White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
The number of LYMPHOCYTES per unit volume of BLOOD.
The number of CD4-POSITIVE T-LYMPHOCYTES per unit volume of BLOOD. Determination requires the use of a fluorescence-activated flow cytometer.
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA).
Ratio of T-LYMPHOCYTES that express the CD4 ANTIGEN to those that express the CD8 ANTIGEN. This value is commonly assessed in the diagnosis and staging of diseases affecting the IMMUNE SYSTEM including HIV INFECTIONS.
A classification of lymphocytes based on structurally or functionally different populations of cells.
A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.
Differentiation antigens found on thymocytes and on cytotoxic and suppressor T-lymphocytes. CD8 antigens are members of the immunoglobulin supergene family and are associative recognition elements in MHC (Major Histocompatibility Complex) Class I-restricted interactions.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
Reduction in the number of lymphocytes.
A membrane glycoprotein and differentiation antigen expressed on the surface of T-cells that binds to CD40 ANTIGENS on B-LYMPHOCYTES and induces their proliferation. Mutation of the gene for CD40 ligand is a cause of HYPER-IGM IMMUNODEFICIENCY SYNDROME, TYPE 1.
Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS).
A member of the tumor necrosis factor receptor superfamily with specificity for CD40 LIGAND. It is found on mature B-LYMPHOCYTES and some EPITHELIAL CELLS, lymphoid DENDRITIC CELLS. Evidence suggests that CD40-dependent activation of B-cells is important for generation of memory B-cells within the germinal centers. Mutations of the gene for CD40 antigen result in HYPER-IGM IMMUNODEFICIENCY SYNDROME, TYPE 3. Signaling of the receptor occurs through its association with TNF RECEPTOR-ASSOCIATED FACTORS.
Costimulatory T-LYMPHOCYTE receptors that have specificity for CD80 ANTIGEN and CD86 ANTIGEN. Activation of this receptor results in increased T-cell proliferation, cytokine production and promotion of T-cell survival.
Acidic sulfated integral membrane glycoproteins expressed in several alternatively spliced and variable glycosylated forms on a wide variety of cell types including mature T-cells, B-cells, medullary thymocytes, granulocytes, macrophages, erythrocytes, and fibroblasts. CD44 antigens are the principle cell surface receptors for hyaluronate and this interaction mediates binding of lymphocytes to high endothelial venules. (From Abbas et al., Cellular and Molecular Immunology, 2d ed, p156)
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes.
Excess of normal lymphocytes in the blood or in any effusion.
The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES.
The number of PLATELETS per unit volume in a sample of venous BLOOD.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
A bifunctional enzyme that catalyzes the synthesis and HYDROLYSIS of CYCLIC ADP-RIBOSE (cADPR) from NAD+ to ADP-RIBOSE. It is a cell surface molecule which is predominantly expressed on LYMPHOID CELLS and MYELOID CELLS.
Glycolipid-anchored membrane glycoproteins expressed on cells of the myelomonocyte lineage including monocytes, macrophages, and some granulocytes. They function as receptors for the complex of lipopolysaccharide (LPS) and LPS-binding protein.
Glycoprotein members of the immunoglobulin superfamily which participate in T-cell adhesion and activation. They are expressed on most peripheral T-lymphocytes, natural killer cells, and thymocytes, and function as co-receptors or accessory molecules in the T-cell receptor complex.
A costimulatory ligand expressed by ANTIGEN-PRESENTING CELLS that binds to CTLA-4 ANTIGEN with high specificity and to CD28 ANTIGEN with low specificity. The interaction of CD80 with CD28 ANTIGEN provides a costimulatory signal to T-LYMPHOCYTES, while its interaction with CTLA-4 ANTIGEN may play a role in inducing PERIPHERAL TOLERANCE.
Differentiation antigens expressed on B-lymphocytes and B-cell precursors. They are involved in regulation of B-cell proliferation.
Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
The quantity of measurable virus in a body fluid. Change in viral load, measured in plasma, is sometimes used as a SURROGATE MARKER in disease progression.
A tumor necrosis factor receptor subtype found in a variety of tissues and on activated LYMPHOCYTES. It has specificity for FAS LIGAND and plays a role in regulation of peripheral immune responses and APOPTOSIS. Multiple isoforms of the protein exist due to multiple ALTERNATIVE SPLICING. The activated receptor signals via a conserved death domain that associates with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM.
Glycoproteins expressed on cortical thymocytes and on some dendritic cells and B-cells. Their structure is similar to that of MHC Class I and their function has been postulated as similar also. CD1 antigens are highly specific markers for human LANGERHANS CELLS.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.
An encapsulated lymphatic organ through which venous blood filters.
An acquired defect of cellular immunity associated with infection by the human immunodeficiency virus (HIV), a CD4-positive T-lymphocyte count under 200 cells/microliter or less than 14% of total lymphocytes, and increased susceptibility to opportunistic infections and malignant neoplasms. Clinical manifestations also include emaciation (wasting) and dementia. These elements reflect criteria for AIDS as defined by the CDC in 1993.
Opportunistic infections found in patients who test positive for human immunodeficiency virus (HIV). The most common include PNEUMOCYSTIS PNEUMONIA, Kaposi's sarcoma, cryptosporidiosis, herpes simplex, toxoplasmosis, cryptococcosis, and infections with Mycobacterium avium complex, Microsporidium, and Cytomegalovirus.
Agents used to treat AIDS and/or stop the spread of the HIV infection. These do not include drugs used to treat symptoms or opportunistic infections associated with AIDS.
Glycoproteins expressed on all mature T-cells, thymocytes, and a subset of mature B-cells. Antibodies specific for CD5 can enhance T-cell receptor-mediated T-cell activation. The B-cell-specific molecule CD72 is a natural ligand for CD5. (From Abbas et al., Cellular and Molecular Immunology, 2d ed, p156)
Unglycosylated phosphoproteins expressed only on B-cells. They are regulators of transmembrane Ca2+ conductance and thought to play a role in B-cell activation and proliferation.
A costimulatory ligand expressed by ANTIGEN-PRESENTING CELLS that binds to CD28 ANTIGEN with high specificity and to CTLA-4 ANTIGEN with low specificity. The interaction of CD86 with CD28 ANTIGEN provides a stimulatory signal to T-LYMPHOCYTES, while its interaction with CTLA-4 ANTIGEN may play a role in inducing PERIPHERAL TOLERANCE.
The 140 kDa isoform of NCAM (neural cell adhesion molecule) containing a transmembrane domain and short cytoplasmic tail. It is expressed by all lymphocytes mediating non-MHC restricted cytotoxicity and is present on some neural tissues and tumors.
Drug regimens, for patients with HIV INFECTIONS, that aggressively suppress HIV replication. The regimens usually involve administration of three or more different drugs including a protease inhibitor.
A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes.
Cell-surface glycoprotein beta-chains that are non-covalently linked to specific alpha-chains of the CD11 family of leukocyte-adhesion molecules (RECEPTORS, LEUKOCYTE-ADHESION). A defect in the gene encoding CD18 causes LEUKOCYTE-ADHESION DEFICIENCY SYNDROME.
Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture.
A classification of T-lymphocytes, especially into helper/inducer, suppressor/effector, and cytotoxic subsets, based on structurally or functionally different populations of cells.
Elements of limited time intervals, contributing to particular results or situations.
A chronic leukemia characterized by abnormal B-lymphocytes and often generalized lymphadenopathy. In patients presenting predominately with blood and bone marrow involvement it is called chronic lymphocytic leukemia (CLL); in those predominately with enlarged lymph nodes it is called small lymphocytic lymphoma. These terms represent spectrums of the same disease.
Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role.
Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens.
Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2.
Lymphocytes that show specificity for autologous tumor cells. Ex vivo isolation and culturing of TIL with interleukin-2, followed by reinfusion into the patient, is one form of adoptive immunotherapy of cancer.
A member of the tumor necrosis factor receptor superfamily that may play a role in the regulation of NF-KAPPA B and APOPTOSIS. They are found on activated T-LYMPHOCYTES; B-LYMPHOCYTES; NEUTROPHILS; EOSINOPHILS; MAST CELLS and NK CELLS. Overexpression of CD30 antigen in hematopoietic malignancies make the antigen clinically useful as a biological tumor marker. Signaling of the receptor occurs through its association with TNF RECEPTOR-ASSOCIATED FACTORS.
Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation.
Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type.
A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat.
The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement.
A sialic acid-rich protein and an integral cell membrane mucin. It plays an important role in activation of T-LYMPHOCYTES.
A cell adhesion protein that was originally identified as a heat stable antigen in mice. It is involved in METASTASIS and is highly expressed in many NEOPLASMS.
Antibodies produced by a single clone of cells.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system.
The number of RED BLOOD CELLS per unit volume in a sample of venous BLOOD.
Differentiation antigens expressed on pluripotential hematopoietic cells, most human thymocytes, and a major subset of peripheral blood T-lymphocytes. They have been implicated in integrin-mediated cellular adhesion and as signalling receptors on T-cells.
Leukocyte differentiation antigens and major platelet membrane glycoproteins present on MONOCYTES; ENDOTHELIAL CELLS; PLATELETS; and mammary EPITHELIAL CELLS. They play major roles in CELL ADHESION; SIGNAL TRANSDUCTION; and regulation of angiogenesis. CD36 is a receptor for THROMBOSPONDINS and can act as a scavenger receptor that recognizes and transports oxidized LIPOPROTEINS and FATTY ACIDS.
Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts.
The transfer of lymphocytes from a donor to a recipient or reinfusion to the donor.
A subtype of tetraspanin proteins that play a role in cell adhesion, cell motility, and tumor metastasis. CD9 antigens take part in the process of platelet activation and aggregation, the formation of paranodal junctions in neuronal tissue, and the fusion of sperm with egg.
A group of three different alpha chains (CD11a, CD11b, CD11c) that are associated with an invariant CD18 beta chain (ANTIGENS, CD18). The three resulting leukocyte-adhesion molecules (RECEPTORS, LEUKOCYTE ADHESION) are LYMPHOCYTE FUNCTION-ASSOCIATED ANTIGEN-1; MACROPHAGE-1 ANTIGEN; and ANTIGEN, P150,95.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
The in vitro formation of clusters consisting of a cell (usually a lymphocyte) surrounded by antigenic cells or antigen-bearing particles (usually erythrocytes, which may or may not be coated with antibody or antibody and complement). The rosette-forming cell may be an antibody-forming cell, a memory cell, a T-cell, a cell bearing surface cytophilic antibodies, or a monocyte possessing Fc receptors. Rosette formation can be used to identify specific populations of these cells.
Oligosaccharide antigenic determinants found principally on NK cells and T-cells. Their role in the immune response is poorly understood.
Immune status consisting of non-production of HIV antibodies, as determined by various serological tests.
IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment.
Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
Development of neutralizing antibodies in individuals who have been exposed to the human immunodeficiency virus (HIV/HTLV-III/LAV).
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Small glycoproteins found on both hematopoietic and non-hematopoietic cells. CD59 restricts the cytolytic activity of homologous complement by binding to C8 and C9 and blocking the assembly of the membrane attack complex. (From Barclay et al., The Leukocyte Antigen FactsBook, 1993, p234)
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
A transmembrane protein belonging to the tumor necrosis factor superfamily that specifically binds to CD27 ANTIGEN. It is found on activated T-LYMPHOCYTES; B-LYMPHOCYTES; and DENDRITIC CELLS where it plays a role in stimulating the proliferation of CD4-POSITIVE T-LYMPHOCYTES and CD8-POSITIVE T-LYMPHOCYTES.
A ubiquitously expressed membrane glycoprotein. It interacts with a variety of INTEGRINS and mediates responses to EXTRACELLULAR MATRIX PROTEINS.
CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells.
A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
A ubiquitously expressed complement receptor that binds COMPLEMENT C3B and COMPLEMENT C4B and serves as a cofactor for their inactivation. CD46 also interacts with a wide variety of pathogens and mediates immune response.
A CD antigen that contains a conserved I domain which is involved in ligand binding. When combined with CD18 the two subunits form MACROPHAGE-1 ANTIGEN.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules.
A method for the detection of very small quantities of antibody in which the antigen-antibody-complement complex adheres to indicator cells, usually primate erythrocytes or nonprimate blood platelets. The reaction is dependent on the number of bound C3 molecules on the C3b receptor sites of the indicator cell.
Tests used in the analysis of the hemic system.
Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (ANTIGENS, CD3). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Rare, chronic, papulo-vesicular disease characterized by an intensely pruritic eruption consisting of various combinations of symmetrical, erythematous, papular, vesicular, or bullous lesions. The disease is strongly associated with the presence of HLA-B8 and HLA-DR3 antigens. A variety of different autoantibodies has been detected in small numbers in patients with dermatitis herpetiformis.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
An increased reactivity to specific antigens mediated not by antibodies but by cells.
Cell surface glycoproteins on lymphocytes and other leukocytes that mediate adhesion to specialized blood vessels called high endothelial venules. Several different classes of lymphocyte homing receptors have been identified, and they appear to target different surface molecules (addressins) on high endothelial venules in different tissues. The adhesion plays a crucial role in the trafficking of lymphocytes.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging.
High-molecular weight glycoproteins uniquely expressed on the surface of LEUKOCYTES and their hemopoietic progenitors. They contain a cytoplasmic protein tyrosine phosphatase activity which plays a role in intracellular signaling from the CELL SURFACE RECEPTORS. The CD45 antigens occur as multiple isoforms that result from alternative mRNA splicing and differential usage of three exons.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Tetraspanin proteins that are involved in a variety of cellular functions including BASEMENT MEMBRANE assembly, and in the formation of a molecular complexes on the surface of LYMPHOCYTES.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
An integrin heterodimer widely expressed on cells of hematopoietic origin. CD11A ANTIGEN comprises the alpha chain and the CD18 antigen (ANTIGENS, CD18) the beta chain. Lymphocyte function-associated antigen-1 is a major receptor of T-CELLS; B-CELLS; and GRANULOCYTES. It mediates the leukocyte adhesion reactions underlying cytolytic conjugate formation, helper T-cell interactions, and antibody-dependent killing by NATURAL KILLER CELLS and granulocytes. Intracellular adhesion molecule-1 has been defined as a ligand for lymphocyte function-associated antigen-1.
Glycoproteins with a wide distribution on hematopoietic and non-hematopoietic cells and strongly expressed on macrophages. CD58 mediates cell adhesion by binding to CD2; (ANTIGENS, CD2); and this enhances antigen-specific T-cell activation.
T-cell enhancement of the B-cell response to thymic-dependent antigens.
An antineoplastic agent used in the treatment of lymphoproliferative diseases including hairy-cell leukemia.
Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed)
Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
Established cell cultures that have the potential to propagate indefinitely.
Ribonucleic acid that makes up the genetic material of viruses.
Derivatives of propylene glycol (1,2-propanediol). They are used as humectants and solvents in pharmaceutical preparations.
The altered state of immunologic responsiveness resulting from initial contact with antigen, which enables the individual to produce antibodies more rapidly and in greater quantity in response to secondary antigenic stimulus.
A member of the tumor necrosis factor receptor superfamily that is specific for 4-1BB LIGAND. It is found in a variety of immune cell types including activated T-LYMPHOCYTES; NATURAL KILLER CELLS; and DENDRITIC CELLS. Activation of the receptor on T-LYMPHOCYTES plays a role in their expansion, production of cytokines and survival. Signaling by the activated receptor occurs through its association with TNF RECEPTOR-ASSOCIATED FACTORS.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Cell adhesion molecules present on virtually all monocytes, platelets, and granulocytes. CD31 is highly expressed on endothelial cells and concentrated at the junctions between them.
An integrin alpha subunit of approximately 150-kDa molecular weight. It is expressed at high levels on monocytes and combines with CD18 ANTIGEN to form the cell surface receptor INTEGRIN ALPHAXBETA2. The subunit contains a conserved I-domain which is characteristic of several of alpha integrins.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Epicutaneous or intradermal application of a sensitizer for demonstration of either delayed or immediate hypersensitivity. Used in diagnosis of hypersensitivity or as a test for cellular immunity.
The demonstration of the cytotoxic effect on a target cell of a lymphocyte, a mediator released by a sensitized lymphocyte, an antibody, or complement.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
A prodromal phase of infection with the human immunodeficiency virus (HIV). Laboratory criteria separating AIDS-related complex (ARC) from AIDS include elevated or hyperactive B-cell humoral immune responses, compared to depressed or normal antibody reactivity in AIDS; follicular or mixed hyperplasia in ARC lymph nodes, leading to lymphocyte degeneration and depletion more typical of AIDS; evolving succession of histopathological lesions such as localization of Kaposi's sarcoma, signaling the transition to the full-blown AIDS.
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
Prolamins in the endosperm of SEEDS from the Triticeae tribe which includes species of WHEAT; BARLEY; and RYE.
Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI.
Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION).
GPI-linked membrane proteins broadly distributed among hematopoietic and non-hematopoietic cells. CD55 prevents the assembly of C3 CONVERTASE or accelerates the disassembly of preformed convertase, thus blocking the formation of the membrane attack complex.
A membrane-bound tumor necrosis family member found primarily on activated T-LYMPHOCYTES that binds specifically to CD30 ANTIGEN. It may play a role in INFLAMMATION and immune regulation.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
A pulmonary disease in humans occurring in immunodeficient or malnourished patients or infants, characterized by DYSPNEA, tachypnea, and HYPOXEMIA. Pneumocystis pneumonia is a frequently seen opportunistic infection in AIDS. It is caused by the fungus PNEUMOCYSTIS JIROVECII. The disease is also found in other MAMMALS where it is caused by related species of Pneumocystis.
The body's defense mechanism against foreign organisms or substances and deviant native cells. It includes the humoral immune response and the cell-mediated response and consists of a complex of interrelated cellular, molecular, and genetic components.
Infection of the retina by cytomegalovirus characterized by retinal necrosis, hemorrhage, vessel sheathing, and retinal edema. Cytomegalovirus retinitis is a major opportunistic infection in AIDS patients and can cause blindness.
A transient increase in the number of leukocytes in a body fluid.
Tetraspanin proteins found associated with LAMININ-binding INTEGRINS. The CD151 antigens may play a role in the regulation of CELL MOTILITY.
Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN.
Serum containing GAMMA-GLOBULINS which are antibodies for lymphocyte ANTIGENS. It is used both as a test for HISTOCOMPATIBILITY and therapeutically in TRANSPLANTATION.
Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
A malabsorption syndrome that is precipitated by the ingestion of foods containing GLUTEN, such as wheat, rye, and barley. It is characterized by INFLAMMATION of the SMALL INTESTINE, loss of MICROVILLI structure, failed INTESTINAL ABSORPTION, and MALNUTRITION.
An alpha-integrin subunit found on lymphocytes, granulocytes, macrophages and monocytes. It combines with the integrin beta2 subunit (CD18 ANTIGEN) to form LYMPHOCYTE FUNCTION-ASSOCIATED ANTIGEN-1.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.
A set of techniques used when variation in several variables has to be studied simultaneously. In statistics, multivariate analysis is interpreted as any analytic method that allows simultaneous study of two or more dependent variables.
Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs.
Agents used to treat RETROVIRIDAE INFECTIONS.
A CELL LINE derived from human T-CELL LEUKEMIA and used to determine the mechanism of differential susceptibility to anti-cancer drugs and radiation.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Nonsusceptibility to the invasive or pathogenic effects of foreign microorganisms or to the toxic effect of antigenic substances.
Proteins prepared by recombinant DNA technology.
Ubiquitously-expressed tetraspanin proteins that are found in late ENDOSOMES and LYSOSOMES and have been implicated in intracellular transport of proteins.
An 11-kDa protein associated with the outer membrane of many cells including lymphocytes. It is the small subunit of the MHC class I molecule. Association with beta 2-microglobulin is generally required for the transport of class I heavy chains from the endoplasmic reticulum to the cell surface. Beta 2-microglobulin is present in small amounts in serum, csf, and urine of normal people, and to a much greater degree in the urine and plasma of patients with tubular proteinemia, renal failure, or kidney transplants.
Zinc-binding metalloproteases that are members of the type II integral membrane metalloproteases. They are expressed by GRANULOCYTES; MONOCYTES; and their precursors as well as by various non-hematopoietic cells. They release an N-terminal amino acid from a peptide, amide or arylamide.
Group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. It is inherited as an X-linked or autosomal recessive defect. Mutations occurring in many different genes cause human Severe Combined Immunodeficiency (SCID).
55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. CD4 antigens are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. CD4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
A malignant disease characterized by progressive enlargement of the lymph nodes, spleen, and general lymphoid tissue. In the classical variant, giant usually multinucleate Hodgkin's and REED-STERNBERG CELLS are present; in the nodular lymphocyte predominant variant, lymphocytic and histiocytic cells are seen.
Specialized tissues that are components of the lymphatic system. They provide fixed locations within the body where a variety of LYMPHOCYTES can form, mature and multiply. The lymphoid tissues are connected by a network of LYMPHATIC VESSELS.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Substances that are recognized by the immune system and induce an immune reaction.
Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions.
Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung.
T-cell receptors composed of CD3-associated alpha and beta polypeptide chains and expressed primarily in CD4+ or CD8+ T-cells. Unlike immunoglobulins, the alpha-beta T-cell receptors recognize antigens only when presented in association with major histocompatibility (MHC) molecules.
The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Sites on an antigen that interact with specific antibodies.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A round-to-oval mass of lymphoid tissue embedded in the lateral wall of the PHARYNX. There is one on each side of the oropharynx in the fauces between the anterior and posterior pillars of the SOFT PALATE.
The presence of viruses in the blood.
The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A general term for various neoplastic diseases of the lymphoid tissue.
An idiopathic systemic inflammatory granulomatous disorder comprised of epithelioid and multinucleated giant cells with little necrosis. It usually invades the lungs with fibrosis and may also involve lymph nodes, skin, liver, spleen, eyes, phalangeal bones, and parotid glands.
A major core protein of the human immunodeficiency virus encoded by the HIV gag gene. HIV-seropositive individuals mount a significant immune response to p24 and thus detection of antibodies to p24 is one basis for determining HIV infection by ELISA and Western blot assays. The protein is also being investigated as a potential HIV immunogen in vaccines.
The classic hemophilia resulting from a deficiency of factor VIII. It is an inherited disorder of blood coagulation characterized by a permanent tendency to hemorrhage.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells.
Adherence of cells to surfaces or to other cells.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A class of lymphocytes characterized by the lack of surface markers specific for either T or B lymphocytes.
A human or animal whose immunologic mechanism is deficient because of an immunodeficiency disorder or other disease or as the result of the administration of immunosuppressive drugs or radiation.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.

Incidence of acquired immunodeficiency syndrome (AIDS)-related Kaposi's sarcoma in the Aquitaine Cohort, France, 1988-1996. Groupe d'Epidemiologie Clinique du SIDA en Aquitaine. (1/4884)

OBJECTIVE: To assess secular trends of the incidence of Kaposi's sarcoma (KS) between 1988 and 1996 in the Aquitaine Cohort of human immunodeficiency virus type 1 (HIV1)-infected subjects (southwestern France). METHODS: Adults of both sexes of all HIV-transmission categories were included. We distinguished between incident and prevalent KS and in case of multiple acquired immunodeficiency syndrome (AIDS) defining illnesses between initial or subsequent KS. Only incident KS were considered for annual incidence rate calculation. RESULTS: Overall, 21.2% (356/1678) of homosexuals and 1.9% (58/3030) of the other patients were diagnosed with KS over time. Although there was a sharp decrease in 1996 for initial KS, the annual incidence rate of KS was stable over time in the overall cohort as well as in homosexuals (4.3% per year on the average for KS as an initial AIDS-defining illness and 2.1% per year for subsequent KS in homosexuals). The median CD4+ cell count at the time of diagnosis of KS was 56 per mm3 (78 for initial KS, 14 for subsequent KS), with no significant variation over time. CONCLUSION: In the Aquitaine Cohort, the annual incidence of KS has remained stable between 1988 and 1995 with a recent decline in 1996, only for initial KS, while case management of HIV-infected subjects changed drastically.  (+info)

HIV-associated nephropathy is a late, not early, manifestation of HIV-1 infection. (2/4884)

BACKGROUND: Human immunodeficiency virus-associated nephropathy (HIVAN) can be the initial presentation of HIV-1 infection. As a result, many have assumed that HIVAN can occur at any point in the infection. This issue has important implications for appropriate therapy and, perhaps, for pathogenesis. Since the development of new case definitions for acquired immunodeficiency syndrome (AIDS) and better tools to assess infection, the relationship of HIVAN to the time of AIDS infection has not been addressed. In this study, we reassessed the stage of infection at the time of HIVAN diagnosis in 10 patients, and we reviewed all previously published cases applying the new case definitions to assess stage of infection. METHODS: HIVAN was confirmed by kidney biopsy in HIV seropositive patients with azotemia and/or proteinuria. CD4+ cell count and plasma HIV-1 RNA copy number were measured. We also reviewed all published cases of HIVAN to determine if AIDS-defining conditions, by current Centers for Disease Control definitions, were present in patients with biopsy-proven HIVAN. RESULTS: Twenty HIV-1 seropositive patients with proteinuria and an elevated creatinine concentration were biopsied. HIVAN was the single most common cause of renal disease. CD4+ cell count was below 200/mm3 in all patients with HIVAN, fulfilling Centers for Disease Control criteria for an AIDS-defining condition. HIV-1 plasma RNA was detectable in all patients with HIVAN. In reviewing previous reports, an AIDS-defining condition was present in virtually all patients with HIVAN. CONCLUSION: HIVAN develops late, not early, in the course of HIV-1 infection following the development of AIDS. This likely accounts for the poor prognosis noted in previous publications and has implications for pathogenesis. In addition, given the detectable viral RNA levels, highly active antiretroviral therapy is indicated in HIVAN. Highly active antiretroviral therapy may improve survival as well as alter the natural history of HIVAN.  (+info)

Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women. (3/4884)

BACKGROUND: Human papillomavirus (HPV) infection is associated with precancerous cervical squamous intraepithelial lesions commonly seen among women infected with human immunodeficiency virus-1 (HIV). We characterized HPV infection in a large cohort of HIV-positive and HIV-negative women participating in the Women's Interagency HIV Study to determine the prevalence of and risk factors for cervicovaginal HPV infection in HIV-positive women. METHODS: HIV-positive (n = 1778) and HIV-negative (n = 500) women were tested at enrollment for the presence of HPV DNA in a cervicovaginal lavage specimen. Blood samples were tested for HIV antibody status, level of CD4-positive T cells, and HIV RNA load (copies/mL). An interview detailing risk factors was conducted. Univariate and multivariate analyses were performed. RESULTS: Compared with HIV-negative women, HIV-positive women with a CD4+ cell count of less than 200/mm3 were at the highest risk of HPV infection, regardless of HIV RNA load (odds ratio [OR] = 10.13; 95% confidence interval [CI] = 7.32-14.04), followed by women with a CD4+ count greater than 200/mm3 and an HIV RNA load greater than 20,000 copies/mL (OR = 5.78; 95% CI = 4.17-8.08) and women with a CD4+ count greater than 200/mm3 and an HIV RNA load less than 20,000 copies/mL (OR = 3.12; 95% CI = 2.36-4.12), after adjustment for other factors. Other risk factors among HIV-positive women included racial/ethnic background (African-American versus Caucasian, OR = 1.64; 95% CI = 1.19-2.28), current smoking (yes versus no; OR = 1.55; 95% CI = 1.20-1.99), and younger age (age < 30 years versus > or = 40 years; OR = 1.75; 95% CI = 1.23-2.49). CONCLUSIONS: Although the strongest risk factors of HPV infection among HIV-positive women were indicators of more advanced HIV-related disease, other factors commonly found in studies of HIV-negative women, including racial/ethnic background, current smoking, and age, were important in HIV-positive women as well.  (+info)

Idiopathic CD4+ T lymphocytopenia disclosed by the onset of empyema thoracis. (4/4884)

A 56-year-old man was admitted to our hospital in December 1996 due to empyema thoracis. A laboratory examination revealed lymphocytopenia and CD4+ T lymphocytopenia (<300 cells/ microl). No evidence for a human immunodeficiency virus (HIV) infection was found. No malignant, hematological or autoimmune disease was detected. We thus diagnosed this case as being idiopathic CD4+ T lymphocytopenia (ICL). During his hospital treatment, he was affected with cytomegaloviral retinitis and cured by therapy. His subsequent treatment went well without a recurrence of severe infection although a low CD4+ T lymphocyte count continued after the recovery from empyema thoracis.  (+info)

Carriage of GB virus C/hepatitis G virus RNA is associated with a slower immunologic, virologic, and clinical progression of human immunodeficiency virus disease in coinfected persons. (5/4884)

The prevalence of GB virus C (GBV-C) infection is high in human immunodeficiency virus (HIV)-infected persons. However, the long-term consequences of coinfection are unknown. HIV-positive persons with a well-defined duration of infection were screened on the basis of their GBV-C/hepatitis G virus (HGV) RNA status and studied. GBV-C/HGV viremia was observed in 23, who carried the virus over a mean of 7.7 years. All parameters (survival, CDC stage B/C, HIV RNA load, CD4 T cell count) showed significant differences in terms of the cumulative progression rate between persons positive and negative for GBV-C/HGV RNA. When GBV-C/HGV RNA-positive and -unexposed subjects were matched by age, sex, baseline HIV RNA load, and baseline CD4 T cell count, HIV disease progression appeared worse in GBV-C/HGV RNA-negative subjects. The carriage of GBV-C/HGV RNA is associated with a slower progression of HIV disease in coinfected persons.  (+info)

Outcome and predictors of failure of highly active antiretroviral therapy: one-year follow-up of a cohort of human immunodeficiency virus type 1-infected persons. (6/4884)

The outcome and predictors of virologic treatment failure of highly active antiretroviral therapy (HAART) were determined for 271 human immunodeficiency virus (HIV)-infected protease inhibitor-naive persons. During a follow-up of 48 weeks after the initiation of HAART, 6.3% of patients experienced at least one new AIDS-defining event, and 3.0% died. Virologic treatment failure occurred in 40% (indinavir, 27%; ritonavir, 30%; saquinavir, 59%; ritonavir plus saquinavir, 32%; chi2, P=.001). Risk factors for treatment failure were baseline plasma HIV-1 RNA (odds ratio [OR], 1.70 per log10 copies increase in plasma HIV-1 RNA), baseline CD4 cell count (OR, 1. 35 per 100 CD4 cells/mm3 decrease), and use of saquinavir versus other protease inhibitors (OR, 3.21). During the first year of treatment, 53% of all patients changed (part of) their original HAART regimen at least once. This was significantly more frequent for regimens containing saquinavir (62%; 27% for virologic failure) or ritonavir (64%; 55% for intolerance) as single protease inhibitor.  (+info)

Characterization of viral dynamics in human immunodeficiency virus type 1-infected patients treated with combination antiretroviral therapy: relationships to host factors, cellular restoration, and virologic end points. (7/4884)

Biphasic plasma viral decays were modeled in 48 patients treated with ritonavir, zidovudine, and lamivudine. Estimated first- and second-phase decay rates were d1 as 0.47/day and d2 as 0.04/day. Interpatient differences in both decay rates were significant. The d1 was directly correlated with baseline CD4+, CD4+CD28+, and CD8+CD28+ T lymphocyte counts (P<.05) and inversely correlated with baseline virus load (P=.044) and the magnitude of CD4+ and CD8+ T lymphocyte recovery (P<.01). The d2 was directly correlated with baseline percentage of CD8+ T lymphocytes (P=.023), the CD8+CD38+ cell number (P=.024), and the level of IgG that binds to human immunodeficiency virus (HIV) type 1 gp120 (P=.02). Viral decay rates were not predictive of treatment failure or durability of viral suppression. These exploratory findings are consistent with a model in which immunologic factors contribute to elimination of HIV-infected cells and suggest a dynamic interplay between regulation of HIV expression and lymphocyte activation and recovery.  (+info)

Treatment with amprenavir alone or amprenavir with zidovudine and lamivudine in adults with human immunodeficiency virus infection. AIDS Clinical Trials Group 347 Study Team. (8/4884)

Amprenavir is a human immunodeficiency virus (HIV) protease inhibitor with a favorable pharmacokinetic profile and good in vitro activity. Ninety-two lamivudine- and protease inhibitor-naive individuals with >/=50 CD4 cells/mm3 and >/=5000 HIV RNA copies/mL were assigned amprenavir (1200 mg) alone or with zidovudine (300 mg) plus lamivudine (150 mg), all given every 12 h. After a median follow-up of 88 days, the findings of a planned interim review resulted in termination of the amprenavir monotherapy arm. Among 85 subjects with confirmed plasma HIV RNA determination, 15 of 42 monotherapy versus 1 of 43 triple-therapy subjects had an HIV RNA increase above baseline or 1 log10 above nadir (P=.0001). For subjects taking triple therapy at 24 weeks, the median decrease in HIV RNA was 2.04 log10 copies/mL, and 17 (63%) of 27 evaluable subjects had <500 HIV RNA copies/mL. Treatment with amprenavir, zidovudine, and lamivudine together reduced the levels of HIV RNA significantly more than did amprenavir monotherapy.  (+info)

There are several possible causes of lymphopenia, including:

1. Viral infections: Many viral infections can cause lymphopenia, such as HIV/AIDS, hepatitis B and C, and influenza.
2. Bacterial infections: Some bacterial infections, such as tuberculosis and leprosy, can also cause lymphopenia.
3. Cancer: Certain types of cancer, such as Hodgkin's disease and non-Hodgkin's lymphoma, can cause lymphopenia by destroying lymphocytes.
4. Autoimmune disorders: Autoimmune disorders, such as rheumatoid arthritis and lupus, can cause lymphopenia by attacking the body's own tissues, including lymphocytes.
5. Radiation therapy: Radiation therapy can destroy lymphocytes and cause lymphopenia.
6. Medications: Certain medications, such as chemotherapy drugs and antibiotics, can cause lymphopenia as a side effect.
7. Genetic disorders: Some genetic disorders, such as X-linked lymphoproliferative disease, can cause lymphopenia by affecting the development or function of lymphocytes.

Symptoms of lymphopenia can include recurring infections, fatigue, and swollen lymph nodes. Treatment of lymphopenia depends on the underlying cause and may involve antibiotics, antiviral medications, or immunoglobulin replacement therapy. In some cases, a bone marrow transplant may be necessary.

Overall, lymphopenia is a condition that can have a significant impact on quality of life, and it is important to seek medical attention if symptoms persist or worsen over time. With proper diagnosis and treatment, many people with lymphopenia can experience improved health outcomes and a better quality of life.

HIV (human immunodeficiency virus) infection is a condition in which the body is infected with HIV, a type of retrovirus that attacks the body's immune system. HIV infection can lead to AIDS (acquired immunodeficiency syndrome), a condition in which the immune system is severely damaged and the body is unable to fight off infections and diseases.

There are several ways that HIV can be transmitted, including:

1. Sexual contact with an infected person
2. Sharing of needles or other drug paraphernalia with an infected person
3. Mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Blood transfusions ( although this is rare in developed countries due to screening processes)
5. Organ transplantation (again, rare)

The symptoms of HIV infection can be mild at first and may not appear until several years after infection. These symptoms can include:

1. Fever
2. Fatigue
3. Swollen glands in the neck, armpits, and groin
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss

If left untreated, HIV infection can progress to AIDS, which is a life-threatening condition that can cause a wide range of symptoms, including:

1. Opportunistic infections (such as pneumocystis pneumonia)
2. Cancer (such as Kaposi's sarcoma)
3. Wasting syndrome
4. Neurological problems (such as dementia and seizures)

HIV infection is diagnosed through a combination of blood tests and physical examination. Treatment typically involves antiretroviral therapy (ART), which is a combination of medications that work together to suppress the virus and slow the progression of the disease.

Prevention methods for HIV infection include:

1. Safe sex practices, such as using condoms and dental dams
2. Avoiding sharing needles or other drug-injecting equipment
3. Avoiding mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Post-exposure prophylaxis (PEP), which is a short-term treatment that can prevent infection after potential exposure to the virus
5. Pre-exposure prophylaxis (PrEP), which is a daily medication that can prevent infection in people who are at high risk of being exposed to the virus.

It's important to note that HIV infection is manageable with proper treatment and care, and that people living with HIV can lead long and healthy lives. However, it's important to be aware of the risks and take steps to prevent transmission.

There are several possible causes of lymphocytosis, including:

1. Infection: Lymphocytosis can be caused by a variety of infections, such as viral or bacterial infections.
2. Autoimmune disorders: Conditions such as rheumatoid arthritis, lupus, and multiple sclerosis can cause an abnormal increase in lymphocytes.
3. Cancer: Lymphocytosis can be a symptom of certain types of cancer, such as Hodgkin's disease and non-Hodgkin's lymphoma.
4. Reaction to medication: Certain medications, such as antibiotics and chemotherapy drugs, can cause lymphocytosis.
5. Genetic disorders: Certain genetic disorders, such as X-linked agammaglobulinemia, can cause lymphocytosis.

Symptoms of lymphocytosis may include swollen lymph nodes, fatigue, fever, and weight loss. Treatment depends on the underlying cause of the condition, and may involve antibiotics, chemotherapy, or other medications. In some cases, no treatment is necessary, as the condition may resolve on its own over time.

The symptoms of AIDS can vary depending on the individual and the stage of the disease. Common symptoms include:

1. Fever
2. Fatigue
3. Swollen glands
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss
9. Memory loss and other neurological problems
10. Cancer and other opportunistic infections.

AIDS is diagnosed through blood tests that detect the presence of HIV antibodies or the virus itself. There is no cure for AIDS, but antiretroviral therapy (ART) can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis (PrEP), and avoiding sharing needles or other injection equipment.

In summary, Acquired Immunodeficiency Syndrome (AIDS) is a severe and life-threatening condition caused by the Human Immunodeficiency Virus (HIV). It is characterized by a severely weakened immune system, which makes it difficult to fight off infections and diseases. While there is no cure for AIDS, antiretroviral therapy can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis, and avoiding sharing needles or other injection equipment.

Examples of AROIs include:

1. Pneumocystis pneumonia (PCP): a type of pneumonia caused by the fungus Pneumocystis jirovecii.
2. Tuberculosis (TB): a bacterial infection that can affect the lungs, brain, or other organs.
3. Toxoplasmosis: an infection caused by the parasite Toxoplasma gondii that can affect the brain, eyes, and other organs.
4. Cryptococcosis: a fungal infection that can affect the lungs, brain, or skin.
5. Histoplasmosis: a fungal infection caused by Histoplasma capsulatum that can affect the lungs, skin, and other organs.
6. Aspergillosis: a fungal infection caused by Aspergillus species that can affect the lungs, sinuses, and other organs.
7. Candidiasis: a fungal infection caused by Candida species that can affect the mouth, throat, vagina, or skin.
8. Kaposi's sarcoma: a type of cancer that is caused by the human herpesvirus 8 (HHV-8) and can affect the skin and lymph nodes.
9. Wasting syndrome: a condition characterized by weight loss, fatigue, and diarrhea.
10. Opportunistic infections that can affect the gastrointestinal tract, such as cryptosporidiosis and isosporiasis.

AROIs are a major cause of morbidity and mortality in individuals with HIV/AIDS, and they can be prevented or treated with antimicrobial therapy, supportive care, and other interventions.

In LLCB, the B cells undergo a mutation that causes them to become cancerous and multiply rapidly. This can lead to an overproduction of these cells in the bone marrow, causing the bone marrow to become crowded and unable to produce healthy red blood cells, platelets, and white blood cells.

LLCB is typically a slow-growing cancer, and it can take years for symptoms to develop. However, as the cancer progresses, it can lead to a range of symptoms including fatigue, weakness, weight loss, fever, night sweats, and swollen lymph nodes.

LLCB is typically diagnosed through a combination of physical examination, blood tests, bone marrow biopsy, and imaging studies such as X-rays or CT scans. Treatment options for LLCB include chemotherapy, radiation therapy, and in some cases, stem cell transplantation.

Overall, while LLCB is a serious condition, it is typically slow-growing and can be managed with appropriate treatment. With current treatments, many people with LLCB can achieve long-term remission and a good quality of life.

The two main types of lymphoid leukemia are:

1. Acute Lymphoblastic Leukemia (ALL): This type of leukemia is most commonly seen in children, but it can also occur in adults. It is characterized by a rapid increase in the number of immature white blood cells in the blood and bone marrow.
2. Chronic Lymphocytic Leukemia (CLL): This type of leukemia usually affects older adults and is characterized by the gradual buildup of abnormal white blood cells in the blood, bone marrow, and lymph nodes.

Symptoms of lymphoid leukemia include fatigue, fever, night sweats, weight loss, and swollen lymph nodes. Treatment options for lymphoid leukemia can vary depending on the type of cancer and the severity of symptoms, but may include chemotherapy, radiation therapy, or bone marrow transplantation.

HIV seropositivity is typically diagnosed through a blood test called an enzyme-linked immunosorbent assay (ELISA). This test detects the presence of antibodies against HIV in the blood by using specific proteins on the surface of the virus. If the test is positive, it means that the individual has been infected with HIV.

HIV seropositivity is an important diagnostic criterion for AIDS (Acquired Immune Deficiency Syndrome), which is a condition that develops when the immune system is severely damaged by HIV infection. AIDS is diagnosed based on a combination of symptoms and laboratory tests, including HIV seropositivity.

HIV seropositivity can be either primary (acute) or chronic. Primary HIV seropositivity occurs when an individual is first infected with HIV and their immune system produces antibodies against the virus. Chronic HIV seropositivity occurs when an individual has been living with HIV for a long time and their immune system has produced antibodies that remain in their bloodstream.

HIV seropositivity can have significant implications for an individual's health and quality of life, as well as their social and economic well-being. It is important for individuals who are HIV seropositive to receive appropriate medical care and support to manage their condition and prevent the transmission of HIV to others.

The symptoms of dermatitis herpetiformis can vary in severity and may include:

1. Intensely itchy, fluid-filled blisters or bumps that can appear on the arms, legs, back and buttocks.
2. Burning, stinging or tingling sensations on the skin.
3. Redness and swelling around the affected areas.
4. Fever and fatigue.
5. Nausea and vomiting in some cases.

Dermatitis herpetiformis can be diagnosed through a combination of physical examination, medical history and diagnostic tests such as skin scrapings or blood tests. Treatment typically involves avoiding gluten-containing foods and taking medications to reduce symptoms and inflammation. In some cases, the condition may resolve on its own within a few years of starting a gluten-free diet.

Examples of delayed hypersensitivity reactions include contact dermatitis (a skin reaction to an allergic substance), tuberculin reactivity (a reaction to the bacteria that cause tuberculosis), and sarcoidosis (a condition characterized by inflammation in various organs, including the lungs and lymph nodes).

Delayed hypersensitivity reactions are important in the diagnosis and management of allergic disorders and other immune-related conditions. They can be detected through a variety of tests, including skin prick testing, patch testing, and blood tests. Treatment for delayed hypersensitivity reactions depends on the underlying cause and may involve medications such as antihistamines, corticosteroids, or immunosuppressants.

Disease progression can be classified into several types based on the pattern of worsening:

1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.

Disease progression can be influenced by various factors, including:

1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.

Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.

1. Chronic diarrhea
2. Fever
3. Fatigue
4. Night sweats
5. Weight loss
6. Swollen glands in the neck, armpits, or groin
7. Rashes or skin lesions
8. Muscle aches and joint pain
9. Memory loss and other neurological problems
10. Yeast infections in the mouth, throat, or vagina

ARC is a stage of HIV infection that occurs before the development of acquired immunodeficiency syndrome (AIDS). It is characterized by a decline in CD4 cell counts and an increase in HIV viral load. If left untreated, ARC can progress to AIDS, which is a life-threatening condition that affects the body's ability to fight off opportunistic infections and cancers.

The diagnosis of ARC is based on a combination of clinical symptoms, laboratory tests (such as CD4 cell counts and HIV viral load), and medical imaging studies. Treatment for ARC typically involves antiretroviral therapy (ART) to suppress the virus, manage symptoms, and prevent complications.

It's important to note that the term "AIDS-related complex" is no longer used in modern medicine, as it has been replaced by the term "HIV disease." This change reflects the understanding that HIV infection is a continuous spectrum of illness, rather than a distinct set of conditions.

This type of pneumonia can cause severe respiratory symptoms, including cough, fever, chest pain, and difficulty breathing. It can also lead to respiratory failure and other complications if left untreated.

Pneumocystis pneumonia is diagnosed through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or CT scans, and blood tests. Treatment typically involves antifungal medications, and hospitalization may be necessary for severe cases.

Prevention measures include avoiding exposure to people with weakened immune systems, avoiding smoking, and maintaining good hygiene practices. Vaccines are also available for some populations at high risk of developing Pneumocystis pneumonia.

The infection occurs when the virus enters the retina and causes inflammation, which can lead to damage to the retinal cells and blood vessels. Symptoms of CMV retinitis may include blurred vision, sensitivity to light, and floaters. If left untreated, the infection can progress to scarring, retinal detachment, and blindness.

The diagnosis of CMV retinitis is based on a combination of clinical findings, including symptoms, physical examination, and imaging tests such as fluorescein angiography. Treatment typically involves antiviral medication to suppress the virus and prevent further damage to the retina. In severe cases, surgery may be necessary to remove inflamed tissue or repair damaged blood vessels.

Preventing CMV retinitis in high-risk individuals, such as those with HIV/AIDS or undergoing immunosuppressive therapy, is important to avoid vision loss. This includes regular monitoring for CMV infection and prompt treatment if an infection occurs. In addition, reducing the risk of HIV transmission through safe sex practices and needle exchange programs can also help prevent CMV retinitis in these individuals.

Overall, CMV retinitis is a serious complication of viral infection that can cause significant vision loss if left untreated. Early detection and prompt treatment are essential to prevent long-term visual impairment and improve outcomes for patients with this condition.

White blood cells are an important part of the immune system and play a crucial role in fighting off infections and diseases. However, when there is an excessive increase in their numbers, it can lead to various complications, including:

1. Increased risk of infection: With too many white blood cells in the bloodstream, there is a higher chance of developing infections.
2. Inflammation: Excessive production of white blood cells can cause inflammation in various parts of the body.
3. Blood clotting disorders: White blood cells can clump together and form clots, which can lead to blockages in blood vessels.
4. Tissue damage: The excessive growth of white blood cells can cause damage to tissues and organs.
5. Bone marrow failure: Prolonged leukocytosis can lead to bone marrow failure, which can result in a decrease in the production of other blood cells, such as red blood cells and platelets.

There are several types of leukocytosis, including:

1. Reactive leukocytosis: This is the most common type and is caused by an infection or inflammation.
2. Chronic leukocytosis: This type is characterized by a persistent increase in white blood cells over a long period of time.
3. Acute leukocytosis: This type is characterized by a sudden and severe increase in white blood cells, often accompanied by other symptoms such as fever and fatigue.
4. Leukemia: This is a type of cancer that affects the bone marrow and blood cells. It can cause an abnormal increase in white blood cells.

Diagnosis of leukocytosis typically involves a physical examination, medical history, and laboratory tests such as complete blood count (CBC) and bone marrow biopsy. Treatment depends on the underlying cause and may include antibiotics for infections, steroids to reduce inflammation, or chemotherapy for leukemia. In some cases, no treatment is necessary if the condition resolves on its own.

The primary symptoms of celiac disease include diarrhea, abdominal pain, fatigue, weight loss, and bloating. However, some people may not experience any symptoms at all, but can still develop complications if the disease is left untreated. These complications can include malnutrition, anemia, osteoporosis, and increased risk of other autoimmune disorders.

The exact cause of celiac disease is unknown, but it is believed to be triggered by a combination of genetic and environmental factors. The disease is more common in people with a family history of celiac disease or other autoimmune disorders. Diagnosis is typically made through a combination of blood tests and intestinal biopsy, and treatment involves a strict gluten-free diet.

Dietary management of celiac disease involves avoiding all sources of gluten, including wheat, barley, rye, and some processed foods that may contain hidden sources of these grains. In some cases, nutritional supplements may be necessary to ensure adequate intake of certain vitamins and minerals.

While there is no known cure for celiac disease, adherence to a strict gluten-free diet can effectively manage the condition and prevent long-term complications. With proper management, people with celiac disease can lead normal, healthy lives.

People with SCID are extremely susceptible to infections, particularly those caused by viruses, and often develop symptoms shortly after birth. These may include diarrhea, vomiting, fever, and failure to gain weight or grow at the expected rate. Without treatment, SCID can lead to life-threatening infections and can be fatal within the first year of life.

Treatment for SCID typically involves bone marrow transplantation or enzyme replacement therapy. Bone marrow transplantation involves replacing the patient's faulty immune system with healthy cells from a donor, while enzyme replacement therapy involves replacing the missing or dysfunctional enzymes that cause the immune deficiency. Both of these treatments can help restore the patient's immune system and improve their quality of life.

In summary, severe combined immunodeficiency (SCID) is a rare genetic disorder that impairs the body's ability to fight infections and can be fatal without treatment. Treatment options include bone marrow transplantation and enzyme replacement therapy.

Hodgkin Disease can spread to other parts of the body through the lymphatic system, and it can affect people of all ages, although it is most common in young adults and teenagers. The symptoms of Hodgkin Disease can vary depending on the stage of the disease, but they may include swollen lymph nodes, fever, night sweats, fatigue, weight loss, and itching.

There are several types of Hodgkin Disease, including:

* Classical Hodgkin Disease: This is the most common type of Hodgkin Disease and is characterized by the presence of Reed-Sternberg cells.
* Nodular Lymphocytic predominant Hodgkin Disease: This type of Hodgkin Disease is characterized by the presence of nodules in the lymph nodes.
* Mixed Cellularity Hodgkin Disease: This type of Hodgkin Disease is characterized by a mixture of Reed-Sternberg cells and other immune cells.

Hodgkin Disease is usually diagnosed with a biopsy, which involves removing a sample of tissue from the affected lymph node or other area and examining it under a microscope for cancer cells. Treatment for Hodgkin Disease typically involves chemotherapy, radiation therapy, or a combination of both. In some cases, bone marrow or stem cell transplantation may be necessary.

The prognosis for Hodgkin Disease is generally good, especially if the disease is detected and treated early. According to the American Cancer Society, the 5-year survival rate for people with Hodgkin Disease is about 85%. However, the disease can sometimes recur after treatment, and the long-term effects of radiation therapy and chemotherapy can include infertility, heart problems, and an increased risk of secondary cancers.

Hodgkin Disease is a rare form of cancer that affects the immune system. It is most commonly diagnosed in young adults and is usually treatable with chemotherapy or radiation therapy. However, the disease can sometimes recur after treatment, and the long-term effects of treatment can include infertility, heart problems, and an increased risk of secondary cancers.

Viremia is a condition where the virus is present in the bloodstream, outside of infected cells or tissues. This can occur during the acute phase of an infection, when the virus is actively replicating and spreading throughout the body. Viremia can also be seen in chronic infections, where the virus may persist in the blood for longer periods of time.

In some cases, viremia can lead to the development of antibodies against the virus, which can help to neutralize it and prevent its spread. However, if the viremia is not controlled, it can cause serious complications, such as sepsis or organ damage.

Diagnosis of viremia typically involves laboratory tests, such as PCR (polymerase chain reaction) or ELISA (enzyme-linked immunosorbent assay), which can detect the presence of virus in the blood. Treatment of viremia depends on the underlying cause and may include antiviral medications, supportive care, and management of any related complications.

There are several types of lymphoma, including:

1. Hodgkin lymphoma: This is a type of lymphoma that originates in the white blood cells called Reed-Sternberg cells. It is characterized by the presence of giant cells with multiple nucleoli.
2. Non-Hodgkin lymphoma (NHL): This is a type of lymphoma that does not meet the criteria for Hodgkin lymphoma. There are many subtypes of NHL, each with its own unique characteristics and behaviors.
3. Cutaneous lymphoma: This type of lymphoma affects the skin and can take several forms, including cutaneous B-cell lymphoma and cutaneous T-cell lymphoma.
4. Primary central nervous system (CNS) lymphoma: This is a rare type of lymphoma that develops in the brain or spinal cord.
5. Post-transplantation lymphoproliferative disorder (PTLD): This is a type of lymphoma that develops in people who have undergone an organ transplant, often as a result of immunosuppressive therapy.

The symptoms of lymphoma can vary depending on the type and location of the cancer. Some common symptoms include:

* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching

Lymphoma is diagnosed through a combination of physical examination, imaging tests (such as CT scans or PET scans), and biopsies. Treatment options for lymphoma depend on the type and stage of the cancer, and may include chemotherapy, radiation therapy, immunotherapy, or stem cell transplantation.

Overall, lymphoma is a complex and diverse group of cancers that can affect people of all ages and backgrounds. While it can be challenging to diagnose and treat, advances in medical technology and research have improved the outlook for many patients with lymphoma.

Sarcoidosis is characterized by an abnormal immune response, which leads to the formation of granulomas. These granulomas are made up of a mix of immune cells, including macrophages, lymphocytes, and epithelioid cells. The exact cause of sarcoidosis is not known, but it is believed that a combination of genetic and environmental factors may contribute to its development.

There are several types of sarcoidosis, each with different symptoms and characteristics:

* Cutaneous sarcoidosis affects the skin and can cause red or purple patches on the face, arms, or legs.
* Lung sarcoidosis is the most common form of the disease and can cause shortness of breath, coughing, and chest pain.
* Ocular sarcoidosis can affect the eyes and cause blurred vision, sensitivity to light, and eye pain.
* Cardiac sarcoidosis can affect the heart and cause arrhythmias, heart failure, or cardiac arrest.

There is no cure for sarcoidosis, but treatment options are available to manage symptoms and prevent complications. Treatment options may include medications such as corticosteroids, immunosuppressive drugs, and biologics, as well as lifestyle changes such as exercise and stress management. In severe cases, surgery or other procedures may be necessary to remove affected tissue or organs.

Overall, sarcoidosis is a complex and debilitating disease that can affect various parts of the body. While there is no cure, with proper treatment and self-care, many people with sarcoidosis are able to manage their symptoms and lead active lives.

Symptoms of hemophilia A can include spontaneous bleeding, easy bruising, and prolonged bleeding after injury or surgery. Treatment typically involves replacing the missing factor VIII with infusions of clotting factor concentrate, which helps to restore the blood's ability to clot and stop bleeding. Regular infusions are often needed to prevent bleeding episodes, and patients with severe hemophilia A may require lifelong treatment.

Complications of hemophilia A can include joint damage, muscle weakness, and chronic pain. In severe cases, the condition can also increase the risk of bleeding in the brain or other internal organs, which can be life-threatening. However, with proper treatment and management, most patients with hemophilia A can lead active and relatively normal lives.

It is important to note that there is no cure for hemophilia A, but advances in medical technology and treatment have significantly improved the quality of life for many patients with the condition.

Pulmonary tuberculosis typically affects the lungs but can also spread to other parts of the body, such as the brain, kidneys, or spine. The symptoms of pulmonary TB include coughing for more than three weeks, chest pain, fatigue, fever, night sweats, and weight loss.

Pulmonary tuberculosis is diagnosed by a combination of physical examination, medical history, laboratory tests, and radiologic imaging, such as chest X-rays or computed tomography (CT) scans. Treatment for pulmonary TB usually involves a combination of antibiotics and medications to manage symptoms.

Preventive measures for pulmonary tuberculosis include screening for latent TB infection in high-risk populations, such as healthcare workers and individuals with HIV/AIDS, and vaccination with the bacillus Calmette-Guérin (BCG) vaccine in countries where it is available.

Overall, pulmonary tuberculosis is a serious and potentially life-threatening disease that requires prompt diagnosis and treatment to prevent complications and death.

Examples of acute diseases include:

1. Common cold and flu
2. Pneumonia and bronchitis
3. Appendicitis and other abdominal emergencies
4. Heart attacks and strokes
5. Asthma attacks and allergic reactions
6. Skin infections and cellulitis
7. Urinary tract infections
8. Sinusitis and meningitis
9. Gastroenteritis and food poisoning
10. Sprains, strains, and fractures.

Acute diseases can be treated effectively with antibiotics, medications, or other therapies. However, if left untreated, they can lead to chronic conditions or complications that may require long-term care. Therefore, it is important to seek medical attention promptly if symptoms persist or worsen over time.

Examples of OIs include:

1. Pneumocystis pneumonia (PCP): A type of pneumonia caused by the fungus Pneumocystis jirovecii, which is commonly found in the lungs of individuals with HIV/AIDS.
2. Cryptococcosis: A fungal infection caused by Cryptococcus neoformans, which can affect various parts of the body, including the lungs, central nervous system, and skin.
3. Aspergillosis: A fungal infection caused by Aspergillus fungi, which can affect various parts of the body, including the lungs, sinuses, and brain.
4. Histoplasmosis: A fungal infection caused by Histoplasma capsulatum, which is commonly found in the soil and can cause respiratory and digestive problems.
5. Candidiasis: A fungal infection caused by Candida albicans, which can affect various parts of the body, including the skin, mouth, throat, and vagina.
6. Toxoplasmosis: A parasitic infection caused by Toxoplasma gondii, which can affect various parts of the body, including the brain, eyes, and lymph nodes.
7. Tuberculosis (TB): A bacterial infection caused by Mycobacterium tuberculosis, which primarily affects the lungs but can also affect other parts of the body.
8. Kaposi's sarcoma-associated herpesvirus (KSHV): A viral infection that can cause various types of cancer, including Kaposi's sarcoma, which is more common in individuals with compromised immunity.

The diagnosis and treatment of OIs depend on the specific type of infection and its severity. Treatment may involve antibiotics, antifungals, or other medications, as well as supportive care to manage symptoms and prevent complications. It is important for individuals with HIV/AIDS to receive prompt and appropriate treatment for OIs to help prevent the progression of their disease and improve their quality of life.

Causes and risk factors:

1. Poverty and lack of access to nutritious food
2. Poor sanitation and hygiene
3. Inadequate healthcare and nutritional education
4. Conflict and displacement
5. Chronic illnesses such as HIV/AIDS and tuberculosis

Symptoms:

1. Wasting and stunting of children
2. Poor appetite and weight loss
3. Fatigue, weakness, and lethargy
4. Increased susceptibility to infections
5. Poor wound healing and skin problems

Complications:

1. Stunted growth and development
2. Weakened immune system
3. Increased risk of infections and diseases such as diarrhea, pneumonia, and malaria
4. Poor cognitive development and reduced educational attainment
5. Increased risk of mortality

Diagnosis:

1. Clinical evaluation of symptoms and physical examination
2. Anthropometric measurements such as height and weight
3. Laboratory tests to assess nutrient deficiencies and infections
4. Dietary assessment to determine food intake and nutrient adequacy

Treatment and prevention:

1. Providing access to nutrient-dense foods, particularly protein-rich foods such as meat, poultry, fish, beans, and dairy products
2. Addressing underlying causes such as poverty and poor sanitation
3. Implementing nutritional education programs to promote healthy eating habits
4. Providing micronutrient supplements and fortified foods
5. Addressing infectious diseases and providing appropriate medical care

In conclusion, protein-energy malnutrition is a serious condition that affects millions of people worldwide, particularly in developing countries. It can have severe consequences on physical growth, cognitive development, and overall health. Early diagnosis and treatment are crucial to prevent long-term health problems and improve quality of life. Addressing underlying causes such as poverty and poor sanitation is also essential to prevent the condition from occurring in the first place.

There are two main forms of TB:

1. Active TB: This is the form of the disease where the bacteria are actively growing and causing symptoms such as coughing, fever, chest pain, and fatigue. Active TB can be contagious and can spread to others if not treated properly.
2. Latent TB: This is the form of the disease where the bacteria are present in the body but are not actively growing or causing symptoms. People with latent TB do not feel sick and are not contagious, but they can still become sick with active TB if their immune system is weakened.

TB is a major public health concern, especially in developing countries where access to healthcare may be limited. The disease is diagnosed through a combination of physical examination, medical imaging, and laboratory tests such as skin tests or blood tests. Treatment for TB typically involves a course of antibiotics, which can be effective in curing the disease if taken properly. However, drug-resistant forms of TB have emerged in some parts of the world, making treatment more challenging.

Preventive measures against TB include:

1. Vaccination with BCG (Bacille Calmette-Guérin) vaccine, which can provide some protection against severe forms of the disease but not against latent TB.
2. Avoiding close contact with people who have active TB, especially if they are coughing or sneezing.
3. Practicing good hygiene, such as covering one's mouth when coughing or sneezing and regularly washing hands.
4. Getting regular screenings for TB if you are in a high-risk group, such as healthcare workers or people with weakened immune systems.
5. Avoiding sharing personal items such as towels, utensils, or drinking glasses with people who have active TB.

Overall, while TB is a serious disease that can be challenging to treat and prevent, with the right measures in place, it is possible to reduce its impact on public health and improve outcomes for those affected by the disease.

There are several different types of leukemia, including:

1. Acute Lymphoblastic Leukemia (ALL): This is the most common type of leukemia in children, but it can also occur in adults. It is characterized by an overproduction of immature white blood cells called lymphoblasts.
2. Acute Myeloid Leukemia (AML): This type of leukemia affects the bone marrow's ability to produce red blood cells, platelets, and other white blood cells. It can occur at any age but is most common in adults.
3. Chronic Lymphocytic Leukemia (CLL): This type of leukemia affects older adults and is characterized by the slow growth of abnormal white blood cells called lymphocytes.
4. Chronic Myeloid Leukemia (CML): This type of leukemia is caused by a genetic mutation in a gene called BCR-ABL. It can occur at any age but is most common in adults.
5. Hairy Cell Leukemia: This is a rare type of leukemia that affects older adults and is characterized by the presence of abnormal white blood cells called hairy cells.
6. Myelodysplastic Syndrome (MDS): This is a group of disorders that occur when the bone marrow is unable to produce healthy blood cells. It can lead to leukemia if left untreated.

Treatment for leukemia depends on the type and severity of the disease, but may include chemotherapy, radiation therapy, targeted therapy, or stem cell transplantation.

Example of how the term 'Lymphoma, AIDS-Related' could be used in a medical context:

"The patient was diagnosed with AIDS-related lymphoma and was started on ART and chemotherapy to treat the cancer."

A rare and aggressive type of cancer that affects the connective tissue cells of the body, including blood vessels, lymph nodes, and soft tissue. It is caused by the human herpesvirus 8 (HHV-8) and is more common in people with weakened immune systems, such as those with HIV/AIDS.

Symptoms:

* Painless lumps or lesions on the skin or mouth
* Fatigue
* Weight loss
* Night sweats

Diagnosis:

* Biopsy of affected tissue
* Imaging tests, such as CT scans or MRI

Treatment:

* Chemotherapy to shrink the tumors
* Radiation therapy to kill cancer cells
* Surgery to remove the affected tissue

Prognosis:

* Poor, especially in people with HIV/AIDS

Etymology:

* Named after the Hungarian-born Jewish doctor, Georg Kaposi, who first described the condition in 1872.

The term "systemic" refers to the fact that the disease affects multiple organ systems, including the skin, joints, kidneys, lungs, and nervous system. LES is a complex condition, and its symptoms can vary widely depending on which organs are affected. Common symptoms include fatigue, fever, joint pain, rashes, and swelling in the extremities.

There are several subtypes of LES, including:

1. Systemic lupus erythematosus (SLE): This is the most common form of the disease, and it can affect anyone, regardless of age or gender.
2. Discoid lupus erythematosus (DLE): This subtype typically affects the skin, causing a red, scaly rash that does not go away.
3. Drug-induced lupus erythematosus: This form of the disease is caused by certain medications, and it usually resolves once the medication is stopped.
4. Neonatal lupus erythematosus: This rare condition affects newborn babies of mothers with SLE, and it can cause liver and heart problems.

There is no cure for LES, but treatment options are available to manage the symptoms and prevent flares. Treatment may include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, immunosuppressive medications, and antimalarial drugs. In severe cases, hospitalization may be necessary to monitor and treat the disease.

It is important for people with LES to work closely with their healthcare providers to manage their condition and prevent complications. With proper treatment and self-care, many people with LES can lead active and fulfilling lives.

CMV infections are more common in people with weakened immune systems, such as those with HIV/AIDS, cancer, or taking immunosuppressive drugs after an organ transplant. In these individuals, CMV can cause severe and life-threatening complications, such as pneumonia, retinitis (inflammation of the retina), and gastrointestinal disease.

In healthy individuals, CMV infections are usually mild and may not cause any symptoms at all. However, in some cases, CMV can cause a mononucleosis-like illness with fever, fatigue, and swollen lymph nodes.

CMV infections are diagnosed through a combination of physical examination, blood tests, and imaging studies such as CT scans or MRI. Treatment is generally not necessary for mild cases, but may include antiviral medications for more severe infections. Prevention strategies include avoiding close contact with individuals who have CMV, practicing good hygiene, and considering immunoprophylaxis (prevention of infection through the use of immune globulin) for high-risk individuals.

Overall, while CMV infections can be serious and life-threatening, they are relatively rare in healthy individuals and can often be treated effectively with supportive care and antiviral medications.

1. Protein-energy malnutrition (PEM): This type of malnutrition is caused by a lack of protein and energy in the diet. It is common in developing countries and can lead to weight loss, weakness, and stunted growth in children.
2. Iron deficiency anemia: This type of malnutrition is caused by a lack of iron in the diet, which is necessary for the production of hemoglobin in red blood cells. Symptoms include fatigue, weakness, and shortness of breath.
3. Vitamin and mineral deficiencies: Malnutrition can also be caused by a lack of essential vitamins and minerals such as vitamin A, vitamin D, calcium, and iodine. Symptoms vary depending on the specific deficiency but can include skin problems, impaired immune function, and poor wound healing.
4. Obesity: This type of malnutrition is caused by consuming too many calories and not enough nutrients. It can lead to a range of health problems including diabetes, high blood pressure, and heart disease.

Signs and symptoms of malnutrition can include:

* Weight loss or weight gain
* Fatigue or weakness
* Poor wound healing
* Hair loss
* Skin problems
* Increased infections
* Poor appetite or overeating
* Digestive problems such as diarrhea or constipation
* Impaired immune function

Treatment for malnutrition depends on the underlying cause and may include:

* Dietary changes: Eating a balanced diet that includes a variety of nutrient-rich foods can help to correct nutrient deficiencies.
* Nutritional supplements: In some cases, nutritional supplements such as vitamins or minerals may be recommended to help address specific deficiencies.
* Medical treatment: Certain medical conditions that contribute to malnutrition, such as digestive disorders or infections, may require treatment with medication or other interventions.

Prevention is key, and there are several steps you can take to help prevent malnutrition:

* Eat a balanced diet that includes a variety of nutrient-rich foods.
* Avoid restrictive diets or fad diets that limit specific food groups.
* Stay hydrated by drinking plenty of water.
* Avoid excessive alcohol consumption, which can interfere with nutrient absorption and lead to malnutrition.
* Maintain a healthy weight through a combination of a balanced diet and regular exercise.

It is important to note that malnutrition can be subtle and may not always be easily recognizable. If you suspect you or someone you know may be experiencing malnutrition, it is important to seek medical attention to receive an accurate diagnosis and appropriate treatment.

Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.

Types of Neoplasms

There are many different types of neoplasms, including:

1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.

Causes and Risk Factors of Neoplasms

The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:

1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.

Signs and Symptoms of Neoplasms

The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:

1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.

Diagnosis and Treatment of Neoplasms

The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.

The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:

1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.

Prevention of Neoplasms

While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:

1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.

It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.

There are several symptoms of RA, including:

1. Joint pain and stiffness, especially in the hands and feet
2. Swollen and warm joints
3. Redness and tenderness in the affected areas
4. Fatigue, fever, and loss of appetite
5. Loss of range of motion in the affected joints
6. Firm bumps of tissue under the skin (rheumatoid nodules)

RA can be diagnosed through a combination of physical examination, medical history, blood tests, and imaging studies such as X-rays or ultrasound. Treatment typically involves a combination of medications, including nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biologic agents. Lifestyle modifications such as exercise and physical therapy can also be helpful in managing symptoms and improving quality of life.

There is no cure for RA, but early diagnosis and aggressive treatment can help to slow the progression of the disease and reduce symptoms. With proper management, many people with RA are able to lead active and fulfilling lives.

The diagnosis of GVHD is based on a combination of clinical findings, laboratory tests, and biopsies. Treatment options include immunosuppressive drugs, corticosteroids, and in severe cases, stem cell transplantation reversal or donor lymphocyte infusion.

Prevention of GVHD includes selecting the right donor, using conditioning regimens that minimize damage to the recipient's bone marrow, and providing appropriate immunosuppression after transplantation. Early detection and management of GVHD are critical to prevent long-term complications and improve survival rates.

Recurrence can also refer to the re-emergence of symptoms in a previously treated condition, such as a chronic pain condition that returns after a period of remission.

In medical research, recurrence is often studied to understand the underlying causes of disease progression and to develop new treatments and interventions to prevent or delay its return.

There are several subtypes of NHL, including:

1. B-cell lymphomas (such as diffuse large B-cell lymphoma and follicular lymphoma)
2. T-cell lymphomas (such as peripheral T-cell lymphoma and mycosis fungoides)
3. Natural killer cell lymphomas (such as nasal NK/T-cell lymphoma)
4. Histiocyte-rich B-cell lymphoma
5. Primary mediastinal B-cell lymphoma
6. Mantle cell lymphoma
7. Waldenström macroglobulinemia
8. Lymphoplasmacytoid lymphoma
9. Myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN) related lymphoma

These subtypes can be further divided into other categories based on the specific characteristics of the cancer cells.

Symptoms of NHL can vary depending on the location and size of the tumor, but may include:

* Swollen lymph nodes in the neck, underarm, or groin
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching
* Abdominal pain
* Swollen spleen

Treatment for NHL typically involves a combination of chemotherapy, radiation therapy, and in some cases, targeted therapy or immunotherapy. The specific treatment plan will depend on the subtype of NHL, the stage of the cancer, and other individual factors.

Overall, NHL is a complex and diverse group of cancers that require specialized care from a team of medical professionals, including hematologists, oncologists, radiation therapists, and other support staff. With advances in technology and treatment options, many people with NHL can achieve long-term remission or a cure.

There are different types of fever, including:

1. Pyrexia: This is the medical term for fever. It is used to describe a body temperature that is above normal, usually above 38°C (100.4°F).
2. Hyperthermia: This is a more severe form of fever, where the body temperature rises significantly above normal levels.
3. Febrile seizure: This is a seizure that occurs in children who have a high fever.
4. Remittent fever: This is a type of fever that comes and goes over a period of time.
5. Intermittent fever: This is a type of fever that recurs at regular intervals.
6. Chronic fever: This is a type of fever that persists for an extended period of time, often more than 3 weeks.

The symptoms of fever can vary depending on the underlying cause, but common symptoms include:

* Elevated body temperature
* Chills
* Sweating
* Headache
* Muscle aches
* Fatigue
* Loss of appetite

In some cases, fever can be a sign of a serious underlying condition, such as pneumonia, meningitis, or sepsis. It is important to seek medical attention if you or someone in your care has a fever, especially if it is accompanied by other symptoms such as difficulty breathing, confusion, or chest pain.

Treatment for fever depends on the underlying cause and the severity of the symptoms. In some cases, medication such as acetaminophen (paracetamol) or ibuprofen may be prescribed to help reduce the fever. It is important to follow the recommended dosage instructions carefully and to consult with a healthcare professional before giving medication to children.

In addition to medication, there are other ways to help manage fever symptoms at home. These include:

* Drinking plenty of fluids to stay hydrated
* Taking cool baths or using a cool compress to reduce body temperature
* Resting and avoiding strenuous activities
* Using over-the-counter pain relievers, such as acetaminophen (paracetamol) or ibuprofen, to help manage headache and muscle aches.

Preventive measures for fever include:

* Practicing good hygiene, such as washing your hands frequently and avoiding close contact with people who are sick
* Staying up to date on vaccinations, which can help prevent certain infections that can cause fever.

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.

What is a Chronic Disease?

A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:

1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke

Impact of Chronic Diseases

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.

Addressing Chronic Diseases

Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:

1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.

Conclusion

Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.

Symptoms of neutropenia may include recurring infections, fever, fatigue, weight loss, and swollen lymph nodes. The diagnosis is typically made through a blood test that measures the number of neutrophils in the blood.

Treatment options for neutropenia depend on the underlying cause but may include antibiotics, supportive care to manage symptoms, and in severe cases, bone marrow transplantation or granulocyte-colony stimulating factor (G-CSF) therapy to increase neutrophil production.

Coinfection can be caused by various factors, including:

1. Exposure to multiple pathogens: When an individual is exposed to multiple sources of infection, such as contaminated food or water, they may contract multiple pathogens simultaneously.
2. Weakened immune system: A compromised immune system can make it more difficult for the body to fight off infections, making it more susceptible to coinfection.
3. Increased opportunities for transmission: In some situations, such as in healthcare settings or during travel to areas with high infection rates, individuals may be more likely to come into contact with multiple pathogens.

Examples of common coinfections include:

1. HIV and tuberculosis (TB): TB is a common opportunistic infection that affects individuals with HIV/AIDS.
2. Malaria and bacterial infections: In areas where malaria is prevalent, individuals may also be at risk for bacterial infections such as pneumonia or diarrhea.
3. Influenza and Streptococcus pneumoniae: During flu season, individuals may be more susceptible to both influenza and bacterial infections such as pneumonia.

Coinfection can have significant consequences for an individual's health, including increased morbidity and mortality. Treatment of coinfections often requires a combination of antimicrobial therapies targeting each pathogen, as well as supportive care to manage symptoms and prevent complications.

Preventing coinfection is important for maintaining good health, especially in individuals with compromised immune systems. This can include:

1. Practicing good hygiene: Washing hands regularly and avoiding close contact with individuals who are sick can help reduce the risk of infection.
2. Getting vaccinated: Vaccines can protect against certain infections, such as influenza and pneumococcal disease.
3. Taking antimicrobial prophylaxis: In some cases, taking antibiotics or other antimicrobial drugs may be recommended to prevent infection in individuals who are at high risk of coinfection.
4. Managing underlying conditions: Effectively managing conditions such as HIV/AIDS, diabetes, and heart disease can help reduce the risk of infection and coinfection.
5. Avoiding risky behaviors: Avoiding risky behaviors such as sharing needles or engaging in unprotected sex can help reduce the risk of infection and coinfection.

Examples of autoimmune diseases include:

1. Rheumatoid arthritis (RA): A condition where the immune system attacks the joints, leading to inflammation, pain, and joint damage.
2. Lupus: A condition where the immune system attacks various body parts, including the skin, joints, and organs.
3. Hashimoto's thyroiditis: A condition where the immune system attacks the thyroid gland, leading to hypothyroidism.
4. Multiple sclerosis (MS): A condition where the immune system attacks the protective covering of nerve fibers in the central nervous system, leading to communication problems between the brain and the rest of the body.
5. Type 1 diabetes: A condition where the immune system attacks the insulin-producing cells in the pancreas, leading to high blood sugar levels.
6. Guillain-Barré syndrome: A condition where the immune system attacks the nerves, leading to muscle weakness and paralysis.
7. Psoriasis: A condition where the immune system attacks the skin, leading to red, scaly patches.
8. Crohn's disease and ulcerative colitis: Conditions where the immune system attacks the digestive tract, leading to inflammation and damage to the gut.
9. Sjögren's syndrome: A condition where the immune system attacks the glands that produce tears and saliva, leading to dry eyes and mouth.
10. Vasculitis: A condition where the immune system attacks the blood vessels, leading to inflammation and damage to the blood vessels.

The symptoms of autoimmune diseases vary depending on the specific disease and the organs or tissues affected. Common symptoms include fatigue, fever, joint pain, skin rashes, and swollen lymph nodes. Treatment for autoimmune diseases typically involves medication to suppress the immune system and reduce inflammation, as well as lifestyle changes such as dietary changes and stress management techniques.

Examples of Immunologic Deficiency Syndromes include:

1. Primary Immunodeficiency Diseases (PIDDs): These are a group of genetic disorders that affect the immune system's ability to function properly. Examples include X-linked agammaglobulinemia, common variable immunodeficiency, and severe combined immunodeficiency.
2. Acquired Immunodeficiency Syndrome (AIDS): This is a condition that results from the human immunodeficiency virus (HIV) infection, which destroys CD4 cells, a type of immune cell that fights off infections.
3. Immune Thrombocytopenic Purpura (ITP): This is an autoimmune disorder that causes the immune system to attack and destroy platelets, which are blood cells that help the blood to clot.
4. Autoimmune Disorders: These are conditions in which the immune system mistakenly attacks and damages healthy cells and tissues in the body. Examples include rheumatoid arthritis, lupus, and multiple sclerosis.
5. Immunosuppressive Therapy-induced Immunodeficiency: This is a condition that occurs as a side effect of medications used to prevent rejection in organ transplant patients. These medications can suppress the immune system, increasing the risk of infections.

Symptoms of Immunologic Deficiency Syndromes can vary depending on the specific disorder and the severity of the immune system dysfunction. Common symptoms include recurrent infections, fatigue, fever, and swollen lymph nodes. Treatment options for these syndromes range from medications to suppress the immune system to surgery or bone marrow transplantation.

In summary, Immunologic Deficiency Syndromes are a group of disorders that result from dysfunction of the immune system, leading to recurrent infections and other symptoms. There are many different types of these syndromes, each with its own set of symptoms and treatment options.

1. Group B streptococcus (GBS): This type of bacterial infection is the leading cause of infections in newborns. GBS can cause a range of complications, including pneumonia, meningitis, and sepsis.
2. Urinary tract infections (UTIs): These are common during pregnancy and can be caused by bacteria such as Escherichia coli (E. coli) or Staphylococcus saprophyticus. UTIs can lead to complications such as preterm labor and low birth weight.
3. HIV: Pregnant women who are infected with HIV can pass the virus to their baby during pregnancy, childbirth, or breastfeeding.
4. Toxoplasmosis: This is an infection caused by a parasite that can be transmitted to the fetus through the placenta. Toxoplasmosis can cause a range of complications, including birth defects and stillbirth.
5. Listeriosis: This is a rare infection caused by eating contaminated food, such as soft cheeses or hot dogs. Listeriosis can cause complications such as miscarriage, stillbirth, and premature labor.
6. Influenza: Pregnant women who contract the flu can be at higher risk for complications such as pneumonia and hospitalization.
7. Herpes simplex virus (HSV): This virus can cause complications such as preterm labor, low birth weight, and neonatal herpes.
8. Human parvovirus (HPV): This virus can cause complications such as preterm labor, low birth weight, and stillbirth.
9. Syphilis: This is a sexually transmitted infection that can be passed to the fetus during pregnancy, leading to complications such as stillbirth, premature birth, and congenital syphilis.
10. Chickenpox: Pregnant women who contract chickenpox can be at higher risk for complications such as preterm labor and low birth weight.

It's important to note that the risks associated with these infections are relatively low, and many pregnant women who contract them will have healthy pregnancies and healthy babies. However, it's still important to be aware of the risks and take steps to protect yourself and your baby.

Here are some ways to reduce your risk of infection during pregnancy:

1. Practice good hygiene: Wash your hands frequently, especially before preparing or eating food.
2. Avoid certain foods: Avoid consuming raw or undercooked meat, eggs, and dairy products, as well as unpasteurized juices and soft cheeses.
3. Get vaccinated: Get vaccinated against infections such as the flu and HPV.
4. Practice safe sex: Use condoms or other forms of barrier protection to prevent the spread of STIs.
5. Avoid close contact with people who are sick: If someone in your household is sick, try to avoid close contact with them if possible.
6. Keep your environment clean: Regularly clean and disinfect surfaces and objects that may be contaminated with germs.
7. Manage stress: High levels of stress can weaken your immune system and make you more susceptible to infection.
8. Get enough rest: Adequate sleep is essential for maintaining a healthy immune system.
9. Stay hydrated: Drink plenty of water throughout the day to help flush out harmful bacteria and viruses.
10. Consider taking prenatal vitamins: Prenatal vitamins can help support your immune system and overall health during pregnancy.

Remember, it's always better to be safe than sorry, so if you suspect that you may have been exposed to an infection or are experiencing symptoms of an infection during pregnancy, contact your healthcare provider right away. They can help determine the appropriate course of action and ensure that you and your baby stay healthy.

There are several key features of inflammation:

1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.

Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.

There are several types of inflammation, including:

1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.

There are several ways to reduce inflammation, including:

1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.

It's important to note that chronic inflammation can lead to a range of health problems, including:

1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.

Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.

Some common types of lung diseases include:

1. Asthma: A chronic condition characterized by inflammation and narrowing of the airways, leading to wheezing, coughing, and shortness of breath.
2. Chronic Obstructive Pulmonary Disease (COPD): A progressive condition that causes chronic inflammation and damage to the airways and lungs, making it difficult to breathe.
3. Pneumonia: An infection of the lungs that can be caused by bacteria, viruses, or fungi, leading to fever, chills, coughing, and difficulty breathing.
4. Bronchiectasis: A condition where the airways are damaged and widened, leading to chronic infections and inflammation.
5. Pulmonary Fibrosis: A condition where the lungs become scarred and stiff, making it difficult to breathe.
6. Lung Cancer: A malignant tumor that develops in the lungs, often caused by smoking or exposure to carcinogens.
7. Cystic Fibrosis: A genetic disorder that affects the respiratory and digestive systems, leading to chronic infections and inflammation in the lungs.
8. Tuberculosis (TB): An infectious disease caused by Mycobacterium Tuberculosis, which primarily affects the lungs but can also affect other parts of the body.
9. Pulmonary Embolism: A blockage in one of the arteries in the lungs, often caused by a blood clot that has traveled from another part of the body.
10. Sarcoidosis: An inflammatory disease that affects various organs in the body, including the lungs, leading to the formation of granulomas and scarring.

These are just a few examples of conditions that can affect the lungs and respiratory system. It's important to note that many of these conditions can be treated with medication, therapy, or surgery, but early detection is key to successful treatment outcomes.

Types of Infection:

1. Bacterial Infections: These are caused by the presence of harmful bacteria in the body. Examples include pneumonia, urinary tract infections, and skin infections.
2. Viral Infections: These are caused by the presence of harmful viruses in the body. Examples include the common cold, flu, and HIV/AIDS.
3. Fungal Infections: These are caused by the presence of fungi in the body. Examples include athlete's foot, ringworm, and candidiasis.
4. Parasitic Infections: These are caused by the presence of parasites in the body. Examples include malaria, giardiasis, and toxoplasmosis.

Symptoms of Infection:

1. Fever
2. Fatigue
3. Headache
4. Muscle aches
5. Skin rashes or lesions
6. Swollen lymph nodes
7. Sore throat
8. Coughing
9. Diarrhea
10. Vomiting

Treatment of Infection:

1. Antibiotics: These are used to treat bacterial infections and work by killing or stopping the growth of bacteria.
2. Antiviral medications: These are used to treat viral infections and work by interfering with the replication of viruses.
3. Fungicides: These are used to treat fungal infections and work by killing or stopping the growth of fungi.
4. Anti-parasitic medications: These are used to treat parasitic infections and work by killing or stopping the growth of parasites.
5. Supportive care: This includes fluids, nutritional supplements, and pain management to help the body recover from the infection.

Prevention of Infection:

1. Hand washing: Regular hand washing is one of the most effective ways to prevent the spread of infection.
2. Vaccination: Getting vaccinated against specific infections can help prevent them.
3. Safe sex practices: Using condoms and other safe sex practices can help prevent the spread of sexually transmitted infections.
4. Food safety: Properly storing and preparing food can help prevent the spread of foodborne illnesses.
5. Infection control measures: Healthcare providers use infection control measures such as wearing gloves, masks, and gowns to prevent the spread of infections in healthcare settings.

There are several types of melanoma, including:

1. Superficial spreading melanoma: This is the most common type of melanoma, accounting for about 70% of cases. It usually appears as a flat or slightly raised discolored patch on the skin.
2. Nodular melanoma: This type of melanoma is more aggressive and accounts for about 15% of cases. It typically appears as a raised bump on the skin, often with a darker color.
3. Acral lentiginous melanoma: This type of melanoma affects the palms of the hands, soles of the feet, or nail beds and accounts for about 5% of cases.
4. Lentigo maligna melanoma: This type of melanoma usually affects the face and is more common in older adults.

The risk factors for developing melanoma include:

1. Ultraviolet (UV) radiation exposure from the sun or tanning beds
2. Fair skin, light hair, and light eyes
3. A history of sunburns
4. Weakened immune system
5. Family history of melanoma

The symptoms of melanoma can vary depending on the type and location of the cancer. Common symptoms include:

1. Changes in the size, shape, or color of a mole
2. A new mole or growth on the skin
3. A spot or sore that bleeds or crusts over
4. Itching or pain on the skin
5. Redness or swelling around a mole

If melanoma is suspected, a biopsy will be performed to confirm the diagnosis. Treatment options for melanoma depend on the stage and location of the cancer and may include surgery, chemotherapy, radiation therapy, or a combination of these. Early detection and treatment are key to successful outcomes in melanoma cases.

In conclusion, melanoma is a type of skin cancer that can be deadly if not detected early. It is important to practice sun safety, perform regular self-exams, and seek medical attention if any suspicious changes are noticed on the skin. By being aware of the risk factors, symptoms, and treatment options for melanoma, individuals can take steps to protect themselves from this potentially deadly disease.

Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.

There are several ways to measure body weight, including:

1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.

It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.

There are several types of herpes zoster, including:

1. Primary herpes zoster: This is the first episode of the virus and is typically more severe than recurrent episodes.
2. Recurrent herpes zoster: This occurs when the virus reactivates in a previously infected area, usually causing milder symptoms than primary herpes zoster.
3. Herpes zoster oticus (Ramsay Hunt syndrome): This is a form of herpes zoster that affects the facial nerve and causes pain, hearing loss, and facial paralysis.
4. Meningitis herpetic: This is a rare form of herpes zoster that causes inflammation of the membranes surrounding the brain and spinal cord.
5. Eczema herpeticum: This is a severe form of herpes zoster that occurs in people with weakened immune systems, such as those with HIV/AIDS or undergoing chemotherapy. It causes widespread skin lesions and can be life-threatening.

Symptoms of herpes zoster include:

* Pain or tingling sensation in the affected area before the rash appears
* Small, painful blisters that crust over
* Fever, headache, and fatigue
* Itching or burning sensation on the skin
* Muscle weakness or paralysis (in severe cases)

Herpes zoster is diagnosed through physical examination, medical history, and laboratory tests such as viral cultures or PCR tests. Treatment includes antiviral medications, pain relief medication, and corticosteroids to reduce inflammation. Home remedies such as cool compresses, calamine lotion, and rest can also provide relief from symptoms.

Prevention:

1. Vaccination: The herpes zoster vaccine is recommended for people over the age of 50 to prevent herpes zoster.
2. Avoiding close contact with people who have herpes zoster.
3. Practicing good hygiene, such as washing hands frequently and avoiding sharing personal items.
4. Managing stress and maintaining a healthy lifestyle to keep the immune system strong.
5. Getting enough rest and staying hydrated to help the body recover from illness.

In conclusion, herpes zoster is a common condition that can cause significant discomfort and disability. It is important to seek medical attention if symptoms persist or worsen over time, as early treatment can reduce the risk of complications.

There are many different types of anemia, each with its own set of causes and symptoms. Some common types of anemia include:

1. Iron-deficiency anemia: This is the most common type of anemia and is caused by a lack of iron in the diet or a problem with the body's ability to absorb iron. Iron is essential for making hemoglobin.
2. Vitamin deficiency anemia: This type of anemia is caused by a lack of vitamins, such as vitamin B12 or folate, that are necessary for red blood cell production.
3. Anemia of chronic disease: This type of anemia is seen in people with chronic diseases, such as kidney disease, rheumatoid arthritis, and cancer.
4. Sickle cell anemia: This is a genetic disorder that affects the structure of hemoglobin and causes red blood cells to be shaped like crescents or sickles.
5. Thalassemia: This is a genetic disorder that affects the production of hemoglobin and can cause anemia, fatigue, and other health problems.

The symptoms of anemia can vary depending on the type and severity of the condition. Common symptoms include fatigue, weakness, pale skin, shortness of breath, and dizziness or lightheadedness. Anemia can be diagnosed with a blood test that measures the number and size of red blood cells, as well as the levels of hemoglobin and other nutrients.

Treatment for anemia depends on the underlying cause of the condition. In some cases, dietary changes or supplements may be sufficient to treat anemia. For example, people with iron-deficiency anemia may need to increase their intake of iron-rich foods or take iron supplements. In other cases, medical treatment may be necessary to address underlying conditions such as kidney disease or cancer.

Preventing anemia is important for maintaining good health and preventing complications. To prevent anemia, it is important to eat a balanced diet that includes plenty of iron-rich foods, vitamin C-rich foods, and other essential nutrients. It is also important to avoid certain substances that can interfere with the absorption of nutrients, such as alcohol and caffeine. Additionally, it is important to manage any underlying medical conditions and seek medical attention if symptoms of anemia persist or worsen over time.

In conclusion, anemia is a common blood disorder that can have significant health implications if left untreated. It is important to be aware of the different types of anemia, their causes, and symptoms in order to seek medical attention if necessary. With proper diagnosis and treatment, many cases of anemia can be successfully managed and prevented.

IV drug use can cause a range of short-term and long-term health problems, including infections, abscesses, blood-borne illnesses such as HIV/AIDS and hepatitis, and overdose. In addition to physical health issues, IV substance abuse can also lead to mental health problems, financial and legal problems, and social isolation.

Treatment for IV substance abuse typically involves a combination of behavioral therapy and medication. Behavioral therapies such as cognitive-behavioral therapy (CBT) and contingency management can help individuals modify their drug-seeking behaviors and develop coping skills to maintain sobriety. Medications such as methadone, buprenorphine, and naltrexone can also be used to manage withdrawal symptoms and reduce cravings for drugs.

Prevention strategies for IV substance abuse include education and awareness campaigns, community-based outreach programs, and harm reduction services such as needle exchange programs. These strategies aim to reduce the initiation of IV drug use, particularly among young people and other vulnerable populations.

There are several types of hepatitis C, including genotype 1, which is the most common and accounts for approximately 70% of cases in the United States. Other genotypes include 2, 3, 4, 5, and 6. The symptoms of hepatitis C can range from mild to severe and may include fatigue, fever, loss of appetite, nausea, vomiting, joint pain, jaundice (yellowing of the skin and eyes), dark urine, pale stools, and itching all over the body. Some people with hepatitis C may not experience any symptoms at all.

Hepatitis C is diagnosed through a combination of blood tests that detect the presence of antibodies against HCV or the virus itself. Treatment typically involves a combination of medications, including interferon and ribavirin, which can cure the infection but may have side effects such as fatigue, nausea, and depression. In recent years, new drugs known as direct-acting antivirals (DAAs) have become available, which can cure the infection with fewer side effects and in a shorter period of time.

Prevention measures for hepatitis C include avoiding sharing needles or other drug paraphernalia, using condoms to prevent sexual transmission, and ensuring that any tattoos or piercings are performed with sterilized equipment. Vaccines are also available for people who are at high risk of contracting the virus, such as healthcare workers and individuals who engage in high-risk behaviors.

Overall, hepatitis C is a serious and common liver disease that can lead to significant health complications if left untreated. Fortunately, with advances in medical technology and treatment options, it is possible to manage and cure the virus with proper care and attention.

People with agammaglobulinemia are more susceptible to infections, particularly those caused by encapsulated bacteria, such as Streptococcus pneumoniae and Haemophilus influenzae type b. They may also experience recurrent sinopulmonary infections, ear infections, and gastrointestinal infections. The disorder can be managed with intravenous immunoglobulin (IVIG) therapy, which provides antibodies to help prevent infections. In severe cases, a bone marrow transplant may be necessary.

Agammaglobulinemia is an autosomal recessive disorder, meaning that a person must inherit two mutated copies of the BTK gene (one from each parent) to develop the condition. It is relatively rare, affecting approximately one in 1 million people worldwide. The disorder can be diagnosed through genetic testing and a complete blood count (CBC) that shows low levels of immunoglobulins.

Treatment for ag

The presence of chromosome-defective micronuclei in cells can be an indication of genetic damage and may be used as a diagnostic marker for certain diseases or conditions, such as cancer or exposure to toxic substances. The frequency and distribution of these structures within a cell population can also provide information about the type and severity of genetic damage present.

In contrast to other types of micronuclei, which are typically smaller and less complex, chromosome-defective micronuclei are larger and more irregular in shape, and may contain fragmented or abnormal chromatin material. They can also be distinguished from other types of micronuclei by their specific staining properties and the presence of certain structural features, such as the presence of nucleoli or the absence of a membrane boundary.

Overall, the study of chromosome-defective micronuclei is an important tool for understanding the mechanisms of genetic damage and disease, and may have practical applications in fields such as cancer diagnosis and environmental health assessment.

There are several possible causes of thrombocytopenia, including:

1. Immune-mediated disorders such as idiopathic thrombocytopenic purpura (ITP) or systemic lupus erythematosus (SLE).
2. Bone marrow disorders such as aplastic anemia or leukemia.
3. Viral infections such as HIV or hepatitis C.
4. Medications such as chemotherapy or non-steroidal anti-inflammatory drugs (NSAIDs).
5. Vitamin deficiencies, especially vitamin B12 and folate.
6. Genetic disorders such as Bernard-Soulier syndrome.
7. Sepsis or other severe infections.
8. Disseminated intravascular coagulation (DIC), a condition where blood clots form throughout the body.
9. Postpartum thrombocytopenia, which can occur in some women after childbirth.

Symptoms of thrombocytopenia may include easy bruising, petechiae (small red or purple spots on the skin), and prolonged bleeding from injuries or surgical sites. Treatment options depend on the underlying cause but may include platelet transfusions, steroids, immunosuppressive drugs, and in severe cases, surgery.

In summary, thrombocytopenia is a condition characterized by low platelet counts that can increase the risk of bleeding and bruising. It can be caused by various factors, and treatment options vary depending on the underlying cause.

There are several subtypes of lymphoma, B-cell, including:

1. Diffuse large B-cell lymphoma (DLBCL): This is the most common type of B-cell lymphoma and typically affects older adults.
2. Follicular lymphoma: This type of lymphoma grows slowly and often does not require treatment for several years.
3. Marginal zone lymphoma: This type of lymphoma develops in the marginal zone of the spleen or other lymphoid tissues.
4. Hodgkin lymphoma: This is a type of B-cell lymphoma that is characterized by the presence of Reed-Sternberg cells, which are abnormal cells that can be identified under a microscope.

The symptoms of lymphoma, B-cell can vary depending on the subtype and the location of the tumor. Common symptoms include swollen lymph nodes, fatigue, fever, night sweats, and weight loss.

Treatment for lymphoma, B-cell usually involves chemotherapy, which is a type of cancer treatment that uses drugs to kill cancer cells. Radiation therapy may also be used in some cases. In some cases, bone marrow or stem cell transplantation may be recommended.

Prognosis for lymphoma, B-cell depends on the subtype and the stage of the disease at the time of diagnosis. In general, the prognosis is good for patients with early-stage disease, but the cancer can be more difficult to treat if it has spread to other parts of the body.

Prevention of lymphoma, B-cell is not possible, as the exact cause of the disease is not known. However, avoiding exposure to certain risk factors, such as viral infections and pesticides, may help reduce the risk of developing the disease. Early detection and treatment can also improve outcomes for patients with lymphoma, B-cell.

Lymphoma, B-cell is a type of cancer that affects the immune system and can be treated with chemotherapy and other therapies. The prognosis varies depending on the subtype and stage of the disease at diagnosis. Prevention is not possible, but early detection and treatment can improve outcomes for patients with this condition.

* Peripheral T-cell lymphoma (PTCL): This is a rare type of T-cell lymphoma that can develop in the skin, lymph nodes, or other organs.
* Cutaneous T-cell lymphoma (CTCL): This is a type of PTCL that affects the skin and can cause lesions, rashes, and other skin changes.
* Anaplastic large cell lymphoma (ALCL): This is a rare subtype of PTCL that can develop in the lymph nodes, spleen, or bone marrow.
* Adult T-cell leukemia/lymphoma (ATLL): This is a rare and aggressive subtype of PTCL that is caused by the human T-lymphotropic virus type 1 (HTLV-1).

Symptoms of T-cell lymphoma can include:

* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Skin lesions or rashes

Treatment options for T-cell lymphoma depend on the subtype and stage of the cancer, but may include:

* Chemotherapy
* Radiation therapy
* Immunotherapy
* Targeted therapy

Prognosis for T-cell lymphoma varies depending on the subtype and stage of the cancer, but in general, the prognosis for PTCL is poorer than for other types of non-Hodgkin lymphoma. However, with prompt and appropriate treatment, many people with T-cell lymphoma can achieve long-term remission or even be cured.

SAIDS was first identified in the 1980s in monkeys that were being used in research laboratories, and it has since been studied extensively as a model for HIV/AIDS research. Like HIV/AIDS, SAIDS is caused by the transmission of a virus from one animal to another through contact with infected bodily fluids, such as blood or semen.

The symptoms of SAIDS are similar to those of HIV/AIDS and include fever, fatigue, weight loss, and opportunistic infections. As the disease progresses, animals may also experience neurological symptoms, such as seizures and difficulty coordinating movements.

There is currently no cure for SAIDS, and treatment is focused on managing the symptoms and preventing complications. Research into the disease has led to a greater understanding of the immunopathogenesis of HIV/AIDS and has contributed to the development of new therapies for the disease.

SAIDS is important in medical research because it provides a valuable model for studying the immunopathogenesis of HIV/AIDS and for testing new therapies and vaccines. It also serves as a reminder of the importance of strict safety protocols when working with infectious agents, particularly in laboratory settings.

There are several types of diarrhea, including:

1. Acute diarrhea: This type of diarrhea is short-term and usually resolves on its own within a few days. It can be caused by a viral or bacterial infection, food poisoning, or medication side effects.
2. Chronic diarrhea: This type of diarrhea persists for more than 4 weeks and can be caused by a variety of conditions, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), or celiac disease.
3. Diarrhea-predominant IBS: This type of diarrhea is characterized by frequent, loose stools and abdominal pain or discomfort. It can be caused by a variety of factors, including stress, hormonal changes, and certain foods.
4. Infectious diarrhea: This type of diarrhea is caused by a bacterial, viral, or parasitic infection and can be spread through contaminated food and water, close contact with an infected person, or by consuming contaminated food.

Symptoms of diarrhea may include:

* Frequent, loose, and watery stools
* Abdominal cramps and pain
* Bloating and gas
* Nausea and vomiting
* Fever and chills
* Headache
* Fatigue and weakness

Diagnosis of diarrhea is typically made through a physical examination, medical history, and laboratory tests to rule out other potential causes of the symptoms. Treatment for diarrhea depends on the underlying cause and may include antibiotics, anti-diarrheal medications, fluid replacement, and dietary changes. In severe cases, hospitalization may be necessary to monitor and treat any complications.

Prevention of diarrhea includes:

* Practicing good hygiene, such as washing hands frequently and thoroughly, especially after using the bathroom or before preparing food
* Avoiding close contact with people who are sick
* Properly storing and cooking food to prevent contamination
* Drinking safe water and avoiding contaminated water sources
* Avoiding raw or undercooked meat, poultry, and seafood
* Getting vaccinated against infections that can cause diarrhea

Complications of diarrhea can include:

* Dehydration: Diarrhea can lead to a loss of fluids and electrolytes, which can cause dehydration. Severe dehydration can be life-threatening and requires immediate medical attention.
* Electrolyte imbalance: Diarrhea can also cause an imbalance of electrolytes in the body, which can lead to serious complications.
* Inflammation of the intestines: Prolonged diarrhea can cause inflammation of the intestines, which can lead to abdominal pain and other complications.
* Infections: Diarrhea can be a symptom of an infection, such as a bacterial or viral infection. If left untreated, these infections can lead to serious complications.
* Malnutrition: Prolonged diarrhea can lead to malnutrition and weight loss, which can have long-term effects on health and development.

Treatment of diarrhea will depend on the underlying cause, but may include:

* Fluid replacement: Drinking plenty of fluids to prevent dehydration and replace lost electrolytes.
* Anti-diarrheal medications: Over-the-counter or prescription medications to slow down bowel movements and reduce diarrhea.
* Antibiotics: If the diarrhea is caused by a bacterial infection, antibiotics may be prescribed to treat the infection.
* Rest: Getting plenty of rest to allow the body to recover from the illness.
* Dietary changes: Avoiding certain foods or making dietary changes to help manage symptoms and prevent future episodes of diarrhea.

It is important to seek medical attention if you experience any of the following:

* Severe diarrhea that lasts for more than 3 days
* Diarrhea that is accompanied by fever, blood in the stool, or abdominal pain
* Diarrhea that is severe enough to cause dehydration or electrolyte imbalances
* Diarrhea that is not responding to treatment

Prevention of diarrhea includes:

* Good hand hygiene: Washing your hands frequently, especially after using the bathroom or before preparing food.
* Safe food handling: Cooking and storing food properly to prevent contamination.
* Avoiding close contact with people who are sick.
* Getting vaccinated against infections that can cause diarrhea, such as rotavirus.

Overall, while diarrhea can be uncomfortable and disruptive, it is usually a minor illness that can be treated at home with over-the-counter medications and plenty of fluids. However, if you experience severe or persistent diarrhea, it is important to seek medical attention to rule out any underlying conditions that may require more formal treatment.

The term splenomegaly is used to describe any condition that results in an increase in the size of the spleen, regardless of the underlying cause. This can be caused by a variety of factors, such as infection, inflammation, cancer, or genetic disorders.

Splenomegaly can be diagnosed through a physical examination, where the doctor may feel the enlarged spleen during an abdominal palpation. Imaging tests, such as ultrasound, computed tomography (CT) scans, or magnetic resonance imaging (MRI), may also be used to confirm the diagnosis and evaluate the extent of the splenomegaly.

Treatment for splenomegaly depends on the underlying cause. For example, infections such as malaria or mononucleosis are treated with antibiotics, while cancerous conditions may require surgical intervention or chemotherapy. In some cases, the spleen may need to be removed, a procedure known as splenectomy.

In conclusion, splenomegaly is an abnormal enlargement of the spleen that can be caused by various factors and requires prompt medical attention for proper diagnosis and treatment.

There are several types of lymphoproliferative disorders, including:

1. Lymphoma: This is a type of cancer that affects the immune system and can arise from either B cells or T cells. There are several subtypes of lymphoma, including Hodgkin lymphoma and non-Hodgkin lymphoma.
2. Leukemia: This is a type of cancer that affects the blood and bone marrow. It occurs when there is an abnormal proliferation of white blood cells, which can lead to an overproduction of immature or malignant cells.
3. Myelodysplastic syndrome (MDS): This is a group of disorders that affect the bone marrow and can lead to an abnormal production of blood cells. MDS can progress to acute myeloid leukemia (AML).
4. Chronic lymphocytic leukemia (CLL): This is a type of cancer that affects the blood and bone marrow, characterized by the accumulation of mature-looking but dysfunctional B cells in the blood.
5. Marginal zone lymphoma: This is a type of cancer that arises from the marginal zone of the spleen, which is the area where the white pulp and red pulp of the spleen meet.
6. Mantle cell lymphoma: This is a type of cancer that affects the lymph nodes and other lymphoid tissues, characterized by the accumulation of malignant B cells in the mantle zone of the lymph node.
7. Primary central nervous system lymphoma (PCNSL): This is a rare type of cancer that affects the brain and spinal cord, characterized by the accumulation of malignant B cells in the central nervous system.
8. Hairy cell leukemia: This is a rare type of cancer that affects the blood and bone marrow, characterized by the accumulation of abnormal B cells with a "hairy" appearance in the blood and bone marrow.
9. Lymphoplasmacytic lymphoma: This is a type of cancer that affects the lymph nodes and other lymphoid tissues, characterized by the accumulation of malignant B cells in the lymph nodes and other lymphoid tissues.
10. AIDS-related lymphoma: This is a type of cancer that affects people with HIV/AIDS, characterized by the accumulation of malignant B cells in the lymph nodes and other lymphoid tissues.

It's important to note that these are just some examples of B-cell non-Hodgkin lymphomas, and there are many other subtypes and variants of this disease. Each type of lymphoma has its own unique characteristics and may require different treatment approaches.

Types of experimental neoplasms include:

* Xenografts: tumors that are transplanted into animals from another species, often humans.
* Transgenic tumors: tumors that are created by introducing cancer-causing genes into an animal's genome.
* Chemically-induced tumors: tumors that are caused by exposure to certain chemicals or drugs.

The use of experimental neoplasms in research has led to significant advances in our understanding of cancer biology and the development of new treatments for the disease. However, the use of animals in cancer research is a controversial topic and alternatives to animal models are being developed and implemented.

There are several types of chromosome aberrations, including:

1. Chromosomal deletions: Loss of a portion of a chromosome.
2. Chromosomal duplications: Extra copies of a chromosome or a portion of a chromosome.
3. Chromosomal translocations: A change in the position of a chromosome or a portion of a chromosome.
4. Chromosomal inversions: A reversal of a segment of a chromosome.
5. Chromosomal amplifications: An increase in the number of copies of a particular chromosome or gene.

Chromosome aberrations can be detected through various techniques, such as karyotyping, fluorescence in situ hybridization (FISH), or array comparative genomic hybridization (aCGH). These tests can help identify changes in the chromosomal makeup of cells and provide information about the underlying genetic causes of disease.

Chromosome aberrations are associated with a wide range of diseases, including:

1. Cancer: Chromosome abnormalities are common in cancer cells and can contribute to the development and progression of cancer.
2. Birth defects: Many birth defects are caused by chromosome abnormalities, such as Down syndrome (trisomy 21), which is caused by an extra copy of chromosome 21.
3. Neurological disorders: Chromosome aberrations have been linked to various neurological disorders, including autism and intellectual disability.
4. Immunodeficiency diseases: Some immunodeficiency diseases, such as X-linked severe combined immunodeficiency (SCID), are caused by chromosome abnormalities.
5. Infectious diseases: Chromosome aberrations can increase the risk of infection with certain viruses, such as human immunodeficiency virus (HIV).
6. Ageing: Chromosome aberrations have been linked to the ageing process and may contribute to the development of age-related diseases.
7. Radiation exposure: Exposure to radiation can cause chromosome abnormalities, which can increase the risk of cancer and other diseases.
8. Genetic disorders: Many genetic disorders are caused by chromosome aberrations, such as Turner syndrome (45,X), which is caused by a missing X chromosome.
9. Rare diseases: Chromosome aberrations can cause rare diseases, such as Klinefelter syndrome (47,XXY), which is caused by an extra copy of the X chromosome.
10. Infertility: Chromosome abnormalities can contribute to infertility in both men and women.

Understanding the causes and consequences of chromosome aberrations is important for developing effective treatments and improving human health.

The symptoms of infectious mononucleosis can vary in severity but typically include:

* Fatigue
* Fever
* Sore throat
* Swollen lymph nodes in the neck and armpits
* Enlarged spleen
* Headache
* Muscle weakness
* Rash
* Swollen liver or spleen

Infectious mononucleosis is usually diagnosed through a combination of physical examination, blood tests, and other laboratory tests. Treatment focuses on relieving symptoms and allowing the body to fight the infection on its own.

Prognosis for infectious mononucleosis is generally good, but it can take several weeks to recover fully. Complications are rare but can include inflammation of the spleen, liver disease, and a condition called splenomegaly (enlargement of the spleen).

Prevention includes avoiding close contact with people who have mononucleosis, washing hands frequently, and not sharing eating or drinking utensils. There is no vaccine available to protect against infectious mononucleosis.

Also known as Burkitt's Lymphoma.

1. Activation of oncogenes: Some viruses contain genes that code for proteins that can activate existing oncogenes in the host cell, leading to uncontrolled cell growth.
2. Inactivation of tumor suppressor genes: Other viruses may contain genes that inhibit the expression of tumor suppressor genes, allowing cells to grow and divide uncontrollably.
3. Insertional mutagenesis: Some viruses can insert their own DNA into the host cell's genome, leading to disruptions in normal cellular function and potentially causing cancer.
4. Epigenetic changes: Viral infection can also cause epigenetic changes, such as DNA methylation or histone modification, that can lead to the silencing of tumor suppressor genes and the activation of oncogenes.

Viral cell transformation is a key factor in the development of many types of cancer, including cervical cancer caused by human papillomavirus (HPV), and liver cancer caused by hepatitis B virus (HBV). In addition, some viruses are specifically known to cause cancer, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Merkel cell polyomavirus (MCV).

Early detection and treatment of viral infections can help prevent the development of cancer. Vaccines are also available for some viruses that are known to cause cancer, such as HPV and hepatitis B. Additionally, antiviral therapy can be used to treat existing infections and may help reduce the risk of cancer development.

The symptoms of T-cell leukemia can vary depending on the severity of the disease, but they may include:

* Fatigue
* Weakness
* Frequent infections
* Easy bruising or bleeding
* Swollen lymph nodes
* Pain in the bones or joints
* Headaches
* Confusion or seizures (in severe cases)

T-cell leukemia is diagnosed through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment typically involves chemotherapy and/or radiation therapy to kill cancer cells and restore the body's normal production of blood cells. In some cases, bone marrow transplantation may be recommended.

The prognosis for T-cell leukemia varies depending on the patient's age and overall health, as well as the aggressiveness of the disease. However, with current treatments, the 5-year survival rate is around 70% for children and adolescents, and around 40% for adults.

It's important to note that T-cell leukemia is relatively rare compared to other types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL). However, it can be a very aggressive and difficult-to-treat form of cancer, and patients with T-cell leukemia often require intensive treatment and close follow-up care.

There are several types of disease susceptibility, including:

1. Genetic predisposition: This refers to the inherent tendency of an individual to develop a particular disease due to their genetic makeup. For example, some families may have a higher risk of developing certain diseases such as cancer or heart disease due to inherited genetic mutations.
2. Environmental susceptibility: This refers to the increased risk of developing a disease due to exposure to environmental factors such as pollutants, toxins, or infectious agents. For example, someone who lives in an area with high levels of air pollution may be more susceptible to developing respiratory problems.
3. Lifestyle susceptibility: This refers to the increased risk of developing a disease due to unhealthy lifestyle choices such as smoking, lack of exercise, or poor diet. For example, someone who smokes and is overweight may be more susceptible to developing heart disease or lung cancer.
4. Immune system susceptibility: This refers to the increased risk of developing a disease due to an impaired immune system. For example, people with autoimmune disorders such as HIV/AIDS or rheumatoid arthritis may be more susceptible to opportunistic infections.

Understanding disease susceptibility can help healthcare providers identify individuals who are at risk of developing certain diseases and provide preventive measures or early intervention to reduce the risk of disease progression. Additionally, genetic testing can help identify individuals with a high risk of developing certain diseases, allowing for earlier diagnosis and treatment.

In summary, disease susceptibility refers to the predisposition of an individual to develop a particular disease or condition due to various factors such as genetics, environment, lifestyle choices, and immune system function. Understanding disease susceptibility can help healthcare providers identify individuals at risk and provide appropriate preventive measures or early intervention to reduce the risk of disease progression.

1. Lymphedema: This is a condition in which the lymph vessels are unable to properly drain fluid from the body, leading to swelling in the affected limb.
2. Lymphangitis: This is an inflammation of the lymph vessels that can cause pain, redness, and swelling.
3. Lymphadenitis: This is an infection of the lymph nodes that can cause swelling, pain, and difficulty breathing.
4. Primary lymphedema: This is a rare genetic condition in which the lymph vessels are missing or do not develop properly.
5. Secondary lymphedema: This is a condition that develops as a result of another condition or injury, such as surgery, radiation therapy, or infection.
6. Lymphatic malformations: These are abnormalities in the development of the lymph vessels and nodes that can cause swelling, pain, and difficulty breathing.
7. Lymphocystis: This is a rare condition in which small cysts form in the lymph vessels and nodes.
8. Lymphangioleiomyomatosis (LAM): This is a rare condition that causes cysts to form in the lungs and can also affect the lymph vessels and nodes.
9. Lipedema: This is a condition in which there is an abnormal accumulation of fat in the legs, thighs, and buttocks, which can cause swelling and pain.
10. Pemphigus: This is a group of rare autoimmune disorders that affect the skin and mucous membranes, leading to blistering and scarring.

Treatment for lymphatic diseases depends on the specific condition and may include compression garments, exercises, and manual lymph drainage therapy. In some cases, medications such as antibiotics or anti-inflammatory drugs may be prescribed to help manage symptoms. Surgery may also be necessary in some cases to remove blockages or repair damaged vessels.

It is important to seek medical attention if you experience any persistent swelling or pain, as these can be signs of a lymphatic disease. Early diagnosis and treatment can help to manage symptoms and improve quality of life.

There are several types of skin neoplasms, including:

1. Basal cell carcinoma (BCC): This is the most common type of skin cancer, and it usually appears as a small, fleshy bump or a flat, scaly patch. BCC is highly treatable, but if left untreated, it can grow and invade surrounding tissue.
2. Squamous cell carcinoma (SCC): This type of skin cancer is less common than BCC but more aggressive. It typically appears as a firm, flat, or raised bump on sun-exposed areas. SCC can spread to other parts of the body if left untreated.
3. Melanoma: This is the most serious type of skin cancer, accounting for only 1% of all skin neoplasms but responsible for the majority of skin cancer deaths. Melanoma can appear as a new or changing mole, and it's essential to recognize the ABCDE signs (Asymmetry, Border irregularity, Color variation, Diameter >6mm, Evolving size, shape, or color) to detect it early.
4. Sebaceous gland carcinoma: This rare type of skin cancer originates in the oil-producing glands of the skin and can appear as a firm, painless nodule on the forehead, nose, or other oily areas.
5. Merkel cell carcinoma: This is a rare and aggressive skin cancer that typically appears as a firm, shiny bump on the skin. It's more common in older adults and those with a history of sun exposure.
6. Cutaneous lymphoma: This type of cancer affects the immune system and can appear as a rash, nodules, or tumors on the skin.
7. Kaposi sarcoma: This is a rare type of skin cancer that affects people with weakened immune systems, such as those with HIV/AIDS. It typically appears as a flat, red or purple lesion on the skin.

While skin cancers are generally curable when detected early, it's important to be aware of your skin and notice any changes or unusual spots, especially if you have a history of sun exposure or other risk factors. If you suspect anything suspicious, see a dermatologist for an evaluation and potential biopsy. Remember, prevention is key to avoiding the harmful effects of UV radiation and reducing your risk of developing skin cancer.

Granulomas are formed in response to the presence of a foreign substance or an infection, and they serve as a protective barrier to prevent the spread of the infection and to isolate the offending agent. The granuloma is characterized by a central area of necrosis, surrounded by a ring of immune cells, including macrophages and T-lymphocytes.

Granulomas are commonly seen in a variety of inflammatory conditions, such as tuberculosis, leprosy, and sarcoidosis. They can also occur as a result of infections, such as bacterial or fungal infections, and in the context of autoimmune disorders, such as rheumatoid arthritis.

In summary, granuloma is a term used to describe a type of inflammatory lesion that is formed in response to the presence of a foreign substance or an infection, and serves as a protective barrier to prevent the spread of the infection and to isolate the offending agent.

Hairy cell leukemia typically affects older adults, and it is usually slow-growing and progresses gradually over many years. Symptoms of hairy cell leukemia can include fatigue, weakness, weight loss, fever, night sweats, and swollen lymph nodes.

Hairy cell leukemia is diagnosed through a combination of physical examination, medical history, blood tests, and bone marrow biopsy. Treatment for hairy cell leukemia typically involves chemotherapy, radiation therapy, or a combination of both. In some cases, the disease may go into remission with treatment, but it can also be a chronic condition that requires ongoing management.

Prevention: There is no known prevention for hairy cell leukemia, as the cause of the disease is not fully understood. However, early detection and treatment can improve outcomes.

Prognosis: The prognosis for hairy cell leukemia varies depending on the individual patient and the aggressiveness of the disease. In general, the condition tends to be slow-growing and progresses gradually over many years. With appropriate treatment, some patients can achieve long-term remission or even be cured. However, in more advanced cases, the disease can be more difficult to treat and may have a poorer prognosis.

Symptoms: Symptoms of hairy cell leukemia can include fatigue, weakness, weight loss, fever, night sweats, and swollen lymph nodes. These symptoms can develop gradually over time, and they may be mild at first but become more severe as the disease progresses.

Treatment: Treatment for hairy cell leukemia typically involves chemotherapy, radiation therapy, or a combination of both. The specific treatment plan will depend on the individual patient and the severity of their condition. In some cases, watchful waiting may be appropriate, especially if the disease is not causing significant symptoms.

Lifestyle Changes: There are no lifestyle changes that can cure hairy cell leukemia, but they can help improve overall health and well-being. These changes may include eating a healthy diet, getting regular exercise, getting enough rest, and managing stress. In addition, avoiding exposure to certain chemicals and toxins may be beneficial for some patients.

Medications: There are several medications that can be used to treat hairy cell leukemia. These include chemotherapy drugs such as pentostatin and cladribine, which can help kill cancer cells and slow the progression of the disease. In addition, some patients may receive radiation therapy to help shrink swollen lymph nodes or other affected tissues.

Supportive Care: Supportive care is an important part of treatment for hairy cell leukemia. This type of care focuses on managing symptoms and improving quality of life, rather than directly targeting the cancer cells. Supportive care may include medications to manage pain, fatigue, or infection, as well as blood transfusions to help improve anemia.

Bone Marrow Transplant: In some cases, bone marrow transplant may be an option for patients with hairy cell leukemia. This involves replacing the patient's bone marrow with healthy cells from a donor, which can help cure the disease. However, this is typically reserved for patients who have not responded to other treatments or who have experienced significant complications from the disease.

Overall, the prognosis for hairy cell leukemia is generally good, with many patients experiencing a good response to treatment and a low risk of complications. However, it is important for patients to work closely with their healthcare team to develop a personalized treatment plan that meets their individual needs and helps them achieve the best possible outcome.

Examples of experimental leukemias include:

1. X-linked agammaglobulinemia (XLA): A rare inherited disorder that leads to a lack of antibody production and an increased risk of infections.
2. Diamond-Blackfan anemia (DBA): A rare inherited disorder characterized by a failure of red blood cells to mature in the bone marrow.
3. Fanconi anemia: A rare inherited disorder that leads to a defect in DNA repair and an increased risk of cancer, particularly leukemia.
4. Ataxia-telangiectasia (AT): A rare inherited disorder characterized by progressive loss of coordination, balance, and speech, as well as an increased risk of cancer, particularly lymphoma.
5. Down syndrome: A genetic disorder caused by an extra copy of chromosome 21, which increases the risk of developing leukemia, particularly acute myeloid leukemia (AML).

These experimental leukemias are often used in research studies to better understand the biology of leukemia and to develop new treatments.

Crohn disease can occur in any part of the GI tract, from the mouth to the anus, but it most commonly affects the ileum (the last portion of the small intestine) and the colon. The inflammation caused by Crohn disease can lead to the formation of scar tissue, which can cause narrowing or blockages in the intestines. This can lead to complications such as bowel obstruction or abscesses.

The exact cause of Crohn disease is not known, but it is believed to be an autoimmune disorder, meaning that the immune system mistakenly attacks healthy tissue in the GI tract. Genetic factors and environmental triggers such as smoking and diet also play a role in the development of the disease.

There is no cure for Crohn disease, but various treatments can help manage symptoms and prevent complications. These may include medications such as anti-inflammatory drugs, immunosuppressants, and biologics, as well as lifestyle changes such as dietary modifications and stress management techniques. In severe cases, surgery may be necessary to remove damaged portions of the GI tract.

Crohn disease can have a significant impact on quality of life, and it is important for individuals with the condition to work closely with their healthcare provider to manage their symptoms and prevent complications. With proper treatment and self-care, many people with Crohn disease are able to lead active and fulfilling lives.

Thymoma can be broadly classified into two main types:

1. Benign thymoma: This type of thymoma is non-cancerous and does not spread to other parts of the body. It is usually small in size and may not cause any symptoms.
2. Malignant thymoma: This type of thymoma is cancerous and can spread to other parts of the body, including the lungs, liver, and bone marrow. Malignant thymomas are more aggressive than benign thymomas and can be life-threatening if not treated promptly.

The exact cause of thymoma is not known, but it is believed to arise from abnormal cell growth in the thymus gland. Some risk factors that may increase the likelihood of developing thymoma include:

1. Genetic mutations: Certain genetic mutations, such as those affecting the TREX1 gene, can increase the risk of developing thymoma.
2. Radiation exposure: Exposure to radiation, such as from radiation therapy, may increase the risk of developing thymoma.
3. Thymic hyperplasia: Enlargement of the thymus gland, known as thymic hyperplasia, may increase the risk of developing thymoma.

The symptoms of thymoma can vary depending on the size and location of the tumor. Some common symptoms include:

1. Chest pain or discomfort
2. Shortness of breath
3. Coughing
4. Fatigue
5. Weight loss
6. Fever
7. Night sweats
8. Pain in the arm or shoulder

Thymoma is diagnosed through a combination of imaging tests, such as computed tomography (CT) scans and magnetic resonance imaging (MRI), and biopsy, which involves removing a sample of tissue from the thymus gland for examination under a microscope. Treatment options for thymoma depend on the stage and aggressiveness of the tumor, and may include:

1. Surgery: Removing the tumor through surgery is often the first line of treatment for thymoma.
2. Radiation therapy: High-energy beams can be used to kill cancer cells and shrink the tumor.
3. Chemotherapy: Drugs can be used to kill cancer cells and shrink the tumor.
4. Targeted therapy: Drugs that target specific molecules involved in the growth and spread of cancer cells can be used to treat thymoma.
5. Immunotherapy: Treatments that use the body's immune system to fight cancer, such as checkpoint inhibitors, can be effective for some people with thymoma.

Overall, the prognosis for thymoma is generally good, with a 5-year survival rate of about 70% for people with localized disease. However, the prognosis can vary depending on the stage and aggressiveness of the tumor, as well as the effectiveness of treatment.

The exact cause of LGL leukemia is not known, but it is believed to be linked to genetic mutations and environmental factors. The disease typically affects older adults and is more common in men than women.

Symptoms of LGL leukemia can include fatigue, fever, night sweats, weight loss, and swollen lymph nodes. If the disease progresses, it can lead to anemia, infections, and bleeding problems.

Diagnosis of LGL leukemia is based on a combination of physical examination, medical history, laboratory tests, and bone marrow biopsy. Treatment options include chemotherapy, immunotherapy, and stem cell transplantation. The prognosis for LGL leukemia varies depending on the aggressiveness of the disease and the response to treatment.

In summary, large granular lymphocytic leukemia is a rare and complex blood cancer that requires specialized medical care and close monitoring for effective management and treatment.

The symptoms of LCM can vary depending on the severity of the infection, but they typically include fever, headache, neck stiffness, and sensitivity to light. In severe cases, LCM can cause meningitis, encephalitis (inflammation of the brain), and even death.

The diagnosis of LCM is based on a combination of clinical symptoms, laboratory tests, and imaging studies such as MRI or CT scans. Laboratory tests may include blood tests to detect the presence of antibodies against the virus, as well as tests to assess liver function and other organ systems.

Treatment of LCM typically involves supportive care, such as intravenous fluids, oxygen therapy, and pain management. Antiviral medications may also be used in some cases. In severe cases, hospitalization may be required to monitor and treat the patient.

Prevention of LCM primarily involves avoiding contact with infected rodents, particularly during pregnancy and childhood when the risk of infection is higher. Good hygiene practices, such as frequent handwashing, can also help reduce the risk of transmission. Vaccines are not available for LCM, but research is ongoing to develop one.

The prognosis for LCM varies depending on the severity of the infection and the promptness and effectiveness of treatment. In general, the outcome is good for patients with mild symptoms, but those with severe infections may experience long-term neurological problems or death.

Herpesviridae infections are caused by the Herpesviridae family of viruses and can be transmitted through skin-to-skin contact, sexual contact, or from mother to child during pregnancy or childbirth. Symptoms of herpesviridae infections can vary depending on the type of virus and the individual infected, but may include fever, fatigue, muscle aches, and skin sores or rashes.

There is no cure for herpesviridae infections, but antiviral medications can help manage symptoms and reduce the risk of transmission to others. Good hygiene practices, such as washing hands regularly and avoiding close contact with those who are infected, can also help prevent the spread of these viruses.

Some common types of herpesviridae infections include:

* Herpes simplex virus (HSV) - Causes cold sores and genital herpes.
* Varicella-zoster virus (VZV) - Causes chickenpox and shingles.
* Human herpesvirus 8 (HHV-8) - Associated with certain types of cancer, such as Kaposi's sarcoma.

Causes:

There are many possible causes of eosinophilia, including:

* Allergies
* Parasitic infections
* Autoimmune disorders
* Cancer
* Medications

Symptoms:

The symptoms of eosinophilia can vary depending on the underlying cause, but may include:

* Swelling of the skin, lips, and eyes
* Hives or itchy skin
* Shortness of breath or wheezing
* Abdominal pain
* Diarrhea

Diagnosis:

Eosinophilia is typically diagnosed through a blood test that measures the number of eosinophils in the blood. Other tests such as imaging studies, skin scrapings, and biopsies may also be used to confirm the diagnosis and identify the underlying cause.

Treatment:

The treatment of eosinophilia depends on the underlying cause, but may include medications such as antihistamines, corticosteroids, and chemotherapy. In some cases, removal of the causative agent or immunomodulatory therapy may be necessary.

Complications:

Eosinophilia can lead to a number of complications, including:

* Anaphylaxis (a severe allergic reaction)
* Asthma
* Eosinophilic granulomas (collections of eosinophils that can cause organ damage)
* Eosinophilic gastrointestinal disorders (conditions where eosinophils invade the digestive tract)

Prognosis:

The prognosis for eosinophilia depends on the underlying cause, but in general, the condition is not life-threatening. However, if left untreated, complications can arise and the condition can have a significant impact on quality of life.

In conclusion, eosinophilia is a condition characterized by an abnormal increase in eosinophils in the body. While it can be caused by a variety of factors, including allergies, infections, and autoimmune disorders, the underlying cause must be identified and treated in order to effectively manage the condition and prevent complications.

Multiple myeloma is the second most common type of hematologic cancer after non-Hodgkin's lymphoma, accounting for approximately 1% of all cancer deaths worldwide. It is more common in older adults, with most patients being diagnosed over the age of 65.

The exact cause of multiple myeloma is not known, but it is believed to be linked to genetic mutations that occur in the plasma cells. There are several risk factors that have been associated with an increased risk of developing multiple myeloma, including:

1. Family history: Having a family history of multiple myeloma or other plasma cell disorders increases the risk of developing the disease.
2. Age: The risk of developing multiple myeloma increases with age, with most patients being diagnosed over the age of 65.
3. Race: African Americans are at higher risk of developing multiple myeloma than other races.
4. Obesity: Being overweight or obese may increase the risk of developing multiple myeloma.
5. Exposure to certain chemicals: Exposure to certain chemicals such as pesticides, solvents, and heavy metals has been linked to an increased risk of developing multiple myeloma.

The symptoms of multiple myeloma can vary depending on the severity of the disease and the organs affected. Common symptoms include:

1. Bone pain: Pain in the bones, particularly in the spine, ribs, or long bones, is a common symptom of multiple myeloma.
2. Fatigue: Feeling tired or weak is another common symptom of the disease.
3. Infections: Patients with multiple myeloma may be more susceptible to infections due to the impaired functioning of their immune system.
4. Bone fractures: Weakened bones can lead to an increased risk of fractures, particularly in the spine, hips, or ribs.
5. Kidney problems: Multiple myeloma can cause damage to the kidneys, leading to problems such as kidney failure or proteinuria (excess protein in the urine).
6. Anemia: A low red blood cell count can cause anemia, which can lead to fatigue, weakness, and shortness of breath.
7. Increased calcium levels: High levels of calcium in the blood can cause symptoms such as nausea, vomiting, constipation, and confusion.
8. Neurological problems: Multiple myeloma can cause neurological problems such as headaches, numbness or tingling in the arms and legs, and difficulty with coordination and balance.

The diagnosis of multiple myeloma typically involves a combination of physical examination, medical history, and laboratory tests. These may include:

1. Complete blood count (CBC): A CBC can help identify abnormalities in the numbers and characteristics of different types of blood cells, including red blood cells, white blood cells, and platelets.
2. Serum protein electrophoresis (SPEP): This test measures the levels of different proteins in the blood, including immunoglobulins (antibodies) and abnormal proteins produced by myeloma cells.
3. Urine protein electrophoresis (UPEP): This test measures the levels of different proteins in the urine.
4. Immunofixation: This test is used to identify the type of antibody produced by myeloma cells and to rule out other conditions that may cause similar symptoms.
5. Bone marrow biopsy: A bone marrow biopsy involves removing a sample of tissue from the bone marrow for examination under a microscope. This can help confirm the diagnosis of multiple myeloma and determine the extent of the disease.
6. Imaging tests: Imaging tests such as X-rays, CT scans, or MRI scans may be used to assess the extent of bone damage or other complications of multiple myeloma.
7. Genetic testing: Genetic testing may be used to identify specific genetic abnormalities that are associated with multiple myeloma and to monitor the response of the disease to treatment.

It's important to note that not all patients with MGUS or smoldering myeloma will develop multiple myeloma, and some patients with multiple myeloma may not have any symptoms at all. However, if you are experiencing any of the symptoms listed above or have a family history of multiple myeloma, it's important to talk to your doctor about your risk and any tests that may be appropriate for you.

Mast cell sarcoma is most commonly seen in the skin, but it can also arise in other parts of the body such as the spleen, liver, or gastrointestinal tract. The tumors are usually large, irregularly shaped masses that can be firm or soft to the touch. They may ulcerate and bleed easily, leading to swelling and discomfort.

The symptoms of mast cell sarcoma can vary depending on the location and size of the tumor. They may include:

* A lump or mass that may be painless or tender to the touch
* Swelling in the affected area
* Abdominal pain
* Diarrhea or constipation
* Fatigue
* Fevers
* Night sweats

Mast cell sarcoma is rare and accounts for only about 1-2% of all skin tumors. It is more common in dogs than cats and tends to affect older animals. The exact cause of mast cell sarcoma is not known, but genetic factors and environmental triggers may play a role.

Treatment options for mast cell sarcoma depend on the location and stage of the tumor. Surgery is often the first line of treatment to remove the tumor and any affected tissue. Additional therapies such as radiation, chemotherapy, or immunotherapy may be recommended based on the severity of the disease and the patient's overall health.

Prognosis for mast cell sarcoma varies depending on several factors, including the size and location of the tumor, the effectiveness of treatment, and the patient's overall health. In general, the prognosis is guarded and early detection and treatment are important to improve outcomes. With prompt and appropriate therapy, some patients with mast cell sarcoma can achieve long-term remission or even cure. However, in advanced cases or those that are resistant to treatment, the prognosis may be poorer.

The condition typically affects older adults and is more common in men than women. The exact cause of Sezary syndrome is not known, but it is believed to be linked to genetic mutations and environmental factors.

Symptoms of Sezary syndrome can include:

* Skin rashes, lesions, or nodules
* Itching, redness, and dryness of the skin
* Fatigue
* Fever
* Weight loss
* Swollen lymph nodes
* Enlarged spleen

Sezary syndrome is diagnosed through a combination of physical examination, medical history, and laboratory tests such as biopsies, blood tests, and imaging studies. Treatment options for Sezary syndrome include:

* Chemotherapy
* Radiation therapy
* Phototherapy
* Targeted therapy

Overall, Sezary syndrome is a rare and aggressive form of CTCL that can have severe symptoms and affect multiple organs. Early diagnosis and treatment are essential to improve outcomes for patients with this condition.

There are several causes of hypergammaglobulinemia, including:

1. Chronic infections: Prolonged infections can cause an increase in the production of immunoglobulins to fight off the infection.
2. Autoimmune disorders: Conditions such as rheumatoid arthritis, lupus, and multiple sclerosis can cause the immune system to produce excessive amounts of antibodies.
3. Cancer: Some types of cancer, such as Hodgkin's disease and non-Hodgkin's lymphoma, can cause an increase in immunoglobulin production.
4. Genetic disorders: Certain genetic conditions, such as X-linked agammaglobulinemia, can lead to a deficiency or excess of immunoglobulins.
5. Medications: Certain medications, such as corticosteroids and chemotherapy drugs, can suppress the immune system and reduce the production of immunoglobulins.

Symptoms of hypergammaglobulinemia can include:

1. Infections: Recurring infections are a common symptom of hypergammaglobulinemia, as the excessive amount of antibodies can make it difficult for the body to fight off infections effectively.
2. Fatigue: Chronic infections and inflammation can cause fatigue and weakness.
3. Weight loss: Recurring infections and chronic inflammation can lead to weight loss and malnutrition.
4. Swollen lymph nodes: Enlarged lymph nodes are a common symptom of hypergammaglobulinemia, as the body tries to fight off infections.
5. Fever: Recurring fevers can be a symptom of hypergammaglobulinemia, as the body tries to fight off infections.
6. Night sweats: Excessive sweating at night can be a symptom of hypergammaglobulinemia.
7. Skin rashes: Certain types of skin rashes can be a symptom of hypergammaglobulinemia, such as a rash caused by allergic reactions to medications or infections.
8. Joint pain: Pain and stiffness in the joints can be a symptom of hypergammaglobulinemia, particularly if the excessive amount of antibodies is causing inflammation in the joints.
9. Headaches: Chronic headaches can be a symptom of hypergammaglobulinemia, particularly if the excessive amount of antibodies is causing inflammation in the brain or other parts of the body.
10. Swollen liver and spleen: Enlarged liver and spleen can be a symptom of hypergammaglobulinemia, as the body tries to filter out excess antibodies and fight off infections.

It is important to note that these symptoms can also be caused by other medical conditions, so it is essential to consult a healthcare professional for proper diagnosis and treatment. A healthcare professional may perform blood tests and other diagnostic procedures to determine the underlying cause of the symptoms and develop an appropriate treatment plan. Treatment for hypergammaglobulinemia typically involves addressing the underlying cause of the condition, such as infections, allergies, or autoimmune disorders, and may include medications to reduce inflammation and suppress the immune system.

There are several types of hypersensitivity reactions, including:

1. Type I hypersensitivity: This is also known as immediate hypersensitivity and occurs within minutes to hours after exposure to the allergen. It is characterized by the release of histamine and other chemical mediators from immune cells, leading to symptoms such as hives, itching, swelling, and difficulty breathing. Examples of Type I hypersensitivity reactions include allergies to pollen, dust mites, or certain foods.
2. Type II hypersensitivity: This is also known as cytotoxic hypersensitivity and occurs within days to weeks after exposure to the allergen. It is characterized by the immune system producing antibodies against specific proteins on the surface of cells, leading to their destruction. Examples of Type II hypersensitivity reactions include blood transfusion reactions and serum sickness.
3. Type III hypersensitivity: This is also known as immune complex hypersensitivity and occurs when antigens bind to immune complexes, leading to the formation of deposits in tissues. Examples of Type III hypersensitivity reactions include rheumatoid arthritis and systemic lupus erythematosus.
4. Type IV hypersensitivity: This is also known as delayed-type hypersensitivity and occurs within weeks to months after exposure to the allergen. It is characterized by the activation of T cells, leading to inflammation and tissue damage. Examples of Type IV hypersensitivity reactions include contact dermatitis and toxic epidermal necrolysis.

The diagnosis of hypersensitivity often involves a combination of medical history, physical examination, laboratory tests, and elimination diets or challenges. Treatment depends on the specific type of hypersensitivity reaction and may include avoidance of the allergen, medications such as antihistamines or corticosteroids, and immunomodulatory therapy.

The disease is typically induced in laboratory animals such as mice or rats by immunizing them with myelin proteins, such as myelin basic protein (MBP) or proteolipid protein (PLP), emulsified in adjuvants. The resulting immune response leads to the production of autoantibodies and activated T cells that cross the blood-brain barrier and attack the CNS.

EAE is used as a model for MS because it shares many similarities with the human disease, including:

1. Demyelination: EAE induces demyelination of nerve fibers in the CNS, which is also a hallmark of MS.
2. Autoimmune response: The immune response in EAE is triggered by autoantigens, similar to MS.
3. Chronic course: EAE is a chronic disease with recurrent relapses, similar to MS.
4. Lesion distribution: EAE lesions are distributed throughout the CNS, including the cerebral cortex, cerebellum, brainstem, and spinal cord, which is also true for MS.

EAE has been used extensively in the study of MS to investigate the immunopathogenesis of the disease, to develop new diagnostic markers and treatments, and to test the efficacy of potential therapeutic agents.

There are several subtypes of B-cell leukemia, including:

1. Chronic lymphocytic leukemia (CLL): This is the most common type of B-cell leukemia, and it typically affects older adults. CLL is a slow-growing cancer that can progress over time.
2. Acute lymphoblastic leukemia (ALL): This is a fast-growing and aggressive form of B-cell leukemia that can affect people of all ages. ALL is often treated with chemotherapy and sometimes with bone marrow transplantation.
3. Burkitt lymphoma: This is an aggressive form of B-cell leukemia that typically affects older adults in Africa and Asia. Burkitt lymphoma can be treated with chemotherapy and sometimes with bone marrow transplantation.
4. Hairy cell leukemia: This is a rare type of B-cell leukemia that is characterized by the presence of hair-like projections on the surface of cancer cells. Hairy cell leukemia can be treated with chemotherapy and sometimes with bone marrow transplantation.

The diagnosis of B-cell leukemia is based on a combination of physical examination, medical history, laboratory tests, and biopsies. Treatment options for B-cell leukemia include chemotherapy, bone marrow transplantation, and in some cases, targeted therapy with drugs that specifically target cancer cells. The prognosis for B-cell leukemia varies depending on the subtype of the disease and the patient's overall health.

2. Our research focuses on identifying the genetic mutations that contribute to experimental melanoma and developing targeted therapies.
3. The patient's experimental melanoma had spread to her lungs and liver, so we recommended chemotherapy and immunotherapy treatments.

T-CD4 + lymphocyte count and the occurrence of clinical events. The progressive decline in T-CD4 + lymphocyte counts is ... It is therefore recommended that reductions greater than 25% in T-CD4 + lymphocyte counts are suspected of immunological ... in absolute CD4 T-lymphocyte counts, with no clinical significance. ... There is also circadian variation of CD4 levels and therefore it is recommended that the sample for the test be obtained in the ...
CD4 lymphocyte counts have also been related to greater rates of brain tissue loss. Current factors, such as plasma HIV RNA, ... February 2010). "Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the ... Cerebral brain volume is associated with factors related to duration of the disease and CD4 nadir; patients with a longer ... The severity of neurocognitive impairment is associated with nadir CD4, suggesting that earlier treatment to prevent ...
CD4 < 50 cells/mL, 0- 35% possibility of CMV retinitis) BUN CD8+ T-lymphocyte count CMV DNA capture ( polymerase chain reaction ... The diagnosis of CMV retinitis can be done via the following: Ophthalmic screening frequency is based on CD4 count,( ... PCR) test) DNA PCR ( ocular fluids) Viral load Complete blood count In terms of the treatment of cytomegalovirus retinitis, ...
When the CD4 lymphocyte count falls below 200 cells/ml of blood, the HIV host has progressed to AIDS, a condition characterized ... Doitsh, G; Greene, WC (2016). "Dissecting How CD4 T Cells Are Lost During HIV Infection". Cell Host Microbe. 19 (3): 280-91. ...
Activated CD4(+)/CD25(+) T-lymphocyte counts correlated negatively with serum concentrations of IP-10/CXCL10, whereas CD4(+)/ ... HLA-DR(+) T lymphocyte counts correlated positively with serum concentrations of the counterregulatory IL-1 receptor antagonist ... Flares are accompanied by increased serum levels of activated T lymphocyte chemokines (IP-10/CXCL10, MIG/CXCL9), G-CSF and ...
"CD4 Count". www.aids.gov. Retrieved 2015-04-30. Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, et al. (April 2010 ... August 2020). "Lymphocyte Subset Counts in COVID-19 Patients: A Meta-Analysis". Cytometry. Part A. 97 (8): 772-776. doi:10.1002 ... In coronavirus disease 2019 (COVID-19) B cell, natural killer cell, and total lymphocyte counts decline, but both CD4+ and CD8+ ... CD4 T cell depleted to the cell count of less than 200cell/μL in blood during AIDS allows various pathogens to escape T cell ...
The risk of MAC is inversely related to the patient's CD4 count and increases significantly when the CD4 count decreases below ... Some age adjustment is necessary when clinicians interpret CD4+ T-lymphocyte counts in children less than 2 years of age. ... Blood cultures are not routinely recommended for asymptomatic persons, even for those who have CD4+ T-lymphocyte counts less ... Disseminated MAC (DMAC) characteristically affects people with advanced HIV disease and peripheral CD4 cell counts less than 50 ...
... in persons with CD4 counts lower than 100 cells/mcL. Cryptococcal antigen screen and preemptive treatment with fluconazole is ... "Routine cryptococcal antigen screening for HIV-infected patients with low CD4+ T-lymphocyte counts-time to implement in South ... Rajasingham, R; Boulware, DR (Dec 2012). "Reconsidering cryptococcal antigen screening in the U.S. among persons with CD4 ... The World Health Organization recommends cryptococcal antigen screening in HIV-infected persons entering care with CD4. < or = ...
This increase in blood eosinophil count is often associated with abnormal T-lymphocyte clones (e.g. increased numbers of CD4 ... Diagnosis is by complete blood count (CBC). However, in some cases, a more accurate absolute eosinophil count may be needed. ... Elevations in blood eosinophil counts can be transient, sustained, recurrent, or cyclical. Eosinophil counts in human blood ... Lymphocyte-variant hypereosinophilia is a disorder attributed to the expansion of a cytokine-producing, aberrant population of ...
HIV's cytotoxic activity toward CD4+ lymphocytes is classified as AIDS once a given patient's CD4+ cell count falls below 200. ... HIV proteins decrease the amount of CD4 glycoprotein marker present on the cell membrane. Released viral particles and proteins ... In a healthy individual, the number of CD4+ lymphocytes is in balance with the cells generated by the bone marrow; however, in ... It can be interpreted by counting, measuring, and analyzing the cells of the Sub/G1 cell population. When HeLA cells are ...
... lymphocyte count MeSH G09.188.250.161.595.500.150 - cd4 lymphocyte count MeSH G09.188.250.161.595.500.150.160 - cd4-cd8 ratio ... blood cell count MeSH G09.188.250.161.330 - erythrocyte count MeSH G09.188.250.161.330.725 - reticulocyte count MeSH G09.188. ... MeSH G09.188.250.161.700 - platelet count MeSH G09.188.250.272 - blood viscosity MeSH G09.188.250.313 - blood volume MeSH ... 250.161.595 - leukocyte count MeSH G09.188.250.161.595.500 - ...
... lymphocyte count MeSH G04.335.130.107.595.500.150 - cd4 lymphocyte count MeSH G04.335.130.107.595.500.150.160 - cd4-cd8 ratio ... blood cell count MeSH G04.335.130.107.330 - erythrocyte count MeSH G04.335.130.107.330.725 - reticulocyte count MeSH G04.335. ... b-lymphocyte, light chain MeSH G04.610.626.325 - gene rearrangement, t-lymphocyte MeSH G04.610.626.325.111 - gene rearrangement ... b-lymphocyte MeSH G04.610.626.320.501 - gene rearrangement, b-lymphocyte, heavy chain MeSH G04.610.626.320.501.450 - ...
... lymphocyte count MeSH E01.450.375.107.595.500.150 - cd4 lymphocyte count MeSH E01.450.375.107.595.500.150.160 - cd4-cd8 ratio ... blood cell count MeSH E01.450.375.107.330 - erythrocyte count MeSH E01.450.375.107.330.725 - reticulocyte count MeSH E01.450. ... platelet count MeSH E01.450.375.750 - schilling test MeSH E01.450.495.100 - basophil degranulation test MeSH E01.450.495.150 - ... lymphocyte culture test, mixed MeSH E01.450.495.400 - immune adherence reaction MeSH E01.450.495.410 - immunoassay MeSH E01.450 ...
CD4(+) T cells; this involvement of the latter cell types supports the notion that Gleich's syndrome is a subtype of lymphocyte ... an eosinophil blood count of 7,150 per microliter (normal 60%) eosinophil CFUs when incubated with bone marrow cells taken from ... is caused by an aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the ... Lymphocyte-variant hypereosinophila is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely ...
In the macrophage, the primary signal for activation is IFN-γ from Th1 type CD4 T cells. The secondary signal is CD40L on the T ... While CD40L was originally described on T lymphocytes, its expression has since been found on a wide variety of cells, ... Noelle contested Lederman's patent, but the challenge (called an interference) was rejected on all counts CD40 ligand (CD154) ... "T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells ...
CD4 cell count less than 300 cells per microliter, or Less than 20% of T lymphocytes are CD4+ Laboratory evidence of lack of ... UpToDate article on "Techniques and interpretation of measurement of the CD4 cell count in HIV-infected patients", by John G. ... Alternative explanations for the low CD4 counts include conditions such as blood cancers (aleukemia), treatment with ... Idiopathic CD4+ lymphocytopenia (ICL) is a rare medical syndrome in which the body has too few CD4+ T lymphocytes, which are a ...
A high lymphocyte count (> 100 x 109/L) along with low amounts of red blood cells and platelets in the blood are common ... The immunophenotype CD4+/CD8- is present in 60% of cases, the CD4+/CD8+ immunophenotype is present in 25%, and the CD4-/CD8+ ... T-PLL has the immunophenotype of a mature (post-thymic) T-lymphocyte, and the neoplastic cells are typically positive for pan-T ... In the peripheral blood, T-PLL consists of medium-sized lymphocytes with single nucleoli and basophilic cytoplasm with ...
... lymphocyte count MeSH E05.200.500.195.107.595.500.150 - cd4 lymphocyte count MeSH E05.200.500.195.107.595.500.150.160 - cd4-cd8 ... cell count MeSH E05.200.500.195.107 - blood cell count MeSH E05.200.500.195.107.330 - erythrocyte count MeSH E05.200.500.195. ... 107.330.725 - reticulocyte count MeSH E05.200.500.195.107.595 - leukocyte count MeSH E05.200.500.195.107.595.500 - ... ratio MeSH E05.200.500.195.107.740 - platelet count MeSH E05.200.500.195.870 - sperm count MeSH E05.200.500.251 - cell ...
An uninfected person has 500-1500 CD4 T cells/µL of blood. When this count lowers to less than 500 CD4 T cells/µL, ... "Fluctuations in HIV-1 viral load are correlated to CD4+ T-lymphocyte count during the natural course of infection". Journal of ... The infection progresses to AIDS when the count falls below 200 CD4 T cells/µL, at which point opportunistic infections can be ... At this point, seroconversion, the development of antibodies, occurs and the CD4 T cell counts begin to recover as the immune ...
Dose-limiting toxicities included low lymphocyte, neutrophil, and thrombocyte count as well as hepatotoxicity. According to the ... It has also been shown that HIV-specific CD4 T cells from "HIV controllers" (rare individuals who don't progress to AIDS by ... CD4(+) T Cells Represent Peripheral Tfh Cells with Antigen-Dependent Helper Functions". Immunity. 44 (1): 167-178. doi:10.1016/ ... "Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function". Nature. 408 (6808): ...
The lower the CD4 count, the greater the likelihood and the severity of illness. A CD4 count less than 200 is a diagnosis of ... principally the CD4+ T-helper lymphocytes. As well as lymphocytes, CD4 receptors are also present on the surface of macrophages ... The normal CD4 count is 500-1500 per mm3, and patients with human immunodeficiency virus infection often have a CD4 count less ...
Laboratory manifestations include progressive lymphopenia that primarily affects CD4 and CD8 T cell subsets, reduced B cell and ... This disorder is considered a combined immunodeficiency because it includes both decreased lymphocyte numbers and defective ... NK cell counts in some patients, eosinophilia, and immunoglobulin abnormalities. Antibody responses to vaccines are frequently ... lymphocyte function. It can also be classified as a type of autosomal recessive hyperimmunoglobulinemia E syndrome. ...
A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and ... caused by feline leukemia virus and feline immunodeficiency virus retroviral infections can be treated with lymphocyte T-cell ... Doitsh G, Greene WC (March 2016). "Dissecting How CD4 T Cells Are Lost During HIV Infection". Cell Host & Microbe. 19 (3): 280- ...
... flow cytometry is the gold standard for obtaining CD4 counts, but flow cytometry is a complicated technique that is not ... Measuring the number of CD4+ T lymphocytes in a person's blood is an accurate way to determine if a person has HIV and to track ...
... low lymphocyte counts, and febrile seizures, though most often no symptoms present at all. There are indications that HHV-7 can ... To enter CD4+ T cells, HHV-7, unlike HHV-6, uses CD4 and possibly some cell-surface glycoproteins to enter CD4+ T cells. ... HHV-7 was first isolated in 1990 from CD4+ T cells taken from peripheral blood lymphocytes. Both HHV-6B and HHV-7, as well as ... HHV-7 can be grown in various lymphocytes in vitro, but researchers have noted that the virus does not propagate well under ...
260-9. Vermund S, Hoover D, Chen K (1993). "CD4+ counts in seronegative homosexual men. The Multicenter AIDS Cohort Study". N ... Des Jarlais D, Friedman S, Marmor M, Mildvan D, Yancovitz S, Sotheran J, Wenston J, Beatrice S (1993). "CD4 lymphocytopenia ... 2008). "Recreational drug use and T lymphocyte subpopulations in HIV-uninfected and HIV-infected men". Drug Alcohol Depend. 94 ...
10.5 g/dl Lymphocyte count < 600/µl or < 8% Male Albumin < 4.0 g/dl White blood count ≥ 15,000/µl Other studies have reported ... contrast to many other lymphomas associated with HIV infection it occurs most commonly in people with higher CD4 T cell counts ... Although Hodgkin's is now frequently grouped with other B-cell malignancies, some T-cell markers (such as CD2 and CD4) are ... Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is another subtype of Hodgkin lymphoma distinct from classic Hodgkin ...
Rüegg C, Pytela R (1995). "Sequence of a human transcript expressed in T-lymphocytes and encoding a fibrinogen-like protein". ... "The novel CD4+CD25+ regulatory T cell effector molecule fibrinogen-like protein 2 contributes to the outcome of murine ... patients with a chronic HCV infection were shown to have higher counts of Treg cells in peripheral blood when compared with ... 1998). "Characterization of human fibroleukin, a fibrinogen-like protein secreted by T lymphocytes". J. Immunol. 161 (1): 138- ...
Defined as total lymphocyte count below 1.0x109/L, the cells most commonly affected are CD4+ T cells. Like neutropenia, ... T cells: CD4+ helper T cells: T cells displaying co-receptor CD4 are known as CD4+ T cells. These cells have T-cell receptors ... The complete blood cell count is a blood panel that includes the overall white blood cell count and differential count, a count ... and thus the white blood cell count is an important subset of the complete blood count. The normal white cell count is usually ...
Patients afflicted with combined immunodeficiency have a normal lymphocyte count, but they have low concentrations of T helper ... Thome M, Duplay P, Guttinger M, Acuto O (June 1995). "Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell ... Due to its role in lymphocyte signaling, ZAP-70 has been associated with several diseases affecting lymphocytes. ZAP-70 ... T lymphocytes are activated by engagement of the T cell receptor with processed antigen fragments presented by professional ...
They are a form of T-lymphocytes that has been mutated This atypical form of T-lymphocytes contains T-cell receptors on the ... 4 Stages Diagnosis: Physical exam to check for lesions Peripheral blood smear Use a microscope to count the number of blood ... but stimulates the over production of other antigens like CD4. This mutation is a clonal gene rearrangement at the TCR-γ gene. ... Lymphocytes are white blood cells that form from a blood stem cell, hemocytoblast, in bone marrow and travel to other parts of ...
Consequently, autoreactive CD4+T cells and inflammatory cells are causing tissue damaging. Beside CD4+T cells to inflammation ... The truncated protein cannot bind to its DNA binding site and thus its function concerning T regulatory lymphocytes development ... reduced counts of thrombocytes and neutrophils, arthritis, splenomegaly, lymphadenopathy and infections. IPEX patients are ...
Double negative (DN) T cells, as a progenitors with CD44 and CD25 expression but lack of CD4 and CD8 coreceptor expression, are ... These CD4+ and CD8+ double positive T lymphocytes already express completely recombined TCRs that are tested for recognizing ... Maturation abnormalities of TECs induce chronic inflammatory diseases and decreased count of mTEC and cTEC leads to chronic ... Medulla is also important for implementation of self tolerance, which is mediated by CD4+CD25+Foxp3 nTreg cells. Foxp3 Treg ...
This sense of the term is different from colony-forming units of microbes, which is a cell counting unit.) There are various ... To prove this, several hundred experimental repopulation kinetics from clonal Thy-1lo SCA-1+ lin−(B220, CD4, CD8, Gr-1, Mac-1 ... In shape, hematopoietic stem cells resemble lymphocytes. The very first hematopoietic stem cells during (mouse and human) ... Colony-forming unit-lymphocyte (CFU-L) Colony-forming unit-erythrocyte (CFU-E) Colony-forming unit-granulocyte-macrophage (CFU- ...
For the analysis of a suspected hematological malignancy, a complete blood count and blood film are essential, as malignant ... Nodular lymphocyte predominant Hodgkin lymphoma Classic Hodgkin lymphoma Nodular sclerosis classic Hodgkin lymphoma Lymphocyte- ... aggressive epidermotropic cytotoxic T-cell lymphoma Primary cutaneous acral CD8-positive T-cell lymphoma Primary cutaneous CD4- ... general anamnesis is combined with complete blood count and determination of lactate dehydrogenase or thymidine kinase in serum ...
... reduced CD4:CD8 ratio, moderately high B cell counts, and mild neutropenia. Their neutropenia may be related to their chronic ... The disease is characterized by CD4 lymphopenia, severe chronic viral infections, and defective T-lymphocyte activation. ... "Screening Protocol for Genetic Diseases of Lymphocyte Homeostasis and Programmed Cell Death" at ClinicalTrials.gov (Articles ...
Some CD4 positive T cells exposed to self antigens persist as T regulatory cells. As the thymus is where T cells develop, ... B cells and T cells were identified as different types of lymphocytes in 1968, and the fact that T cells required maturation in ... Very high white cell counts may also require cytoreduction with apheresis. Tumours originating from the small population of B ... A mature T cell expresses only CD4 or CD8, but not both. This depends on the strength of binding between the TCR and MHC class ...
Common side effects include low white blood cell counts, loss of appetite, vomiting, hair loss, and bleeding from the bladder. ... Suggested mechanisms include: Elimination of T regulatory cells (CD4+CD25+ T cells) in naive and tumor-bearing hosts Induction ... "Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c ...
A CD4 count measures the number of T cells expressing CD4. While CD4 counts are not a direct HIV test-e.g. they do not check ... "Laboratory control values for CD4 and CD8 T lymphocytes. Implications for HIV-1 diagnosis". Clinical and Experimental ... CD4 counts may be done every 3-6 months. If a patient's viral load becomes undetectable after 2 years then CD4 counts might not ... If the count remains at 300-500/mm3, then the tests can be done annually. It is not necessary to schedule CD4 counts with viral ...
The incidence rises as the CD4 count falls, and the appearance of OHL may signify progression of HIV to AIDS. A study from 2001 ... from the immune system by latent infection of B lymphocytes. The virus also causes lytic infection in the oropharynx, but is ... Jung, AC; Paauw, DS (February 1998). "Diagnosing HIV-related disease: using the CD4 count as a guide". Journal of General ...
In addition, a better understanding of CD-4 T cell memory is also a result of studies with LCMV and will continue to contribute ... It triggers a vigorous cytotoxic T lymphocytes (CTL) response and thus, it is cleared rapidly by the host. This is referred to ... During the second phase, typical findings include elevated protein levels, increased leukocyte count, or a decrease in glucose ... Their key experiment involved harvesting of splenocytes containing LCMV-specific cytotoxic T lymphocytes(CTL) from an infected ...
Turner, Jl (2001). "The effects of an HIV-1 immunogen (Remune) on viral load, CD4 cell counts and HIV-specific immunity in a ... HIV-1 lymphocyte proliferation P < 0.001 both favoring the Remune Group. The International AIDS Vaccine Research (IAVA) issued ... has completed over 25 clinical studies to date and shows a robust mechanism of action restoring white blood cell counts in CD4 ...
106/L CD4 Cell Counts: A Randomized Controlled Trial". JAMA. 284 (17): 2193-2302. doi:10.1001/jama.284.17.2193. PMID 11056590. ... He followed up with an anti-idiotype tumor vaccine against lymphocytes "not normally recognized" by the immune system. The ... The end point was slowing the progression to AIDS or death for patients having CD4 T-cells between 300 and 549 cells/mm. Bruce ... is the first proof of the principle that therapeutic vaccination can help people with chronic HIV infection mount a strong CD4 ...
Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, ... Kv1.3 has been reported to be expressed in the inner mitochondrial membrane in lymphocytes. The apoptotic protein Bax has been ... Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R (October 2001). "CD4+CD28- costimulation-independent T cells ... DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984). "Voltage-gated K + channels in human T lymphocytes: a role in mitogenesis ...
... s come in many forms with the most well-understood being those that express CD4, CD25, and FOXP3 (CD4+CD25+ ... CD31 could be used as a marker of new generated Treg cells as same as other T lymphocytes. Mature and peripheral Treg cells ... January 2009). "Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral ... Originally, high expression of CD25 and CD4 surface markers was used (CD4+CD25+ cells). This is problematic as CD25 is also ...
Borrow, P.; H. Lewicki; B.H. Hahn; G.M. Shaw; M.B. Oldstone (1994). "Virus-specific CD8+ cytotoxic T-lymphocyte activity ... Entry inhibitors bind to the CCR5 protein to block HIV from binding to the CD4 cell.[citation needed] Coinfections or ... the rapid loss of CD4+ T cell levels versus normal to slow progression to WHO stage 4 and the maintenance of CD4+ T cell counts ... HIV enters cells through an interaction with both CD4 and a chemokine receptor of the 7 transmembrane family. They first ...
After infection, the virus remains latent in lymphocytes in the body for the rest of the person's life. Overt disease rarely ... indicating that the T-cell count has dropped to low levels. Lytically replicating viruses disrupt the cytoskeleton, causing ... "Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza ...
A CD4 count measures the number of CD4 cells in your blood. Its used to check the immune system function in people with HIV. ... Other names: CD4 lymphocyte count CD4+ count, T4 count, T-helper cell count, CD4 percent ... What is a CD4 count?. A CD4 count is a blood test that measures the number of CD4 cells in a sample of your blood. CD4 cells ... medlineplus.gov/lab-tests/cd4-lymphocyte-count/ CD4 Lymphocyte Count. ...
absolute CD4+ T lymphocyte count and changes in these counts; *assessment of adherence to medications; *remaining treatment ... complete blood count, chemistry profile, including serum transaminases and lipid profile (AII); *CD4+ T lymphocyte count (AI); ... T cell counts of 0--49 cells/mm3; 12.5% among those with CD4+ T cell counts of 50--99 cells/mm3; 9.3% among those with CD4+ T ... among those with CD4+ T cell counts of 200--349 cells/mm3; and 3.4% among those with CD4+ T ell counts of 350 cells/mm3 or ...
CD4 Lymphocyte Count * Cause of Death * Central Nervous System Depressants / adverse effects* ... Other explanatory variables for all-cause mortality in this model included HIV viral load, CD4+ cell count, renal function, ...
CD4+ T-lymphocyte count. CD4 count, median (IQR). 252 (92-401). 15 (8-50). 261 (102-405). p , 0.01. ... Thrombocyte count ,100 × 103cells/µL. 145 (7). 11/58 (19). 134/1,951 (7). 3.17 (1.61-6.26). ... Leukocyte count ,12 × 103 cells/µL. 1,189 (59). 12/53 (23). 50/1,893 (3). 10.79 (5.35-21.77). ...
CD4 Lymphocyte Count. MedlinePlus. November 30, 2020.. *Factors That Increase HIV Risk. CDC. April 21, 2021. ... As the CD4 count drops, usually the volume of HIV in the blood, known as the viral load, rises.. ... CD4 cell count drops from normal levels of 500-1,200 cells per cubic millimeter to 200 cells or fewer.. ... According to the CDC, if a persons CD4 count falls below a certain level or a person develops one of these infections or ...
CD4 Lymphocyte Count. EN. dc.subject. Enzyme-Linked Immunosorbent Assay. EN. dc.subject. Hepatitis C. EN. ... The mean CD4 count was 229.2 [‎SD 199.5]‎ cells/mm[‎3]‎ and 78.6% had CD4 count , 350. TB may be an AIDS-defining illness in ...
CD4+ lymphocyte counts predict the duration of disease in patients infected with HIV. When the counts are greater than 150 ... With lower counts, however, the diarrhea may be chronic. Counts are typically less than 50 cells/μL in patients with either ... Villous atrophy with blunting, epithelial flattening, and an increase in lamina propria lymphocytes are seen in patients with ... T-cell deficiencies can be identified by examining lymphocyte numbers and subsets. [54] ...
At the time of the AIDS diagnosis, his CD4 lymphocyte count was less than 200/mm3; zidovudine therapy was begun, discontinued ... CD4 lymphocyte count less than 200/mm3). At this time, higher titers of virus may have been present in the dentists blood and ...
Categories: CD4 Lymphocyte Count Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
CD4+ lymphocyte counts predict the duration of disease in patients infected with HIV. When the counts are greater than 150 ... With lower counts, however, the diarrhea may be chronic. Counts are typically less than 50 cells/μL in patients with either ... Villous atrophy with blunting, epithelial flattening, and an increase in lamina propria lymphocytes are seen in patients with ... T-cell deficiencies can be identified by examining lymphocyte numbers and subsets. [54] ...
Lymphocyte subset T cells showed an absolute CD4 count of 3. HSV 1 and 2 IgG Ab were positive. Serum Iron and TIBC were low. ... Complete blood count showed low WBC of 3.2 x 103 U/L, low RBC of 291 x 103 U/L, low Hemoglobin of 9.5 g/dl, low Hematocrit of ...
Eosinophil (left panel) and lymphocyte (right panel) counts were determined in bronchoalveolar lavage fluid (BALF) 24h after ... CD4+ T cells differentiated into TH0 or TH2 cells for 24h. (j) Ifng mRNA analysis in WT or Nlrp3−/- Balb/c CD4+ T cells ... Figure 1: NLRP3 is expressed in CD4+ T cells and is essential for TH2 differentiation.. ... c) Ifng mRNA analysis in WT or Nlrp3−/- CD4+ T cells differentiated into TH1 or TH2 cells for 6 days. (d) Il4 mRNA analysis in ...
The decrease in CD4 T-cell counts and in the functional responsiveness of lymphocytes to mitogenic stimulation was dose- ... Although total leukocyte count remained unchanged, there was a decrease in the CD4 T/CD8 T-cell ratio as well as in the ... Combined MDMA and alcohol produced the greatest suppressive effect on CD4 T-cell count and PHA-stimulated lymphoproliferation. ... Alcohol consumption produced a decrease in T helper cells, B lymphocytes, and PHA-induced lymphocyte proliferation. ...
LBXCD4 - CD4 counts (cells/mm3). Variable Name: LBXCD4. SAS Label: CD4 counts (cells/mm3). English Text: CD4 counts (cells/mm3) ... Comparison of this method with CD4 counts calculated from CBC absolute lymph counts from fresh whole blood X CD4% from the ... LBXCD8 - CD8 counts (cells/mm3). Variable Name: LBXCD8. SAS Label: CD8 counts (cells/mm3). English Text: CD8 counts (cells/mm3) ... The absolute count of a full lymphocyte subset profile (CD3+, CD3+CD4+, CD3+CD8+, CD3-CD19+, CD3-CD16/56+) can be determined in ...
Local reference ranges for full blood count and CD4 lymphocyte count testing. SAMJ, S. Afr. med. j., Apr 2009, vol.99, no.4, p. ...
Fields of Study , cell biology , cells , blood cells , leukocytes , mononuclear leukocytes , lymphocytes , T-lymphocytes , CD4- ... T-lymphocytes , CD4-positive T-lymphocytes. Fields of Study , zoology , animal anatomy , body fluids , blood , blood cells , ... leukocytes , mononuclear leukocytes , lymphocytes , T-lymphocytes , CD4-positive T-lymphocytes. Animals, Livestock, One Health ... T-lymphocytes , CD4-positive T-lymphocytes. Fields of Study , zoology , animal anatomy , circulatory system , cardiovascular ...
Those with HIV infection were excluded if the T-helper lymphocytes CD4 positive count was , 250/mm3. We also excluded patients ...
Total luecocyte and lymphocyte count  Tcell subset assay-ratio inversion.Absolute CD4 cell count less than 200/cubic mm  ... Primary pathogenic mechanism-due to damage caused to the CD4 T lymphocytes  T4 cells decrease in number,CMI reduces  T4:T8 ... CD4 antigen-thus infect any cells bearing CD4 antigen on surface-primarily the CD4+ helper T cell  Others include B ... cocultivation of patients lymphocyte with uninfected lymphocyte in the presence of interluekin 2.viral replicatio detected by ...
... counts were not changed. Cytotoxic T-cell (CD8(+) CD4(-)) counts were increased 50% only by the highest dose. Natural killer ... Peripheral blood leucocyte and lymphocyte counts were decreased by approximately 30% in the two highest dose groups. The ... Total spleen cell, total T-cell (CD3(+)), helper T-cell (CD4(+)CD8(-)), B-cell (surface immunoglobulin(+)) and monocyte (MAC-3 ... and cell-mediated immune function evaluated utilizing natural killer cell activity and the mixed lymphocyte reaction were not ...
T-lymphocyte count ,200/200/mm3, or Neutrophilic granulocytopenia (neutrophil count ,1500/mm3), or hematologic malignancies or ... Serious diseases that affecting the immune system, such as: a human immunodeficiency virus (HIV) infection history, or CD4 + ...
... retinitis and mycobacterium-avium complex disease are usually seen in patients with profound reductions of CD4 counts. ... CD4+ T lymphocyte counts. In general, Kaposi sarcoma, herpes zoster ophthalmicus, candidiasis, and lymphoma are more common in ... 37] Elevated CD4+ T lymphocyte counts associated with immune recovery may lead to macular edema and epiretinal membrane. [34] ... Patients with low CD4+ T lymphocyte counts, positive blood CMV by PCR, and longer duration of AIDS are more likely to progress ...
CD4 Lymphocyte Count, Clindamycin, Drug Therapy, Combination, Female, Great Britain, Humans, Incidence, Lymphoma, AIDS-Related ... All patients were severely immunodeficient at the time of presentation with CD4 count ... All patients were severely immunodeficient at the time of presentation with CD4 count ", ... All patients were severely immunodeficient at the time of presentation with CD4 count ...
T cells analysis were defined as CD4+ (CD3+ CD4+ CD8−) and CD8+ (CD3+ CD4− CD8+) lymphocytes (Figure 4). ... staining and counting in Neubauer chamber. Obtained PBMC were submitted to surface molecules staining with fluorescent- ... B2 naïve lymphocytes (%), B2 naïve lymphocytes (cels/ml), B2 naïve TLR4+ lymphocytes (%), B2 naive TLR4+ lymphocytes (cells/ml ... subsets of B1 lymphocytes. The more protective response seems mediated by CD11b- B1 lymphocytes, while CD11b+ B1 lymphocytes at ...
... lymphocyte counts (LYPM), neutrophil counts (NEUT).. Flow cytometry. Polychromatic flow cytometry was performed to analyze CD4+ ... lymphocyte counts (LYMP, 1.1-3.4×109/L) and neutrophil counts (NEUT, 1.8-6.4×109/L) fluctuated within normal ranges. Comparing ... F and G) Hematological changes, including cell counts of WBC, LYMP and NEUT, as wells as the percentage of CD4+ T cells, CD8+ T ... T lymphocyte subsets including CD4+ T cells and CD8+ T cells maintained relatively stable during the primary infectious stage ( ...
CD4 Lymphocyte Count G4.170.107.595.500.150 G4.140.107.595.500.150 CD4-CD8 Ratio G4.170.107.595.500.150.160 G4.140.107.595. ... Lymphocyte Activation G12.425.747 G12.565 Lymphocyte Cooperation G4.299.540 G4.502 G12.425.749 G12.575 Lymphocyte Count G4.170. ... B-Lymphocyte G5.355.330.401 G5.344.401 G12.425.742.500 G12.500.274 G12.500.349.500 Gene Rearrangement, B-Lymphocyte, Heavy ... Cell Count G4.170 G4.140 Cell Cycle G4.299.134 G4.144 Cell Cycle Checkpoints G4.299.134.109 G4.144.109 Cell Death G4.299.139 ...
T-lymphocytes subsets in erythrocyte-lysed whole blood. When used with Trucountâ„¢ Tubes, absolute counts of these populations ... T-lymphocytes subsets in erythrocyte-lysed whole blood. When used with Trucountâ„¢ Tubes, absolute counts of these populations ... a suitably equipped flow cytometer to identify and determine the percentages and absolute counts of mature human T-lymphocytes ... a suitably equipped flow cytometer to identify and determine the percentages and absolute counts of mature human T-lymphocytes ...
CD4 Lymphocyte Count 10% * HIV Infections 9% * Electrocardiography 8% * Smoking 7% * Obesity 7% ...
In most studies to date, advanced maternal disease and low CD4 lymphocyte count have been associated with increased risk of ... In most studies to date, advanced maternal disease and low CD4 lymphocyte count have been associated with increased risk of ... In most studies to date, advanced maternal disease and low CD4 lymphocyte count have been associated with increased risk of ... In most studies to date, advanced maternal disease and low CD4 lymphocyte count have been associated with increased risk of ...
  • HIV attacks and destroys CD4 cells. (medlineplus.gov)
  • Left untreated, HIV infiltrates and destroys CD4 cells , impairing the immune system's ability to fight off infections and diseases. (everydayhealth.com)
  • A CD4 count is a blood test that measures the number of CD4 cells in a sample of your blood. (medlineplus.gov)
  • CD4 cells are a type of white blood cell. (medlineplus.gov)
  • They're also called CD4 T lymphocytes or "helper T cells. (medlineplus.gov)
  • Without treatment, HIV may destroy so many CD4 cells that your immune system will have trouble fighting off infections. (medlineplus.gov)
  • A CD4 count may be used with other tests to find out which type of immune cells are causing lymphoma. (medlineplus.gov)
  • CD4 results are usually given as a number of cells per cubic millimeter of blood. (medlineplus.gov)
  • A CD4 count of 200 or fewer cells per cubic millimeter means that you have AIDS. (medlineplus.gov)
  • Human immunodeficiency virus, or HIV, is a virus that attacks the body's immune system - specifically, white blood cells called CD4-positive (CD4+) T-helper cells. (everydayhealth.com)
  • Those cells, which are sometimes referred to as CD4 cells, T-helper cells, or T4 cells, play an important role in identifying pathogens that invade the body and in marshaling an immune response against them. (everydayhealth.com)
  • When the number of CD4 cells drops low enough, or certain infections related to an impaired immune system occur, a person may be diagnosed with the final stage of HIV infection: acquired immunodeficiency syndrome, or AIDS. (everydayhealth.com)
  • This procedure allows CDC to determine the distribution of CD4 cells in a random sample of HIV-positive individuals. (cdc.gov)
  • HIV infection is characterized by a decrease and, eventually, a depletion of CD4+ T-lymphocytes (helper T cells). (cdc.gov)
  • Using immunophenotyping, HIV-positive blood samples and age-matched controls were tested for the proportion of lymphocytes that are T cells, B cells, natural killer (NK) cells, CD4+ T cells (helper T cells), and CD8+ T cells (suppressor/inducer T cells). (cdc.gov)
  • We found that NLRP3 expression in CD4 + T cells specifically supported a T helper type 2 (T H 2) transcriptional program in a cell-intrinsic manner. (nature.com)
  • Figure 1: NLRP3 is expressed in CD4 + T cells and is essential for T H 2 differentiation. (nature.com)
  • Although total leukocyte count remained unchanged, there was a decrease in the CD4 T/CD8 T-cell ratio as well as in the percentage of mature T lymphocytes, probably because of a decrease in both the percentage and absolute number of T helper cells. (erowid.org)
  • Alcohol consumption produced a decrease in T helper cells, B lymphocytes, and PHA-induced lymphocyte proliferation. (erowid.org)
  • PATHOGENESIS  Transmitted mainly through sexual contact or through blood transfusion  Transmitted when the virus enters the blood or the tissues and come in contact with suitable host cells  Receptor for virus -CD4 antigen-thus infect any cells bearing CD4 antigen on surface-primarily the CD4+ helper T cell  Others include B lymphocytes,monocytes and macrophages such as specialised macrophages of lungs langerhan cells in dermis. (slideshare.net)
  • Acute infection with HIV causes nonspecific symptoms of viral infection and lymphadenopathy, followed by a minimally symptomatic phase during which CD4+ T lymphocyte counts decline from the normal values of 600 to 1500 cells/mm 3 . (aao.org)
  • These B1 cells were associated with CD4+ T lymphocytes at D1 and D30, while B2 classic lymphocytes at day 30 were related to left ventricular ejection fraction (LVEF). (portlandpress.com)
  • Median baseline CD4+ lymphocyte count was 116 cells/µl (interquartile range, IQR: 53-173). (who.int)
  • A CD4 count is used with a test called an HIV viral load test to see if HIV medicines are working. (medlineplus.gov)
  • If you are taking medicine for HIV, your provider may order regular CD4 counts with an HIV viral load test to see how well your medicines are working. (medlineplus.gov)
  • Other explanatory variables for all-cause mortality in this model included HIV viral load, CD4 + cell count, renal function, hemoglobin and albumin levels, HIV treatment era, employment status, existence of depressive symptoms, ever use of injection drugs, and tobacco smoking. (nih.gov)
  • Total spleen cell, total T-cell (CD3(+)), helper T-cell (CD4(+)CD8(-)), B-cell (surface immunoglobulin(+)) and monocyte (MAC-3(+)) counts were not changed. (cdc.gov)
  • BD Tritestâ„¢ CD3 fluorescein isothiocyanate (FITC)/CD4 phycoerythrin (PE)/CD45 peridinin chlorophyll protein (PerCP) is a three-color direct immunofluorescence reagent for use with a suitably equipped flow cytometer to identify and determine the percentages and absolute counts of mature human T-lymphocytes (CD3+) and helper/inducer (CD3+CD4+) T-lymphocytes subsets in erythrocyte-lysed whole blood. (bdbiosciences.com)
  • Clinical Applications of Flow Cytometry: Quality Assurance and Immunophenotyping of Lymphocytes: Approved Guideline. (bdbiosciences.com)
  • If you have AIDS, your CD4 count is so low that you may develop serious infections from viruses , bacteria , or fungi that usually don't cause problems in healthy people. (medlineplus.gov)
  • If you have HIV, a CD4 count can help your health care provider check your risk for serious infections. (medlineplus.gov)
  • CD4 counts can help monitor your risk for developing opportunistic infections or certain cancers. (medlineplus.gov)
  • HIV-1;HIV Infections;Acquired Immunodeficiency Syndrome;Antigens, CD;Antiretroviral Therapy, Highly Active;Immune System;Child;Anti-Retroviral Agents;Lymphocyte Activation;Lymphocyte Count;T-Lymphocytes;CD4 Lymphocyte Count;CD8-Positive. (musc.edu)
  • Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. (nature.com)
  • HIV infection can manifest in a variety of ways in and around the eyes, and these manifestations vary according to HIV disease severity, specifically, CD4+ T lymphocyte counts. (aao.org)
  • Ocular manifestations attributable to HIV infection vary according to CD4+ T lymphocyte counts. (aao.org)
  • The present study aimed to evaluate the role of subtypes of B lymphocytes and related cytokines in the infarcted mass and left ventricular ejection fraction obtained by cardiac magnetic resonance imaging performed after 30 days of STEMI. (portlandpress.com)
  • The unbalanced secretion of cytokines from inclusion criteria were: standard serological their lymphocytes [ 5,6 ]. (who.int)
  • Enumeration of CD4+ lymphocytes in HIV-positive participants and age-matched controls was performed on cryopreserved whole blood using the method reported by Fiebig et. (cdc.gov)
  • Total T lymphocytes and subset enumeration, B cell enumeration and NK cell enumeration, which includes percentages, absolute values per cu mm, T helper: T suppressor ratio. (fairview.org)
  • The decrease in CD4 T-cell counts and in the functional responsiveness of lymphocytes to mitogenic stimulation was dose-dependent. (erowid.org)
  • A CD4 count is mostly used to check the health of your immune system if you are infected with HIV (human immunodeficiency virus). (medlineplus.gov)
  • A CD4 count may also be used to help diagnose and monitor certain other conditions that affect your immune system. (medlineplus.gov)
  • If you have HIV , a low CD4 count means that HIV has weakened your immune system. (medlineplus.gov)
  • Humoral immune function as assessed by antibody- farm ing cell response and serum IgM titre to sheep erythrocytes, and cell-mediated immune function evaluated utilizing natural killer cell activity and the mixed lymphocyte reaction were not altered. (cdc.gov)
  • Cellular immune responses, which are known to play an important role in host defense against HIV, appear to be impaired in infants after exposure to HIV, especially those responses involving the development of cytotoxic lymphocytes. (elsevier.com)
  • Blood with low WBC and/or percentage of lymphocytes, clotted specimen, and specimens greater than 24 hours old. (fairview.org)
  • Combined MDMA and alcohol produced the greatest suppressive effect on CD4 T-cell count and PHA-stimulated lymphoproliferation. (erowid.org)
  • To analyse the white blood cell count (WBCC) and C-reactive protein (CRP) contribution to the diagnosis of AA in children.Methods. (bvsalud.org)
  • The CD4 cell counts were obtained by using the Becton Dickinson MultiTEST reagent in TrueCOUNT tubes (Becton Dickinson Immunocytometry Systems, San Jose, CA). Comparison of this method with CD4 counts calculated from CBC absolute lymph counts from fresh whole blood X CD4% from the frozen whole blood resulted in a correlation coefficient of 0.9872. (cdc.gov)
  • Without treatment, HIV can lead to a very low CD4 count, which means you have AIDS. (medlineplus.gov)
  • But labs may have different ways of describing "normal" CD4 counts. (medlineplus.gov)
  • Fourteen months post-transplantation and twelve months after treatment with daratumumab, our patient has a normal complete blood count and the anti-donor isohemagglutinins remain undetectable despite mixed lymphoid chimerism. (bvsalud.org)
  • Cytomegalovirus retinitis and mycobacterium-avium complex disease are usually seen in patients with profound reductions of CD4 counts. (aao.org)
  • In most studies to date, advanced maternal disease and low CD4 lymphocyte count have been associated with increased risk of vertical HIV transmission. (elsevier.com)
  • Surveillance case definitions enable public health officials to classify and count cases consistently across reporting jurisdictions. (cdc.gov)
  • In addition to HIV antibody testing in NHANES, whole-blood samples were collected and stored for future CD4 testing once the HIV status of the sample was known. (cdc.gov)
  • Peripheral blood leucocyte and lymphocyte counts were decreased by approximately 30% in the two highest dose groups. (cdc.gov)
  • You will probably be tested again every few months to see if your counts have changed since your first test. (medlineplus.gov)
  • So, your provider will usually look at a few test results over time to see if there's a trend in your CD4 counts. (medlineplus.gov)
  • When used with Trucountâ„¢ Tubes, absolute counts of these populations can be enumerated from a single tube. (bdbiosciences.com)
  • RÉSUMÉ Cette étude prospective a été menée dans six hôpitaux d'Edmonton (Canada) afin de déterminer les facteurs associés à l'obtention d'expectorations à des fins de mise en culture et les effets de celle-ci sur la prise en charge des patients atteints de pneumonie communautaire (PC). (who.int)
  • Le nombre moyen de CD4 était de 229,2 (écart type 199,5) cellules/mm3 et 78,6 % avaient moins de 350 CD4. (who.int)
  • CD4 counts may change even when your health has not changed. (medlineplus.gov)
  • Introduction : La prise en charge du paludisme est une urgence médicale qui dépend du diagnostic et en particulier de la parasitémie du patient. (bvsalud.org)
  • Les densités parasitaires ont été calculées de deux manières : densité parasitaire standard (DPS) en utilisant le nombre de globules blancs standard 6000 défini par l'OMS comme coefficient de correction et densité parasitaire Réelle (DPR) qui utilise le nombre réel des globules blancs par microlitre de sang du patient. (bvsalud.org)