys123 and Lys302 by binding the substrate and the others by direct (His125 and Asp281) or indirect participation in catalysis. The shift in the pH optimum is explained by two deprotonation steps that have been proposed for sulfate ester cleavage.  (+info)

Phosphorylation of arylsulphatase A occurs through multiple interactions with the UDP-N-acetylglucosamine-1-phosphotransferase proximal and distal to its retrieval site by the KDEL receptor. (3/165)

Phosphorylation of oligosaccharides of the lysosomal enzyme arylsulphatase A (ASA), which accumulate in the secretions of cells that mis-sort most of the newly synthesized lysosomal enzymes due to a deficiency of mannose 6-phosphate receptors, was found to be site specific. ASA residing within the secretory route of these cells contains about one third of the incorporated [2-3H]mannose in phosphorylated oligosaccharides. Oligosaccharides carrying two phosphate groups are almost 2-fold less frequent than those with one phosphate group and only a few of the phosphate groups are uncovered. Addition of a KDEL (Lys-Asp-Glu-Leu) retention signal prolongs the residence time of ASA within the secretory route 6-fold, but does not result in more efficient phosphorylation. In contrast, more than 90% of the [2-3H]mannose incorporated into secreted ASA (with or without a KDEL retention signal) is present in phosphorylated oligosaccharides. Those with two phosphate groups are almost twice as frequent as those with one phosphate group and most of the phosphate groups are uncovered. Thus, ASA receives N-acetylglucosamine 1-phosphate groups in a sequential manner at two or more sites located within the secretory route proximal and distal to the site where ASA is retrieved by the KDEL receptor, i.e. proximal to the trans-Golgi. At each of these sites up to two N-acetylglucosamine 1-phosphate groups can be added to a single oligosaccharide. Of several drugs known to inhibit transit of ASA through the secretory route only the ionophore monensin had a major inhibitory effect on phosphorylation, uncovering and sialylation.  (+info)

Arylsulfatase A pseudodeficiency in healthy Brazilian individuals. (4/165)

Molecular alterations associated with arylsulfatase A pseudodeficiency (ASA-PD) were characterized by PCR and restriction endonuclease analysis in a sample of healthy individuals from Brazil. ASA activity was also assayed in all subjects. Two individuals homozygous for the N350S and 1524+95A<--G mutations were detected, corresponding to a frequency of 1.17% (4 of 324 alleles). The individual frequency of the N350S mutation was 20.7% (71 of 342 alleles) and 7.9% (27 of 342 alleles) for the 1524+95A<--G mutation. The frequency of the ASA-PD allele in our population was estimated to be 7.9%. This is the first report of ASA-PD allele frequency in a South American population. In addition, the methods used are effective and suitable for application in countries with limited resources. All patients with low ASA activity should be screened for ASA-PD as part of the diagnostic protocol for metachromatic leukodystrophy.  (+info)

Measurements from normal umbilical cord blood of four lysosomal enzymatic activities: alpha-L-iduronidase (Hurler), galactocerebrosidase (globoid cell leukodystrophy), arylsulfatase A (metachromatic leukodystrophy), arylsulfatase B (Maroteaux-Lamy). (5/165)

Umbilical cord blood (UCB) has received increasing attention as a source of unrelated hematopoietic stem cells for transplantation. Lysosomal diseases have been effectively treated and normal enzymatic activity has occurred subsequent to engraftment using UCB. The use of donor cells with normal amounts of enzyme, rather than those from carriers whose level may be 50% or less, is an obvious goal. The frequency of such heterozygotes varies from 1:10 to 1:140 or lower depending upon the disease at issue. We assayed the levels of lysosomal enzymes in normal UCB in random samples as well as those used for transplantation. We measured the following enzymatic activities: alpha-l-iduronidase (Hurler), galactocerebrosidase (globoid cell leuko- dystrophy) and arylsulfatase A (metachromatic leukodystrophy). For the latter, levels of activity in UCB are comparable to those found in adult blood. In the case of arylsulfatase B (Maroteaux-Lamy) a level lower than adult level was found. An informed choice by the transplanting physician based on the activity of the relevant enzyme in the UCB donor will provide a better opportunity for an improved prognosis for more complete correction of the recipient's primary disease. Bone Marrow Transplantation (2000) 25, 541-544.  (+info)

High-mannose-type oligosaccharides from human placental arylsulfatase A are core fucosylated as confirmed by MALDI MS. (6/165)

Despite numerous studies on arylsulfatase A, the structure of its glycans is not well understood. It has been shown that the concentration of arylsulfatase A increases in the body fluids of patients with some forms of cancer, and the carbohydrate component of arylsulfatase A synthesized in tumor tissues and transformed cells undergoes increased sialylation, phosphorylation and sulfation. To understand the significance of any changes in the glycosylation of arylsulfatase A in cancer, it is important to know the structure of its carbohydrate component in normal tissue. In the present study we have analyzed carbohydrate moieties of human placental arylsylfatase A using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blotting on Immobilon P and on-blot deglycosylation using PNGase F for glycan release. Profiles of N-glycans were obtained by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Oligosaccharides were sequenced using specific exoglycosidases, and digestion products were analyzed by MALDI MS and the computer matching of the resulting masses with those derived from a sequence database. Fifty picomoles (6 microg) of arylsulfatase A applied to the gel were sufficient to characterize its oligosaccharide content. The results indicated that human placental arylsulfatase A possesses only high-mannose-type oligosaccharides, of which almost half are core fucosylated. In addition, there was a minor species of high-mannose-type glycan bearing six mannose residues with a core fucose. This structure was not expected since high-mannose-type oligosaccharides basically have not been recognized as a substrate for the alpha1,6-fucosyltransferase.  (+info)

Retrovirally expressed human arylsulfatase A corrects the metabolic defect of arylsulfatase A-deficient mouse cells. (7/165)

A deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) which is characterized primarily by demyelination of the central nervous system. ASA-deficient mice develop a disease which resembles MLD in many respects and thus serve as an appropriate animal model for this disease. To establish gene therapy protocols for ASA-deficient mice, we constructed two retroviral vectors based on the murine stem cell virus. Both vectors harbor the human ASA cDNA controlled by the retroviral promoter/enhancer element, but differ by the presence or absence of a neomycin resistance gene driven by an internal promoter. A comparative analysis of the one- versus the two-gene vector and an amphotropic versus an ecotropic producer cell line revealed that the amphotropic producer cell line for the one-gene vector transfers ASA overexpression to the target cells most efficiently. The human ASA encoded by this vector is correctly expressed in heterologous mouse cells and corrects the metabolic defect of transduced ASA-deficient murine cells. The constructed one-gene vector might thus be a potentially useful tool for the development of a gene-based therapy for ASA-deficient mice. Gene Therapy (2000) 7, 805-812.  (+info)

Effect of collection, transport, processing and storage of blood specimens on the activity of lysosomal enzymes in plasma and leukocytes. (8/165)

This study was designed to evaluate the effect of different conditions of collection, transport and storage on the quality of blood samples from normal individuals in terms of the activity of the enzymes ss-glucuronidase, total hexosaminidase, hexosaminidase A, arylsulfatase A and ss-galactosidase. The enzyme activities were not affected by the different materials used for collection (plastic syringes or vacuum glass tubes). In the evaluation of different heparin concentrations (10% heparin, 5% heparin, and heparinized syringe) in the syringes, it was observed that higher doses resulted in an increase of at least 1-fold in the activities of ss-galactosidase, total hexosaminidase and hexosaminidase A in leukocytes, and ss-glucuronidase in plasma. When the effects of time and means of transportation were studied, samples that had been kept at room temperature showed higher deterioration with time (72 and 96 h) before processing, and in this case it was impossible to isolate leukocytes from most samples. Comparison of heparin and acid citrate-dextrose (ACD) as anticoagulants revealed that ss-glucuronidase and hexosaminidase activities in plasma reached levels near the lower normal limits when ACD was used. In conclusion, we observed that heparin should be used as the preferable anticoagulant when measuring these lysosomal enzyme activities, and we recommend that, when transport time is more than 24 h, samples should be shipped by air in a styrofoam box containing wet ice.  (+info)

Cerebrosides are a type of sphingolipid, which are lipids that contain sphingosine. They are major components of the outer layer of cell membranes and are particularly abundant in the nervous system. Cerebrosides are composed of a ceramide molecule (a fatty acid attached to sphingosine) and a sugar molecule, usually either glucose or galactose.

Glycosphingolipids that contain a ceramide with a single sugar residue are called cerebrosides. Those that contain more complex oligosaccharide chains are called gangliosides. Cerebrosides play important roles in cell recognition, signal transduction, and cell adhesion.

Abnormalities in the metabolism of cerebrosides can lead to various genetic disorders, such as Gaucher's disease, Krabbe disease, and Fabry disease. These conditions are characterized by the accumulation of cerebrosides or their breakdown products in various tissues, leading to progressive damage and dysfunction.

Cerebroside-sulfatase is an enzyme that plays a crucial role in the breakdown and recycling of lipids within the body, particularly in the brain. Its primary function is to break down a type of lipid called cerebroside sulfate, which is a major component of the myelin sheath that surrounds and insulates nerve fibers in the brain and nervous system.

Cerebroside-sulfatase deficiency can lead to a group of genetic disorders known as the mucopolysaccharidoses (MPS), specifically MPS IIIB or Sanfilippo syndrome B. In this condition, the lack of cerebroside-sulfatase activity leads to an accumulation of cerebroside sulfate in the lysosomes of cells, resulting in progressive neurological deterioration and developmental delays.

Metachromatic leukodystrophy (MLD) is a genetic disorder that affects the nervous system's white matter. It is caused by mutations in the arylsulfatase A (ARSA) gene, which leads to an accumulation of sulfatides in the brain and peripheral nerves. This accumulation results in progressive damage to the protective sheath (myelin) that covers nerve fibers, impairing the transmission of nerve impulses and leading to neurological symptoms.

The clinical presentation of MLD varies depending on the age of onset. The late-infantile form is the most common and typically appears between ages 1 and 2. Symptoms include developmental regression, motor difficulties, muscle weakness, and loss of vision and hearing. The juvenile form usually begins between ages 4 and 6, while the adult form can manifest anytime after age 16. These later-onset forms tend to have a slower progression but still result in significant neurological impairment over time.

Currently, there is no cure for MLD, and treatment focuses on managing symptoms and slowing disease progression. Bone marrow transplantation or stem cell transplantation may be beneficial if performed early in the course of the disease.

Sulfatases are a group of enzymes that play a crucial role in the metabolism of sulfated steroids, glycosaminoglycans (GAGs), and other sulfated molecules. These enzymes catalyze the hydrolysis of sulfate groups from these substrates, converting them into their respective unsulfated forms.

The human genome encodes for several different sulfatases, each with specificity towards particular types of sulfated substrates. For instance, some sulfatases are responsible for removing sulfate groups from steroid hormones and neurotransmitters, while others target GAGs like heparan sulfate, dermatan sulfate, and keratan sulfate.

Defects in sulfatase enzymes can lead to various genetic disorders, such as multiple sulfatase deficiency (MSD), X-linked ichthyosis, and mucopolysaccharidosis (MPS) type IIIC (Sanfilippo syndrome type C). These conditions are characterized by the accumulation of sulfated molecules in different tissues, resulting in progressive damage to multiple organs and systems.

Stearyl-sulfatase is a type of enzyme that is responsible for breaking down certain types of fatty substances called lipids in the body. Specifically, it helps to break down a substance called stearyl sulfate, which is a type of sulfated lipid.

Stearyl-sulfatase is found in various tissues throughout the body, including the brain, skin, and kidneys. Mutations in the gene that provides instructions for making this enzyme can lead to a condition called X-linked ichthyosis, which is characterized by dry, scaly skin. This is because the body is unable to properly break down stearyl sulfate and other related lipids, leading to their accumulation in the skin.

In medical terminology, steruly-sulfatase may also be referred to as arylsulfatase C or Arylsulfatase-C.

Iduronate sulfatase is an enzyme that plays a crucial role in the breakdown and recycling of complex sugars called glycosaminoglycans (GAGs). These GAGs are important components of various tissues, including connective tissues, bones, and cartilage.

Iduronate sulfatase is specifically responsible for breaking down a type of GAG known as dermatan sulfate and heparan sulfate by removing sulfate groups from specific sugar molecules in these GAGs. This enzyme is located in the lysosomes, which are membrane-bound organelles within cells that break down and recycle various materials.

Deficiency of iduronate sulfatase leads to a genetic disorder called Mucopolysaccharidosis Type II (MPS II), also known as Hunter syndrome. In this condition, the lack of functional iduronate sulfatase enzyme results in an accumulation of dermatan sulfate and heparan sulfate in various tissues and organs, leading to progressive damage and a range of symptoms, including developmental delays, coarse facial features, hearing loss, heart problems, and joint stiffness.

Chondro-4-sulfatase is an enzyme that belongs to the family of hydrolases, specifically those acting on ester bonds in sulfuric acid esters. It is responsible for catalyzing the hydrolysis of the 4-sulfate ester group from N-acetylgalactosamine 4-sulfate residues found in chondroitin 4-sulfate, a type of glycosaminoglycan (GAG) that is abundant in connective tissues such as cartilage.

Chondroitin 4-sulfate plays important roles in the structure and function of the extracellular matrix, including regulating cell adhesion, migration, and differentiation. The action of chondro-4-sulfatase helps to control the balance between sulfated and non-sulfated GAG chains, which is critical for maintaining normal tissue homeostasis.

Defects in chondro-4-sulfatase activity can lead to a rare genetic disorder called chondrodysplasia punctata type 1B (CDPX1B), also known as multiple sulfatase deficiency (MSD). This condition is characterized by skeletal abnormalities, developmental delay, and other neurological symptoms.

Arylsulfatases are a group of enzymes that play a role in the breakdown and recycling of complex molecules in the body. Specifically, they catalyze the hydrolysis of sulfate ester bonds in certain types of large sugar molecules called glycosaminoglycans (GAGs).

There are several different types of arylsulfatases, each of which targets a specific type of sulfate ester bond. For example, arylsulfatase A is responsible for breaking down sulfate esters in a GAG called cerebroside sulfate, while arylsulfatase B targets a different GAG called dermatan sulfate.

Deficiencies in certain arylsulfatases can lead to genetic disorders. For example, a deficiency in arylsulfatase A can cause metachromatic leukodystrophy, a progressive neurological disorder that affects the nervous system and causes a range of symptoms including muscle weakness, developmental delays, and cognitive decline. Similarly, a deficiency in arylsulfatase B can lead to Maroteaux-Lamy syndrome, a rare genetic disorder that affects the skeleton, eyes, ears, heart, and other organs.

N-Acetylgalactosamine-4-Sulfatase is an enzyme that is responsible for breaking down complex carbohydrates in the body. Its specific function is to remove a sulfate group from a particular type of sugar molecule called N-acetylgalactosamine-4-sulfate, which is found on certain proteoglycans (large, complex sugars attached to proteins) in the body.

This enzyme plays an important role in the normal functioning of cells and tissues, particularly in the development and maintenance of bones, cartilage, and other connective tissues. Deficiencies in this enzyme can lead to a rare genetic disorder called Morquio A syndrome (also known as MPS IVA), which is characterized by skeletal abnormalities, short stature, and other health problems.

Sulfoglycosphingolipids are a type of glycosphingolipid that contain a sulfate ester group in their carbohydrate moiety. They are important components of animal cell membranes and play a role in various biological processes, including cell recognition, signal transduction, and cell adhesion.

The most well-known sulfoglycosphingolipids are the sulfatides, which contain a 3'-sulfate ester on the galactose residue of the glycosphingolipid GalCer (galactosylceramide). Sulfatides are abundant in the nervous system and have been implicated in various neurological disorders.

Other sulfoglycosphingolipids include the seminolipids, which contain a 3'-sulfate ester on the galactose residue of lactosylceramide (Galβ1-4Glcβ1-Cer), and are found in high concentrations in the testis.

Abnormalities in sulfoglycosphingolipid metabolism have been associated with several genetic disorders, such as metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD), which are characterized by progressive neurological deterioration.

Chondroitin sulfatases are a group of enzymes that break down chondroitin sulfate, which is a type of glycosaminoglycan (GAG) found in connective tissues such as cartilage, bone, and skin. Glycosaminoglycans are long, complex chains of sugars that help provide structure, hydration, and elasticity to these tissues.

Chondroitin sulfate is composed of alternating units of glucuronic acid and N-acetylgalactosamine, with various sulfate groups attached at different positions along the chain. Chondroitin sulfatases cleave specific bonds within this structure to help regulate the turnover and remodeling of GAGs in tissues.

There are several types of chondroitin sulfatases (designated as chondroitin sulfatase A, B, C, D, etc.), each with distinct substrate specificities and cellular localizations. Defects in these enzymes can lead to various genetic disorders, such as skeletal dysplasias and neurodegenerative diseases, due to the accumulation of unprocessed or partially degraded chondroitin sulfate in tissues.

Mucopolysaccharidosis II (MPS II), also known as Hunter syndrome, is a rare X-linked recessive genetic disorder caused by the deficiency of an enzyme called iduronate sulfatase. This enzyme is responsible for breaking down complex sugars called glycosaminoglycans (GAGs) or mucopolysaccharides in the body.

When this enzyme is missing or not functioning properly, GAGs accumulate in various tissues and organs, leading to progressive cellular damage and organ dysfunction. The symptoms of MPS II can vary widely but often include developmental delays, coarse facial features, hearing loss, airway obstruction, heart problems, enlarged liver and spleen, and joint stiffness.

The severity of the disease can range from mild to severe, with some individuals experiencing only moderate symptoms while others may have significant intellectual disability and life-threatening complications. Treatment options for MPS II include enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT), but there is currently no cure for the disease.

Multiple sulfatase deficiency (MSD) is a rare inherited metabolic disorder that affects multiple organ systems in the body. It is caused by mutations in the SUMF1 gene, which provides instructions for making an enzyme called formylglycine-generating enzyme (FGE). FGE is essential for the function of several sulfatase enzymes, which are responsible for removing sulfate groups from certain sugar molecules attached to proteins and lipids.

In MSD, the activity of all or most of these sulfatase enzymes is reduced or absent, leading to the accumulation of sulfated molecules in various tissues and organs. This can result in a wide range of symptoms that typically appear in infancy or early childhood, including developmental delay, intellectual disability, coarse facial features, skeletal abnormalities, vision and hearing loss, and problems with mobility and coordination.

MSD is an autosomal recessive disorder, which means that an individual must inherit two copies of the mutated gene (one from each parent) in order to develop the disease. The incidence of MSD is estimated to be less than 1 in 1 million people worldwide. Currently, there is no cure for MSD and treatment is focused on managing symptoms and improving quality of life.

X-linked Ichthyosis is a genetic skin disorder that is caused by a deficiency of an enzyme called steroid sulfatase. This enzyme is needed to break down cholesterol sulfate in the skin, and its absence leads to the accumulation of cholesterol sulfate, which disrupts the normal process of skin cell shedding.

The symptoms of X-linked Ichthyosis typically appear at birth or within the first few weeks of life and include:

* Dry, scaly skin that is darker in color than the surrounding skin (hyperkeratosis)
* A buildup of scales on the skin, especially on the back, buttocks, and extremities
* Deep, thick creases on the palms of the hands and soles of the feet
* White scaling on the scalp, eyebrows, and eyelashes
* Increased vulnerability to skin infections
* Small white spots (called milia) on the nose and cheeks
* Affected newborns may also have difficulty closing their eyes due to the thickened skin around the eyelids.

The disorder is inherited through an X-linked recessive pattern, which means that it primarily affects males who inherit the affected gene from their mothers. Females who carry the gene can also be affected but are typically less severely so. There is no cure for X-linked Ichthyosis, but treatment is focused on managing symptoms and preventing complications.

Glucosylceramides are a type of glycosphingolipid, which are complex lipids found in the outer layer of cell membranes. They consist of a ceramide molecule (a fatty acid and sphingosine) with a glucose molecule attached to it through a glycosidic bond.

Glucosylceramides play important roles in various cellular processes, including cell signaling, membrane structure, and cell-to-cell recognition. They are particularly abundant in the nervous system, where they contribute to the formation of the myelin sheath that surrounds nerve fibers.

Abnormal accumulation of glucosylceramides is associated with certain genetic disorders, such as Gaucher disease and Krabbe disease, which are characterized by neurological symptoms and other health problems. Enzyme replacement therapy or stem cell transplantation may be used to treat these conditions.

Sulfotransferases (STs) are a group of enzymes that play a crucial role in the process of sulfoconjugation, which is the transfer of a sulfo group (-SO3H) from a donor molecule to an acceptor molecule. These enzymes are widely distributed in nature and are found in various organisms, including humans.

In humans, STs are involved in the metabolism and detoxification of numerous xenobiotics, such as drugs, food additives, and environmental pollutants, as well as endogenous compounds, such as hormones, neurotransmitters, and lipids. The sulfoconjugation reaction catalyzed by STs can increase the water solubility of these compounds, facilitating their excretion from the body.

STs can be classified into several families based on their sequence similarity and cofactor specificity. The largest family of STs is the cytosolic sulfotransferases, which use 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a cofactor to transfer the sulfo group to various acceptor molecules, including phenols, alcohols, amines, and steroids.

Abnormalities in ST activity have been implicated in several diseases, such as cancer, cardiovascular disease, and neurological disorders. Therefore, understanding the function and regulation of STs is essential for developing new therapeutic strategies to treat these conditions.

Mucopolysaccharidosis IV (MPS IV), also known as Morquio Syndrome, is a rare genetic disorder that belongs to the family of diseases called mucopolysaccharidoses. It is characterized by the accumulation of glycosaminoglycans (GAGs or mucopolysaccharides) in various tissues and organs due to deficiencies in specific enzymes needed to break down these complex carbohydrates.

There are two types of MPS IV: Type A and Type B, which are caused by deficiencies in different enzymes (GALNS and B3GALNT1, respectively). Both types result in similar symptoms but may vary in severity. The accumulation of GAGs primarily affects the bones, cartilage, eyes, ears, heart, and respiratory system.

Common features of MPS IV include:
* Dwarfism with short trunk and long limbs
* Progressive skeletal abnormalities such as kyphosis (hunchback), scoliosis (curvature of the spine), pectus carinatum (protruding breastbone), and joint laxity or stiffness
* Coarse facial features
* Corneal clouding
* Hearing loss
* Heart valve abnormalities
* Respiratory issues
* Hypermobile and dislocated joints
* Carpal tunnel syndrome
* Spinal cord compression

Treatment for MPS IV primarily focuses on managing symptoms, improving quality of life, and preventing complications. Enzyme replacement therapy (ERT) is available for Type B but not for Type A. Other treatments may include physical therapy, surgery, and medications to address specific symptoms.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

I'm sorry for any confusion, but the term "Sea Cucumbers" is not typically used in medical definitions. It is a common name given to marine animals belonging to the class Holothuroidea in the phylum Echinodermata. These are sausage-shaped, bottom-dwelling creatures found on the sea floor worldwide. They have a leathery skin and a set of tube feet used for locomotion. While they have some cultural and commercial importance in parts of the world, they do not have direct relevance to medical definitions.

Ichthyosis is a group of skin disorders that are characterized by dry, thickened, scaly skin. The name "ichthyosis" comes from the Greek word "ichthys," which means fish, as the skin can have a fish-like scale appearance. These conditions can be inherited or acquired and vary in severity.

The medical definition of ichthyosis is a heterogeneous group of genetic keratinization disorders that result in dry, thickened, and scaly skin. The condition may affect any part of the body, but it most commonly appears on the extremities, scalp, and trunk. Ichthyosis can also have associated symptoms such as redness, itching, and blistering.

The severity of ichthyosis can range from mild to severe, and some forms of the condition may be life-threatening in infancy. The exact symptoms and their severity depend on the specific type of ichthyosis a person has. Treatment for ichthyosis typically involves moisturizing the skin, avoiding irritants, and using medications to help control scaling and inflammation.

"Termitomyces" is a genus of fungi that have a mutualistic relationship with termites. These fungi grow inside the nests of certain termite species, particularly those in the family Macrotermitinae, and are cultivated by the termites for food. The termites feed on the fungus's hyphae and spores, while the fungi receive shelter and nutrients from the termites. This mutualistic relationship is one of the most complex examples of symbiosis in the animal kingdom.

The Termitomyces fungi produce large, fleshy mushrooms that grow above ground and are highly prized as a food source in some parts of the world, particularly in Africa. The mushrooms have a distinctive appearance, with caps that can range in size from a few centimeters to over 30 cm in diameter, and stems that can be several centimeters long.

It's worth noting that Termitomyces is not a medical term per se, but rather a taxonomic category used in the field of mycology (the study of fungi).

Galactosylceramides are a type of glycosphingolipids, which are lipid molecules that contain a sugar (glyco-) attached to a ceramide. Galactosylceramides have a galactose molecule attached to the ceramide. They are important components of cell membranes and play a role in cell recognition and signaling. In particular, they are abundant in the myelin sheath, which is the protective covering around nerve fibers in the brain and spinal cord. Abnormal accumulation of galactosylceramides can lead to certain genetic disorders, such as Krabbe disease and Gaucher disease.

N-Acylsphingosine Galactosyltransferase is a type of enzyme that plays a role in the synthesis of galactosylceramide, which is a critical component of the myelin sheath in the nervous system. The enzyme's systematic name is UDP-galactose:N-acylsphingosine galactosyltransferase, and it catalyzes the following chemical reaction:
UDP-galactose + N-acylsphingosine = UDP + D-galactosyl-N-acylsphingosine.
This enzyme is also known as galactosylceramide synthase, and it is involved in the biosynthesis of galactolipids, which are essential for the formation and maintenance of the myelin sheath around neurons. Deficiencies in this enzyme have been linked to certain genetic disorders, such as Krabbe disease and hereditary sensory and autonomic neuropathy type I.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Glycolipids are a type of lipid (fat) molecule that contain one or more sugar molecules attached to them. They are important components of cell membranes, where they play a role in cell recognition and signaling. Glycolipids are also found on the surface of some viruses and bacteria, where they can be recognized by the immune system as foreign invaders.

There are several different types of glycolipids, including cerebrosides, gangliosides, and globosides. These molecules differ in the number and type of sugar molecules they contain, as well as the structure of their lipid tails. Glycolipids are synthesized in the endoplasmic reticulum and Golgi apparatus of cells, and they are transported to the cell membrane through vesicles.

Abnormalities in glycolipid metabolism or structure have been implicated in a number of diseases, including certain types of cancer, neurological disorders, and autoimmune diseases. For example, mutations in genes involved in the synthesis of glycolipids can lead to conditions such as Tay-Sachs disease and Gaucher's disease, which are characterized by the accumulation of abnormal glycolipids in cells.

"Schizophyllum" is not a term that has a medical definition on its own. However, it is the name of a genus of fungi that are commonly found in temperate and tropical regions worldwide. The most common and well-known species in this genus is Schizophyllum commune, which is known to cause a rare and mild form of respiratory infection in humans called pulmonary schizophyllosis.

Pulmonary schizophyllosis is caused by inhaling the spores of S. commune, which can lead to allergic reactions or, more rarely, invasive fungal infections in people with weakened immune systems. Symptoms of this condition may include coughing, chest pain, fever, and difficulty breathing.

It's worth noting that pulmonary schizophyllosis is a very rare disease, and most people who come into contact with S. commune fungi do not develop any symptoms or health problems. Nonetheless, it is important for medical professionals to be aware of this potential infection source in immunocompromised patients who present with respiratory symptoms.

Sphingolipid activator proteins (SAPs), also known as saposins, are a group of small proteins that play a crucial role in the metabolism of sphingolipids, a class of lipids found in cell membranes. These proteins are produced by the cleavage of a precursor protein called prosaposin.

SAPs facilitate the hydrolysis of sphingolipids by activating specific lysosomal hydrolases, enzymes that break down these lipids into simpler molecules. Each SAP has a unique structure and function, and they are named SapA, SapB, SapC, and SapD.

SapA and SapB activate the enzyme glucocerebrosidase, which breaks down glucosylceramide into glucose and ceramide. SapC activates the enzyme galactocerebrosidase, which breaks down galactosylceramide into galactose and ceramide. SapD has multiple functions, including activating the enzyme acid sphingomyelinase, which breaks down sphingomyelin into ceramide and phosphorylcholine.

Deficiencies in SAPs can lead to lysosomal storage disorders, such as Gaucher disease (caused by a deficiency in glucocerebrosidase) and Krabbe disease (caused by a deficiency in galactocerebrosidase). These disorders are characterized by the accumulation of undigested sphingolipids in various tissues, leading to cell dysfunction and tissue damage.

Mucopolysaccharidosis VI (MPS VI), also known as Maroteaux-Lamy syndrome, is a rare genetic disorder caused by the deficiency of an enzyme called N-acetylgalactosamine 4-sulfatase. This enzyme is responsible for breaking down complex sugars called glycosaminoglycans (GAGs) or mucopolysaccharides, which are found in various tissues and organs throughout the body.

When the enzyme is deficient, GAGs accumulate within the lysosomes of cells, leading to cellular dysfunction and tissue damage. This accumulation results in a range of symptoms that can affect multiple organ systems, including the skeletal system, cardiovascular system, respiratory system, and central nervous system.

The signs and symptoms of MPS VI can vary widely among affected individuals, but common features include: coarse facial features, short stature, stiff joints, restricted mobility, recurrent respiratory infections, hearing loss, heart valve abnormalities, and clouding of the cornea. The severity of the disease can range from mild to severe, and life expectancy is generally reduced in individuals with more severe forms of the disorder.

MPS VI is inherited as an autosomal recessive trait, which means that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Sphingolipids are a class of lipids that contain a sphingosine base, which is a long-chain amino alcohol with an unsaturated bond and an amino group. They are important components of animal cell membranes, particularly in the nervous system. Sphingolipids include ceramides, sphingomyelins, and glycosphingolipids.

Ceramides consist of a sphingosine base linked to a fatty acid through an amide bond. They play important roles in cell signaling, membrane structure, and apoptosis (programmed cell death).

Sphingomyelins are formed when ceramides combine with phosphorylcholine, resulting in the formation of a polar head group. Sphingomyelins are major components of the myelin sheath that surrounds nerve cells and are involved in signal transduction and membrane structure.

Glycosphingolipids contain one or more sugar residues attached to the ceramide backbone, forming complex structures that play important roles in cell recognition, adhesion, and signaling. Abnormalities in sphingolipid metabolism have been linked to various diseases, including neurological disorders, cancer, and cardiovascular disease.

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

The Harderian gland is a specialized exocrine gland located in many vertebrate species, including birds and mammals. In humans, it is rudimentary and not fully developed. However, in other animals like rodents, lagomorphs (rabbits and hares), and some reptiles, this gland plays a significant role.

The Harderian gland is primarily responsible for producing and secreting lipids, which help to lubricate the eye's surface and the nictitating membrane (third eyelid). This lubrication ensures that the eyes remain moist and protected from dryness and external irritants. Additionally, the secretions of the Harderian gland contain immunoglobulins, which contribute to the animal's immune defense system by providing protection against pathogens.

In some animals, the Harderian gland also has a role in pheromone production and communication. The study and understanding of this gland are particularly important in toxicological research, as it is often used as an indicator of environmental pollutant exposure and their effects on wildlife.

Gaucher disease is an inherited metabolic disorder caused by the deficiency of the enzyme glucocerebrosidase. This enzyme is responsible for breaking down a complex fatty substance called glucocerebroside, found in the cells of various tissues throughout the body. When the enzyme is not present in sufficient quantities or is entirely absent, glucocerebroside accumulates inside the lysosomes (cellular organelles responsible for waste material breakdown) of certain cell types, particularly within white blood cells called macrophages. This buildup of lipids leads to the formation of characteristic lipid-laden cells known as Gaucher cells.

There are three main types of Gaucher disease, classified based on the absence or presence and severity of neurological symptoms:

1. Type 1 (non-neuronopathic) - This is the most common form of Gaucher disease, accounting for approximately 95% of cases. It primarily affects the spleen, liver, and bone marrow but does not typically involve the central nervous system. Symptoms may include an enlarged spleen and/or liver, low red blood cell counts (anemia), low platelet counts (thrombocytopenia), bone pain and fractures, and fatigue.
2. Type 2 (acute neuronopathic) - This rare and severe form of Gaucher disease affects both visceral organs and the central nervous system. Symptoms usually appear within the first six months of life and progress rapidly, often leading to death before two years of age due to neurological complications.
3. Type 3 (subacute neuronopathic) - This form of Gaucher disease affects both visceral organs and the central nervous system but has a slower progression compared to type 2. Symptoms may include those seen in type 1, as well as neurological issues such as seizures, eye movement abnormalities, and cognitive decline.

Gaucher disease is inherited in an autosomal recessive manner, meaning that an individual must inherit two defective copies of the gene (one from each parent) to develop the condition. Treatment options for Gaucher disease include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and chaperone therapy, depending on the type and severity of the disease.

Glycosphingolipids are a type of complex lipid molecule found in animal cell membranes, particularly in the outer leaflet of the plasma membrane. They consist of a hydrophobic ceramide backbone, which is composed of sphingosine and fatty acids, linked to one or more hydrophilic sugar residues, such as glucose or galactose.

Glycosphingolipids can be further classified into two main groups: neutral glycosphingolipids (which include cerebrosides and gangliosides) and acidic glycosphingolipids (which are primarily gangliosides). Glycosphingolipids play important roles in various cellular processes, including cell recognition, signal transduction, and cell adhesion.

Abnormalities in the metabolism or structure of glycosphingolipids have been implicated in several diseases, such as lysosomal storage disorders (e.g., Gaucher's disease, Fabry's disease) and certain types of cancer (e.g., ganglioside-expressing neuroblastoma).

Hexoses are simple sugars (monosaccharides) that contain six carbon atoms. The most common hexoses include glucose, fructose, and galactose. These sugars play important roles in various biological processes, such as serving as energy sources or forming complex carbohydrates like starch and cellulose. Hexoses are essential for the structure and function of living organisms, including humans.

The myelin sheath is a multilayered, fatty substance that surrounds and insulates many nerve fibers in the nervous system. It is essential for the rapid transmission of electrical signals, or nerve impulses, along these nerve fibers, allowing for efficient communication between different parts of the body. The myelin sheath is produced by specialized cells called oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). Damage to the myelin sheath, as seen in conditions like multiple sclerosis, can significantly impair nerve function and result in various neurological symptoms.

Saposins are a group of naturally occurring lipid-binding proteins that play an essential role in the metabolism of lipids within cells. They are named after a skin disease called "Niemann-Pick disease," where defects in saposin function lead to an accumulation of lipids in various tissues, including the brain.

There are four types of saposins (SapA, SapB, SapC, and SapD) that are produced by the cleavage of a larger precursor protein called prosaposin. These proteins help to facilitate the breakdown of lipids in lysosomes, which are specialized organelles within cells that break down and recycle various materials.

Saposins play an important role in activating certain enzymes that are involved in breaking down lipids, such as sphingolipids and gangliosides. They do this by binding to these enzymes and presenting them with their lipid substrates in a way that allows the enzymes to efficiently break them down.

Defects in saposin function can lead to a variety of diseases, including Niemann-Pick disease, Gaucher disease, and Krabbe disease, which are characterized by an accumulation of lipids in various tissues and neurological symptoms.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

"Asterias" is a genus of starfish belonging to the family Asteriidae. The name "Asterias" itself does not have a specific medical definition, as it is a term used in the field of marine biology. However, some species of starfish in this genus may have potential medicinal or toxicological significance. For example, the venom of some asteriid starfish has been studied for its potential therapeutic applications, while others may contain toxins that can cause harm if ingested or come into contact with human skin.

It's worth noting that while some species of starfish may have medical relevance, the term "Asterias" does not have a direct medical definition and is not commonly used in medical contexts.

I believe there might be a slight confusion in your question. Sulfuric acid is not a medical term, but instead a chemical compound with the formula H2SO4. It's one of the most important industrial chemicals, being a strong mineral acid with numerous applications.

If you are asking for a definition related to human health or medicine, I can tell you that sulfuric acid has no physiological role in humans. Exposure to sulfuric acid can cause irritation and burns to the skin, eyes, and respiratory tract. Prolonged exposure may lead to more severe health issues. However, it is not a term typically used in medical diagnoses or treatments.

I'm sorry for any confusion, but "psychosine" is not a commonly used term in medicine or psychology. It is a lipid molecule that has been researched in the context of certain neurological conditions, particularly Krabbe disease, which is a rare and fatal genetic disorder affecting the nervous system.

In Krabbe disease, psychosine accumulates in the body due to a deficiency of an enzyme called galactocerebrosidase. This buildup of psychosine is thought to contribute to the damage and destruction of nerve cells, leading to the symptoms of the disease. However, it's important to note that this is still an area of ongoing research, and there is no medical definition for "psychosine" in a general sense.

Amino alcohols are organic compounds containing both amine and hydroxyl (alcohol) functional groups. They have the general structure R-NH-OH, where R represents a carbon-containing group. Amino alcohols can be primary, secondary, or tertiary, depending on the number of alkyl or aryl groups attached to the nitrogen atom.

These compounds are important in many chemical and biological processes. For example, some amino alcohols serve as intermediates in the synthesis of pharmaceuticals, dyes, and polymers. In biochemistry, certain amino alcohols function as neurotransmitters or components of lipids.

Some common examples of amino alcohols include:

* Ethanolamine (monoethanolamine, MEA): a primary amino alcohol used in the production of detergents, emulsifiers, and pharmaceuticals
* Serinol: a primary amino alcohol that occurs naturally in some foods and is used as a flavoring agent
* Choline: a quaternary ammonium compound with a hydroxyl group, essential for human nutrition and found in various foods such as eggs, liver, and peanuts
* Trimethylamine (TMA): a tertiary amino alcohol that occurs naturally in some marine animals and is responsible for the "fishy" odor of their flesh.

Sphingolipidoses are a group of inherited metabolic disorders characterized by the accumulation of sphingolipids in various tissues and organs due to deficiencies in enzymes involved in sphingolipid metabolism. Sphingolipids are a type of lipid molecule that play important roles in cell membranes, signal transduction, and cell recognition.

Examples of sphingolipidoses include Gaucher's disease, Tay-Sachs disease, Niemann-Pick disease, Fabry disease, and Krabbe disease, among others. These disorders can affect various organs and systems in the body, including the brain, liver, spleen, bones, and nervous system, leading to a range of symptoms such as developmental delay, seizures, movement disorders, enlarged organs, and skin abnormalities.

Treatment for sphingolipidoses typically involves managing symptoms and addressing complications, although some forms of these disorders may be amenable to enzyme replacement therapy or stem cell transplantation.

Gangliosides are a type of complex lipid molecule known as sialic acid-containing glycosphingolipids. They are predominantly found in the outer leaflet of the cell membrane, particularly in the nervous system. Gangliosides play crucial roles in various biological processes, including cell recognition, signal transduction, and cell adhesion. They are especially abundant in the ganglia (nerve cell clusters) of the peripheral and central nervous systems, hence their name.

Gangliosides consist of a hydrophobic ceramide portion and a hydrophilic oligosaccharide chain that contains one or more sialic acid residues. The composition and structure of these oligosaccharide chains can vary significantly among different gangliosides, leading to the classification of various subtypes, such as GM1, GD1a, GD1b, GT1b, and GQ1b.

Abnormalities in ganglioside metabolism or expression have been implicated in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and various lysosomal storage diseases like Tay-Sachs and Gaucher's diseases. Additionally, certain bacterial toxins, such as botulinum neurotoxin and tetanus toxin, target gangliosides to gain entry into neuronal cells, causing their toxic effects.

Hydroxy acids are a class of chemical compounds that contain both a carboxylic acid group and a hydroxyl group. They are commonly used in dermatology and cosmetic products for their exfoliating, moisturizing, and anti-aging properties. The two main types of hydroxy acids used in skincare are alpha-hydroxy acids (AHAs) and beta-hydroxy acids (BHAs).

Alpha-hydroxy acids include compounds such as glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid. They work by breaking down the "glue" that holds dead skin cells together, promoting cell turnover and helping to improve the texture and tone of the skin. AHAs are also known for their ability to improve the appearance of fine lines, wrinkles, and age spots.

Beta-hydroxy acids, on the other hand, are primarily represented by salicylic acid. BHAs are oil-soluble, which allows them to penetrate deeper into the pores and exfoliate dead skin cells and excess sebum that can lead to clogged pores and acne breakouts.

It is important to note that hydroxy acids can cause skin irritation and sensitivity to sunlight, so it is recommended to use sunscreen and start with lower concentrations when first incorporating them into a skincare routine.

Insensible water loss is the unnoticeable or unperceived loss of water from the body through processes such as respiration, evaporation from the skin, and perspiration that is too fine to be seen or felt. It is a normal physiological process and typically accounts for about 400-800 milliliters (ml) of water loss per day in a healthy adult at rest. However, this amount can increase with factors such as environmental temperature, humidity, and altitude, as well as physical activity or illness that increases metabolic rate or alters body temperature regulation.

Insensible water loss is an important factor to consider in maintaining fluid balance in the body, particularly in individuals who are unable to regulate their own fluid intake, such as critically ill patients or those with impaired consciousness. Prolonged or excessive insensible water loss can lead to dehydration and electrolyte imbalances, which can have serious consequences on various organ systems and overall health.

Lactosylceramides are a type of glycosphingolipid, which are complex lipids found in the outer layer of cell membranes. They consist of a ceramide molecule (a fatty acid and sphingosine) with a lactose sugar (glucose and galactose) attached. Lactosylceramides play important roles in various cellular processes, including cell recognition, signal transduction, and adhesion. They are also involved in the development and progression of certain diseases, such as cancer and neurological disorders.

Ceramides are a type of lipid molecule that are found naturally in the outer layer of the skin (the stratum corneum). They play a crucial role in maintaining the barrier function and hydration of the skin. Ceramides help to seal in moisture, support the structure of the skin, and protect against environmental stressors such as pollution and bacteria.

In addition to their role in the skin, ceramides have also been studied for their potential therapeutic benefits in various medical conditions. For example, abnormal levels of ceramides have been implicated in several diseases, including diabetes, cardiovascular disease, and cancer. As a result, ceramide-based therapies are being investigated as potential treatments for these conditions.

Medically, ceramides may be mentioned in the context of skin disorders or diseases where there is a disruption in the skin's barrier function, such as eczema, psoriasis, and ichthyosis. In these cases, ceramide-based therapies may be used to help restore the skin's natural barrier and improve its overall health and appearance.

Estrone is a type of estrogen, which is a female sex hormone. It's one of the three major naturally occurring estrogens in women, along with estradiol and estriol. Estrone is weaker than estradiol but has a longer half-life, meaning it remains active in the body for a longer period of time.

Estrone is produced primarily in the ovaries, adrenal glands, and fat tissue. In postmenopausal women, when the ovaries stop producing estradiol, estrone becomes the dominant form of estrogen. It plays a role in maintaining bone density, regulating the menstrual cycle, and supporting the development and maintenance of female sexual characteristics.

Like other forms of estrogen, estrone can also have effects on various tissues throughout the body, including the brain, heart, and breast tissue. Abnormal levels of estrone, either too high or too low, can contribute to a variety of health issues, such as osteoporosis, menstrual irregularities, and increased risk of certain types of cancer.

"Sterculia" is a botanical term that refers to a genus of trees in the family Sterculiaceae. The name "Sterculia" comes from the Latin word "stercus," which means excrement, due to the unpleasant smell of the tree's flowers. Several species of Sterculia have been used in traditional medicine for various purposes, including as a laxative and as a treatment for skin conditions. However, it is important to note that the use of Sterculia as a medical treatment has not been extensively studied and its safety and efficacy are not well-established. Therefore, it should not be used as a substitute for proven medical therapies.

Globosides are a type of glycosphingolipids, which are molecules that consist of a lipid and a carbohydrate. They are found in animal tissues, especially in the nervous system. The term "globoside" refers to a specific structure of these molecules, where the carbohydrate portion consists of a complex chain of sugars, including galactose, N-acetylgalactosamine, and glucose. Globosides play important roles in cell recognition and interaction, and abnormalities in their metabolism have been associated with certain diseases, such as paroxysmal nocturnal hemoglobinuria (PNH).

Lamellar Ichthyosis is a rare, inherited genetic skin disorder characterized by widespread, persistent scaling of the skin. It is caused by mutations in genes responsible for maintaining the barrier function and hydration of the skin. The condition is present from birth and can vary in severity.

In lamellar ichthyosis, the skin cells do not shed properly and instead accumulate in plates or scales that cover the entire body. These scales are large, dark brown or gray, and have a cracked appearance, resembling fish scales. The scales may be present at birth (congenital) or develop within the first few weeks of life.

The skin is also prone to redness, irritation, and infection due to the impaired barrier function. Other symptoms can include overheating, dehydration, and difficulty with sweating. The condition may improve in warmer, more humid environments.

Treatment for lamellar ichthyosis is aimed at managing symptoms and preventing complications. This may include topical creams and ointments to moisturize the skin, medications to reduce inflammation and infection, and avoiding environmental triggers that can worsen symptoms. In some cases, oral retinoids may be prescribed to help regulate skin cell growth and shedding.

Ichthyosis Vulgaris is a genetic skin disorder, which is characterized by dry, scaly, and rough skin. It is one of the most common forms of ichthyosis and is usually inherited in an autosomal dominant pattern, meaning only one copy of the altered gene in each cell is sufficient to cause the condition.

The term "ichthyosis" comes from the Greek word "ichthys," which means fish, reflecting the scaly appearance of the skin in individuals with this disorder.

In people with Ichthyosis Vulgaris, the skin cells do not shed properly and instead, they accumulate in scales on the surface of the skin. These scales are typically small, white to grayish-brown, and polygonal in shape. The scales are most often found on the legs, arms, and trunk but can affect any part of the body.

The condition usually appears during early childhood and tends to get worse in dry weather. In many cases, it improves during adulthood, although the skin remains rough and scaly.

Ichthyosis Vulgaris is caused by mutations in the gene called filaggrin, which is responsible for maintaining a healthy barrier function in the skin. This leads to dryness and increased susceptibility to skin infections.

Fomites are objects or materials in the environment that can carry and transmit infectious organisms, such as bacteria, viruses, and fungi. Common examples of fomites include doorknobs, handrails, clothing, bedding, and towels. When an infected person touches or coughs on a fomite, the microorganisms can be transferred to another person who comes into contact with it. It's important to practice good hygiene, such as washing hands regularly and cleaning surfaces, to reduce the spread of infections through fomites.

The epidermis is the outermost layer of the skin, composed mainly of stratified squamous epithelium. It forms a protective barrier that prevents water loss and inhibits the entry of microorganisms. The epidermis contains no blood vessels, and its cells are nourished by diffusion from the underlying dermis. The bottom-most layer of the epidermis, called the stratum basale, is responsible for generating new skin cells that eventually move up to replace dead cells on the surface. This process of cell turnover takes about 28 days in adults.

The most superficial part of the epidermis consists of dead cells called squames, which are constantly shed and replaced. The exact rate at which this happens varies depending on location; for example, it's faster on the palms and soles than elsewhere. Melanocytes, the pigment-producing cells, are also located in the epidermis, specifically within the stratum basale layer.

In summary, the epidermis is a vital part of our integumentary system, providing not only physical protection but also playing a crucial role in immunity and sensory perception through touch receptors called Pacinian corpuscles.

Ichthyosiform erythroderma, congenital, also known as Congenital Ichthyosiform Erythroderma (CIE), is a rare inherited genetic disorder of keratinization. It is characterized by widespread scaliness and erythema (redness) that are present at birth or develop soon thereafter.

The condition is caused by mutations in various genes involved in the development of the skin barrier, leading to abnormalities in the formation and shedding of skin cells. This results in a thickened, scaly appearance of the skin, which can be associated with severe dryness, irritation, and inflammation.

The symptoms of CIE can vary widely among affected individuals, ranging from mild to severe. In addition to the characteristic skin changes, some people with CIE may also experience additional features such as ectropion (outward turning of the eyelids), eclabium (splitting of the lips), and hyperkeratosis of palms and soles.

CIE is typically a lifelong condition, and treatment is focused on managing symptoms and preventing complications. This may include the use of topical moisturizers, emollients, and keratolytic agents to help soften and remove excess skin cells. In some cases, systemic medications such as retinoids may be used to help reduce the severity of skin changes.

... (EC 3.1.6.8, arylsulfatase A, cerebroside sulfate sulfatase) is an enzyme with systematic name ... Cerebroside-sulfatase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 3.1.6). ... Arylsulfatase A Mehl E, Jatzkewitz H (1964). "[A cerebrosidesulfatase from swine kidney]". Hoppe-Seyler's Zeitschrift für ... This enzyme catalyses the following chemical reaction a cerebroside 3-sulfate + H2O ⇌ {\displaystyle \rightleftharpoons } a ...
... or cerebroside-sulfatase) is an enzyme that breaks down sulfatides, namely cerebroside 3-sulfate into cerebroside and sulfate. ... "A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency". Cell. 82 (2): 271-8. doi: ...
... n-acetylgalactosamine-4-sulfatase MeSH D08.811.277.352.827.070.250 - cerebroside-sulfatase MeSH D08.811.277.352.827.070.625 - ... n-acetylgalactosamine-4-sulfatase MeSH D08.811.277.352.827.180.175.275 - chondro-4-sulfatase MeSH D08.811.277.352.827.500 - ... iduronate sulfatase MeSH D08.811.277.352.897 - thiolester hydrolases MeSH D08.811.277.352.897.075 - acetyl-CoA hydrolase MeSH ... steryl-sulfatase MeSH D08.811.277.352.827.180 - chondroitinases and chondroitin lyases MeSH D08.811.277.352.827.180.175 - ...
... cerebroside-sulfatase steroid sulfatase arylsulfatase A EC 3.1.6.8 (ASA), a lysosomal enzyme which hydrolyzes cerebroside ... Many sulfatases are localized in the lysosome, an acidic digestive organelle found within the cell. Lysosomal sulfatases cleave ... Genetic defects in sulfatase activity can arise through mutations in individual sulfatases and result in certain lysosomal ... Sulfatases EC 3.1.6.- are enzymes of the esterase class that catalyze the hydrolysis of sulfate esters. These may be found on a ...
... "cerebroside-sulfatase") Arylsulfatase B (also known as "N-acetylgalactosamine-4-sulfatase") Steroid sulfatase (formerly known ... p-nitrophenyl sulfatase, arylsulfohydrolase, 4-methylumbelliferyl sulfatase, estrogen sulfatase) is a type of sulfatase enzyme ... Arylsulfatase (EC 3.1.6.1, sulfatase, nitrocatechol sulfatase, phenolsulfatase, phenylsulfatase, ...
... choline-sulfatase EC 3.1.6.7: cellulose-polysulfatase EC 3.1.6.8: cerebroside-sulfatase EC 3.1.6.9: chondro-4-sulfatase EC 3.1. ... N-sulfoglucosamine-3-sulfatase EC 3.1.6.16: monomethyl-sulfatase EC 3.1.6.17: D-lactate-2-sulfatase EC 3.1.6.19: (R)-specific ... N-acetylgalactosamine-6-sulfatase EC 3.1.6.13: iduronate-2-sulfatase EC 3.1.6.14: N-acetylglucosamine-6-sulfatase EC 3.1.6.15: ... steryl-sulfatase EC 3.1.6.3: glycosulfatase EC 3.1.6.4: N-acetylgalactosamine-6-sulfatase EC 3.1.6.5: deleted EC 3.1.6.6: ...
1991). "The organization of the gene for the human cerebroside sulfate activator protein". FEBS Lett. 280 (2): 267-70. doi: ... 1986). "Molecular cloning of the sphingolipid activator protein-1 (SAP-1), the sulfatide sulfatase activator". Biochem. Biophys ... 1990). "The complete amino-acid sequences of human ganglioside GM2 activator protein and cerebroside sulfate activator protein ...
It is believed to be caused by a deficiency in arylsulfatase A. Arylsulfatase A is a lysosomal sulfatase that is able to ... Specifically, cerebroside sulfotransferase (CST) is elevated as it passes along a signaling pathway which involves: Hepatocyte ... This reaction is catalyzed by cerebroside sulfotransferase (CST). CST is a homodimeric protein that is found in the Golgi ... In peripheral nerves that are cerebroside sulfotransferase (CST) deficient, the nodes of Ranvier form enlarged axonal ...
Cerebroside-sulfatase (EC 3.1.6.8, arylsulfatase A, cerebroside sulfate sulfatase) is an enzyme with systematic name ... Cerebroside-sulfatase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 3.1.6). ... Arylsulfatase A Mehl E, Jatzkewitz H (1964). "[A cerebrosidesulfatase from swine kidney]". Hoppe-Seylers Zeitschrift für ... This enzyme catalyses the following chemical reaction a cerebroside 3-sulfate + H2O ⇌ {\displaystyle \rightleftharpoons } a ...
LOINC Group Code LG9700-8 Cerebroside sulfatase activator,Imp,Pt,Fibroblasts ... Cerebroside sulfatase activator [Interpretation] in Fibroblast. 49321-3. Cerebroside sulfatase activator [Interpretation] in ... Cerebroside sulfatase activator,Imp,Pt,Fibroblasts Active Maturity: Beta *The LOINC Groups project is a work in progress. The ...
Cerebroside sulphatase deficiency disease. *Greenfield disease. *Metachromatic leukoencephalopathy. *MLD. *Sulfatide lipidosis ...
Cerebroside-Sulfatase / deficiency * Cerebroside-Sulfatase / genetics* * Child, Preschool * Cluster Analysis * Consanguinity * ...
Cerebroside sulfatase deficiency. *Metachromatic leukoencephalopathy. *Sulfatide lipidosis. References. *Adang et al., 2017, ...
Cerebroside-Sulfatase Medicine & Life Sciences 100% * arylsulfatase Agriculture & Biology 80% * genotype Earth & Environmental ...
arylsulfatase activity cerebroside-sulfatase activity calcium ion binding protein binding sulfuric ester hydrolase activity ... The protein encoded by this gene hydrolyzes cerebroside sulfate to cerebroside and sulfate. Defects in this gene lead to ... Cerebroside-sulfatase; EC 3.1.6.8; GET3; TRC40 ...
Dive into the research topics of Arylsulfatase activity in human urine: quantitative studies on patients with lysosomal disorders including metachromatic leukodystrophy. Together they form a unique fingerprint. ...
2006). ARYLSULPHATASES Arylsulphatase A Arylsulphatase A ARSA; cerebroside 3-sulphatase; EC 3. ...
Wolf, N. I., Breur, M., Plug, B., Beerepoot, S., Westerveld, A. S. R., van Rappard, D. F., de Vries, S. I., Kole, M. H. P., Vanderver, A., van der Knaap, M. S., Lindemans, C. A., van Hasselt, P. M., Boelens, J. J., Matzner, U., Gieselmann, V. & Bugiani, M., 1 Feb 2020, In: Annals of Clinical and Translational Neurology. 7, 2, p. 169-180 12 p.. Research output: Contribution to journal › Article › peer-review ...
Cerebroside-Sulfatase Medicine & Life Sciences 46% * Acetylglucosaminidase Medicine & Life Sciences 40% * ...
ARSA, ASA, Arylsulfatase A, Cerebroside 3-sulfatase, Cerebroside-sulfatase, EC 3.1.6, EC 3.1.6.8, MLD ... As a member of the sulfatase family, arylsulfatase A is encoded by the ARSA gene and required for the lysosomal degradation of ... Recombinant mouse ARSA corresponds to the mature chain and has sulfatase activity as described in Activity Assay Protocol. ... cerebroside-3-sulfate, a sphingolipid sulfate ester and a major constituent of the myelin sheet (1). ARSA deficiency results in ...
Scleratogenous sulfatase, another nonstructured valnoctamide, spirit disciplinary aankoop generieke furosemide met prescription ... Industrialize justify little shoot-em-up paratrooper, nobody cerebrosides grubstaked hoe veel topiramate topiramaat amsterdam ... Scleratogenous sulfatase, another nonstructured valnoctamide, spirit disciplinary rescaling celosomian. ... nobody cerebrosides grubstaked himself booted autohypnotic laterad and still amputate nondictatorially. Unpreferred cowpoke, ...
Cerebroside-sulfatase Activity. *Calcium Ion Binding. *Protein Binding. *Sulfuric Ester Hydrolase Activity ...
putative Cerebroside-sulfatase. QuickGO ontology. BLASTP. 18418. 19698. 1281. hypothetical protein. BLASTP. ...
Cerebroside-sulfatase Activity. *Calcium Ion Binding. *Protein Binding. *Sulfuric Ester Hydrolase Activity ...
3.1.6.8 cerebroside-sulfatase - - BRENDA: BS93775 L-tyrosine + Br- + H2O2 <=> 3-bromo-L-Tyr + dibromotyrosine 1.11.1.10 ...
The polymerization of sulfatase A. Biochem. 4, 386-396. Niemann, A. (1914) Ein unbekanntes Krankheitsbild. Jahrb. Kinderheilh. ... Lee, R. E. (1968) The fine structure of the cerebroside occurring in Gauchers disease. Proc. Nat. Acad. Sci. USA 61, 484-489. ...
Previous studies have shown a deficiency of steroid sulfatase (STS) in skin fibroblasts and a marked elevation of plasma ... Newborns with type 2 Gaucher disease (glucosyl cerebroside lipidosis) may present with ichthyotic skin at birth prior to ...
extend me about a important pdf Conversations of Intercultural building the jeans of Vesuvius below, and I cerebroside Feeling ... In one pdf Conversations of, a sulfatase escapes a easy preamble considering impression and running a counterclockwise tome of ...
Iduronate Sulfatase Deficiency. Increased Dermatan Sulfate. Increased Heparan Sulfate. Signs and Symptoms. No Corneal Clouding ...
He occurred greatly dealing read Иван intriguing sulfatases with a projective other back which was the thinking of his clues. ... GEM TREASURES OF BRAZIL 2004 and collection can study the service of programs that have cerebroside-sulfate of lips, getting ...
steroid sulfatase. multiple interactions. ISO. N-acetylsphingosine inhibits the reaction [Tretinoin results in increased ... cerebroside +. 23. ganglioside +. 12. glycosylceramide +. 23. oligoglycosylceramide +. 3. omega-hydroxy-ultra-long chain fatty ...
Although important cerebroside is developed to proceed useful flash, the Davidson Institute is no colleges of any hall, getting ... The Borg Queen stimulated to all the sulfatases viewed by Captain Janeway, with T. The language had located for 15:00 pages. ...
really a ebook after the Benson cerebroside, in Diehr the Supreme Court about hit that a tiempo determination may write unease ... You caught there misunderstood a Negro Third answers between all the gardens sulfatases, and their ebook the politics of ...
Alkaloids Cerebrosides Chalcones Coumarins Diterpenoids Flavonoids Iridoids Lignans Lipids Miscellaneous Monoterpenoids ... Ketohexokinase LDL Mitochondrial Electron Transport Chain Mitochondrial Metabolism MPC Pyruvate Kinase Steroid Sulfatase TDO ...
Alkaloids Cerebrosides Chalcones Coumarins Diterpenoids Flavonoids Iridoids Lignans Lipids Miscellaneous Monoterpenoids ... Ketohexokinase LDL Mitochondrial Electron Transport Chain Mitochondrial Metabolism MPC Pyruvate Kinase Steroid Sulfatase TDO ...
Ozeki, T.; Tokawa, Y.; Miura, K.; Kan, M.; Ogasawara, T. 1974: The change of aryl sulfatase activity in carbon tetra chloride ... Rivera, M.E. 1969: The cerebron fraction of the brain cerebrosides and the isolation of the individual components. Zol. Chem.. ...

No FAQ available that match "cerebroside sulfatase"

No images available that match "cerebroside sulfatase"