Antigens, CD8
Antigens, CD3
CD40 Ligand
Antigens, CD40
Antigens, CD44
Antigens, CD34
Antigens, CD28
CD4-CD8 Ratio
Antigens, CD14
Antigens, CD38
CD4-Positive T-Lymphocytes
Antigens, CD1
Antigens, CD80
Antigens, CD2
Antigens, CD19
Antigens, CD86
Antigens, CD95
Antigens, CD5
Antigens, CD
Antigens, CD18
Antigens, CD56
Antigens, CD30
Antigens, CD24
Antigens, CD36
Antigens, CD9
Antigens, CD20
Antigens, CD7
Antigens, CD43
CD8-Positive T-Lymphocytes
Antigens, CD11
Antigens, CD47
Antigens, CD59
Antigens, CD70
Antigens, CD46
Antigens, CD11b
CD4 Lymphocyte Count
Antigens, CD57
Antigens, CD81
Antigens, CD137
CD30 Ligand
Antigens, CD31
Antigens, CD11c
Antigens, CD151
Antigens, CD55
Antigens, CD58
Antigens, CD63
Antigens, CD13
Antigens, CD11a
Antigens, CD147
Immunophenotyping
Antigens, CD82
Antigens, CD274
Antigens, CD146
Immunologic Memory
Dendritic Cells
Flow Cytometry
Antigens, Differentiation, T-Lymphocyte
Antigens, CD15
Antigens, CD79
T-Lymphocytes, Regulatory
Antigens, CD98
Receptors, Antigen, T-Cell
Antigens, CD164
Antigens, Differentiation
Mice, Transgenic
Antigens, CD53
B-Lymphocytes
Antigens, CD29
Cytokines
Interleukin-2 Receptor alpha Subunit
Thymus Gland
Interleukin-2
Receptors, Interleukin-2
Cytotoxicity, Immunologic
Epitopes, T-Lymphocyte
HIV-1
Killer Cells, Natural
Adoptive Transfer
T-Lymphocytes
Molecular Sequence Data
Forkhead Transcription Factors
HIV Infections
Lymphocyte Subsets
Antigens, Differentiation, Myelomonocytic
T-Lymphocytes, Cytotoxic
Antigen Presentation
Receptors, Antigen, T-Cell, alpha-beta
ADP-ribosyl Cyclase
Monocytes
Coculture Techniques
Clone Cells
Antigen-Presenting Cells
Lectins, C-Type
Interleukin-4
Mice, SCID
Amino Acid Sequence
Phenotype
Leukocytes, Mononuclear
Antigens, Differentiation, B-Lymphocyte
Cadmium
Immune Tolerance
Apoptosis
Lymph Nodes
Lymphocyte Depletion
Receptors, IgG
Up-Regulation
Th1 Cells
Lymphocyte Activation
RNA, Messenger
Interleukin-10
Antigens, Surface
CTLA-4 Antigen
Bone Marrow Cells
L-Selectin
Down-Regulation
Histocompatibility Antigens Class II
Jurkat Cells
Ligands
T-Lymphocyte Subsets
Gene Expression Regulation
Immunohistochemistry
Sialic Acid Binding Ig-like Lectin 2
Cell Movement
Fas Ligand Protein
Cell Division
Fetal Blood
Peptides
Receptors, Immunologic
T-Lymphocytes, Helper-Inducer
T-Lymphocytopenia, Idiopathic CD4-Positive
Macrophages
Reverse Transcriptase Polymerase Chain Reaction
Th2 Cells
Perforin
Tumor Cells, Cultured
Interleukin-7 Receptor alpha Subunit
Macrophage-1 Antigen
HLA-DR Antigens
Sialic Acid Binding Ig-like Lectin 3
Immunoconjugates
Tumor Necrosis Factor-alpha
Antigens, Neoplasm
Viral Load
Protein Binding
Mice, Inbred NOD
Antibodies, Blocking
Cell Lineage
Cell Communication
Histocompatibility Antigens Class I
Base Sequence
Interleukin-12
Immunity, Cellular
Membrane Proteins
Interleukin-15
Receptor-CD3 Complex, Antigen, T-Cell
B-Lymphocyte Subsets
Gene Expression
Disease Models, Animal
Glycoproteins
Receptors, Cell Surface
Transfection
Biological Markers
Receptors, Lymphocyte Homing
Enzyme-Linked Immunosorbent Assay
Adjuvants, Immunologic
Peptide Fragments
Antigens, CD98 Heavy Chain
Cell Differentiation
Pore Forming Cytotoxic Proteins
Mice, Knockout
Recombinant Fusion Proteins
Granzymes
Clonal Anergy
Lymphocytes
Lymphocyte Specific Protein Tyrosine Kinase p56(lck)
Lymphoid Tissue
GPI-Linked Proteins
Apyrase
NK Cell Lectin-Like Receptor Subfamily B
Interleukin-7
Cell Survival
HIV Envelope Protein gp120
Isoantigens
Receptors, Chemokine
Inflammation
Fas and Fas ligand interaction induces apoptosis in inflammatory myopathies: CD4+ T cells cause muscle cell injury directly in polymyositis. (1/810)
OBJECTIVE: To investigate the involvement of the Fas/Fas ligand (Fas/FasL) system in the inflammatory myopathies. METHODS: Frozen muscle sections obtained from 7 patients with polymyositis (PM), 4 patients with dermatomyositis (DM), and 3 controls were studied by immunochemistry. Apoptosis was detected by DNA electrophoresis and in situ labeling using the TUNEL method. RESULTS: Fas was detected on muscle fibers and infiltrating mononuclear cells (MNC) in 6 PM patients and 2 DM patients. FasL was expressed mainly on CD4+ T cells and some CD8+ T cells, and on macrophages surrounding Fas-positive muscles in 4 PM patients and 1 DM patient. In 3 of the 5 patients with FasL-positive MNC, the TUNEL method showed that both invaded myonuclei and MNC underwent apoptosis. Chromosomal DNA from the muscle tissue of these patients showed ladder formation. CONCLUSION: Fas/FasL is involved in muscle cell apoptosis in at least 2 of the inflammatory myopathies, PM and DM. Although CD8+-mediated cytotoxicity is thought to be the main mechanism of muscle injury in PM, our data suggest that CD4+ T cells also directly cause muscle cell damage. (+info)Dopamine beta-hydroxylase deficiency impairs cellular immunity. (2/810)
Norepinephrine, released from sympathetic neurons, and epinephrine, released from the adrenal medulla, participate in a number of physiological processes including those that facilitate adaptation to stressful conditions. The thymus, spleen, and lymph nodes are richly innervated by the sympathetic nervous system, and catecholamines are thought to modulate the immune response. However, the importance of this modulatory role in vivo remains uncertain. We addressed this question genetically by using mice that lack dopamine beta-hydroxylase (dbh-/- mice). dbh-/- mice cannot produce norepinephrine or epinephrine, but produce dopamine instead. When housed in specific pathogen-free conditions, dbh-/- mice had normal numbers of blood leukocytes, and normal T and B cell development and in vitro function. However, when challenged in vivo by infection with the intracellular pathogens Listeria monocytogenes or Mycobacterium tuberculosis, dbh-/- mice were more susceptible to infection, exhibited extreme thymic involution, and had impaired T cell function, including Th1 cytokine production. When immunized with trinitrophenyl-keyhole limpet hemocyanin, dbh-/- mice produced less Th1 cytokine-dependent-IgG2a antitrinitrophenyl antibody. These results indicate that physiological catecholamine production is not required for normal development of the immune system, but plays an important role in the modulation of T cell-mediated immunity to infection and immunization. (+info)HIV-1-specific CTL responses primed in vitro by blood-derived dendritic cells and Th1-biasing cytokines. (3/810)
Vaccine strategies designed to elicit strong cell-mediated immune responses to HIV Ags are likely to lead to protective immunity against HIV infection. Dendritic cells (DC) are the most potent APCs capable of priming both MHC class I- and II-restricted, Ag-specific T cell responses. Utilizing a system in which cultured DC from HIV-seronegative donors were used as APC to present HIV-1 Ags to autologous T cells in vitro, the strength and specificity of primary HIV-specific CTL responses generated to exogenous HIV-1 Nef protein as well as intracellularly expressed nef transgene product were investigated. DC expressing the nef gene were able to stimulate Nef-specific CTL, with T cells from several donors recognizing more than one epitope restricted by a single HLA molecule. Primary Nef-specific CTL responses were also generated in vitro using DC pulsed with Nef protein. T cells primed with Nef-expressing DC (via protein or transgene) were able to lyse MHC class I-matched target cells pulsed with defined Nef epitope peptides as well as newly identified peptide epitopes. The addition of Th1-biasing cytokines IL-12 or IFN-alpha, during priming with Nef-expressing DC, enhanced the Nef-specific CTL responses generated using either Ag-loading approach. These results suggest that this in vitro vaccine model may be useful in identifying immunogenic epitopes as vaccine targets and in evaluating the effects of cytokines and other adjuvants on Ag-specific T cell induction. Successful approaches may provide information important to the development of prophylactic HIV vaccines and are envisioned to be readily translated into clinical DC-based therapeutic vaccines for HIV-1. (+info)Secretion of beta-chemokines by bronchoalveolar lavage cells during primary infection of macaques inoculated with attenuated nef-deleted or pathogenic simian immunodeficiency virus strain mac251. (4/810)
Primary infection of macaques with simian immunodeficiency virus (SIV) as a model of human immunodeficiency virus (HIV) infection represents a unique opportunity to investigate early lentivirus-host interactions. In order to gain insight into immunopathogenic events taking place in the lung during lentiviral infection, we analysed lymphocyte expansion in the lung and chemokine secretion by mononuclear cells obtained by bronchoalveolar lavage (BALMCs) during primary infection by a pathogenic and a non-pathogenic SIV. Two groups of cynomolgus macaques were inoculated intravenously with a fully pathogenic isolate of SIVmac251 or with an attenuated, nef-deleted, molecular clone of SIVmac251. Spontaneous MIP-1alpha, MIP-1beta and RANTES production was assessed by ELISA in supernatants of short-term cultured BALMCs. Kinetics of haematological, virological and immunological parameters were investigated simultaneously. All 11 inoculated animals became infected. Monkeys inoculated with the nef-deleted SIV clone exhibited a significantly reduced plasma virus load and a less pronounced accumulation of lymphocytes in the lung compared to monkeys infected with the pathogenic SIVmac251 isolate. Compared to pre-infection levels, we observed an increase in the levels of RANTES, MIP1-alpha and MIP1-beta production in the two groups of monkeys, by the time of peak viraemia. Strikingly, a greater enhancement of RANTES and MIP-1alpha production was detected in monkeys infected with the attenuated virus. Given the potential influence of beta-chemokines on the immune response and virus replication, such results suggest that RANTES, MIP1-alpha and MIP1-beta could contribute to the singular features of the immune response elicited during infection of macaques with an attenuated SIV. (+info)Phenotypic analysis of lymphocytes and monocytes/macrophages in peripheral blood and bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. (5/810)
BACKGROUND: The granulomatous inflammation in sarcoidosis is driven by the interplay between T cells and macrophages. To gain a better understanding of this process the expression by these cells of cell surface activation markers, co-stimulatory molecules, and adhesion molecules was analysed. METHODS: CD4+ and CD8+ T lymphocytes from peripheral blood (PBL) or bronchoalveolar lavage (BAL) fluid, as well as paired peripheral blood monocytes and alveolar macrophages from 27 patients with sarcoidosis were analysed by flow cytometry. RESULTS: CD26, CD54, CD69, CD95, and gp240 were all overexpressed in T cells from BAL fluid compared with those from PBL in both the CD4+ and CD8+ subsets, while CD57 was overexpressed only in BAL CD4+ cells. In contrast, CD28 tended to be underexpressed in the BAL T cells. Monocyte/macrophage markers included CD11a, CD11b, CD11c, CD14, CD16, CD54, CD71, CD80 and CD86 and HLA class II. CD11a expression in alveolar macrophages (and peripheral blood monocytes) was increased in patients with active disease and correlated positively with the percentage of BAL lymphocytes. Expression of CD80 in macrophages correlated with the BAL CD4/CD8 ratio. CONCLUSIONS: Our data indicate substantial activation of both CD4+ and CD8+ lung T cells in sarcoidosis. There were also increased numbers of BAL lymphocytes whose phenotypic characteristics have earlier been associated with clonally expanded, replicatively senescent cells of the Th1 type. (+info)Postthymic development of CD28-CD8+ T cell subset: age-associated expansion and shift from memory to naive phenotype. (6/810)
During human aging, one of the major changes in the T cell repertoire is a dramatic expansion of T cells with the atypical CD28-CD8+ phenotype. In this study, we show that this increase is a consequence not only of an expansion in the CD28-CD8+ population but also of a decrease in the number of CD28+CD8+ T cells. The decrease in circulating CD28+CD8+ T cells is dramatically accelerated after the age of 50 and is not accompanied by an equivalent reduction in the CD28+CD8+ subset. Our findings confirm that aging leads to an accumulation of CD45RO+ T cells within the CD28+CD8+ subset as previously observed. Surprisingly, we found an increase in CD45RA+ expression with age in the CD28-CD8+ subset. Immune-phenotyping for activation markers, measurement of telomere DNA content, and cytokine production analysis indicate that the large majority of CD28-CD8+ T cells are Ag-experienced, despite their CD45RA+ phenotype. Our study further demonstrates that the poor proliferative response displayed by CD28-CD8+ T cells is not a consequence of telomere shortening. Also, analysis of cytokine production at the single cell level revealed that the proportions of IFN-gamma +, IL-4+, and IL-10+ T cells are considerably higher among the CD28-CD8+ than the CD28+CD8+ subset. In summary, these data explain the presence of CD45RA+ T cells in the elderly, shed light on the phylogenetic origin of CD28-CD8+ T cells, and suggest a role for these cells in the immune senescence process. (+info)The association between CD2+ peripheral blood lymphocyte subsets and the relapse of bladder cancer in prophylactically BCG-treated patients. (7/810)
We investigated the potential existence of differences in the distribution of T-lymphocyte subsets and in the proliferative response of these CD2+ cells to polyclonal mitogens in patients with transitional cell bladder carcinoma (SBTCC) treated with prophylactic intracavitary instillations of bacillus Calmette-Guerin (BCG) according to their clinical response to this treatment. Before BCG treatment, different subset distribution (CD8+ and CD3+ CD56+), activation antigen expression (CD3+ HLA- DR+) and proliferative response to mitogenic signals were found in CD2+ cells from SBTCC patients prophylactically treated with BCG who remained free of disease or those who had recurrence of tumour. Otherwise, the prophylactic intracavitary BCG instillations in SBTCC patients are associated with a transitory variation of T-lymphocyte subset distribution (CD4 and CD8) and activation antigens expression (CD25). (+info)T-cell insulitis found in anti-GAD65+ diabetes with residual beta-cell function. A case report. (8/810)
CASE HISTORY: We recently encountered a 65-year-old anti-GAD+ diabetic woman with residual beta-cell function who was proved to have T-cell insulitis. The proportion of CD4+ and CD8+ cells varied among individual islets, although CD4+ cells tended to be the predominant T-cell type in the islets examined. All of the islets examined still contained insulin, suggesting that beta-cell mass may have been preserved. DISCUSSION: It is well known that lymphocytic infiltration of pancreatic islets, a condition referred to as "insulitis," is seen in acute-onset type 1 diabetes at autopsy and in biopsy specimens. However, there have been no proven cases of insulitis in type 1 diabetes with residual beta-cell function. We believe that this is the first type 1 diabetic patient with residual beta-cell function who was proven to have T-cell insulitis. This novel evidence will contribute to the proper classification and treatment of diabetes and to a better understanding of the pathophysiology of type 1 diabetes. (+info)HIV (human immunodeficiency virus) infection is a condition in which the body is infected with HIV, a type of retrovirus that attacks the body's immune system. HIV infection can lead to AIDS (acquired immunodeficiency syndrome), a condition in which the immune system is severely damaged and the body is unable to fight off infections and diseases.
There are several ways that HIV can be transmitted, including:
1. Sexual contact with an infected person
2. Sharing of needles or other drug paraphernalia with an infected person
3. Mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Blood transfusions ( although this is rare in developed countries due to screening processes)
5. Organ transplantation (again, rare)
The symptoms of HIV infection can be mild at first and may not appear until several years after infection. These symptoms can include:
1. Fever
2. Fatigue
3. Swollen glands in the neck, armpits, and groin
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss
If left untreated, HIV infection can progress to AIDS, which is a life-threatening condition that can cause a wide range of symptoms, including:
1. Opportunistic infections (such as pneumocystis pneumonia)
2. Cancer (such as Kaposi's sarcoma)
3. Wasting syndrome
4. Neurological problems (such as dementia and seizures)
HIV infection is diagnosed through a combination of blood tests and physical examination. Treatment typically involves antiretroviral therapy (ART), which is a combination of medications that work together to suppress the virus and slow the progression of the disease.
Prevention methods for HIV infection include:
1. Safe sex practices, such as using condoms and dental dams
2. Avoiding sharing needles or other drug-injecting equipment
3. Avoiding mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Post-exposure prophylaxis (PEP), which is a short-term treatment that can prevent infection after potential exposure to the virus
5. Pre-exposure prophylaxis (PrEP), which is a daily medication that can prevent infection in people who are at high risk of being exposed to the virus.
It's important to note that HIV infection is manageable with proper treatment and care, and that people living with HIV can lead long and healthy lives. However, it's important to be aware of the risks and take steps to prevent transmission.
There are several possible causes of lymphopenia, including:
1. Viral infections: Many viral infections can cause lymphopenia, such as HIV/AIDS, hepatitis B and C, and influenza.
2. Bacterial infections: Some bacterial infections, such as tuberculosis and leprosy, can also cause lymphopenia.
3. Cancer: Certain types of cancer, such as Hodgkin's disease and non-Hodgkin's lymphoma, can cause lymphopenia by destroying lymphocytes.
4. Autoimmune disorders: Autoimmune disorders, such as rheumatoid arthritis and lupus, can cause lymphopenia by attacking the body's own tissues, including lymphocytes.
5. Radiation therapy: Radiation therapy can destroy lymphocytes and cause lymphopenia.
6. Medications: Certain medications, such as chemotherapy drugs and antibiotics, can cause lymphopenia as a side effect.
7. Genetic disorders: Some genetic disorders, such as X-linked lymphoproliferative disease, can cause lymphopenia by affecting the development or function of lymphocytes.
Symptoms of lymphopenia can include recurring infections, fatigue, and swollen lymph nodes. Treatment of lymphopenia depends on the underlying cause and may involve antibiotics, antiviral medications, or immunoglobulin replacement therapy. In some cases, a bone marrow transplant may be necessary.
Overall, lymphopenia is a condition that can have a significant impact on quality of life, and it is important to seek medical attention if symptoms persist or worsen over time. With proper diagnosis and treatment, many people with lymphopenia can experience improved health outcomes and a better quality of life.
1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.
2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.
3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.
4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.
5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.
6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.
7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.
8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.
9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.
10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.
There are several key features of inflammation:
1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.
Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.
There are several types of inflammation, including:
1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.
There are several ways to reduce inflammation, including:
1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.
It's important to note that chronic inflammation can lead to a range of health problems, including:
1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.
Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.
Examples of autoimmune diseases include:
1. Rheumatoid arthritis (RA): A condition where the immune system attacks the joints, leading to inflammation, pain, and joint damage.
2. Lupus: A condition where the immune system attacks various body parts, including the skin, joints, and organs.
3. Hashimoto's thyroiditis: A condition where the immune system attacks the thyroid gland, leading to hypothyroidism.
4. Multiple sclerosis (MS): A condition where the immune system attacks the protective covering of nerve fibers in the central nervous system, leading to communication problems between the brain and the rest of the body.
5. Type 1 diabetes: A condition where the immune system attacks the insulin-producing cells in the pancreas, leading to high blood sugar levels.
6. Guillain-Barré syndrome: A condition where the immune system attacks the nerves, leading to muscle weakness and paralysis.
7. Psoriasis: A condition where the immune system attacks the skin, leading to red, scaly patches.
8. Crohn's disease and ulcerative colitis: Conditions where the immune system attacks the digestive tract, leading to inflammation and damage to the gut.
9. Sjögren's syndrome: A condition where the immune system attacks the glands that produce tears and saliva, leading to dry eyes and mouth.
10. Vasculitis: A condition where the immune system attacks the blood vessels, leading to inflammation and damage to the blood vessels.
The symptoms of autoimmune diseases vary depending on the specific disease and the organs or tissues affected. Common symptoms include fatigue, fever, joint pain, skin rashes, and swollen lymph nodes. Treatment for autoimmune diseases typically involves medication to suppress the immune system and reduce inflammation, as well as lifestyle changes such as dietary changes and stress management techniques.
In LLCB, the B cells undergo a mutation that causes them to become cancerous and multiply rapidly. This can lead to an overproduction of these cells in the bone marrow, causing the bone marrow to become crowded and unable to produce healthy red blood cells, platelets, and white blood cells.
LLCB is typically a slow-growing cancer, and it can take years for symptoms to develop. However, as the cancer progresses, it can lead to a range of symptoms including fatigue, weakness, weight loss, fever, night sweats, and swollen lymph nodes.
LLCB is typically diagnosed through a combination of physical examination, blood tests, bone marrow biopsy, and imaging studies such as X-rays or CT scans. Treatment options for LLCB include chemotherapy, radiation therapy, and in some cases, stem cell transplantation.
Overall, while LLCB is a serious condition, it is typically slow-growing and can be managed with appropriate treatment. With current treatments, many people with LLCB can achieve long-term remission and a good quality of life.
There are several subtypes of lymphoma, B-cell, including:
1. Diffuse large B-cell lymphoma (DLBCL): This is the most common type of B-cell lymphoma and typically affects older adults.
2. Follicular lymphoma: This type of lymphoma grows slowly and often does not require treatment for several years.
3. Marginal zone lymphoma: This type of lymphoma develops in the marginal zone of the spleen or other lymphoid tissues.
4. Hodgkin lymphoma: This is a type of B-cell lymphoma that is characterized by the presence of Reed-Sternberg cells, which are abnormal cells that can be identified under a microscope.
The symptoms of lymphoma, B-cell can vary depending on the subtype and the location of the tumor. Common symptoms include swollen lymph nodes, fatigue, fever, night sweats, and weight loss.
Treatment for lymphoma, B-cell usually involves chemotherapy, which is a type of cancer treatment that uses drugs to kill cancer cells. Radiation therapy may also be used in some cases. In some cases, bone marrow or stem cell transplantation may be recommended.
Prognosis for lymphoma, B-cell depends on the subtype and the stage of the disease at the time of diagnosis. In general, the prognosis is good for patients with early-stage disease, but the cancer can be more difficult to treat if it has spread to other parts of the body.
Prevention of lymphoma, B-cell is not possible, as the exact cause of the disease is not known. However, avoiding exposure to certain risk factors, such as viral infections and pesticides, may help reduce the risk of developing the disease. Early detection and treatment can also improve outcomes for patients with lymphoma, B-cell.
Lymphoma, B-cell is a type of cancer that affects the immune system and can be treated with chemotherapy and other therapies. The prognosis varies depending on the subtype and stage of the disease at diagnosis. Prevention is not possible, but early detection and treatment can improve outcomes for patients with this condition.
Disease progression can be classified into several types based on the pattern of worsening:
1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.
Disease progression can be influenced by various factors, including:
1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.
Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.
Examples of acute diseases include:
1. Common cold and flu
2. Pneumonia and bronchitis
3. Appendicitis and other abdominal emergencies
4. Heart attacks and strokes
5. Asthma attacks and allergic reactions
6. Skin infections and cellulitis
7. Urinary tract infections
8. Sinusitis and meningitis
9. Gastroenteritis and food poisoning
10. Sprains, strains, and fractures.
Acute diseases can be treated effectively with antibiotics, medications, or other therapies. However, if left untreated, they can lead to chronic conditions or complications that may require long-term care. Therefore, it is important to seek medical attention promptly if symptoms persist or worsen over time.
Crohn disease can occur in any part of the GI tract, from the mouth to the anus, but it most commonly affects the ileum (the last portion of the small intestine) and the colon. The inflammation caused by Crohn disease can lead to the formation of scar tissue, which can cause narrowing or blockages in the intestines. This can lead to complications such as bowel obstruction or abscesses.
The exact cause of Crohn disease is not known, but it is believed to be an autoimmune disorder, meaning that the immune system mistakenly attacks healthy tissue in the GI tract. Genetic factors and environmental triggers such as smoking and diet also play a role in the development of the disease.
There is no cure for Crohn disease, but various treatments can help manage symptoms and prevent complications. These may include medications such as anti-inflammatory drugs, immunosuppressants, and biologics, as well as lifestyle changes such as dietary modifications and stress management techniques. In severe cases, surgery may be necessary to remove damaged portions of the GI tract.
Crohn disease can have a significant impact on quality of life, and it is important for individuals with the condition to work closely with their healthcare provider to manage their symptoms and prevent complications. With proper treatment and self-care, many people with Crohn disease are able to lead active and fulfilling lives.
The symptoms of LCM can vary depending on the severity of the infection, but they typically include fever, headache, neck stiffness, and sensitivity to light. In severe cases, LCM can cause meningitis, encephalitis (inflammation of the brain), and even death.
The diagnosis of LCM is based on a combination of clinical symptoms, laboratory tests, and imaging studies such as MRI or CT scans. Laboratory tests may include blood tests to detect the presence of antibodies against the virus, as well as tests to assess liver function and other organ systems.
Treatment of LCM typically involves supportive care, such as intravenous fluids, oxygen therapy, and pain management. Antiviral medications may also be used in some cases. In severe cases, hospitalization may be required to monitor and treat the patient.
Prevention of LCM primarily involves avoiding contact with infected rodents, particularly during pregnancy and childhood when the risk of infection is higher. Good hygiene practices, such as frequent handwashing, can also help reduce the risk of transmission. Vaccines are not available for LCM, but research is ongoing to develop one.
The prognosis for LCM varies depending on the severity of the infection and the promptness and effectiveness of treatment. In general, the outcome is good for patients with mild symptoms, but those with severe infections may experience long-term neurological problems or death.
The symptoms of AIDS can vary depending on the individual and the stage of the disease. Common symptoms include:
1. Fever
2. Fatigue
3. Swollen glands
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss
9. Memory loss and other neurological problems
10. Cancer and other opportunistic infections.
AIDS is diagnosed through blood tests that detect the presence of HIV antibodies or the virus itself. There is no cure for AIDS, but antiretroviral therapy (ART) can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis (PrEP), and avoiding sharing needles or other injection equipment.
In summary, Acquired Immunodeficiency Syndrome (AIDS) is a severe and life-threatening condition caused by the Human Immunodeficiency Virus (HIV). It is characterized by a severely weakened immune system, which makes it difficult to fight off infections and diseases. While there is no cure for AIDS, antiretroviral therapy can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis, and avoiding sharing needles or other injection equipment.
SAIDS was first identified in the 1980s in monkeys that were being used in research laboratories, and it has since been studied extensively as a model for HIV/AIDS research. Like HIV/AIDS, SAIDS is caused by the transmission of a virus from one animal to another through contact with infected bodily fluids, such as blood or semen.
The symptoms of SAIDS are similar to those of HIV/AIDS and include fever, fatigue, weight loss, and opportunistic infections. As the disease progresses, animals may also experience neurological symptoms, such as seizures and difficulty coordinating movements.
There is currently no cure for SAIDS, and treatment is focused on managing the symptoms and preventing complications. Research into the disease has led to a greater understanding of the immunopathogenesis of HIV/AIDS and has contributed to the development of new therapies for the disease.
SAIDS is important in medical research because it provides a valuable model for studying the immunopathogenesis of HIV/AIDS and for testing new therapies and vaccines. It also serves as a reminder of the importance of strict safety protocols when working with infectious agents, particularly in laboratory settings.
The symptoms of listeriosis can vary depending on the severity of the infection and the individual's overall health. Mild cases may present with flu-like symptoms, such as fever, headache, and muscle aches, while severe cases can lead to meningitis, encephalitis, and even death.
Diagnosis is typically made through a combination of physical examination, medical history, and laboratory tests, such as blood cultures or PCR (polymerase chain reaction) tests. Treatment typically involves antibiotics, and prompt treatment can significantly reduce the risk of serious complications and death.
Prevention measures include avoiding high-risk foods, such as soft cheeses and hot dogs, and maintaining good hygiene practices, such as washing hands and surfaces regularly. Vaccination against Listeria is not available, but efforts to improve food safety and sanitation can help reduce the risk of listeriosis outbreaks.
Overall, while listeriosis is a serious infection, prompt diagnosis and treatment can significantly improve outcomes for those affected.
* Peripheral T-cell lymphoma (PTCL): This is a rare type of T-cell lymphoma that can develop in the skin, lymph nodes, or other organs.
* Cutaneous T-cell lymphoma (CTCL): This is a type of PTCL that affects the skin and can cause lesions, rashes, and other skin changes.
* Anaplastic large cell lymphoma (ALCL): This is a rare subtype of PTCL that can develop in the lymph nodes, spleen, or bone marrow.
* Adult T-cell leukemia/lymphoma (ATLL): This is a rare and aggressive subtype of PTCL that is caused by the human T-lymphotropic virus type 1 (HTLV-1).
Symptoms of T-cell lymphoma can include:
* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Skin lesions or rashes
Treatment options for T-cell lymphoma depend on the subtype and stage of the cancer, but may include:
* Chemotherapy
* Radiation therapy
* Immunotherapy
* Targeted therapy
Prognosis for T-cell lymphoma varies depending on the subtype and stage of the cancer, but in general, the prognosis for PTCL is poorer than for other types of non-Hodgkin lymphoma. However, with prompt and appropriate treatment, many people with T-cell lymphoma can achieve long-term remission or even be cured.
The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.
In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.
What is a Chronic Disease?
A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:
1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke
Impact of Chronic Diseases
The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.
Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.
Addressing Chronic Diseases
Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:
1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.
Conclusion
Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.
2. Our research focuses on identifying the genetic mutations that contribute to experimental melanoma and developing targeted therapies.
3. The patient's experimental melanoma had spread to her lungs and liver, so we recommended chemotherapy and immunotherapy treatments.
Viremia is a condition where the virus is present in the bloodstream, outside of infected cells or tissues. This can occur during the acute phase of an infection, when the virus is actively replicating and spreading throughout the body. Viremia can also be seen in chronic infections, where the virus may persist in the blood for longer periods of time.
In some cases, viremia can lead to the development of antibodies against the virus, which can help to neutralize it and prevent its spread. However, if the viremia is not controlled, it can cause serious complications, such as sepsis or organ damage.
Diagnosis of viremia typically involves laboratory tests, such as PCR (polymerase chain reaction) or ELISA (enzyme-linked immunosorbent assay), which can detect the presence of virus in the blood. Treatment of viremia depends on the underlying cause and may include antiviral medications, supportive care, and management of any related complications.
There are several types of melanoma, including:
1. Superficial spreading melanoma: This is the most common type of melanoma, accounting for about 70% of cases. It usually appears as a flat or slightly raised discolored patch on the skin.
2. Nodular melanoma: This type of melanoma is more aggressive and accounts for about 15% of cases. It typically appears as a raised bump on the skin, often with a darker color.
3. Acral lentiginous melanoma: This type of melanoma affects the palms of the hands, soles of the feet, or nail beds and accounts for about 5% of cases.
4. Lentigo maligna melanoma: This type of melanoma usually affects the face and is more common in older adults.
The risk factors for developing melanoma include:
1. Ultraviolet (UV) radiation exposure from the sun or tanning beds
2. Fair skin, light hair, and light eyes
3. A history of sunburns
4. Weakened immune system
5. Family history of melanoma
The symptoms of melanoma can vary depending on the type and location of the cancer. Common symptoms include:
1. Changes in the size, shape, or color of a mole
2. A new mole or growth on the skin
3. A spot or sore that bleeds or crusts over
4. Itching or pain on the skin
5. Redness or swelling around a mole
If melanoma is suspected, a biopsy will be performed to confirm the diagnosis. Treatment options for melanoma depend on the stage and location of the cancer and may include surgery, chemotherapy, radiation therapy, or a combination of these. Early detection and treatment are key to successful outcomes in melanoma cases.
In conclusion, melanoma is a type of skin cancer that can be deadly if not detected early. It is important to practice sun safety, perform regular self-exams, and seek medical attention if any suspicious changes are noticed on the skin. By being aware of the risk factors, symptoms, and treatment options for melanoma, individuals can take steps to protect themselves from this potentially deadly disease.
The most common type of colitis is ulcerative colitis, which affects the rectum and lower part of the colon. The symptoms of ulcerative colitis can include:
* Diarrhea (which may be bloody)
* Abdominal pain and cramping
* Rectal bleeding
* Weight loss
* Fever
* Loss of appetite
* Nausea and vomiting
Microscopic colitis is another type of colitis that is characterized by inflammation in the colon, but without visible ulcers or bleeding. The symptoms of microscopic colitis are similar to those of ulcerative colitis, but may be less severe.
Other types of colitis include:
* Infantile colitis: This is a rare condition that affects babies and young children, and is characterized by diarrhea, fever, and vomiting.
* Isomorphic colitis: This is a rare condition that affects the colon and rectum, and is characterized by inflammation and symptoms similar to ulcerative colitis.
* Radiation colitis: This is a condition that occurs after radiation therapy to the pelvic area, and is characterized by inflammation and symptoms similar to ulcerative colitis.
* Ischemic colitis: This is a condition where there is a reduction in blood flow to the colon, which can lead to inflammation and symptoms such as abdominal pain and diarrhea.
The diagnosis of colitis typically involves a combination of physical examination, medical history, and diagnostic tests such as:
* Colonoscopy: This is a test that uses a flexible tube with a camera on the end to visualize the inside of the colon and rectum.
* Endoscopy: This is a test that uses a flexible tube with a camera on the end to visualize the inside of the esophagus, stomach, and duodenum.
* Stool tests: These are tests that analyze stool samples for signs of inflammation or infection.
* Blood tests: These are tests that analyze blood samples for signs of inflammation or infection.
* Biopsy: This is a test that involves taking a small sample of tissue from the colon and examining it under a microscope for signs of inflammation or infection.
Treatment for colitis depends on the underlying cause, but may include medications such as:
* Aminosalicylates: These are medications that help to reduce inflammation in the colon and relieve symptoms such as diarrhea and abdominal pain. Examples include sulfasalazine (Azulfidine) and mesalamine (Asacol).
* Corticosteroids: These are medications that help to reduce inflammation in the body. They may be used short-term to control acute flares of colitis, or long-term to maintain remission. Examples include prednisone and hydrocortisone.
* Immunomodulators: These are medications that help to suppress the immune system and reduce inflammation. Examples include azathioprine (Imuran) and mercaptopurine (Purinethol).
* Biologics: These are medications that target specific proteins involved in the inflammatory response. Examples include infliximab (Remicade) and adalimumab (Humira).
In addition to medication, lifestyle changes such as dietary modifications and stress management techniques may also be helpful in managing colitis symptoms. Surgery may be necessary in some cases where the colitis is severe or persistent, and involves removing damaged portions of the colon and rectum.
It's important to note that colitis can increase the risk of developing colon cancer, so regular screening for colon cancer is recommended for people with chronic colitis. Additionally, people with colitis may be more susceptible to other health problems such as osteoporosis, osteopenia, and liver disease, so it's important to work closely with a healthcare provider to monitor for these conditions and take steps to prevent them.
The diagnosis of GVHD is based on a combination of clinical findings, laboratory tests, and biopsies. Treatment options include immunosuppressive drugs, corticosteroids, and in severe cases, stem cell transplantation reversal or donor lymphocyte infusion.
Prevention of GVHD includes selecting the right donor, using conditioning regimens that minimize damage to the recipient's bone marrow, and providing appropriate immunosuppression after transplantation. Early detection and management of GVHD are critical to prevent long-term complications and improve survival rates.
The disease is typically induced in laboratory animals such as mice or rats by immunizing them with myelin proteins, such as myelin basic protein (MBP) or proteolipid protein (PLP), emulsified in adjuvants. The resulting immune response leads to the production of autoantibodies and activated T cells that cross the blood-brain barrier and attack the CNS.
EAE is used as a model for MS because it shares many similarities with the human disease, including:
1. Demyelination: EAE induces demyelination of nerve fibers in the CNS, which is also a hallmark of MS.
2. Autoimmune response: The immune response in EAE is triggered by autoantigens, similar to MS.
3. Chronic course: EAE is a chronic disease with recurrent relapses, similar to MS.
4. Lesion distribution: EAE lesions are distributed throughout the CNS, including the cerebral cortex, cerebellum, brainstem, and spinal cord, which is also true for MS.
EAE has been used extensively in the study of MS to investigate the immunopathogenesis of the disease, to develop new diagnostic markers and treatments, and to test the efficacy of potential therapeutic agents.
HIV seropositivity is typically diagnosed through a blood test called an enzyme-linked immunosorbent assay (ELISA). This test detects the presence of antibodies against HIV in the blood by using specific proteins on the surface of the virus. If the test is positive, it means that the individual has been infected with HIV.
HIV seropositivity is an important diagnostic criterion for AIDS (Acquired Immune Deficiency Syndrome), which is a condition that develops when the immune system is severely damaged by HIV infection. AIDS is diagnosed based on a combination of symptoms and laboratory tests, including HIV seropositivity.
HIV seropositivity can be either primary (acute) or chronic. Primary HIV seropositivity occurs when an individual is first infected with HIV and their immune system produces antibodies against the virus. Chronic HIV seropositivity occurs when an individual has been living with HIV for a long time and their immune system has produced antibodies that remain in their bloodstream.
HIV seropositivity can have significant implications for an individual's health and quality of life, as well as their social and economic well-being. It is important for individuals who are HIV seropositive to receive appropriate medical care and support to manage their condition and prevent the transmission of HIV to others.
There are several symptoms of RA, including:
1. Joint pain and stiffness, especially in the hands and feet
2. Swollen and warm joints
3. Redness and tenderness in the affected areas
4. Fatigue, fever, and loss of appetite
5. Loss of range of motion in the affected joints
6. Firm bumps of tissue under the skin (rheumatoid nodules)
RA can be diagnosed through a combination of physical examination, medical history, blood tests, and imaging studies such as X-rays or ultrasound. Treatment typically involves a combination of medications, including nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biologic agents. Lifestyle modifications such as exercise and physical therapy can also be helpful in managing symptoms and improving quality of life.
There is no cure for RA, but early diagnosis and aggressive treatment can help to slow the progression of the disease and reduce symptoms. With proper management, many people with RA are able to lead active and fulfilling lives.
The primary symptoms of celiac disease include diarrhea, abdominal pain, fatigue, weight loss, and bloating. However, some people may not experience any symptoms at all, but can still develop complications if the disease is left untreated. These complications can include malnutrition, anemia, osteoporosis, and increased risk of other autoimmune disorders.
The exact cause of celiac disease is unknown, but it is believed to be triggered by a combination of genetic and environmental factors. The disease is more common in people with a family history of celiac disease or other autoimmune disorders. Diagnosis is typically made through a combination of blood tests and intestinal biopsy, and treatment involves a strict gluten-free diet.
Dietary management of celiac disease involves avoiding all sources of gluten, including wheat, barley, rye, and some processed foods that may contain hidden sources of these grains. In some cases, nutritional supplements may be necessary to ensure adequate intake of certain vitamins and minerals.
While there is no known cure for celiac disease, adherence to a strict gluten-free diet can effectively manage the condition and prevent long-term complications. With proper management, people with celiac disease can lead normal, healthy lives.
There are several subtypes of B-cell leukemia, including:
1. Chronic lymphocytic leukemia (CLL): This is the most common type of B-cell leukemia, and it typically affects older adults. CLL is a slow-growing cancer that can progress over time.
2. Acute lymphoblastic leukemia (ALL): This is a fast-growing and aggressive form of B-cell leukemia that can affect people of all ages. ALL is often treated with chemotherapy and sometimes with bone marrow transplantation.
3. Burkitt lymphoma: This is an aggressive form of B-cell leukemia that typically affects older adults in Africa and Asia. Burkitt lymphoma can be treated with chemotherapy and sometimes with bone marrow transplantation.
4. Hairy cell leukemia: This is a rare type of B-cell leukemia that is characterized by the presence of hair-like projections on the surface of cancer cells. Hairy cell leukemia can be treated with chemotherapy and sometimes with bone marrow transplantation.
The diagnosis of B-cell leukemia is based on a combination of physical examination, medical history, laboratory tests, and biopsies. Treatment options for B-cell leukemia include chemotherapy, bone marrow transplantation, and in some cases, targeted therapy with drugs that specifically target cancer cells. The prognosis for B-cell leukemia varies depending on the subtype of the disease and the patient's overall health.
The term "systemic" refers to the fact that the disease affects multiple organ systems, including the skin, joints, kidneys, lungs, and nervous system. LES is a complex condition, and its symptoms can vary widely depending on which organs are affected. Common symptoms include fatigue, fever, joint pain, rashes, and swelling in the extremities.
There are several subtypes of LES, including:
1. Systemic lupus erythematosus (SLE): This is the most common form of the disease, and it can affect anyone, regardless of age or gender.
2. Discoid lupus erythematosus (DLE): This subtype typically affects the skin, causing a red, scaly rash that does not go away.
3. Drug-induced lupus erythematosus: This form of the disease is caused by certain medications, and it usually resolves once the medication is stopped.
4. Neonatal lupus erythematosus: This rare condition affects newborn babies of mothers with SLE, and it can cause liver and heart problems.
There is no cure for LES, but treatment options are available to manage the symptoms and prevent flares. Treatment may include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, immunosuppressive medications, and antimalarial drugs. In severe cases, hospitalization may be necessary to monitor and treat the disease.
It is important for people with LES to work closely with their healthcare providers to manage their condition and prevent complications. With proper treatment and self-care, many people with LES can lead active and fulfilling lives.
CMV infections are more common in people with weakened immune systems, such as those with HIV/AIDS, cancer, or taking immunosuppressive drugs after an organ transplant. In these individuals, CMV can cause severe and life-threatening complications, such as pneumonia, retinitis (inflammation of the retina), and gastrointestinal disease.
In healthy individuals, CMV infections are usually mild and may not cause any symptoms at all. However, in some cases, CMV can cause a mononucleosis-like illness with fever, fatigue, and swollen lymph nodes.
CMV infections are diagnosed through a combination of physical examination, blood tests, and imaging studies such as CT scans or MRI. Treatment is generally not necessary for mild cases, but may include antiviral medications for more severe infections. Prevention strategies include avoiding close contact with individuals who have CMV, practicing good hygiene, and considering immunoprophylaxis (prevention of infection through the use of immune globulin) for high-risk individuals.
Overall, while CMV infections can be serious and life-threatening, they are relatively rare in healthy individuals and can often be treated effectively with supportive care and antiviral medications.
Examples of Immunologic Deficiency Syndromes include:
1. Primary Immunodeficiency Diseases (PIDDs): These are a group of genetic disorders that affect the immune system's ability to function properly. Examples include X-linked agammaglobulinemia, common variable immunodeficiency, and severe combined immunodeficiency.
2. Acquired Immunodeficiency Syndrome (AIDS): This is a condition that results from the human immunodeficiency virus (HIV) infection, which destroys CD4 cells, a type of immune cell that fights off infections.
3. Immune Thrombocytopenic Purpura (ITP): This is an autoimmune disorder that causes the immune system to attack and destroy platelets, which are blood cells that help the blood to clot.
4. Autoimmune Disorders: These are conditions in which the immune system mistakenly attacks and damages healthy cells and tissues in the body. Examples include rheumatoid arthritis, lupus, and multiple sclerosis.
5. Immunosuppressive Therapy-induced Immunodeficiency: This is a condition that occurs as a side effect of medications used to prevent rejection in organ transplant patients. These medications can suppress the immune system, increasing the risk of infections.
Symptoms of Immunologic Deficiency Syndromes can vary depending on the specific disorder and the severity of the immune system dysfunction. Common symptoms include recurrent infections, fatigue, fever, and swollen lymph nodes. Treatment options for these syndromes range from medications to suppress the immune system to surgery or bone marrow transplantation.
In summary, Immunologic Deficiency Syndromes are a group of disorders that result from dysfunction of the immune system, leading to recurrent infections and other symptoms. There are many different types of these syndromes, each with its own set of symptoms and treatment options.
Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.
Types of Neoplasms
There are many different types of neoplasms, including:
1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.
Causes and Risk Factors of Neoplasms
The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:
1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.
Signs and Symptoms of Neoplasms
The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:
1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.
Diagnosis and Treatment of Neoplasms
The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.
The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:
1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.
Prevention of Neoplasms
While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:
1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.
It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.
Symptoms of type 1 diabetes can include increased thirst and urination, blurred vision, fatigue, weight loss, and skin infections. If left untreated, type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, and blindness.
Type 1 diabetes is diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood glucose measurements and autoantibody tests. Treatment typically involves insulin therapy, which can be administered via injections or an insulin pump, as well as regular monitoring of blood glucose levels and appropriate lifestyle modifications such as a healthy diet and regular exercise.
There are several types of disease susceptibility, including:
1. Genetic predisposition: This refers to the inherent tendency of an individual to develop a particular disease due to their genetic makeup. For example, some families may have a higher risk of developing certain diseases such as cancer or heart disease due to inherited genetic mutations.
2. Environmental susceptibility: This refers to the increased risk of developing a disease due to exposure to environmental factors such as pollutants, toxins, or infectious agents. For example, someone who lives in an area with high levels of air pollution may be more susceptible to developing respiratory problems.
3. Lifestyle susceptibility: This refers to the increased risk of developing a disease due to unhealthy lifestyle choices such as smoking, lack of exercise, or poor diet. For example, someone who smokes and is overweight may be more susceptible to developing heart disease or lung cancer.
4. Immune system susceptibility: This refers to the increased risk of developing a disease due to an impaired immune system. For example, people with autoimmune disorders such as HIV/AIDS or rheumatoid arthritis may be more susceptible to opportunistic infections.
Understanding disease susceptibility can help healthcare providers identify individuals who are at risk of developing certain diseases and provide preventive measures or early intervention to reduce the risk of disease progression. Additionally, genetic testing can help identify individuals with a high risk of developing certain diseases, allowing for earlier diagnosis and treatment.
In summary, disease susceptibility refers to the predisposition of an individual to develop a particular disease or condition due to various factors such as genetics, environment, lifestyle choices, and immune system function. Understanding disease susceptibility can help healthcare providers identify individuals at risk and provide appropriate preventive measures or early intervention to reduce the risk of disease progression.
Crohn's disease can affect any part of the GI tract, from the mouth to the anus, and causes symptoms such as abdominal pain, diarrhea, fatigue, and weight loss. Ulcerative colitis primarily affects the colon and rectum and causes symptoms such as bloody stools, abdominal pain, and weight loss.
Both Crohn's disease and ulcerative colitis are chronic conditions, meaning they cannot be cured but can be managed with medication and lifestyle changes. Treatment options for IBD include anti-inflammatory medications, immunosuppressants, and biologics. In severe cases, surgery may be necessary to remove damaged portions of the GI tract.
There is no known cause of IBD, although genetics, environmental factors, and an abnormal immune response are thought to play a role. The condition can have a significant impact on quality of life, particularly if left untreated or poorly managed. Complications of IBD include malnutrition, osteoporosis, and increased risk of colon cancer.
Preventing and managing IBD requires a comprehensive approach that includes medication, dietary changes, stress management, and regular follow-up with a healthcare provider. With proper treatment and lifestyle modifications, many people with IBD are able to manage their symptoms and lead active, fulfilling lives.
There are several types of lymphoma, including:
1. Hodgkin lymphoma: This is a type of lymphoma that originates in the white blood cells called Reed-Sternberg cells. It is characterized by the presence of giant cells with multiple nucleoli.
2. Non-Hodgkin lymphoma (NHL): This is a type of lymphoma that does not meet the criteria for Hodgkin lymphoma. There are many subtypes of NHL, each with its own unique characteristics and behaviors.
3. Cutaneous lymphoma: This type of lymphoma affects the skin and can take several forms, including cutaneous B-cell lymphoma and cutaneous T-cell lymphoma.
4. Primary central nervous system (CNS) lymphoma: This is a rare type of lymphoma that develops in the brain or spinal cord.
5. Post-transplantation lymphoproliferative disorder (PTLD): This is a type of lymphoma that develops in people who have undergone an organ transplant, often as a result of immunosuppressive therapy.
The symptoms of lymphoma can vary depending on the type and location of the cancer. Some common symptoms include:
* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching
Lymphoma is diagnosed through a combination of physical examination, imaging tests (such as CT scans or PET scans), and biopsies. Treatment options for lymphoma depend on the type and stage of the cancer, and may include chemotherapy, radiation therapy, immunotherapy, or stem cell transplantation.
Overall, lymphoma is a complex and diverse group of cancers that can affect people of all ages and backgrounds. While it can be challenging to diagnose and treat, advances in medical technology and research have improved the outlook for many patients with lymphoma.
Also known as Burkitt's Lymphoma.
The symptoms of Arenaviridae infections can vary depending on the specific virus causing the infection, but they may include:
* Fever
* Headache
* Muscle pain
* Joint pain
* Sore throat
* Swollen lymph nodes
* Rash
* Seizures
* Meningitis
* Encephalitis (inflammation of the brain)
Some Arenaviridae infections can be transmitted to humans through contact with infected rodents or other animals, while others are spread by blood transfusions or organ transplantation. There is no specific treatment for Arenaviridae infections, and treatment is primarily focused on relieving symptoms and managing complications.
Examples of Arenaviridae infections include:
* Lymphocytic choriomeningitis (LCMV)
* Venezuelan equine encephalitis (VEE)
* Eastern equine encephalitis (EEE)
* Western equine encephalitis (WEE)
* Sabia virus infection
It's important to note that Arenaviridae infections can be severe and potentially life-threatening, so if you suspect you or someone else may have been infected, it's important to seek medical attention immediately.
Multiple myeloma is the second most common type of hematologic cancer after non-Hodgkin's lymphoma, accounting for approximately 1% of all cancer deaths worldwide. It is more common in older adults, with most patients being diagnosed over the age of 65.
The exact cause of multiple myeloma is not known, but it is believed to be linked to genetic mutations that occur in the plasma cells. There are several risk factors that have been associated with an increased risk of developing multiple myeloma, including:
1. Family history: Having a family history of multiple myeloma or other plasma cell disorders increases the risk of developing the disease.
2. Age: The risk of developing multiple myeloma increases with age, with most patients being diagnosed over the age of 65.
3. Race: African Americans are at higher risk of developing multiple myeloma than other races.
4. Obesity: Being overweight or obese may increase the risk of developing multiple myeloma.
5. Exposure to certain chemicals: Exposure to certain chemicals such as pesticides, solvents, and heavy metals has been linked to an increased risk of developing multiple myeloma.
The symptoms of multiple myeloma can vary depending on the severity of the disease and the organs affected. Common symptoms include:
1. Bone pain: Pain in the bones, particularly in the spine, ribs, or long bones, is a common symptom of multiple myeloma.
2. Fatigue: Feeling tired or weak is another common symptom of the disease.
3. Infections: Patients with multiple myeloma may be more susceptible to infections due to the impaired functioning of their immune system.
4. Bone fractures: Weakened bones can lead to an increased risk of fractures, particularly in the spine, hips, or ribs.
5. Kidney problems: Multiple myeloma can cause damage to the kidneys, leading to problems such as kidney failure or proteinuria (excess protein in the urine).
6. Anemia: A low red blood cell count can cause anemia, which can lead to fatigue, weakness, and shortness of breath.
7. Increased calcium levels: High levels of calcium in the blood can cause symptoms such as nausea, vomiting, constipation, and confusion.
8. Neurological problems: Multiple myeloma can cause neurological problems such as headaches, numbness or tingling in the arms and legs, and difficulty with coordination and balance.
The diagnosis of multiple myeloma typically involves a combination of physical examination, medical history, and laboratory tests. These may include:
1. Complete blood count (CBC): A CBC can help identify abnormalities in the numbers and characteristics of different types of blood cells, including red blood cells, white blood cells, and platelets.
2. Serum protein electrophoresis (SPEP): This test measures the levels of different proteins in the blood, including immunoglobulins (antibodies) and abnormal proteins produced by myeloma cells.
3. Urine protein electrophoresis (UPEP): This test measures the levels of different proteins in the urine.
4. Immunofixation: This test is used to identify the type of antibody produced by myeloma cells and to rule out other conditions that may cause similar symptoms.
5. Bone marrow biopsy: A bone marrow biopsy involves removing a sample of tissue from the bone marrow for examination under a microscope. This can help confirm the diagnosis of multiple myeloma and determine the extent of the disease.
6. Imaging tests: Imaging tests such as X-rays, CT scans, or MRI scans may be used to assess the extent of bone damage or other complications of multiple myeloma.
7. Genetic testing: Genetic testing may be used to identify specific genetic abnormalities that are associated with multiple myeloma and to monitor the response of the disease to treatment.
It's important to note that not all patients with MGUS or smoldering myeloma will develop multiple myeloma, and some patients with multiple myeloma may not have any symptoms at all. However, if you are experiencing any of the symptoms listed above or have a family history of multiple myeloma, it's important to talk to your doctor about your risk and any tests that may be appropriate for you.
There are several types of skin neoplasms, including:
1. Basal cell carcinoma (BCC): This is the most common type of skin cancer, and it usually appears as a small, fleshy bump or a flat, scaly patch. BCC is highly treatable, but if left untreated, it can grow and invade surrounding tissue.
2. Squamous cell carcinoma (SCC): This type of skin cancer is less common than BCC but more aggressive. It typically appears as a firm, flat, or raised bump on sun-exposed areas. SCC can spread to other parts of the body if left untreated.
3. Melanoma: This is the most serious type of skin cancer, accounting for only 1% of all skin neoplasms but responsible for the majority of skin cancer deaths. Melanoma can appear as a new or changing mole, and it's essential to recognize the ABCDE signs (Asymmetry, Border irregularity, Color variation, Diameter >6mm, Evolving size, shape, or color) to detect it early.
4. Sebaceous gland carcinoma: This rare type of skin cancer originates in the oil-producing glands of the skin and can appear as a firm, painless nodule on the forehead, nose, or other oily areas.
5. Merkel cell carcinoma: This is a rare and aggressive skin cancer that typically appears as a firm, shiny bump on the skin. It's more common in older adults and those with a history of sun exposure.
6. Cutaneous lymphoma: This type of cancer affects the immune system and can appear as a rash, nodules, or tumors on the skin.
7. Kaposi sarcoma: This is a rare type of skin cancer that affects people with weakened immune systems, such as those with HIV/AIDS. It typically appears as a flat, red or purple lesion on the skin.
While skin cancers are generally curable when detected early, it's important to be aware of your skin and notice any changes or unusual spots, especially if you have a history of sun exposure or other risk factors. If you suspect anything suspicious, see a dermatologist for an evaluation and potential biopsy. Remember, prevention is key to avoiding the harmful effects of UV radiation and reducing your risk of developing skin cancer.
Dermatitis, contact can be acute or chronic, depending on the severity and duration of the exposure. In acute cases, the symptoms may resolve within a few days after removing the offending substance. Chronic dermatitis, on the other hand, can persist for weeks or even months, and may require ongoing treatment to manage the symptoms.
The symptoms of contact dermatitis can vary depending on the individual and the severity of the exposure. Common symptoms include:
* Redness and inflammation of the skin
* Itching and burning sensations
* Swelling and blistering
* Cracks or fissures in the skin
* Difficulty healing or recurring infections
In severe cases, contact dermatitis can lead to complications such as:
* Infection with bacteria or fungi
* Scarring and disfigurement
* Emotional distress and anxiety
Diagnosis of contact dermatitis is typically made based on the patient's medical history and physical examination. Allergic patch testing may also be performed to identify specific allergens that are causing the condition.
Treatment for contact dermatitis usually involves avoiding the offending substance and using topical or oral medications to manage symptoms. In severe cases, systemic corticosteroids or immunosuppressants may be prescribed. Phototherapy and alternative therapies such as herbal remedies or acupuncture may also be considered.
Prevention of contact dermatitis involves identifying and avoiding substances that cause an allergic reaction or skin irritation. Individuals with a history of contact dermatitis should take precautions when handling new substances, and should be aware of the potential for cross-reactivity between different allergens.
Orthomyxoviridae infections are a group of viral infections caused by the Orthomyxoviridae family of viruses, which includes influenza A and B viruses, as well as other related viruses. These infections can affect both humans and animals and can cause a range of symptoms, from mild to severe.
The most common type of Orthomyxoviridae infection is seasonal influenza, which occurs when the virus is transmitted from person to person through the air or by contact with infected surfaces. Other types of Orthomyxoviridae infections include:
1. Pandemic influenza: This occurs when a new strain of the virus emerges and spreads quickly around the world, causing widespread illness and death. Examples of pandemic influenza include the Spanish flu of 1918 and the Asian flu of 1957.
2. Avian influenza: This occurs when birds are infected with the virus and can be transmitted to humans through close contact with infected birds or their droppings.
3. Swine influenza: This occurs when pigs are infected with the virus and can be transmitted to humans through close contact with infected pigs or their droppings.
4. H5N1 and H7N9: These are two specific types of bird flu viruses that have caused serious outbreaks in humans in recent years.
Symptoms of Orthomyxoviridae infections can include fever, cough, sore throat, runny nose, muscle aches, and fatigue. In severe cases, these infections can lead to pneumonia, bronchitis, and other respiratory complications, as well as hospitalization and even death.
Diagnosis of Orthomyxoviridae infections is typically made through a combination of physical examination, medical history, and laboratory tests, such as PCR (polymerase chain reaction) or viral culture. Treatment is generally focused on relieving symptoms and supporting the immune system, with antiviral medications may be used in severe cases.
Prevention of Orthomyxoviridae infections can include avoiding close contact with infected birds or pigs, wearing protective clothing and gear when handling animals, and practicing good hygiene such as washing hands frequently. Vaccines are also available for some species of birds and pigs to protect against these viruses.
Overall, Orthomyxoviridae is a family of viruses that can cause serious illness in humans and other animals, and it's important to take precautions to prevent exposure and spread of these viruses.
UC can be challenging to diagnose and treat, and there is no known cure. However, with proper management, it is possible for people with UC to experience long periods of remission and improve their quality of life. Treatment options include medications such as aminosalicylates, corticosteroids, and immunomodulators, as well as surgery in severe cases.
It's important for individuals with UC to work closely with their healthcare provider to develop a personalized treatment plan that takes into account their specific symptoms and needs. With the right treatment and support, many people with UC are able to manage their symptoms and lead active, fulfilling lives.
Herpesviridae infections are caused by the Herpesviridae family of viruses and can be transmitted through skin-to-skin contact, sexual contact, or from mother to child during pregnancy or childbirth. Symptoms of herpesviridae infections can vary depending on the type of virus and the individual infected, but may include fever, fatigue, muscle aches, and skin sores or rashes.
There is no cure for herpesviridae infections, but antiviral medications can help manage symptoms and reduce the risk of transmission to others. Good hygiene practices, such as washing hands regularly and avoiding close contact with those who are infected, can also help prevent the spread of these viruses.
Some common types of herpesviridae infections include:
* Herpes simplex virus (HSV) - Causes cold sores and genital herpes.
* Varicella-zoster virus (VZV) - Causes chickenpox and shingles.
* Human herpesvirus 8 (HHV-8) - Associated with certain types of cancer, such as Kaposi's sarcoma.
Vaccinia is most commonly associated with smallpox, which is caused by a similar virus and was eradicated in the late 1970s through widespread vaccination. However, there have been occasional outbreaks of vaccinia in the United States and other countries since then, often linked to laboratory accidents or deliberate releases of the virus.
The treatment of vaccinia typically involves supportive care, such as rest, hydration, and antipyretic medications to reduce fever. Antiviral medications may also be used in some cases. Prevention of the disease relies on avoiding contact with infected animals or people, and on following proper infection control practices in laboratory and healthcare settings.
Vaccinia is a serious viral infection that can have severe consequences if left untreated. It is important to seek medical attention immediately if symptoms persist or worsen over time.
Symptoms of EBV infection can vary widely, ranging from asymptomatic to severe, and may include:
* Fatigue
* Fever
* Sore throat
* Swollen lymph nodes in the neck and armpits
* Swollen liver or spleen
* Rash
* Headaches
* Muscle weakness
In some cases, EBV can lead to more serious complications such as infectious mononucleosis (IM), also known as glandular fever, which can cause:
* Enlarged liver and spleen
* Splenomegaly (enlargement of the spleen)
* Hepatomegaly (enlargement of the liver)
* Thrombocytopenia (low platelet count)
* Anemia (low red blood cell count)
* Leukopenia (low white blood cell count)
EBV is also associated with an increased risk of developing certain types of cancer, including Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma.
There is no specific treatment for EBV infections, and most cases resolve on their own within a few weeks. Antiviral medications may be prescribed in severe cases or to prevent complications. Rest, hydration, and over-the-counter pain relief medication can help alleviate symptoms.
There are several possible causes of lymphocytosis, including:
1. Infection: Lymphocytosis can be caused by a variety of infections, such as viral or bacterial infections.
2. Autoimmune disorders: Conditions such as rheumatoid arthritis, lupus, and multiple sclerosis can cause an abnormal increase in lymphocytes.
3. Cancer: Lymphocytosis can be a symptom of certain types of cancer, such as Hodgkin's disease and non-Hodgkin's lymphoma.
4. Reaction to medication: Certain medications, such as antibiotics and chemotherapy drugs, can cause lymphocytosis.
5. Genetic disorders: Certain genetic disorders, such as X-linked agammaglobulinemia, can cause lymphocytosis.
Symptoms of lymphocytosis may include swollen lymph nodes, fatigue, fever, and weight loss. Treatment depends on the underlying cause of the condition, and may involve antibiotics, chemotherapy, or other medications. In some cases, no treatment is necessary, as the condition may resolve on its own over time.
Examples of delayed hypersensitivity reactions include contact dermatitis (a skin reaction to an allergic substance), tuberculin reactivity (a reaction to the bacteria that cause tuberculosis), and sarcoidosis (a condition characterized by inflammation in various organs, including the lungs and lymph nodes).
Delayed hypersensitivity reactions are important in the diagnosis and management of allergic disorders and other immune-related conditions. They can be detected through a variety of tests, including skin prick testing, patch testing, and blood tests. Treatment for delayed hypersensitivity reactions depends on the underlying cause and may involve medications such as antihistamines, corticosteroids, or immunosuppressants.
The symptoms of MS can vary widely depending on the location and severity of the damage to the CNS. Common symptoms include:
* Weakness, numbness, or tingling in the limbs
* Fatigue
* Vision problems, such as blurred vision, double vision, or loss of vision
* Difficulty with balance and coordination
* Tremors or spasticity
* Memory and concentration problems
* Mood changes, such as depression or mood swings
* Bladder and bowel problems
There is no cure for MS, but various treatments can help manage the symptoms and slow the progression of the disease. These treatments include:
* Disease-modifying therapies (DMTs) - These medications are designed to reduce the frequency and severity of relapses, and they can also slow the progression of disability. Examples of DMTs include interferons, glatiramer acetate, natalizumab, fingolimod, dimethyl fumarate, teriflunomide, and alemtuzumab.
* Steroids - Corticosteroids can help reduce inflammation during relapses, but they are not a long-term solution.
* Pain management medications - Pain relievers, such as acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs), can help manage pain caused by MS.
* Muscle relaxants - These medications can help reduce spasticity and tremors.
* Physical therapy - Physical therapy can help improve mobility, balance, and strength.
* Occupational therapy - Occupational therapy can help with daily activities and assistive devices.
* Speech therapy - Speech therapy can help improve communication and swallowing difficulties.
* Psychological counseling - Counseling can help manage the emotional and psychological aspects of MS.
It's important to note that each person with MS is unique, and the best treatment plan will depend on the individual's specific symptoms, needs, and preferences. It's essential to work closely with a healthcare provider to find the most effective treatment plan.
There are several subtypes of NHL, including:
1. B-cell lymphomas (such as diffuse large B-cell lymphoma and follicular lymphoma)
2. T-cell lymphomas (such as peripheral T-cell lymphoma and mycosis fungoides)
3. Natural killer cell lymphomas (such as nasal NK/T-cell lymphoma)
4. Histiocyte-rich B-cell lymphoma
5. Primary mediastinal B-cell lymphoma
6. Mantle cell lymphoma
7. Waldenström macroglobulinemia
8. Lymphoplasmacytoid lymphoma
9. Myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN) related lymphoma
These subtypes can be further divided into other categories based on the specific characteristics of the cancer cells.
Symptoms of NHL can vary depending on the location and size of the tumor, but may include:
* Swollen lymph nodes in the neck, underarm, or groin
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching
* Abdominal pain
* Swollen spleen
Treatment for NHL typically involves a combination of chemotherapy, radiation therapy, and in some cases, targeted therapy or immunotherapy. The specific treatment plan will depend on the subtype of NHL, the stage of the cancer, and other individual factors.
Overall, NHL is a complex and diverse group of cancers that require specialized care from a team of medical professionals, including hematologists, oncologists, radiation therapists, and other support staff. With advances in technology and treatment options, many people with NHL can achieve long-term remission or a cure.
Types of experimental neoplasms include:
* Xenografts: tumors that are transplanted into animals from another species, often humans.
* Transgenic tumors: tumors that are created by introducing cancer-causing genes into an animal's genome.
* Chemically-induced tumors: tumors that are caused by exposure to certain chemicals or drugs.
The use of experimental neoplasms in research has led to significant advances in our understanding of cancer biology and the development of new treatments for the disease. However, the use of animals in cancer research is a controversial topic and alternatives to animal models are being developed and implemented.
The symptoms of lymphoma, T-cell, cutaneous can vary depending on the location and severity of the cancer, but may include:
* Red, scaly patches or lesions on the skin
* Itching, burning, or pain on the skin
* Swollen lymph nodes
* Fever
* Fatigue
Lymphoma, T-cell, cutaneous is a relatively rare type of cancer, and it can be difficult to diagnose. A doctor will typically perform a biopsy (removing a small sample of tissue from the affected area) to confirm the diagnosis. Treatment options may include:
* Topical medications (applied directly to the skin)
* Phototherapy (exposure to specific wavelengths of light)
* Chemotherapy (using drugs to kill cancer cells)
* Radiation therapy (using high-energy radiation to kill cancer cells)
* Targeted therapy (using drugs or other substances to target specific molecules on cancer cells)
Overall, the prognosis for lymphoma, T-cell, cutaneous is generally good, especially if the cancer is caught early and treated effectively. However, it can be a challenging condition to treat, and patients may experience significant discomfort and disfigurement.
DLBCL is characterized by the rapid growth of malignant B cells in the lymph nodes, spleen, bone marrow, and other organs. These cells can also spread to other parts of the body through the bloodstream or lymphatic system. The disease is often aggressive and can progress quickly without treatment.
The symptoms of DLBCL vary depending on the location and extent of the disease, but they may include:
* Swollen lymph nodes in the neck, underarm, or groin
* Fever
* Fatigue
* Night sweats
* Weight loss
* Abdominal pain or discomfort
* Itching
The diagnosis of DLBCL is based on a combination of physical examination findings, imaging studies (such as CT scans or PET scans), and biopsy results. Treatment typically involves a combination of chemotherapy, radiation therapy, and in some cases, immunotherapy or targeted therapy. The prognosis for DLBCL has improved significantly over the past few decades, with overall survival rates ranging from 60% to 80%, depending on the stage and other factors.
The symptoms of T-cell leukemia can vary depending on the severity of the disease, but they may include:
* Fatigue
* Weakness
* Frequent infections
* Easy bruising or bleeding
* Swollen lymph nodes
* Pain in the bones or joints
* Headaches
* Confusion or seizures (in severe cases)
T-cell leukemia is diagnosed through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment typically involves chemotherapy and/or radiation therapy to kill cancer cells and restore the body's normal production of blood cells. In some cases, bone marrow transplantation may be recommended.
The prognosis for T-cell leukemia varies depending on the patient's age and overall health, as well as the aggressiveness of the disease. However, with current treatments, the 5-year survival rate is around 70% for children and adolescents, and around 40% for adults.
It's important to note that T-cell leukemia is relatively rare compared to other types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL). However, it can be a very aggressive and difficult-to-treat form of cancer, and patients with T-cell leukemia often require intensive treatment and close follow-up care.
There are two main forms of TB:
1. Active TB: This is the form of the disease where the bacteria are actively growing and causing symptoms such as coughing, fever, chest pain, and fatigue. Active TB can be contagious and can spread to others if not treated properly.
2. Latent TB: This is the form of the disease where the bacteria are present in the body but are not actively growing or causing symptoms. People with latent TB do not feel sick and are not contagious, but they can still become sick with active TB if their immune system is weakened.
TB is a major public health concern, especially in developing countries where access to healthcare may be limited. The disease is diagnosed through a combination of physical examination, medical imaging, and laboratory tests such as skin tests or blood tests. Treatment for TB typically involves a course of antibiotics, which can be effective in curing the disease if taken properly. However, drug-resistant forms of TB have emerged in some parts of the world, making treatment more challenging.
Preventive measures against TB include:
1. Vaccination with BCG (Bacille Calmette-Guérin) vaccine, which can provide some protection against severe forms of the disease but not against latent TB.
2. Avoiding close contact with people who have active TB, especially if they are coughing or sneezing.
3. Practicing good hygiene, such as covering one's mouth when coughing or sneezing and regularly washing hands.
4. Getting regular screenings for TB if you are in a high-risk group, such as healthcare workers or people with weakened immune systems.
5. Avoiding sharing personal items such as towels, utensils, or drinking glasses with people who have active TB.
Overall, while TB is a serious disease that can be challenging to treat and prevent, with the right measures in place, it is possible to reduce its impact on public health and improve outcomes for those affected by the disease.
There are several different types of leukemia, including:
1. Acute Lymphoblastic Leukemia (ALL): This is the most common type of leukemia in children, but it can also occur in adults. It is characterized by an overproduction of immature white blood cells called lymphoblasts.
2. Acute Myeloid Leukemia (AML): This type of leukemia affects the bone marrow's ability to produce red blood cells, platelets, and other white blood cells. It can occur at any age but is most common in adults.
3. Chronic Lymphocytic Leukemia (CLL): This type of leukemia affects older adults and is characterized by the slow growth of abnormal white blood cells called lymphocytes.
4. Chronic Myeloid Leukemia (CML): This type of leukemia is caused by a genetic mutation in a gene called BCR-ABL. It can occur at any age but is most common in adults.
5. Hairy Cell Leukemia: This is a rare type of leukemia that affects older adults and is characterized by the presence of abnormal white blood cells called hairy cells.
6. Myelodysplastic Syndrome (MDS): This is a group of disorders that occur when the bone marrow is unable to produce healthy blood cells. It can lead to leukemia if left untreated.
Treatment for leukemia depends on the type and severity of the disease, but may include chemotherapy, radiation therapy, targeted therapy, or stem cell transplantation.
Hodgkin Disease can spread to other parts of the body through the lymphatic system, and it can affect people of all ages, although it is most common in young adults and teenagers. The symptoms of Hodgkin Disease can vary depending on the stage of the disease, but they may include swollen lymph nodes, fever, night sweats, fatigue, weight loss, and itching.
There are several types of Hodgkin Disease, including:
* Classical Hodgkin Disease: This is the most common type of Hodgkin Disease and is characterized by the presence of Reed-Sternberg cells.
* Nodular Lymphocytic predominant Hodgkin Disease: This type of Hodgkin Disease is characterized by the presence of nodules in the lymph nodes.
* Mixed Cellularity Hodgkin Disease: This type of Hodgkin Disease is characterized by a mixture of Reed-Sternberg cells and other immune cells.
Hodgkin Disease is usually diagnosed with a biopsy, which involves removing a sample of tissue from the affected lymph node or other area and examining it under a microscope for cancer cells. Treatment for Hodgkin Disease typically involves chemotherapy, radiation therapy, or a combination of both. In some cases, bone marrow or stem cell transplantation may be necessary.
The prognosis for Hodgkin Disease is generally good, especially if the disease is detected and treated early. According to the American Cancer Society, the 5-year survival rate for people with Hodgkin Disease is about 85%. However, the disease can sometimes recur after treatment, and the long-term effects of radiation therapy and chemotherapy can include infertility, heart problems, and an increased risk of secondary cancers.
Hodgkin Disease is a rare form of cancer that affects the immune system. It is most commonly diagnosed in young adults and is usually treatable with chemotherapy or radiation therapy. However, the disease can sometimes recur after treatment, and the long-term effects of treatment can include infertility, heart problems, and an increased risk of secondary cancers.
These proteins are essential for white blood cells to stick together and migrate through the blood vessels into tissues, where they can fight off infections. The symptoms of Leukocyte Adhesion Deficiency syndrome vary depending on which gene is mutated and the severity of the mutation.
Some of the common symptoms include recurrent or persistent infections, poor wound healing, delayed development of the skin and mucous membranes, and difficulty fighting off certain types of bacteria, viruses, and fungi. The diagnosis of Leukocyte Adhesion Deficiency syndrome is based on a combination of clinical findings, laboratory tests that measure the function of white blood cells, and genetic analysis that identifies mutations in one of the genes involved in leukocyte adhesion.
Treatment for Leukocyte Adhesion Deficiency syndrome usually involves antibiotics to prevent or treat infections, topical creams or ointments to promote wound healing, and occasionally immunoglobulin replacement therapy to boost the immune system.
Several types of Leukocyte Adhesion Deficiency syndrome exist, each caused by a mutation in a different gene involved in leukocyte adhesion. The most common form of this disorder is called LAMA2 deficiency or Hereditary Angioedema with Giant Lymph Node.
Overall, early diagnosis and appropriate treatment can help manage symptoms and prevent complications associated with Leukocyte Adhesion Deficiency syndrome.
Leukocyte adhesion deficiency (LAD) is a group of rare genetic disorders characterized by impaired leukocyte trafficking and immune dysfunction. The disorders are caused by mutations in genes encoding proteins involved in leukocyte adhesion and migration, such as integrins and chemokine receptors.
There are several types of LAD, each with distinct clinical features and symptoms. The most common form of the disorder is LAMA2 deficiency, which affects approximately 1 in 50,000 individuals worldwide. Other forms of LAD include CD1a and CD1b deficiencies, which are less common but can have overlapping clinical features with LAMA2 deficiency.
The primary symptom of LAD is recurrent skin infections, particularly in childhood. Patients may also experience respiratory infections, gastrointestinal infections, and abscesses. In addition, some patients with LAD may develop chronic inflammation and fibrosis, which can lead to severe complications such as renal failure or blindness.
The diagnosis of LAD is based on a combination of clinical findings, laboratory tests, and genetic analysis. Laboratory tests may include flow cytometry, which can assess leukocyte function and adhesion properties, and molecular genetic testing, which can identify mutations in genes encoding integrins or other adhesion molecules.
Treatment of LAD typically involves antibiotics for recurrent skin and soft tissue infections, as well as management of any underlying chronic inflammation or fibrosis. In some cases, bone marrow transplantation may be considered as a curative therapy.
Overall, LAD is a rare and complex disorder that requires careful diagnosis and management by a multidisciplinary team of healthcare professionals. With appropriate treatment, many patients with LAD can lead active and productive lives, although some may experience ongoing complications or lifelong immune dysfunction.
Examples of AROIs include:
1. Pneumocystis pneumonia (PCP): a type of pneumonia caused by the fungus Pneumocystis jirovecii.
2. Tuberculosis (TB): a bacterial infection that can affect the lungs, brain, or other organs.
3. Toxoplasmosis: an infection caused by the parasite Toxoplasma gondii that can affect the brain, eyes, and other organs.
4. Cryptococcosis: a fungal infection that can affect the lungs, brain, or skin.
5. Histoplasmosis: a fungal infection caused by Histoplasma capsulatum that can affect the lungs, skin, and other organs.
6. Aspergillosis: a fungal infection caused by Aspergillus species that can affect the lungs, sinuses, and other organs.
7. Candidiasis: a fungal infection caused by Candida species that can affect the mouth, throat, vagina, or skin.
8. Kaposi's sarcoma: a type of cancer that is caused by the human herpesvirus 8 (HHV-8) and can affect the skin and lymph nodes.
9. Wasting syndrome: a condition characterized by weight loss, fatigue, and diarrhea.
10. Opportunistic infections that can affect the gastrointestinal tract, such as cryptosporidiosis and isosporiasis.
AROIs are a major cause of morbidity and mortality in individuals with HIV/AIDS, and they can be prevented or treated with antimicrobial therapy, supportive care, and other interventions.
Thymoma can be broadly classified into two main types:
1. Benign thymoma: This type of thymoma is non-cancerous and does not spread to other parts of the body. It is usually small in size and may not cause any symptoms.
2. Malignant thymoma: This type of thymoma is cancerous and can spread to other parts of the body, including the lungs, liver, and bone marrow. Malignant thymomas are more aggressive than benign thymomas and can be life-threatening if not treated promptly.
The exact cause of thymoma is not known, but it is believed to arise from abnormal cell growth in the thymus gland. Some risk factors that may increase the likelihood of developing thymoma include:
1. Genetic mutations: Certain genetic mutations, such as those affecting the TREX1 gene, can increase the risk of developing thymoma.
2. Radiation exposure: Exposure to radiation, such as from radiation therapy, may increase the risk of developing thymoma.
3. Thymic hyperplasia: Enlargement of the thymus gland, known as thymic hyperplasia, may increase the risk of developing thymoma.
The symptoms of thymoma can vary depending on the size and location of the tumor. Some common symptoms include:
1. Chest pain or discomfort
2. Shortness of breath
3. Coughing
4. Fatigue
5. Weight loss
6. Fever
7. Night sweats
8. Pain in the arm or shoulder
Thymoma is diagnosed through a combination of imaging tests, such as computed tomography (CT) scans and magnetic resonance imaging (MRI), and biopsy, which involves removing a sample of tissue from the thymus gland for examination under a microscope. Treatment options for thymoma depend on the stage and aggressiveness of the tumor, and may include:
1. Surgery: Removing the tumor through surgery is often the first line of treatment for thymoma.
2. Radiation therapy: High-energy beams can be used to kill cancer cells and shrink the tumor.
3. Chemotherapy: Drugs can be used to kill cancer cells and shrink the tumor.
4. Targeted therapy: Drugs that target specific molecules involved in the growth and spread of cancer cells can be used to treat thymoma.
5. Immunotherapy: Treatments that use the body's immune system to fight cancer, such as checkpoint inhibitors, can be effective for some people with thymoma.
Overall, the prognosis for thymoma is generally good, with a 5-year survival rate of about 70% for people with localized disease. However, the prognosis can vary depending on the stage and aggressiveness of the tumor, as well as the effectiveness of treatment.
A parasitic disease caused by a protozoan of the genus Leishmania, which is transmitted to humans by the bite of an infected sandfly. The most common form of the disease is characterized by skin lesions, which may be painful and disfiguring.
Other forms of leishmaniasis include:
1. Visceral leishmaniasis (kala-azar): A severe and potentially fatal form of the disease that affects several internal organs, including the spleen, liver, and bone marrow.
2. Mucocutaneous leishmaniasis: A form of the disease characterized by skin lesions and mucosal involvement, such as nose ulcers and mouth sores.
3. Diffuse cutaneous leishmaniasis: A form of the disease characterized by widespread skin involvement, often with a diffuse, papular rash.
4. Recidivans leishmaniasis: A form of the disease characterized by repeated episodes of skin lesions, often triggered by exposure to sandflies.
Symptoms of cutaneous leishmaniasis may include:
* Skin lesions, which may be painful and disfiguring
* Swelling of the affected limb
* Fever
* Fatigue
* Weight loss
Diagnosis is made by identifying the parasite in a skin scraping or biopsy specimen. Treatment typically involves antiparasitic medications, such as pentavalent antimonials or amphotericin B.
Preventive measures include avoiding sandfly bites, wearing protective clothing and insect repellents, and using screens on windows and doors to prevent sandflies from entering homes.
There are several causes of hypergammaglobulinemia, including:
1. Chronic infections: Prolonged infections can cause an increase in the production of immunoglobulins to fight off the infection.
2. Autoimmune disorders: Conditions such as rheumatoid arthritis, lupus, and multiple sclerosis can cause the immune system to produce excessive amounts of antibodies.
3. Cancer: Some types of cancer, such as Hodgkin's disease and non-Hodgkin's lymphoma, can cause an increase in immunoglobulin production.
4. Genetic disorders: Certain genetic conditions, such as X-linked agammaglobulinemia, can lead to a deficiency or excess of immunoglobulins.
5. Medications: Certain medications, such as corticosteroids and chemotherapy drugs, can suppress the immune system and reduce the production of immunoglobulins.
Symptoms of hypergammaglobulinemia can include:
1. Infections: Recurring infections are a common symptom of hypergammaglobulinemia, as the excessive amount of antibodies can make it difficult for the body to fight off infections effectively.
2. Fatigue: Chronic infections and inflammation can cause fatigue and weakness.
3. Weight loss: Recurring infections and chronic inflammation can lead to weight loss and malnutrition.
4. Swollen lymph nodes: Enlarged lymph nodes are a common symptom of hypergammaglobulinemia, as the body tries to fight off infections.
5. Fever: Recurring fevers can be a symptom of hypergammaglobulinemia, as the body tries to fight off infections.
6. Night sweats: Excessive sweating at night can be a symptom of hypergammaglobulinemia.
7. Skin rashes: Certain types of skin rashes can be a symptom of hypergammaglobulinemia, such as a rash caused by allergic reactions to medications or infections.
8. Joint pain: Pain and stiffness in the joints can be a symptom of hypergammaglobulinemia, particularly if the excessive amount of antibodies is causing inflammation in the joints.
9. Headaches: Chronic headaches can be a symptom of hypergammaglobulinemia, particularly if the excessive amount of antibodies is causing inflammation in the brain or other parts of the body.
10. Swollen liver and spleen: Enlarged liver and spleen can be a symptom of hypergammaglobulinemia, as the body tries to filter out excess antibodies and fight off infections.
It is important to note that these symptoms can also be caused by other medical conditions, so it is essential to consult a healthcare professional for proper diagnosis and treatment. A healthcare professional may perform blood tests and other diagnostic procedures to determine the underlying cause of the symptoms and develop an appropriate treatment plan. Treatment for hypergammaglobulinemia typically involves addressing the underlying cause of the condition, such as infections, allergies, or autoimmune disorders, and may include medications to reduce inflammation and suppress the immune system.
The symptoms of FIV can be similar to those of HIV in humans, including weight loss, poor appetite, swollen lymph nodes, and chronic infections. However, FIV-infected cats may also experience neurological symptoms such as seizures, paralysis, and behavioral changes.
There is no cure for FIV, but antiretroviral medications can help manage the symptoms and slow the progression of the disease. Secondary infections and diseases can also be treated with appropriate medication.
Prevention of FIV involves avoiding exposure to infected saliva, typically through deep bite wounds or close contact with an infected cat. Adopting a cat from a shelter or breeder that tests for FIV and keeping your cat indoors can reduce the risk of infection. Vaccination against FIV is available but not considered effective.
The diagnosis of FIV is based on a combination of physical examination, medical history, and laboratory tests such as blood tests or PCR (polymerase chain reaction) tests to detect the virus. Confirmation of the diagnosis is typically made by measuring the level of antibodies against FIV in the cat's blood.
Treatment for FIV-infected cats involves managing the symptoms and preventing secondary infections. Antiretroviral medications may be prescribed to reduce the viral load and slow the progression of the disease. Supportive care such as antibiotics, anti-inflammatory drugs, and nutritional supplements may also be provided to manage symptoms and improve the cat's quality of life.
In summary, Feline Acquired Immunodeficiency Syndrome (AIDS) is a disease that affects cats caused by the Feline Immunodeficiency Virus (FIV). It is important to be aware of the risk factors and symptoms of FIV and seek veterinary care if you suspect your cat may have been infected. With proper diagnosis, treatment, and care, cats with FIV can live a happy and comfortable life for years.
People with SCID are extremely susceptible to infections, particularly those caused by viruses, and often develop symptoms shortly after birth. These may include diarrhea, vomiting, fever, and failure to gain weight or grow at the expected rate. Without treatment, SCID can lead to life-threatening infections and can be fatal within the first year of life.
Treatment for SCID typically involves bone marrow transplantation or enzyme replacement therapy. Bone marrow transplantation involves replacing the patient's faulty immune system with healthy cells from a donor, while enzyme replacement therapy involves replacing the missing or dysfunctional enzymes that cause the immune deficiency. Both of these treatments can help restore the patient's immune system and improve their quality of life.
In summary, severe combined immunodeficiency (SCID) is a rare genetic disorder that impairs the body's ability to fight infections and can be fatal without treatment. Treatment options include bone marrow transplantation and enzyme replacement therapy.
There are several types of dermatitis, including:
1. Atopic dermatitis: a chronic condition characterized by dry, itchy skin and a tendency to develop allergies.
2. Contact dermatitis: a localized reaction to an allergen or irritant that comes into contact with the skin.
3. Seborrheic dermatitis: a condition characterized by redness, itching, and flaking skin on the scalp, face, or body.
4. Psoriasis: a chronic condition characterized by thick, scaly patches on the skin.
5. Cutaneous lupus erythematosus: a chronic autoimmune disorder that can cause skin rashes and lesions.
6. Dermatitis herpetiformis: a rare condition characterized by itchy blisters or rashes on the skin.
Dermatitis can be diagnosed through a physical examination, medical history, and sometimes laboratory tests such as patch testing or biopsy. Treatment options for dermatitis depend on the cause and severity of the condition, but may include topical creams or ointments, oral medications, phototherapy, or lifestyle changes such as avoiding allergens or irritants.
Myeloid leukemia can be classified into several subtypes based on the type of cell involved and the degree of maturity of the abnormal cells. The most common types of myeloid leukemia include:
1. Acute Myeloid Leukemia (AML): This is the most aggressive form of myeloid leukemia, characterized by a rapid progression of immature cells that do not mature or differentiate into normal cells. AML can be further divided into several subtypes based on the presence of certain genetic mutations or chromosomal abnormalities.
2. Chronic Myeloid Leukemia (CML): This is a slower-growing form of myeloid leukemia, characterized by the presence of a genetic abnormality known as the Philadelphia chromosome. CML is typically treated with targeted therapies or bone marrow transplantation.
3. Myelodysplastic Syndrome (MDS): This is a group of disorders characterized by the impaired development of immature blood cells in the bone marrow. MDS can progress to AML if left untreated.
4. Chronic Myelomonocytic Leukemia (CMML): This is a rare form of myeloid leukemia that is characterized by the accumulation of immature monocytes in the blood and bone marrow. CMML can be treated with chemotherapy or bone marrow transplantation.
The symptoms of myeloid leukemia can vary depending on the subtype and severity of the disease. Common symptoms include fatigue, weakness, fever, night sweats, and weight loss. Diagnosis is typically made through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment options for myeloid leukemia can include chemotherapy, targeted therapies, bone marrow transplantation, and supportive care to manage symptoms and prevent complications. The prognosis for myeloid leukemia varies depending on the subtype of the disease and the patient's overall health. With current treatments, many patients with myeloid leukemia can achieve long-term remission or even be cured.
The term splenomegaly is used to describe any condition that results in an increase in the size of the spleen, regardless of the underlying cause. This can be caused by a variety of factors, such as infection, inflammation, cancer, or genetic disorders.
Splenomegaly can be diagnosed through a physical examination, where the doctor may feel the enlarged spleen during an abdominal palpation. Imaging tests, such as ultrasound, computed tomography (CT) scans, or magnetic resonance imaging (MRI), may also be used to confirm the diagnosis and evaluate the extent of the splenomegaly.
Treatment for splenomegaly depends on the underlying cause. For example, infections such as malaria or mononucleosis are treated with antibiotics, while cancerous conditions may require surgical intervention or chemotherapy. In some cases, the spleen may need to be removed, a procedure known as splenectomy.
In conclusion, splenomegaly is an abnormal enlargement of the spleen that can be caused by various factors and requires prompt medical attention for proper diagnosis and treatment.
Anaplastic large cell lymphoma (ALCL) is a rare subtype of non-Hodgkin's lymphoma that was first identified in 1985. It typically affects the skin, particularly the legs, and can present with symptoms such as swelling, redness, and itching. Less common sites include the lymph nodes, liver, spleen, bone marrow, or gastrointestinal tract.
Symptoms of ALCL may also include fever, night sweats, weight loss, fatigue, and swollen lymph nodes. The cancer cells are typically large and have an "anaplastic" appearance under a microscope, with prominent nucleoli and abundant cytoplasm.
Treatment for ALCL usually involves chemotherapy, radiation therapy, or a combination of both. In some cases, bone marrow or stem cell transplantation may be necessary. The prognosis for ALCL varies depending on the stage and location of the cancer, but overall it is considered to be a relatively rare and aggressive form of non-Hodgkin's lymphoma.
In summary, anaplastic large cell lymphoma (ALCL) is a rare and aggressive subtype of non-Hodgkin's lymphoma that primarily affects the skin, but can also involve other lymphoid tissues and organs. It is characterized by large, anaplastic cells with prominent nucleoli and abundant cytoplasm, and typically presents with symptoms such as swelling, redness, itching, fever, night sweats, weight loss, and fatigue. Treatment usually involves chemotherapy, radiation therapy, or a combination of both, and the prognosis varies depending on the stage and location of the cancer.
There are several types of hypersensitivity reactions, including:
1. Type I hypersensitivity: This is also known as immediate hypersensitivity and occurs within minutes to hours after exposure to the allergen. It is characterized by the release of histamine and other chemical mediators from immune cells, leading to symptoms such as hives, itching, swelling, and difficulty breathing. Examples of Type I hypersensitivity reactions include allergies to pollen, dust mites, or certain foods.
2. Type II hypersensitivity: This is also known as cytotoxic hypersensitivity and occurs within days to weeks after exposure to the allergen. It is characterized by the immune system producing antibodies against specific proteins on the surface of cells, leading to their destruction. Examples of Type II hypersensitivity reactions include blood transfusion reactions and serum sickness.
3. Type III hypersensitivity: This is also known as immune complex hypersensitivity and occurs when antigens bind to immune complexes, leading to the formation of deposits in tissues. Examples of Type III hypersensitivity reactions include rheumatoid arthritis and systemic lupus erythematosus.
4. Type IV hypersensitivity: This is also known as delayed-type hypersensitivity and occurs within weeks to months after exposure to the allergen. It is characterized by the activation of T cells, leading to inflammation and tissue damage. Examples of Type IV hypersensitivity reactions include contact dermatitis and toxic epidermal necrolysis.
The diagnosis of hypersensitivity often involves a combination of medical history, physical examination, laboratory tests, and elimination diets or challenges. Treatment depends on the specific type of hypersensitivity reaction and may include avoidance of the allergen, medications such as antihistamines or corticosteroids, and immunomodulatory therapy.
Psoriasis can affect any part of the body, including the scalp, elbows, knees, and lower back. The symptoms of psoriasis can vary in severity, and the condition can have a significant impact on quality of life. In addition to physical discomfort, psoriasis can also cause emotional distress and stigma.
There is no cure for psoriasis, but there are several treatment options available, including topical creams and ointments, light therapy, and systemic medications such as biologic drugs. With proper treatment, many people with psoriasis are able to manage their symptoms and improve their quality of life.
Psoriasis is relatively common, affecting approximately 2-3% of the global population, with a higher prevalence in Caucasians than in other races. It can occur at any age, but typically starts in the late teenage years or early adulthood. Psoriasis is often associated with other health conditions, such as diabetes, heart disease, and depression.
Overall, psoriasis is a complex and multifactorial condition that requires a comprehensive approach to management, including both physical and emotional support. With appropriate treatment and self-care, people with psoriasis can lead full and active lives.
Pathologic neovascularization can be seen in a variety of conditions, including cancer, diabetic retinopathy, and age-related macular degeneration. In cancer, for example, the formation of new blood vessels can help the tumor grow and spread to other parts of the body. In diabetic retinopathy, the growth of new blood vessels in the retina can cause vision loss and other complications.
There are several different types of pathologic neovascularization, including:
* Angiosarcoma: a type of cancer that arises from the cells lining blood vessels
* Hemangiomas: benign tumors that are composed of blood vessels
* Cavernous malformations: abnormal collections of blood vessels in the brain or other parts of the body
* Pyogenic granulomas: inflammatory lesions that can form in response to trauma or infection.
The diagnosis of pathologic neovascularization is typically made through a combination of physical examination, imaging studies (such as ultrasound, CT scans, or MRI), and biopsy. Treatment options vary depending on the underlying cause of the condition, but may include medications, surgery, or radiation therapy.
In summary, pathologic neovascularization is a process that occurs in response to injury or disease, and it can lead to serious complications. It is important for healthcare professionals to be aware of this condition and its various forms in order to provide appropriate diagnosis and treatment.
The symptoms of PRE-B-ALL can include fever, fatigue, night sweats, weight loss, and swollen lymph nodes. The cancer can also spread to other parts of the body, such as the central nervous system, spleen, and bones.
PRE-B-ALL is most commonly seen in children, but it can also occur in adults. It is a rare cancer, accounting for only about 5% of all childhood leukemias and less than 1% of all adult leukemias.
The exact cause of PRE-B-ALL is not known, but it is believed to be linked to genetic mutations that occur during fetal development or early childhood. Some risk factors that may increase the likelihood of developing PRE-B-ALL include:
1. Genetic disorders, such as Down syndrome or Fanconi anemia.
2. Exposure to radiation or certain chemicals during pregnancy or early childhood.
3. Infections, such as HIV or Epstein-Barr virus.
4. Family history of PRE-B-ALL or other blood cancers.
To diagnose PRE-B-ALL, a bone marrow biopsy and aspiration are typically performed to collect a sample of cells for analysis. Additional tests, such as flow cytometry, immunophenotyping, and cytogenetic analysis, may also be conducted to confirm the diagnosis and identify any specific genetic abnormalities.
Treatment for PRE-B-ALL usually involves a combination of chemotherapy and/or bone marrow transplantation. The prognosis for PRE-B-ALL varies depending on the patient's age, overall health, and the specific genetic abnormalities present in the cancer cells. With current treatments, the 5-year survival rate for PRE-B-ALL is approximately 70-80%. However, the disease can sometimes relapse, and patients may require ongoing monitoring and treatment to prevent relapse and manage any long-term complications.
AML is a fast-growing and aggressive form of leukemia that can spread to other parts of the body through the bloodstream. It is most commonly seen in adults over the age of 60, but it can also occur in children.
There are several subtypes of AML, including:
1. Acute promyelocytic leukemia (APL): This is a subtype of AML that is characterized by the presence of a specific genetic abnormality called the PML-RARA fusion gene. It is usually responsive to treatment with chemotherapy and has a good prognosis.
2. Acute myeloid leukemia, not otherwise specified (NOS): This is the most common subtype of AML and does not have any specific genetic abnormalities. It can be more difficult to treat and has a poorer prognosis than other subtypes.
3. Chronic myelomonocytic leukemia (CMML): This is a subtype of AML that is characterized by the presence of too many immature white blood cells called monocytes in the blood and bone marrow. It can progress slowly over time and may require ongoing treatment.
4. Juvenile myeloid leukemia (JMML): This is a rare subtype of AML that occurs in children under the age of 18. It is characterized by the presence of too many immature white blood cells called blasts in the blood and bone marrow.
The symptoms of AML can vary depending on the subtype and the severity of the disease, but they may include:
* Fatigue
* Weakness
* Shortness of breath
* Pale skin
* Easy bruising or bleeding
* Swollen lymph nodes, liver, or spleen
* Bone pain
* Headache
* Confusion or seizures
AML is diagnosed through a combination of physical examination, medical history, and diagnostic tests such as:
1. Complete blood count (CBC): This test measures the number and types of cells in the blood, including red blood cells, white blood cells, and platelets.
2. Bone marrow biopsy: This test involves removing a small sample of bone marrow tissue from the hipbone or breastbone to examine under a microscope for signs of leukemia cells.
3. Genetic testing: This test can help identify specific genetic abnormalities that are associated with AML.
4. Immunophenotyping: This test uses antibodies to identify the surface proteins on leukemia cells, which can help diagnose the subtype of AML.
5. Cytogenetics: This test involves staining the bone marrow cells with dyes to look for specific changes in the chromosomes that are associated with AML.
Treatment for AML typically involves a combination of chemotherapy, targeted therapy, and in some cases, bone marrow transplantation. The specific treatment plan will depend on the subtype of AML, the patient's age and overall health, and other factors. Some common treatments for AML include:
1. Chemotherapy: This involves using drugs to kill cancer cells. The most commonly used chemotherapy drugs for AML are cytarabine (Ara-C) and anthracyclines such as daunorubicin (DaunoXome) and idarubicin (Idamycin).
2. Targeted therapy: This involves using drugs that specifically target the genetic abnormalities that are causing the cancer. Examples of targeted therapies used for AML include midostaurin (Rydapt) and gilteritinib (Xospata).
3. Bone marrow transplantation: This involves replacing the diseased bone marrow with healthy bone marrow from a donor. This is typically done after high-dose chemotherapy to destroy the cancer cells.
4. Supportive care: This includes treatments to manage symptoms and side effects of the disease and its treatment, such as anemia, infection, and bleeding. Examples of supportive care for AML include blood transfusions, antibiotics, and platelet transfusions.
5. Clinical trials: These are research studies that involve testing new treatments for AML. Participating in a clinical trial may give patients access to innovative therapies that are not yet widely available.
It's important to note that the treatment plan for AML is highly individualized, and the specific treatments used will depend on the patient's age, overall health, and other factors. Patients should work closely with their healthcare team to determine the best course of treatment for their specific needs.
Neoplastic metastasis can occur in any type of cancer but are more common in solid tumors such as carcinomas (breast, lung, colon). It is important for cancer diagnosis and prognosis because metastasis indicates that the cancer has spread beyond its original site and may be more difficult to treat.
Metastases can appear at any distant location but commonly found sites include the liver, lungs, bones, brain, and lymph nodes. The presence of metastases indicates a higher stage of cancer which is associated with lower survival rates compared to localized cancer.
There are different types of Breast Neoplasms such as:
1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.
2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.
3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.
4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.
5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.
Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.
Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.
It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.
The symptoms of infectious mononucleosis can vary in severity but typically include:
* Fatigue
* Fever
* Sore throat
* Swollen lymph nodes in the neck and armpits
* Enlarged spleen
* Headache
* Muscle weakness
* Rash
* Swollen liver or spleen
Infectious mononucleosis is usually diagnosed through a combination of physical examination, blood tests, and other laboratory tests. Treatment focuses on relieving symptoms and allowing the body to fight the infection on its own.
Prognosis for infectious mononucleosis is generally good, but it can take several weeks to recover fully. Complications are rare but can include inflammation of the spleen, liver disease, and a condition called splenomegaly (enlargement of the spleen).
Prevention includes avoiding close contact with people who have mononucleosis, washing hands frequently, and not sharing eating or drinking utensils. There is no vaccine available to protect against infectious mononucleosis.
The condition typically affects older adults and is more common in men than women. The exact cause of Sezary syndrome is not known, but it is believed to be linked to genetic mutations and environmental factors.
Symptoms of Sezary syndrome can include:
* Skin rashes, lesions, or nodules
* Itching, redness, and dryness of the skin
* Fatigue
* Fever
* Weight loss
* Swollen lymph nodes
* Enlarged spleen
Sezary syndrome is diagnosed through a combination of physical examination, medical history, and laboratory tests such as biopsies, blood tests, and imaging studies. Treatment options for Sezary syndrome include:
* Chemotherapy
* Radiation therapy
* Phototherapy
* Targeted therapy
Overall, Sezary syndrome is a rare and aggressive form of CTCL that can have severe symptoms and affect multiple organs. Early diagnosis and treatment are essential to improve outcomes for patients with this condition.
The symptoms of CVID can vary from person to person and may include:
1. Frequent or recurring infections, such as sinus infections, ear infections, and pneumonia.
2. Poor response to vaccines.
3. Delayed growth and development in children.
4. Autoimmune disorders, such as thyroiditis or arthritis.
5. Increased risk of developing certain types of cancer, such as lymphoma.
CVID is caused by mutations in several genes that are involved in the immune system. These genes play a role in the development and function of immune cells, such as T cells and B cells. The exact cause of CVID is often not known, but it can be inherited or acquired through genetic mutations.
There is no cure for CVID, but treatment can help manage the symptoms and prevent complications. Treatment typically involves antibiotics to fight off infections, immunoglobulin replacement therapy to boost the immune system, and medication to manage autoimmune disorders. In some cases, a bone marrow transplant may be recommended.
The prognosis for CVID varies depending on the severity of the disorder and the presence of any complications. With proper treatment, many people with CVID can lead normal lives and have a good quality of life. However, some individuals may experience ongoing health problems and a higher risk of developing certain types of cancer.
Adult T-cell leukemia/lymphoma (ATLL) is a rare type of cancer that affects the immune system. It is caused by the human T-lymphotropic virus type 1 (HTLV-1), which is transmitted through breastfeeding or blood transfusions. ATLL typically affects adults and can cause a range of symptoms, including fever, fatigue, weight loss, and swollen lymph nodes.
If you suspect that you or someone you know may have ATLL, it is important to seek medical attention as soon as possible. A healthcare provider will perform a physical examination and order diagnostic tests to determine if HTLV-1 is present in the body. Diagnostic tests for ATLL may include blood tests, imaging studies, and biopsies.
There are several treatment options available for ATLL, including chemotherapy, radiation therapy, and bone marrow transplantation. The choice of treatment will depend on the stage and severity of the disease, as well as the patient's overall health. In some cases, a combination of treatments may be used to achieve the best possible outcome.
Unfortunately, the prognosis for ATLL is poor, with a five-year survival rate of less than 30%. However, early detection and treatment can improve the chances of survival. It is important to note that there is currently no cure for ATLL, but ongoing research is exploring new treatments and therapies to improve outcomes for patients with this disease.
In conclusion, ATLL is a rare and aggressive form of cancer that affects the immune system. It is caused by the HTLV-1 virus and can progress slowly over several years before symptoms appear. If you suspect that you or someone you know may have ATLL, it is important to seek medical attention as soon as possible for proper diagnosis and treatment. While the prognosis is poor, early detection and treatment can improve survival rates. Ongoing research is exploring new treatments and therapies to improve outcomes for patients with ATLL.
Explanation: Genetic predisposition to disease is influenced by multiple factors, including the presence of inherited genetic mutations or variations, environmental factors, and lifestyle choices. The likelihood of developing a particular disease can be increased by inherited genetic mutations that affect the functioning of specific genes or biological pathways. For example, inherited mutations in the BRCA1 and BRCA2 genes increase the risk of developing breast and ovarian cancer.
The expression of genetic predisposition to disease can vary widely, and not all individuals with a genetic predisposition will develop the disease. Additionally, many factors can influence the likelihood of developing a particular disease, such as environmental exposures, lifestyle choices, and other health conditions.
Inheritance patterns: Genetic predisposition to disease can be inherited in an autosomal dominant, autosomal recessive, or multifactorial pattern, depending on the specific disease and the genetic mutations involved. Autosomal dominant inheritance means that a single copy of the mutated gene is enough to cause the disease, while autosomal recessive inheritance requires two copies of the mutated gene. Multifactorial inheritance involves multiple genes and environmental factors contributing to the development of the disease.
Examples of diseases with a known genetic predisposition:
1. Huntington's disease: An autosomal dominant disorder caused by an expansion of a CAG repeat in the Huntingtin gene, leading to progressive neurodegeneration and cognitive decline.
2. Cystic fibrosis: An autosomal recessive disorder caused by mutations in the CFTR gene, leading to respiratory and digestive problems.
3. BRCA1/2-related breast and ovarian cancer: An inherited increased risk of developing breast and ovarian cancer due to mutations in the BRCA1 or BRCA2 genes.
4. Sickle cell anemia: An autosomal recessive disorder caused by a point mutation in the HBB gene, leading to defective hemoglobin production and red blood cell sickling.
5. Type 1 diabetes: An autoimmune disease caused by a combination of genetic and environmental factors, including multiple genes in the HLA complex.
Understanding the genetic basis of disease can help with early detection, prevention, and treatment. For example, genetic testing can identify individuals who are at risk for certain diseases, allowing for earlier intervention and preventive measures. Additionally, understanding the genetic basis of a disease can inform the development of targeted therapies and personalized medicine."
Pulmonary tuberculosis typically affects the lungs but can also spread to other parts of the body, such as the brain, kidneys, or spine. The symptoms of pulmonary TB include coughing for more than three weeks, chest pain, fatigue, fever, night sweats, and weight loss.
Pulmonary tuberculosis is diagnosed by a combination of physical examination, medical history, laboratory tests, and radiologic imaging, such as chest X-rays or computed tomography (CT) scans. Treatment for pulmonary TB usually involves a combination of antibiotics and medications to manage symptoms.
Preventive measures for pulmonary tuberculosis include screening for latent TB infection in high-risk populations, such as healthcare workers and individuals with HIV/AIDS, and vaccination with the bacillus Calmette-Guérin (BCG) vaccine in countries where it is available.
Overall, pulmonary tuberculosis is a serious and potentially life-threatening disease that requires prompt diagnosis and treatment to prevent complications and death.
There are several types of lung neoplasms, including:
1. Adenocarcinoma: This is the most common type of lung cancer, accounting for approximately 40% of all lung cancers. It is a malignant tumor that originates in the glands of the respiratory tract and can be found in any part of the lung.
2. Squamous cell carcinoma: This type of lung cancer accounts for approximately 25% of all lung cancers and is more common in men than women. It is a malignant tumor that originates in the squamous cells lining the airways of the lungs.
3. Small cell lung cancer (SCLC): This is a highly aggressive form of lung cancer that accounts for approximately 15% of all lung cancers. It is often found in the central parts of the lungs and can spread quickly to other parts of the body.
4. Large cell carcinoma: This is a rare type of lung cancer that accounts for only about 5% of all lung cancers. It is a malignant tumor that originates in the large cells of the respiratory tract and can be found in any part of the lung.
5. Bronchioalveolar carcinoma (BAC): This is a rare type of lung cancer that originates in the cells lining the airways and alveoli of the lungs. It is more common in women than men and tends to affect older individuals.
6. Lymphangioleiomyomatosis (LAM): This is a rare, progressive, and often fatal lung disease that primarily affects women of childbearing age. It is characterized by the growth of smooth muscle-like cells in the lungs and can lead to cysts, lung collapse, and respiratory failure.
7. Hamartoma: This is a benign tumor that originates in the tissue of the lungs and is usually found in children. It is characterized by an overgrowth of normal lung tissue and can be treated with surgery.
8. Secondary lung cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
9. Metastatic cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
10. Mesothelioma: This is a rare and aggressive form of cancer that originates in the lining of the lungs or abdomen. It is caused by asbestos exposure and can be treated with surgery, chemotherapy, and radiation therapy.
Lung diseases can also be classified based on their cause, such as:
1. Infectious diseases: These are caused by bacteria, viruses, or other microorganisms and can include pneumonia, tuberculosis, and bronchitis.
2. Autoimmune diseases: These are caused by an overactive immune system and can include conditions such as sarcoidosis and idiopathic pulmonary fibrosis.
3. Genetic diseases: These are caused by inherited mutations in genes that affect the lungs and can include cystic fibrosis and primary ciliary dyskinesia.
4. Environmental diseases: These are caused by exposure to harmful substances such as tobacco smoke, air pollution, and asbestos.
5. Radiological diseases: These are caused by exposure to ionizing radiation and can include conditions such as radiographic breast cancer and lung cancer.
6. Vascular diseases: These are caused by problems with the blood vessels in the lungs and can include conditions such as pulmonary embolism and pulmonary hypertension.
7. Tumors: These can be benign or malignant and can include conditions such as lung metastases and lung cancer.
8. Trauma: This can include injuries to the chest or lungs caused by accidents or other forms of trauma.
9. Congenital diseases: These are present at birth and can include conditions such as bronchopulmonary foregut malformations and congenital cystic adenomatoid malformation.
Each type of lung disease has its own set of symptoms, diagnosis, and treatment options. It is important to seek medical attention if you experience any persistent or severe respiratory symptoms, as early diagnosis and treatment can improve outcomes and quality of life.
These animal models allow researchers to study the underlying causes of arthritis, test new treatments and therapies, and evaluate their effectiveness in a controlled environment before moving to human clinical trials. Experimental arthritis models are used to investigate various aspects of the disease, including its pathophysiology, immunogenicity, and potential therapeutic targets.
Some common experimental arthritis models include:
1. Collagen-induced arthritis (CIA): This model is induced in mice by immunizing them with type II collagen, which leads to an autoimmune response and inflammation in the joints.
2. Rheumatoid arthritis (RA) models: These models are developed by transferring cells from RA patients into immunodeficient mice, which then develop arthritis-like symptoms.
3. Osteoarthritis (OA) models: These models are induced in animals by subjecting them to joint injury or overuse, which leads to degenerative changes in the joints and bone.
4. Psoriatic arthritis (PsA) models: These models are developed by inducing psoriasis in mice, which then develop arthritis-like symptoms.
Experimental arthritis models have contributed significantly to our understanding of the disease and have helped to identify potential therapeutic targets for the treatment of arthritis. However, it is important to note that these models are not perfect representations of human arthritis and should be used as tools to complement, rather than replace, human clinical trials.
Pre-B ALL is characterized by the abnormal growth of immature white blood cells called B lymphocytes. These cells are produced in the bone marrow and are normally present in the blood. In Pre-B ALL, the abnormal B cells accumulate in the bone marrow, blood, and other organs, crowding out normal cells and causing a variety of symptoms.
The symptoms of Pre-B ALL can vary depending on the individual patient, but may include:
* Fatigue
* Easy bruising or bleeding
* Frequent infections
* Swollen lymph nodes
* Enlarged liver or spleen
* Bone pain
* Headaches
* Confusion or seizures (in severe cases)
Pre-B ALL is most commonly diagnosed in children, but it can also occur in adults. Treatment typically involves a combination of chemotherapy and sometimes bone marrow transplantation. The prognosis for Pre-B ALL is generally good, especially in children, with a high survival rate if treated promptly and effectively. However, the cancer can be more difficult to treat in adults, and the prognosis may be less favorable.
Overall, Pre-B ALL is a rare and aggressive form of leukemia that requires prompt and specialized treatment to improve outcomes for patients.
The symptoms of dermatitis, allergic contact can vary depending on the severity of the reaction, but may include:
* Redness and swelling of the affected area
* Itching, burning, or stinging sensations
* Small blisters or hives
* Thickening or scaling of the skin
* Crusting or oozing of fluid
Dermatitis, allergic contact can be caused by a variety of substances, including:
* Metals, such as nickel, chrome, and mercury
* Plastics, such as latex and polyethylene
* Certain chemicals, such as perfumes, dyes, and preservatives
* Plant extracts, such as poison ivy or poison oak
* Insect bites or stings
The diagnosis of dermatitis, allergic contact is typically made through a combination of physical examination, medical history, and patch testing. Patch testing involves applying small amounts of potential allergens to the skin and observing for any signs of an allergic reaction over a period of time.
Treatment for dermatitis, allergic contact typically focuses on removing the allergen from the affected area and providing relief from symptoms. This may include:
* Avoiding exposure to the allergen
* Applying topical creams or ointments to reduce inflammation and itching
* Taking oral medications, such as antihistamines or corticosteroids, to reduce symptoms
* In severe cases, hospitalization may be necessary to manage the reaction.
Preventative measures for dermatitis, allergic contact include:
* Avoiding exposure to potential allergens
* Wearing protective clothing or gloves when handling suspected allergens
* Using hypoallergenic products and avoiding fragrances and dyes
* Performing patch testing before introducing new substances into the environment.
It is important to seek medical attention if symptoms persist or worsen over time, as dermatitis, allergic contact can lead to complications such as infection or scarring. Early diagnosis and treatment can help prevent these complications and improve outcomes for patients with this condition.
Granulomas are formed in response to the presence of a foreign substance or an infection, and they serve as a protective barrier to prevent the spread of the infection and to isolate the offending agent. The granuloma is characterized by a central area of necrosis, surrounded by a ring of immune cells, including macrophages and T-lymphocytes.
Granulomas are commonly seen in a variety of inflammatory conditions, such as tuberculosis, leprosy, and sarcoidosis. They can also occur as a result of infections, such as bacterial or fungal infections, and in the context of autoimmune disorders, such as rheumatoid arthritis.
In summary, granuloma is a term used to describe a type of inflammatory lesion that is formed in response to the presence of a foreign substance or an infection, and serves as a protective barrier to prevent the spread of the infection and to isolate the offending agent.
There are several different types of uveitis, including:
1. Anterior uveitis: This type affects the front part of the eye and is the most common form of uveitis. It is often caused by an infection or injury.
2. Posterior uveitis: This type affects the back part of the eye and can be caused by a systemic disease such as sarcoidosis or juvenile idiopathic arthritis.
3. Intermediate uveitis: This type affects the middle layer of the eye and is often caused by an autoimmune disorder.
4. Panuveitis: This type affects the entire uvea and can be caused by a systemic disease such as vasculitis or Behçet's disease.
Symptoms of uveitis may include:
* Eye pain
* Redness and swelling in the eye
* Blurred vision
* Sensitivity to light
* Floaters (specks or cobwebs in your vision)
* Flashes of light
If you experience any of these symptoms, it is important to see an eye doctor as soon as possible. Uveitis can be diagnosed with a comprehensive eye exam, which may include imaging tests such as ultrasound or MRI. Treatment for uveitis depends on the cause and severity of the condition, but may include medication to reduce inflammation, antibiotics for infections, or surgery to remove any diseased tissue.
Early diagnosis and treatment are important to prevent complications such as cataracts, glaucoma, and blindness. If you have uveitis, it is important to follow your doctor's recommendations for treatment and monitoring to protect your vision.
There are several types of colonic neoplasms, including:
1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.
Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.
Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.
1. Tumor size and location: Larger tumors that have spread to nearby tissues or organs are generally considered more invasive than smaller tumors that are confined to the original site.
2. Cellular growth patterns: The way in which cancer cells grow and divide can also contribute to the overall invasiveness of a neoplasm. For example, cells that grow in a disorganized or chaotic manner may be more likely to invade surrounding tissues.
3. Mitotic index: The mitotic index is a measure of how quickly the cancer cells are dividing. A higher mitotic index is generally associated with more aggressive and invasive cancers.
4. Necrosis: Necrosis, or the death of cells, can be an indication of the level of invasiveness of a neoplasm. The presence of significant necrosis in a tumor is often a sign that the cancer has invaded surrounding tissues and organs.
5. Lymphovascular invasion: Cancer cells that have invaded lymphatic vessels or blood vessels are considered more invasive than those that have not.
6. Perineural invasion: Cancer cells that have invaded nerve fibers are also considered more invasive.
7. Histological grade: The histological grade of a neoplasm is a measure of how abnormal the cancer cells look under a microscope. Higher-grade cancers are generally considered more aggressive and invasive than lower-grade cancers.
8. Immunohistochemical markers: Certain immunohistochemical markers, such as Ki-67, can be used to evaluate the proliferative activity of cancer cells. Higher levels of these markers are generally associated with more aggressive and invasive cancers.
Overall, the degree of neoplasm invasiveness is an important factor in determining the likelihood of the cancer spreading to other parts of the body (metastasizing) and in determining the appropriate treatment strategy for the patient.
Hairy cell leukemia typically affects older adults, and it is usually slow-growing and progresses gradually over many years. Symptoms of hairy cell leukemia can include fatigue, weakness, weight loss, fever, night sweats, and swollen lymph nodes.
Hairy cell leukemia is diagnosed through a combination of physical examination, medical history, blood tests, and bone marrow biopsy. Treatment for hairy cell leukemia typically involves chemotherapy, radiation therapy, or a combination of both. In some cases, the disease may go into remission with treatment, but it can also be a chronic condition that requires ongoing management.
Prevention: There is no known prevention for hairy cell leukemia, as the cause of the disease is not fully understood. However, early detection and treatment can improve outcomes.
Prognosis: The prognosis for hairy cell leukemia varies depending on the individual patient and the aggressiveness of the disease. In general, the condition tends to be slow-growing and progresses gradually over many years. With appropriate treatment, some patients can achieve long-term remission or even be cured. However, in more advanced cases, the disease can be more difficult to treat and may have a poorer prognosis.
Symptoms: Symptoms of hairy cell leukemia can include fatigue, weakness, weight loss, fever, night sweats, and swollen lymph nodes. These symptoms can develop gradually over time, and they may be mild at first but become more severe as the disease progresses.
Treatment: Treatment for hairy cell leukemia typically involves chemotherapy, radiation therapy, or a combination of both. The specific treatment plan will depend on the individual patient and the severity of their condition. In some cases, watchful waiting may be appropriate, especially if the disease is not causing significant symptoms.
Lifestyle Changes: There are no lifestyle changes that can cure hairy cell leukemia, but they can help improve overall health and well-being. These changes may include eating a healthy diet, getting regular exercise, getting enough rest, and managing stress. In addition, avoiding exposure to certain chemicals and toxins may be beneficial for some patients.
Medications: There are several medications that can be used to treat hairy cell leukemia. These include chemotherapy drugs such as pentostatin and cladribine, which can help kill cancer cells and slow the progression of the disease. In addition, some patients may receive radiation therapy to help shrink swollen lymph nodes or other affected tissues.
Supportive Care: Supportive care is an important part of treatment for hairy cell leukemia. This type of care focuses on managing symptoms and improving quality of life, rather than directly targeting the cancer cells. Supportive care may include medications to manage pain, fatigue, or infection, as well as blood transfusions to help improve anemia.
Bone Marrow Transplant: In some cases, bone marrow transplant may be an option for patients with hairy cell leukemia. This involves replacing the patient's bone marrow with healthy cells from a donor, which can help cure the disease. However, this is typically reserved for patients who have not responded to other treatments or who have experienced significant complications from the disease.
Overall, the prognosis for hairy cell leukemia is generally good, with many patients experiencing a good response to treatment and a low risk of complications. However, it is important for patients to work closely with their healthcare team to develop a personalized treatment plan that meets their individual needs and helps them achieve the best possible outcome.
Hematologic neoplasms refer to abnormal growths or tumors that affect the blood, bone marrow, or lymphatic system. These types of cancer can originate from various cell types, including red blood cells, white blood cells, platelets, and lymphoid cells.
There are several subtypes of hematologic neoplasms, including:
1. Leukemias: Cancers of the blood-forming cells in the bone marrow, which can lead to an overproduction of immature or abnormal white blood cells, red blood cells, or platelets. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
2. Lymphomas: Cancers of the immune system, which can affect the lymph nodes, spleen, liver, or other organs. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
3. Multiple myeloma: A cancer of the plasma cells in the bone marrow that can lead to an overproduction of abnormal plasma cells.
4. Myeloproliferative neoplasms: Cancers that affect the blood-forming cells in the bone marrow, leading to an overproduction of red blood cells, white blood cells, or platelets. Examples include polycythemia vera and essential thrombocythemia.
5. Myelodysplastic syndromes: Cancers that affect the blood-forming cells in the bone marrow, leading to an underproduction of normal blood cells.
The diagnosis of hematologic neoplasms typically involves a combination of physical examination, medical history, laboratory tests (such as complete blood counts and bone marrow biopsies), and imaging studies (such as CT scans or PET scans). Treatment options for hematologic neoplasms depend on the specific type of cancer, the severity of the disease, and the overall health of the patient. These may include chemotherapy, radiation therapy, stem cell transplantation, or targeted therapy with drugs that specifically target cancer cells.
* Nausea and vomiting
* Abdominal pain
* Diarrhea
* Fatigue
* Weakness
* Headache
* Dizziness
* Renal damage
In severe cases, cadmium poisoning can cause:
* Respiratory failure
* Cardiovascular collapse
* Seizures
* Coma
* Death
Treatment of cadmium poisoning usually involves supportive care, such as fluid replacement and management of symptoms. In cases of severe poisoning, hospitalization may be necessary and chelation therapy may be administered to remove the heavy metal from the body. Prevention of cadmium poisoning is key and this can be achieved through proper handling, storage and disposal of cadmium-containing materials, as well as using personal protective equipment during work with cadmium.
If you suspect that you or someone else has been exposed to cadmium, it is important to seek medical attention immediately. A healthcare professional will be able to assess the level and severity of exposure and provide appropriate treatment.
1. Common cold: A viral infection that affects the upper respiratory tract and causes symptoms such as sneezing, running nose, coughing, and mild fever.
2. Influenza (flu): A viral infection that can cause severe respiratory illness, including pneumonia, bronchitis, and sinus and ear infections.
3. Measles: A highly contagious viral infection that causes fever, rashes, coughing, and redness of the eyes.
4. Rubella (German measles): A mild viral infection that can cause fever, rashes, headache, and swollen lymph nodes.
5. Chickenpox: A highly contagious viral infection that causes fever, itching, and a characteristic rash of small blisters on the skin.
6. Herpes simplex virus (HSV): A viral infection that can cause genital herpes, cold sores, or other skin lesions.
7. Human immunodeficiency virus (HIV): A viral infection that attacks the immune system and can lead to acquired immunodeficiency syndrome (AIDS).
8. Hepatitis B: A viral infection that affects the liver, causing inflammation and damage to liver cells.
9. Hepatitis C: Another viral infection that affects the liver, often leading to chronic liver disease and liver cancer.
10. Ebola: A deadly viral infection that causes fever, vomiting, diarrhea, and internal bleeding.
11. SARS (severe acute respiratory syndrome): A viral infection that can cause severe respiratory illness, including pneumonia and respiratory failure.
12. West Nile virus: A viral infection that can cause fever, headache, and muscle pain, as well as more severe symptoms such as meningitis or encephalitis.
Viral infections can be spread through contact with an infected person or contaminated surfaces, objects, or insects such as mosquitoes. Prevention strategies include:
1. Practicing good hygiene, such as washing hands frequently and thoroughly.
2. Avoiding close contact with people who are sick.
3. Covering the mouth and nose when coughing or sneezing.
4. Avoiding sharing personal items such as towels or utensils.
5. Using condoms or other barrier methods during sexual activity.
6. Getting vaccinated against certain viral infections, such as HPV and hepatitis B.
7. Using insect repellents to prevent mosquito bites.
8. Screening blood products and organs for certain viruses before transfusion or transplantation.
Treatment for viral infections depends on the specific virus and the severity of the illness. Antiviral medications may be used to reduce the replication of the virus and alleviate symptoms. In severe cases, hospitalization may be necessary to provide supportive care such as intravenous fluids, oxygen therapy, or mechanical ventilation.
Prevention is key in avoiding viral infections, so taking the necessary precautions and practicing good hygiene can go a long way in protecting oneself and others from these common and potentially debilitating illnesses.
The term "Murine" refers to the fact that the condition occurs in mice and other rodents. "Acquired Immunodeficiency Syndrome" (AIDS) is a similar condition in humans caused by HIV. The similarity between MAIDS and AIDS lies in their shared origins as retroviral infections, but there are significant differences in the viruses themselves and the symptoms they cause.
Asthma can cause recurring episodes of wheezing, coughing, chest tightness, and shortness of breath. These symptoms occur when the muscles surrounding the airways contract, causing the airways to narrow and swell. This can be triggered by exposure to environmental allergens or irritants such as pollen, dust mites, pet dander, or respiratory infections.
There is no cure for asthma, but it can be managed with medication and lifestyle changes. Treatment typically includes inhaled corticosteroids to reduce inflammation, bronchodilators to open up the airways, and rescue medications to relieve symptoms during an asthma attack.
Asthma is a common condition that affects people of all ages, but it is most commonly diagnosed in children. According to the American Lung Association, more than 25 million Americans have asthma, and it is the third leading cause of hospitalization for children under the age of 18.
While there is no cure for asthma, early diagnosis and proper treatment can help manage symptoms and improve quality of life for those affected by the condition.
Recurrence can also refer to the re-emergence of symptoms in a previously treated condition, such as a chronic pain condition that returns after a period of remission.
In medical research, recurrence is often studied to understand the underlying causes of disease progression and to develop new treatments and interventions to prevent or delay its return.
The symptoms of mycosis fungoides can vary depending on the stage of the disease, but they may include:
* A rash or patches of skin that are red, itchy, and scaly
* Swollen lymph nodes, especially in the neck, armpits, or groin
* Fever, fatigue, or weight loss
* Enlarged liver or spleen
* Night sweats
* Itching or painless skin lesions
Mycosis fungoides can be difficult to diagnose because it can resemble other skin conditions such as eczema or psoriasis. A biopsy of the skin is usually needed to confirm the diagnosis. Treatment options for mycosis fungoides depend on the stage and severity of the disease, but may include:
* Topical medications or creams to treat mild cases
* Phototherapy with ultraviolet light to reduce inflammation and slow the growth of cancer cells
* Chemotherapy to kill cancer cells
* Radiation therapy to destroy cancer cells
* Targeted therapy using drugs that specifically target cancer cells
* Stem cell transplantation in severe cases.
The prognosis for mycosis fungoides is generally good if the disease is caught early and treated aggressively. However, the disease can be challenging to treat and may recur even after successful treatment. Ongoing research is focused on developing new and more effective treatments for this rare and complex condition.
Adenocarcinoma is a term used to describe a variety of different types of cancer that arise in glandular tissue, including:
1. Colorectal adenocarcinoma (cancer of the colon or rectum)
2. Breast adenocarcinoma (cancer of the breast)
3. Prostate adenocarcinoma (cancer of the prostate gland)
4. Pancreatic adenocarcinoma (cancer of the pancreas)
5. Lung adenocarcinoma (cancer of the lung)
6. Thyroid adenocarcinoma (cancer of the thyroid gland)
7. Skin adenocarcinoma (cancer of the skin)
The symptoms of adenocarcinoma depend on the location of the cancer and can include:
1. Blood in the stool or urine
2. Abdominal pain or discomfort
3. Changes in bowel habits
4. Unusual vaginal bleeding (in the case of endometrial adenocarcinoma)
5. A lump or thickening in the breast or elsewhere
6. Weight loss
7. Fatigue
8. Coughing up blood (in the case of lung adenocarcinoma)
The diagnosis of adenocarcinoma is typically made through a combination of imaging tests, such as CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a sample of tissue from the affected area and examining it under a microscope for cancer cells.
Treatment options for adenocarcinoma depend on the location of the cancer and can include:
1. Surgery to remove the tumor
2. Chemotherapy, which involves using drugs to kill cancer cells
3. Radiation therapy, which involves using high-energy X-rays or other particles to kill cancer cells
4. Targeted therapy, which involves using drugs that target specific molecules on cancer cells to kill them
5. Immunotherapy, which involves using drugs that stimulate the immune system to fight cancer cells.
The prognosis for adenocarcinoma is generally good if the cancer is detected and treated early, but it can be more challenging to treat if the cancer has spread to other parts of the body.
Villitis of unknown etiology
CD69
Pneumonitis
Inflammaging
SLFN12L
Angioimmunoblastic T-cell lymphoma
Arsenic biochemistry
Sarcoidosis
Cat cognitive support diets
XMEN disease
PGM3 deficiency
List of MeSH codes (G09)
List of MeSH codes (E05)
List of MeSH codes (G04)
Postpartum thyroiditis
List of MeSH codes (E01)
Monomorphic epitheliotropic intestinal T cell lymphoma
Cluster of differentiation
HIV associated cardiomyopathy
Immunosenescence
Interleukin 18
Hematopoietic stem cell
Lindy Durrant
Transplant rejection
Hepatitis
MHC multimer
Ankylosing spondylitis
Epstein-Barr virus-associated lymphoproliferative diseases
T-cell receptor
Dendritic cell
Tissue-resident memory T cell
CAR T cell
Miscarriage
Regulatory T cell
CD4/CD8 Ratio could be predictor of burden hepatocellular carcinoma in Egyptian chronic hepatitis C after combined sofosbuvir...
Human Herpesvirus 6-Associated Hemophagocytic Syndrome in a Healthy Adult - Volume 8, Number 1-January 2002 - Emerging...
CD4 Lymphocyte Count: MedlinePlus Medical Test
Microanatomical dissection of human intestinal T-cell immunity reveals site-specific changes in gut-associated lymphoid tissues...
Clas Malmeström | University of Gothenburg
Deconstructing TMJD Classifiers at the Single Cell Level | National Institute of Dental and Craniofacial Research
Advanced Search Results - Public Health Image Library(PHIL)
Modulation of immune response following dietary genistein exposure in F0 and F1 generations of C57BL/6 mice: evidence of thymic...
Safety and efficacy of once-daily didanosine, tenofovir and nevirapine as a simplification antiretroviral approach - PubMed
Cutaneous T-Cell Lymphoma: Practice Essentials, Background, Pathophysiology
Guidelines for Prophylaxis Against Pneumocystis carinii Pneumonia
for Persons Infected with Human Immunodeficiency Virus
Safety Study of Zinc Finger Nuclease CCR5-modified Hematopoietic Stem/Progenitor Cells in HIV-1 Infected Patients - Full Text...
Plus it
The association between the recurrence of solitary nonmuscle invasive bladder cancer and tumor infiltrating lymphocytes
Biomarkers Search
JCI Insight -
Neoadjuvant chemotherapy drives intratumoral T cells toward a proinflammatory profile in pancreatic cancer
Guidelines for Prophylaxis Against Pneumocystis carinii Pneumonia fo
Errol L. Bush, M.D., Associate Professor of Surgery | Johns Hopkins Medicine
Conference on Retroviruses and Opportunistic Infections (CROI), Boston, Massachusetts
March 4-7, 2018
MeSH Browser
NIH Guide: IMMUNE RECONSTITUTION OF HIV-INFECTED INDIVIDUALS (IRPG)
Longitudinal characterisation of B and T-cell immune responses after the booster dose of COVID-19 mRNA-vaccine in people with...
Meeting Minutes - November 8, 2012 | National Institutes of Health
NIOSHTIC-2 Search Results - Full View
Treatment for NLPHL in abdomen only - Page 2 - Cancer Survivors Network
Lymphocytes10
- They're also called CD4 T lymphocytes or "helper T cells. (medlineplus.gov)
- A low ratio of CD4+ (helper) any chromosomal or hereditary disorder lymphocytes relative to CD8+ (suppressor) that caused the malnutrition. (who.int)
- Ratio of T-LYMPHOCYTES that express the CD4 ANTIGEN to those that express the CD8 ANTIGEN . (nih.gov)
- Although total leukocyte count remained unchanged, there was a decrease in the CD4 T/CD8 T-cell ratio as well as in the percentage of mature T lymphocytes, probably because of a decrease in both the percentage and absolute number of T helper cells. (erowid.org)
- The decrease in CD4 T-cell counts and in the functional responsiveness of lymphocytes to mitogenic stimulation was dose-dependent. (erowid.org)
- CD3+ lymphocytes, CD4 T-cells, and the percent of CD3+HLA-DR+ activated lymphocytes increased significantly with Dzherelo but not in the other group. (thecamreport.com)
- The Dutch BAL working party initiated an investigation to evaluate the diagnostic value of relative number of CD103 expressing CD4+T-lymphocytes in the BAL fluid of patients with a variety of interstitial lung diseases. (eur.nl)
- We redefined criteria for alveolar CD4+T-cell lymphocytosis and for the relative enumeration of CD103 expressing CD4+T-lymphocytes in the BAL fluid. (eur.nl)
- A normal CD4/CD8 ratio is greater than 1.0, with CD4 lymphocytes ranging from 500 to 1200/mm 3 and CD8 lymphocytes ranging from 150 to 1000/mm 3. (fabulousfrocksofatlanta.com)
- The levels of TILs, including the total number of T cells, cluster of differentiation (CD)4 + T cells, CD8 + cytotoxic T lymphocytes (CTLs), regulatory T‑cells (Tregs), programmed cell death protein 1 + T cells and programmed cell death ligand 1 (PD‑L1) + T cells, in the TME of patients with PC were detected using multiple fluorescence immunohistochemistry. (spandidos-publications.com)
Splenic3
- In F(1) males, GEN increased the terminal body and spleen weights (25 and 250 ppm), the number of CD4(+)CD8(+) and CD4(-)CD8(+) thymocytes (25 ppm), and the number of splenic T cell subsets and NK cells (25 and 250 ppm). (nih.gov)
- Additionally, there was a distinct decrease in splenic CD4+CD8- T-cells resulting in a concomitant decrease in the CD4+:CD8+ ratio. (cdc.gov)
- Examination of the organ weights and splenic phenotypes showed that TCDD exposure increased the spleen/body weight ratio, decreased the thymus/body weight ratio, and decreased the percentage of splenic CD3+/CD4-CD8- cells in both genders. (nih.gov)
Helper3
- immunological tests including total T cell count, T helper cell count, T cytotoxic cell count and natural killer cell count in peripheral blood through (CD3, CD3/CD4, CD3/CD8 and CD56 respectively) by Fluorochrome monoclonal antibodies labelled with specific dyes through Multiparameter, FACSCanto ™ II flow cytometer (Becton Dickinson, USA). (bvsalud.org)
- CD4 helper T-cells which alert the immune the studied infants were from low socio- system to an attack by a pathogen and the economic status families according to the CD8 suppressor T-cells which destroy cells classification of Park and Park [11]. (who.int)
- It compares the proportion of so-called "helper" CD4 T cells to "killer" CD8 T cells, the value of which can help predict the likely course of the disease. (fabulousfrocksofatlanta.com)
Lymphocyte2
- Elevated neutrophil to lymphocyte ratio is associated with poor long-term survival and graft failure after lung transplantation. (hopkinsmedicine.org)
- Association between admission neutrophil to lymphocyte ratio and outcomes in patients with acute exacerbation of COPD. (ers-education.org)
Predictor3
- CD4/CD8 Ratio could be predictor of burden hepatocellular carcinoma in Egyptian chronic hepatitis C after combined sofosbuvir and daclatasvir therapy. (bvsalud.org)
- Long follow up revealed 26.6% developed focal HCC, in more addition, multivariate analysis show CD4/CD8 ratio could be predictor as well as sex for early development of HCC after combined DAAS therapy . (bvsalud.org)
- 26.6% developed focal HCC with independent CD4/CD8 predictor for burden malignancy . (bvsalud.org)
Significantly3
- The CD4+:GrB+ and GrB+:CD8+ ratios were significantly higher in patients without recurrent disease (P = 0.0002, P = 0.039, respectively). (srce.hr)
- The CD4/CD8 cell ratio improved significantly with Dzherelo but not in the other group. (thecamreport.com)
- Compared with paracancerous tissues, in PC tissues, the proportions of total T cells, CD4 + T cells and CD8 + CTLs were markedly decreased, while those of Tregs and PD‑L1 + T cells were significantly increased. (spandidos-publications.com)
Cells22
- A CD4 count is a blood test that measures the number of CD4 cells in a sample of your blood. (medlineplus.gov)
- CD4 cells are a type of white blood cell. (medlineplus.gov)
- HIV attacks and destroys CD4 cells. (medlineplus.gov)
- Without treatment, HIV may destroy so many CD4 cells that your immune system will have trouble fighting off infections. (medlineplus.gov)
- A CD4 count may be used with other tests to find out which type of immune cells are causing lymphoma. (medlineplus.gov)
- CD4 results are usually given as a number of cells per cubic millimeter of blood. (medlineplus.gov)
- A CD4 count of 200 or fewer cells per cubic millimeter means that you have AIDS. (medlineplus.gov)
- Nevertheless, CD4 count decreased in the QD Group, with a mean decline of 95 cells/mm3 (95% CI: 45-145). (nih.gov)
- At 9-12 months after SB-728mR-HSPC infusion, subjects who are aviremic with CD4 cell counts ≥600 cells/µL and have ≥1% CCR5-modified CD4 cells within the peripheral blood detected by pentamer PCR will undergo an ATI. (clinicaltrials.gov)
- Neoadjuvant chemotherapy increases the frequency of tumor-infiltrating CD4 + Tconv cells and reduces the proportion of Tregs. (jci.org)
- right) among all CD4 + T cells. (jci.org)
- CD3+CD4-CD8- Double Negative αβ T cells Attenuate Lung Ischemia-Reperfusion Injury. (hopkinsmedicine.org)
- Compared with HCWs, PwMS presented a higher frequency of CD4 + and CD8 + terminally differentiated effector memory cells and of CD4 + effector memory (T EM ) cells, independently of the stimulus suggesting the association of this phenotype with MS status. (bmj.com)
- Levels of human (h) IgE, amount of B-, T- and plasma-cells and ratio of CD4 : CD8 positive cells served as read out for induction and inhibition of cell proliferation and hIgE secretion. (uni-wuerzburg.de)
- The dynamics of CD4 and CD8 T cells are altered in many ways during HIV infection. (fabulousfrocksofatlanta.com)
- Although both show evidence of increased proliferation and preferential loss of the naive subset, there is depletion of CD4 T cells and expansion of CD8 T cells (1-5). (fabulousfrocksofatlanta.com)
- It is important to note that the infiltrates of total T cells, CD4 + T cells, Tregs and PD‑L1 + T cells in the TME were independent risk factors for the prognosis of PC. (spandidos-publications.com)
- PC was characterized by an immunosuppressive TME with a decrease in the number of CD4 + T cells and CD8 + CTLs, and an increase in the number of Tregs and PD‑L1 + T cells. (spandidos-publications.com)
- Overall, the number of total T cells, CD4 + T cells, Tregs and PD‑L1 + T cells in the TME was a potential predictive marker for the prognosis of PC. (spandidos-publications.com)
- We compared the expression profile of PD-L1/PD-1 axis on CD138 + cells, CD14 + monocytes and T cells (both CD4 + and CD8 + ), by flow-cytometry. (confex.com)
- Among the cytokines tested on the total cohort, the anti-tumoral IL-27 BM serum levels inversely correlated with PD-L1 MFI only on CD14 + cells (p=0.025), with CD8 + PD-1 + % (p=0.013) and with the immunesuppressive cytokine IL-10 serum levels (p=0.035), independently from the stage of disease. (confex.com)
- Focusing on patients with active MM, those with ISS=II and III showed increased PD-L1 expression on CD14 + cells (ISS II+III vs I, median MFI 20.35 vs 14.59, p=0.005) and higher CD8 + PD-1 + % (II+III vs I, 4.35 vs 2.58, p=0.022) compared with ISS=I patients. (confex.com)
Counts5
- CD4 counts can help monitor your risk for developing opportunistic infections or certain cancers. (medlineplus.gov)
- If you are taking medicine for HIV, your provider may order regular CD4 counts with an HIV viral load test to see how well your medicines are working. (medlineplus.gov)
- But labs may have different ways of describing "normal" CD4 counts. (medlineplus.gov)
- CD4 counts may change even when your health has not changed. (medlineplus.gov)
- So, your provider will usually look at a few test results over time to see if there's a trend in your CD4 counts. (medlineplus.gov)
Lymphoma2
- Among the changes to CTCL classification were the addition of primary cutaneous acral CD8 + T-cell lymphoma as a new provisional entity. (medscape.com)
- Also, the term "primary cutaneous CD4 + small/medium T-cell lymphoma" was changed to "primary cutaneous CD4 + small/medium T-cell lymphoproliferative disorder" because of its indolent clinical behavior and uncertain malignant potential. (medscape.com)
Tumor1
- The levels of CD4 + T cell and CD8 + CTL infiltrates were inversely associated with tumor differentiation. (spandidos-publications.com)
Infection1
- However, in HIV infection, the CD4:CD8 ratio is usually less than 1. (fabulousfrocksofatlanta.com)
Subset1
- TIL subset ratio showed different patterns in recurrent and nonrecurrent tumors, which is why it could become a useful a prognostic clinical index if our findings are confirmed in randomized trials. (srce.hr)
Cell4
- In PwMS, total Th1 and IFN-γ CD4 + T-cell responders to spike protein were increased from T2 to T3. (bmj.com)
- Combined MDMA and alcohol produced the greatest suppressive effect on CD4 T-cell count and PHA-stimulated lymphoproliferation. (erowid.org)
- The CD4 cell count of a person who does not have HIV can be anything between 500 and 1500. (fabulousfrocksofatlanta.com)
- People living with HIV who have a CD4 cell count below 200 are at high risk of developing serious illnesses. (fabulousfrocksofatlanta.com)
Count20
- What is a CD4 count? (medlineplus.gov)
- A CD4 count is mostly used to check the health of your immune system if you are infected with HIV (human immunodeficiency virus). (medlineplus.gov)
- If you have AIDS, your CD4 count is so low that you may develop serious infections from viruses , bacteria , or fungi that usually don't cause problems in healthy people. (medlineplus.gov)
- If you have HIV, a CD4 count can help your health care provider check your risk for serious infections. (medlineplus.gov)
- A CD4 count may also be used to help diagnose and monitor certain other conditions that affect your immune system. (medlineplus.gov)
- A CD4 count is used with a test called an HIV viral load test to see if HIV medicines are working. (medlineplus.gov)
- Without treatment, HIV can lead to a very low CD4 count, which means you have AIDS. (medlineplus.gov)
- A low CD4 count means the medicine is working. (medlineplus.gov)
- Why do I need a CD4 count? (medlineplus.gov)
- Your provider may order a CD4 count when you are first diagnosed with HIV. (medlineplus.gov)
- What happens during a CD4 count? (medlineplus.gov)
- You don't need any special preparations for a CD4 count. (medlineplus.gov)
- If you have HIV , a low CD4 count means that HIV has weakened your immune system. (medlineplus.gov)
- People living with HIV who have a CD4 count over 500 are usually in pretty good health. (fabulousfrocksofatlanta.com)
- What is CD8 count? (fabulousfrocksofatlanta.com)
- It is more important to know your CD4 count than your CD8 count. (fabulousfrocksofatlanta.com)
- What are the symptoms of a low CD4 count? (fabulousfrocksofatlanta.com)
- How can I increase my CD4 count? (fabulousfrocksofatlanta.com)
- What to eat to increase your CD4 count? (fabulousfrocksofatlanta.com)
- ²Many-armed' CD4: Why it is necessary to count blood CD4 at patient with severe community-acquired pneumonia (CAP)? (ers-education.org)
Higher1
- If your ratio is higher than 1, it means your immune system is strong and you may not have HIV. (fabulousfrocksofatlanta.com)
High3
- A high CD4+/CD8+ratio in bronchoalveolar lavage fluid is indicative for the diagnosis pulmonary sarcoidosis but this ratio only does not fully discriminate pulmonary sarcoidosis from other interstitial lung diseases. (eur.nl)
- Why is CD8 high in HIV? (fabulousfrocksofatlanta.com)
- What does a high CD4 CD8 ratio mean? (fabulousfrocksofatlanta.com)
Normal2
- What is a normal CD4 CD8 ratio? (fabulousfrocksofatlanta.com)
- A normal CD8 range is from 150 to 1000. (fabulousfrocksofatlanta.com)
Immune system1
- The CD4/CD8 ratio is one of the blood tests used to monitor your immune system if you have human immunodeficiency virus (HIV). (fabulousfrocksofatlanta.com)
Affect1
- Does HIV affect CD4 or CD8? (fabulousfrocksofatlanta.com)
Addition1
- In addition, the researchers report that the black cumin oil extract also modulate immunity status, with changes in immunoglobulins, cytokines, and CD4+, CD8+, and CD4/CD8 ratio reported. (nutraingredients.com)
Risk2
- 6. CD4/CD8 Ratio and Cancer Risk Among Adults With HIV. (nih.gov)
- A low or inverted CD4/CD8 ratio is an immune risk phenotype and is associated with altered immune function, immune senescence, and chronic inflammation in both HIV-infected and uninfected populations [8-11]. (fabulousfrocksofatlanta.com)
Healthy1
- IL-4 shifted CD4 : CD8 ratios in vitro and in vivo when hPBMC derived from healthy volunteers were used. (uni-wuerzburg.de)
Disease progression2
- Total CD4 + T-cell counts predict HIV disease progression but do not necessarily reflect normalization of immune function. (medscape.com)
- Individuals with higher CD4/CD8 ratio at seroconversion were significantly less likely to reach the disease progression endpoint [adjusted hazard ratio (aHR) (95% CI) = 0.52 (0.32 to 0.82), P = 0.005]. (medscape.com)
Immune7
- CD4/CD8 ratio is a marker of immune dysfunction, a prognostic indicator for non-AIDS mortality, and reflects viral reservoir size. (medscape.com)
- A CD4 count is mostly used to check the health of your immune system if you are infected with HIV (human immunodeficiency virus). (medlineplus.gov)
- Without treatment, HIV may destroy so many CD4 cells that your immune system will have trouble fighting off infections. (medlineplus.gov)
- A CD4 count may also be used to help diagnose and monitor certain other conditions that affect your immune system. (medlineplus.gov)
- A CD4 count may be used with other tests to find out which type of immune cells are causing lymphoma. (medlineplus.gov)
- If you have HIV , a low CD4 count means that HIV has weakened your immune system. (medlineplus.gov)
- CD4 helper T-cells which alert the immune the studied infants were from low socio- system to an attack by a pathogen and the economic status families according to the CD8 suppressor T-cells which destroy cells classification of Park and Park [11]. (who.int)
Risks1
- 20. Underestimation of relative risks by standardized incidence ratios for AIDS-related cancers. (nih.gov)
Treatment1
- we hypothesize enhanced CD4/CD8 ratio recovery with earlier treatment initiation in recently infected individuals. (medscape.com)