A cephalosporin antibiotic.
A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid.
A cephalosporin antibiotic.
Semisynthetic wide-spectrum cephalosporin with prolonged action, probably due to beta-lactamase resistance. It is used also as the nafate.
Cephalosporin antibiotic, partly plasma-bound, that is effective against gram-negative and gram-positive organisms.
Inflammation of a vein, often a vein in the leg. Phlebitis associated with a blood clot is called (THROMBOPHLEBITIS).
A semisynthetic cephamycin antibiotic resistant to beta-lactamase.
A semisynthetic cephalosporin analog with broad-spectrum antibiotic action due to inhibition of bacterial cell wall synthesis. It attains high serum levels and is excreted quickly via the urine.
Analogs or derivatives of mandelic acid (alpha-hydroxybenzeneacetic acid).
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
A semisynthetic cephalosporin antibiotic with antimicrobial activity similar to that of CEPHALORIDINE or CEPHALOTHIN, but somewhat less potent. It is effective against both gram-positive and gram-negative organisms.
A metabolite of BROMHEXINE that stimulates mucociliary action and clears the air passages in the respiratory tract. It is usually administered as the hydrochloride.
A penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It has also been used as an experimental convulsant because of its actions on GAMMA-AMINOBUTYRIC ACID mediated synaptic transmission.
Substances that reduce the growth or reproduction of BACTERIA.
Cephalosporinase is an enzyme produced by certain bacteria that can hydrolyze and confer resistance to cephalosporin antibiotics.
A beta-lactamase preferentially cleaving penicillins. (Dorland, 28th ed) EC 3.5.2.-.
A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs in the intestines of humans and a wide variety of animals, as well as in manure, soil, and polluted waters. Its species are pathogenic, causing urinary tract infections and are also considered secondary invaders, causing septic lesions at other sites of the body.
One of the PENICILLINS which is resistant to PENICILLINASE.
A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock.
A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065)
A genus of gram-positive, facultatively anaerobic, coccoid bacteria. Its organisms occur singly, in pairs, and in tetrads and characteristically divide in more than one plane to form irregular clusters. Natural populations of Staphylococcus are found on the skin and mucous membranes of warm-blooded animals. Some species are opportunistic pathogens of humans and animals.
A pyrrolidinylmethyl TETRACYCLINE.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
One of the PENICILLINS which is resistant to PENICILLINASE but susceptible to a penicillin-binding protein. It is inactivated by gastric acid so administered by injection.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Nonsusceptibility of an organism to the action of penicillins.
Semi-synthetic derivative of penicillin that functions as an orally active broad-spectrum antibiotic.
A complex of closely related aminoglycosides obtained from MICROMONOSPORA purpurea and related species. They are broad-spectrum antibiotics, but may cause ear and kidney damage. They act to inhibit PROTEIN BIOSYNTHESIS.
Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins.
Broad-spectrum semisynthetic penicillin derivative used parenterally. It is susceptible to gastric juice and penicillinase and may damage platelet function.
Gram-negative, capsulated, gas-producing rods found widely in nature. Both motile and non-motile strains exist. The species is closely related to KLEBSIELLA PNEUMONIAE and is frequently associated with nosocomial infections
Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria.
A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms arrange singly, in pairs, or short chains. This genus is commonly found in the intestinal tract and is an opportunistic pathogen that can give rise to bacteremia, pneumonia, urinary tract and several other types of human infection.
A semi-synthetic antibiotic that is a chlorinated derivative of OXACILLIN.
An antibiotic derived from penicillin similar to CARBENICILLIN in action.
Gram-negative gas-producing rods found in feces of humans and other animals, sewage, soil, water, and dairy products.
An antibiotic similar to FLUCLOXACILLIN used in resistant staphylococci infections.
A genus of gram-positive, anaerobic bacteria whose organisms divide in three perpendicular planes and occur in packets of eight or more cells. It has been isolated from soil, grains, and clinical specimens.
Long-acting, broad-spectrum, water-soluble, CEPHALEXIN derivative.
Inflammation of the lung parenchyma that is associated with BRONCHITIS, usually involving lobular areas from TERMINAL BRONCHIOLES to the PULMONARY ALVEOLI. The affected areas become filled with exudate that forms consolidated patches.
Semisynthetic broad-spectrum cephalosporin.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs in soil, fecal matter, and sewage. It is an opportunistic pathogen and causes cystitis and pyelonephritis.
Infections by bacteria, general or unspecified.
A broad-spectrum antibiotic derived from KANAMYCIN. It is reno- and oto-toxic like the other aminoglycoside antibiotics.
Acids, salts, and derivatives of clavulanic acid (C8H9O5N). They consist of those beta-lactam compounds that differ from penicillin in having the sulfur of the thiazolidine ring replaced by an oxygen. They have limited antibacterial action, but block bacterial beta-lactamase irreversibly, so that similar antibiotics are not broken down by the bacterial enzymes and therefore can exert their antibacterial effects.
Broad- spectrum beta-lactam antibiotic similar in structure to the CEPHALOSPORINS except for the substitution of an oxaazabicyclo moiety for the thiaazabicyclo moiety of certain CEPHALOSPORINS. It has been proposed especially for the meningitides because it passes the blood-brain barrier and for anaerobic infections.
Antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components.
A second-generation cephalosporin administered intravenously or intramuscularly. Its bactericidal action results from inhibition of cell wall synthesis. It is used for urinary tract infections, lower respiratory tract infections, and soft tissue and bone infections.
A broad-spectrum penicillin antibiotic used orally in the treatment of mild to moderate infections by susceptible gram-positive organisms.

pKa calculations for class A beta-lactamases: influence of substrate binding. (1/313)

Beta-Lactamases are responsible for bacterial resistance to beta-lactams and are thus of major clinical importance. However, the identity of the general base involved in their mechanism of action is still unclear. Two candidate residues, Glu166 and Lys73, have been proposed to fulfill this role. Previous studies support the proposal that Glu166 acts during the deacylation, but there is no consensus on the possible role of this residue in the acylation step. Recent experimental data and theoretical considerations indicate that Lys73 is protonated in the free beta-lactamases, showing that this residue is unlikely to act as a proton abstractor. On the other hand, it has been proposed that the pKa of Lys73 would be dramatically reduced upon substrate binding and would thus be able to act as a base. To check this hypothesis, we performed continuum electrostatic calculations for five wild-type and three beta-lactamase mutants to estimate the pKa of Lys73 in the presence of substrates, both in the Henri-Michaelis complex and in the tetrahedral intermediate. In all cases, the pKa of Lys73 was computed to be above 10, showing that it is unlikely to act as a proton abstractor, even when a beta-lactam substrate is bound in the enzyme active site. The pKa of Lys234 is also raised in the tetrahedral intermediate, thus confirming a probable role of this residue in the stabilization of the tetrahedral intermediate. The influence of the beta-lactam carboxylate on the pKa values of the active-site lysines is also discussed.  (+info)

Antibiotic synergy and antagonism against clinical isolates of Klebsiella species. (2/313)

Minimal inhibitory concentrations of kanamycin, gentamicin, amikacin, cephalothin, and chloramphenicol were determined in Trypticase soy broth for 70 clinical isolates of Klebsiella species. Gentamicin and amikacin were the most active on a weight basis. Chloramphenicol was more active than kanamycin, and cephalothin was the least active of all. Studies using a microtiter modification of the checkerboard technique were performed to evaluate the comparative activity of the three aminoglycosides in combination with either chloramphenicol or cephalothin. The cephalothin-aminoglycoside combinations demonstrated synergy in >80% of the isolates tested. No antagonism was noted. The chloramphenicol-aminoglycoside combinations showed antagonism in 35 to 45% of the isolates tested. The data suggest that the chloramphenicol-aminoglycoside combinations be used with caution when treating serious infections where Klebsiella is a potential pathogen.  (+info)

Transferability of cephalothin to the alveolar cavity in thoroughbreds. (3/313)

Five Thoroughbreds were classified into 4 groups according to the administration method used for saline solution (saline), ambroxol, and cephalothin sodium (cephalothin). In group A, cephalothin was injected intravenously after oral administration of ambroxol. In group B, cephalothin was injected intravenously after oral administration of saline. Groups C and D were used as control groups. The dose of cephalothin or ambroxol was clinically administrated. Venous blood and bronchoalveolar lavage fluid (BALF) were sampled from each group. In groups A and B, cephalothin concentrations in plasma reached their maximum level 5 min after cephalothin administration and then declined over time. In plasma obtained from groups A and B, there were no significant differences in pharmacokinetic parameters (T1/2, Kel, Vd). By contrast, cephalothin concentrations in BALF reached their peak at 180 min after cephalothin administration in both groups A and B and maintained a relatively high level even after 300 min. These findings indicate that cephalothin requires a relatively long period of time to move from the blood stream to the alveolar cavity, but once transferred to the alveolar cavity, it is preserved for a long time. In groups A and B, cephalothin concentrations in BALF were approximately at the same level. However, in group A, total protein in BALF was lower at 60, 180, and 300 min than the other groups. Then, cephalothin concentration was adjusted to total protein in BALF. After adjustment to total protein in BALF, group A showed a concentration level of cephalothin approximately 1.5-fold higher than that of group B. This suggests that the transferability of cephalothin to the alveolar cavity improves as a result of the oral administration of ambroxol.  (+info)

Alteration of methotrexate uptake in human leukemia cells by other agents. (4/313)

The uptake of methotrexate (MTX) and the effect of drugs known to either inhibit or enhance MTX transport in L1210 murine leukemia were studied in man using blast cells from patients with acute myelogenous leukemia in vitro. MTX uptake was found to proceed slowly, requiring at least 160 min for cells to reach a "steady state" when extracellular MTX concentrations were 1 muM. Efflux of MTX from preloaded cells required 80 to 120 min and the nonexchangeable or tightly bound fraction was 40% of the total intracellular drug. Utilizing doses that are estimates of achievable peak blood levels following single i.v. injection, cephalothin (21 mug/ml) and hydrocortisone (20 mug/ml) inhibited net MTX accumulation by 20 and 28%, respectively. Vincristine sulfate at 8.3 and 0.083 mug/ml enhanced MTX uptake by 54 and 33%, respectively, by inhibiting MTX efflux, thus increasing the level of intracellular drug in excess of the tightly bound fraction. The potential clinical implications of using MTX in combination with the aforementioned drugs for cancer chemotherapy are discussed.  (+info)

The exocellular DD-carboxypeptidase-endopeptidase of Streptomyces albus G. Interaction with beta-lactam antibiotics. (5/313)

Kinetically, the three-step model proposed for the interaction between beta-lactam antibiotics and the exocellular DD-carboxypeptidases-transpeptidases of Streptomyces R61 and Actinomadura R39 [Frere, Ghuysen & Iwatsubo (1975) Eur. J. Biochem. 57, 343--357; Fuad, Frere, Ghuysen, Duez & Iwatsubo (1976) Biochem. J. 155, 623--629] applies to the interaction between the much less penicillin-sensitive exocellular DD-carboxypeptidase-endopeptidase of Streptomyces albus G and at least phenoxymethylpenicillin, cephalothin and cephalosporin C. The penicillin resistance of the albus G enzyme is mainly due to the low efficiency with which the first reversible complex formed with the antibiotic (complex EI) undergoes transformation into a second more stable complex EI*. Analysis of the ternary interaction between enzyme, NalphaNepsilon-diacetyl-L-lysyl-D-alanyl-D-alanine (Ac2-L-Lys-D-Ala-D-Ala) and cephalosporin C indicates a non-competitive mechanism.  (+info)

Interpretive criteria for cefamandole and cephalothin disk diffusion susceptibility tests. (6/313)

A multi-center study of 1,838 clinical isolates established the accuracy of diffusion susceptibility tests with 30-mug cephalothin disks and 30-mug cefamandole disks. The same interpretive zone standards can be applied to tests with either disk but the two drugs cannot be tested interchangeably.  (+info)

Helicobacter mesocricetorum sp. nov., A novel Helicobacter isolated from the feces of Syrian hamsters. (7/313)

A spiral-shaped bacterium with bipolar, single, nonsheathed flagella was isolated from the feces of Syrian hamsters. The bacterium grew as a thin spreading film at 37 degrees C under microaerobic conditions, did not hydrolyze urea, was positive for catalase and alkaline phosphatase, reduced nitrate to nitrite, did not hydrolyze hippurate, and was sensitive to nalidixic acid but resistant to cephalothin. Sequence analysis of the 16S rRNA gene and biochemical and phenotypic criteria indicate that the novel bacterium is a helicobacter. The novel bacterium is most closely related to the recently described mouse enteric helicobacter, Helicobacter rodentium. This is the first urease-negative Helicobacter species with nonsheathed flagella isolated from feces of asymptomatic Syrian hamsters. We propose to name this novel helicobacter Helicobacter mesocricetorum. The type strain is MU 97-1514 (GenBank accession number AF072471).  (+info)

Massive pulmonary gangrene: a severe complication of Klebsiella pneumonia. (8/313)

SUMMARY: Massive pulmonary gangrene developed in two patients. Review of the literature reveals 10 other case reports of pulmonary gangrene complicating lobar pneumonia. Among the total of 12 patients whose cases have now been reported, all 4 patients who were treated nonsurgically died and the 8 who underwent surgical resection of the gangrenous lung survived. The present report emphasizes the necessity of early recognition and appropriate surgical treatment for a successful outcome.  (+info)

Cephalothin is a type of antibiotic known as a first-generation cephalosporin. It is used to treat a variety of bacterial infections, including respiratory tract infections, skin and soft tissue infections, bone and joint infections, and urinary tract infections.

Cephalothin works by interfering with the ability of bacteria to form cell walls, which are essential for their survival. It binds to specific proteins in the bacterial cell wall, causing the wall to become unstable and ultimately leading to the death of the bacterium.

Like other antibiotics, cephalothin is only effective against certain types of bacteria, and it should be used under the direction of a healthcare professional. It is important to take the full course of treatment as directed, even if symptoms improve, to ensure that the infection is fully treated and to reduce the risk of developing antibiotic resistance.

Common side effects of cephalothin include gastrointestinal symptoms such as nausea, vomiting, and diarrhea. More serious side effects may include allergic reactions, kidney damage, and seizures. It is important to inform your healthcare provider of any medical conditions you have or medications you are taking before starting treatment with cephalothin.

Cephalosporins are a class of antibiotics that are derived from the fungus Acremonium, originally isolated from seawater and cow dung. They have a similar chemical structure to penicillin and share a common four-membered beta-lactam ring in their molecular structure.

Cephalosporins work by inhibiting the synthesis of bacterial cell walls, which ultimately leads to bacterial death. They are broad-spectrum antibiotics, meaning they are effective against a wide range of bacteria, including both Gram-positive and Gram-negative organisms.

There are several generations of cephalosporins, each with different spectra of activity and pharmacokinetic properties. The first generation cephalosporins have a narrow spectrum of activity and are primarily used to treat infections caused by susceptible Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus pneumoniae.

Second-generation cephalosporins have an expanded spectrum of activity that includes some Gram-negative organisms, such as Escherichia coli and Haemophilus influenzae. Third-generation cephalosporins have even broader spectra of activity and are effective against many resistant Gram-negative bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumoniae.

Fourth-generation cephalosporins have activity against both Gram-positive and Gram-negative organisms, including some that are resistant to other antibiotics. They are often reserved for the treatment of serious infections caused by multidrug-resistant bacteria.

Cephalosporins are generally well tolerated, but like penicillin, they can cause allergic reactions in some individuals. Cross-reactivity between cephalosporins and penicillin is estimated to occur in 5-10% of patients with a history of penicillin allergy. Other potential adverse effects include gastrointestinal symptoms (such as nausea, vomiting, and diarrhea), neurotoxicity, and nephrotoxicity.

Cephaloridine is a type of antibiotic that belongs to the class of cephalosporins. It is used for treating various bacterial infections, including respiratory tract infections, urinary tract infections, skin and soft tissue infections, bone and joint infections, and septicemia.

Cephaloridine works by inhibiting the synthesis of the bacterial cell wall, leading to bacterial death. It is administered intramuscularly or intravenously and is known for its broad-spectrum activity against both Gram-positive and Gram-negative bacteria. However, due to its potential nephrotoxicity (kidney toxicity), it has largely been replaced by other antibiotics with similar spectra of activity but better safety profiles.

It's important to note that the use of cephaloridine should be reserved for infections caused by bacteria that are resistant to other antibiotics, and its administration should be closely monitored by a healthcare professional to minimize the risk of adverse effects.

Cefamandole is a second-generation cephalosporin antibiotic, which is a type of antibacterial medication used to treat various infections caused by bacteria. It works by interfering with the ability of bacteria to form cell walls, resulting in weakening and eventual death of the bacterial cells.

Cefamandole has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, making it useful for treating a variety of infections, including respiratory tract infections, urinary tract infections, skin and soft tissue infections, bone and joint infections, and septicemia.

Like other cephalosporins, cefamandole is generally well-tolerated and has a low incidence of serious side effects. However, it can cause gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as allergic reactions in some people. It may also interact with other medications, so it's important to inform your healthcare provider of all the medications you are taking before starting cefamandole therapy.

It is important to note that antibiotics should only be used to treat bacterial infections and not viral infections, as they are not effective against viruses and can contribute to the development of antibiotic resistance.

Cephapirin is a type of antibiotic that belongs to the class of cephalosporins. It is used to treat various bacterial infections, including respiratory tract infections, skin and soft tissue infections, bone and joint infections, and genitourinary tract infections. Cephapirin works by interfering with the bacteria's ability to form a cell wall, which results in bacterial death.

Like other cephalosporins, cephapirin is generally well-tolerated and has a broad spectrum of activity against many different types of bacteria. However, it may cause side effects such as nausea, diarrhea, vomiting, and allergic reactions in some people. It is important to take cephapirin exactly as directed by a healthcare provider, and to complete the full course of treatment even if symptoms improve before all of the medication has been taken.

It's worth noting that Cephapirin is not a commonly used antibiotic now a days, due to the availability of other cephalosporins which are more effective and have less side effects.

Phlebitis is a medical term that refers to the inflammation of a vein, usually occurring in the legs. The inflammation can be caused by blood clots (thrombophlebitis) or other conditions that cause irritation and swelling in the vein's lining. Symptoms may include redness, warmth, pain, and swelling in the affected area. In some cases, phlebitis may lead to serious complications such as deep vein thrombosis (DVT) or pulmonary embolism (PE), so it is essential to seek medical attention if you suspect you have this condition.

Cefoxitin is a type of antibiotic known as a cephamycin, which is a subclass of the larger group of antibiotics called cephalosporins. Cephalosporins are bactericidal agents that inhibit bacterial cell wall synthesis by binding to and disrupting the function of penicillin-binding proteins (PBPs).

Cefoxitin has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including many strains that are resistant to other antibiotics. It is commonly used to treat infections caused by susceptible organisms such as:

* Staphylococcus aureus (including methicillin-resistant S. aureus or MRSA)
* Streptococcus pneumoniae
* Escherichia coli
* Klebsiella spp.
* Proteus mirabilis
* Bacteroides fragilis and other anaerobic bacteria

Cefoxitin is available in both intravenous (IV) and intramuscular (IM) formulations, and it is typically administered every 6 to 8 hours. The drug is generally well tolerated, but potential side effects include gastrointestinal symptoms such as diarrhea, nausea, and vomiting, as well as allergic reactions, including rash, pruritus, and anaphylaxis.

It's important to note that the use of antibiotics should be based on the results of bacterial cultures and susceptibility testing whenever possible, to ensure appropriate therapy and minimize the development of antibiotic resistance.

Cefazolin is a type of antibiotic known as a cephalosporin, which is used to treat a variety of bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Without a functional cell wall, the bacteria are not able to grow and multiply, and are eventually destroyed by the body's immune system.

Cefazolin is commonly used to treat infections of the skin, bones, joints, heart, lungs, and urinary tract. It may also be used to prevent infection during surgery. Like all antibiotics, cefazolin is only effective against certain types of bacteria, so it is important to know the specific type of bacteria causing an infection before using this medication.

Cefazolin is usually given as an injection into a vein or muscle, and may be administered in a hospital setting or at home with proper training. The dosage and duration of treatment will depend on the severity and location of the infection, as well as the patient's overall health status.

As with any medication, cefazolin can cause side effects, including diarrhea, nausea, vomiting, headache, and rash. In rare cases, it may also cause serious side effects such as allergic reactions, kidney damage, or abnormal blood clotting. It is important to report any unusual symptoms to a healthcare provider promptly.

It is essential to complete the full course of treatment with cefazolin, even if symptoms improve, to ensure that the infection is fully treated and to reduce the risk of antibiotic resistance.

I'm sorry for any confusion, but "Mandelic Acids" is not a recognized medical term or concept in dermatology or medicine. Mandelic acid, however, is a type of chemical compound used in skincare products for various purposes such as exfoliation and reducing hyperpigmentation. It is an aromatic hydroxyacetic acid derived from mandelic almonds. If you have any questions about skincare ingredients or treatments, I'd be happy to help clarify those for you!

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Cephalexin is a type of antibiotic known as a first-generation cephalosporin. It works by interfering with the bacteria's ability to form a cell wall, which is essential for its survival. Without a functional cell wall, the bacterial cells become unstable and eventually die.

Cephalexin is effective against a wide range of gram-positive and some gram-negative bacteria, making it a useful antibiotic for treating various types of infections, such as respiratory tract infections, skin and soft tissue infections, bone and joint infections, and urinary tract infections.

Like all antibiotics, cephalexin should be used only to treat bacterial infections, as it has no effect on viral infections. It is important to take the full course of treatment as directed by a healthcare professional, even if symptoms improve before the medication is finished, to ensure that the infection is fully treated and to reduce the risk of antibiotic resistance.

Common side effects of cephalexin include nausea, diarrhea, vomiting, and stomach pain. In rare cases, more serious side effects such as allergic reactions, severe skin rashes, or liver damage may occur. It is important to seek medical attention immediately if any signs of an allergic reaction or serious side effect are experienced while taking cephalexin.

Ambroxol is a medication that belongs to the class of drugs known as mucolytic agents or expectorants. It works by thinning and loosening mucus in the airways, making it easier to cough up and clear the airways. This can help reduce symptoms such as chest congestion and shortness of breath in conditions such as chronic bronchitis, bronchiectasis, and cystic fibrosis.

Ambroxol also has some additional properties that make it useful in treating respiratory conditions. It can help to reduce inflammation in the airways, reduce the production of reactive oxygen species (which can damage cells), and increase the activity of certain immune cells that help to fight infection. These effects may contribute to the overall benefits of ambroxol in managing respiratory diseases.

It is important to note that ambroxol should only be used under the guidance of a healthcare professional, as it can have side effects and interactions with other medications. The dosage and duration of treatment will depend on various factors, including the underlying condition being treated, the patient's age and overall health status, and any other medical conditions or medications they may be taking.

Penicillin G is a type of antibiotic that belongs to the class of medications called penicillins. It is a natural antibiotic derived from the Penicillium fungus and is commonly used to treat a variety of bacterial infections. Penicillin G is active against many gram-positive bacteria, as well as some gram-negative bacteria.

Penicillin G is available in various forms, including an injectable solution and a powder for reconstitution into a solution. It works by interfering with the ability of bacteria to form a cell wall, which ultimately leads to bacterial death. Penicillin G is often used to treat serious infections that cannot be treated with other antibiotics, such as endocarditis (inflammation of the inner lining of the heart), pneumonia, and meningitis (inflammation of the membranes surrounding the brain and spinal cord).

It's important to note that Penicillin G is not commonly used for topical or oral treatment due to its poor absorption in the gastrointestinal tract and instability in acidic environments. Additionally, as with all antibiotics, Penicillin G should be used under the guidance of a healthcare professional to ensure appropriate use and to reduce the risk of antibiotic resistance.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

A cephalosporinase is an enzyme that can break down and inactivate cephalosporins, a group of antibiotics commonly used to treat various bacterial infections. Bacteria that produce this enzyme are referred to as "cephalosporin-resistant" or "cephalosporinase-producing" organisms. The production of cephalosporinases by bacteria can lead to treatment failures and make infections more difficult to manage.

Cephalosporins are broad-spectrum antibiotics, which means they can be effective against a wide range of bacterial species. However, some bacteria have developed resistance mechanisms, such as the production of cephalosporinases, to counteract their effects. These enzymes hydrolyze the beta-lactam ring in cephalosporins, rendering them ineffective.

There are different classes of cephalosporinases (e.g., Ambler classes A, C, and D), each with distinct characteristics and substrate profiles. Some cephalosporinases can hydrolyze a broader range of cephalosporins than others, leading to varying degrees of resistance.

To overcome cephalosporinase-mediated resistance, alternative antibiotics or combinations of antibiotics may be used. Additionally, the development of new cephalosporins with improved stability against these enzymes is an ongoing area of research in the field of antimicrobial drug discovery.

Penicillinase is an enzyme produced by some bacteria that can inactivate penicillin and other beta-lactam antibiotics by breaking down the beta-lactam ring, which is essential for their antimicrobial activity. Bacteria that produce penicillinase are resistant to penicillin and related antibiotics. Penicillinase-resistant penicillins, such as methicillin and oxacillin, have been developed to overcome this form of bacterial resistance.

'Proteus' doesn't have a specific medical definition itself, but it is related to a syndrome in medicine. Proteus syndrome is a rare genetic disorder characterized by the overgrowth of various tissues and organs in the body. The name "Proteus" comes from the Greek god Proteus, who could change his form at will, reflecting the diverse and ever-changing nature of this condition's symptoms.

People with Proteus syndrome experience asymmetric overgrowth of bones, skin, and other tissues, leading to abnormalities in body shape and function. The disorder can also affect blood vessels, causing benign tumors called hamartomas to develop. Additionally, individuals with Proteus syndrome are at an increased risk of developing certain types of cancer.

The genetic mutation responsible for Proteus syndrome is found in the AKT1 gene, which plays a crucial role in cell growth and division. This disorder is typically not inherited but instead arises spontaneously as a new mutation in the affected individual. Early diagnosis and management of Proteus syndrome can help improve patients' quality of life and reduce complications associated with the condition.

Dicloxacillin is a type of antibiotic known as a penicillinase-resistant penicillin. It is used to treat infections caused by bacteria that are resistant to other types of penicillins. Dicloxacillin is effective against many gram-positive cocci, including staphylococci that produce penicillinases (enzymes that destroy penicillins).

The medical definition of dicloxacillin is:

"A semi-synthetic antibiotic derived from 6-aminopenicillanic acid and dichloroacetyl coenzyme A. It is resistant to staphylococcal penicillinases and is used to treat infections caused by susceptible organisms, including Staphylococcus aureus and Streptococcus pyogenes."

Dicloxacillin is available in oral capsule form and is typically taken two to four times daily, depending on the severity of the infection. It is important to take dicloxacillin for the entire prescribed course of treatment, even if symptoms improve, to ensure that the infection is completely treated and to reduce the risk of antibiotic resistance.

Like all antibiotics, dicloxacillin can cause side effects, including gastrointestinal symptoms such as nausea, vomiting, and diarrhea. It may also cause allergic reactions in some people, ranging from mild skin rashes to life-threatening anaphylaxis. People with a history of penicillin allergy should inform their healthcare provider before taking dicloxacillin or any other antibiics.

Enterobacteriaceae is a family of gram-negative, rod-shaped bacteria that are commonly found in the intestines of humans and animals. Many species within this family are capable of causing various types of infections, particularly in individuals with weakened immune systems. Some common examples of Enterobacteriaceae include Escherichia coli (E. coli), Klebsiella pneumoniae, Proteus mirabilis, and Salmonella enterica.

These bacteria are typically characterized by their ability to ferment various sugars and produce acid and gas as byproducts. They can also be distinguished by their biochemical reactions, such as their ability to produce certain enzymes or resist specific antibiotics. Infections caused by Enterobacteriaceae can range from mild to severe, depending on the species involved and the overall health of the infected individual.

Some infections caused by Enterobacteriaceae include urinary tract infections, pneumonia, bloodstream infections, and foodborne illnesses. Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of these bacteria and reduce the risk of infection.

Penicillins are a group of antibiotics derived from the Penicillium fungus. They are widely used to treat various bacterial infections due to their bactericidal activity, which means they kill bacteria by interfering with the synthesis of their cell walls. The first penicillin, benzylpenicillin (also known as penicillin G), was discovered in 1928 by Sir Alexander Fleming. Since then, numerous semi-synthetic penicillins have been developed to expand the spectrum of activity and stability against bacterial enzymes that can inactivate these drugs.

Penicillins are classified into several groups based on their chemical structure and spectrum of activity:

1. Natural Penicillins (e.g., benzylpenicillin, phenoxymethylpenicillin): These have a narrow spectrum of activity, mainly targeting Gram-positive bacteria such as streptococci and staphylococci. However, they are susceptible to degradation by beta-lactamase enzymes produced by some bacteria.
2. Penicillinase-resistant Penicillins (e.g., methicillin, oxacillin, nafcillin): These penicillins resist degradation by certain bacterial beta-lactamases and are primarily used to treat infections caused by staphylococci, including methicillin-susceptible Staphylococcus aureus (MSSA).
3. Aminopenicillins (e.g., ampicillin, amoxicillin): These penicillins have an extended spectrum of activity compared to natural penicillins, including some Gram-negative bacteria such as Escherichia coli and Haemophilus influenzae. However, they are still susceptible to degradation by many beta-lactamases.
4. Antipseudomonal Penicillins (e.g., carbenicillin, ticarcillin): These penicillins have activity against Pseudomonas aeruginosa and other Gram-negative bacteria with increased resistance to other antibiotics. They are often combined with beta-lactamase inhibitors such as clavulanate or tazobactam to protect them from degradation.
5. Extended-spectrum Penicillins (e.g., piperacillin): These penicillins have a broad spectrum of activity, including many Gram-positive and Gram-negative bacteria. They are often combined with beta-lactamase inhibitors to protect them from degradation.

Penicillins are generally well-tolerated antibiotics; however, they can cause allergic reactions in some individuals, ranging from mild skin rashes to life-threatening anaphylaxis. Cross-reactivity between different penicillin classes and other beta-lactam antibiotics (e.g., cephalosporins) is possible but varies depending on the specific drugs involved.

Staphylococcus is a genus of Gram-positive, facultatively anaerobic bacteria that are commonly found on the skin and mucous membranes of humans and other animals. Many species of Staphylococcus can cause infections in humans, but the most notable is Staphylococcus aureus, which is responsible for a wide range of illnesses, from minor skin infections to life-threatening conditions such as pneumonia, endocarditis, and sepsis.

Staphylococcus species are non-motile, non-spore forming, and typically occur in grape-like clusters when viewed under a microscope. They can be coagulase-positive or coagulase-negative, with S. aureus being the most well-known coagulase-positive species. Coagulase is an enzyme that causes the clotting of plasma, and its presence is often used to differentiate S. aureus from other Staphylococcus species.

These bacteria are resistant to many commonly used antibiotics, including penicillin, due to the production of beta-lactamases. Methicillin-resistant Staphylococcus aureus (MRSA) is a particularly problematic strain that has developed resistance to multiple antibiotics and can cause severe, difficult-to-treat infections.

Proper hand hygiene, use of personal protective equipment, and environmental cleaning are crucial measures for preventing the spread of Staphylococcus in healthcare settings and the community.

Rolitetracycline is not a recognized medication or drug in the medical field. It seems that there might be a spelling mistake or a confusion with the actual name of the antibiotic. The correct name of the antibiotic is likely Rolitetracycline, which is a semi-synthetic tetracycline derivative.

Tetracyclines are a class of broad-spectrum antibiotics that are effective against a wide range of bacteria. They work by inhibiting bacterial protein synthesis. Rolitetracycline has been used to treat various infections, including respiratory, urinary tract, and skin infections.

It's important to note that the use of tetracyclines during tooth development (last half of pregnancy, infancy and childhood up to the age of 8 years) may cause permanent discoloration of the teeth (yellow-gray-brown). Also, tetracyclines can phototoxic, which means they can increase the skin's sensitivity to sunlight, leading to sunburn.

It is always recommended to consult a healthcare professional for accurate information regarding medications and treatments.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Methicillin is defined as a narrow-spectrum antibiotic that belongs to the penicillin class. It was initially developed to address the problem of beta-lactamase enzyme production in Staphylococcus aureus bacteria, which made them resistant to earlier penicillins. However, methicillin-resistant strains of S. aureus (MRSA) have since emerged and become a significant global health concern. Methicillin is no longer used clinically due to its high nephrotoxicity, but the term "methicillin-resistant" remains relevant in describing resistant bacteria.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Penicillin resistance is the ability of certain bacteria to withstand the antibacterial effects of penicillin, a type of antibiotic. This occurs when these bacteria have developed mechanisms that prevent penicillin from binding to and inhibiting the function of their cell wall biosynthesis proteins, particularly the enzyme transpeptidase.

One common mechanism of penicillin resistance is the production of beta-lactamases, enzymes that can hydrolyze and inactivate the beta-lactam ring structure present in penicillin and other related antibiotics. Another mechanism involves alterations in the bacterial cell wall that prevent penicillin from binding to its target proteins.

Penicillin resistance is a significant concern in clinical settings, as it can limit treatment options for bacterial infections and may necessitate the use of more potent or toxic antibiotics. It is important to note that misuse or overuse of antibiotics can contribute to the development and spread of antibiotic-resistant bacteria, including those resistant to penicillin.

Ampicillin is a penicillin-type antibiotic used to treat a wide range of bacterial infections. It works by interfering with the ability of bacteria to form cell walls, which are essential for their survival. This causes the bacterial cells to become unstable and eventually die.

The medical definition of Ampicillin is:

"A semi-synthetic penicillin antibiotic, derived from the Penicillium mold. It is used to treat a variety of infections caused by susceptible gram-positive and gram-negative bacteria. Ampicillin is effective against both aerobic and anaerobic organisms. It is commonly used to treat respiratory tract infections, urinary tract infections, meningitis, and endocarditis."

It's important to note that Ampicillin is not effective against infections caused by methicillin-resistant Staphylococcus aureus (MRSA) or other bacteria that have developed resistance to penicillins. Additionally, overuse of antibiotics like Ampicillin can lead to the development of antibiotic resistance, which is a significant public health concern.

Gentamicin is an antibiotic that belongs to the class of aminoglycosides. It is used to treat various types of bacterial infections, including:

* Gram-negative bacterial infections, such as those caused by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis
* Certain Gram-positive bacterial infections, such as those caused by Staphylococcus aureus and Streptococcus pyogenes

Gentamicin works by binding to the 30S subunit of the bacterial ribosome, which inhibits protein synthesis and ultimately leads to bacterial cell death. It is typically given via injection (intramuscularly or intravenously) and is often used in combination with other antibiotics to treat serious infections.

Like all aminoglycosides, gentamicin can cause kidney damage and hearing loss, especially when used for long periods of time or at high doses. Therefore, monitoring of drug levels and renal function is recommended during treatment.

Beta-lactamases are enzymes produced by certain bacteria that can break down and inactivate beta-lactam antibiotics, such as penicillins, cephalosporins, and carbapenems. This enzymatic activity makes the bacteria resistant to these antibiotics, limiting their effectiveness in treating infections caused by these organisms.

Beta-lactamases work by hydrolyzing the beta-lactam ring, a structural component of these antibiotics that is essential for their antimicrobial activity. By breaking down this ring, the enzyme renders the antibiotic ineffective against the bacterium, allowing it to continue growing and potentially causing harm.

There are different classes of beta-lactamases (e.g., Ambler Class A, B, C, and D), each with distinct characteristics and mechanisms for breaking down various beta-lactam antibiotics. The emergence and spread of bacteria producing these enzymes have contributed to the growing problem of antibiotic resistance, making it increasingly challenging to treat infections caused by these organisms.

To overcome this issue, researchers have developed beta-lactamase inhibitors, which are drugs that can bind to and inhibit the activity of these enzymes, thus restoring the effectiveness of certain beta-lactam antibiotics. Examples of such combinations include amoxicillin/clavulanate (Augmentin) and piperacillin/tazobactam (Zosyn).

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to

"Enterobacter aerogenes" is a species of gram-negative, facultatively anaerobic, rod-shaped bacteria that are commonly found in the environment, including in soil, water, and vegetation. In medical contexts, E. aerogenes is often considered an opportunistic pathogen, meaning it can cause infection in individuals with compromised immune systems or underlying health conditions.

E. aerogenes is a member of the family Enterobacteriaceae and is closely related to other pathogens such as Klebsiella pneumoniae and Escherichia coli. It is known for its ability to produce large amounts of gas, including carbon dioxide and hydrogen sulfide, which can contribute to its virulence and make it difficult to identify using traditional biochemical tests.

E. aerogenes can cause a variety of infections, including urinary tract infections, pneumonia, bacteremia, and wound infections. It is often resistant to multiple antibiotics, which can make treatment challenging. In recent years, there has been an increase in the number of E. aerogenes isolates that are resistant to carbapenems, a class of antibiotics that are often used as a last resort for treating serious bacterial infections.

Beta-lactams are a class of antibiotics that include penicillins, cephalosporins, carbapenems, and monobactams. They contain a beta-lactam ring in their chemical structure, which is responsible for their antibacterial activity. The beta-lactam ring inhibits the bacterial enzymes necessary for cell wall synthesis, leading to bacterial death. Beta-lactams are commonly used to treat a wide range of bacterial infections, including respiratory tract infections, skin and soft tissue infections, urinary tract infections, and bone and joint infections. However, some bacteria have developed resistance to beta-lactams through the production of beta-lactamases, enzymes that can break down the beta-lactam ring and render the antibiotic ineffective. To overcome this resistance, beta-lactam antibiotics are often combined with beta-lactamase inhibitors, which protect the beta-lactam ring from degradation.

Klebsiella is a genus of Gram-negative, facultatively anaerobic, encapsulated, non-motile, rod-shaped bacteria that are part of the family Enterobacteriaceae. They are commonly found in the normal microbiota of the mouth, skin, and intestines, but can also cause various types of infections, particularly in individuals with weakened immune systems.

Klebsiella pneumoniae is the most common species and can cause pneumonia, urinary tract infections, bloodstream infections, and wound infections. Other Klebsiella species, such as K. oxytoca, can also cause similar types of infections. These bacteria are resistant to many antibiotics, making them difficult to treat and a significant public health concern.

Cloxacillin is a type of antibiotic known as a penicillinase-resistant penicillin. It is used to treat infections caused by bacteria that are resistant to other types of penicillins. Cloxacillin works by interfering with the ability of the bacterial cell wall to grow and multiply, ultimately leading to the death of the bacterium.

Cloxacillin is often used to treat skin infections, pneumonia, and other respiratory tract infections. It is available in various forms, including tablets, capsules, and powder for injection. As with all antibiotics, it is important to take cloxacillin exactly as directed by a healthcare provider, and to complete the full course of treatment, even if symptoms improve before all of the medication has been taken.

Like other penicillins, cloxacillin can cause allergic reactions in some people. It may also interact with other medications, so it is important to inform a healthcare provider of all other medications being taken before starting cloxacillin.

Ticarcillin is an antibiotic medication that belongs to the class of drugs called penicillins. It is primarily used to treat infections caused by susceptible bacteria. Ticarcillin has activity against various gram-positive and gram-negative bacteria, including Pseudomonas aeruginosa.

The drug works by inhibiting the synthesis of bacterial cell walls, leading to bacterial death. It is often administered intravenously in a hospital setting due to its poor oral bioavailability. Common side effects include gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as allergic reactions, including rash and itching.

It's important to note that the use of ticarcillin should be based on the results of bacterial culture and sensitivity testing to ensure its effectiveness against the specific bacteria causing the infection. Additionally, healthcare providers should monitor renal function during treatment, as ticarcillin can affect kidney function in some patients.

Enterobacter is a genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that are commonly found in the environment, including in soil, water, and the gastrointestinal tracts of humans and animals. These bacteria are members of the family Enterobacteriaceae and are known to cause a variety of infections in humans, particularly in healthcare settings.

Enterobacter species are capable of causing a range of infections, including urinary tract infections, pneumonia, bacteremia, and wound infections. They are often resistant to multiple antibiotics, which can make treatment challenging. Infections with Enterobacter are typically treated with broad-spectrum antibiotics that are effective against gram-negative bacteria.

It's worth noting that while Enterobacter species can cause infections, they are also a normal part of the microbiota found in the human gut and usually do not cause harm in healthy individuals. However, if the bacterium enters the bloodstream or other sterile sites in the body, it can cause infection and illness.

Oxacillin is a type of antibiotic known as a penicillinase-resistant penicillin. It is used to treat infections caused by bacteria that are resistant to other types of penicillins. Oxacillin is commonly used to treat infections of the skin, soft tissue, and bone.

Here is the medical definition of oxacillin:

Oxacillin is a semisynthetic antibiotic derived from penicillin that is resistant to staphylococcal penicillinases. It is used to treat infections caused by susceptible strains of staphylococci and some streptococci, including penicillinase-producing staphylococci. Oxacillin is available as a sterile powder for injection or as a oral capsule.

It is important to note that the overuse or misuse of antibiotics like oxacillin can lead to the development of antibiotic resistance, which makes infections harder to treat. It's essential to use antibiotics only when necessary and as directed by a healthcare professional.

"Sarcina" is not a term that has a specific medical definition in current use. However, in older medical literature or in the context of microbiology, "Sarcina" refers to a genus of Gram-positive, coccoid bacteria that are arranged in tetrads or packets of 4, 8, or 16 cells. These bacteria were once thought to be responsible for a variety of infections, but they are now considered to be rare causes of disease and are not typically tested for in clinical settings.

In modern medical terminology, the term "sarcina" is more commonly used outside of medicine, particularly in the context of physical fitness or exercise, where it refers to a unit of weightlifting or strength training that involves lifting a weight equal to one's own bodyweight.

Cefadroxil is a type of antibiotic known as a cephalosporin. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Without a functional cell wall, the bacteria eventually die. Cefadroxil is used to treat a variety of infections caused by bacteria, including skin infections, ear infections, and urinary tract infections.

Cefadroxil is available as a prescription medication and is typically taken by mouth in the form of a tablet or liquid suspension. It is usually taken one to two times a day, depending on the severity of the infection and the individual patient's needs.

As with all antibiotics, it is important to take cefadroxil exactly as directed by your healthcare provider and to finish the entire course of treatment, even if you start to feel better. This will help ensure that the infection is fully treated and reduce the risk of the bacteria becoming resistant to the antibiotic.

Some common side effects of cefadroxil include nausea, vomiting, diarrhea, and stomach pain. In rare cases, more serious side effects may occur, such as an allergic reaction or severe skin reactions. If you experience any unusual symptoms while taking cefadroxil, it is important to contact your healthcare provider right away.

Bronchopneumonia is a type of pneumonia that involves inflammation and infection of the bronchioles (small airways in the lungs) and alveoli (tiny air sacs in the lungs). It can be caused by various bacteria, viruses, or fungi and often occurs as a complication of a respiratory tract infection.

The symptoms of bronchopneumonia may include cough, chest pain, fever, chills, shortness of breath, and fatigue. In severe cases, it can lead to complications such as respiratory failure or sepsis. Treatment typically involves antibiotics for bacterial infections, antiviral medications for viral infections, and supportive care such as oxygen therapy and hydration.

Cefotaxime is a third-generation cephalosporin antibiotic, which is used to treat a variety of bacterial infections. It works by inhibiting the synthesis of the bacterial cell wall. Cefotaxime has a broad spectrum of activity and is effective against many Gram-positive and Gram-negative bacteria, including some that are resistant to other antibiotics.

Cefotaxime is often used to treat serious infections such as pneumonia, meningitis, and sepsis. It may also be used to prevent infections during surgery or in people with weakened immune systems. The drug is administered intravenously or intramuscularly, and its dosage depends on the type and severity of the infection being treated.

Like all antibiotics, cefotaxime can cause side effects, including diarrhea, nausea, vomiting, and rash. In rare cases, it may cause serious allergic reactions or damage to the kidneys or liver. It is important to follow the prescribing physician's instructions carefully when taking this medication.

Proteus vulgaris is a species of Gram-negative, facultatively anaerobic, rod-shaped bacteria that are commonly found in soil, water, and the human digestive tract. They are named after the Greek god Proteus, who could change his shape at will, as these bacteria are known for their ability to undergo various morphological changes.

Proteus vulgaris is a member of the family Enterobacteriaceae and can cause opportunistic infections in humans, particularly in individuals with weakened immune systems or underlying medical conditions. They can cause a variety of infections, including urinary tract infections, wound infections, pneumonia, and bacteremia (bloodstream infections).

Proteus vulgaris is also known for its ability to produce urease, an enzyme that breaks down urea into ammonia and carbon dioxide. This can lead to the formation of urinary stones and contribute to the development of chronic urinary tract infections. Additionally, Proteus vulgaris can form biofilms, which can make it difficult to eradicate the bacteria from infected sites.

In a medical context, identifying Proteus vulgaris is important for determining appropriate antibiotic therapy and managing infections caused by this organism.

Bacterial infections are caused by the invasion and multiplication of bacteria in or on tissues of the body. These infections can range from mild, like a common cold, to severe, such as pneumonia, meningitis, or sepsis. The symptoms of a bacterial infection depend on the type of bacteria invading the body and the area of the body that is affected.

Bacteria are single-celled microorganisms that can live in many different environments, including in the human body. While some bacteria are beneficial to humans and help with digestion or protect against harmful pathogens, others can cause illness and disease. When bacteria invade the body, they can release toxins and other harmful substances that damage tissues and trigger an immune response.

Bacterial infections can be treated with antibiotics, which work by killing or inhibiting the growth of bacteria. However, it is important to note that misuse or overuse of antibiotics can lead to antibiotic resistance, making treatment more difficult. It is also essential to complete the full course of antibiotics as prescribed, even if symptoms improve, to ensure that all bacteria are eliminated and reduce the risk of recurrence or development of antibiotic resistance.

Amikacin is a type of antibiotic known as an aminoglycoside, which is used to treat various bacterial infections. It works by binding to the 30S subunit of the bacterial ribosome, inhibiting protein synthesis and ultimately leading to bacterial cell death. Amikacin is often used to treat serious infections caused by Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. It may be given intravenously or intramuscularly, depending on the severity and location of the infection. As with all antibiotics, amikacin should be used judiciously to prevent the development of antibiotic resistance.

Clavulanic acid is not a medical condition, but rather an antibacterial compound that is often combined with certain antibiotics to increase their effectiveness against bacteria that have become resistant to the antibiotic alone. It works by inhibiting certain enzymes produced by bacteria that help them to resist the antibiotic, allowing the antibiotic to work more effectively.

Clavulanic acid is typically combined with antibiotics such as amoxicillin or ticarcillin to treat a variety of bacterial infections, including respiratory tract infections, urinary tract infections, and skin and soft tissue infections. It is important to note that clavulanate-containing medications should only be used under the direction of a healthcare provider, as misuse or overuse can contribute to antibiotic resistance.

Moxalactam is not a medical condition but actually an antibiotic medication. It is a type of beta-lactam antibiotic, specifically a fourth-generation cephalosporin, which is used to treat various bacterial infections. Moxalactam has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including many that are resistant to other antibiotics.

Moxalactam works by inhibiting the synthesis of the bacterial cell wall, leading to bacterial death. It is commonly used to treat intra-abdominal infections, urinary tract infections, pneumonia, and sepsis, among other conditions. As with any medication, moxalactam can have side effects, including gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as allergic reactions and changes in liver function tests. It is important to use antibiotics only when necessary and under the guidance of a healthcare professional to minimize the development of antibiotic resistance.

Kanamycin is an aminoglycoside antibiotic that is derived from the bacterium Streptomyces kanamyceticus. It works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial cell death. Kanamycin is primarily used to treat serious infections caused by Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. It is also used in veterinary medicine to prevent bacterial infections in animals.

Like other aminoglycosides, kanamycin can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, it is important to monitor patients closely for signs of toxicity and adjust the dose accordingly. Kanamycin is not commonly used as a first-line antibiotic due to its potential side effects and the availability of safer alternatives. However, it remains an important option for treating multidrug-resistant bacterial infections.

Cefonicid is a type of antibiotic known as a cephalosporin, which is used to treat various bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, leading to the death of the bacteria. Cefonicid is administered intravenously and is typically used to treat serious infections such as sepsis, pneumonia, and meningitis.

Here is the medical definition of 'Cefonicid':

Cefonicid is a semisynthetic, broad-spectrum, bactericidal antibiotic of the cephalosporin class. It is administered intravenously and has a long half-life, allowing for once- or twice-daily dosing. Cefonicid is stable in the presence of beta-lactamases, including extended-spectrum beta-lactamases (ESBLs), making it useful for treating infections caused by bacteria that produce these enzymes. It is used to treat a variety of bacterial infections, including pneumonia, meningitis, and sepsis.

Common side effects of cefonicid include diarrhea, nausea, vomiting, and local reactions at the injection site. More serious side effects can include allergic reactions, kidney damage, and seizures. Cefonicid should be used with caution in patients with a history of allergy to beta-lactam antibiotics, impaired renal function, or a history of seizure disorders.

Penicillin V, also known as Penicillin V Potassium, is an antibiotic medication used to treat various bacterial infections. It belongs to the class of medications called penicillins, which work by interfering with the bacteria's ability to form a protective covering (cell wall), causing the bacteria to become more susceptible to destruction by the body's immune system.

Penicillin V is specifically used to treat infections of the respiratory tract, skin, and ear. It is also used to prevent recurrent rheumatic fever and chorea (Sydenham's chorea), a neurological disorder associated with rheumatic fever.

The medication is available as oral tablets or liquid solutions and is typically taken by mouth every 6 to 12 hours, depending on the severity and type of infection being treated. As with any antibiotic, it is important to take Penicillin V exactly as directed by a healthcare professional and for the full duration of treatment, even if symptoms improve before all doses have been taken.

Penicillin V is generally well-tolerated, but like other penicillins, it can cause allergic reactions in some people. It may also interact with certain medications, so it is important to inform a healthcare provider of any other medications being taken before starting Penicillin V therapy.

However, it binds to proteins to a much lesser extent than cephalothin. Because it is also poorly absorbed after oral ... In 1962, cephalothin and cephaloridine were introduced. Cephaloridine was briefly popular because it tolerated intramuscularly ... including the nearly nontoxic cephalothin. Cephaloridine is a cephalosporin compound with pyridinium-1-ylmethyl and 2- ... and attained higher and more sustained levels in blood than cephalothin. ...
It is resistant to cephalothin and nalidixic acid. Its type strain is MIT 95-1707 (= ATCC 700285). Its name refers to the ...
Wahlig H, Dingeldein E, Mitsuhashi S, Kawabe H (1979). "Cefazedone: microbiological evaluation in comparison with cephalothin ...
It is a precursor to the antibiotics cephaloridine and cephalothin. "2-Thiopheneacetic acid". pubchem.ncbi.nlm.nih.gov. ...
"Susceptibility of clinical isolates of bacteria to cefoxitin and cephalothin". Antimicrobial Agents and Chemotherapy. 6 (3): ...
It is resistant to cephalothin and nalidixic acid, but sensitive to metronidazole. Like Helicobacter hepaticus, it colonizes ...
The isolated samples were resistant to nalidixic acid but sensitive to cephalothin. Helicobacter cetorum strains have been ...
It's "resistant to ampicillin, penicillin, cephalothin, streptomycin, and cycloserine, but not tetracycline." Six strains have ...
Both Cedecea and Serratia are lipase positive and resistant to colistin and cephalothin; however, Cedecea is unable to ... Cedecea strains are resistant to the following antimicrobial agents: cephalothin, extended spectrium cephalosporins, colistin, ...
Other antibiotics with broad antibacterial spectra are cephalothin, carbenicillin, amoxicillin, cefamandole, tobramycin, and ...
... (INN) /ˌsɛfəˈloʊtɪn/ or cephalothin (USAN) /ˌsɛfəˈloʊθɪn/ is a first-generation cephalosporin antibiotic. It was the ...
In 1964 Lilly introduced the first cephalosporin antibiotic, Keflin (cephalothin), into the United States market. It ...
It is able to grow at 25 °C, is sensitive to cephalothin, and resistant to nalidixic acid. Gebhart CJ, Ward GE, Chang K, Kurtz ...
From this study, the bacteria were found to be sensitive to cephalothin and partially resistant to penicillin.[citation needed ...
"In vitro activity effects of combinations of cephalothin, dicloxacillin, imipenem, vancomycin and amikacin against methicillin- ...
"In vitro activity effects of combinations of cephalothin, dicloxacillin, imipenem, vancomycin and amikacin against methicillin- ...
... cephalothin plus kanamycin. And only one research found that tetracycline is more effective to decrease the time of fever than ...
... cephalothin, and clindamycin. Nissen, P.; Hansen, J.; Ban, N.; Moore, P.; Steitz, T. (2000). "The structural basis of ribosome ...
Cephalothin, a first generation cephalosporin for parenteral use was the first cephalosporin to become available for patients ...
... cephalothin), was launched by Eli Lilly and Company in 1964.[citation needed] "cephalosporin". Merriam-Webster Dictionary. " ...
... cephalothin, chloramphenicol, clindamycin, colistin sulphate, enrofloxacin, erythromycin, florfenicol, fosfomycin, fusidic acid ...
... strains can be distinguished from Campylobacter concisus strains by their susceptibility to cephalothin ...
Ticarcillin Carbenicillin Ticarcillin Azlocillin Mezlocillin Piperacillin Cefazolin Cephalexin Cephalosporin C Cephalothin ...
... cephalothin MeSH D02.065.589.099.249.190.230 - cephapirin MeSH D02.065.589.099.249.200 - cephalexin MeSH D02.065.589.099. ...
The OXA-type beta-lactamases confer resistance to ampicillin and cephalothin and are characterized by their high hydrolytic ...
Cephalothin Sodium Salt, 250 Milligrams Home Antibiotics Antibiotics ( C - F ) Cephalothin, 250 MG ...
CA ( 5 Cartridge x 50 Discs with Cartridge Applicator per Box) 5x50 Discs
Cephalothin spot print etching. Produced in 2007 by Paragon Press. Pressed on Hahnemuhle etching paper. This series is limited ... Damien Hirst "Cephalothin". Out of stock! Selling yours? Please get in contact. ... Damien Hirst "Cephalothin" spot print etching. Produced in 2007 by Paragon Press. Pressed on Hahnemuhle etching paper. This ...
Find user ratings and reviews for cephalothin in dextrose 5 intravenous on WebMD including side effects and drug interactions, ... Read user comments about the side effects, benefits, and effectiveness of cephalothin in dextrose 5 intravenous. ...
However, it binds to proteins to a much lesser extent than cephalothin. Because it is also poorly absorbed after oral ... In 1962, cephalothin and cephaloridine were introduced. Cephaloridine was briefly popular because it tolerated intramuscularly ... including the nearly nontoxic cephalothin. Cephaloridine is a cephalosporin compound with pyridinium-1-ylmethyl and 2- ... and attained higher and more sustained levels in blood than cephalothin. ...
Cephalothin. Tetracycline HCl Cephaloridine. Colistimethate (Satisfactory for 4 hours) Ampicillin. Methicillin Chloramphenicol ...
As with cephalothin, high concentrations of cefoxitin (, 100 micrograms/mL) may interfere with measurement of serum and urine ... In randomized comparative studies, MEFOXIN and cephalothin were comparably safe and effective in the management of infections ...
Persantine medication is used to prevent blood clots after heart-related procedures. Buy Persantine online from Canada Pharmacy at a Low cost and Save Big!
Cephalothin. 39. 37. 79. 77. 100. 93. 36. 8. 0. 4. 9. 24. 100. 25. 14. 0. 36. 16. 0. 0. 0. 0. 11. 17. 50. 50. 100. 100. 0. 33. ...
Categories: Cephalothin Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, CopyrightRestricted 2 ...
Aspirin, cephalothin, and phenobarbital are well-known causes of coagulation abnormalities in neonates. ...
Aspirin, cephalothin, and phenobarbital are well-known causes of coagulation abnormalities in neonates. ...
... cephalothin, chloramphenicol, clavulanic acid/amoxicillin, gentamicin, kanamycin, streptomycin, sulfamethoxazole, and ...
Cephalothin. When taken with amoxicillin, bromelain was shown to increase absorption of amoxicillin in humans. When 80 mg of ...
Tobi - Get up-to-date information on Tobi side effects, uses, dosage, overdose, pregnancy, alcohol and more. Learn more about Tobi
More Details about CEPHALOTHIN (30ug) Related Product. CEPHALOTHIN (30ug). AST Disks in cartridges ...
No incompatibility has been demonstrated with the antibiotics cephalothin, kanamycin, gentamicin, penicillin or carbenicillin. ...
One study evaluated the effect of penicillin plus chloramphenicol versus cephalothin plus kanamycin before and after D&C. ... Similarly, the available evidence did not suggest that penicillin plus chloramphenicol is better than cephalothin plus ... Similarly, available evidence did not suggest that penicillin plus chloramphenicol was better than cephalothin plus kanamycin ... There was no significant difference between penicillin plus chloramphenicol versus cephalothin plus kanamycin when D&C was ...
Integrated Sciences is partnered with innovative and reliable brands and aims to meet the specialist needs of our customers.. ...
Standard cephalothin powder should provide the following MIC values: Microorganism MIC (µg/mL) ... This procedure uses paper disks impregnated with 30 µg cephalothin to test the susceptibility of microorganisms to cephalexin. ... Reports from the laboratory providing results of the standard single-disk susceptibility test with a 30 µg cephalothin disk ... For the diffusion technique, the 30µg cephalothin disk should provide the following zone diameters in these laboratory test ...
Cephalothin and Cephalexin. Cefalexin is only available on prescription What we like: Cefuroxime is a member of the ...
Increased incidence of postoperative infections during prophylaxis with cephalothin compared to doxycycline in intestinal ...
Some products that may interact with this drug include: cephalothin.. Does Coly-Mycin M Parenteral Vial interact with other ...
... isolates from carriage sites were susceptible to cephalothin; 128 (100%) isolates from pustules and 94 (98.9%) isolates from ...
The growth rate of cephalothin sodium (KF) after seeding in frozen solution was measured. Crystal growth of KF followed ...
Perioperative medications included cephalothin sodium (20 mg/kg [9.1 mg/lb], IV) and phenylbutazone (4.4 mg/kg [2.0 mg/lb], IV ...
  • The beta-lactamase could hydrolyze both penicillin antibiotics including ampicillin, benzylpenicillin, and carbenicillin as well as cephalosporin antibiotics including nitrocefin, cephalothin, cephaloridine, and cefoperazone. (lu.se)
  • showed 100% resistance to erythromycin and high resistance rates ( 75%) to ampicillin, cephalothin, chloramphenicol and tetracycline. (who.int)
  • Similarly, the available evidence did not suggest that penicillin plus chloramphenicol is better than cephalothin plus kanamycin for the treatment of women with septic abortion. (cochrane.org)
  • Chloramphenicol had good sensitivity to S. aureus (85% in corneal and 92%in conjunctival same ples), CNS (87% and 88.5%), and Streptococcus sp (95% and 96%).CONCLUSIONS: Gentamicin, tobramycin, and cephalothin decreased their in vitro susceptibility to all tested pathogens. (unifesp.br)
  • The disks used were: amoxicillin-clavu- lanic acid 30 µg, cephalothin 30µg, enrofloxacin 30µg, gentamicin 10µg, and tetracycline 30 µg. (scirp.org)
  • First generation Cephalosporins: Such as Cefazolin, Cephalothin and Cephalexin. (seagullindia.com)
  • In 1962, cephalothin and cephaloridine were introduced. (wikipedia.org)
  • Cephaloridine was briefly popular because it tolerated intramuscularly and attained higher and more sustained levels in blood than cephalothin. (wikipedia.org)
  • The cytotoxicity of cephaloridine is completely prevented by probenecid and several other inhibitors of organic anion transport, including the nearly nontoxic cephalothin. (wikipedia.org)
  • After incubation, the inoculums was streaked onto selective media ( Campylobacter selective agar, HiMedia, Mumbai) supplemented with 10% defibrinated lysed sheep blood and reconstituted contents of Campylobacter selective-I (HiMedia, Mumbai) containing polymixin B, vancomycin, trimethoprim and cephalothin and incubated for 48 h at 42-43°C under microaerophilic conditions. (scialert.net)
  • Sensitivity of S. aureus to cephalothin decreased during the study but was still 98% for CNS. (unifesp.br)
  • E. sakazakii had larger zones of inhibition around ampicillin and cephalothin antibiotic disks, which also helps to differentiate it from E. cloacae. (microbiologyresearch.org)
  • Isolates of cattle origin demonstrated common resistance to cephazolin, sulfosoxazole, cephalothin, ampicillin and amoxicillin whereas non‐cattle Salmonella isolates resisted tetracycline, sulfosoxazole and deoxycycline. (beefresearch.org)
  • We found that Escherichia coli isolates were resistant against tilmicosin, tetracycline, ampicillin, amoxicillin with clavulanic acid, ticarcillin, and cephalothin, and contained genes considered responsible for conferring tetracycline resistance. (bioone.org)
  • Cephalothin is a first generation, semisynthetic analogue of natural cephalosporin antibiotic. (ncats.io)
  • Cefalotin (C16H16N2O6S2) is a cephalosporin antibiotic medication that is consumed with a wide range of activity for treating severe infections induced by germs susceptible to Cephalothin. (procurementresource.com)
  • Cephaloridine has been shown to possess certain favorable pharmacologic features while retaining the desirable antimicrobial properties of the parent compound, cephalothin. (nih.gov)
  • Cephalothin and cephaloridine: comparative pharmacodynamics in chronic uremia. (nih.gov)
  • Cefazolin vs cephalothin and cephaloridine. (nih.gov)
  • In 1962, cephalothin and cephaloridine were introduced. (wikipedia.org)
  • Cephaloridine was briefly popular because it tolerated intramuscularly and attained higher and more sustained levels in blood than cephalothin. (wikipedia.org)
  • The cytotoxicity of cephaloridine is completely prevented by probenecid and several other inhibitors of organic anion transport, including the nearly nontoxic cephalothin. (wikipedia.org)
  • Acute interstitial nephritis during treatment with penicillin and cephalothin. (nih.gov)
  • The gentamicin, the meropenem and cephalothin are other antibiotics widely used. (beautyphoon.com)
  • These features, together with reported enhanced antimicrobial activity and lack of inhibition by serum, suggest that it may replace or substitute for the parent compound, cephalothin, provided further clinical trials indicate that it proves to be an effective agent. (nih.gov)
  • The in-vitro bactericidal action of Cephalothin results from inhibition of cell-wall synthesis. (ncats.io)
  • The severe or irreversible adverse effects of Cephalothin, which give rise to further complications, include nephrotoxicity, hemolytic anemia. (ncats.io)
  • In general, Cephalothin has higher activity against Gram positive than Gram negative organisms. (ncats.io)
  • Cephalothin is primarily indicated in conditions like bone and joint infection, genitourinary tract infections, respiratory tract infections, soft tissue and skin infections and others. (ncats.io)
  • Cephalothin is indicated in the treatment of serious infections caused by susceptible strains of the designated microorganisms in the respiratory tract infections, skin and soft-tissue infections, genito-urinary tract infections, septicaemia, including endocarditis, bone and joint infections. (ncats.io)
  • Administration of cephalothin and cephloridine in uremic patients with hemodialysis]. (nih.gov)
  • Cephalothin produces potentially life-threatening effects, which include anaphylaxis, serum sickness syndrome. (ncats.io)