Cell-surface proteins that bind histamine and trigger intracellular changes influencing the behavior of cells. Histamine receptors are widespread in the central nervous system and in peripheral tissues. Three types have been recognized and designated H1, H2, and H3. They differ in pharmacology, distribution, and mode of action.
An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter.
Rounded or pyramidal cells of the GASTRIC GLANDS. They secrete HYDROCHLORIC ACID and produce gastric intrinsic factor, a glycoprotein that binds VITAMIN B12.
A class of histamine receptors discriminated by their pharmacology and mode of action. Most histamine H1 receptors operate through the inositol phosphate/diacylglycerol second messenger system. Among the many responses mediated by these receptors are smooth muscle contraction, increased vascular permeability, hormone release, and cerebral glyconeogenesis. (From Biochem Soc Trans 1992 Feb;20(1):122-5)
A class of histamine receptors discriminated by their pharmacology and mode of action. Histamine H2 receptors act via G-proteins to stimulate ADENYLYL CYCLASES. Among the many responses mediated by these receptors are gastric acid secretion, smooth muscle relaxation, inotropic and chronotropic effects on heart muscle, and inhibition of lymphocyte function. (From Biochem Soc Trans 1992 Feb;20(1):122-5)
The liquid secretion of the stomach mucosa consisting of hydrochloric acid (GASTRIC ACID); PEPSINOGENS; INTRINSIC FACTOR; GASTRIN; MUCUS; and the bicarbonate ion (BICARBONATES). (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p651)
The ability to detect chemicals through gustatory receptors in the mouth, including those on the TONGUE; the PALATE; the PHARYNX; and the EPIGLOTTIS.
Drugs that bind to but do not activate histamine receptors, thereby blocking the actions of histamine or histamine agonists. Classical antihistaminics block the histamine H1 receptors only.
Drugs that bind to and activate histamine receptors. Although they have been suggested for a variety of clinical applications histamine agonists have so far been more widely used in research than therapeutically.
Drugs that selectively bind to but do not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine. Included here are the classical antihistaminics that antagonize or prevent the action of histamine mainly in immediate hypersensitivity. They act in the bronchi, capillaries, and some other smooth muscles, and are used to prevent or allay motion sickness, seasonal rhinitis, and allergic dermatitis and to induce somnolence. The effects of blocking central nervous system H1 receptors are not as well understood.
Hydrochloric acid present in GASTRIC JUICE.
The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx).
A class of histamine receptors discriminated by their pharmacology and mode of action. Histamine H3 receptors were first recognized as inhibitory autoreceptors on histamine-containing nerve terminals and have since been shown to regulate the release of several neurotransmitters in the central and peripheral nervous systems. (From Biochem Soc Trans 1992 Feb;20(1):122-5)
Drugs that selectively bind to but do not activate histamine H2 receptors, thereby blocking the actions of histamine. Their clinically most important action is the inhibition of acid secretion in the treatment of gastrointestinal ulcers. Smooth muscle may also be affected. Some drugs in this class have strong effects in the central nervous system, but these actions are not well understood.
A histamine congener, it competitively inhibits HISTAMINE binding to HISTAMINE H2 RECEPTORS. Cimetidine has a range of pharmacological actions. It inhibits GASTRIC ACID secretion, as well as PEPSIN and GASTRIN output.
A synthetic pentapeptide that has effects like gastrin when given parenterally. It stimulates the secretion of gastric acid, pepsin, and intrinsic factor, and has been used as a diagnostic aid.
A histamine H1 antagonist. It has mild hypnotic properties and some local anesthetic action and is used for allergies (including skin eruptions) both parenterally and locally. It is a common ingredient of cold remedies.
Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones.
The consumption of edible substances.
Histamine substituted in any position with one or more methyl groups. Many of these are agonists for the H1, H2, or both histamine receptors.
A histamine H2 receptor antagonist that is used as an anti-ulcer agent.
The amount of a substance secreted by cells or by a specific organ or organism over a given period of time; usually applies to those substances which are formed by glandular tissues and are released by them into biological fluids, e.g., secretory rate of corticosteroids by the adrenal cortex, secretory rate of gastric acid by the gastric mucosa.
A family of gastrointestinal peptide hormones that excite the secretion of GASTRIC JUICE. They may also occur in the central nervous system where they are presumed to be neurotransmitters.
A histamine H2 receptor agonist that is often used to study the activity of histamine and its receptors.
Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice.
The secretion of histamine from mast cell and basophil granules by exocytosis. This can be initiated by a number of factors, all of which involve binding of IgE, cross-linked by antigen, to the mast cell or basophil's Fc receptors. Once released, histamine binds to a number of different target cell receptors and exerts a wide variety of effects.
A histamine H1 antagonist used as an antiemetic, antitussive, for dermatoses and pruritus, for hypersensitivity reactions, as a hypnotic, an antiparkinson, and as an ingredient in common cold preparations. It has some undesired antimuscarinic and sedative effects.
A highly potent and specific histamine H2 receptor agonist. It has been used diagnostically as a gastric secretion indicator.
An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM.
A pyrazolone with analgesic, anti-inflammatory, and antipyretic properties but has risk of AGRANULOCYTOSIS. A breath test with 13C-labeled aminopyrine has been used as a non-invasive measure of CYTOCHROME P-450 metabolic activity in LIVER FUNCTION TESTS.
A histamine H1 antagonist used in allergic reactions, hay fever, rhinitis, urticaria, and asthma. It has also been used in veterinary applications. One of the most widely used of the classical antihistaminics, it generally causes less drowsiness and sedation than PROMETHAZINE.
Ulceration of the GASTRIC MUCOSA due to contact with GASTRIC JUICE. It is often associated with HELICOBACTER PYLORI infection or consumption of nonsteroidal anti-inflammatory drugs (NSAIDS).
An enzyme that catalyzes the decarboxylation of histidine to histamine and carbon dioxide. It requires pyridoxal phosphate in animal tissues, but not in microorganisms. EC 4.1.1.22.
A PEPTIC ULCER located in the DUODENUM.
A photographic fixative used also in the manufacture of resins. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), this substance may reasonably be anticipated to be a carcinogen (Merck Index, 9th ed). Many of its derivatives are ANTITHYROID AGENTS and/or FREE RADICAL SCAVENGERS.
A lack of HYDROCHLORIC ACID in GASTRIC JUICE despite stimulation of gastric secretion.
The interruption or removal of any part of the vagus (10th cranial) nerve. Vagotomy may be performed for research or for therapeutic purposes.
A selective histamine H1-receptor antagonist devoid of central nervous system depressant activity. The drug was used for ALLERGY but withdrawn due to causing LONG QT SYNDROME.
Abnormal passage communicating with the STOMACH.
Gastric analysis for determination of free acid or total acid.
The region of the STOMACH at the junction with the DUODENUM. It is marked by the thickening of circular muscle layers forming the pyloric sphincter to control the opening and closure of the lumen.
Histamine H1 antagonist used in allergic rhinitis; ASTHMA; and URTICARIA. It is a component of COUGH and COLD medicines. It may cause drowsiness.
Antihistamine drug now withdrawn from the market in many countries because of rare but potentially fatal side effects.
A glycoprotein secreted by the cells of the GASTRIC GLANDS that is required for the absorption of VITAMIN B 12 (cyanocobalamin). Deficiency of intrinsic factor leads to VITAMIN B 12 DEFICIENCY and ANEMIA, PERNICIOUS.
A non-imidazole blocker of those histamine receptors that mediate gastric secretion (H2 receptors). It is used to treat gastrointestinal ulcers.
Drugs that selectively bind to but do not activate HISTAMINE H3 RECEPTORS. They have been used to correct SLEEP WAKE DISORDERS and MEMORY DISORDERS.
A potent second-generation histamine H1 antagonist that is effective in the treatment of allergic rhinitis, chronic urticaria, and pollen-induced asthma. Unlike many traditional antihistamines, it does not cause drowsiness or anticholinergic side effects.
Extracts of liver tissue containing uncharacterized specific factors with specific activities; a soluble thermostable fraction of mammalian liver is used in the treatment of pernicious anemia.
An enzyme that catalyzes the transfer of a methyl group from S-adenosylmethionine to histamine, forming N-methylhistamine, the major metabolite of histamine in man. EC 2.1.1.8.
A histamine H2 agonist used clinically to test gastric secretory function.
An antagonist of histamine that appears to block both H2 and H3 histamine receptors. It has been used in the treatment of ulcers.
One of a pair of irregularly shaped quadrilateral bones situated between the FRONTAL BONE and OCCIPITAL BONE, which together form the sides of the CRANIUM.
An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine.
The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers.
Vagal denervation of that part of the STOMACH lined with acid-secreting mucosa (GASTRIC MUCOSA) containing the GASTRIC PARIETAL CELLS. Since the procedure leaves the vagal branches to the antrum and PYLORUS intact, it circumvents gastric drainage required with truncal vagotomy techniques.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
An antagonist of histamine H1 receptors.
A peptide hormone of about 27 amino acids from the duodenal mucosa that activates pancreatic secretion and lowers the blood sugar level. (USAN and the USP Dictionary of Drug Names, 1994, p597)
Various agents with different action mechanisms used to treat or ameliorate PEPTIC ULCER or irritation of the gastrointestinal tract. This has included ANTIBIOTICS to treat HELICOBACTER INFECTIONS; HISTAMINE H2 ANTAGONISTS to reduce GASTRIC ACID secretion; and ANTACIDS for symptomatic relief.
A class of non-sedating drugs that bind to but do not activate histamine receptors (DRUG INVERSE AGONISM), thereby blocking the actions of histamine or histamine agonists. These antihistamines represent a heterogenous group of compounds with differing chemical structures, adverse effects, distribution, and metabolism. Compared to the early (first generation) antihistamines, these non-sedating antihistamines have greater receptor specificity, lower penetration of BLOOD-BRAIN BARRIER, and are less likely to cause drowsiness or psychomotor impairment.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Epithelial cells that line the basal half of the GASTRIC GLANDS. Chief cells synthesize and export an inactive enzyme PEPSINOGEN which is converted into the highly proteolytic enzyme PEPSIN in the acid environment of the STOMACH.
The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
Bethanechol compounds are parasympathomimetic agents that directly stimulate muscarinic receptors, primarily used to treat urinary retention and nonobstructive bladder dysfunction by increasing bladder contractility and decreasing post-void residual volume.
A megaloblastic anemia occurring in children but more commonly in later life, characterized by histamine-fast achlorhydria, in which the laboratory and clinical manifestations are based on malabsorption of vitamin B 12 due to a failure of the gastric mucosa to secrete adequate and potent intrinsic factor. (Dorland, 27th ed)
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
A group of compounds that are derivatives of beta-methylacetylcholine (methacholine).
A competitive histamine H2-receptor antagonist. Its main pharmacodynamic effect is the inhibition of gastric secretion.
An alpha adrenergic antagonist.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
The superior portion of the body of the stomach above the level of the cardiac notch.
A strong corrosive acid that is commonly used as a laboratory reagent. It is formed by dissolving hydrogen chloride in water. GASTRIC ACID is the hydrochloric acid component of GASTRIC JUICE.
Retrograde flow of duodenal contents (BILE ACIDS; PANCREATIC JUICE) into the STOMACH.
A synthetic prostaglandin E analog that protects the gastric mucosa, prevents ulceration, and promotes healing of peptic ulcers. The protective effect is independent of acid inhibition. It is also a potent inhibitor of pancreatic function and can inhibit the growth of experimental tumors.
The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS.
INFLAMMATION of salivary tissue (SALIVARY GLANDS), usually due to INFECTION or injuries.
HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs.
One of the HISTAMINE H1 ANTAGONISTS with little sedative action. It is used in treatment of hay fever, rhinitis, allergic dermatoses, and pruritus.
Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR.
Solution that is usually 10 percent glucose but may be higher. An isotonic solution of glucose is 5 percent.
Inflammation of the GASTRIC MUCOSA, a lesion observed in a number of unrelated disorders.
Elements of limited time intervals, contributing to particular results or situations.
A cycloheptathiophene blocker of histamine H1 receptors and release of inflammatory mediators. It has been proposed for the treatment of asthma, rhinitis, skin allergies, and anaphylaxis.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS).
The placing of a body or a part thereof into a liquid.
A phenothiazine derivative with histamine H1-blocking, antimuscarinic, and sedative properties. It is used as an antiallergic, in pruritus, for motion sickness and sedation, and also in animals.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Strong alkylating and immunosuppressive agents whose biological activity is based on the presence of bis(2-chloroethyl)- groups. Although otherwise structurally diverse, the compounds have in common the capacity to contribute alkyl groups to DNA. They are generally highly toxic but include among their number many widely used and effective antineoplastic agents.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
(11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A 4-methoxy-3,5-dimethylpyridyl, 5-methoxybenzimidazole derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits an H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS.
A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal.
The fluid containing digestive enzymes secreted by the pancreas in response to food in the duodenum.
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
The evacuation of food from the stomach into the duodenum.
Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
A histamine H1 antagonist used as the hydrogen fumarate in hay fever, rhinitis, allergic skin conditions, and pruritus. It causes drowsiness.
A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
A syndrome that is characterized by the triad of severe PEPTIC ULCER, hypersecretion of GASTRIC ACID, and GASTRIN-producing tumors of the PANCREAS or other tissue (GASTRINOMA). This syndrome may be sporadic or be associated with MULTIPLE ENDOCRINE NEOPLASIA TYPE 1.
Any substances taken in by the body that provide nourishment.
An intense itching sensation that produces the urge to rub or scratch the skin to obtain relief.
Neuroendocrine cells in the glands of the GASTRIC MUCOSA. They produce HISTAMINE and peptides such as CHROMOGRANINS. ECL cells respond to GASTRIN by releasing histamine which acts as a paracrine stimulator of the release of HYDROCHLORIC ACID from the GASTRIC PARIETAL CELLS.
Physiologically active prostaglandins found in many tissues and organs. They show pressor activity, are mediators of inflammation, and have potential antithrombotic effects.
A family of hexahydropyridines.
The insertion of a tube into the stomach, intestines, or other portion of the gastrointestinal tract to allow for the passage of food products, etc.
Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)
Drugs used for their actions on histaminergic systems. Included are drugs that act at histamine receptors, affect the life cycle of histamine, or affect the state of histaminergic cells.
Hexoses are simple monosaccharides, specifically six-carbon sugars, which include glucose, fructose, and galactose, and play crucial roles in biological processes such as energy production and storage, and structural components of cells.
GASTRITIS with atrophy of the GASTRIC MUCOSA, the GASTRIC PARIETAL CELLS, and the mucosal glands leading to ACHLORHYDRIA. Atrophic gastritis usually progresses from chronic gastritis.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
A naturally occurring dipeptide neuropeptide found in muscles.
Compounds that contain benzimidazole joined to a 2-methylpyridine via a sulfoxide linkage. Several of the compounds in this class are ANTI-ULCER AGENTS that act by inhibiting the POTASSIUM HYDROGEN ATPASE found in the PROTON PUMP of GASTRIC PARIETAL CELLS.
A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405).
Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.
Ulcer that occurs in the regions of the GASTROINTESTINAL TRACT which come into contact with GASTRIC JUICE containing PEPSIN and GASTRIC ACID. It occurs when there are defects in the MUCOSA barrier. The common forms of peptic ulcers are associated with HELICOBACTER PYLORI and the consumption of nonsteroidal anti-inflammatory drugs (NSAIDS).
Infections with organisms of the genus HELICOBACTER, particularly, in humans, HELICOBACTER PYLORI. The clinical manifestations are focused in the stomach, usually the gastric mucosa and antrum, and the upper duodenum. This infection plays a major role in the pathogenesis of type B gastritis and peptic ulcer disease.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The viscous secretion of mucous membranes. It contains mucin, white blood cells, water, inorganic salts, and exfoliated cells.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
(9 alpha,11 alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid (PGF(1 alpha)); (5Z,9 alpha,11,alpha,13E,15S)-9,11,15-trihydroxyprosta-5,13-dien-1-oic acid (PGF(2 alpha)); (5Z,9 alpha,11 alpha,13E,15S,17Z)-9,11,15-trihydroxyprosta-5,13,17-trien-1-oic acid (PGF(3 alpha)). A family of prostaglandins that includes three of the six naturally occurring prostaglandins. All naturally occurring PGF have an alpha configuration at the 9-carbon position. They stimulate uterine and bronchial smooth muscle and are often used as oxytocics.
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
Antineoplastic agent that is also used as a veterinary anesthetic. It has also been used as an intermediate in organic synthesis. Urethane is suspected to be a carcinogen.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes.
Compounds with a BENZENE fused to IMIDAZOLES.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.
Gastrointestinal symptoms resulting from an absent or nonfunctioning pylorus.
Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents.
Altered reactivity to an antigen, which can result in pathologic reactions upon subsequent exposure to that particular antigen.
The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified.
Bicarbonate transporters that move BICARBONATE IONS in exchange of CHLORIDE IONS or SODIUM IONS across membranes. They regulate acid-base HOMEOSTASIS, cell volume and intracellular pH. Members include CHLORIDE-BICARBONATE ANTIPORTERS (SLC4A1, 2, 3, and 9); SODIUM-COUPLED BICARBONATE TRANSPORTERS (SLC4A4 and 5, 7, 8 and 10); and a sodium borate cotransporter (SLC4A11 protein).
A potent mast cell degranulator. It is involved in histamine release.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Established cell cultures that have the potential to propagate indefinitely.
A subtype of enteroendocrine cells found in the gastrointestinal MUCOSA, particularly in the glands of PYLORIC ANTRUM; DUODENUM; and ILEUM. These cells secrete mainly SEROTONIN and some neuropeptides. Their secretory granules stain readily with silver (argentaffin stain).
Compounds with a 5-membered ring of four carbons and an oxygen. They are aromatic heterocycles. The reduced form is tetrahydrofuran.
Thiazoles are heterocyclic organic compounds containing a sulfur atom and a nitrogen atom, which are bound by two carbon atoms to form a five-membered ring, and are widely found in various natural and synthetic substances, including some pharmaceuticals and vitamins.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
Drugs that bind to and activate cholinergic receptors.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Electroneutral chloride bicarbonate exchangers that allow the exchange of BICARBONATE IONS exchange for CHLORIDE IONS across the cellular membrane. The action of specific antiporters in this class serve important functions such as allowing the efficient exchange of bicarbonate across red blood cell membranes as they passage through capillaries and the reabsorption of bicarbonate ions by the kidney.
Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa.
A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
The rate dynamics in chemical or physical systems.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Endogenous substances produced through the activity of intact cells of glands, tissues, or organs.
The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Granular leukocytes characterized by a relatively pale-staining, lobate nucleus and cytoplasm containing coarse dark-staining granules of variable size and stainable by basic dyes.
A potent cyclic nucleotide phosphodiesterase inhibitor; due to this action, the compound increases cyclic AMP and cyclic GMP in tissue and thereby activates CYCLIC NUCLEOTIDE-REGULATED PROTEIN KINASES
Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND).
Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders).
The coordination of a sensory or ideational (cognitive) process and a motor activity.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Benzoic acid or benzoic acid esters substituted with one or more nitro groups.
A disease of herbivorous mammals, particularly cattle and sheep, caused by stomach worms of the genus OSTERTAGIA.
A human cell line established from a diffuse histiocytic lymphoma (HISTIOCYTIC LYMPHOMA, DIFFUSE) and displaying many monocytic characteristics. It serves as an in vitro model for MONOCYTE and MACROPHAGE differentiation.
Fluids originating from the epithelial lining of the intestines, adjoining exocrine glands and from organs such as the liver, which empty into the cavity of the intestines.
In GRAM NEGATIVE BACTERIA, multiprotein complexes that function to translocate pathogen protein effector molecules across the bacterial cell envelope, often directly into the host. These effectors are involved in producing surface structures for adhesion, bacterial motility, manipulation of host functions, modulation of host defense responses, and other functions involved in facilitating survival of the pathogen. Several of the systems have homologous components functioning similarly in GRAM POSITIVE BACTERIA.
The motor activity of the GASTROINTESTINAL TRACT.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
A genus of parasitic nematodes occurring in the stomach of ruminants.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Proenzymes secreted by chief cells, mucous neck cells, and pyloric gland cells, which are converted into pepsin in the presence of gastric acid or pepsin itself. (Dorland, 28th ed) In humans there are 2 related pepsinogen systems: PEPSINOGEN A (formerly pepsinogen I or pepsinogen) and PEPSINOGEN C (formerly pepsinogen II or progastricsin). Pepsinogen B is the name of a pepsinogen from pigs.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Injections made into a vein for therapeutic or experimental purposes.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells.
A species of HELICOBACTER that colonizes in the STOMACH of laboratory MICE; CATS; and DOGS. It is associated with lymphoid follicular hyperplasia and mild GASTRITIS in CATS.
A series of sequential intracellular steps involved in the transport of proteins (such as hormones and enzymes) from the site of synthesis to outside the cell. The pathway involves membrane-bound compartments through which the newly synthesized proteins undergo POST-TRANSLATIONAL MODIFICATIONS, packaging, storage, or transportation to the PLASMA MEMBRANE for secretion.
Membrane transporters that co-transport two or more dissimilar molecules in the opposite direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient.
The flow of BLOOD through or around an organ or region of the body.
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion.
Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.

Histamine receptors are a type of cell surface receptor that bind to histamine, a biologically active compound involved in various physiological and pathophysiological processes in the body. There are four types of histamine receptors, designated H1, H2, H3, and H4, which are classified based on their specific responses to histamine.

Histamine receptors, Histamine (H1) are G protein-coupled receptors that are widely distributed in the body, including in the smooth muscle of blood vessels, respiratory tract, and gastrointestinal tract. When histamine binds to H1 receptors, it activates a signaling pathway that leads to the contraction of smooth muscle, increased vascular permeability, and stimulation of sensory nerve endings, resulting in symptoms such as itching, sneezing, and runny nose. Antihistamines, which are commonly used to treat allergies, work by blocking H1 receptors and preventing histamine from binding to them.

It's worth noting that while histamine has many important functions in the body, excessive or inappropriate activation of histamine receptors can lead to a range of symptoms and conditions, including allergic reactions, inflammation, and neuropsychiatric disorders.

Histamine is defined as a biogenic amine that is widely distributed throughout the body and is involved in various physiological functions. It is derived primarily from the amino acid histidine by the action of histidine decarboxylase. Histamine is stored in granules (along with heparin and proteases) within mast cells and basophils, and is released upon stimulation or degranulation of these cells.

Once released into the tissues and circulation, histamine exerts a wide range of pharmacological actions through its interaction with four types of G protein-coupled receptors (H1, H2, H3, and H4 receptors). Histamine's effects are diverse and include modulation of immune responses, contraction and relaxation of smooth muscle, increased vascular permeability, stimulation of gastric acid secretion, and regulation of neurotransmission.

Histamine is also a potent mediator of allergic reactions and inflammation, causing symptoms such as itching, sneezing, runny nose, and wheezing. Antihistamines are commonly used to block the actions of histamine at H1 receptors, providing relief from these symptoms.

Parietal cells, also known as oxyntic cells, are a type of cell found in the gastric glands of the stomach lining. They play a crucial role in digestion by releasing hydrochloric acid and intrinsic factor into the stomach lumen. Hydrochloric acid is essential for breaking down food particles and creating an acidic environment that kills most bacteria, while intrinsic factor is necessary for the absorption of vitamin B12 in the small intestine. Parietal cells are stimulated by histamine, acetylcholine, and gastrin to release their secretory products.

Histamine H1 receptors are a type of G protein-coupled receptor found in various cells throughout the body, including those of the cardiovascular, gastrointestinal, and nervous systems. They are activated by the neurotransmitter histamine, which is released by mast cells and basophils in response to allergic reactions, inflammation, or immune responses.

When histamine binds to H1 receptors, it triggers a range of physiological responses that contribute to the symptoms of allergies, including vasodilation (leading to redness and warmth), increased vascular permeability (resulting in fluid leakage and swelling), and smooth muscle contraction (causing bronchoconstriction, gut cramping, and nasal congestion).

Histamine H1 receptors are also involved in the regulation of sleep-wake cycles, where they contribute to the promotion of wakefulness. Antihistamines that block H1 receptors are commonly used to treat allergies, hay fever, and other conditions associated with histamine release.

Histamine H2 receptors are a type of G protein-coupled receptor that are widely distributed throughout the body, including in the stomach, heart, and brain. They are activated by the neurotransmitter histamine, which is released by mast cells in response to an allergen or injury. When histamine binds to H2 receptors, it triggers a variety of physiological responses, such as increasing gastric acid secretion, regulating heart rate and contractility, and modulating neurotransmitter release in the brain. Histamine H2 receptor antagonists, also known as H2 blockers, are commonly used to treat gastroesophageal reflux disease (GERD) and peptic ulcers by reducing gastric acid production. Examples of H2 blockers include ranitidine (Zantac), famotidine (Pepcid), and cimetidine (Tagamet).

Gastric juice is a digestive fluid that is produced in the stomach. It is composed of several enzymes, including pepsin, which helps to break down proteins, and gastric amylase, which begins the digestion of carbohydrates. Gastric juice also contains hydrochloric acid, which creates a low pH environment in the stomach that is necessary for the activation of pepsin and the digestion of food. Additionally, gastric juice contains mucus, which helps to protect the lining of the stomach from the damaging effects of the hydrochloric acid. The production of gastric juice is controlled by hormones and the autonomic nervous system.

In a medical context, taste is the sensation produced when a substance in the mouth reacts with taste buds, which are specialized sensory cells found primarily on the tongue. The tongue's surface contains papillae, which house the taste buds. These taste buds can identify five basic tastes: salty, sour, bitter, sweet, and umami (savory). Different areas of the tongue are more sensitive to certain tastes, but all taste buds can detect each of the five tastes, although not necessarily equally.

Taste is a crucial part of our sensory experience, helping us identify and differentiate between various types of food and drinks, and playing an essential role in appetite regulation and enjoyment of meals. Abnormalities in taste sensation can be associated with several medical conditions or side effects of certain medications.

Histamine antagonists, also known as histamine blockers or H1-blockers, are a class of medications that work by blocking the action of histamine, a substance in the body that is released during an allergic reaction. Histamine causes many of the symptoms of an allergic response, such as itching, sneezing, runny nose, and hives. By blocking the effects of histamine, these medications can help to relieve or prevent allergy symptoms.

Histamine antagonists are often used to treat conditions such as hay fever, hives, and other allergic reactions. They may also be used to treat stomach ulcers caused by excessive production of stomach acid. Some examples of histamine antagonists include diphenhydramine (Benadryl), loratadine (Claritin), and famotidine (Pepcid).

It's important to note that while histamine antagonists can be effective at relieving allergy symptoms, they do not cure allergies or prevent the release of histamine. They simply block its effects. It's also worth noting that these medications can have side effects, such as drowsiness, dry mouth, and dizziness, so it's important to follow your healthcare provider's instructions carefully when taking them.

Histamine agonists are substances that bind to and activate histamine receptors, leading to the initiation or enhancement of various physiological responses. Histamine is a naturally occurring molecule that plays a key role in the body's immune and allergic responses, as well as in the regulation of sleep, wakefulness, and appetite.

There are four main types of histamine receptors (H1, H2, H3, and H4), each with distinct functions and signaling pathways. Histamine agonists can be selective for one or more of these receptor subtypes, depending on their pharmacological properties.

For example, H1 agonists are commonly used as decongestants and antihistamines to treat allergies, while H2 agonists are used to treat gastroesophageal reflux disease (GERD) and peptic ulcers. H3 agonists have been investigated for their potential therapeutic use in the treatment of neurological disorders such as Parkinson's disease and schizophrenia, while H4 agonists are being studied for their role in inflammation and immune regulation.

It is important to note that histamine agonists can also have adverse effects, particularly if they are not selective for a specific receptor subtype or if they are used at high doses. These effects may include increased heart rate, blood pressure, and bronchodilation (opening of the airways), as well as gastrointestinal symptoms such as nausea, vomiting, and diarrhea.

Histamine H1 antagonists, also known as H1 blockers or antihistamines, are a class of medications that work by blocking the action of histamine at the H1 receptor. Histamine is a chemical mediator released by mast cells and basophils in response to an allergic reaction or injury. It causes various symptoms such as itching, sneezing, runny nose, and wheal and flare reactions (hives).

H1 antagonists prevent the binding of histamine to its receptor, thereby alleviating these symptoms. They are commonly used to treat allergic conditions such as hay fever, hives, and eczema, as well as motion sickness and insomnia. Examples of H1 antagonists include diphenhydramine (Benadryl), loratadine (Claritin), cetirizine (Zyrtec), and doxylamine (Unisom).

Gastric acid, also known as stomach acid, is a digestive fluid produced in the stomach. It's primarily composed of hydrochloric acid (HCl), potassium chloride (KCl), and sodium chloride (NaCl). The pH of gastric acid is typically between 1.5 and 3.5, making it a strong acid that helps to break down food by denaturing proteins and activating digestive enzymes.

The production of gastric acid is regulated by the enteric nervous system and several hormones. The primary function of gastric acid is to initiate protein digestion, activate pepsinogen into the active enzyme pepsin, and kill most ingested microorganisms. However, an excess or deficiency in gastric acid secretion can lead to various gastrointestinal disorders such as gastritis, ulcers, and gastroesophageal reflux disease (GERD).

The vagus nerve, also known as the 10th cranial nerve (CN X), is the longest of the cranial nerves and extends from the brainstem to the abdomen. It has both sensory and motor functions and plays a crucial role in regulating various bodily functions such as heart rate, digestion, respiratory rate, speech, and sweating, among others.

The vagus nerve is responsible for carrying sensory information from the internal organs to the brain, and it also sends motor signals from the brain to the muscles of the throat and voice box, as well as to the heart, lungs, and digestive tract. The vagus nerve helps regulate the body's involuntary responses, such as controlling heart rate and blood pressure, promoting relaxation, and reducing inflammation.

Dysfunction in the vagus nerve can lead to various medical conditions, including gastroparesis, chronic pain, and autonomic nervous system disorders. Vagus nerve stimulation (VNS) is a therapeutic intervention that involves delivering electrical impulses to the vagus nerve to treat conditions such as epilepsy, depression, and migraine headaches.

Histamine H3 receptors are a type of G protein-coupled receptor (GPCR) that are widely distributed throughout the central and peripheral nervous system. They are activated by the neurotransmitter histamine and function as autoreceptors, inhibiting the release of histamine from presynaptic nerve terminals. Histamine H3 receptors also modulate the activity of other neurotransmitters, such as acetylcholine, dopamine, norepinephrine, and serotonin, by regulating their synthesis, release, and uptake.

Histamine H3 receptors have been identified as potential targets for the treatment of various neurological and psychiatric disorders, including sleep disorders, attention deficit hyperactivity disorder (ADHD), schizophrenia, and drug addiction. Antagonists or inverse agonists of Histamine H3 receptors may enhance the release of neurotransmitters in the brain, leading to improved cognitive function, mood regulation, and reward processing. However, further research is needed to fully understand the therapeutic potential and safety profile of Histamine H3 receptor modulators.

Histamine H2 antagonists, also known as H2 blockers, are a class of medications that work by blocking the action of histamine on the H2 receptors in the stomach. Histamine is a chemical that is released by the body during an allergic reaction and can also be released by certain cells in the stomach in response to food or other stimuli. When histamine binds to the H2 receptors in the stomach, it triggers the release of acid. By blocking the action of histamine on these receptors, H2 antagonists reduce the amount of acid produced by the stomach, which can help to relieve symptoms such as heartburn, indigestion, and stomach ulcers. Examples of H2 antagonists include ranitidine (Zantac), famotidine (Pepcid), and cimetidine (Tagamet).

Cimetidine is a histamine-2 (H2) receptor antagonist, which is a type of medication that reduces the production of stomach acid. It works by blocking the action of histamine on the H2 receptors in the stomach, which are responsible for stimulating the release of stomach acid. By blocking these receptors, cimetidine reduces the amount of stomach acid produced and can help to relieve symptoms such as heartburn, indigestion, and stomach ulcers.

Cimetidine is available by prescription in various forms, including tablets, capsules, and liquid. It is typically taken two or three times a day, depending on the specific condition being treated. Common side effects of cimetidine may include headache, dizziness, diarrhea, and constipation.

In addition to its use in treating stomach acid-related conditions, cimetidine has also been studied for its potential anti-cancer properties. Some research suggests that it may help to enhance the immune system's response to cancer cells and reduce the growth of certain types of tumors. However, more research is needed to confirm these effects and determine the optimal dosage and duration of treatment.

Pentagastrin is a synthetic polypeptide hormone that stimulates the release of gastrin and hydrochloric acid from the stomach. It is used diagnostically to test for conditions such as Zollinger-Ellison syndrome, a rare disorder in which tumors in the pancreas or duodenum produce excessive amounts of gastrin, leading to severe ulcers and other digestive problems.

Pentagastrin is typically administered intravenously, and its effects are monitored through blood tests that measure gastric acid secretion. It is a potent stimulant of gastric acid production, and its use is limited to diagnostic purposes due to the risk of adverse effects such as nausea, flushing, and increased heart rate.

Pyrilamine is an antihistamine drug that is primarily used to relieve allergic symptoms such as sneezing, itching, watery eyes, and runny nose. It works by blocking the action of histamine, a substance naturally produced by the body during an allergic reaction. Pyrilamine may also be used to treat motion sickness and to help with tension headaches or migraines.

Pyrilamine is available in various forms, including tablets, capsules, and syrup, and it can be taken with or without food. Common side effects of pyrilamine include dizziness, dry mouth, and drowsiness. It is important to avoid activities that require mental alertness, such as driving or operating heavy machinery, until you know how pyrilamine affects you.

Like all medications, pyrilamine should be taken under the supervision of a healthcare provider, who can determine the appropriate dosage and monitor for any potential side effects or interactions with other drugs. It is essential to follow the instructions provided by your healthcare provider carefully and not exceed the recommended dose.

Gastric mucosa refers to the innermost lining of the stomach, which is in contact with the gastric lumen. It is a specialized mucous membrane that consists of epithelial cells, lamina propria, and a thin layer of smooth muscle. The surface epithelium is primarily made up of mucus-secreting cells (goblet cells) and parietal cells, which secrete hydrochloric acid and intrinsic factor, and chief cells, which produce pepsinogen.

The gastric mucosa has several important functions, including protection against self-digestion by the stomach's own digestive enzymes and hydrochloric acid. The mucus layer secreted by the epithelial cells forms a physical barrier that prevents the acidic contents of the stomach from damaging the underlying tissues. Additionally, the bicarbonate ions secreted by the surface epithelial cells help neutralize the acidity in the immediate vicinity of the mucosa.

The gastric mucosa is also responsible for the initial digestion of food through the action of hydrochloric acid and pepsin, an enzyme that breaks down proteins into smaller peptides. The intrinsic factor secreted by parietal cells plays a crucial role in the absorption of vitamin B12 in the small intestine.

The gastric mucosa is constantly exposed to potential damage from various factors, including acid, pepsin, and other digestive enzymes, as well as mechanical stress due to muscle contractions during digestion. To maintain its integrity, the gastric mucosa has a remarkable capacity for self-repair and regeneration. However, chronic exposure to noxious stimuli or certain medical conditions can lead to inflammation, erosions, ulcers, or even cancer of the gastric mucosa.

The medical definition of "eating" refers to the process of consuming and ingesting food or nutrients into the body. This process typically involves several steps, including:

1. Food preparation: This may involve cleaning, chopping, cooking, or combining ingredients to make them ready for consumption.
2. Ingestion: The act of taking food or nutrients into the mouth and swallowing it.
3. Digestion: Once food is ingested, it travels down the esophagus and enters the stomach, where it is broken down by enzymes and acids to facilitate absorption of nutrients.
4. Absorption: Nutrients are absorbed through the walls of the small intestine and transported to cells throughout the body for use as energy or building blocks for growth and repair.
5. Elimination: Undigested food and waste products are eliminated from the body through the large intestine (colon) and rectum.

Eating is an essential function that provides the body with the nutrients it needs to maintain health, grow, and repair itself. Disorders of eating, such as anorexia nervosa or bulimia nervosa, can have serious consequences for physical and mental health.

Methylhistamines are not a recognized medical term or a specific medical condition. However, the term "methylhistamine" may refer to the metabolic breakdown product of the antihistamine drug, diphenhydramine, which is also known as N-methyldiphenhydramine or dimenhydrinate.

Diphenhydramine is a first-generation antihistamine that works by blocking the action of histamine, a chemical released during an allergic reaction. When diphenhydramine is metabolized in the body, it is converted into several breakdown products, including methylhistamines.

Methylhistamines are not known to have any specific pharmacological activity or clinical significance. However, they can be used as a marker for the presence of diphenhydramine or its metabolism in the body.

Metiamide is not generally considered a medical term, but it is a medication that has been used in the past. Medically, metiamide is defined as a synthetic histamine H2-receptor antagonist, which means it blocks the action of histamine at the H2 receptors in the stomach. This effect reduces gastric acid secretion and can be useful in treating gastroesophageal reflux disease (GERD), peptic ulcers, and other conditions associated with excessive stomach acid production.

However, metiamide has largely been replaced by other H2 blockers like cimetidine, ranitidine, and famotidine due to its association with a rare but serious side effect called agranulocytosis, which is a severe decrease in white blood cell count that can increase the risk of infections.

Secretory rate refers to the amount or volume of a secretion produced by a gland or an organ over a given period of time. It is a measure of the productivity or activity level of the secreting structure. The secretory rate can be quantified for various bodily fluids, such as saliva, sweat, digestive enzymes, hormones, or milk, depending on the context and the specific gland or organ being studied.

In clinical settings, measuring the secretory rate might involve collecting and analyzing samples over a certain duration to estimate the production rate of the substance in question. This information can be helpful in diagnosing conditions related to impaired secretion, monitoring treatment responses, or understanding the physiological adaptations of the body under different circumstances.

Gastrins are a group of hormones that are produced by G cells in the stomach lining. These hormones play an essential role in regulating gastric acid secretion and motor functions of the gastrointestinal tract. The most well-known gastrin is known as "gastrin-17," which is released into the bloodstream and stimulates the release of hydrochloric acid from parietal cells in the stomach lining.

Gastrins are stored in secretory granules within G cells, and their release is triggered by several factors, including the presence of food in the stomach, gastrin-releasing peptide (GRP), and vagus nerve stimulation. Once released, gastrins bind to specific receptors on parietal cells, leading to an increase in intracellular calcium levels and the activation of enzymes that promote hydrochloric acid secretion.

Abnormalities in gastrin production can lead to several gastrointestinal disorders, including gastrinomas (tumors that produce excessive amounts of gastrin), which can cause severe gastric acid hypersecretion and ulcers. Conversely, a deficiency in gastrin production can result in hypochlorhydria (low stomach acid levels) and impaired digestion.

Dimaprit is not a medical condition or disease. It is actually a synthetic peptide that acts as an agonist for certain types of receptors found in the body, specifically the H2 histamine receptors. These receptors are involved in various physiological processes, such as regulating gastric acid secretion and modulating immune responses.

As a research tool, Dimaprit is used to study the functions of H2 histamine receptors and their roles in different biological systems. It is not typically used as a therapeutic agent in clinical medicine.

Pepsin A is defined as a digestive enzyme that is primarily secreted by the chief cells in the stomach's fundic glands. It plays a crucial role in protein catabolism, helping to break down food proteins into smaller peptides during the digestive process. Pepsin A has an optimal pH range of 1.5-2.5 for its enzymatic activity and is activated from its inactive precursor, pepsinogen, upon exposure to acidic conditions in the stomach.

Histamine release is the process by which mast cells and basophils (types of white blood cells) release histamine, a type of chemical messenger or mediator, into the surrounding tissue fluid in response to an antigen-antibody reaction. This process is a key part of the body's immune response to foreign substances, such as allergens, and helps to initiate local inflammation, increase blood flow, and recruit other immune cells to the site of the reaction.

Histamine release can also occur in response to certain medications, physical trauma, or other stimuli. When histamine is released in large amounts, it can cause symptoms such as itching, sneezing, runny nose, watery eyes, and hives. In severe cases, it can lead to anaphylaxis, a life-threatening allergic reaction that requires immediate medical attention.

Diphenhydramine is an antihistamine medication used to relieve symptoms of allergies, such as sneezing, runny nose, and itchy or watery eyes. It works by blocking the action of histamine, a substance in the body that causes allergic reactions. Diphenhydramine can also be used to treat motion sickness, insomnia, and symptoms of the common cold.

In addition to its antihistamine effects, diphenhydramine also has anticholinergic properties, which means it can help to reduce secretions in the nose and throat, and may have a drying effect on the mouth and eyes. It is available over-the-counter in various forms, including tablets, capsules, liquid, and topical creams or ointments.

It's important to note that diphenhydramine can cause drowsiness, so it should be used with caution when operating heavy machinery or driving a vehicle. It may also interact with other medications, so it's important to speak with a healthcare provider before taking this medication.

I'm sorry for any confusion, but "Impromidine" is not a widely recognized or established term in medical science or pharmacology. It does not appear to be listed in standard medical dictionaries or scientific literature as a drug, diagnostic agent, or medical condition.

If you have any more context or details about where you encountered this term, I'd be happy to help you try to figure out what it might refer to!

In anatomical terms, the stomach is a muscular, J-shaped organ located in the upper left portion of the abdomen. It is part of the gastrointestinal tract and plays a crucial role in digestion. The stomach's primary functions include storing food, mixing it with digestive enzymes and hydrochloric acid to break down proteins, and slowly emptying the partially digested food into the small intestine for further absorption of nutrients.

The stomach is divided into several regions, including the cardia (the area nearest the esophagus), the fundus (the upper portion on the left side), the body (the main central part), and the pylorus (the narrowed region leading to the small intestine). The inner lining of the stomach, called the mucosa, is protected by a layer of mucus that prevents the digestive juices from damaging the stomach tissue itself.

In medical contexts, various conditions can affect the stomach, such as gastritis (inflammation of the stomach lining), peptic ulcers (sores in the stomach or duodenum), gastroesophageal reflux disease (GERD), and stomach cancer. Symptoms related to the stomach may include abdominal pain, bloating, nausea, vomiting, heartburn, and difficulty swallowing.

Aminopyrine is a type of medication known as a non-opioid analgesic, which is used to relieve pain and reduce fever. It is an antipyretic and analgesic drug that was widely used in the past, but its use has been limited or discontinued in many countries due to the risk of rare but serious side effects such as agranulocytosis (a severe decrease in white blood cells), which can make individuals more susceptible to infections.

Chemically, aminopyrine is an aromatic heterocyclic compound containing a pyridine ring substituted with an amino group and a phenyl group. It works by inhibiting the enzyme cyclooxygenase (COX), which is involved in the production of prostaglandins, chemicals that mediate pain and inflammation. By reducing prostaglandin levels, aminopyrine helps to alleviate pain and reduce fever.

It's important to note that due to its potential side effects, aminopyrine is not commonly used in modern medical practice, and other safer and more effective medications are available for pain relief and fever reduction.

Chlorpheniramine is an antihistamine medication that is used to relieve allergic symptoms caused by hay fever, hives, and other allergies. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms. Chlorpheniramine is available in various forms, including tablets, capsules, syrup, and injection.

Common side effects of chlorpheniramine include drowsiness, dry mouth, blurred vision, and dizziness. It may also cause more serious side effects such as rapid heartbeat, difficulty breathing, and confusion, especially in elderly people or those with underlying medical conditions. Chlorpheniramine should be used with caution and under the supervision of a healthcare provider, particularly in children, pregnant women, and people with medical conditions such as glaucoma, enlarged prostate, and respiratory disorders.

It is important to follow the dosage instructions carefully when taking chlorpheniramine, as taking too much can lead to overdose and serious complications. If you experience any unusual symptoms or have concerns about your medication, it is best to consult with a healthcare provider.

A stomach ulcer, also known as a gastric ulcer, is a sore that forms in the lining of the stomach. It's caused by a breakdown in the mucous layer that protects the stomach from digestive juices, allowing acid to come into contact with the stomach lining and cause an ulcer. The most common causes are bacterial infection (usually by Helicobacter pylori) and long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs). Stomach ulcers may cause symptoms such as abdominal pain, bloating, heartburn, and nausea. If left untreated, they can lead to more serious complications like internal bleeding, perforation, or obstruction.

Histidine Decarboxylase is a medical term that refers to an enzyme found in various organisms, including humans. This enzyme plays a crucial role in the conversion of the amino acid L-histidine into histamine, which is a biogenic amine that acts as a neurotransmitter and inflammatory mediator in the human body.

Histidine decarboxylase is found in several tissues, including the central nervous system, gastrointestinal tract, and skin. It requires pyridoxal 5'-phosphate (PLP) as a cofactor for its enzymatic activity. Abnormal levels or activity of histidine decarboxylase have been implicated in several medical conditions, including allergic reactions, inflammation, and neuropsychiatric disorders.

Inhibitors of histidine decarboxylase are being investigated as potential therapeutic agents for the treatment of various diseases, such as mast cell-mediated disorders, gastrointestinal disorders, and neurological conditions associated with abnormal histamine levels.

A duodenal ulcer is a type of peptic ulcer that develops in the lining of the first part of the small intestine, called the duodenum. It is characterized by a break in the mucosal layer of the duodinal wall, leading to tissue damage and inflammation. Duodenal ulcers are often caused by an imbalance between digestive acid and mucus production, which can be exacerbated by factors such as bacterial infection (commonly with Helicobacter pylori), nonsteroidal anti-inflammatory drug use, smoking, and stress. Symptoms may include gnawing or burning abdominal pain, often occurring a few hours after meals or during the night, bloating, nausea, vomiting, loss of appetite, and weight loss. Complications can be severe, including bleeding, perforation, and obstruction of the duodenum. Diagnosis typically involves endoscopy, and treatment may include antibiotics (if H. pylori infection is present), acid-suppressing medications, lifestyle modifications, and potentially surgery in severe cases.

Thiourea is not a medical term, but a chemical compound. It's a colorless crystalline solid with the formula SC(NH2)2. Thiourea is used in some industrial processes and can be found in some laboratory reagents. It has been studied for its potential effects on certain medical conditions, such as its ability to protect against radiation damage, but it is not a medication or a treatment that is currently in clinical use.

Achlorhydria is a medical condition characterized by the absence or near-absence of hydrochloric acid in the stomach. Hydrochloric acid is a digestive fluid that helps to break down food, particularly proteins, and also creates an acidic environment that prevents harmful bacteria from growing in the stomach.

Achlorhydria can be caused by various factors, including certain medications, autoimmune disorders, aging, or surgical removal of the stomach. Symptoms of achlorhydria may include indigestion, bloating, abdominal pain, and malabsorption of nutrients. If left untreated, it can lead to complications such as anemia, vitamin B12 deficiency, and increased risk of gastrointestinal infections.

It is important to note that achlorhydria can be diagnosed through various tests, including a gastric acid analysis or a pH test. Treatment for achlorhydria may involve supplementing with hydrochloric acid or other digestive enzymes, modifying the diet, and addressing any underlying conditions.

A vagotomy is a surgical procedure that involves cutting or blocking the vagus nerve, which is a parasympathetic nerve that runs from the brainstem to the abdomen and helps regulate many bodily functions such as heart rate, gastrointestinal motility, and digestion. In particular, vagotomy is often performed as a treatment for peptic ulcers, as it can help reduce gastric acid secretion.

There are several types of vagotomy procedures, including:

1. Truncal vagotomy: This involves cutting the main trunks of the vagus nerve as they enter the abdomen. It is a more extensive procedure that reduces gastric acid secretion significantly but can also lead to side effects such as delayed gastric emptying and diarrhea.
2. Selective vagotomy: This involves cutting only the branches of the vagus nerve that supply the stomach, leaving the rest of the nerve intact. It is a less extensive procedure that reduces gastric acid secretion while minimizing side effects.
3. Highly selective vagotomy (HSV): Also known as parietal cell vagotomy, this involves cutting only the branches of the vagus nerve that supply the acid-secreting cells in the stomach. It is a highly targeted procedure that reduces gastric acid secretion while minimizing side effects such as delayed gastric emptying and diarrhea.

Vagotomy is typically performed using laparoscopic or open surgical techniques, depending on the patient's individual needs and the surgeon's preference. While vagotomy can be effective in treating peptic ulcers, it is not commonly performed today due to the development of less invasive treatments such as proton pump inhibitors (PPIs) that reduce gastric acid secretion without surgery.

Terfenadine is an antihistamine medication that has been used to treat symptoms of allergies such as hay fever, hives, and other allergic reactions. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms. Terfenadine was first approved for use in the United States in 1985, but it is no longer available in many countries due to concerns about rare but serious side effects related to heart rhythm disturbances. It has been replaced by other antihistamines that are considered safer and more effective.

A gastric fistula is an abnormal connection or passage between the stomach and another organ or the skin surface. This condition can occur as a result of complications from surgery, injury, infection, or certain diseases such as cancer. Symptoms may include persistent drainage from the site of the fistula, pain, malnutrition, and infection. Treatment typically involves surgical repair of the fistula and management of any underlying conditions.

Gastric acidity determination is a medical test used to measure the amount of acid in the stomach. This test is often performed to diagnose or monitor conditions such as gastritis, gastroesophageal reflux disease (GERD), and Zollinger-Ellison syndrome. The test involves measuring the pH level of the stomach contents using a thin, flexible tube called a catheter that is passed through the nose and down into the stomach. In some cases, a small sample of stomach fluid may also be collected for further testing.

The normal range for gastric acidity is typically considered to be a pH level below 4. A higher pH level may indicate that the stomach is producing too little acid, while a lower pH level may suggest that it is producing too much. Based on the results of the test, healthcare providers can develop an appropriate treatment plan for the underlying condition causing abnormal gastric acidity.

The pylorus is the lower, narrow part of the stomach that connects to the first part of the small intestine (duodenum). It consists of the pyloric canal, which is a short muscular tube, and the pyloric sphincter, a circular muscle that controls the passage of food from the stomach into the duodenum. The pylorus regulates the entry of chyme (partially digested food) into the small intestine by adjusting the size and frequency of the muscular contractions that push the chyme through the pyloric sphincter. This process helps in further digestion and absorption of nutrients in the small intestine.

Triprolidine is an antihistamine medication that is used to relieve symptoms caused by allergies, such as runny nose, sneezing, and itchy or watery eyes. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms. Triprolidine may also be used to help relieve symptoms of motion sickness.

It is important to note that this definition is for informational purposes only and should not be taken as medical advice. If you have any questions about triprolidine or its use, it is best to consult with a healthcare professional.

Astemizole is a second-generation antihistamine that was previously used to treat symptoms associated with allergies, such as hay fever, hives, and other allergic skin reactions. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms. However, astemizole has been withdrawn from the market in many countries due to rare but serious side effects on the heart.

The Intrinsic Factor is a glycoprotein secreted by the parietal cells in the stomach lining. It plays an essential role in the absorption of vitamin B12 (cobalamin) in the small intestine. After binding with vitamin B12, the intrinsic factor-vitamin B12 complex moves through the digestive tract and gets absorbed in the ileum region of the small intestine. Deficiency in Intrinsic Factor can lead to Vitamin B12 deficiency disorders like pernicious anemia.

Ranitidine is a histamine-2 (H2) blocker medication that works by reducing the amount of acid your stomach produces. It is commonly used to treat and prevent ulcers in the stomach and intestines, and to manage conditions where the stomach produces too much acid, such as Zollinger-Ellison syndrome.

Ranitidine is also used to treat gastroesophageal reflux disease (GERD) and other conditions in which acid backs up from the stomach into the esophagus, causing heartburn. Additionally, ranitidine can be used to prevent and treat upper gastrointestinal bleeding caused by stress or injury in critically ill patients.

The medication is available in both prescription and over-the-counter forms, and it comes in various forms, including tablets, capsules, and liquid solutions. As with any medication, ranitidine should be taken as directed by a healthcare professional, and its potential side effects and interactions with other medications should be carefully monitored.

Histamine H3 antagonists, also known as inverse agonists, are a class of drugs that block the activity of histamine at the H3 receptor. Histamine is a naturally occurring neurotransmitter and autacoid involved in various physiological functions, including the modulation of wakefulness and arousal, regulation of food intake, and control of blood pressure and fluid balance.

The H3 receptor is primarily located in the central nervous system (CNS) and acts as an auto-receptor on histamine-containing neurons to regulate the release of histamine. By blocking the activity of these receptors, histamine H3 antagonists increase the release of histamine in the CNS, which can lead to increased wakefulness and arousal.

Histamine H3 antagonists have been studied for their potential therapeutic use in various neurological and psychiatric disorders, including narcolepsy, attention deficit hyperactivity disorder (ADHD), and Alzheimer's disease. However, further research is needed to fully understand the clinical benefits and safety of these drugs.

Cetirizine is an antihistamine medication that is used to relieve symptoms of allergies, such as hay fever, hives, and other allergic skin conditions. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms. Cetirizine is available over-the-counter and by prescription in various forms, including tablets, chewable tablets, and syrup.

The medical definition of Cetirizine is:

Cetirizine hydrochloride: A second-generation antihistamine with selective peripheral H1 receptor antagonist activity. A potent and long-acting inhibitor of the early and late phases of the allergic reaction, it exhibits anti-inflammatory properties and has a more favorable side effect profile than many other antihistamines. It is used in the management of allergic rhinitis, chronic urticaria, and angioedema.

Liver extracts are preparations made from animal livers, often from cows or pigs, that contain various nutrients, vitamins, and minerals found in liver tissue. They have been used historically in medicine as a source of nutrition and to treat certain medical conditions.

Liver extracts contain high levels of vitamin B12, iron, and other essential nutrients. They were once commonly prescribed to treat anemia, pernicious anemia (a type of anemia caused by vitamin B12 deficiency), and other conditions related to malnutrition. However, with the advent of more modern treatments and better methods for addressing nutritional deficiencies, liver extracts are less commonly used in modern medicine.

It's important to note that while liver extracts can be a good source of nutrition, they should not be used as a substitute for a balanced diet. Moreover, individuals with certain medical conditions, such as liver disease or hemochromatosis (a condition characterized by excessive iron absorption), should avoid liver extracts or use them only under the supervision of a healthcare provider.

Histamine N-methyltransferase (HNMT) is an enzyme that plays a role in the metabolism and degradation of histamine, which is a biogenic amine involved in various physiological and pathophysiological processes. Histamine is released by mast cells and basophils during allergic reactions and inflammation, and it can cause symptoms such as itching, sneezing, runny nose, and wheezing.

HNMT is responsible for methylating the primary amino group of histamine, forming N-methylhistamine, which is then further metabolized by other enzymes. HNMT is primarily found in tissues such as the liver, kidney, and intestine, but it is also present in the brain and other organs.

Inhibition of HNMT has been suggested to be a potential therapeutic strategy for treating histamine-mediated disorders, such as allergies, asthma, and inflammatory bowel disease. However, more research is needed to fully understand the role of HNMT in these conditions and to develop effective treatments that target this enzyme.

Betazole is a histamine analogue drug, which is primarily used in the diagnosis of gastrinoma (a type of tumor that secretes excessive amounts of gastrin hormone), by stimulating the release of gastric acid. It works by mimicking the action of histamine on the H2 receptors in the stomach, thereby increasing the secretion of gastric acid.

The increased gastric acid secretion due to Betazole administration can be measured and used to diagnose gastrinoma, as patients with this condition typically have an exaggerated response to histamine-like substances. It is important to note that Betazole is not used for treatment purposes, but only for diagnostic purposes under medical supervision.

Burimamide is a medication that was developed in the 1970s and is known as a histamine H2 receptor antagonist. It works by blocking the action of histamine, a substance in the body that is involved in allergic reactions and inflammation. Burimamide was originally developed to treat gastric ulcers, but it has largely been replaced by other medications with similar mechanisms of action, such as ranitidine and cimetidine, which have fewer side effects and are more effective.

The medical definition of 'Burimamide' is:

A synthetic histamine H2 receptor antagonist that was developed to treat gastric ulcers. It works by blocking the action of histamine at the H2 receptors in the stomach, reducing the production of stomach acid and promoting the healing of ulcers. Burimamide has largely been replaced by other medications with similar mechanisms of action, such as ranitidine and cimetidine, which have fewer side effects and are more effective.

The parietal bone is one of the four flat bones that form the skull's cranial vault, which protects the brain. There are two parietal bones in the skull, one on each side, located posterior to the frontal bone and temporal bone, and anterior to the occipital bone. Each parietal bone has a squamous part, which forms the roof and sides of the skull, and a smaller, wing-like portion called the mastoid process. The parietal bones contribute to the formation of the coronal and lambdoid sutures, which are fibrous joints that connect the bones in the skull.

Atropine is an anticholinergic drug that blocks the action of the neurotransmitter acetylcholine in the central and peripheral nervous system. It is derived from the belladonna alkaloids, which are found in plants such as deadly nightshade (Atropa belladonna), Jimson weed (Datura stramonium), and Duboisia spp.

In clinical medicine, atropine is used to reduce secretions, increase heart rate, and dilate the pupils. It is often used before surgery to dry up secretions in the mouth, throat, and lungs, and to reduce salivation during the procedure. Atropine is also used to treat certain types of nerve agent and pesticide poisoning, as well as to manage bradycardia (slow heart rate) and hypotension (low blood pressure) caused by beta-blockers or calcium channel blockers.

Atropine can have several side effects, including dry mouth, blurred vision, dizziness, confusion, and difficulty urinating. In high doses, it can cause delirium, hallucinations, and seizures. Atropine should be used with caution in patients with glaucoma, prostatic hypertrophy, or other conditions that may be exacerbated by its anticholinergic effects.

The duodenum is the first part of the small intestine, immediately following the stomach. It is a C-shaped structure that is about 10-12 inches long and is responsible for continuing the digestion process that begins in the stomach. The duodenum receives partially digested food from the stomach through the pyloric valve and mixes it with digestive enzymes and bile produced by the pancreas and liver, respectively. These enzymes help break down proteins, fats, and carbohydrates into smaller molecules, allowing for efficient absorption in the remaining sections of the small intestine.

A proximal gastric vagotomy is a surgical procedure that involves selectively cutting the vagus nerve (the tenth cranial nerve) close to its origin in the stomach. The vagus nerve plays an important role in controlling the motor functions and secretions of the gastrointestinal tract, including the stomach.

In a proximal gastric vagotomy, the nerve branches that innervate the proximal part of the stomach are selectively cut, which reduces acid secretion from the stomach. This type of vagotomy is often performed as part of a surgical treatment for peptic ulcers, particularly those located in the upper part of the stomach or in the duodenum (the first section of the small intestine).

It's worth noting that there are different types of vagotomies, and the specific type used depends on the individual patient's needs and medical history. Other types of vagotomy include truncal vagotomy, selective vagotomy, and highly selective vagotomy. Each of these procedures has its own advantages and disadvantages, and the choice of procedure depends on various factors such as the location and severity of the ulcer, the patient's overall health, and the risk of complications.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Antazoline is an antihistamine drug that is used primarily for its anti-allergic and analgesic (pain-relieving) effects. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms. Antazoline is often found in combination with other medications, such as naphazoline, in over-the-counter products used to relieve redness and irritation in the eyes and nose.

The medical definition of Antazoline can be described as:

A first-generation antihistamine drug that exhibits both H1 receptor antagonist and local anesthetic properties. It is primarily used as a topical ophthalmic or nasal preparation to relieve redness, itching, and discomfort associated with allergic conjunctivitis and rhinitis. Antazoline may also be combined with other agents, such as naphazoline, in the treatment of sinus congestion and nasal stuffiness.

The off-label uses of Antazoline include:

* Treatment of vertigo and motion sickness
* As an adjunct to local anesthetics to prolong their duration of action

It is important to note that the use of Antazoline may be associated with certain side effects, such as dizziness, drowsiness, dry mouth, and headache. It should be used with caution in patients with narrow-angle glaucoma, prostatic hypertrophy, or bladder neck obstruction.

Secretin is a hormone that is produced and released by the S cells in the duodenum, which is the first part of the small intestine. It is released in response to the presence of acidic chyme (partially digested food) entering the duodenum from the stomach. Secretin stimulates the pancreas to produce bicarbonate-rich alkaline secretions, which help neutralize the acidity of the chyme and create an optimal environment for enzymatic digestion in the small intestine.

Additionally, secretin also promotes the production of watery fluids from the liver, which aids in the digestion process. Overall, secretin plays a crucial role in maintaining the pH balance and facilitating proper nutrient absorption in the gastrointestinal tract.

Anti-ulcer agents are a class of medications that are used to treat and prevent ulcers in the gastrointestinal tract. These medications work by reducing the production of stomach acid, neutralizing stomach acid, or protecting the lining of the stomach and duodenum from damage caused by stomach acid.

There are several types of anti-ulcer agents, including:

1. Proton pump inhibitors (PPIs): These medications block the action of proton pumps in the stomach, which are responsible for producing stomach acid. PPIs include drugs such as omeprazole, lansoprazole, and pantoprazole.
2. H-2 receptor antagonists: These medications block the action of histamine on the H-2 receptors in the stomach, reducing the production of stomach acid. Examples include ranitidine, famotidine, and cimetidine.
3. Antacids: These medications neutralize stomach acid and provide quick relief from symptoms such as heartburn and indigestion. Common antacids include calcium carbonate, magnesium hydroxide, and aluminum hydroxide.
4. Protective agents: These medications form a barrier between the stomach lining and stomach acid, protecting the lining from damage. Examples include sucralfate and misoprostol.

Anti-ulcer agents are used to treat conditions such as gastroesophageal reflux disease (GERD), peptic ulcers, and Zollinger-Ellison syndrome. It is important to take these medications as directed by a healthcare provider, as they can have side effects and interactions with other medications.

Histamine H1 antagonists, non-sedating, also known as second-generation antihistamines, are medications that block the action of histamine at the H1 receptor without causing significant sedation. Histamine is a chemical mediator released by mast cells and basophils in response to an allergen, leading to allergic symptoms such as itching, sneezing, runny nose, and hives.

The non-sedating antihistamines have a higher affinity for the H1 receptor and are less lipophilic than first-generation antihistamines, which results in less penetration of the blood-brain barrier and reduced sedative effects. Examples of non-sedating antihistamines include cetirizine, levocetirizine, loratadine, desloratadine, fexofenadine, and rupatadine. These medications are commonly used to treat allergic rhinitis, urticaria, and angioedema.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Chief cells, also known as zymogenic cells or peptic cells, are a type of cell located in the gastric glands of the stomach. They are responsible for producing and secreting pepsinogen, a precursor to the enzyme pepsin, which plays a crucial role in digesting proteins in the stomach.

The gastric glands are tubular structures that extend deep into the lamina propria of the stomach mucosa. They consist of several types of cells, including chief cells, parietal cells, mucous neck cells, and enteroendocrine cells. Chief cells are located in the base of the gastric glands, and they are characterized by their large, basophilic cytoplasm and apical secretory granules.

When stimulated by gastrin, a hormone produced by the G cells in the antrum of the stomach, chief cells release pepsinogen into the stomach lumen. Once in the acidic environment of the stomach, pepsinogen is converted to pepsin, which begins the process of protein digestion.

It's worth noting that chronic inflammation or damage to the stomach lining, such as that caused by gastritis or Helicobacter pylori infection, can lead to decreased numbers of chief cells and reduced production of pepsinogen, which can impair protein digestion and contribute to malnutrition.

I couldn't find a medical definition for "Depression, Chemical" as it is not a recognized medical term. However, I can provide you with information about chemical imbalances in the brain that are associated with depression.

Major depressive disorder (MDD), commonly referred to as depression, is believed to be caused by a combination of genetic, environmental, and physiological factors. While there is no definitive evidence that depression is solely caused by a "chemical imbalance," neurotransmitter irregularities in the brain are associated with depressive symptoms. Neurotransmitters are chemical messengers that transmit signals in the brain and other parts of the body. Some of the primary neurotransmitters involved in mood regulation include serotonin, norepinephrine, and dopamine.

In depression, it is thought that there may be alterations in the functioning of these neurotransmitter systems, leading to an imbalance. For example:

1. Serotonin: Low levels of serotonin are associated with depressive symptoms. Selective serotonin reuptake inhibitors (SSRIs), a common class of antidepressants, work by increasing the availability of serotonin in the synapse (the space between neurons) to improve communication between brain cells.
2. Norepinephrine: Imbalances in norepinephrine levels can contribute to depressive symptoms and anxiety. Norepinephrine reuptake inhibitors (NRIs), tricyclic antidepressants (TCAs), and monoamine oxidase inhibitors (MAOIs) are medications that target norepinephrine to help alleviate depression.
3. Dopamine: Deficiencies in dopamine can lead to depressive symptoms, anhedonia (the inability to feel pleasure), and motivation loss. Some antidepressants, like bupropion, work by increasing dopamine levels in the brain.

In summary, while "Chemical Depression" is not a recognized medical term, chemical imbalances in neurotransmitter systems are associated with depressive symptoms. However, depression is a complex disorder that cannot be solely attributed to a single cause or a simple chemical imbalance. It is essential to consider multiple factors when diagnosing and treating depression.

Bethanechol compounds are a type of cholinergic agent used in medical treatment. They are parasympathomimetic drugs, which means they mimic the actions of the neurotransmitter acetylcholine at muscarinic receptors. Specifically, bethanechol compounds stimulate the muscarinic receptors in the smooth muscle of the bladder and gastrointestinal tract, increasing tone and promoting contractions.

Bethanechol is primarily used to treat urinary retention and associated symptoms, such as those that can occur after certain types of surgery or with conditions like spinal cord injury or multiple sclerosis. It works by helping the bladder muscle contract, which can promote urination.

It's important to note that bethanechol should be used with caution, as it can have various side effects, including sweating, increased salivation, flushed skin, and gastrointestinal symptoms like nausea, vomiting, or diarrhea. It may also interact with other medications, so it's crucial to discuss any potential risks with a healthcare provider before starting this treatment.

Pernicious anemia is a specific type of vitamin B12 deficiency anemia that is caused by a lack of intrinsic factor, a protein made in the stomach that is needed to absorb vitamin B12. The absence of intrinsic factor leads to poor absorption of vitamin B12 from food and results in its deficiency.

Vitamin B12 is essential for the production of healthy red blood cells, which carry oxygen throughout the body. Without enough vitamin B12, the body cannot produce enough red blood cells, leading to anemia. Pernicious anemia typically develops slowly over several years and can cause symptoms such as fatigue, weakness, pale skin, shortness of breath, and a decreased appetite.

Pernicious anemia is an autoimmune disorder, which means that the body's immune system mistakenly attacks healthy cells in the stomach lining, leading to a loss of intrinsic factor production. It is more common in older adults, particularly those over 60 years old, and can also be associated with other autoimmune disorders such as type 1 diabetes, Hashimoto's thyroiditis, and Addison's disease.

Treatment for pernicious anemia typically involves vitamin B12 replacement therapy, either through oral supplements or injections of the vitamin. In some cases, dietary changes may also be recommended to ensure adequate intake of vitamin B12-rich foods such as meat, fish, poultry, and dairy products.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Methacholine compounds are medications that are used as a diagnostic tool to help identify and confirm the presence of airway hyperresponsiveness in patients with respiratory symptoms such as cough, wheeze, or shortness of breath. These compounds act as bronchoconstrictors, causing narrowing of the airways in individuals who have heightened sensitivity and reactivity of their airways, such as those with asthma.

Methacholine is a synthetic derivative of acetylcholine, a neurotransmitter that mediates nerve impulse transmission in the body. When inhaled, methacholine binds to muscarinic receptors on the smooth muscle surrounding the airways, leading to their contraction and narrowing. The degree of bronchoconstriction is then measured to assess the patient's airway responsiveness.

It is important to note that methacholine compounds are not used as therapeutic agents but rather as diagnostic tools in a controlled medical setting under the supervision of healthcare professionals.

Famotidine is a type of medication called an H2 blocker, or histamine-2 receptor antagonist. It works by reducing the amount of acid produced in the stomach. Famotidine is commonly used to treat and prevent ulcers in the stomach and intestines, and to manage conditions where the stomach produces too much acid, such as Zollinger-Ellison syndrome. It is also used to treat gastroesophageal reflux disease (GERD) and other conditions in which acid backs up from the stomach into the esophagus, causing heartburn.

Famotidine is available by prescription and over-the-counter in various forms, including tablets, capsules, and liquid. It is important to take famotidine exactly as directed by a healthcare professional, and to talk to them about any potential risks or side effects.

Dibenzylchloroethane is not a medical term or a medication used in medicine. It is an organic compound with the formula (C6H5CH2)2CHCl. This compound is not commonly used in a clinical setting, and it does not have a specific medical definition. If you have any questions about a specific chemical compound or medication, I would be happy to help if you provide more context.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

The gastric fundus is the upper, rounded portion of the stomach that lies above the level of the cardiac orifice and extends up to the left dome-shaped part of the diaphragm. It is the part of the stomach where food and liquids are first stored after entering through the esophagus. The gastric fundus contains parietal cells, which secrete hydrochloric acid, and chief cells, which produce pepsinogen, a precursor to the digestive enzyme pepsin. It is also the site where the hormone ghrelin is produced, which stimulates appetite.

Hydrochloric acid, also known as muriatic acid, is not a substance that is typically found within the human body. It is a strong mineral acid with the chemical formula HCl. In a medical context, it might be mentioned in relation to gastric acid, which helps digest food in the stomach. Gastric acid is composed of hydrochloric acid, potassium chloride and sodium chloride dissolved in water. The pH of hydrochloric acid is very low (1-2) due to its high concentration of H+ ions, making it a strong acid. However, it's important to note that the term 'hydrochloric acid' does not directly refer to a component of human bodily fluids or tissues.

Duodenogastric reflux (DGR) is a medical condition in which the contents of the duodenum, the first part of the small intestine, flow backward into the stomach. This occurs when the pyloric sphincter, a muscle that separates the stomach and duodenum, fails to function properly, allowing the reflux of duodenal juice into the stomach.

Duodenogastric refluxate typically contains bile acids, digestive enzymes, and other stomach-irritating substances. Chronic DGR can lead to gastritis (inflammation of the stomach lining), ulcers, and other gastrointestinal complications. Symptoms may include abdominal pain, bloating, nausea, vomiting, heartburn, and indigestion. Treatment usually involves medications that reduce acid production or neutralize stomach acid, as well as lifestyle modifications to minimize reflux triggers.

I'm sorry for any confusion, but "Arbaprostil" doesn't appear to be a recognized medical term or the name of a medication in current use. It's possible that there may be a spelling error or it could be an outdated or obscure term. If you have more context or information about where you encountered this term, I'd be happy to help you try to find more details!

G-protein-coupled receptors (GPCRs) are a family of membrane receptors that play an essential role in cellular signaling and communication. These receptors possess seven transmembrane domains, forming a structure that spans the lipid bilayer of the cell membrane. They are called "G-protein-coupled" because they interact with heterotrimeric G proteins upon activation, which in turn modulate various downstream signaling pathways.

When an extracellular ligand binds to a GPCR, it causes a conformational change in the receptor's structure, leading to the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on the associated G protein's α subunit. This exchange triggers the dissociation of the G protein into its α and βγ subunits, which then interact with various effector proteins to elicit cellular responses.

There are four main families of GPCRs, classified based on their sequence similarities and downstream signaling pathways:

1. Gq-coupled receptors: These receptors activate phospholipase C (PLC), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces calcium release from intracellular stores, while DAG activates protein kinase C (PKC).
2. Gs-coupled receptors: These receptors activate adenylyl cyclase, which increases the production of cyclic adenosine monophosphate (cAMP) and subsequently activates protein kinase A (PKA).
3. Gi/o-coupled receptors: These receptors inhibit adenylyl cyclase, reducing cAMP levels and modulating PKA activity. Additionally, they can activate ion channels or regulate other signaling pathways through the βγ subunits.
4. G12/13-coupled receptors: These receptors primarily activate RhoGEFs, which in turn activate RhoA and modulate cytoskeletal organization and cellular motility.

GPCRs are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and sensory perception. Dysregulation of GPCR function has been implicated in numerous diseases, making them attractive targets for drug development.

Sialadenitis is a medical condition characterized by inflammation of the salivary gland. It can occur in any of the major salivary glands, including the parotid, submandibular, and sublingual glands. The inflammation may result from bacterial or viral infections, autoimmune disorders, or obstruction of the salivary ducts.

Acute sialadenitis is often caused by bacterial infections and can lead to symptoms such as pain, swelling, redness, and difficulty swallowing. Chronic sialadenitis, on the other hand, may be caused by recurrent infections, autoimmune disorders like Sjogren's syndrome, or stones in the salivary ducts. Symptoms of chronic sialadenitis can include intermittent swelling, pain, and dry mouth.

Treatment for sialadenitis depends on the underlying cause but may include antibiotics, anti-inflammatory medications, hydration, and massage of the salivary glands. In some cases, surgery may be necessary to remove obstructions or damaged tissue in the salivary gland.

Gastrointestinal (GI) hormones are a group of hormones that are secreted by cells in the gastrointestinal tract in response to food intake and digestion. They play crucial roles in regulating various physiological processes, including appetite regulation, gastric acid secretion, motility of the gastrointestinal tract, insulin secretion, and pancreatic enzyme release.

Examples of GI hormones include:

* Gastrin: Secreted by G cells in the stomach, gastrin stimulates the release of hydrochloric acid from parietal cells in the stomach lining.
* Ghrelin: Produced by the stomach, ghrelin is often referred to as the "hunger hormone" because it stimulates appetite and food intake.
* Cholecystokinin (CCK): Secreted by I cells in the small intestine, CCK promotes digestion by stimulating the release of pancreatic enzymes and bile from the liver. It also inhibits gastric emptying and reduces appetite.
* Gastric inhibitory peptide (GIP): Produced by K cells in the small intestine, GIP promotes insulin secretion and inhibits glucagon release.
* Secretin: Released by S cells in the small intestine, secretin stimulates the pancreas to produce bicarbonate-rich fluid that neutralizes stomach acid in the duodenum.
* Motilin: Secreted by MO cells in the small intestine, motilin promotes gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for cleaning out the small intestine between meals.

These hormones work together to regulate digestion and maintain homeostasis in the body. Dysregulation of GI hormones can contribute to various gastrointestinal disorders, such as gastroparesis, irritable bowel syndrome (IBS), and diabetes.

Pheniramine is an antihistamine drug that works by blocking the action of histamine, a substance in the body that causes allergic symptoms. It is used to relieve or prevent symptoms of hay fever and other allergies such as rash, itching, watery eyes, and runny nose. Pheniramine may also be used to treat motion sickness and to help with sleep before surgery.

It's important to note that pheniramine can cause drowsiness, so it should not be taken with alcohol or other drugs that may also cause drowsiness. It is also recommended to consult a healthcare professional before taking this medication, especially for children under 2 years old and people with certain medical conditions such as glaucoma, enlarged prostate, and difficulty urinating.

Mast cells are a type of white blood cell that are found in connective tissues throughout the body, including the skin, respiratory tract, and gastrointestinal tract. They play an important role in the immune system and help to defend the body against pathogens by releasing chemicals such as histamine, heparin, and leukotrienes, which help to attract other immune cells to the site of infection or injury. Mast cells also play a role in allergic reactions, as they release histamine and other chemicals in response to exposure to an allergen, leading to symptoms such as itching, swelling, and redness. They are derived from hematopoietic stem cells in the bone marrow and mature in the tissues where they reside.

A Glucose Solution, Hypertonic is a medical solution that contains a higher concentration of glucose (sugar) than is found in normal body fluids. This results in an osmotic gradient that draws water from the surrounding tissues and increases the osmolarity of the body fluids. It is often used in medical settings to treat certain conditions such as hypoglycemia (low blood sugar) or dehydration due to diarrhea or vomiting. However, it's important to note that hypertonic glucose solutions should be used with caution because high concentrations of glucose can lead to complications like hyperglycemia and dehydration if not properly managed.

Gastritis is a medical condition characterized by inflammation of the lining of the stomach. It can be caused by various factors, including bacterial infections (such as Helicobacter pylori), regular use of nonsteroidal anti-inflammatory drugs (NSAIDs), excessive alcohol consumption, and stress.

Gastritis can present with a range of symptoms, such as abdominal pain or discomfort, nausea, vomiting, loss of appetite, and bloating. In some cases, gastritis may not cause any noticeable symptoms. Depending on the severity and duration of inflammation, gastritis can lead to complications like stomach ulcers or even stomach cancer if left untreated.

There are two main types of gastritis: acute and chronic. Acute gastritis develops suddenly and may last for a short period, while chronic gastritis persists over time, often leading to atrophy of the stomach lining. Diagnosis typically involves endoscopy and tissue biopsy to assess the extent of inflammation and rule out other potential causes of symptoms. Treatment options depend on the underlying cause but may include antibiotics, proton pump inhibitors, or lifestyle modifications.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Ketotifen is an antihistamine and mast cell stabilizer used in the prevention and treatment of allergic reactions. It works by blocking the release of histamine, a substance that causes allergic symptoms, and preventing the activation of mast cells, which play a key role in allergic responses. Ketotifen is available as an oral medication and is often used to treat chronic urticaria (hives) and other allergic conditions. It may also have some benefits in the treatment of asthma.

It's important to note that ketotifen should be taken under the supervision of a healthcare professional, as it can cause side effects such as drowsiness, dry mouth, and increased appetite. Additionally, it may interact with other medications, so it is important to inform your doctor of all medications you are taking before starting ketotifen.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

The pyloric antrum is the distal part of the stomach, which is the last portion that precedes the pylorus and the beginning of the duodenum. It is a thickened, muscular area responsible for grinding and mixing food with gastric juices during digestion. The pyloric antrum also helps regulate the passage of chyme (partially digested food) into the small intestine through the pyloric sphincter, which controls the opening and closing of the pylorus. This region is crucial in the gastrointestinal tract's motor functions and overall digestive process.

In medical terms, "immersion" is not a term with a specific clinical definition. However, in general terms, immersion refers to the act of placing something or someone into a liquid or environment completely. In some contexts, it may be used to describe a type of wound care where the wound is covered completely with a medicated dressing or solution. It can also be used to describe certain medical procedures or therapies that involve submerging a part of the body in a liquid, such as hydrotherapy.

Promethazine is an antihistamine and phenothiazine derivative, which is commonly used for its sedative, anti-emetic (prevents vomiting), and anti-allergic properties. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms, and by blocking the action of dopamine, a neurotransmitter in the brain that helps transmit signals.

Promethazine is used to treat various conditions such as allergies, motion sickness, nausea and vomiting, and as a sedative before and after surgery or medical procedures. It may also be used for its calming effects in children with certain behavioral disorders.

Like all medications, promethazine can have side effects, including drowsiness, dry mouth, blurred vision, and dizziness. More serious side effects may include seizures, irregular heartbeat, and difficulty breathing. It is important to follow the instructions of a healthcare provider when taking promethazine and to report any unusual symptoms or side effects promptly.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Mustard compounds refer to a group of chemical agents that are derivatives of mustard gas (sulfur mustard), a powerful blistering agent used in World War I and II. The term "mustard compounds" often includes sulfur mustard and nitrogen mustards. These compounds have alkylating properties, meaning they can interact with DNA and proteins to prevent cell division and cause damage to tissues. Nitrogen mustards are particularly potent alkylating agents and are used in chemotherapy for the treatment of various types of cancer. Sulfur mustard is not used medically but remains a significant concern as a chemical warfare agent.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

Prostaglandin E (PGE) is a type of prostaglandin, which is a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects. Prostaglandins are not actually hormones, but are similar to them in that they act as chemical messengers that have specific effects on certain cells.

Prostaglandin E is one of the most abundant prostaglandins in the body and has a variety of physiological functions. It is involved in the regulation of inflammation, pain perception, fever, and smooth muscle contraction. Prostaglandin E also plays a role in the regulation of blood flow, platelet aggregation, and gastric acid secretion.

Prostaglandin E is synthesized from arachidonic acid, which is released from cell membranes by the action of enzymes called phospholipases. Once formed, prostaglandin E binds to specific receptors on the surface of cells, leading to a variety of intracellular signaling events that ultimately result in changes in cell behavior.

Prostaglandin E is used medically in the treatment of several conditions, including dysmenorrhea (painful menstruation), postpartum hemorrhage, and patent ductus arteriosus (a congenital heart defect). It is also used as a diagnostic tool in the evaluation of kidney function.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Omeprazole is defined as a proton pump inhibitor (PPI) used in the treatment of gastroesophageal reflux disease (GERD), gastric ulcers, and other conditions where reducing stomach acid is desired. It works by blocking the action of the proton pumps in the stomach, which are responsible for producing stomach acid. By inhibiting these pumps, omeprazole reduces the amount of acid produced in the stomach, providing relief from symptoms such as heartburn and pain caused by excess stomach acid.

It is available in various forms, including tablets, capsules, and oral suspension, and is typically taken once or twice a day, depending on the condition being treated. As with any medication, omeprazole should be used under the guidance of a healthcare professional, and its potential side effects and interactions with other medications should be carefully considered before use.

Somatostatin is a hormone that inhibits the release of several hormones and also has a role in slowing down digestion. It is produced by the body in various parts of the body, including the hypothalamus (a part of the brain), the pancreas, and the gastrointestinal tract.

Somatostatin exists in two forms: somatostatin-14 and somatostatin-28, which differ in their length. Somatostatin-14 is the predominant form found in the brain, while somatostatin-28 is the major form found in the gastrointestinal tract.

Somatostatin has a wide range of effects on various physiological processes, including:

* Inhibiting the release of several hormones such as growth hormone, insulin, glucagon, and gastrin
* Slowing down digestion by inhibiting the release of digestive enzymes from the pancreas and reducing blood flow to the gastrointestinal tract
* Regulating neurotransmission in the brain

Somatostatin is used clinically as a diagnostic tool for detecting certain types of tumors that overproduce growth hormone or other hormones, and it is also used as a treatment for some conditions such as acromegaly (a condition characterized by excessive growth hormone production) and gastrointestinal disorders.

Pancreatic juice is an alkaline fluid secreted by the exocrine component of the pancreas, primarily containing digestive enzymes such as amylase, lipase, and trypsin. These enzymes aid in the breakdown of carbohydrates, fats, and proteins, respectively, in the small intestine during the digestion process. The bicarbonate ions present in pancreatic juice help neutralize the acidic chyme that enters the duodenum from the stomach, creating an optimal environment for enzymatic activity.

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

Gastric emptying is the process by which the stomach empties its contents into the small intestine. In medical terms, it refers to the rate and amount of food that leaves the stomach and enters the duodenum, which is the first part of the small intestine. This process is regulated by several factors, including the volume and composition of the meal, hormonal signals, and neural mechanisms. Abnormalities in gastric emptying can lead to various gastrointestinal symptoms and disorders, such as gastroparesis, where the stomach's ability to empty food is delayed.

Imidazoles are a class of heterocyclic organic compounds that contain a double-bonded nitrogen atom and two additional nitrogen atoms in the ring. They have the chemical formula C3H4N2. In a medical context, imidazoles are commonly used as antifungal agents. Some examples of imidazole-derived antifungals include clotrimazole, miconazole, and ketoconazole. These medications work by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes, leading to increased permeability and death of the fungal cells. Imidazoles may also have anti-inflammatory, antibacterial, and anticancer properties.

Clemastine is an antihistamine medication that is used to relieve symptoms of allergies, such as runny nose, sneezing, and itchy or watery eyes. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms. Clemastine is available in oral tablet and liquid forms, and is typically taken twice daily with a full glass of water.

Common side effects of clemastine include drowsiness, dry mouth, headache, and upset stomach. It is important to avoid activities that require mental alertness, such as driving or operating heavy machinery, until you know how the medication affects you. Clemastine may also cause dizziness, so it is best to avoid getting up too quickly from a sitting or lying position.

Like all medications, clemastine should be taken only as directed by your healthcare provider. It is important to inform them of any other medications you are taking, as well as any medical conditions you may have, as clemastine can interact with certain drugs and may not be suitable for everyone.

Carbachol is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by mimicking the action of acetylcholine, a neurotransmitter that is involved in transmitting signals between nerves and muscles. Carbachol binds to both muscarinic and nicotinic receptors, but its effects are more pronounced on muscarinic receptors.

Carbachol is used in medical treatments to produce miosis (pupil constriction), lower intraocular pressure, and stimulate gastrointestinal motility. It can also be used as a diagnostic tool to test for certain conditions such as Hirschsprung's disease.

Like any medication, carbachol can have side effects, including sweating, salivation, nausea, vomiting, diarrhea, bradycardia (slow heart rate), and bronchoconstriction (narrowing of the airways in the lungs). It should be used with caution and under the supervision of a healthcare professional.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Zollinger-Ellison Syndrome (ZES) is a rare digestive disorder that is characterized by the development of one or more gastrin-secreting tumors, also known as gastrinomas. These tumors are usually found in the pancreas and duodenum (the first part of the small intestine). Gastrinomas produce excessive amounts of the hormone gastrin, which leads to the overproduction of stomach acid.

The increased stomach acid can cause severe peptic ulcers, often multiple or refractory to treatment, in the duodenum and jejunum (the second part of the small intestine). ZES may also result in diarrhea due to the excess acid irritating the intestines. In some cases, gastrinomas can be malignant and metastasize to other organs such as the liver and lymph nodes.

The diagnosis of Zollinger-Ellison Syndrome typically involves measuring serum gastrin levels and performing a secretin stimulation test. Imaging tests like CT scans, MRI, or endoscopic ultrasounds may be used to locate the tumors. Treatment usually includes medications to reduce stomach acid production (such as proton pump inhibitors) and surgery to remove the gastrinomas when possible.

A medical definition of 'food' would be:

"Substances consumed by living organisms, usually in the form of meals, which contain necessary nutrients such as carbohydrates, proteins, fats, vitamins, minerals, and water. These substances are broken down during digestion to provide energy, build and repair tissues, and regulate bodily functions."

It's important to note that while this is a medical definition, it also aligns with common understanding of what food is.

Pruritus is a medical term derived from Latin, in which "prurire" means "to itch." It refers to an unpleasant sensation on the skin that provokes the desire or reflex to scratch. This can be caused by various factors, such as skin conditions (e.g., dryness, eczema, psoriasis), systemic diseases (e.g., liver disease, kidney failure), nerve disorders, psychological conditions, or reactions to certain medications.

Pruritus can significantly affect a person's quality of life, leading to sleep disturbances, anxiety, and depression. Proper identification and management of the underlying cause are essential for effective treatment.

Enterochromaffin-like (ECL) cells are a type of neuroendocrine cell found in the stomach lining. They are located in the mucosa of the gastric glands and are responsible for producing and secreting hormones, such as histamine, that regulate gastric acid secretion. ECL cells are stimulated by the hormone gastrin, which is released by G cells in response to food intake or other stimuli. The histamine produced by ECL cells then acts on H2 receptors located on parietal cells, leading to the release of hydrochloric acid into the stomach.

ECL cells are named for their ability to take up and decarboxylate certain amines, such as serotonin and dopamine, which results in the formation of chromaffin granules that can be stained with chromium salts. These cells play an important role in regulating gastric acid secretion and are also involved in the development of some stomach disorders, such as gastrinomas and atrophic gastritis.

I'm sorry for any confusion, but "Prostaglandins D" is not a recognized or established term in the field of medicine or physiology. Prostaglandins are a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects in the body. They are classified into several types based on their chemical structure and biological activity, including Prostaglandin D (PGD), but referring to "Prostaglandins D" as a single entity is not standard.

Prostaglandin D (PGD) itself is a type of prostaglandin that is rapidly converted to other compounds in the body and has been studied for its potential role in various physiological processes, such as inflammation, fever, and blood flow regulation. However, it's important to note that specific medical definitions or clinical uses related to "Prostaglandins D" are not well-established.

If you have any further questions or need more information about a specific aspect of prostaglandins or their role in the body, I would be happy to help!

Piperidines are not a medical term per se, but they are a class of organic compounds that have important applications in the pharmaceutical industry. Medically relevant piperidines include various drugs such as some antihistamines, antidepressants, and muscle relaxants.

A piperidine is a heterocyclic amine with a six-membered ring containing five carbon atoms and one nitrogen atom. The structure can be described as a cyclic secondary amine. Piperidines are found in some natural alkaloids, such as those derived from the pepper plant (Piper nigrum), which gives piperidines their name.

In a medical context, it is more common to encounter specific drugs that belong to the class of piperidines rather than the term itself.

I believe there might be a slight confusion in your question as intubation is a procedure typically related to the respiratory system rather than the gastrointestinal system.

Intubation generally refers to the process of inserting a tube into a specific part of the body. In the context of medical terminology, intubation usually means the placement of a flexible plastic tube through the mouth or nose and into the trachea (windpipe). This is done to secure and maintain an open airway during surgery or in emergency situations when a person cannot breathe on their own.

However, if you're referring to a procedure that involves the gastrointestinal tract, it might be "gastric lavage" or "nasogastric intubation."

Gastric lavage is a medical procedure where a tube is inserted through the mouth or nose, down the esophagus, and into the stomach to wash out its contents. This can help remove harmful substances from the stomach in case of poisoning.

Nasogastric intubation refers to the insertion of a thin, flexible tube through the nostril, down the back of the throat, and into the stomach. The tube can be used for various purposes, such as draining the stomach of fluids and air or administering nutrients and medications directly into the stomach.

I hope this clarifies any confusion. If you have further questions, please let me know!

Smooth muscle, also known as involuntary muscle, is a type of muscle that is controlled by the autonomic nervous system and functions without conscious effort. These muscles are found in the walls of hollow organs such as the stomach, intestines, bladder, and blood vessels, as well as in the eyes, skin, and other areas of the body.

Smooth muscle fibers are shorter and narrower than skeletal muscle fibers and do not have striations or sarcomeres, which give skeletal muscle its striped appearance. Smooth muscle is controlled by the autonomic nervous system through the release of neurotransmitters such as acetylcholine and norepinephrine, which bind to receptors on the smooth muscle cells and cause them to contract or relax.

Smooth muscle plays an important role in many physiological processes, including digestion, circulation, respiration, and elimination. It can also contribute to various medical conditions, such as hypertension, gastrointestinal disorders, and genitourinary dysfunction, when it becomes overactive or underactive.

Histamine agents are substances that can either increase or decrease the level or action of histamine in the body. Histamine is a chemical mediator released by mast cells and basophils in response to allergies, inflammation, or injury. It causes various symptoms such as itching, sneezing, runny nose, and wheal and flare reactions in the skin.

Histamine-releasing agents are substances that can trigger the release of histamine from mast cells and basophils. Examples include certain medications (e.g., opioids, vancomycin), physical stimuli (e.g., heat, exercise), and venoms (e.g., bee stings).

Histamine-inhibiting agents are substances that can block the action of histamine or prevent its release from mast cells and basophils. Examples include antihistamines, which bind to histamine receptors and prevent histamine from exerting its effects, and mast cell stabilizers, which prevent the degranulation of mast cells and the subsequent release of histamine and other mediators.

Histamine-enhancing agents are substances that can increase the level or action of histamine in the body. Examples include histamine agonists, which mimic the effects of histamine by binding to its receptors, and histamine precursors, which provide the building blocks for the synthesis of histamine.

Overall, histamine agents have important clinical implications in the management of allergies, inflammation, and other conditions associated with histamine release or action.

Hexoses are simple sugars (monosaccharides) that contain six carbon atoms. The most common hexoses include glucose, fructose, and galactose. These sugars play important roles in various biological processes, such as serving as energy sources or forming complex carbohydrates like starch and cellulose. Hexoses are essential for the structure and function of living organisms, including humans.

Atrophic gastritis is a condition characterized by the inflammation and atrophy (wasting away) of the stomach lining, specifically the mucous membrane called the gastric mucosa. This process involves the loss of glandular cells in the stomach, which can result in decreased acid production and potential vitamin B12 deficiency due to reduced intrinsic factor production. Atrophic gastritis can be caused by various factors, including autoimmune disorders, chronic bacterial infection (usually with Helicobacter pylori), and the use of certain medications such as proton pump inhibitors. It can increase the risk of developing stomach cancer, so regular monitoring is often recommended.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Parasympatholytics are a type of medication that blocks the action of the parasympathetic nervous system. The parasympathetic nervous system is responsible for the body's rest and digest response, which includes slowing the heart rate, increasing intestinal and glandular activity, and promoting urination and defecation.

Parasympatholytics work by selectively binding to muscarinic receptors, which are found in various organs throughout the body, including the heart, lungs, and digestive system. By blocking these receptors, parasympatholytics can cause a range of effects, such as an increased heart rate, decreased glandular secretions, and reduced intestinal motility.

Some common examples of parasympatholytics include atropine, scopolamine, and ipratropium. These medications are often used to treat conditions such as bradycardia (slow heart rate), excessive salivation, and gastrointestinal cramping or diarrhea. However, because they can have significant side effects, parasympatholytics are typically used only when necessary and under the close supervision of a healthcare provider.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

Carnosine is a dipeptide molecule composed of the amino acids histidine and alanine, which is naturally found in high concentrations in certain tissues of the body, particularly in muscle and brain tissue. It acts as an antioxidant, helping to protect cells from damage caused by free radicals and other oxidative stressors. Carnosine also has anti-glycation properties, meaning it helps prevent the formation of advanced glycation end products (AGEs) that can contribute to aging and age-related diseases. Additionally, carnosine has been shown to have potential benefits in neuroprotection, cardioprotection, and anti-inflammation. It is being studied for its potential therapeutic uses in various health conditions, including diabetes, cataracts, Alzheimer's disease, and other neurological disorders.

2-Pyridinylmethylsulfinylbenzimidazoles is a class of chemical compounds that have both a pyridinylmethylsulfinyl group and a benzimidazole ring in their structure. Pyridinylmethylsulfinyl refers to a functional group consisting of a sulfinyl group (-S(=O)-) attached to a methyl group (-CH2-) that is, in turn, attached to a pyridine ring. Benzimidazoles are heterocyclic compounds containing a fused benzene and imidazole ring.

These types of compounds have been studied for their potential biological activity, including anti-inflammatory, antiviral, and antitumor properties. However, it's important to note that medical definitions typically refer to specific substances or classes of substances that have established clinical use or are under investigation for therapeutic purposes. As such, 2-Pyridinylmethylsulfinylbenzimidazoles do not have a recognized medical definition in this sense.

Helicobacter pylori (H. pylori) is a gram-negative, microaerophilic bacterium that colonizes the stomach of approximately 50% of the global population. It is closely associated with gastritis and peptic ulcer disease, and is implicated in the pathogenesis of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. H. pylori infection is usually acquired in childhood and can persist for life if not treated. The bacterium's spiral shape and flagella allow it to penetrate the mucus layer and adhere to the gastric epithelium, where it releases virulence factors that cause inflammation and tissue damage. Diagnosis of H. pylori infection can be made through various tests, including urea breath test, stool antigen test, or histological examination of a gastric biopsy. Treatment typically involves a combination of antibiotics and proton pump inhibitors to eradicate the bacteria and promote healing of the stomach lining.

Brain mapping is a broad term that refers to the techniques used to understand the structure and function of the brain. It involves creating maps of the various cognitive, emotional, and behavioral processes in the brain by correlating these processes with physical locations or activities within the nervous system. Brain mapping can be accomplished through a variety of methods, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, electroencephalography (EEG), and others. These techniques allow researchers to observe which areas of the brain are active during different tasks or thoughts, helping to shed light on how the brain processes information and contributes to our experiences and behaviors. Brain mapping is an important area of research in neuroscience, with potential applications in the diagnosis and treatment of neurological and psychiatric disorders.

A peptic ulcer is a sore or erosion in the lining of your stomach and the first part of your small intestine (duodenum). The most common causes of peptic ulcers are bacterial infection and long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen, or naproxen.

The symptoms of a peptic ulcer include abdominal pain, often in the upper middle part of your abdomen, which can be dull, sharp, or burning and may come and go for several days or weeks. Other symptoms can include bloating, burping, heartburn, nausea, vomiting, loss of appetite, and weight loss. Severe ulcers can cause bleeding in the digestive tract, which can lead to anemia, black stools, or vomit that looks like coffee grounds.

If left untreated, peptic ulcers can result in serious complications such as perforation (a hole through the wall of the stomach or duodenum), obstruction (blockage of the digestive tract), and bleeding. Treatment for peptic ulcers typically involves medications to reduce acid production, neutralize stomach acid, and kill the bacteria causing the infection. In severe cases, surgery may be required.

Helicobacter infections are caused by the bacterium Helicobacter pylori (H. pylori), which colonizes the stomach lining and is associated with various gastrointestinal diseases. The infection can lead to chronic active gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer.

The spiral-shaped H. pylori bacteria are able to survive in the harsh acidic environment of the stomach by producing urease, an enzyme that neutralizes gastric acid in their immediate vicinity. This allows them to adhere to and colonize the epithelial lining of the stomach, where they can cause inflammation (gastritis) and disrupt the normal functioning of the stomach.

Transmission of H. pylori typically occurs through oral-oral or fecal-oral routes, and infection is more common in developing countries and in populations with lower socioeconomic status. The diagnosis of Helicobacter infections can be confirmed through various tests, including urea breath tests, stool antigen tests, or gastric biopsy with histology and culture. Treatment usually involves a combination of antibiotics and proton pump inhibitors to eradicate the bacteria and reduce stomach acidity.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Mucus is a viscous, slippery secretion produced by the mucous membranes that line various body cavities such as the respiratory and gastrointestinal tracts. It serves to lubricate and protect these surfaces from damage, infection, and foreign particles. Mucus contains water, proteins, salts, and other substances, including antibodies, enzymes, and glycoproteins called mucins that give it its characteristic gel-like consistency.

In the respiratory system, mucus traps inhaled particles such as dust, allergens, and pathogens, preventing them from reaching the lungs. The cilia, tiny hair-like structures lining the airways, move the mucus upward toward the throat, where it can be swallowed or expelled through coughing or sneezing. In the gastrointestinal tract, mucus helps protect the lining of the stomach and intestines from digestive enzymes and other harmful substances.

Excessive production of mucus can occur in various medical conditions such as allergies, respiratory infections, chronic lung diseases, and gastrointestinal disorders, leading to symptoms such as coughing, wheezing, nasal congestion, and diarrhea.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Prostaglandin F (PGF) is a type of prostaglandin, which is a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects. Prostaglandin F is a naturally occurring compound that is produced in various tissues throughout the body, including the uterus, lungs, and kidneys.

There are two major types of prostaglandin F: PGF1α and PGF2α. These compounds play important roles in a variety of physiological processes, including:

* Uterine contraction: Prostaglandin F helps to stimulate uterine contractions during labor and childbirth. It is also involved in the shedding of the uterine lining during menstruation.
* Bronchodilation: In the lungs, prostaglandin F can help to relax bronchial smooth muscle and promote bronchodilation.
* Renal function: Prostaglandin F helps to regulate blood flow and fluid balance in the kidneys.

Prostaglandin F is also used as a medication to induce labor, treat postpartum hemorrhage, and manage some types of glaucoma. It is available in various forms, including injections, tablets, and eye drops.

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

Urethane is not a term typically used in medical definitions. However, in the field of chemistry and pharmacology, urethane is an ethyl carbamate ester which has been used as a general anesthetic. It is rarely used today due to its potential carcinogenic properties and the availability of safer alternatives.

In the context of materials science, polyurethanes are a class of polymers that contain urethane linkages (-NH-CO-O-) in their main chain. They are widely used in various applications such as foam insulation, coatings, adhesives, and medical devices due to their versatile properties like flexibility, durability, and resistance to abrasion.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Prostaglandins are naturally occurring, lipid-derived hormones that play various important roles in the human body. They are produced in nearly every tissue in response to injury or infection, and they have diverse effects depending on the site of release and the type of prostaglandin. Some of their functions include:

1. Regulation of inflammation: Prostaglandins contribute to the inflammatory response by increasing vasodilation, promoting fluid accumulation, and sensitizing pain receptors, which can lead to symptoms such as redness, heat, swelling, and pain.
2. Modulation of gastrointestinal functions: Prostaglandins protect the stomach lining from acid secretion and promote mucus production, maintaining the integrity of the gastric mucosa. They also regulate intestinal motility and secretion.
3. Control of renal function: Prostaglandins help regulate blood flow to the kidneys, maintain sodium balance, and control renin release, which affects blood pressure and fluid balance.
4. Regulation of smooth muscle contraction: Prostaglandins can cause both relaxation and contraction of smooth muscles in various tissues, such as the uterus, bronchioles, and vascular system.
5. Modulation of platelet aggregation: Some prostaglandins inhibit platelet aggregation, preventing blood clots from forming too quickly or becoming too large.
6. Reproductive system regulation: Prostaglandins are involved in the menstrual cycle, ovulation, and labor induction by promoting uterine contractions.
7. Neurotransmission: Prostaglandins can modulate neurotransmitter release and neuronal excitability, affecting pain perception, mood, and cognition.

Prostaglandins exert their effects through specific G protein-coupled receptors (GPCRs) found on the surface of target cells. There are several distinct types of prostaglandins (PGs), including PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2). Each type has unique functions and acts through specific receptors. Prostaglandins are synthesized from arachidonic acid, a polyunsaturated fatty acid derived from membrane phospholipids, by the action of cyclooxygenase (COX) enzymes. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin and ibuprofen, inhibit COX activity, reducing prostaglandin synthesis and providing analgesic, anti-inflammatory, and antipyretic effects.

Benzimidazoles are a class of heterocyclic compounds containing a benzene fused to a imidazole ring. They have a wide range of pharmacological activities and are used in the treatment of various diseases. Some of the benzimidazoles are used as antiparasitics, such as albendazole and mebendazole, which are effective against a variety of worm infestations. Other benzimidazoles have antifungal properties, such as thiabendazole and fuberidazole, and are used to treat fungal infections. Additionally, some benzimidazoles have been found to have anti-cancer properties and are being investigated for their potential use in cancer therapy.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

Dumping syndrome, also known as rapid gastric emptying, is a condition that typically occurs in people who have had surgery to remove all or part of their stomach (gastrectomy) or have had a procedure called a gastrojejunostomy. These surgeries can lead to the stomach's contents entering the small intestine too quickly, causing symptoms such as nausea, vomiting, abdominal cramping, diarrhea, dizziness, and sweating.

There are two types of dumping syndrome: early and late. Early dumping syndrome occurs within 30 minutes after eating, while late dumping syndrome occurs 1-3 hours after eating. Symptoms of early dumping syndrome may include nausea, vomiting, abdominal cramping, diarrhea, bloating, dizziness, and fatigue. Late dumping syndrome symptoms may include hypoglycemia (low blood sugar), which can cause sweating, weakness, confusion, and rapid heartbeat.

Treatment for dumping syndrome typically involves dietary modifications, such as eating smaller, more frequent meals that are low in simple sugars, and avoiding fluids during meals. In some cases, medication may be prescribed to help slow down gastric emptying or manage symptoms. If these treatments are not effective, surgery may be necessary to correct the problem.

Hexamethonium compounds are a type of ganglionic blocker, which are medications that block the transmission of nerve impulses at the ganglia ( clusters of nerve cells) in the autonomic nervous system. These compounds contain hexamethonium as the active ingredient, which is a compound with the chemical formula C16H32N2O4.

Hexamethonium works by blocking the nicotinic acetylcholine receptors at the ganglia, which prevents the release of neurotransmitters and ultimately inhibits the transmission of nerve impulses. This can have various effects on the body, depending on which part of the autonomic nervous system is affected.

Hexamethonium compounds were once used to treat hypertension (high blood pressure), but they are rarely used today due to their numerous side effects and the availability of safer and more effective medications. Some of the side effects associated with hexamethonium include dry mouth, blurred vision, constipation, difficulty urinating, and dizziness upon standing.

Hypersensitivity is an exaggerated or inappropriate immune response to a substance that is generally harmless to most people. It's also known as an allergic reaction. This abnormal response can be caused by various types of immunological mechanisms, including antibody-mediated reactions (types I, II, and III) and cell-mediated reactions (type IV). The severity of the hypersensitivity reaction can range from mild discomfort to life-threatening conditions. Common examples of hypersensitivity reactions include allergic rhinitis, asthma, atopic dermatitis, food allergies, and anaphylaxis.

The ileum is the third and final segment of the small intestine, located between the jejunum and the cecum (the beginning of the large intestine). It plays a crucial role in nutrient absorption, particularly for vitamin B12 and bile salts. The ileum is characterized by its thin, lined walls and the presence of Peyer's patches, which are part of the immune system and help surveil for pathogens.

Guanidines are organic compounds that contain a guanidino group, which is a functional group with the formula -NH-C(=NH)-NH2. Guanidines can be found in various natural sources, including some animals, plants, and microorganisms. They also occur as byproducts of certain metabolic processes in the body.

In a medical context, guanidines are most commonly associated with the treatment of muscle weakness and neuromuscular disorders. The most well-known guanidine compound is probably guanidine hydrochloride, which has been used as a medication to treat conditions such as myasthenia gravis and Eaton-Lambert syndrome.

However, the use of guanidines as medications has declined in recent years due to their potential for toxicity and the development of safer and more effective treatments. Today, guanidines are mainly used in research settings to study various biological processes, including protein folding and aggregation, enzyme inhibition, and cell signaling.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Drug receptors are specific protein molecules found on the surface of cells, to which drugs can bind. These receptors are part of the cell's communication system and are responsible for responding to neurotransmitters, hormones, and other signaling molecules in the body. When a drug binds to its corresponding receptor, it can alter the receptor's function and trigger a cascade of intracellular events that ultimately lead to a biological response.

Drug receptors can be classified into several types based on their function, including:

1. G protein-coupled receptors (GPCRs): These are the largest family of drug receptors and are involved in various physiological processes such as vision, olfaction, neurotransmission, and hormone signaling. They activate intracellular signaling pathways through heterotrimeric G proteins.
2. Ion channel receptors: These receptors form ion channels that allow the flow of ions across the cell membrane when activated. They are involved in rapid signal transduction and can be directly gated by ligands or indirectly through G protein-coupled receptors.
3. Enzyme-linked receptors: These receptors have an intracellular domain that functions as an enzyme, activating intracellular signaling pathways when bound to a ligand. Examples include receptor tyrosine kinases and receptor serine/threonine kinases.
4. Nuclear receptors: These receptors are located in the nucleus and function as transcription factors, regulating gene expression upon binding to their ligands.

Understanding drug receptors is crucial for developing new drugs and predicting their potential therapeutic and adverse effects. By targeting specific receptors, drugs can modulate cellular responses and produce desired pharmacological actions.

Solute carrier family 4A (anion exchanger) proteins, also known as SLC4A proteins, are a group of membrane transport proteins that facilitate the exchange of bicarbonate (HCO3-) and chloride (Cl-) ions across biological membranes. They play crucial roles in various physiological processes, including pH regulation, intracellular signaling, and fluid secretion/absorption in different tissues such as the kidney, brain, and red blood cells.

There are several members of this protein family, including:

1. SLC4A1 (AE1): Also known as band 3 anion transport protein, it is primarily expressed in the erythrocyte membrane and facilitates chloride-bicarbonate exchange. It also plays a role in carbon dioxide transport and maintaining the stability of red blood cells.
2. SLC4A2 (AE2): Expressed in various tissues, including the kidney, gastrointestinal tract, and brain. AE2 mediates chloride-bicarbonate exchange in these tissues and is involved in pH regulation and fluid secretion/absorption.
3. SLC4A3 (AE3): Found mainly in the heart, skeletal muscle, and brain, where it facilitates chloride-bicarbonate exchange. AE3 plays a role in regulating intracellular pH during muscle contraction and neuronal activity.
4. SLC4A4 (NBCe1): Expressed primarily in the kidney and brain, NBCe1 is a sodium-bicarbonate cotransporter that mediates the uptake of bicarbonate into cells. It plays a critical role in maintaining acid-base balance by reabsorbing bicarbonate from the urine filtrate in the kidney.
5. SLC4A5 (NBCe2): Found in various tissues, including the kidney and brain, NBCe2 is another sodium-bicarbonate cotransporter that facilitates bicarbonate uptake into cells. It contributes to pH regulation and acid-base balance.
6. SLC4A7 (NBCn1): Present in various tissues, including the eye, brain, and heart, NBCn1 is a sodium-bicarbonate cotransporter that mediates bicarbonate efflux from cells. It plays a role in maintaining intracellular pH homeostasis and has been implicated in certain diseases such as epilepsy and glaucoma.
7. SLC4A8 (NDCBE): Expressed mainly in the brain, NDCBE is a sodium-dependent chloride-bicarbonate exchanger that plays a role in regulating intracellular pH during neuronal activity.
8. SLC4A9 (AE4): Found primarily in the gastrointestinal tract and kidney, AE4 is a chloride-bicarbonate exchanger involved in pH regulation and fluid secretion/absorption.
9. SLC4A10 (NBCn2): Expressed mainly in the eye, NBCn2 is a sodium-bicarbonate cotransporter that plays a role in maintaining intracellular pH homeostasis and has been implicated in certain diseases such as epilepsy.
10. SLC4A11 (BTR1): Present in various tissues, including the eye and inner ear, BTR1 is a sodium-dependent borate cotransporter that plays a role in maintaining intracellular pH homeostasis and has been implicated in certain diseases such as Fuchs endothelial corneal dystrophy.

4-Methoxy-N-methylphenethylamine (also known as 4-MeO-N-MEPEA or 4-MeO-PMA) is a synthetic psychoactive substance that belongs to the phenethylamine class. It is a designer drug, which means it is manufactured and distributed for recreational use as an alternative to illegal drugs.

It acts as a stimulant and entactogen, producing effects similar to those of MDMA (ecstasy) but with less potency. The compound has been linked to several cases of severe intoxication, including fatalities, due to its ability to increase heart rate and blood pressure, cause dehydration, hyperthermia, and serotonin syndrome.

It is important to note that the use of 4-Methoxy-N-methylphenethylamine and other designer drugs can be dangerous and illegal in many jurisdictions. Always consult a medical professional for accurate information regarding specific substances.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Cholecystokinin (CCK) receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone cholecystokinin. CCK is a peptide hormone that is released by cells in the duodenum in response to the presence of nutrients, particularly fat and protein. It has several physiological roles, including stimulating the release of digestive enzymes from the pancreas, promoting the contraction of the gallbladder and relaxation of the sphincter of Oddi (which controls the flow of bile and pancreatic juice into the duodenum), and inhibiting gastric emptying.

There are two main types of CCK receptors, known as CCK-A and CCK-B receptors. CCK-A receptors are found in the pancreas, gallbladder, and gastrointestinal tract, where they mediate the effects of CCK on digestive enzyme secretion, gallbladder contraction, and gastric emptying. CCK-B receptors are found primarily in the brain, where they play a role in regulating appetite and satiety.

CCK receptors have been studied as potential targets for the development of drugs to treat various gastrointestinal disorders, such as pancreatitis, gallstones, and obesity. However, more research is needed to fully understand their roles and therapeutic potential.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Enterochromaffin cells, also known as Kulchitsky cells or enteroendocrine cells, are a type of neuroendocrine cell found in the epithelial lining of the gastrointestinal tract. These cells are responsible for producing and secreting a variety of hormones and neuropeptides that play important roles in regulating gastrointestinal motility, secretion, and sensation.

Enterochromaffin cells are named for their ability to take up chromaffin stains, which contain silver salts and oxidizing agents that react with the catecholamines stored within the cells. These cells can be further classified based on their morphology, location within the gastrointestinal tract, and the types of hormones they produce.

Some examples of hormones produced by enterochromaffin cells include serotonin (5-hydroxytryptamine), histamine, gastrin, somatostatin, and cholecystokinin. Serotonin is one of the most well-known hormones produced by these cells, and it plays a critical role in regulating gastrointestinal motility and secretion, as well as mood and cognition.

Abnormalities in enterochromaffin cell function have been implicated in a number of gastrointestinal disorders, including irritable bowel syndrome (IBS), functional dyspepsia, and gastroparesis. Additionally, mutations in genes associated with enterochromaffin cells have been linked to several inherited cancer syndromes, such as multiple endocrine neoplasia type 1 (MEN1) and neurofibromatosis type 1 (NF1).

Furans are not a medical term, but a class of organic compounds that contain a four-membered ring with four atoms, usually carbon and oxygen. They can be found in some foods and have been used in the production of certain industrial chemicals. Some furan derivatives have been identified as potentially toxic or carcinogenic, but the effects of exposure to these substances depend on various factors such as the level and duration of exposure.

In a medical context, furans may be mentioned in relation to environmental exposures, food safety, or occupational health. For example, some studies have suggested that high levels of exposure to certain furan compounds may increase the risk of liver damage or cancer. However, more research is needed to fully understand the potential health effects of these substances.

It's worth noting that furans are not a specific medical condition or diagnosis, but rather a class of chemical compounds with potential health implications. If you have concerns about exposure to furans or other environmental chemicals, it's best to consult with a healthcare professional for personalized advice and recommendations.

Thiazoles are organic compounds that contain a heterocyclic ring consisting of a nitrogen atom and a sulfur atom, along with two carbon atoms and two hydrogen atoms. They have the chemical formula C3H4NS. Thiazoles are present in various natural and synthetic substances, including some vitamins, drugs, and dyes. In the context of medicine, thiazole derivatives have been developed as pharmaceuticals for their diverse biological activities, such as anti-inflammatory, antifungal, antibacterial, and antihypertensive properties. Some well-known examples include thiazide diuretics (e.g., hydrochlorothiazide) used to treat high blood pressure and edema, and the antidiabetic drug pioglitazone.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

Cholinergic agonists are substances that bind to and activate cholinergic receptors, which are neuroreceptors that respond to the neurotransmitter acetylcholine. These agents can mimic the effects of acetylcholine in the body and are used in medical treatment to produce effects such as pupil constriction, increased gastrointestinal motility, bronchodilation, and improved cognition. Examples of cholinergic agonists include pilocarpine, bethanechol, and donepezil.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Chloride-bicarbonate antiporters, also known as chloride-bicarbonate exchangers, are membrane transport proteins that facilitate the exchange of chloride and bicarbonate ions across a biological membrane. These transporters play a crucial role in maintaining acid-base balance and electrical neutrality within cells and organisms.

In general, when chloride ions (Cl-) move down their electrochemical gradient into the cell, they are exchanged for bicarbonate ions (HCO3-) that move out of the cell, also following their own electrochemical gradient. This coupled exchange helps maintain electroneutrality across the membrane and allows cells to regulate their intracellular pH and chloride concentration.

There are several types of chloride-bicarbonate antiporters found in various tissues, including:

1. SLC4A family: This family includes several isoforms, such as AE1 (anion exchanger 1), AE2, AE3, and AE4. They are widely expressed in different tissues, including red blood cells, kidney, gastrointestinal tract, and brain.
2. SLC26A family: This family includes several isoforms, such as SLC26A3 (also known as Downregulated in Adenoma or DRA), SLC26A4 (pendrin), and SLC26A6 (PAT1). They are involved in various physiological processes, including intestinal ion transport, inner ear homeostasis, and airway surface liquid secretion.

Dysfunction of chloride-bicarbonate antiporters has been implicated in several diseases, such as distal renal tubular acidosis (dRTA), cystic fibrosis, and Bartter syndrome.

I'm sorry for any confusion, but "Pyridines" is not a medical term. It is a chemical term that refers to a class of organic compounds with the chemical structure of a six-membered ring containing one nitrogen atom and five carbon atoms (heterocyclic aromatic compound).

In a biological or medical context, pyridine derivatives can be found in various natural and synthetic substances. For example, some medications contain pyridine rings as part of their chemical structure. However, "Pyridines" itself is not a medical term or condition.

Dinoprostone is a prostaglandin E2 analog used in medical practice for the induction of labor and ripening of the cervix in pregnant women. It is available in various forms, including vaginal suppositories, gel, and tablets. Dinoprostone works by stimulating the contraction of uterine muscles and promoting cervical dilation, which helps in facilitating a successful delivery.

It's important to note that dinoprostone should only be administered under the supervision of a healthcare professional, as its use is associated with certain risks and side effects, including uterine hyperstimulation, fetal distress, and maternal infection. The dosage and duration of treatment are carefully monitored to minimize these risks and ensure the safety of both the mother and the baby.

Ethanol is the medical term for pure alcohol, which is a colorless, clear, volatile, flammable liquid with a characteristic odor and burning taste. It is the type of alcohol that is found in alcoholic beverages and is produced by the fermentation of sugars by yeasts.

In the medical field, ethanol is used as an antiseptic and disinfectant, and it is also used as a solvent for various medicinal preparations. It has central nervous system depressant properties and is sometimes used as a sedative or to induce sleep. However, excessive consumption of ethanol can lead to alcohol intoxication, which can cause a range of negative health effects, including impaired judgment, coordination, and memory, as well as an increased risk of accidents, injuries, and chronic diseases such as liver disease and addiction.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Bodily secretions are substances that are produced and released by various glands and organs in the body. These secretions help maintain the body's homeostasis, protect it from external threats, and aid in digestion and other physiological processes. Examples of bodily secretions include:

1. Sweat: A watery substance produced by sweat glands to regulate body temperature through evaporation.
2. Sebaceous secretions: Oily substances produced by sebaceous glands to lubricate and protect the skin and hair.
3. Saliva: A mixture of water, enzymes, electrolytes, and mucus produced by salivary glands to aid in digestion and speech.
4. Tears: A mixture of water, electrolytes, and proteins produced by the lacrimal glands to lubricate and protect the eyes.
5. Mucus: A slippery substance produced by mucous membranes lining various body cavities, such as the respiratory and gastrointestinal tracts, to trap and remove foreign particles and pathogens.
6. Gastric juices: Digestive enzymes and hydrochloric acid produced by the stomach to break down food.
7. Pancreatic juices: Digestive enzymes produced by the pancreas to further break down food in the small intestine.
8. Bile: A greenish-brown alkaline fluid produced by the liver and stored in the gallbladder, which helps digest fats and eliminate waste products.
9. Menstrual blood: The shedding of the uterine lining that occurs during menstruation, containing blood, mucus, and endometrial tissue.
10. Vaginal secretions: Fluid produced by the vagina to maintain its moisture, pH balance, and provide a protective barrier against infections.
11. Semen: A mixture of sperm cells, fluids from the seminal vesicles, prostate gland, and bulbourethral glands that aids in the transportation and survival of sperm during sexual reproduction.

The frontal lobe is the largest lobes of the human brain, located at the front part of each cerebral hemisphere and situated in front of the parietal and temporal lobes. It plays a crucial role in higher cognitive functions such as decision making, problem solving, planning, parts of social behavior, emotional expressions, physical reactions, and motor function. The frontal lobe is also responsible for what's known as "executive functions," which include the ability to focus attention, understand rules, switch focus, plan actions, and inhibit inappropriate behaviors. It is divided into five areas, each with its own specific functions: the primary motor cortex, premotor cortex, Broca's area, prefrontal cortex, and orbitofrontal cortex. Damage to the frontal lobe can result in a wide range of impairments, depending on the location and extent of the injury.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Basophils are a type of white blood cell that are part of the immune system. They are granulocytes, which means they contain granules filled with chemicals that can be released in response to an infection or inflammation. Basophils are relatively rare, making up less than 1% of all white blood cells.

When basophils become activated, they release histamine and other chemical mediators that can contribute to allergic reactions, such as itching, swelling, and redness. They also play a role in inflammation, helping to recruit other immune cells to the site of an infection or injury.

Basophils can be identified under a microscope based on their characteristic staining properties. They are typically smaller than other granulocytes, such as neutrophils and eosinophils, and have a multi-lobed nucleus with dark purple-staining granules in the cytoplasm.

While basophils play an important role in the immune response, abnormal levels of basophils can be associated with various medical conditions, such as allergies, infections, and certain types of leukemia.

1-Methyl-3-isobutylxanthine is a chemical compound that belongs to the class of xanthines. It is a methylated derivative of xanthine and is commonly found in some types of tea, coffee, and chocolate. This compound acts as a non-selective phosphodiesterase inhibitor, which means it can increase the levels of intracellular cyclic AMP (cAMP) by preventing its breakdown.

In medical terms, 1-Methyl-3-isobutylxanthine is often used as a bronchodilator and a stimulant of central nervous system. It is also known to have diuretic properties. This compound is sometimes used in the treatment of asthma, COPD (chronic obstructive pulmonary disease), and other respiratory disorders.

It's important to note that 1-Methyl-3-isobutylxanthine can have side effects, including increased heart rate, blood pressure, and anxiety. It should be used under the supervision of a medical professional and its use should be carefully monitored to avoid potential adverse reactions.

Salivary glands are exocrine glands that produce saliva, which is secreted into the oral cavity to keep the mouth and throat moist, aid in digestion by initiating food breakdown, and help maintain dental health. There are three major pairs of salivary glands: the parotid glands located in the cheeks, the submandibular glands found beneath the jaw, and the sublingual glands situated under the tongue. Additionally, there are numerous minor salivary glands distributed throughout the oral cavity lining. These glands release their secretions through a system of ducts into the mouth.

A radioligand assay is a type of in vitro binding assay used in molecular biology and pharmacology to measure the affinity and quantity of a ligand (such as a drug or hormone) to its specific receptor. In this technique, a small amount of a radioactively labeled ligand, also known as a radioligand, is introduced to a sample containing the receptor of interest. The radioligand binds competitively with other unlabeled ligands present in the sample for the same binding site on the receptor. After allowing sufficient time for binding, the reaction is stopped, and the amount of bound radioligand is measured using a technique such as scintillation counting. The data obtained from this assay can be used to determine the dissociation constant (Kd) and maximum binding capacity (Bmax) of the receptor-ligand interaction, which are important parameters in understanding the pharmacological properties of drugs and other ligands.

Psychomotor performance refers to the integration and coordination of mental processes (cognitive functions) with physical movements. It involves the ability to perform complex tasks that require both cognitive skills, such as thinking, remembering, and perceiving, and motor skills, such as gross and fine motor movements. Examples of psychomotor performances include driving a car, playing a musical instrument, or performing surgical procedures.

In a medical context, psychomotor performance is often used to assess an individual's ability to perform activities of daily living (ADLs) and instrumental activities of daily living (IADLs), such as bathing, dressing, cooking, cleaning, and managing medications. Deficits in psychomotor performance can be a sign of neurological or psychiatric disorders, such as dementia, Parkinson's disease, or depression.

Assessment of psychomotor performance may involve tests that measure reaction time, coordination, speed, precision, and accuracy of movements, as well as cognitive functions such as attention, memory, and problem-solving skills. These assessments can help healthcare professionals develop appropriate treatment plans and monitor the progression of diseases or the effectiveness of interventions.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Nitrobenzoates are a type of organic compound that consists of a benzoate group (a carboxylate derived from benzoic acid) with a nitro group (-NO2) attached to the benzene ring. They are often used in chemical synthesis and have also been studied for their potential medicinal properties, such as their antimicrobial and anti-inflammatory effects. However, they are not commonly used in modern medicine as therapeutic agents.

Ostertagiasis is a parasitic infection caused by the nematode roundworm Ostertagia ostertagi in the abomasum (the fourth stomach compartment) of ruminants, such as cattle and sheep. The larvae of the worm infect the host by ingesting contaminated grass, leading to inflammation, reduced feed conversion, diarrhea, and decreased growth rates. In severe cases, it can cause a syndrome known as Type II ostertagiasis or "thin cow syndrome," which is characterized by weight loss, lethargy, and even death in extreme cases. It is a significant concern for the agricultural industry, leading to economic losses due to decreased productivity and increased treatment costs.

U937 cells are a type of human histiocytic lymphoma cell line that is commonly used in scientific research and studies. They are derived from the peripheral blood of a patient with histiocytic lymphoma, which is a rare type of cancer that affects the immune system's cells called histiocytes.

U937 cells have a variety of uses in research, including studying the mechanisms of cancer cell growth and proliferation, testing the effects of various drugs and treatments on cancer cells, and investigating the role of different genes and proteins in cancer development and progression. These cells are easy to culture and maintain in the laboratory, making them a popular choice for researchers in many fields.

It is important to note that while U937 cells can provide valuable insights into the behavior of cancer cells, they do not necessarily reflect the complexity and diversity of human cancers. Therefore, findings from studies using these cells should be validated in more complex models or clinical trials before being applied to patient care.

Intestinal secretions refer to the fluids and electrolytes that are released by the cells lining the small intestine in response to various stimuli. These secretions play a crucial role in the digestion and absorption of nutrients from food. The major components of intestinal secretions include water, electrolytes (such as sodium, chloride, bicarbonate, and potassium), and enzymes that help break down carbohydrates, proteins, and fats.

The small intestine secretes these substances in response to hormonal signals, neural stimulation, and the presence of food in the lumen of the intestine. The secretion of water and electrolytes helps maintain the proper hydration and pH of the intestinal contents, while the enzymes facilitate the breakdown of nutrients into smaller molecules that can be absorbed across the intestinal wall.

Abnormalities in intestinal secretions can lead to various gastrointestinal disorders, such as diarrhea, malabsorption, and inflammatory bowel disease.

Bacterial secretion systems are specialized molecular machines that allow bacteria to transport proteins and other molecules across their cell membranes. These systems play a crucial role in bacterial survival, pathogenesis, and communication with their environment. They are composed of several protein components organized into complex structures that span the bacterial cell envelope.

There are several types of bacterial secretion systems, including type I to type IX secretion systems (T1SS to T9SS). Each type has a unique structure and mechanism for transporting specific substrates across the membrane. Here are some examples:

* Type II secretion system (T2SS): This system transports folded proteins across the outer membrane of gram-negative bacteria. It is composed of 12 to 15 protein components that form a complex structure called the secretion apparatus or "secretion nanomachine." The T2SS secretes various virulence factors, such as exotoxins and hydrolases, which contribute to bacterial pathogenesis.
* Type III secretion system (T3SS): This system transports effector proteins directly into the cytosol of host cells during bacterial infection. It is composed of a hollow needle-like structure that extends from the bacterial cell surface and injects effectors into the host cell. The T3SS plays a critical role in the pathogenesis of many gram-negative bacteria, including Yersinia, Salmonella, and Shigella.
* Type IV secretion system (T4SS): This system transports DNA or proteins across the bacterial cell envelope and into target cells. It is composed of a complex structure that spans both the inner and outer membranes of gram-negative bacteria and the cytoplasmic membrane of gram-positive bacteria. The T4SS plays a role in bacterial conjugation, DNA uptake and release, and delivery of effector proteins to host cells.
* Type VI secretion system (T6SS): This system transports effector proteins into neighboring cells or the extracellular environment. It is composed of a contractile sheath-tube structure that propels effectors through a hollow inner tube and out of the bacterial cell. The T6SS plays a role in interbacterial competition, biofilm formation, and virulence.

Overall, these secretion systems play crucial roles in bacterial survival, pathogenesis, and communication with their environment. Understanding how they function and how they contribute to bacterial infection and disease is essential for developing new strategies to combat bacterial infections and improve human health.

Gastrointestinal motility refers to the coordinated muscular contractions and relaxations that propel food, digestive enzymes, and waste products through the gastrointestinal tract. This process involves the movement of food from the mouth through the esophagus into the stomach, where it is mixed with digestive enzymes and acids to break down food particles.

The contents are then emptied into the small intestine, where nutrients are absorbed, and the remaining waste products are moved into the large intestine for further absorption of water and electrolytes and eventual elimination through the rectum and anus.

Gastrointestinal motility is controlled by a complex interplay between the autonomic nervous system, hormones, and local reflexes. Abnormalities in gastrointestinal motility can lead to various symptoms such as bloating, abdominal pain, nausea, vomiting, diarrhea, or constipation.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Ostertagia is a genus of nematode parasites that can infect the gastrointestinal tract of ruminants, such as cattle and sheep. The adult worms live in the abomasum (the fourth stomach compartment) and feed on the host's digestive juices and tissue.

Ostertagia infection, also known as ostertagiosis or type I ostertagiasis, can cause significant production losses in livestock due to reduced feed conversion efficiency, weight gain, and milk production. The parasite can also cause clinical signs of disease, such as diarrhea, reduced appetite, and decreased body condition.

Infection occurs when larvae ingested through contaminated pasture or feed develop into adult worms in the abomasum. The severity of infection depends on various factors, including the number of infective larvae ingested, the age and immune status of the host, and environmental conditions that affect larval survival and development.

Prevention and control measures for Ostertagia infection include pasture management practices, such as rotational grazing and fecal removal, strategic deworming programs, and genetic selection for resistance to parasites in livestock populations.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Pepsinogens are inactive precursor forms of the enzyme pepsin, which is produced in the stomach. They are composed of two types: Pepsinogen I (or gastric intrinsic factor) and Pepsinogen II. When exposed to acid in the stomach, these pepsinogens get converted into their active form, pepsin, which helps digest proteins in food. Measurement of pepsinogens in blood can be used as a diagnostic marker for certain stomach conditions, such as atrophic gastritis and gastric cancer.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Intravenous injections are a type of medical procedure where medication or fluids are administered directly into a vein using a needle and syringe. This route of administration is also known as an IV injection. The solution injected enters the patient's bloodstream immediately, allowing for rapid absorption and onset of action. Intravenous injections are commonly used to provide quick relief from symptoms, deliver medications that are not easily absorbed by other routes, or administer fluids and electrolytes in cases of dehydration or severe illness. It is important that intravenous injections are performed using aseptic technique to minimize the risk of infection.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Interleukin-8 (IL-8) is a type of cytokine, which is a small signaling protein involved in immune response and inflammation. IL-8 is also known as neutrophil chemotactic factor or NCF because it attracts neutrophils, a type of white blood cell, to the site of infection or injury.

IL-8 is produced by various cells including macrophages, epithelial cells, and endothelial cells in response to bacterial or inflammatory stimuli. It acts by binding to specific receptors called CXCR1 and CXCR2 on the surface of neutrophils, which triggers a series of intracellular signaling events leading to neutrophil activation, migration, and degranulation.

IL-8 plays an important role in the recruitment of neutrophils to the site of infection or tissue damage, where they can phagocytose and destroy invading microorganisms. However, excessive or prolonged production of IL-8 has been implicated in various inflammatory diseases such as chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, and cancer.

"Helicobacter felis" is a gram-negative, spiral-shaped bacterium that colonizes the stomachs of cats and other animals. It is closely related to "Helicobacter pylori," which is a well-known cause of gastritis, peptic ulcers, and gastric cancer in humans. "Helicobacter felis" has been associated with similar gastrointestinal diseases in cats and has been occasionally found in human stomachs, although its role in human pathogenesis is not as clearly established as that of "Helicobacter pylori."

The secretory pathway is a series of membrane-enclosed compartments within eukaryotic cells that are involved in the synthesis, modification, and transport of proteins and lipids. The pathway begins in the endoplasmic reticulum (ER), where proteins and lipids are synthesized and folded.

Proteins that are destined for secretion or for incorporation into membranes are then transported from the ER to the Golgi apparatus, where they undergo further modifications such as glycosylation and sorting. After passing through the Golgi, proteins and lipids are sorted and packaged into vesicles that bud off from the Golgi and are transported to their final destinations, which may include the plasma membrane, lysosomes, or other organelles.

The secretory pathway is essential for many cellular processes, including the production and secretion of hormones, enzymes, and other proteins, as well as the maintenance of cell membranes and the regulation of intracellular signaling.

Antiporters, also known as exchange transporters, are a type of membrane transport protein that facilitate the exchange of two or more ions or molecules across a biological membrane in opposite directions. They allow for the movement of one type of ion or molecule into a cell while simultaneously moving another type out of the cell. This process is driven by the concentration gradient of one or both of the substances being transported. Antiporters play important roles in various physiological processes, including maintaining electrochemical balance and regulating pH levels within cells.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Chlorides are simple inorganic ions consisting of a single chlorine atom bonded to a single charged hydrogen ion (H+). Chloride is the most abundant anion (negatively charged ion) in the extracellular fluid in the human body. The normal range for chloride concentration in the blood is typically between 96-106 milliequivalents per liter (mEq/L).

Chlorides play a crucial role in maintaining electrical neutrality, acid-base balance, and osmotic pressure in the body. They are also essential for various physiological processes such as nerve impulse transmission, maintenance of membrane potentials, and digestion (as hydrochloric acid in the stomach).

Chloride levels can be affected by several factors, including diet, hydration status, kidney function, and certain medical conditions. Increased or decreased chloride levels can indicate various disorders, such as dehydration, kidney disease, Addison's disease, or diabetes insipidus. Therefore, monitoring chloride levels is essential for assessing a person's overall health and diagnosing potential medical issues.

Photic stimulation is a medical term that refers to the exposure of the eyes to light, specifically repetitive pulses of light, which is used as a method in various research and clinical settings. In neuroscience, it's often used in studies related to vision, circadian rhythms, and brain function.

In a clinical context, photic stimulation is sometimes used in the diagnosis of certain medical conditions such as seizure disorders (like epilepsy). By observing the response of the brain to this light stimulus, doctors can gain valuable insights into the functioning of the brain and the presence of any neurological disorders.

However, it's important to note that photic stimulation should be conducted under the supervision of a trained healthcare professional, as improper use can potentially trigger seizures in individuals who are susceptible to them.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

No FAQ available that match "cephalic phase of gastric secretion histamine receptors activates parietal cells gastric"

No images available that match "cephalic phase of gastric secretion histamine receptors activates parietal cells gastric"