An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity.
Compounds that inhibit the activity of DNA TOPOISOMERASE I.
An antineoplastic agent used to treat ovarian cancer. It works by inhibiting DNA TOPOISOMERASES, TYPE I.
Organic compounds that contain silicon as an integral part of the molecule.
Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity.
DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix.
Substances that inhibit or prevent the proliferation of NEOPLASMS.
New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms.
Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals.
An experimental lymphocytic leukemia originally induced in DBA/2 mice by painting with methylcholanthrene.
In vivo methods of screening investigative anticancer drugs, biologic response modifiers or radiotherapies. Human tumor tissue or cells are transplanted into mice or rats followed by tumor treatment regimens. A variety of outcomes are monitored to assess antitumor effectiveness.
A cell line derived from cultured tumor cells.
Leukemia L1210 is a designation for a specific murine (mouse) leukemia cell line that was originally isolated from a female mouse with an induced acute myeloid leukemia, which is widely used as a model in cancer research, particularly for in vivo studies of drug efficacy and resistance.
Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Sarcoma 180 is an undifferentiated, transplantable mouse tumor model originally induced by methylcholanthrene, widely used in preclinical cancer research for evaluating efficacy of potential therapeutic agents.
Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
An aminoacridine derivative that intercalates into DNA and is used as an antineoplastic agent.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
Compounds that inhibit the activity of DNA TOPOISOMERASE II. Included in this category are a variety of ANTINEOPLASTIC AGENTS which target the eukaryotic form of topoisomerase II and ANTIBACTERIAL AGENTS which target the prokaryotic form of topoisomerase II.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Compounds that inhibit the activity of DNA TOPOISOMERASES.
The concentration of a compound needed to reduce population growth of organisms, including eukaryotic cells, by 50% in vitro. Though often expressed to denote in vitro antibacterial activity, it is also used as a benchmark for cytotoxicity to eukaryotic cells in culture.
Experimental transplantation of neoplasms in laboratory animals for research purposes.
Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA.
A plant genus of the family NYSSACEAE (sometimes classified in the CORNACEAE family). It is a source of CAMPTOTHECIN.
DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex.
A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Teniposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent cells from entering into the mitotic phase of the cell cycle, and lead to cell death. Teniposide acts primarily in the G2 and S phases of the cycle.
Experimentally induced tumor that produces MELANIN in animals to provide a model for studying human MELANOMA.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The action of a drug in promoting or enhancing the effectiveness of another drug.
Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN.
This line KB is now known to be a subline of the ubiquitous KERATIN-forming tumor cell line HeLa. It was originally thought to be derived from an epidermal carcinoma of the mouth, but was subsequently found, based on isoenzyme analysis, HeLa marker chromosomes, and DNA fingerprinting, to have been established via contamination by HELA CELLS. The cells are positive for keratin by immunoperoxidase staining. KB cells have been reported to contain human papillomavirus18 (HPV-18) sequences.
Pyrido-CARBAZOLES originally discovered in the bark of OCHROSIA ELLIPTICA. They inhibit DNA and RNA synthesis and have immunosuppressive properties.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Complex cytotoxic antibiotic obtained from Streptomyces flocculus or S. rufochronmogenus. It is used in advanced carcinoma and causes leukopenia.
Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.
Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration.
A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle.
Alkylating antineoplastic agent used mainly for ovarian tumors. It is toxic to skin, gastrointestinal tract, bone marrow and kidneys.
The rate dynamics in chemical or physical systems.
Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES.
An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle.
Tumors or cancer of the COLON.
Acridines are heterocyclic aromatic organic compounds containing two nitrogen atoms at positions 1 and 3 of a planar, unsaturated ring system, which have been widely used in chemotherapy and have also found applications in dye industries and fluorescence microscopy.
An ansa macrolide isolated from the MAYTENUS genus of East African shrubs.
Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications.
Transplantation between animals of different species.
Keto-pyrans.
Established cell cultures that have the potential to propagate indefinitely.
Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed)
Polyacenes with four ortho-fused benzene rings in a straight linear arrangement. This group is best known for the subclass called TETRACYCLINES.
An experimental lymphocytic leukemia of mice.
Dioxoles are organic compounds containing a five-membered ring consisting of two oxygen atoms and two carbon atoms, often found as substructures in various natural and synthetic molecules, including certain pharmaceuticals and toxic dioxin pollutants.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Tumors or cancer of the LUNG.
Compounds based on acridone, which have three linear rings, with the center ring containing a ring nitrogen and a keto oxygen opposite to each other. Many of them are naturally occurring alkaloids.
Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
Acridines which are substituted in any position by one or more amino groups or substituted amino groups.
Saturated azacyclopropane compounds. They include compounds with substitutions on CARBON or NITROGEN atoms.
A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug.
DNA present in neoplastic tissue.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
The Madder plant family of the order Rubiales, subclass Asteridae, class Magnoliopsida includes important medicinal plants that provide QUININE; IPECAC; and COFFEE. They have opposite leaves and interpetiolar stipules.
Compounds with triple bonds to each side of a double bond. Many of these are CYTOTOXINS and are researched for use as CYTOTOXIC ANTIBIOTICS.
Naphthalene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
A complex of several closely related glycosidic antibiotics from Streptomyces griseus. The major component, CHROMOMYCIN A3, is used as a fluorescent stain of DNA where it attaches and inhibits RNA synthesis. It is also used as an antineoplastic agent, especially for solid tumors.
Human colonic ADENOCARCINOMA cells that are able to express differentiation features characteristic of mature intestinal cells such as the GOBLET CELLS.
A family of fused-ring hydrocarbons isolated from coal tar that act as intermediates in various chemical reactions and are used in the production of coumarone-indene resins.
A class of drugs that differs from other alkylating agents used clinically in that they are monofunctional and thus unable to cross-link cellular macromolecules. Among their common properties are a requirement for metabolic activation to intermediates with antitumor efficacy and the presence in their chemical structures of N-methyl groups, that after metabolism, can covalently modify cellular DNA. The precise mechanisms by which each of these drugs acts to kill tumor cells are not completely understood. (From AMA, Drug Evaluations Annual, 1994, p2026)
The conformation, properties, reaction processes, and the properties of the reactions of carbon compounds.
Compounds with a 5-membered ring of four carbons and an oxygen. They are aromatic heterocycles. The reduced form is tetrahydrofuran.
A semisynthetic anthracycline with the amino sugar on the D ring. It displays broad-spectrum antineoplastic activity against a variety of tumors.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
An antiviral antibiotic produced by Cephalosporium aphidicola and other fungi. It inhibits the growth of eukaryotic cells and certain animal viruses by selectively inhibiting the cellular replication of DNA polymerase II or the viral-induced DNA polymerases. The drug may be useful for controlling excessive cell proliferation in patients with cancer, psoriasis or other dermatitis with little or no adverse effect upon non-multiplying cells.
Elements of limited time intervals, contributing to particular results or situations.
A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445)
A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS BREVIFOLIA. It stabilizes MICROTUBULES in their polymerized form leading to cell death.
A pyrano-acridone alkaloid found in RUTACEAE plants.

Camptothecin is a topoisomerase I inhibitor, which is a type of chemotherapeutic agent used in cancer treatment. It works by interfering with the function of an enzyme called topoisomerase I, which helps to uncoil DNA during cell division. By inhibiting this enzyme, camptothecin prevents the cancer cells from dividing and growing, ultimately leading to their death.

Camptothecin is found naturally in the bark and stem of the Camptotheca acuminata tree, also known as the "happy tree," which is native to China. It was first isolated in 1966 and has since been developed into several synthetic derivatives, including irinotecan and topotecan, which are used clinically to treat various types of cancer, such as colon, lung, and ovarian cancers.

Like other chemotherapeutic agents, camptothecin can have significant side effects, including nausea, vomiting, diarrhea, and myelosuppression (suppression of bone marrow function). It is important for patients receiving camptothecin-based therapies to be closely monitored by their healthcare team to manage these side effects effectively.

Topoisomerase I inhibitors are a class of anticancer drugs that work by inhibiting the function of topoisomerase I, an enzyme that plays a crucial role in the relaxation and replication of DNA. By inhibiting this enzyme's activity, these drugs interfere with the normal unwinding and separation of DNA strands, leading to DNA damage and ultimately cell death. Topoisomerase I inhibitors are used in the treatment of various types of cancer, including colon, small cell lung, ovarian, and cervical cancers. Examples of topoisomerase I inhibitors include camptothecin, irinotecan, and topotecan.

Topotecan is a chemotherapeutic agent, specifically a topoisomerase I inhibitor. It is a semi-synthetic derivative of camptothecin and works by interfering with the function of topoisomerase I, an enzyme that helps to relax supercoiled DNA during transcription and replication. By inhibiting this enzyme, topotecan causes DNA damage and apoptosis (programmed cell death) in rapidly dividing cells, such as cancer cells. It is used in the treatment of various types of cancer, including small cell lung cancer and ovarian cancer.

Organosilicon compounds are a class of chemical compounds that contain at least one organic group (a group of atoms composed mainly of carbon and hydrogen) bonded to a silicon atom. The organic group can be an alkyl group, aryl group, or any other group that is derived from a hydrocarbon.

The term "organosilicon" is used to describe the covalent bond between carbon and silicon atoms, which is a type of bond known as a "sigma bond." This bond is formed by the overlap of atomic orbitals between the carbon and silicon atoms. The resulting organosilicon compound can have a wide range of physical and chemical properties, depending on the nature of the organic group and the number of such groups attached to the silicon atom.

Organosilicon compounds are widely used in various industries, including electronics, coatings, adhesives, and pharmaceuticals. They are also used as intermediates in the synthesis of other chemical compounds. Some common examples of organosilicon compounds include silicones, which are polymers that contain repeating units of siloxane (Si-O-Si) bonds, and organofunctional silanes, which are used as coupling agents to improve the adhesion of materials to surfaces.

Antineoplastic agents, phytogenic, also known as plant-derived anticancer drugs, are medications that are derived from plants and used to treat cancer. These agents have natural origins and work by interfering with the growth and multiplication of cancer cells, helping to slow or stop the spread of the disease. Some examples of antineoplastic agents, phytogenic include paclitaxel (Taxol), vincristine, vinblastine, and etoposide. These drugs are often used in combination with other treatments such as surgery, radiation therapy, and other medications to provide a comprehensive approach to cancer care.

DNA topoisomerases are enzymes that modify the topological structure of DNA by regulating the number of twists or supercoils in the double helix. There are two main types of DNA topoisomerases: type I and type II.

Type I DNA topoisomerases function by cutting one strand of the DNA duplex, allowing the uncut strand to rotate around the break, and then resealing the break. This process can relieve both positive and negative supercoiling in DNA, as well as introduce single-stranded breaks into the DNA molecule.

Type I topoisomerases are further divided into three subtypes: type IA, type IB, and type IC. These subtypes differ in their mechanism of action and the structure of the active site tyrosine residue that makes the transient break in the DNA strand.

Overall, DNA topoisomerases play a crucial role in many cellular processes involving DNA, including replication, transcription, recombination, and chromosome segregation. Dysregulation of these enzymes has been implicated in various human diseases, including cancer and genetic disorders.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

Drug screening assays for antitumor agents are laboratory tests used to identify and evaluate the effectiveness of potential drugs or compounds that can inhibit the growth of tumor cells or induce their death. These assays are typically performed in vitro (in a test tube or petri dish) using cell cultures of various types of cancer cells.

The assays measure different parameters such as cell viability, proliferation, apoptosis (programmed cell death), and cytotoxicity to determine the ability of the drug to kill or inhibit the growth of tumor cells. The results of these assays can help researchers identify promising antitumor agents that can be further developed for clinical use in cancer treatment.

There are different types of drug screening assays for antitumor agents, including high-throughput screening (HTS) assays, which allow for the rapid and automated testing of a large number of compounds against various cancer cell lines. Other types of assays include phenotypic screening assays, target-based screening assays, and functional screening assays, each with its own advantages and limitations.

Overall, drug screening assays for antitumor agents play a critical role in the development of new cancer therapies by providing valuable information on the activity and safety of potential drugs, helping to identify effective treatments and reduce the time and cost associated with bringing new drugs to market.

I'm sorry for any confusion, but "Leukemia P388" is not a widely recognized medical term or a specific type of leukemia. The term "P388" is often used to refer to a particular type of mouse leukemia that is commonly used in laboratory research for testing potential anti-cancer drugs.

Leukemia, in general, is a type of cancer that originates in the bone marrow and results in an overproduction of abnormal white blood cells (leukocytes). These abnormal cells crowd out the healthy cells in the bone marrow, leading to a weakened immune system and various complications.

There are many different types of leukemia, classified based on the type of white blood cell affected (myeloid or lymphocytic) and the speed of progression (acute or chronic). If you're looking for information about a specific type of leukemia, I would be happy to help if you could provide more details.

A xenograft model antitumor assay is a type of preclinical cancer research study that involves transplanting human tumor cells or tissues into an immunodeficient mouse. This model allows researchers to study the effects of various treatments, such as drugs or immune therapies, on human tumors in a living organism.

In this assay, human tumor cells or tissues are implanted into the mouse, typically under the skin or in another organ, where they grow and form a tumor. Once the tumor has established, the mouse is treated with the experimental therapy, and the tumor's growth is monitored over time. The response of the tumor to the treatment is then assessed by measuring changes in tumor size or weight, as well as other parameters such as survival rate and metastasis.

Xenograft model antitumor assays are useful for evaluating the efficacy and safety of new cancer therapies before they are tested in human clinical trials. They provide valuable information on how the tumors respond to treatment, drug pharmacokinetics, and toxicity, which can help researchers optimize dosing regimens and identify potential side effects. However, it is important to note that xenograft models have limitations, such as differences in tumor biology between mice and humans, and may not always predict how well a therapy will work in human patients.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Leukemia L1210 is not a medical definition itself, but it refers to a specific mouse leukemia cell line that was established in 1948. These cells are a type of acute myeloid leukemia (AML) and have been widely used in cancer research as a model for studying the disease, testing new therapies, and understanding the biology of leukemia. The L1210 cell line has contributed significantly to the development of various chemotherapeutic agents and treatment strategies for leukemia and other cancers.

Antibiotics are a type of medication used to treat infections caused by bacteria. They work by either killing the bacteria or inhibiting their growth.

Antineoplastics, also known as chemotherapeutic agents, are a class of drugs used to treat cancer. These medications target and destroy rapidly dividing cells, such as cancer cells, although they can also affect other quickly dividing cells in the body, such as those in the hair follicles or digestive tract, which can lead to side effects.

Antibiotics and antineoplastics are two different classes of drugs with distinct mechanisms of action and uses. It is important to use them appropriately and under the guidance of a healthcare professional.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

I'm sorry for any confusion, but "Sarcoma 180" is not a recognized medical term or an official classification of sarcomas in humans. It appears to be a term used primarily in research involving mice. Sarcoma 180 is a transplantable tumor that was first isolated from a mouse and has been used as a model for cancer research, particularly in studies involving immunotherapy and cancer treatment.

In general, sarcomas are cancers that develop from connective tissues such as bones, muscles, tendons, cartilages, nerves, and blood vessels. They can be further classified into various subtypes based on the specific type of tissue they originate from and their genetic characteristics. If you have any concerns about a specific medical condition or term, I would recommend consulting with a healthcare professional for accurate information.

"Nude mice" is a term used in the field of laboratory research to describe a strain of mice that have been genetically engineered to lack a functional immune system. Specifically, nude mice lack a thymus gland and have a mutation in the FOXN1 gene, which results in a failure to develop a mature T-cell population. This means that they are unable to mount an effective immune response against foreign substances or organisms.

The name "nude" refers to the fact that these mice also have a lack of functional hair follicles, resulting in a hairless or partially hairless phenotype. This feature is actually a secondary consequence of the same genetic mutation that causes their immune deficiency.

Nude mice are commonly used in research because their weakened immune system makes them an ideal host for transplanted tumors, tissues, and cells from other species, including humans. This allows researchers to study the behavior of these foreign substances in a living organism without the complication of an immune response. However, it's important to note that because nude mice lack a functional immune system, they must be kept in sterile conditions and are more susceptible to infection than normal mice.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

DNA damage refers to any alteration in the structure or composition of deoxyribonucleic acid (DNA), which is the genetic material present in cells. DNA damage can result from various internal and external factors, including environmental exposures such as ultraviolet radiation, tobacco smoke, and certain chemicals, as well as normal cellular processes such as replication and oxidative metabolism.

Examples of DNA damage include base modifications, base deletions or insertions, single-strand breaks, double-strand breaks, and crosslinks between the two strands of the DNA helix. These types of damage can lead to mutations, genomic instability, and chromosomal aberrations, which can contribute to the development of diseases such as cancer, neurodegenerative disorders, and aging-related conditions.

The body has several mechanisms for repairing DNA damage, including base excision repair, nucleotide excision repair, mismatch repair, and double-strand break repair. However, if the damage is too extensive or the repair mechanisms are impaired, the cell may undergo apoptosis (programmed cell death) to prevent the propagation of potentially harmful mutations.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Amsacrine is a chemotherapeutic agent, which means it is a medication used to treat cancer. It is classified as an antineoplastic drug, and more specifically, as an intercalating agent and a topoisomerase II inhibitor. Amsacrine works by intercalating, or inserting itself, into the DNA of cancer cells, which prevents the DNA from replicating and ultimately leads to the death of the cancer cell. It is primarily used in the treatment of acute myeloid leukemia (AML) and other hematologic malignancies.

The chemical name for Amsacrine is 5-[3-amino-1-(3-aminopropyl)-2-hydroxybut-1-yloxy]-8-chloro-1,4-naphthoquinone. It has a molecular formula of C16H17ClNO5 and a molecular weight of 359.8 g/mol.

Amsacrine is typically administered intravenously, and its use is usually reserved for patients who have not responded to other forms of chemotherapy. It may be used in combination with other anticancer drugs as part of a treatment regimen. As with any chemotherapeutic agent, Amsacrine can have significant side effects, including nausea, vomiting, and hair loss. It can also cause damage to the heart and other organs, so it is important for patients to be closely monitored during treatment.

It's worth noting that while Amsacrine can be an effective treatment for some types of cancer, it is not a cure-all, and its use must be carefully considered in the context of each individual patient's medical history and current health status.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Topoisomerase II inhibitors are a class of anticancer drugs that work by interfering with the enzyme topoisomerase II, which is essential for DNA replication and transcription. These inhibitors bind to the enzyme-DNA complex, preventing the relaxation of supercoiled DNA and causing DNA strand breaks. This results in the accumulation of double-stranded DNA breaks, which can lead to apoptosis (programmed cell death) in rapidly dividing cells, such as cancer cells. Examples of topoisomerase II inhibitors include etoposide, doxorubicin, and mitoxantrone.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Topoisomerase inhibitors are a class of anticancer drugs that work by interfering with the function of topoisomerases, which are enzymes responsible for relaxing supercoiled DNA during processes such as replication and transcription. Topoisomerase I inhibitors selectively bind to and stabilize the cleavage complex formed between topoisomerase I and DNA, preventing the relegation of the broken DNA strand and resulting in DNA damage and cell death. Examples include irinotecan and topotecan. Topoisomerase II inhibitors, on the other hand, bind to and stabilize the cleavage complex formed between topoisomerase II and DNA, leading to double-stranded DNA breaks and cell death. Examples include doxorubicin, etoposide, and mitoxantrone. These drugs are used in the treatment of various types of cancer.

Inhibitory Concentration 50 (IC50) is a measure used in pharmacology, toxicology, and virology to describe the potency of a drug or chemical compound. It refers to the concentration needed to reduce the biological or biochemical activity of a given substance by half. Specifically, it is most commonly used in reference to the inhibition of an enzyme or receptor.

In the context of infectious diseases, IC50 values are often used to compare the effectiveness of antiviral drugs against a particular virus. A lower IC50 value indicates that less of the drug is needed to achieve the desired effect, suggesting greater potency and potentially fewer side effects. Conversely, a higher IC50 value suggests that more of the drug is required to achieve the same effect, indicating lower potency.

It's important to note that IC50 values can vary depending on the specific assay or experimental conditions used, so they should be interpreted with caution and in conjunction with other measures of drug efficacy.

Neoplasm transplantation is not a recognized or established medical procedure in the field of oncology. The term "neoplasm" refers to an abnormal growth of cells, which can be benign or malignant (cancerous). "Transplantation" typically refers to the surgical transfer of living cells, tissues, or organs from one part of the body to another or between individuals.

The concept of neoplasm transplantation may imply the transfer of cancerous cells or tissues from a donor to a recipient, which is not a standard practice due to ethical considerations and the potential harm it could cause to the recipient. In some rare instances, researchers might use laboratory animals to study the transmission and growth of human cancer cells, but this is done for scientific research purposes only and under strict regulatory guidelines.

In summary, there is no medical definition for 'Neoplasm Transplantation' as it does not represent a standard or ethical medical practice.

Experimental neoplasms refer to abnormal growths or tumors that are induced and studied in a controlled laboratory setting, typically in animals or cell cultures. These studies are conducted to understand the fundamental mechanisms of cancer development, progression, and potential treatment strategies. By manipulating various factors such as genetic mutations, environmental exposures, and pharmacological interventions, researchers can gain valuable insights into the complex processes underlying neoplasm formation and identify novel targets for cancer therapy. It is important to note that experimental neoplasms may not always accurately represent human cancers, and further research is needed to translate these findings into clinically relevant applications.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Intercalating agents are chemical substances that can be inserted between the stacked bases of DNA, creating a separation or "intercalation" of the base pairs. This property is often exploited in cancer chemotherapy, where intercalating agents like doxorubicin and daunorubicin are used to inhibit the replication and transcription of cancer cells by preventing the normal functioning of their DNA. However, these agents can also have toxic effects on normal cells, particularly those that divide rapidly, such as bone marrow and gut epithelial cells. Therefore, their use must be carefully monitored and balanced against their therapeutic benefits.

Camptotheca is a genus of trees in the family Nyssaceae, native to China and Tibet. It is also known as "camptotheca acuminata" or "the Chinese happy tree." The bark and leaves of this tree contain camptothecin, a compound that has been studied for its potential anti-cancer properties. Camptothecin and its derivatives are used in the treatment of various types of cancer, including colon, ovarian, and small cell lung cancer.

DNA topoisomerases are enzymes that regulate the topological state of DNA during various cellular processes such as replication, transcription, and repair. They do this by introducing temporary breaks in the DNA strands and allowing the strands to rotate around each other, thereby relieving torsional stress and supercoiling. Topoisomerases are classified into two types: type I and type II.

Type II topoisomerases are further divided into two subtypes: type IIA and type IIB. These enzymes function by forming a covalent bond with the DNA strands, cleaving them, and then passing another segment of DNA through the break before resealing the original strands. This process allows for the removal of both positive and negative supercoils from DNA as well as the separation of interlinked circular DNA molecules (catenanes) or knotted DNA structures.

Type II topoisomerases are essential for cell viability, and their dysfunction has been linked to various human diseases, including cancer and neurodegenerative disorders. They have also emerged as important targets for the development of anticancer drugs that inhibit their activity and induce DNA damage leading to cell death. Examples of type II topoisomerase inhibitors include etoposide, doxorubicin, and mitoxantrone.

Teniposide is a synthetic podophyllotoxin derivative, which is an antineoplastic agent. It works by interfering with the DNA synthesis and function of cancer cells, leading to cell cycle arrest and apoptosis (programmed cell death). Teniposide is primarily used in the treatment of acute lymphoblastic leukemia (ALL) and other malignancies in children. It is often administered through intravenous infusion and is typically used in combination with other chemotherapeutic agents.

The medical definition of Teniposide can be stated as:

Teniposide, chemically known as (4'-demethylepipodophyllotoxin 9-[4,6-O-(R)-benzylidene-α-L-glucopyranoside]), is a semi-synthetic podophyllotoxin derivative with antineoplastic activity. It inhibits DNA topoisomerase II, leading to the formation of DNA-topoisomerase II cleavable complexes, G2 arrest, and apoptosis in cancer cells. Teniposide is primarily used in the treatment of acute lymphoblastic leukemia (ALL) and other malignancies in children, often administered through intravenous infusion and typically used in combination with other chemotherapeutic agents.

I cannot provide a specific medical definition for "Melanoma, Experimental," as it is not a standardized medical term. However, I can give you information about melanoma and experimental treatments related to this disease.

Melanoma is a type of cancer that develops from pigment-producing cells known as melanocytes. It usually occurs in the skin but can rarely occur in other parts of the body, such as the eyes or internal organs. Melanoma is characterized by the uncontrolled growth and multiplication of melanocytes, forming malignant tumors.

Experimental treatments for melanoma refer to novel therapeutic strategies that are currently being researched and tested in clinical trials. These experimental treatments may include:

1. Targeted therapies: Drugs that target specific genetic mutations or molecular pathways involved in melanoma growth and progression. Examples include BRAF and MEK inhibitors, such as vemurafenib, dabrafenib, and trametinib.
2. Immunotherapies: Treatments designed to enhance the immune system's ability to recognize and destroy cancer cells. These may include checkpoint inhibitors (e.g., ipilimumab, nivolumab, pembrolizumab), adoptive cell therapies (e.g., CAR T-cell therapy), and therapeutic vaccines.
3. Oncolytic viruses: Genetically modified viruses that can selectively infect and kill cancer cells while leaving healthy cells unharmed. Talimogene laherparepvec (T-VEC) is an example of an oncolytic virus approved for the treatment of advanced melanoma.
4. Combination therapies: The use of multiple experimental treatments in combination to improve efficacy and reduce the risk of resistance. For instance, combining targeted therapies with immunotherapies or different types of immunotherapies.
5. Personalized medicine approaches: Using genetic testing and biomarker analysis to identify the most effective treatment for an individual patient based on their specific tumor characteristics.

It is essential to consult with healthcare professionals and refer to clinical trial databases, such as ClinicalTrials.gov, for up-to-date information on experimental treatments for melanoma.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Doxorubicin is a type of chemotherapy medication known as an anthracycline. It works by interfering with the DNA in cancer cells, which prevents them from growing and multiplying. Doxorubicin is used to treat a wide variety of cancers, including leukemia, lymphoma, breast cancer, lung cancer, ovarian cancer, and many others. It may be given alone or in combination with other chemotherapy drugs.

Doxorubicin is usually administered through a vein (intravenously) and can cause side effects such as nausea, vomiting, hair loss, mouth sores, and increased risk of infection. It can also cause damage to the heart muscle, which can lead to heart failure in some cases. For this reason, doctors may monitor patients' heart function closely while they are receiving doxorubicin treatment.

It is important for patients to discuss the potential risks and benefits of doxorubicin therapy with their healthcare provider before starting treatment.

I'm sorry for any confusion, but "KB cells" is not a widely recognized or established term in medical or scientific communities. It's possible that "KB cells" may refer to a specific cell line used in scientific research. KB cells are a type of cell line derived from a human carcinoma (a type of cancer) of the nasopharynx (the upper part of the throat behind the nose). They are often used in studies related to cancer, virology, and other areas of biomedical research.

However, without more context or information, it's difficult to provide a more precise definition of "KB cells." If you have more information about where you encountered this term or what specific context it was used in, I may be able to give a more accurate answer.

Ellipticines are a class of naturally occurring alkaloids that have been isolated from various plants, including those in the family Apocynaceae. These compounds have been found to exhibit various biological activities, including anti-cancer and anti-microbial properties.

Ellipticines have a unique chemical structure, characterized by a planar, aromatic core with two side chains that contain nitrogen atoms. This structure allows ellipticines to intercalate into DNA, disrupting its normal function and leading to cell death. As a result, ellipticines have been studied as potential anti-cancer agents, particularly for the treatment of drug-resistant cancers.

In addition to their anti-cancer properties, ellipticines have also been found to exhibit antibacterial, antifungal, and antiparasitic activities. However, further research is needed to fully understand the mechanisms behind these effects and to determine the safety and efficacy of ellipticines as therapeutic agents.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

Streptonigrin is not a medical condition, it is actually a naturally occurring antibiotic and antineoplastic agent. It is produced by the bacterium Streptomyces flocculus and has been studied for its potential use in cancer chemotherapy due to its ability to inhibit DNA synthesis in cancer cells. However, its clinical use is limited due to its toxicity.

Drug resistance in neoplasms (also known as cancer drug resistance) refers to the ability of cancer cells to withstand the effects of chemotherapeutic agents or medications designed to kill or inhibit the growth of cancer cells. This can occur due to various mechanisms, including changes in the cancer cell's genetic makeup, alterations in drug targets, increased activity of drug efflux pumps, and activation of survival pathways.

Drug resistance can be intrinsic (present at the beginning of treatment) or acquired (developed during the course of treatment). It is a significant challenge in cancer therapy as it often leads to reduced treatment effectiveness, disease progression, and poor patient outcomes. Strategies to overcome drug resistance include the use of combination therapies, development of new drugs that target different mechanisms, and personalized medicine approaches that consider individual patient and tumor characteristics.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

"Drug design" is the process of creating and developing a new medication or therapeutic agent to treat or prevent a specific disease or condition. It involves identifying potential targets within the body, such as proteins or enzymes that are involved in the disease process, and then designing small molecules or biologics that can interact with these targets to produce a desired effect.

The drug design process typically involves several stages, including:

1. Target identification: Researchers identify a specific molecular target that is involved in the disease process.
2. Lead identification: Using computational methods and high-throughput screening techniques, researchers identify small molecules or biologics that can interact with the target.
3. Lead optimization: Researchers modify the chemical structure of the lead compound to improve its ability to interact with the target, as well as its safety and pharmacokinetic properties.
4. Preclinical testing: The optimized lead compound is tested in vitro (in a test tube or petri dish) and in vivo (in animals) to evaluate its safety and efficacy.
5. Clinical trials: If the preclinical testing is successful, the drug moves on to clinical trials in humans to further evaluate its safety and efficacy.

The ultimate goal of drug design is to create a new medication that is safe, effective, and can be used to improve the lives of patients with a specific disease or condition.

Drug resistance, also known as antimicrobial resistance, is the ability of a microorganism (such as bacteria, viruses, fungi, or parasites) to withstand the effects of a drug that was originally designed to inhibit or kill it. This occurs when the microorganism undergoes genetic changes that allow it to survive in the presence of the drug. As a result, the drug becomes less effective or even completely ineffective at treating infections caused by these resistant organisms.

Drug resistance can develop through various mechanisms, including mutations in the genes responsible for producing the target protein of the drug, alteration of the drug's target site, modification or destruction of the drug by enzymes produced by the microorganism, and active efflux of the drug from the cell.

The emergence and spread of drug-resistant microorganisms pose significant challenges in medical treatment, as they can lead to increased morbidity, mortality, and healthcare costs. The overuse and misuse of antimicrobial agents, as well as poor infection control practices, contribute to the development and dissemination of drug-resistant strains. To address this issue, it is crucial to promote prudent use of antimicrobials, enhance surveillance and monitoring of resistance patterns, invest in research and development of new antimicrobial agents, and strengthen infection prevention and control measures.

Etoposide is a chemotherapy medication used to treat various types of cancer, including lung cancer, testicular cancer, and certain types of leukemia. It works by inhibiting the activity of an enzyme called topoisomerase II, which is involved in DNA replication and transcription. By doing so, etoposide can interfere with the growth and multiplication of cancer cells.

Etoposide is often administered intravenously in a hospital or clinic setting, although it may also be given orally in some cases. The medication can cause a range of side effects, including nausea, vomiting, hair loss, and an increased risk of infection. It can also have more serious side effects, such as bone marrow suppression, which can lead to anemia, bleeding, and a weakened immune system.

Like all chemotherapy drugs, etoposide is not without risks and should only be used under the close supervision of a qualified healthcare provider. It is important for patients to discuss the potential benefits and risks of this medication with their doctor before starting treatment.

Triaziquone is not a medication that has a widely accepted or commonly used medical definition in the English language. It is possible that you may be referring to Triaziquat, which is an oral antiprotozoal medication used to treat certain types of intestinal infections caused by protozoa such as Giardia lamblia and Entamoeba histolytica.

Triaziquat works by inhibiting the growth of these parasites, thereby helping to eliminate the infection. However, it is important to note that Triaziquat is not a commonly used medication in many parts of the world, and its use has been largely replaced by other more effective and safer treatments.

It's possible that there may be some confusion with the name or spelling of this medication, so if you have any specific concerns or questions about a particular medication or medical condition, it's always best to consult with a healthcare professional for accurate information and advice.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Lactones are not a medical term per se, but they are important in the field of pharmaceuticals and medicinal chemistry. Lactones are cyclic esters derived from hydroxy acids. They can be found naturally in various plants, fruits, and some insects. In medicine, lactones have been used in the synthesis of drugs, including certain antibiotics and antifungal agents. For instance, the penicillin family of antibiotics contains a beta-lactone ring in their structure, which is essential for their antibacterial activity.

Cisplatin is a chemotherapeutic agent used to treat various types of cancers, including testicular, ovarian, bladder, head and neck, lung, and cervical cancers. It is an inorganic platinum compound that contains a central platinum atom surrounded by two chloride atoms and two ammonia molecules in a cis configuration.

Cisplatin works by forming crosslinks between DNA strands, which disrupts the structure of DNA and prevents cancer cells from replicating. This ultimately leads to cell death and slows down or stops the growth of tumors. However, cisplatin can also cause damage to normal cells, leading to side effects such as nausea, vomiting, hearing loss, and kidney damage. Therefore, it is essential to monitor patients closely during treatment and manage any adverse effects promptly.

Colonic neoplasms refer to abnormal growths in the large intestine, also known as the colon. These growths can be benign (non-cancerous) or malignant (cancerous). The two most common types of colonic neoplasms are adenomas and carcinomas.

Adenomas are benign tumors that can develop into cancer over time if left untreated. They are often found during routine colonoscopies and can be removed during the procedure.

Carcinomas, on the other hand, are malignant tumors that invade surrounding tissues and can spread to other parts of the body. Colorectal cancer is the third leading cause of cancer-related deaths in the United States, and colonic neoplasms are a significant risk factor for developing this type of cancer.

Regular screenings for colonic neoplasms are recommended for individuals over the age of 50 or those with a family history of colorectal cancer or other risk factors. Early detection and removal of colonic neoplasms can significantly reduce the risk of developing colorectal cancer.

Acridines are a class of heterocyclic aromatic organic compounds that contain a nucleus of three fused benzene rings and a nitrogen atom. They have a wide range of applications, including in the development of chemotherapeutic agents for the treatment of cancer and antibacterial, antifungal, and antiparasitic drugs. Some acridines also exhibit fluorescent properties and are used in research and diagnostic applications.

In medicine, some acridine derivatives have been found to intercalate with DNA, disrupting its structure and function, which can lead to the death of cancer cells. For example, the acridine derivative proflavin has been used as an antiseptic and in the treatment of certain types of cancer. However, many acridines also have toxic side effects, limiting their clinical use.

It is important to note that while acridines have potential therapeutic uses, they should only be used under the supervision of a qualified healthcare professional, as they can cause harm if not used properly.

Maytansine is not typically defined in a medical dictionary as it is not a medical term itself, but rather a chemical compound. Maytansine is a natural product that was initially isolated from the bark of the African shrub Maytenus ovatus. It is a potent antimitotic agent, which means it interferes with cell division and has been studied for its potential use in cancer treatment.

In medical contexts, maytansine is often discussed in relation to specific drugs or therapies that utilize this compound. For example, the drug DM1 (also known as maytansinoid 1) is a derivative of maytansine and has been conjugated with monoclonal antibodies for targeted cancer therapy.

Therefore, when discussing 'Maytansine' in a medical context, it generally refers to the chemical compound or its derivatives that have potential use as anticancer agents.

Preclinical drug evaluation refers to a series of laboratory tests and studies conducted to determine the safety and effectiveness of a new drug before it is tested in humans. These studies typically involve experiments on cells and animals to evaluate the pharmacological properties, toxicity, and potential interactions with other substances. The goal of preclinical evaluation is to establish a reasonable level of safety and understanding of how the drug works, which helps inform the design and conduct of subsequent clinical trials in humans. It's important to note that while preclinical studies provide valuable information, they may not always predict how a drug will behave in human subjects.

Heterologous transplantation is a type of transplantation where an organ or tissue is transferred from one species to another. This is in contrast to allogeneic transplantation, where the donor and recipient are of the same species, or autologous transplantation, where the donor and recipient are the same individual.

In heterologous transplantation, the immune systems of the donor and recipient are significantly different, which can lead to a strong immune response against the transplanted organ or tissue. This is known as a graft-versus-host disease (GVHD), where the immune cells in the transplanted tissue attack the recipient's body.

Heterologous transplantation is not commonly performed in clinical medicine due to the high risk of rejection and GVHD. However, it may be used in research settings to study the biology of transplantation and to develop new therapies for transplant rejection.

I believe there might be a misunderstanding in your question. "Pyrones" is not a medical term, but rather a chemical term used to describe a class of organic compounds known as lactones with a characteristic eight-membered ring. These compounds are found in various natural sources such as plants and fungi, and some have been studied for their potential biological activities.

However, if you meant "pyrexia" instead of "pyrones," then I can provide the medical definition:

Pyrexia is a term used to describe an abnormally elevated body temperature, also known as fever. In adults, a core body temperature of 100.4°F (38°C) or higher is generally considered indicative of pyrexia. Fever is often a response to an infection or inflammation in the body and can be part of the immune system's effort to combat pathogens.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Alkaloids are a type of naturally occurring organic compounds that contain mostly basic nitrogen atoms. They are often found in plants, and are known for their complex ring structures and diverse pharmacological activities. Many alkaloids have been used in medicine for their analgesic, anti-inflammatory, and therapeutic properties. Examples of alkaloids include morphine, quinine, nicotine, and caffeine.

Naphthacenes are hydrocarbon compounds that consist of a naphthalene ring fused to two additional benzene rings. They belong to the class of polycyclic aromatic hydrocarbons (PAHs) and have been studied for their potential carcinogenic properties. Naphthacenes can be found in various environmental sources, including air pollution from vehicle emissions and cigarette smoke. However, it's important to note that specific medical definitions related to diseases or conditions are not typically associated with naphthacenes.

I'm sorry for any confusion, but "Leukemia L5178" is not a recognized medical term or classification for leukemia. The World Health Organization (WHO) and other organizations have established specific classifications for different types of leukemias based on factors such as cell type, genetic mutations, and other characteristics. However, "L5178" does not appear in these classifications.

It's possible that "L5178" might refer to a specific research cell line used in scientific studies, but without more context, it's difficult to provide a precise definition. If you have more information about where you encountered this term, I may be able to provide a more accurate response.

I apologize for any confusion, but "dioxoles" is not a medical term or concept. It is a chemical term that refers to a specific type of organic compound containing a dioxole ring, which is a six-membered ring consisting of two oxygen atoms and two carbon atoms. Dioxoles can be found in various natural and synthetic substances, but they are not typically relevant to medical definitions or concepts.

If you have any questions related to medical terminology or concepts, I would be happy to help answer them for you.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Lung neoplasms refer to abnormal growths or tumors in the lung tissue. These tumors can be benign (non-cancerous) or malignant (cancerous). Malignant lung neoplasms are further classified into two main types: small cell lung carcinoma and non-small cell lung carcinoma. Lung neoplasms can cause symptoms such as cough, chest pain, shortness of breath, and weight loss. They are often caused by smoking or exposure to secondhand smoke, but can also occur due to genetic factors, radiation exposure, and other environmental carcinogens. Early detection and treatment of lung neoplasms is crucial for improving outcomes and survival rates.

"Acridones" are a class of chemical compounds that contain a heterocyclic ring structure consisting of a benzene ring fused to a pyrimidine ring. The name "acridone" refers to the parent compound of this class, which is 9-phenylacridine or dibenzo[b,f]pyrimidine-7(8H)-one.

Acridones have been studied for their potential medicinal properties, including their antimicrobial, antiviral, and antitumor activities. However, some acridones have also been found to be toxic or carcinogenic, so their use in medical applications is limited.

In a medical context, "acridones" may refer to a specific class of drugs that are derived from the parent compound and have been investigated for their potential therapeutic uses. It is important to note that each drug or chemical compound should be evaluated on its own merits and in the context of its specific medical use, as generalizations about a entire class of compounds can be misleading.

Indole is not strictly a medical term, but it is a chemical compound that can be found in the human body and has relevance to medical and biological research. Indoles are organic compounds that contain a bicyclic structure consisting of a six-membered benzene ring fused to a five-membered pyrrole ring.

In the context of medicine, indoles are particularly relevant due to their presence in certain hormones and other biologically active molecules. For example, the neurotransmitter serotonin contains an indole ring, as does the hormone melatonin. Indoles can also be found in various plant-based foods, such as cruciferous vegetables (e.g., broccoli, kale), and have been studied for their potential health benefits.

Some indoles, like indole-3-carbinol and diindolylmethane, are found in these vegetables and can have anti-cancer properties by modulating estrogen metabolism, reducing inflammation, and promoting cell death (apoptosis) in cancer cells. However, it is essential to note that further research is needed to fully understand the potential health benefits and risks associated with indoles.

Aminoacridines are a group of synthetic chemical compounds that contain an acridine nucleus, which is a tricyclic aromatic structure, substituted with one or more amino groups. These compounds have been studied for their potential therapeutic properties, particularly as antiseptics and antibacterial agents. However, their use in medicine has declined due to the development of newer and safer antibiotics. Some aminoacridines also exhibit antimalarial, antifungal, and antiviral activities. They can intercalate into DNA, disrupting its structure and function, which is thought to contribute to their antimicrobial effects. However, this property also makes them potentially mutagenic and carcinogenic, limiting their clinical use.

Aziridines are a class of organic compounds that contain a three-membered ring consisting of two carbon atoms and one nitrogen atom. The nitrogen atom is bonded to two alkyl or aryl groups, and the third carbon atom is bonded to a hydrogen atom or another organic group.

Aziridines are important intermediates in the synthesis of various pharmaceuticals, agrochemicals, and other industrial chemicals. They can be prepared by the reaction of alkyl or aryl halides with nitrogen nucleophiles such as ammonia or primary amines, followed by intramolecular cyclization.

Aziridines are also useful building blocks in organic synthesis due to their high reactivity towards various nucleophilic reagents. They can undergo ring-opening reactions with a wide range of nucleophiles, including water, alcohols, amines, and carboxylic acids, leading to the formation of new carbon-heteroatom bonds.

It is important to note that aziridines themselves are toxic and should be handled with care. However, their derivatives have found significant applications in medicinal chemistry as antitumor agents, anti-inflammatory drugs, and enzyme inhibitors.

A prodrug is a pharmacologically inactive substance that, once administered, is metabolized into a drug that is active. Prodrugs are designed to improve the bioavailability or delivery of a drug, to minimize adverse effects, or to target the drug to specific sites in the body. The conversion of a prodrug to its active form typically occurs through enzymatic reactions in the liver or other tissues.

Prodrugs can offer several advantages over traditional drugs, including:

* Improved absorption: Some drugs have poor bioavailability due to their chemical properties, which make them difficult to absorb from the gastrointestinal tract. Prodrugs can be designed with improved absorption characteristics, allowing for more efficient delivery of the active drug to the body.
* Reduced toxicity: By masking the active drug's chemical structure, prodrugs can reduce its interactions with sensitive tissues and organs, thereby minimizing adverse effects.
* Targeted delivery: Prodrugs can be designed to selectively release the active drug in specific areas of the body, such as tumors or sites of infection, allowing for more precise and effective therapy.

Examples of prodrugs include:

* Aspirin (acetylsalicylic acid), which is metabolized to salicylic acid in the liver.
* Enalapril, an angiotensin-converting enzyme (ACE) inhibitor used to treat hypertension and heart failure, which is metabolized to enalaprilat in the liver.
* Codeine, an opioid analgesic, which is metabolized to morphine in the liver by the enzyme CYP2D6.

It's important to note that not all prodrugs are successful, and some may even have unintended consequences. For example, if a patient has a genetic variation that affects the activity of the enzyme responsible for converting the prodrug to its active form, the drug may not be effective or may produce adverse effects. Therefore, it's essential to consider individual genetic factors when prescribing prodrugs.

The term "DNA, neoplasm" is not a standard medical term or concept. DNA refers to deoxyribonucleic acid, which is the genetic material present in the cells of living organisms. A neoplasm, on the other hand, is a tumor or growth of abnormal tissue that can be benign (non-cancerous) or malignant (cancerous).

In some contexts, "DNA, neoplasm" may refer to genetic alterations found in cancer cells. These genetic changes can include mutations, amplifications, deletions, or rearrangements of DNA sequences that contribute to the development and progression of cancer. Identifying these genetic abnormalities can help doctors diagnose and treat certain types of cancer more effectively.

However, it's important to note that "DNA, neoplasm" is not a term that would typically be used in medical reports or research papers without further clarification. If you have any specific questions about DNA changes in cancer cells or neoplasms, I would recommend consulting with a healthcare professional or conducting further research on the topic.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Biotransformation is the metabolic modification of a chemical compound, typically a xenobiotic (a foreign chemical substance found within an living organism), by a biological system. This process often involves enzymatic conversion of the parent compound to one or more metabolites, which may be more or less active, toxic, or mutagenic than the original substance.

In the context of pharmacology and toxicology, biotransformation is an important aspect of drug metabolism and elimination from the body. The liver is the primary site of biotransformation, but other organs such as the kidneys, lungs, and gastrointestinal tract can also play a role.

Biotransformation can occur in two phases: phase I reactions involve functionalization of the parent compound through oxidation, reduction, or hydrolysis, while phase II reactions involve conjugation of the metabolite with endogenous molecules such as glucuronic acid, sulfate, or acetate to increase its water solubility and facilitate excretion.

Rubiaceae is not a medical term, but a taxonomic category in botany. It refers to the family of flowering plants that includes more than 13,500 species, distributed across approximately 600 genera. Some well-known members of this family include coffee (Coffea arabica), gardenias (Gardenia jasminoides), and madder (Rubia tinctorum).

In a medical context, certain plants from the Rubiaceae family have been used in traditional medicine for various purposes. For example:

* Coffee (Coffea arabica) beans are used to prepare caffeinated beverages that can help with alertness and concentration.
* Gardenia fruits and flowers have been used in traditional Chinese medicine to treat anxiety, insomnia, and inflammation.
* Madder root (Rubia tinctorum) has been used as a dye and in traditional medicine to treat skin conditions and digestive disorders.

However, it's important to note that the medicinal use of plants from this family should be based on scientific evidence and under the guidance of healthcare professionals, as some of these plants can have side effects or interact with medications.

Enediynes are a class of organic compounds that contain an unsaturated hydrocarbon structure consisting of two double bonds separated by a single bond, forming a core structural unit of R-C=C=C=C-R'. This unique arrangement gives enediynes significant chemical reactivity and has been the basis for their development as antitumor agents.

Enediynes can undergo a cyclization reaction known as the Bergman cyclization, which generates a highly reactive 1,4-diradical species capable of causing significant damage to DNA and other cellular components. This property has been exploited in the design of enediyne-based anticancer drugs, such as neocarzinostatin and calicheamicin, that can selectively target and destroy cancer cells while minimizing harm to normal tissues.

It is important to note that this definition is a general description of the chemical structure and properties of enediynes, and it does not provide specific medical advice or recommendations for treatment. If you have any questions about enediynes or their potential use in medicine, please consult with a qualified healthcare professional.

Naphthoquinones are a type of organic compound that consists of a naphthalene ring (two benzene rings fused together) with two ketone functional groups (=O) at the 1 and 2 positions. They exist in several forms, including natural and synthetic compounds. Some well-known naphthoquinones include vitamin K1 (phylloquinone) and K2 (menaquinone), which are important for blood clotting and bone metabolism. Other naphthoquinones have been studied for their potential medicinal properties, including anticancer, antibacterial, and anti-inflammatory activities. However, some naphthoquinones can also be toxic or harmful to living organisms, so they must be used with caution.

Chromomycins are a group of antibiotics that are produced by the bacterium Streptomyces griseus. They are known for their ability to bind to DNA and inhibit the growth of various bacteria, fungi, and parasites. Chromomycins have been studied for their potential use in cancer treatment due to their antiproliferative effects on certain types of tumor cells. However, they have not yet been approved for clinical use in humans.

HT-29 is a human colon adenocarcinoma cell line that is commonly used in research. These cells are derived from a colorectal cancer tumor and have the ability to differentiate into various cell types found in the intestinal mucosa, such as absorptive enterocytes and mucus-secreting goblet cells. HT-29 cells are often used to study the biology of colon cancer, including the effects of drugs on cancer cell growth and survival, as well as the role of various genes and signaling pathways in colorectal tumorigenesis.

It is important to note that when working with cell lines like HT-29, it is essential to use proper laboratory techniques and follow established protocols to ensure the integrity and reproducibility of experimental results. Additionally, researchers should regularly authenticate their cell lines to confirm their identity and verify that they are free from contamination with other cell types.

I'm sorry for any confusion, but "Indenes" is not a recognized medical term or concept in the field of medicine or healthcare. It may be that there is a spelling mistake or typo in your question. If you are referring to "Indenes" as a chemical compound, it is a polycyclic aromatic hydrocarbon (PAH) with the molecular formula C9H8. However, I would recommend consulting a chemistry or toxicology resource for information on its non-medical uses and properties.

Antineoplastic agents, alkylating, are a class of chemotherapeutic drugs that work by alkylating (adding alkyl groups) to DNA, which can lead to the death or dysfunction of cancer cells. These agents can form cross-links between strands of DNA, preventing DNA replication and transcription, ultimately leading to cell cycle arrest and apoptosis (programmed cell death). Examples of alkylating agents include cyclophosphamide, melphalan, and cisplatin. While these drugs are designed to target rapidly dividing cancer cells, they can also affect normal cells that divide quickly, such as those in the bone marrow and digestive tract, leading to side effects like anemia, neutropenia, thrombocytopenia, and nausea/vomiting.

I believe there may be some confusion in your question as "Organic chemistry phenomena" is a broad term and not a medical definition. However, I can provide you with an explanation of organic chemistry phenomena in a general context.

Organic chemistry is the study of carbon-containing compounds, their synthesis, reactions, properties, and structures. The term "organic" was originally used to describe biological materials, but now it refers to any compound that contains carbon atoms bonded to hydrogen atoms, except for some simple oxides, sulfides, and halides.

Organic chemistry phenomena encompass a wide range of processes and events related to organic compounds. These can include:

1. Structural properties: Understanding the arrangement of atoms in organic molecules and how they influence chemical behavior and reactivity.
2. Stereochemistry: The study of three-dimensional spatial arrangements of atoms in organic molecules, which can significantly impact their properties and biological activity.
3. Functional groups: Recognizing and understanding the behavior of specific groupings of atoms within organic molecules that determine their chemical reactivity.
4. Reaction mechanisms: Investigating and describing the step-by-step processes by which organic reactions occur, including the movement of electrons, formation and breaking of bonds, and energy changes.
5. Synthetic methodologies: Developing strategies and techniques for creating complex organic molecules from simpler precursors, often involving multiple steps and protecting group strategies.
6. Physical properties: Examining how factors such as molecular weight, polarity, solubility, and melting/boiling points affect the behavior of organic compounds in various conditions.
7. Spectroscopic analysis: Utilizing techniques like NMR (Nuclear Magnetic Resonance), IR (Infrared) spectroscopy, and mass spectrometry to analyze the structure and composition of organic molecules.
8. Biochemistry and medicinal chemistry: Exploring how organic compounds interact with biological systems, including drug design, development, and delivery.

While not a medical definition per se, understanding organic chemistry phenomena is crucial for many areas within medicine, such as pharmaceutical research, toxicology, and biochemistry.

Furans are not a medical term, but a class of organic compounds that contain a four-membered ring with four atoms, usually carbon and oxygen. They can be found in some foods and have been used in the production of certain industrial chemicals. Some furan derivatives have been identified as potentially toxic or carcinogenic, but the effects of exposure to these substances depend on various factors such as the level and duration of exposure.

In a medical context, furans may be mentioned in relation to environmental exposures, food safety, or occupational health. For example, some studies have suggested that high levels of exposure to certain furan compounds may increase the risk of liver damage or cancer. However, more research is needed to fully understand the potential health effects of these substances.

It's worth noting that furans are not a specific medical condition or diagnosis, but rather a class of chemical compounds with potential health implications. If you have concerns about exposure to furans or other environmental chemicals, it's best to consult with a healthcare professional for personalized advice and recommendations.

I'm sorry for any confusion, but "Menogaril" does not appear to have a widely recognized or established medical definition. It is possible that you may be referring to a specific chemical compound or experimental drug. However, without more context or information, it is difficult for me to provide a precise definition.

Menogaril is a synthetic compound that has been studied in preclinical trials for its potential anticancer properties. It is an analog of the natural product dictyostatin and has been shown to inhibit the activity of several enzymes involved in DNA replication and repair, including topoisomerase II and poly(ADP-ribose) polymerase (PARP). However, it is important to note that Menogaril is not currently approved for use in clinical medicine, and its safety and efficacy have not been established in human trials.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Aphidicolin is an antimicrotubule agent that is specifically a inhibitor of DNA polymerase alpha. It is an antibiotic that is produced by the fungus Cephalosporium aphidicola and is used in research to study the cell cycle and DNA replication. In clinical medicine, it has been explored as a potential anticancer agent, although its use is not currently approved for this indication.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Melanoma is defined as a type of cancer that develops from the pigment-containing cells known as melanocytes. It typically occurs in the skin but can rarely occur in other parts of the body, including the eyes and internal organs. Melanoma is characterized by the uncontrolled growth and multiplication of melanocytes, which can form malignant tumors that invade and destroy surrounding tissue.

Melanoma is often caused by exposure to ultraviolet (UV) radiation from the sun or tanning beds, but it can also occur in areas of the body not exposed to the sun. It is more likely to develop in people with fair skin, light hair, and blue or green eyes, but it can affect anyone, regardless of their skin type.

Melanoma can be treated effectively if detected early, but if left untreated, it can spread to other parts of the body and become life-threatening. Treatment options for melanoma include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, depending on the stage and location of the cancer. Regular skin examinations and self-checks are recommended to detect any changes or abnormalities in moles or other pigmented lesions that may indicate melanoma.

Paclitaxel is a chemotherapeutic agent derived from the bark of the Pacific yew tree (Taxus brevifolia). It is an antimicrotubule agent that promotes the assembly and stabilization of microtubules, thereby interfering with the normal dynamic reorganization of the microtubule network that is essential for cell division.

Paclitaxel is used in the treatment of various types of cancer including ovarian, breast, lung, and pancreatic cancers. It works by inhibiting the disassembly of microtubules, which prevents the separation of chromosomes during mitosis, leading to cell cycle arrest and apoptosis (programmed cell death).

Common side effects of paclitaxel include neutropenia (low white blood cell count), anemia (low red blood cell count), alopecia (hair loss), peripheral neuropathy (nerve damage causing numbness or tingling in the hands and feet), myalgias (muscle pain), arthralgias (joint pain), and hypersensitivity reactions.

I'm not aware of a medical definition for the term "Acronine." It is possible that it could be a brand name or a specialized term used within a specific context in medicine or science. However, without more information, I cannot provide an accurate definition. In general, Acronine is not a widely recognized or commonly used term in the field of medicine.

Despite showing promise in preclinical studies, the agent had little antitumour activity in early clinical trials, and dosing ... an alkylating agent which cross-links DNA. Fludarabine phosphate, a purine analogue which has become a mainstay in treatment of ... Another drug class originating from the NCI was the camptothecins. Camptothecin, derived from a Chinese ornamental tree, ... Paclitaxel (Taxol) was a novel antimitotic agent that promoted microtubule assembly. This agent proved difficult to synthesize ...
Studies have shown that teniposide is an active anti-tumor agent and have been used in clinical settings to evaluate the ... and camptothecin: base sequence analysis and activity against camptothecin-resistant topoisomerases I.". Cancer Res. 63 (21): ... Hu, Guohua; Zekria, David; Cai, Xun; Ni, Xiaoling (June 2015). "Current status of CPT and its analogues in the treatment of ... isoquinolines for the development of antitumor agents as topoisomerase I inhibitors". Bioorg. Med. Chem. Lett. 17 (13): 3531-4 ...
Camptothecin is an inhibitor of topoisomerase I. Its analogue, irinotecan, is activated by hydrolysis to SN-38, and is then ... Its main use is in colon cancer, in particular, in combination with other chemotherapy agents. This includes the regimen ... the anti tumor active lactone ring which hydrolyzed to the carboxylate isoform. In plasma, the majority of irinotecan and SN-38 ... Irinotecan is one of the first widely used chemotherapy agents that is dosed according to the recipient's genotype. Irinotecan ...
"Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from ... Since the discovery of CPT many analogues have been synthesized. Below is a schematic view of the CPT analogues that have been ... Chung MK, Han SS, Kim JC (August 2006). "Evaluation of the toxic potentials of a new camptothecin anticancer agent CKD-602 on ... "Curran Synthesis of Camptothecin". Archived from the original on 2009-09-05. Reich HJ. "Comins Synthesis of Camptothecin". ...
Obtaining these analogues was an arduous task for the team; however, after some time, suitable analogues were synthesized and ... Horwitz had been working on several anti tumor drugs in her lab that inhibited the cell cycle by binding to DNA. The National ... Her work paved the way to using taxol and other microtubule binding agents as chemotherapeutics. Taxol remains widely used ... Horwitz is a pioneer in dissecting the mechanisms of action of chemotherapeutic drugs including camptothecin, ...
Camptothecin-encapsulated BSA-PMMA nanoparticles revealed enhanced anti-tumor activity both in vitro and in animals. Beyond the ... For biomolecules that are not hampered by the biotin-streptavidin interaction, iminobiotin, an analogue of biotin, has been ... as a macromolecular chain transfer agent. RAFT mediated growth of the PHPMA chains will graft from the BSA-RAFT, and increase ... conjugated denatured bovine serum albumin micelles for effective delivery of camptothecin". Polymer Chemistry. 3 (8): 1958. doi ...
"Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus ... Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 512. ISBN 9783527607495. Archived from the ... sfn error: no target: CITEREFGoodmanWalsh2001 (help) Wall ME, Wani MC (February 1995). "Camptothecin and taxol: discovery to ... Abraxis BioScience developed Abraxane, in which paclitaxel is bonded to albumin as an alternative delivery agent to the often ...
Zhan, Peng; Li, Zhenyu; Liu, Xinyong (September 2010). "Cosalane and its analogues: a unique class of anti-HIV agents". Mini ... A Novel Antitumor Agent Targeting both TOP1 and TOP2". Molecular Cancer Therapeutics. 19 (8): 1589-1597. doi:10.1158/1535-7163. ... and Camptothecin: Base Sequence Analysis and Activity against Camptothecin- Resistant Topoisomerases I". Cancer Research. 63 ( ... Some of the compounds his group prepared include: the antileukemic agent nitidine chloride (III); corydaline, which possesses ...
One example of successful use of this strategy is the screening for antitumor agents by the National Cancer Institute, which ... Gertrude Elion, working mostly with a group of fewer than 50 people on purine analogues, contributed to the discovery of the ... Camptothecin · Topotecan · Irinotecan · Rubitecan · Belotecan); 2. Podophyllum (Etoposide · Teniposide); 3a. Anthracyclines ( ... Artemisinin, an antimalarial agent from sweet wormtree Artemisia annua, used in Chinese medicine since 200BC is one drug used ...
Siddik ZH (2005). "Mechanisms of Action of Cancer Chemotherapeutic Agents: DNA-Interactive Alkylating Agents and Antitumour ... Children treated with platinum analogues have been found to be at risk for developing hearing loss. Less common side-effects ... Two topoisomerase I inhibitors, irinotecan and topotecan, are semi-synthetically derived from camptothecin, which is obtained ... chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemotherapy may be given with a ...
Grant helps fund research into camptothecin analogues. Feb. 10, 1997. No Comments ... Antitumor agents from Taiho. Feb. 10, 1997. No Comments. ADIR prepares antiangiogenic agents. Feb. 10, 1997 ...
Despite showing promise in preclinical studies, the agent had little antitumour activity in early clinical trials, and dosing ... an alkylating agent which cross-links DNA. Fludarabine phosphate, a purine analogue which has become a mainstay in treatment of ... Another drug class originating from the NCI was the camptothecins. Camptothecin, derived from a Chinese ornamental tree, ... Paclitaxel (Taxol) was a novel antimitotic agent that promoted microtubule assembly. This agent proved difficult to synthesize ...
In an effort to discover potent camptothecin-derived antitumor agents, novel camptothecin analogues with sulfonylpiperazinyl ... In an attempt to improve the antitumor activity of camptothecins (CPTs), novel 10-fluoro-CPT derivatives were designed, ... The anti-tumor drug PEITC was employed to increase the intracellular H2O2 concentration in tumor cells. Results:In vitro and in ... Currently, a large number of anti-tumor drug delivery systems have been widely used in cancer therapy. However, due to the ...
"While FL118 is an analogue of irinotecan and topotecan, two FDA-approved cancer drugs that are also based on the naturally ... The researchers noted that FL118 exhibits potent antitumor efficacy, which suggests additional applications for the drug as a ... occurring compound camptothecin, our findings add further evidence that FL118 has novel mechanisms of action that may make it ... Novel Anticancer Agent May Have Additional Applications in Targeted Therapy. December 17, 2014. Davy James, Associate Editor ...
... and other antitumour agents. All of these drugs affect cell division or DNA synthesis and function in some way. ... Some type I topoisomerase inhibitors include camptothecins: irinotecan and topotecan.. *Examples of type II inhibitors include ... Docetaxel is a semi-synthetic analogue of paclitaxel. Taxanes enhance stability of microtubules, preventing the separation of ... Alkylating agents (L01A). Main article: Alkylating antineoplastic agent. Alkylating agents are so named because of their ...
Camptothecin Derivatives Antitumor Database(CDAD). Cancer is a global health problem and one of the leading causes of human ... Hypoglycemic & Anti-Thyroid Agents Database(HATAD). Cancer prevention and control is a worldwide problem. In recent years, the ... Nucleosides and nucleotide analogues are artificially synthesized. Substances that have undergone certain chemical modif... ...
... camptothecin analogues: inhibition of topoisomerase I and antitumor activity. J Med Chem ... The CPTs form a rapidly growing family of antitumor agents with high in vitro antiproliferative activities and impressive in ... synthesis and antitumor activity of novel E-ring-modified camptothecin analogues. J Med Chem ... Bailly C, Lansiaux A, Dassonneville L, et al Homocamptothecin, an E-ring-modified camptothecin analogue, generates new ...
... a camptothecin analogue, CPT-11. However, exposure of KB cells to 42°C after treatment with VP-16 did not enhance the ... one of the heat-shock-inducible genes and that hyperthermic anticancer therapy with topoisomerase II-targeting antitumor agents ... a camptothecin analogue, CPT-11. However, exposure of KB cells to 42°C after treatment with VP-16 did not enhance the ... a camptothecin analogue, CPT-11. However, exposure of KB cells to 42°C after treatment with VP-16 did not enhance the ...
Belotecan, a new camptothecin analogue, has shown activity in SCLC in phase II trials 38. Currently, a phase III trial ... in either single-agent or combination treatment (table 3⇓) 41, 65, 76-90. Some agents, such as paclitaxel and irinotecan, have ... Treatment with anticoagulants might improve outcomes in cancer patients through an antitumour effect in addition to their ... Lee DH, Kim S-W, Suh C, et al. Belotecan, new camptothecin analogue, is active in patients with small-cell lung cancer: results ...
12. Hsiang YH, Liu LF, Wall ME, et al: DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues. ... Antitumor Activity Ten of the 13 patients received two or more cycles of chemotherapy so that antitumor activity can be ... Thus, when topoisomerase I inhibition occurs with agents such as SN-38 in cell lines, the cells compensate by increasing ... 1. Liu LF: DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58:351- 375, 1989.. 2. Liu LF, Miller KG: Eukaryotic ...
Synthesis, antiviral, and antitumor activity of 2-substituted purine methylenecyclopropane analogues of nucleosides.Qin X, Chen ... Effect of Cage-Wash Temperature on the Removal of Infectious Agents from Caging and the Detection of Infectious Agents on the ... Poly(ADP-ribose) polymerase-1 could facilitate the religation of topoisomerase I-linked DNA inhibited by camptothecin.Park SY, ... Synthesis and antiviral activity of helioxanthin analogues.Yeo H, Li Y, Fu L, Zhu JL, Gullen EA, Dutschman GE, Lee Y, Chung R, ...
Calcitriol potentiates the anti-tumor activities of multiple chemotherapeutics agents including DNA-damaging agents cisplatin, ... Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. ... cytarabine or camptothecin acts synergistically with calcitriol to inhibit human monoblastic leukemia U937 cell growth (28). ... Calcitriol potentiates antitumor activity of microtubule-disrupting agents such as paclitaxel (33, 34) and docetaxel (35). This ...
Bio-Agent Context: Research Results. *Macromolecular Substances: 64*Polymers: 5750*Plastics: 8256 ... were designed to provide optimal drug release kinetics to improve drug delivery efficiency and antitumor efficacy when treating ... "Intracerebral implantation of biodegradable polymers loaded with cytotoxic or radiosensitising nucleoside analogues is a ... Camptothecin 10. Minocycline (Cyclops) Related Therapies and Procedures. 1. Stents 2. Drug-Eluting Stents ...
and promoted lipid metabolism [17]. Several studies investigated the anti-tumor. activity of the I. obliquus aqueous extract ... There are a lot of phytochemicals and the analogues they were made from that have been identified as potential anticancer ... Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As ... camptothecin, topotecan, irinotecan, and omacetaxine), are very important in the therapy of malignancies and they are included ...
... and the utilization of antibacteria as an alternative of Ag-based antibacterial agent. On the whole, the development of Pt NCs ... the usage of Pt NCs-based antitumour drugs as a new class chemotherapeutics for malignant tumour therapy, ... The analogue of Au and Ag NCs and platinum nanoclusters (Pt NCs), especially their biological applications, is relatively and ... The analogue of Au and Ag NCs and platinum nanoclusters (Pt NCs), especially their biological applications, is relatively and ...
Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 ... Although all three agents induced TUNEL+ cells, AA005 and MNNG showed stronger effects than camptothecin (Figure 2C, D). ... Bullatacin, a potent antitumor Annonaceous acetogenin, induces apoptosis through a reduction of intracellular cAMP and cGMP ... More interestingly, we found that some of these analogues have significant selectivity between human cancer cells and normal ...
... especially for anticancer agents. Gambogic acid has been demonstrated to be a highly valuable lead compound for antitumor ... Analogues of gambogic acid had been identified to be effective against a rare and special form of liver cancer, ... In fact, most of the marketed natural anti-cancer compounds (e.g., camptothecin derivatives, vinca alkaloids, etc.) are often ... particularly as a new potential antitumor agent. The history, sources, structural diversity, and biological activities of these ...
... antioxidant and anti-cancer agent. Emodin has be.. ... which act as antitumor agents [16]. Presence of planar ... epirubicin and some synthetic analogues like mitoxantrone and pixantrone are now in clinical use [22]. Emodin being an ... and rhizome of Podophyllum species and topotecan and irinotecan are hydrophilic analogs of the anticancer drug camptothecin ... 1989) Intercalating agents with covalent bond forming capability. A novel type of potential anticancer agents. 2. Derivatives ...
Also, there are increasing cases of antibiotics resistance among most causative agents of diseases in human beings, which calls ... Also, there are increasing cases of antibiotics resistance among most causative agents of diseases in human beings, which calls ... The advantage that endophytes have over other biocontrol agents is the ability to colonize plants internal tissues. Despite ... The advantage that endophytes have over other biocontrol agents is the ability to colonize plants internal tissues. Despite ...
Antitumor activity spectra on different human lung tumor cells lines Ferreira, Jorge Proyecto (2016) ... The effect of siRNA-Egr-1 and camptothecin on growth and chemosensitivity of breast cancer cell lines Parra E.; Ferreira J. ... An ortho-carbonyl substituted hydroquinone derivative is an anticancer agent that acts by inhibiting mitochondrial ... Potential of quercetin and structurally-related analogues to protect against the cellular and mitochondrial disturbances ...
35]. Skibo, E. B.; Xing, C.; Dorr, R. T., Aziridinyl quinone antitumor agents based on indoles and cyclopent[b]indoles: ... Isolation and structural elucidation of new naphthoquinones and their analogues. Chemical and pharmaceutical bulletin, 2000, 48 ... mediated apoptosis by camptothecin and β‐lapachone. International 134 journal of cancer, 1997, 73, 707-714. [94]. Lai, C.; Liu ... 42]. Michel, S.; Gaslonde, T.; Tillequin, F., Benzo[b]acronycine derivatives: a novel class of antitumor agents. European ...
c. Camptothecin. Camptothecin (CPT) and its derivatives are classic examples of topoisomerase I inhibitors. They stabilize DNA ... The results show that when the equivalent of reducing agent TCEP is 0.4 and 1.5, the results do not have regularity, which may ... ADC drugs are mainly used in the field of antitumor, which is one of the hot research directions in recent years. At present, ... b. Telanstadine and its analogues. Targeted spliceosome is a large ribonucleoprotein complex involved in mRNA processing, which ...
Tashiro, T. et al . Responsiveness of human lung cancer/nude mouse to antitumor agents in a model using clinically equivalent ... Presta, M. et al . Purine analogue 6-methylmercaptopurine riboside inhibits early and late phases of the angiogenesis process. ... Petrangolini, G. et al . Antiangiogenic effects of the novel camptothecin ST1481 (gimatecan) in human tumor xenografts. Mol. ... Timothy Browder and colleagues evaluated the anti-angiogenic and antitumour effects of the alkylating agent cyclophosphamide in ...
This enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by nicking one DNA ... Yu, Q.; Chen, Y.; Yang, H.; Zhang, H.L.; Agama, K.; Pommier, Y.; An, L.K. The antitumor activity of CYB-L10, a human ... Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017, 7, ... Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J. Med. Chem. 2005, ...
Lobelane analogues containing 4-hydroxy and 4-(2-fluoroethoxy) aromatic substituents: Potent and selective inhibitors of [(3)H] ... and Biological Evaluation of New Cathepsin B-Sensitive Camptothecin Nanoparticles Equipped with a Novel Multifuctional Linker. ... vivo antitumor activities. Eur J Med Chem. 2017 Jan 27; 126:1083-1106. ...
Anticancer Agents Med. Chem. 2022. *Yuan, L.; Sheng, X.; Clark, L.H.; Zhang, L.; Guo, H.; Jones, H.M.; Willson, A.K.; Gehrig, P ... Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer 2014, 13, 890-901. ... Esslinger, C.S.; Cybulski, K.A.; Rhoderick, J.F. Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid ... In addition, an additive impact on apoptosis was demonstrated when CB-839 was coupled with 5-FU, camptothecin, oxaliplatin, and ...
2b)." pg 451; Pumps primed in 37C saline overnight; F10 is a novel antitumor agent;. ... Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a ... is a cysteine mimetic analogue of CAO; cancer. ... References on the Administration of Agents to Immunodeficient ... Q0625 Yoon,H., Kim,D.J., Ahn,E.H., Gellert,G.C., Shay,J.W., Ahn,C.H., Lee,Y.B. Antitumor Activity of a Novel Antisense ...
... chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemotherapy may be given with a ... Fluorouracil is a nucleobase analogue that is metabolised in cells to form at least two active products; 5-fluourouridine ... Cells from the immune system also make crucial contributions to the antitumor effects of chemotherapy. For example, the ... Two topoisomerase I inhibitors, irinotecan and topotecan, are semi-synthetically derived from camptothecin, which is obtained ...
Cytotoxic/antitumor antibiotics. Anthracycline family: (Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Mitoxantrone, ... Alkylating and alkylating-like agents. Nitrogen mustards: (Chlorambucil, Chlormethine, Cyclophosphamide, Ifosfamide, Melphalan ... Activity Relationships of Biosynthetically Produced Mithramycin Analogues Using the c-src Promoter as Target". Biochemistry. 42 ... Camptotheca: (Camptothecin, Topotecan, Irinotecan, Rubitecan), Podophyllum:(Etoposide, Teniposide). CI monoclonal antibodies. ...
Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via ... Examples of hybrid anticancer molecules containing an epi-drug and another antitumor agent connected via a linker are shown in ... The colchicine analogue 66 inhibited HDAC1 and tubulin polymerization at micromolar levels and growth of the HCT116 cell line ... A number of natural products including daunorubicin, camptothecin, and podophyllotoxin are topoisomerase inhibitors that are ...
  • To date, over 400 members of this compound family have been found, most of which have been proven to exhibit high cytotoxic and antitumor activities [ 1 ]. (biomedcentral.com)
  • Traditional chemotherapeutic agents are cytotoxic by means of interfering with cell division (mitosis) but cancer cells vary widely in their susceptibility to these agents. (worldsbest.rehab)
  • As an antibody-drug conjugate (ADC), inotuzumab ozogamicin preferentially delivers cytotoxic agents (calicheamicin) to tumor cells, minimizing the replacement of normal tissues, thereby increasing the therapeutic index. (bocsci.com)
  • The use of antibody-drug conjugates (ADC), i.e. immunoconjugates, for the local delivery of cytotoxic or cytostatic agents, i.e. drugs to kill or inhibit tumor cells in the treatment of cancer (Lambert, J. (2005) Curr. (justia.com)
  • Thorpe, (1985) "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review," in Monoclonal Antibodies '84: Biological And Clinical Applications, A. Pinchera et al (ed.s), pp. 475-506). (justia.com)
  • BN80927 belongs to a novel family of camptothecin analogs, the homocamptothecins, developed on the concept of topoisomerase I (Topo I) inhibition and characterized by a stable seven-membered β-hydroxylactone ring. (aacrjournals.org)
  • Type II DNA topoisomerase breaks both DNA strands, and many anticancer agents including etoposide (VP-16) and teniposide (VM-26) have been developed by targeting topoisomerase II molecules. (elsevierpure.com)
  • Prior exposure of KB cells to 42°C enhanced the cytotoxicity of VP-16, but not that of a topoisomerase I-targeting agent, a camptothecin analogue, CPT-11. (elsevierpure.com)
  • The formation of cleavable DNA-topoisomerase II-VP-16 complexes was also greatly increased by prior exposure to 42°C. Our present study proposes the hypothesis that the topoisomerase II gene might be one of the heat-shock-inducible genes and that hyperthermic anticancer therapy with topoisomerase II-targeting antitumor agents can be improved. (elsevierpure.com)
  • Thus, when topoisomerase I inhibition occurs with agents such as SN-38 in cell lines, the cells compensate by increasing expression of topoisomerase II and vice versa. (cancernetwork.com)
  • Next, in collaboration with a thoracic surgeon, Gustaf Lindskog, they injected a related agent, mustine (the prototype nitrogen mustard anticancer chemotherapeutic), into a patient with non-Hodgkin's lymphoma. (wikipedia.org)
  • In that sense, the first modern chemotherapeutic agent was Paul Ehrlich 's arsphenamine , an arsenic compound discovered in 1909 and used to treat syphilis . (wikidoc.org)
  • With succeeding generations of tumor cells, differentiation is typically lost, growth becomes less regulated, and tumors become less responsive to most chemotherapeutic agents. (wikidoc.org)
  • Therapies tested include traditional medical chemotherapeutic agents and new generation targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, hormone blocking therapies, and an array of over forty nutrient, biological and herbal therapies. (dunphynunley.com)
  • Chemotherapy (often abbreviated to chemo and sometimes CTX or CTx ) is a type of cancer treatment that uses one or more anti-cancer drugs (chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. (worldsbest.rehab)
  • taxotere a semisynthetic analogue of taxol, is prepared from a precursor extracted from needles of the tree, taxus baccata. (liverpool.ac.uk)
  • While FL118 is an analogue of irinotecan and topotecan, two FDA-approved cancer drugs that are also based on the naturally occurring compound camptothecin, our findings add further evidence that FL118 has novel mechanisms of action that may make it especially potent against solid tumors and especially effective as a well-tolerated, targeted therapy," co-lead researcher Fengzhi Li, PhD, said in a press release. (pharmacytimes.com)
  • For example the drugs teniposide and etoposide are derived from podophyllotoxin, which is a non-alkaloid toxin from roots and rhizome of Podophyllum species and topotecan and irinotecan are hydrophilic analogs of the anticancer drug camptothecin obtained from the bark of Camptotheca acuminata. (longdom.org)
  • The novel anticancer agent FL118 may have additional applications as a personalized therapy for certain tumor types after a recent study showed the drug's efficacy in treating tumors. (pharmacytimes.com)
  • The researchers noted that FL118 exhibits potent antitumor efficacy, which suggests additional applications for the drug as a personalized and targeted therapy for certain types of cancer tumors. (pharmacytimes.com)
  • In cell growth assays, BN80927 is a very potent antiproliferative agent as shown by IC 50 values consistently lower than those of SN38 in tumor cell lines as well as in their related drug-resistant lines. (aacrjournals.org)
  • Alpha-tocopherol ether-linked acetic acid (α-TEA), an analog of vitamin E (RRR-alpha-tocopherol), is a potent and selective apoptosis-inducing agent for human cancer cells in vivo and in vitro . (biomedcentral.com)
  • Also, there are increasing cases of antibiotics resistance among most causative agents of diseases in human beings, which calls for an alternative drug discovery using natural sources. (frontiersin.org)
  • Calicheamicins, a novel family of antitumor antibiotics: taxonomy, fermentation and biological properties. (bocsci.com)
  • Calichemicins, a novel family of antitumor antibiotics. (bocsci.com)
  • 3. The drug delivery device of claim 1, wherein the active agent is an enzyme capable of inactivating beta-lactam antibiotics. (patentsencyclopedia.com)
  • 1. Oral drug delivery devices for colonic release of active ingredients, comprising:a) an active agent capable of inactivating an antibiotic, andb) a drug delivery device comprising pectin beads, where the pectin is crosslinked with calcium ions, and reticulated with polyethyleneimine. (patentsencyclopedia.com)
  • Multiple compounds, such as bacterial L-glutaminase and phenylbutyrate derivatives, that induce systemic depletion of glutamine were evaluated as potential therapeutic agents [ 1 ] [ 2 ] . (encyclopedia.pub)
  • Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. (biomedcentral.com)
  • These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. (preprints.org)
  • This enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by nicking one DNA strand and forming a transient protein-DNA covalent complex. (mdpi.com)
  • No. 4,975,278) allows targeted delivery of the drug moiety to tumors, and intracellular accumulation therein, where systemic administration of these unconjugated drug agents may result in unacceptable levels of toxicity to normal cells as well as the tumor cells sought to be eliminated (Baldwin et al (1986) Lancet pp. (justia.com)
  • As one of the hotspots of plant biodiversity in the world, Madagascar could play a vital role in the research and development of new anticancer agents from its flora. (springeropen.com)
  • In addition, the regulatory requirements are more complex when the agents are used in combination, since the safety profile of each drug needs to be demonstrated before clinical trials, and this can be further delayed due to regulatory and IP issues, in particular if the two drugs are being developed by different companies [ 1 ]. (biomedcentral.com)
  • Particular importance here is the biological applications of Pt NCs such as the bioimaging of various cells as a preferred fluorophore in contrast to traditional fluorescent markers (e.g., organic dye, semiconductor quantum dots, and fluorescent proteins), the usage of Pt NCs-based antitumour drugs as a new class chemotherapeutics for malignant tumour therapy, and the utilization of antibacteria as an alternative of Ag-based antibacterial agent. (hindawi.com)
  • The analogue of Au and Ag NCs and platinum nanoclusters (Pt NCs), especially their biological applications, is relatively and rarely discussed. (hindawi.com)
  • Examination of aminophenol-containing compounds designed as antiproliferative agents and potential atypical retinoids. (yale.edu)
  • Other uses of cytostatic chemotherapy agents (including the ones mentioned below) are the treatment of autoimmune diseases such as multiple sclerosis and rheumatoid arthritis and the suppression of transplant rejections (see immunosuppression and DMARDs ). (wikidoc.org)
  • The antitumor effect is explained by the ability to inhibit the nuclear enzyme DNA topo II. (allindianpatents.com)
  • In another embodiment, the active agents are those that specifically treat colonic disorders, such as Chrohn's Disease, irritable bowel syndrome, ulcerative colitis, colorectal cancer or constipation. (patentsencyclopedia.com)
  • Calcitriol has been studied in various combination treatments and shown synergistic or additive antitumor activities. (jcancer.org)
  • Annonaceous acetogenins are a family of natural products with antitumor activities. (biomedcentral.com)
  • The beginnings of the modern era of cancer chemotherapy can be traced directly to the German introduction of chemical warfare during World War I. Among the chemical agents used, mustard gas was particularly devastating. (wikipedia.org)
  • The connotation of the word chemotherapy excludes more selective agents that block extracellular signals (signal transduction). (worldsbest.rehab)
  • These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. (lookformedical.com)
  • When administered to children with ALL in 1948, these agents became the first drugs to induce remission in children with ALL. (wikipedia.org)
  • Such concerns led to the discovery of nitrogen mustard, a chemical warfare agent, as an effective treatment for cancer. (wikipedia.org)
  • Goodman and Gilman observed that mustard gas was too volatile an agent to be suitable for laboratory experiments. (wikipedia.org)
  • They first set up an animal model by establishing lymphomas in mice and demonstrated they could treat them with mustard agents. (wikipedia.org)
  • Mustard gas was used as a chemical warfare agent during World War I and was studied further during World War II. (wikidoc.org)
  • However, relevant research has ebbed due to the limitation of these agents, which is the easy acquisition of tumor resistance by de novo glutamine synthesis in cancer or stromal cells. (encyclopedia.pub)
  • Although the effect lasted only a few weeks, and the patient had to return for another set of treatment, that was the first step to the realization that cancer could be treated by pharmacological agents. (wikipedia.org)
  • The results of the study suggest FL118 can serve as an MdmX-depleting agent in targeted cancer therapies. (pharmacytimes.com)
  • Studies involving mechanism of emodin, an herbal extract, has revealed its potential as anti-inflammatory, antioxidant and anti-cancer agent. (longdom.org)
  • Implantable infusion pumps for continuous administration of test agents to unrestrained laboratory animals. (alzet.com)
  • Título: "6-(4-metil-pent-3-enil)-1,4-naftoquinona induce efectos antiproliferativos mediados por la producción de ros en células de cáncer de mama. (anid.cl)
  • In one of the first examples of rational drug design (rather than accidental discovery), Farber used folate analogues synthesized by Harriett Kiltie and Yellapragada Subbarow of Lederle Laboratories. (wikipedia.org)
  • Two pharmacologists from the Yale School of Medicine, Louis S. Goodman and Alfred Gilman, were recruited by the US Department of Defense to investigate potential therapeutic applications of chemical warfare agents. (wikipedia.org)
  • Advantageously, the amount of polyethyleneimine is sufficient to allow a substantial portion of the pectin beads to pass through the gastrointestinal tract to the colon without releasing the active agent, and is also sufficient such that the pectin beads are sufficiently degraded in the colon to release an effective amount of the active agent. (patentsencyclopedia.com)
  • The advantage that endophytes have over other biocontrol agents is the ability to colonize plant's internal tissues. (frontiersin.org)
  • Using that information, Goodman and Gilman reasoned that this agent could be used to treat lymphoma, a tumor of lymphoid cells. (wikipedia.org)