Calcium Signaling: Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins.Calcium Channels: Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue.Adenosine Triphosphatases: A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.Proton-Translocating ATPases: Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane.Calcium-Transporting ATPases: Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy.Calcium, Dietary: Calcium compounds used as food supplements or in food to supply the body with calcium. Dietary calcium is needed during growth for bone development and for maintenance of skeletal integrity later in life to prevent osteoporosis.Vacuolar Proton-Translocating ATPases: Proton-translocating ATPases that are involved in acidification of a variety of intracellular compartments.Calcium Carbonate: Carbonic acid calcium salt (CaCO3). An odorless, tasteless powder or crystal that occurs in nature. It is used therapeutically as a phosphate buffer in hemodialysis patients and as a calcium supplement.Calcium Phosphates: Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements.Calcium Isotopes: Stable calcium atoms that have the same atomic number as the element calcium, but differ in atomic weight. Ca-42-44, 46, and 48 are stable calcium isotopes.Calcium Chloride: A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium poisoning.Calcium Channels, L-Type: Long-lasting voltage-gated CALCIUM CHANNELS found in both excitable and nonexcitable tissue. They are responsible for normal myocardial and vascular smooth muscle contractility. Five subunits (alpha-1, alpha-2, beta, gamma, and delta) make up the L-type channel. The alpha-1 subunit is the binding site for calcium-based antagonists. Dihydropyridine-based calcium antagonists are used as markers for these binding sites.Plasma Membrane Calcium-Transporting ATPases: Calcium-transporting ATPases found on the PLASMA MEMBRANE that catalyze the active transport of CALCIUM from the CYTOPLASM into the extracellular space. They play a role in maintaining a CALCIUM gradient across plasma membrane.Calcium Oxalate: The calcium salt of oxalic acid, occurring in the urine as crystals and in certain calculi.Adenosine Triphosphate: An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.Calcium Gluconate: The calcium salt of gluconic acid. The compound has a variety of uses, including its use as a calcium replenisher in hypocalcemic states.Calcium Radioisotopes: Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Egtazic Acid: A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID.Sarcoplasmic Reticulum Calcium-Transporting ATPases: Calcium-transporting ATPases that catalyze the active transport of CALCIUM into the SARCOPLASMIC RETICULUM vesicles from the CYTOPLASM. They are primarily found in MUSCLE CELLS and play a role in the relaxation of MUSCLES.Kinetics: The rate dynamics in chemical or physical systems.Cation Transport Proteins: Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane.Calcium Compounds: Inorganic compounds that contain calcium as an integral part of the molecule.Calcium Channels, N-Type: CALCIUM CHANNELS that are concentrated in neural tissue. Omega toxins inhibit the actions of these channels by altering their voltage dependence.Thapsigargin: A sesquiterpene lactone found in roots of THAPSIA. It inhibits CA(2+)-TRANSPORTING ATPASE mediated uptake of CALCIUM into SARCOPLASMIC RETICULUM.Magnesium: A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.Sodium-Potassium-Exchanging ATPase: An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients.Calcium Channel Agonists: Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture.H(+)-K(+)-Exchanging ATPaseHydrogen-Ion Concentration: The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)Vacuoles: Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion.Ca(2+) Mg(2+)-ATPaseProton Pumps: Integral membrane proteins that transport protons across a membrane. This transport can be linked to the hydrolysis of ADENOSINE TRIPHOSPHATE. What is referred to as proton pump inhibitors frequently is about POTASSIUM HYDROGEN ATPASE.Hydrolysis: The process of cleaving a chemical compound by the addition of a molecule of water.Archaeoglobus fulgidus: A species of extremely thermophilic, sulfur-reducing archaea. It grows at a maximum temperature of 95 degrees C. in marine or deep-sea geothermal areas.Calcimycin: An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems.Membrane Potentials: The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).Chelating Agents: Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS.Ion Transport: The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Calcium Hydroxide: A white powder prepared from lime that has many medical and industrial uses. It is in many dental formulations, especially for root canal filling.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Phosphorus: A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.Potassium: An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.Cell Membrane: The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.Nifedipine: A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure.Calcium Sulfate: A calcium salt that is used for a variety of purposes including: building materials, as a desiccant, in dentistry as an impression material, cast, or die, and in medicine for immobilizing casts and as a tablet excipient. It exists in various forms and states of hydration. Plaster of Paris is a mixture of powdered and heat-treated gypsum.Vanadates: Oxyvanadium ions in various states of oxidation. They act primarily as ion transport inhibitors due to their inhibition of Na(+)-, K(+)-, and Ca(+)-ATPase transport systems. They also have insulin-like action, positive inotropic action on cardiac ventricular muscle, and other metabolic effects.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Parathyroid Hormone: A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.Endoplasmic Reticulum: A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)Sodium: A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.Cytosol: Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.Calcium-Binding Proteins: Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Rabbits: The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Fura-2: A fluorescent calcium chelating agent which is used to study intracellular calcium in tissues.Calmodulin: A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels.Calcium Citrate: A colorless crystalline or white powdery organic, tricarboxylic acid occurring in plants, especially citrus fruits, and used as a flavoring agent, as an antioxidant in foods, and as a sequestrating agent. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Time Factors: Elements of limited time intervals, contributing to particular results or situations.Homeostasis: The processes whereby the internal environment of an organism tends to remain balanced and stable.Copper: A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55.Terpenes: A class of compounds composed of repeating 5-carbon units of HEMITERPENES.Ionophores: Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes.S100 Calcium Binding Protein G: A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D.Ryanodine Receptor Calcium Release Channel: A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Calcium Pyrophosphate: An inorganic pyrophosphate which affects calcium metabolism in mammals. Abnormalities in its metabolism occur in some human diseases, notably HYPOPHOSPHATASIA and pseudogout (CHONDROCALCINOSIS).Calcium Metabolism Disorders: Disorders in the processing of calcium in the body: its absorption, transport, storage, and utilization.Verapamil: A calcium channel blocker that is a class IV anti-arrhythmia agent.Protein Subunits: Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly.Dose-Response Relationship, Drug: The relationship between the dose of an administered drug and the response of the organism to the drug.Macrolides: A group of often glycosylated macrocyclic compounds formed by chain extension of multiple PROPIONATES cyclized into a large (typically 12, 14, or 16)-membered lactone. Macrolides belong to the POLYKETIDES class of natural products, and many members exhibit ANTIBIOTIC properties.Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.Biological Transport, Active: The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.Protein Conformation: The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).Metallochaperones: A family of soluble metal binding proteins that are involved in the intracellular transport of specific metal ions and their transfer to the appropriate metalloprotein precursor.Dihydropyridines: Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.Adenosine Diphosphate: Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Fluorescent Dyes: Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Enzyme Inhibitors: Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.Neurons: The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.Lanthanum: Lanthanum. The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.Patch-Clamp Techniques: An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.Calcium Channels, P-Type: CALCIUM CHANNELS located within the PURKINJE CELLS of the cerebellum. They are involved in stimulation-secretion coupling of neurons.Diltiazem: A benzothiazepine derivative with vasodilating action due to its antagonism of the actions of CALCIUM ion on membrane functions.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.Rats, Sprague-Dawley: A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.Myocardium: The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Kidney Calculi: Stones in the KIDNEY, usually formed in the urine-collecting area of the kidney (KIDNEY PELVIS). Their sizes vary and most contains CALCIUM OXALATE.Hypocalcemia: Reduction of the blood calcium below normal. Manifestations include hyperactive deep tendon reflexes, Chvostek's sign, muscle and abdominal cramps, and carpopedal spasm. (Dorland, 27th ed)Gram-Negative Chemolithotrophic Bacteria: A large group of bacteria including those which oxidize ammonia or nitrite, metabolize sulfur and sulfur compounds, or deposit iron and/or manganese oxides.Cations, Divalent: Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis.Intracellular Membranes: Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Aequorin: A photoprotein isolated from the bioluminescent jellyfish Aequorea. It emits visible light by an intramolecular reaction when a trace amount of calcium ion is added. The light-emitting moiety in the bioluminescence reaction is believed to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine (AF-350).Saccharomyces cerevisiae Proteins: Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.Intracellular Fluid: The fluid inside CELLS.Phosphorylation: The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.Receptors, Calcium-Sensing: A class of G-protein-coupled receptors that react to varying extracellular CALCIUM levels. Calcium-sensing receptors in the PARATHYROID GLANDS play an important role in the maintenance of calcium HOMEOSTASIS by regulating the release of PARATHYROID HORMONE. They differ from INTRACELLULAR CALCIUM-SENSING PROTEINS which sense intracellular calcium levels.Calcium Channels, Q-Type: CALCIUM CHANNELS located in the neurons of the brain.Strontium: An element of the alkaline earth family of metals. It has the atomic symbol Sr, atomic number 38, and atomic weight 87.62.Calcium: A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.Cattle: Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.Inositol 1,4,5-Trisphosphate Receptors: Intracellular receptors that bind to INOSITOL 1,4,5-TRISPHOSPHATE and play an important role in its intracellular signaling. Inositol 1,4,5-trisphosphate receptors are calcium channels that release CALCIUM in response to increased levels of inositol 1,4,5-trisphosphate in the CYTOPLASM.Hypercalcemia: Abnormally high level of calcium in the blood.DNA Helicases: Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands.Rats, Wistar: A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.Vitamin D: A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.Enzyme Activation: Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.Molecular Chaperones: A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures.Ionomycin: A divalent calcium ionophore that is widely used as a tool to investigate the role of intracellular calcium in cellular processes.Electrophysiology: The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.Calcium Channels, R-Type: CALCIUM CHANNELS located in the neurons of the brain. They are inhibited by the marine snail toxin, omega conotoxin MVIIC.Inositol 1,4,5-Trisphosphate: Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin.Ions: An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.Bacterial Proteins: Proteins found in any species of bacterium.Bone and Bones: A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.Intestinal Absorption: Uptake of substances through the lining of the INTESTINES.Chloroplast Proton-Translocating ATPases: Proton-translocating ATPases which produce ADENOSINE TRIPHOSPHATE in plants. They derive energy from light-driven reactions that develop high concentrations of protons within the membranous cisternae (THYLAKOIDS) of the CHLOROPLASTS.Caffeine: A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling.Muscles: Contractile tissue that produces movement in animals.Ion Channels: Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS.Endopeptidase Clp: An ATP-dependent protease found in prokaryotes, CHLOROPLASTS, and MITOCHONDRIA. It is a soluble multisubunit complex that plays a role in the degradation of many abnormal proteins.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Cadmium: An element with atomic symbol Cd, atomic number 48, and atomic weight 114. It is a metal and ingestion will lead to CADMIUM POISONING.Potassium Chloride: A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA.omega-Conotoxin GVIA: A neurotoxic peptide, which is a cleavage product (VIa) of the omega-Conotoxin precursor protein contained in venom from the marine snail, CONUS geographus. It is an antagonist of CALCIUM CHANNELS, N-TYPE.Microsomes: Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Cytoplasm: The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)Proteasome Endopeptidase Complex: A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme.Calcinosis: Pathologic deposition of calcium salts in tissues.Ouabain: A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE.Hepatolenticular Degeneration: A rare autosomal recessive disease characterized by the deposition of copper in the BRAIN; LIVER; CORNEA; and other organs. It is caused by defects in the ATP7B gene encoding copper-transporting ATPase 2 (EC 3.6.3.4), also known as the Wilson disease protein. The overload of copper inevitably leads to progressive liver and neurological dysfunction such as LIVER CIRRHOSIS; TREMOR; ATAXIA and intellectual deterioration. Hepatic dysfunction may precede neurologic dysfunction by several years.Mitochondria: Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)Menkes Kinky Hair Syndrome: An inherited disorder of copper metabolism transmitted as an X-linked trait and characterized by the infantile onset of HYPOTHERMIA, feeding difficulties, hypotonia, SEIZURES, bony deformities, pili torti (twisted hair), and severely impaired intellectual development. Defective copper transport across plasma and endoplasmic reticulum membranes results in copper being unavailable for the synthesis of several copper containing enzymes, including PROTEIN-LYSINE 6-OXIDASE; CERULOPLASMIN; and SUPEROXIDE DISMUTASE. Pathologic changes include defects in arterial elastin, neuronal loss, and gliosis. (From Menkes, Textbook of Child Neurology, 5th ed, p125)Recombinant Proteins: Proteins prepared by recombinant DNA technology.Dicyclohexylcarbodiimide: A carbodiimide that is used as a chemical intermediate and coupling agent in peptide synthesis. (From Hawley's Condensed Chemical Dictionary, 12th ed)Nitrendipine: A calcium channel blocker with marked vasodilator action. It is an effective antihypertensive agent and differs from other calcium channel blockers in that it does not reduce glomerular filtration rate and is mildly natriuretic, rather than sodium retentive.Kidney: Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.Cell Membrane Permeability: A quality of cell membranes which permits the passage of solvents and solutes into and out of cells.Phospholipid Transfer Proteins: A ubiquitous family of proteins that transport PHOSPHOLIPIDS such as PHOSPHATIDYLINOSITOL and PHOSPHATIDYLCHOLINE between membranes. They play an important role in phospholipid metabolism during vesicular transport and SIGNAL TRANSDUCTION.Protons: Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion.Isoenzymes: Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.Calcitriol: The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.Fungal Proteins: Proteins found in any species of fungus.Ryanodine: A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.Nimodipine: A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure.Osmolar Concentration: The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Sarcoplasmic Reticulum: A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions.Rats, Inbred Strains: Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Manganese: A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)Edetic Acid: A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive.Ion Channel Gating: The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability.Parathyroid Glands: Two pairs of small oval-shaped glands located in the front and the base of the NECK and adjacent to the two lobes of THYROID GLAND. They secrete PARATHYROID HORMONE that regulates the balance of CALCIUM; PHOSPHORUS; and MAGNESIUM in the body.omega-Conotoxins: A family of structurally related neurotoxic peptides from mollusk venom that inhibit voltage-activated entry of calcium into the presynaptic membrane. They selectively inhibit N-, P-, and Q-type calcium channels.Oxalates: Derivatives of OXALIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are derived from the ethanedioic acid structure.Protein Transport: The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.Bacterial Proton-Translocating ATPases: Membrane-bound proton-translocating ATPases that serve two important physiological functions in bacteria. One function is to generate ADENOSINE TRIPHOSPHATE by utilizing the energy provided by an electrochemical gradient of protons across the cellular membrane. A second function is to counteract a loss of the transmembrane ion gradient by pumping protons at the expense of adenosine triphosphate hydrolysis.Transition Elements: Elements with partially filled d orbitals. They constitute groups 3-12 of the periodic table of elements.Sodium-Calcium Exchanger: An electrogenic ion exchange protein that maintains a steady level of calcium by removing an amount of calcium equal to that which enters the cells. It is widely distributed in most excitable membranes, including the brain and heart.Isradipine: A potent antagonist of CALCIUM CHANNELS that is highly selective for VASCULAR SMOOTH MUSCLE. It is effective in the treatment of chronic stable angina pectoris, hypertension, and congestive cardiac failure.Nucleotides: The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed)Cations: Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis.Microscopy, Confocal: A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible.Zinc: A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.Electrophoresis, Polyacrylamide Gel: Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.Amino Acid Motifs: Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.Proteolipids: Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.Microscopy, Electron: Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Microscopy, Fluorescence: Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.Archaeal Proteins: Proteins found in any species of archaeon.Minerals: Native, inorganic or fossilized organic substances having a definite chemical composition and formed by inorganic reactions. They may occur as individual crystals or may be disseminated in some other mineral or rock. (Grant & Hackh's Chemical Dictionary, 5th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Muscle Contraction: A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.Calbindins: Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D.Macromolecular Substances: Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.Cholecalciferol: Derivative of 7-dehydroxycholesterol formed by ULTRAVIOLET RAYS breaking of the C9-C10 bond. It differs from ERGOCALCIFEROL in having a single bond between C22 and C23 and lacking a methyl group at C24.Electric Stimulation: Use of electric potential or currents to elicit biological responses.Xanthenes: Compounds with three aromatic rings in linear arrangement with an OXYGEN in the center ring.Protein Structure, Secondary: The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Temperature: The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.Protein Structure, Quaternary: The characteristic 3-dimensional shape and arrangement of multimeric proteins (aggregates of more than one polypeptide chain).Nicardipine: A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents.Extracellular Space: Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall.Thermoplasma: A genus of facultatively anaerobic heterotrophic archaea, in the order THERMOPLASMALES, isolated from self-heating coal refuse piles and acid hot springs. They are thermophilic and can grow both with and without sulfur.Mutagenesis, Site-Directed: Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.Blotting, Western: Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.Aniline Compounds

A novel interaction mechanism accounting for different acylphosphatase effects on cardiac and fast twitch skeletal muscle sarcoplasmic reticulum calcium pumps. (1/3607)

In cardiac and skeletal muscle Ca2+ translocation from cytoplasm into sarcoplasmic reticulum (SR) is accomplished by different Ca2+-ATPases whose functioning involves the formation and decomposition of an acylphosphorylated phosphoenzyme intermediate (EP). In this study we found that acylphosphatase, an enzyme well represented in muscular tissues and which actively hydrolyzes EP, had different effects on heart (SERCA2a) and fast twitch skeletal muscle SR Ca2+-ATPase (SERCA1). With physiological acylphosphatase concentrations SERCA2a exhibited a parallel increase in the rates of both ATP hydrolysis and Ca2+ transport; in contrast, SERCA1 appeared to be uncoupled since the stimulation of ATP hydrolysis matched an inhibition of Ca2+ pump. These different effects probably depend on phospholamban, which is associated with SERCA2a but not SERCA1. Consistent with this view, the present study suggests that acylphosphatase-induced stimulation of SERCA2a, in addition to an enhanced EP hydrolysis, may be due to a displacement of phospholamban, thus to a removal of its inhibitory effect.  (+info)

Expression of skeletal muscle sarcoplasmic reticulum calcium-ATPase is reduced in rats with postinfarction heart failure. (2/3607)

OBJECTIVE: To determine whether heart failure in rats is associated with altered expression of the skeletal muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA). METHODS: SERCA protein and mRNA were examined in the soleus muscles of eight female rats with heart failure induced by coronary artery ligation, six weeks after the procedure (mean (SEM) left ventricular end diastolic pressure 20.4 (2.2) mm Hg) and in six sham operated controls by western and northern analyses, respectively. RESULTS: SERCA-2a isoform protein was reduced by 16% (112 000 (4000) v 134 000 (2000) arbitrary units, p < 0.001), and SERCA-2a messenger RNA was reduced by 59% (0.24 (0. 06) v 0.58 (0.02) arbitrary units, p < 0.001). Although rats with heart failure had smaller muscles (0.54 mg/g v 0.66 mg/g body weight), no difference in locomotor activity was observed. CONCLUSIONS: These results may explain the previously documented abnormalities in calcium handling in skeletal muscle from animals with the same model of congestive heart failure, and could be responsible for the accelerated muscle fatigue characteristic of patients with heart failure.  (+info)

Mutations of Arg198 in sarcoplasmic reticulum Ca2+-ATPase cause inhibition of hydrolysis of the phosphoenzyme intermediate formed from inorganic phosphate. (3/3607)

Arg198 of sarcoplasmic reticulum Ca2+-ATPase was substituted with lysine, glutamine, glutamic acid, alanine, and isoleucine by site-directed mutagenesis. Kinetic analysis was performed with microsomal membranes isolated from COS-1 cells which were transfected with the mutated cDNAs. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was determined by first phosphorylating the Ca2+-ATPase with 32Pi and then diluting the sample with non-radioactive Pi. This rate was reduced substantially in the mutant R198Q, more strongly in the mutants R198A and R1981, and most strongly in the mutant R198E, but to a much lesser extent in R198K. The reduction in the rate of dephosphorylation was consistent with the observed decrease in the turnover rate of the Ca2+-ATPase accompanied by the steady-state accumulation of the ADP-insensitive phosphoenzyme formed from ATP. These results indicate that the positive charge and high hydrophilicity of Arg198 are critical for rapid hydrolysis of the ADP-insensitive phosphoenzyme.  (+info)

Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. (4/3607)

We made a computational model of a single neuron to study the effect of the small conductance (SK) Ca2+-dependent K+ channel on spike frequency adaptation. The model neuron comprised a Na+ conductance, a Ca2+ conductance, and two Ca2+-independent K+ conductances, as well as a small and a large (BK) Ca2+-activated K+ conductance, a Ca2+ pump, and mechanisms for Ca2+ buffering and diffusion. Sustained current injection that simulated synaptic input resulted in a train of action potentials (APs) which in the absence of the SK conductance showed very little adaptation with time. The transfer function of the neuron was nearly linear, i.e., both asymptotic spike rate as well as the intracellular free Ca2+ concentration ([Ca2+]i) were approximately linear functions of the input current. Adding an SK conductance with a steep nonlinear dependence on [Ca2+]i (. Pflugers Arch. 422:223-232; Kohler, Hirschberg, Bond, Kinzie, Marrion, Maylie, and Adelman. 1996. Science. 273:1709-1714) caused a marked time-dependent spike frequency adaptation and changed the transfer function of the neuron from linear to logarithmic. Moreover, the input range the neuron responded to with regular spiking increased by a factor of 2.2. These results can be explained by a shunt of the cell resistance caused by the activation of the SK conductance. It might turn out that the logarithmic relationships between the stimuli of some modalities (e.g., sound or light) and the perception of the stimulus intensity (Fechner's law) have a cellular basis in the involvement of SK conductances in the processing of these stimuli.  (+info)

Intracellular EDTA mimics parvalbumin in the promotion of skeletal muscle relaxation. (5/3607)

Parvalbumin (PA) is an intracellular Ca2+-binding protein found in some muscle and nerves. Its ability to bind Ca2+ and facilitate skeletal muscle relaxation is limited by its Mg2+ off-rate. EDTA serves as an "artificial" PA in that it exhibited similar rate constants for Mg2+ (3 s-1) and Ca2+ (0.7 s-1) dissociation at 10 degrees C. When introduced into frog skeletal muscle, EDTA increased the relaxation rate by approximately 2.7-fold, and with increasing tetanus duration, EDTA lost its ability to contribute to relaxation (and Ca2+ sequestration) at its Mg2+ off-rate. Intracellular EDTA recovered its ability to contribute to muscle relaxation and Ca2+ sequestration at its Ca2+ off-rate. Like PA, EDTA's contribution to muscle relaxation and Ca2+ sequestration was more clearly observed when the SR Ca-ATPase was inhibited. Introduction of EDTA into rat soleus muscle, which has low [PA], increased the relaxation rate in a manner that was analogous to the way in which PA facilitates relaxation of frog skeletal muscle. Thus intracellular EDTA serves as an effective mimic of PA, and its use should aid in our understanding of PA's function in muscle and nerve.  (+info)

Short-time effects of neuroactive steroids on rat cortical Ca2+-ATPase activity. (6/3607)

Recent experimental evidence indicates that some steroid hormones, apart from their well-documented genomic actions, could produce non-genomic rapid effects, and are potent modulators of the plasma membrane proteins, including voltage- and ligand-operated ion channels or G protein-coupled receptors. Neuroactive steroids, 17beta-estradiol, testosterone, pregnenolone sulfate and dehydroepiandrosterone sulfate, after a short-time incubation directly modulated the activity of plasma membrane Ca2+-ATPase purified from synaptosomal membranes of rat cortex. The sulfate derivatives of dehydroepiandrosterone and pregnenolone applied at concentrations of 10-11-10-6 M, showed an inverted U-shape potency in the regulation of Ca2+-ATPase activity. At physiologically relevant concentrations (10-8-10-9 M) a maximal enhancement of the basal activity reached 200%. Testosterone (10-11-10-6 M) and 17beta-estradiol (10-12-10-9 M) caused a dose-dependent increase in the hydrolytic ability of Ca2+-ATPase, and the activity with the highest concentration of steroids reached 470% and 200%, respectively. All examined steroids decreased the stimulatory effect of a naturally existing activator of the calcium pump, calmodulin. The present study strongly suggests that the plasma membrane calcium pump could be one of the possible membrane targets for a non-genomic neuroactive steroid action.  (+info)

The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. (7/3607)

Our objective was to determine the respective roles of the sarcoplasmic reticulum (SR) and the Na+/Ca2+ exchanger in the small, slowly decaying Ca2+ transients of failing human ventricular myocytes. Left ventricular myocytes were isolated from explanted hearts of patients with severe heart failure (n=18). Cytosolic Ca2+, contraction, and action potentials were measured by using indo-1, edge detection, and patch pipettes, respectively. Selective inhibitors of SR Ca2+ transport (thapsigargin) and reverse-mode Na+/Ca2+ exchange activity (No. 7943, Kanebo Ltd) were used to define the respective contribution of these processes to the Ca2+ transient. Ca2+ transients and contractions induced by action potentials (AP transients) at 0.5 Hz exhibited phasic and tonic components. The duration of the tonic component was determined by the action potential duration. Ca2+ transients induced by caffeine (Caf transients) exhibited only a phasic component with a rapid rate of decay that was dependent on extracellular Na+. The SR Ca2+-ATPase inhibitor thapsigargin abolished the phasic component of the AP Ca2+ transient and of the Caf transient but had no significant effect on the tonic component of the AP transient. The Na+/Ca2+ exchange inhibitor No. 7943 eliminated the tonic component of the AP transient and reduced the magnitude of the phasic component. In failing human myocytes, Ca2+ transients and contractions exhibit an SR-related, phasic component and a slow, reverse-mode Na+/Ca2+ exchange-related tonic component. These findings suggest that Ca2+ influx via reverse-mode Na+/Ca2+ exchange during the action potential may contribute to the slow decay of the Ca2+ transient in failing human myocytes.  (+info)

Phospholamban-to-SERCA2 ratio controls the force-frequency relationship. (8/3607)

The force-frequency relationship (FFR) describes the frequency-dependent potentiation of cardiac contractility. The interaction of the sarcoplasmic reticulum Ca2+-adenosinetriphosphatase (SERCA2) with its inhibitory protein phospholamban (PLB) might be involved in the control of the FFR. The FFR was analyzed in two systems in which the PLB-to-SERCA2 ratio was modulated. Adult rabbit cardiac myocytes were transduced with adenovirus encoding for SERCA2, PLB, and beta-galactosidase (control). After 3 days, the relative PLB/SERCA2 values were significantly different between groups (SERCA2, 0.5; control, 1.0; PLB, 4.5). SERCA2 overexpression shortened relaxation by 23% relative to control, whereas PLB prolonged relaxation by 39% and reduced contractility by 47% (0.1 Hz). When the stimulation frequency was increased to 1.5 Hz, myocyte contractility was increased by 30% in control myocytes. PLB-overexpressing myocytes showed an augmented positive FFR (+78%), whereas SERCA2-transduced myocytes displayed a negative FFR (-15%). A more negative FFR was also found in papillary muscles from SERCA2 transgenic mice. These findings demonstrate that the ratio of phospholamban to SERCA2 is an important component in the control of the FFR.  (+info)

The finding that negatively charged phospholipids activate the plasma-membrane (Ca2+ + Mg2+)-ATPase and that polycations counteract this stimulation suggest that negative charges in the environment of the ATPase protein could be important for its function. The aim of the present work was to investigate whether changing the charges on the ATPase protein itself by modifying the pH within the physiological range affects the activity of the purified plasma-membrane Ca2+ pump from stomach smooth muscle. Increasing the pH from 6.9 to 7.4 and using 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (BAPTA) as a Ca2+ buffer, doubled the ATPase activity at 0.3 microM-Ca2+ in the presence of 100% phosphatidylcholine (PC) or after substituting 20% of the PC by negatively charged phospholipids PtdIns, PtdIns4P, phosphatidylserine and phosphatidic acid. This stimulatory effect was due to an increased affinity of the enzyme for Ca2+, while the Vmax. remained unaffected. In the case of ...
Although many aspects of capacitative Ca2+ entry remain unknown or controversial, the store-dependent generation of the plasma membrane Ca2+ influx appears to be certain and well documented. The first direct experimental proof of the capacitative Ca2+ entry model was demonstrated by Hallam et al. (5). They determined that depletion of the intracellular stores activated Ca2+ entry by a mechanism independent of receptor occupation or inositol phosphates. Depletion of the intracellular stores by repetitive agonist stimulation in a Ca2+-free environment triggered a large influx of Ca2+ when the ion was returned to the extracellular environment. This large Ca2+ influx or "overshoot" is now the characteristic trademark of capacitative Ca2+ entry. This influx pathway can also be activated by inhibition of the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase pump using thapsigargin, cyclopiazonic acid, or 2,5-di-tert-butyl-1,4-benzohydroquinone. These inhibitors block the sequestration of Ca2+, thereby ...
A molecular ribbon model of a calcium pump, a structure responsible for coordinating muscular contraction or signalling other cells along the cell membrane. Calcium pumps are embedded in the sarcoplasmic reticulum of muscle cells, transferring two calcium ions for each molecule of ATP broken down. - Stock Image C017/6296
ATPase molecule. Computer model showing the structure of the catalytic F1 unit of an ATP synthase (ATPase) molecule from a rat mitochondrion. ATPase is an important enzyme that provides energy for cells through the synthesis of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and inorganic phosphate. - Stock Image C015/3983
AbeBooks.com: Principles of Programming Languages: Design, Evaluation, and Implementation (9780195113068) by Bruce J. MacLennan and a great selection of similar New, Used and Collectible Books available now at great prices.
Paramecium, a unicellular ciliate, can be attracted by various chemical stimuli. Chemoattractants such as glutamate, folate, cAMP, and acetate activate different receptor mediated signal transduction pathways. The final event in these signal transductions is a hyperpolarization of membrane potential, which makes Paramecium swim smoothly and fast. There is evidence that the effecter of this hyperpolarization is the plasma membrane calcium ATPase (PMCA), that when activated, expels Ca2+ from the cell. In Paramecium three PMCA isoforms, named PMCA2, 3, and 4, have been cloned. PMCA2 is associated with lipid rafts, which is demonstrated by its resistance to cold detergent solubilization and distribution in sucrose density gradients in ultracentrifugation. PMCA3 and 4 are not associated with lipid rafts. On the cell surface, PMCAs are localized to the bases of cilia. Sterol-depletion by methyl-ß-cyclodextrin (MßCD) treatment disrupts the distribution of PMCA2 in sucrose density gradients and ciliary base
A dysfunctioning of Ca2+ pump ATPase in the sarcoplasmic reticulum in vascular smooth muscle has been proposed as a contributing factor for the development of genetic hypertension. In this study, we determined whether in vitro inhibition of the sarcoplasmic reticulum Ca2+ pump in vascular smooth muscle tissues and cultured cells isolated from aortas of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats would elicit the known alterations of contractile function and cell growth. We found the following common vascular effects of thapsigargin and cyclopiazonic acid, which are known to be selective inhibitors of sarcoplasmic reticulum Ca(2+)-ATPase in a number of tissues including smooth muscle: (1) Both sarcoplasmic reticulum Ca2+ pump inhibitors diminished agonist-induced transient contraction in Ca(2+)-free medium (ie, contraction due to intracellular release of Ca2+) and enhanced nifedipine-sensitive contraction on readmission of Ca2+ (ie, Ca2+ influx via L-type channels); and (2) ...
Angiogenesis, the de novo growth of blood vessels from pre-existing vessels, is an imperative, tightly-regulated process that underpins the expansion and refinement of the developing vascular network. However, in some pathological conditions, such as after a myocardial infarction, the vascular network can be destroyed necessitating the need for angiogenesis. Therefore stimulating angiogenesis could be therapeutically advantageous. Recently, plasma membrane calcium ATPase 4 (PMCA) has been established as a novel mediator of angiogenesis through its role in endothelial cell migration and tubule formation. In addition to PMCA4, both PMCA1 and PMCA2 are also expressed in human endothelial cells but their contribution to angiogenesis remains unknown. Therefore, we hypothesise that PMCA1 also modulates angiogenesis by altering endothelial cell behaviours.. Transient knockdown of PMCA1 was achieved in human umbilical vein endothelial cells (HUVECs) using siRNA (si-PMCA1) and confirmed with qPCR and ...
TY - JOUR. T1 - The role of ganglioside GM3 in the modulation of conformation and activity of sarcoplasmic reticulum CA2+-ATPase. AU - Yang, F. Y.. AU - Wang, L. H.. AU - Yang, X. Y.. AU - Tsui, Z. C.. AU - Tu, Yaping. PY - 1997/10. Y1 - 1997/10. N2 - Rabbit sarcoplasmic reticulum does contain trace amounts of gangliosides, and the main species is GM3. Incorporation of GM3 into the SR vesicles or addition of it to the soybean phospholipid used for reconstitution of proteoliposomes obviously increased ATP hydrolysis, as well as, Ca2+ uptake activity of sarcoplasmic reticulum Ca2+-ATPase. Conformation changes of Ca2+-ATPase induced by GM3 were also observed by circular dichroism, intrinsic fluorescence and fluorescence quenching measurements.. AB - Rabbit sarcoplasmic reticulum does contain trace amounts of gangliosides, and the main species is GM3. Incorporation of GM3 into the SR vesicles or addition of it to the soybean phospholipid used for reconstitution of proteoliposomes obviously increased ...
The autoinhibition/activation of the PMCA (plasma membrane Ca2+-ATPase) involves conformational changes in the membrane region of the protein that affect the amount of lipids directly associated with the transmembrane domain. The lipid-protein-dependence of PMCA isoforms 2 and 4 expressed and obtained in purified form from Saccharomyces cerevisiae was investigated using the phosphatidylcholine analogue [125I]TID-PC/16 {l-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromemyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine}, which was incorporated into mixtures of dimyristoylphosphatidylcholine and the non-ionic detergent C12E10 [deca(ethylene glycol) dodecyl ether]. We found no differences between the recombinant PMCA4 and PMCA purified from erythrocytes (ePMCA). However, titration of the half-maximal activation by Ca2+/calmodulin of PMCA2 showed 30-fold higher affinity than PMCA4. PMCA2 exhibited a lower level of labelling in the autoinhibited conformation relative ...
It has been proposed that breakdown of the excitation-contraction coupling system plays a pivotal role in myocardial dysfunction during the course of acute ischemia. We tested this hypothesis by characterizing the function of the sarcoplasmic reticulum at pH 7.1 and 6.4 after 7.5, 15, and 30 minutes of canine normothermic global ischemia. At pH 7.1, whole heart homogenate sarcoplasmic reticulum demonstrated a 49% depression of oxalate-supported calcium uptake at 7.5 minutes of ischemia, which progressed to 85% at 30 minutes of ischemia. At pH 6.4, control homogenate calcium uptake rates were significantly depressed, accompanied by a further depression in the ischemic groups. Isolated sarcoplasmic reticulum calcium uptake mirrored the effects of the whole heart homogenate. Calcium-stimulated magnesium-dependent ATPase (calcium-ATPase) activity was significantly depressed by both ischemia and acidosis, with a decrease in the coupling ratio (mumol calcium/mumol ATP) at 15 and 30 minutes of ...
Calcium management differs in T and B lymphocytes. [Ca2+]i elevation in response to calcium ionophores is up to 10 times greater in T cells than B cells. There is no difference between them in ionophore uptake. T cells, but not B cells, possess a calcium-sensitive potassium channel which produces membrane hyperpolarization at [Ca2+]i above 200 nM. This alters T cell density providing a rapid and easy method of cell separation. In contrast, B cells depolarize when [Ca2+]i is increased. Isolated B cell membrane vesicle ATP-dependent calcium pump activity is higher than T cell vesicles. Membrane depolarization reduces the [Ca2+]i response to ionomycin, most dramatically in T cells because they are hyperpolarized by increased [Ca2+]i. The most likely basis of this behavior is an effect of membrane potential on lymphocyte membrane calcium pump activity. This mechanism provides an explanation of the inhibitory effect of membrane depolarization on T lymphocyte responses. ...
TY - JOUR. T1 - The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. I. The effects of Ca2+, ATP, and inorganic phosphate.. AU - Dux, L.. AU - Martonosi, A.. PY - 1983/10/10. Y1 - 1983/10/10. N2 - Two-dimensional crystalline arrays of Ca2+-ATPase molecules develop after treatment of sarcoplasmic reticulum vesicles with Na3VO4 in calcium-free medium (Dux, L., and Martonosi, A. (1983) J. Biol. Chem. 258, 2599-2603). The formation of Ca2+-ATPase crystals is inhibited by Ca2+ (2 microM), or ATP (5 mM), but not by ADP, 5-adenylylimidodiphosphate, or adenylylmethylenediphosphonate. ATPase crystals did not form at 37 degrees C and exposure of preformed crystals to 37 degrees C for 1 h caused the disappearance of crystal lattice. Inorganic orthophosphate (1 mM at pH 6.0) promoted the formation of a distinct crystal form of Ca2+-ATPase, which was different from that produced by Na3VO4. These observations indicate that Ca2+, ATP, inorganic phosphate, pH, and temperature ...
In this study, we have analysed the relationship between Ca2+ pumps and Ins(1,4,5)P3-sensitive Ca2+ channels in myeloid cells. To study whether sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA)-type Ca2+-ATPases are responsible for Ca2+ uptake into Ins(1,4,5)P3-sensitive Ca2+ stores, we used the three structurally unrelated inhibitors thapsigargin, 2,5-di-t-butylhydroquinone and cyclopiazonic acid. In HL-60 cells, all three compounds precluded formation of the phosphorylated intermediate of SERCA-type Ca2+-ATPases. They also decreased, in parallel, ATP-dependent Ca2+ accumulation and the amount of Ins(1,4,5)P3-releasable Ca2+. Immunoblotting with subtype-directed antibodies demonstrated that HL-60 cells contain the Ca2+ pump SERCA2 (subtype b), and the Ca2+-release-channel type-1 Ins(1,4,5)P3 receptor. In subcellular fractionation studies, SERCA2 and type-1 Ins(1,4,5)P3 receptor co-purified. Immunofluorescence studies demonstrated that both type-1 Ins(1,4,5)P3 receptor and SERCA2 were ...
Unregulated increases in cellular Ca2+ homeostasis are a hallmark of pathophysiological conditions and a key trigger of cell death. Endothelial cells cultured under physiologic O2 conditions (5% O2) exhibit a reduced cytosolic Ca2+ response to stimulation. The mechanism for reduced plateau [Ca2+]i upon stimulation was due to increased sarco/endoplasmic reticulum Ca2+ ATPase (SERCA)-mediated reuptake rather than changes in Ca2+ influx capacity. Agonist-stimulated phosphorylation of the SERCA regulatory protein phospholamban was increased in cells cultured under 5% O2 Elevation of cytosolic and mitochondrial [Ca2+] and cell death after prolonged ionomycin treatment, as a model of Ca2+ overload, were lower when cells were cultured long-term under 5% compared with 18% O2 This protection was abolished by cotreatment with the SERCA inhibitor cyclopiazonic acid ...
The transfer of the terminal phosphate of ATP to a material from the sarcoplasmic reticulum of cardiac muscle which can be precipitated by trichloroacetic acid was studied, and the relationship of this biochemical event to active Ca2+ transport was examined. A component of the phosphoryl transfer reaction was stimulated specifically by Ca2+. Both the phosphorylation of the reticulum and the active sequestering of Ca2+ were proportional to the Ca2+ concentration between 10-7 and 10-5M. The time course of both phenomena was similar. These and other observations relating Ca2+-dependent phosphorylation of the membrane of the sarcoplasmic reticulum with the activesequestering of Ca2+ suggest that the phosphoryl transfer reaction may represent the formation of a carrier system which facilitates the inward flux of Ca2+ against a concentration gradient. Cyclic AMP, theophylline, or the combination of these two agents did not influence the rate or extent of the phosphorylation of the sarcoplasmic ...
The regulatory function of α1B-adrenoceptors in mammalian heart homeostasis is controversial. The objective of the present study was to characterize the expression/activity of key proteins implicated in cardiac calcium handling (Na+/K+-ATPase and Ca2+-ATPases) and growth (ERK1/2, JNK1/2 and p38) in mice with cardiac-selective overexpression of constitutively active mutant α1B-adrenoceptor (CAMα1B-AR), which present a mild cardiac hypertrophy phenotype. Immunoblot assays showed that myocardial plasma membrane Ca2+-ATPase (PMCA) expression was increased by 30% in CAMα1B-AR mice (N = 6, P , 0.05), although there was no change in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) expression. Moreover, total Ca2+-ATPase activity was not modified, but a significant increase in the activity of the thapsigargin-resistant (PMCA) to thapsigargin-sensitive (SERCA) ratio was detected. Neither Na+/K+-ATPase activity nor the expression of α1 and α2 subunit isoforms was changed in CAMα1B-AR mouse hearts. ...
Xu, K.Y.; Vandegaer, K.; Becker, L.C., 1999: The sarcoplasmic reticulum Ca(2+)-ATPase is depressed in stunned myocardium after ischemia-reperfusion, but remains functionally coupled to sarcoplasmic reticulum-bound glycolytic enzymes
Sigma-Aldrich offers abstracts and full-text articles by [Claire Harper, Laura Wootton, Francesco Michelangeli, Linda Lefièvre, Christopher Barratt, Stephen Publicover].
The structure, function and molecular biology of Ca2+ dependent regulatory proteins (particularly calmodulin) and the target proteins which they regulate is under study. One primary focus is the plasma membrane Ca2+-pumping ATPase (PMCA) in eucaryotes. Multiple isoforms of this enzyme are produced by alternative splicing of primary transcripts of four distinct genes. By artificial manipulation of expression through recombinant DNA methods, we have shown that products of one of these genes is required for proper cell adhesion, expression of a specific cell adhesion moleucle and for proper nerve growth factor action in a neuronal cell paradigm. We have also shown that the plasma membrane calcium pump is regulated by contact mediated tyrosine phosphorylation in both excitable cells and platelets. Studies are currently in progress using a variety of biochemical, immunological and molecular biological approaches to further elucidate the functions, expression, localization and physiological roles of ...
Buy our Recombinant Human Phospholamban protein. Ab114227 is a protein fragment produced in Wheat germ and has been validated in WB, ELISA, SDS-PAGE. Abcam…
Identification of novel regulators of cardiac hypertrophy is key in understanding the mechanisms of heart failure. The plasma membrane calcium ATPase 4 (PMCA4)...
Plasma Membrane Calcium ATPase 4, PMCA4, is the major Ca2+ efflux pump in murine sperm where its deletion leads to a severe loss of hyperactivated motility and to male infertility. Here I show that Pmca4 mRNA, 4a and 4b ...
In both cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum (SR) there are several systems involved in the regulation of Ca2+-ATPase function. T
As a consequence of their vital importance, impaired activity of the ion pumps - such as by mutations or toxic compounds inhibiting them - is associated with diseases. Oppositely, the ion pumps can be targeted by medical drugs to alleviate ionic imbalances associated with disease, or they can be targeted in cancer cells or pathogenic organisms that then die. It is therefore very important to know how they work at an atomic level. To gain such insight, the research team used X-ray crystallography after having crystallized the calcium pump in a state that mimics the last step of the ATP cleaving reaction. In this state, a phosphoenzyme middle-product is cleaved to liberate free phosphate as the final product of the ATPase reaction, and after calcium has been released into the sarco-endoplasmic reticulum store. This step is closely mimicked by vanadate, where the phosphorus atom is replaced by vanadium and therefore produces a stable complex instead of a short-lived transition state. Like this a ...
Buy, download and read The Development of the Sarcoplasmic Reticulum ebook online in PDF format for iPhone, iPad, Android, Computer and Mobile readers. Author: Anthony Martonosi. ISBN: 9781482283624. Publisher: CRC Press. Sarcoplasmic reticulum is a form of endoplasmic reticulum found in large quantities in mature muscle cells. Anthony Martonosi presents general information about the development and function of the sar
DI-fusion, le Dépôt institutionnel numérique de lULB, est loutil de référencementde la production scientifique de lULB.Linterface de recherche DI-fusion permet de consulter les publications des chercheurs de lULB et les thèses qui y ont été défendues.
Mitsugumin 23 (MG23), also called TM protein 109 (Venturi et al., 2011). MG23 is a Ca2+ channel protein that is regulated by cytoplasmic Zn2+, and dysregulation of this ion channel plays a role in diastolic sarcoplasmic reticulum Ca2+ homeostasis, promoting leakage from the SR (Reilly-ODonnell et al. 2017 ...
A - Tilt: 23° - Segments: 1( 60- 78), 2( 85- 104), 3( 259- 281), 4( 287- 314), 5( 760- 781), 6( 789- 807), 7( 834- 854), 8( 895- 916), 9( 933- 952), 10( 967- 987 ...
Gentaur molecular products has all kinds of products like :search , Gene Link \ BHQ2_dT 200nmol scale \ 26-6653-02 for more molecular products just contact us
Introduction ATPase proteins are enzymes which are able to supply energy by cleaving ATP into ADP and phosphate. This energy can be used for…
Looking for online definition of Plasma membrane calcium pump isoform 4 in the Medical Dictionary? Plasma membrane calcium pump isoform 4 explanation free. What is Plasma membrane calcium pump isoform 4? Meaning of Plasma membrane calcium pump isoform 4 medical term. What does Plasma membrane calcium pump isoform 4 mean?
Looking for online definition of plasma membrane calcium pump in the Medical Dictionary? plasma membrane calcium pump explanation free. What is plasma membrane calcium pump? Meaning of plasma membrane calcium pump medical term. What does plasma membrane calcium pump mean?
HAILEY-HAILEY DISEASE. What are the aims of this leaflet?. This leaflet has been written to help you understand more about Hailey-Hailey disease. It tells you what it is, what causes it, what can be done about it, and where you can find out more about it.. What is Hailey-Hailey disease?. Hailey-Hailey disease is also known as familial benign chronic pemphigus, as originally described by the Hailey brothers. It is a rare inherited skin condition in which red scaly areas that can be itchy and sore, can lead to superficial blisters and eroded (broken) areas of the skin folds of the groin, armpits, neck and under the breasts. The condition flares intermittently and tends to come and go. Many patients are able to lead full and normal lives, with their condition being a nuisance rather than a serious problem. Some patients are more severely affected and experience more persistent painful raw areas of the skin with development of superficial blisters.. What causes Hailey-Hailey disease?. A small error ...
Ion pumps are integral membrane proteins responsible for transporting ions against concentration gradients across biological membranes. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), a member of the P-type ATPases family, transports two calcium ions per hydrolyzed ATP molecule via an "alternating-access" mechanism. High-resolution crystallographic structures provide invaluable insight on the structural mechanism of the ion pumping process. However, to understand the molecular details of how ATP hydrolysis is coupled to calcium transport, it is necessary to gain knowledge about the conformational transition pathways connecting the crystallographically resolved conformations. Large-scale transitions in SERCA occur at time-scales beyond the current reach of unbiased molecular dynamics simulations. Here, we overcome this challenge by employing the string method, which represents a transition pathway as a chainofstates linking two conformational endpoints. Using a multiscale methodology, we have ...
2015 by the American Thoracic Society. Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation-induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute highconcentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by ...
Tryptic peptides of Ca-ATPase in Et and E2 conformational states (Andersen, J. P., Jørgensen, P. L.,J. Membrane Biol. 88:187-198 (1985)) have been isolated by size exclusion high performance liquid chromatography in sodium dodecyl sulfate. This permitted unambiguous localization of a conformational sensitive tryptic split at Arg 198 by N-terminal amino acid sequence analysis. Other splits at Arg 505 and at Arg 819-Lys 825 were insensitive to E1-E2 transitions. Tryptic cleavage of Ca-ATPase after phosphorylation by inorganic phosphate showed that this enzyme form has a conformation similar to that of the vanadate-bound E2 state, both in membranous and in soluble monomeric Ca-ATPase. Hydrophobic labeling of Ca-ATPase in sarcoplasmic reticulum vesicles with the photoactivable reagent trifluoromethyl-[125I]iodophenyl-diazirine indicated that E2 and E2V states are more exposed to the membrane phase than E1 and E1P (Ca2+-occluded) states. The preferetial hydrophobic labeling in E2 forms was found to be
In previous efforts to characterize sarcoplasmic reticulum function in human muscles, it has not been possible to distinguish the relative contributions of fast-twitch and slow-twitch fibers. In this study, we have used light scattering and 45Ca to monitor Ca accumulation by the sarcoplasmic reticulum of isolated, chemically skinned human muscle fibers in the presence and absence of oxalate. Oxalate (5 mM) increased the capacity for Ca accumulation by a factor of 35 and made it possible to assess both rate of Ca uptake and relative sarcoplasmic reticulum volume in individual fibers. At a fixed ionized Ca concentration, the rate and maximal capacity (an index of sarcoplasmic reticulum volume) both varied over a wide range, but fibers fell into two distinct groups (fast and slow). Between the two groups, there was a 2- to 2.5-fold difference in oxalate-supported Ca uptake rates, but no difference in average sarcoplasmic reticulum volumes. Intrinsic differences in sarcoplasmic reticulum function ...
The major finding of the present study is that type 2 diabetes mellitus is associated with the cleavage of platelet PECAM-1 through a mechanism involving the tyrosine nitration of SERCA-2, an increase in [Ca2+]i, and the activation of the Ca2+-dependent protease μ-calpain. Moreover, treating subjects with type 2 diabetes mellitus with the PPAR-γ agonist rosiglitazone successfully reversed many of these changes and restored platelet [Ca2+]i, calpain activity, and PECAM-1 to levels comparable to those detected in nondiabetic subjects. From these results, it is clear that megakaryocytes/platelets are an additional cellular target for PPAR-γ agonists.. Intracellular Ca2+ homeostasis in platelets from patients with type 2 diabetes mellitus is reported to be altered, leading to an increased adhesiveness and spontaneous aggregation. One factor that contributes to the disturbed platelet [Ca2+]i in diabetic subjects is a marked reduction in Ca2+-ATPase activity.3,4 Although human platelets coexpress ...
TY - JOUR. T1 - Transmembrane Ca2+ gradient-mediated change of fluidity in the inner layer of phospholipids modulates Ca2+-ATPase of sarcoplasmic reticulum. AU - Tu, Yaping. AU - Xu, H.. AU - Yang, F. Y.. PY - 1994. Y1 - 1994. N2 - Sarcoplasmic reticulum (SR) vesicles with (1000 folds) or without transmembrane Ca2+ gradient have been prepared. Different fluorescence probes (DPH, TMA-DPH and n-AS), were used to determine the effect of transmembrane Ca2+ gradient on the lipid fluidity both in outer and inner layer of Ca2+-ATPase-containing SR vesicles. The results showed that transmembrane Ca2+ gradient could significantly decrease the fluidity of the inner layer of SR membrane, while no obvious change was monitored in the outer layer. This may be deduced that Ca2+-ATPase might be modulated mainly by the transmembrane Ca2+ gradient-mediated alteration of physical state of phospholipid in the inner layer of SR membrane.. AB - Sarcoplasmic reticulum (SR) vesicles with (1000 folds) or without ...
Shop Junctional sarcoplasmic reticulum protein ELISA Kit, Recombinant Protein and Junctional sarcoplasmic reticulum protein Antibody at MyBioSource. Custom ELISA Kit, Recombinant Protein and Antibody are available.
Buy anti-ATP2A2 antibody, Mouse ATPase 2, Ca2+ Transporting, Sarcoplasmic Endoplasmic Reticulum Monoclonal Antibody (Clone 6D141)-NP_999030.1 (MBS604309) product datasheet at MyBioSource, Primary Antibodies. Application: Western Blot (WB), Immunohistochemistry (IHC), Immunocytochemistry (ICC)
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps are approximately 100 kDa transmembranous proteins that catalyze the ATP-dependent transport of cytosolic Ca2+ [Ca2+]i into the sarcoplasmic reticulum (SR), thereby maintaining low concentrations of resting [Ca2+]i. Reactive free- and non-radical oxygen and nitrogen species regulate SERCA function. Additionally, free radicals can oxidize lipids producing bioactive lipid-peroxidation end-products which are capable of modifying membranous proteins, resulting in protein inactivation. Here, in order to characterize the effect of 4-HNE, a lipid-peroxidation end-product, on SERCA structure and function, mouse WG and LV tissues were treated with 4-HNE and subsequently assayed for maximal Ca2+-dependent SERCA activity and SERCA post-translational structural modifications. Ca2+-dependent, maximal SERCA activity assays demonstrate a dose-dependent functional impairment of the SERCA pumps following 4-HNE treatment; interestingly, western blotting ...
Strehler EE and Zacharias DA. Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic/Foundation, Rochester, Minnesota, USA. [email protected] Calcium pumps of the plasma membrane (also known as plasma membrane Ca(2+)-ATPases or PMCAs) are responsible for the expulsion of Ca(2+) from the cytosol of all eukaryotic cells. Together with Na(+)/Ca(2+) exchangers, they are the major plasma membrane transport system responsible for the long-term regulation of the resting intracellular Ca(2+) concentration. Like the Ca(2+) pumps of the sarco/endoplasmic reticulum (SERCAs), which pump Ca(2+) from the cytosol into the endoplasmic reticulum, the PMCAs belong to the family of P-type primary ion transport ATPases characterized by the formation of an aspartyl phosphate intermediate during the reaction cycle. Mammalian PMCAs are encoded by four separate genes, and additional isoform variants are generated via alternative RNA splicing of the primary gene transcripts. The ...
Recent studies have been directed towards the potential therapeutic value of improving the sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA) function in the failing myocardium. Overexpression of SERCA pump or inhibiting the function of phospholamban (PLB) has been shown to improve the cardiac function in failing myocardium. Towards this goal, we enhanced the SERCA pump activity in both atria and ventricle by ablating its key regulators, PLB and sarcolipin (SLN). The homozygous double knockout (dKO) pups were delivered in Mendelian ratio and reached adulthood without any visible abnormalities. However, these mice develop cardiac hypertrophy. The heart weight to body weight ratio significantly increased in 3- 4 months old dKO mice (WT-3.08±0.11 vs. dKO-4.14±0.14) and is associated with enlargement of myocytes (WT-117±8 μm2 vs. dKO-166±10 μm2). Ablation of PLB and SLN did not affect the expression of major Ca2+ handling proteins including SERCA2a, calsequestrin, L-type Ca2+ channel and ...
Pflügers Archiv - European Journal of Physiology. Stromal interaction molecule 1 (STIM1) regulates sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase 1a (SERCA1a) in skeletal muscle Keon Jin Lee 1 , Changdo Hyun 1 , Jin Seok Woo 1 , Chang Sik Park 2 , Do Han Kim 2 , Eun Hui Lee 1,* Slideshow...
We describe for the first time that SERCA1 truncated proteins encoded by new splice variants (S1T) of the SERCA1 gene. S1T are characterized by exon 4 and/or exon 11 splicing, leading to COOH-terminally truncated proteins with deletion of transmembrane segments M2 and/or M5 to M10 including six out of seven transmembrane calcium-binding residues (Toyoshima et al. 2000). Consistent with the analysis of previously reported SERCA1 mutants (MacLennan et al. 1998), they are unable to pump calcium. We show that S1T protein overexpression is associated with a reduction in the ER Ca2+ steady state level and an increase in ER Ca2+ leakage. Our results also demonstrate that these proteins modulate SERCA-dependent ER calcium accumulation and induce apoptotic cell death.. S1T splice variants were detectable by RT-PCR at variable levels in different adult tissues, including spleen, thymus, pancreas, kidney, and liver, but not in adult and fetal skeletal muscle and heart. The relative amount of S1T, as ...
Ischemic cardiovascular disease shows trends of increasing morbidity and mortality in the United States and around the world. Current therapeutic options are limited, but the identification of key disease mechanisms and targets will inform novel therapeutic development to help decrease disease burden. One potential target is the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), a key regulator of Ca2+ homeostasis which plays multiple roles in the cardiovascular system. SERCA catalyzes the hydrolysis of ATP and couples it to the translocation of free cytosolic Ca2+ into SR/ER stores. SERCA is redox-regulated, and is susceptible to both stimulatory and inhibitory oxidative post-translational modification. For example, oxidation of SERCA by physiological levels of nitric oxide (NO) causes reversible oxidative modification of SERCA cysteine thiols by introducing glutathione adducts. S-glutathiolation enhances SERCA Ca2+ uptake activity, which results in rapid reductions in cytoplasmic Ca2+ levels, ...
SR Ca2+ depletion, Ca2+-dependent inactivation of Ca2+ release channels, and voltage-dependent inactivation of voltage sensors are the three mechanisms that have been put forward to produce the decline of Ca2+ signals and of force, as a consequence, during continuous stimulation, whereas store-operated, voltage-gated, or excitation-coupled Ca2+ influxes, which are possibly activated during stimulation of long duration, might contribute to favor force recovery (Melzer et al., 1995; Berbey and Allard, 2009; Launikonis et al., 2010). In this study, our experimental conditions allowed us to preclude the possible involvement of sarcolemmal Ca2+ influx, and our recording conditions with a time scale of over tens of seconds did not offer the required resolution to investigate Ca2+-dependent inactivation that is known to fully develop in a few tens of milliseconds after the onset of depolarization (Schneider and Simon, 1988). These conditions allowed us to focus on SR Ca2+ depletion and ...
The secretory pathway Ca\(^{2+}\)-ATPase (SPCA) provides the Golgi apparatus with a luminal Ca\(^{2+}\) store, which is used to modulate the activity of Ca\(^{2+}\)-dependent enzymes involved in controlling the secretory pathway and post-translational modification of proteins. This Ca\(^{2+}\) store controlled by SPCA is also believed to be agonist-releasable. Regucalcin (RGN), (also known as senescence marker protein 30 (SMP30)) is believed to be a Ca\(^{2+}\)-binding protein expressed in an age-dependent manner, whereby its protein levels decrease in a number of organs as aging progresses. It has been suggested to be able to affect the activities of the sarco/endo-plasmic reticulum Ca\(^{2+}\)-ATPase (SERCA), as well as other Ca\(^{2+}\)-dependent enzymes. On the other hand, RGNs ability to bind Ca\(^{2+}\) has been argued against and this protein has been shown to modulate the activities of enzymes not involved in Ca\(^{2+}\) homeostasis, as well as have intrinsic enzymatic activity in ...
Introduction: Alzheimers disease (AD) is a neurodegenerative disorder, clinically characterized by memory dysfunction and progressive loss of cognition. No curative therapeutic or drug is available for the complete cure of this disease. The present study was aimed to evaluate the efficacy of Lactobacillus plantarum MTCC1325 in ATPases activity in the selected brain regions of rats induced with Alzheimers. Methods: For the study, 48 healthy Wistar rats were divided into four groups: group I as control group, group II as AD model (AD induced by intraperitoneal injection of D-Galactose, 120 mg/kg body weight for 6 weeks), group III as normal control rats which were orally administered only with L. plantarum MTCC1325 for 60 days, and group IV where the AD-induced rats simultaneously received oral treatment of L. plantarum MTCC1325 (10ml/kg body weight, 12×108 CFU/mL) for 60 days. The well known membrane bound transport enzymes including Na+, K+-ATPases, Ca2+-ATPases, and Mg2+-ATPases were assayed in the
These results show that vasostatin, an NH2-terminal fragment of human calreticulin, can inhibit endothelial cell proliferation in vitro, suppress neovascularization in vivo, and prevent or reduce growth of experimental tumors. Calreticulin, a ubiquitous and highly conserved protein originally identified in skeletal muscle sarcoplasmic reticulum, serves as one of the major storage depots for calcium ions within the endoplasmic reticulum and participates in calcium signaling ((34)-(36)). The NH2-domain of calreticulin, which includes aa 1-180, is the most conserved domain among the calreticulins so far cloned and has no homology to other protein sequences ((34), (35)). Although it does not bind calcium, it can bind the cytoplasmic domain of α subunits of integrins regulating cell attachment ((37)), can interact with the nuclear receptors for glucocorticoid, androgen, and retinoic acid, regulating their binding to DNA ((38)), and can, once phosphorylated, bind stem-loop structures at the 3′-end ...
Reversibly inhibits the activity of ATP2A2 in cardiac sarcoplasmic reticulum by decreasing the apparent affinity of the ATPase for Ca(2+). Modulates the contractility of the heart muscle in response to physiological stimuli via its effects on ATP2A2. Modulates calcium re-uptake during muscle relaxation and plays an important role in calcium homeostasis in the heart muscle. The degree of ATP2A2 inhibition depends on the oligomeric state of PLN. ATP2A2 inhibition is alleviated by PLN phosphorylation (By similarity).
Phospholamban兔多克隆抗体(ab15000)可与小鼠, 大鼠, 兔, 仓鼠, 牛, 人, 猪, 中国仓鼠样本反应并经WB, IHC, ICC/IF实验严格验证,被7篇文献引用并得到11个独立的用户反馈。
Phospholamban兔多克隆抗体(ab85146)可与小鼠, 大鼠, 人样本反应并经WB, IHC实验严格验证。所有产品均提供质保服务,中国75%以上现货。
Find 4 listings related to Spca in Kingwood on YP.com. See reviews, photos, directions, phone numbers and more for Spca locations in Kingwood, TX.
Those with benign familial chronic pemphigus have a decreased number of desmosomes in the skin. Desmosomes are like little rivets that hold the skin cells together. Because the skin cells are not as attached together as well as normal skin, conditions such as heat and frictional pressures may cause Hailey-Hailey disease to flare.. Benign Familial Chronic Pemphigus is a genetic disease. The predisposition to get this disease is carried within your genes. Children of affected people have a fifty-fifty chance of also getting the disease. About one third may get the condition without a family history.. ...
The plasma membrane Ca2+ ATPase (PMCA) is a transport protein in the plasma membrane of cells and functions to remove calcium (Ca2+) from the cell. PMCA function is vital for regulating the amount of Ca2+ within all eukaryotic cells. There is a very large transmembrane electrochemical gradient of Ca2+ driving the entry of the ion into cells, yet it is very important that they maintain low concentrations of Ca2+ for proper cell signalling. Thus, it is necessary for cells to employ ion pumps to remove the Ca2+. The PMCA and the sodium calcium exchanger (NCX) are together the main regulators of intracellular Ca2+ concentrations. Since it transports Ca2+ into the extracellular space, the PMCA is also an important regulator of the calcium concentration in the extracellular space. PMCAs belong to the family of P-type primary ion transport ATPases which form aspartyl phosphate intermediates. Various forms of PMCA are expressed in different tissues, including the brain. The pump is powered by the ...
Calcium (Ca2+) is a fundamental regulator of cell signaling and function. Thapsigargin (Tg) blocks the sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA), disrupts Ca2+ homeostasis, and causes cell death. However, the exact mechanisms whereby SERCA-inhibition induces cell death are incompletely understood. Here, we report that low (0.1 μM) concentrations of Tg and Tg analogs with various long-chain substitutions at the O(8) position extensively inhibit SERCA1a-mediated Ca2+ transport. We also found that in both prostate and breast cancer cells, exposure to Tg or Tg analogs for 1 day caused extensive drainage of the ER Ca2+ stores. This Ca2+ depletion was followed by markedly reduced cell proliferation rates and morphological changes that developed over 2-4 days and culminated in cell death. Interestingly, these changes were not accompanied by bulk increases in cytosolic Ca2+ levels. Moreover, knockdown of two key store-operated Ca2+ entry (SOCE) components, Orai1 and STIM1, did not reduce Tg ...
TY - JOUR. T1 - Influence of tetanus toxin on synaptic plasma membrane calcium transport. AU - Gill, D. L.. AU - Dyer, S. A.. AU - Kohn, L. D.. AU - Grollman, E. F.. PY - 1981/1/1. Y1 - 1981/1/1. UR - http://www.scopus.com/inward/record.url?scp=0019509268&partnerID=8YFLogxK. UR - http://www.scopus.com/inward/citedby.url?scp=0019509268&partnerID=8YFLogxK. M3 - Article. AN - SCOPUS:0019509268. VL - 40. JO - Federation Proceedings. JF - Federation Proceedings. SN - 0014-9446. IS - 6. ER - ...
ANA M. MATA, ANN E. SCHOFIELD, JANE WOODBINE, ANTHONY G. LEE, J. MALCOLM EAST; Probing the nucleotide binding site of sarcoplasmic reticulum (Ca2+ -Mg2)-ATPase with anti-fluorescein antibodies. Biochem Soc Trans 1 December 1989; 17 (6): 1105-1106. doi: https://doi.org/10.1042/bst0171105. Download citation file:. ...
In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump ...
Background-We hypothesized that S100A1 is regulated during human hypertrophy and heart failure (HF), and that it may be implicated in remodeling after left ventricular assist device (LVAD). S100A1 is decreased in animal and human HF and restoration produces functional recovery in animal models and in failing human myocytes. With the potential for gene therapy, it is important to carefully explore human cardiac S100A1 regulation and its role in remodeling. Methods and Results-We measured S100A1, the sarcoplasmic endoplasmic reticulum Ca2+ATPase (SERCA), phospholamban (PLB) and ryanodine receptor (RYR) proteins as well as β-adrenergic receptor density (β-AR) in non-failing (NF), hypertrophied (LVH), failing (F) and failing LVAD-supported (F+LVAD) hearts. We determined functional consequences of protein alterations in isolated contracting muscles from the same hearts. S100A1, SERCA and PLB were normal in LVH, but decreased in F, while RYR was unchanged in either group. Baseline muscle contraction ...
The precise control of Ca2+ levels during the contraction-relaxation cycle in cardiac myocytes is extremely important for normal beat-to-beat contractile activity. The sarcoplasmic reticulum (SR) plays a key role controlling calcium concentration in the cytosol. The SR Ca2+-ATPase (SERCA2) transports Ca2+ inside the SR lumen during relaxation of the cardiac myocyte. Calsequestrin (Casq2) is the main protein in the SR lumen, functioning as a Ca2+ buffer and participating in Ca2+ release by interacting with the ryanodine receptor 2 (RyR2) Ca2+-release channel. Alterations in normal Ca2+ handling significantly contribute to the contractile dysfunction observed in cardiac hypertrophy and in heart failure. Transcriptional regulation of the SERCA2 gene has been extensively studied and some of the mechanisms regulating its expression have been elucidated. Overexpression of Sp1 factor in cardiac hypertrophy downregulates SERCA2 gene expression and increased levels of thyroid hormone up-regulates its ...
Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase; and ryanodine, a diterpenoid that modulates Ca2+ release ...
Backgrounds Previous studies showed that overexpression of sarco-endoplasmic reticulum calcium ATPase (SERCA2a) in a variety of heart failure (HF) models was associated with greatly enhanced cardiac performance. However, it still undefined the effect of SERCA2a overexpression on the systemic inflammatory response and neuro-hormonal factors. Methods A rapid right ventricular pacing model of experimental HF was used in beagles. Then the animals underwent recombinant adeno-associated virus 1 (rAAV1) mediated gene trans¬fection by direct intra-myocardium injection. HF animals were randomized to receive the SERCA2a gene, enhanced green fluorescent protein (control) gene, or equivalent phosphate buffered saline. Thirty days after gene delivery, the cardiac function was evaluated by echocardiographic testing. The protein level of SERCA2a was measured by western blotting. The proteomic analysis of left ventricular (LV) sample was determined using two-dimensional (2-D) gel electrophoresis and MALDI-TOF-MS. The
Annales de Dermatologie et de Vénéréologie - Vol. 139 - N° 10 - p. 621-625 - Détection danticorps antidesmogléines circulants chez un patient atteint de maladie de Hailey-Hailey - EM|consulte
The ATP2C1 gene encodes for the secretory pathway calcium (Ca2+)-ATPase pump (SPCA1), which localizes along the secretory pathway, mainly in the trans-Golgi. The loss of one ATP2C1 allele causes Hailey-Hailey disease in humans but not mice. Examining differences in genomic organization between mouse and human we speculate that the overlap between ATP2C1 and ASTE1 genes only in humans could explain this different response to ATP2C1 dysregulation. We propose that ASTE1, overlapping with ATP2C1 in humans, affects alternative splicing, and potentially protein expression of the latter. If dysregulated, the composition of the SPCA1 isoform pool could diverge from the physiological status, affecting cytosolic Ca2+-signaling, and in turn perturbing cell division, leading to cell death or to neoplastic transformation.
The ATP2C1 gene encodes for the secretory pathway calcium (Ca2+)-ATPase pump (SPCA1), which localizes along the secretory pathway, mainly in the trans-Golgi. The loss of one ATP2C1 allele causes Hailey-Hailey disease in humans but not mice. Examining differences in genomic organization between mouse and human we speculate that the overlap between ATP2C1 and ASTE1 genes only in humans could explain this different response to ATP2C1 dysregulation. We propose that ASTE1, overlapping with ATP2C1 in humans, affects alternative splicing, and potentially protein expression of the latter. If dysregulated, the composition of the SPCA1 isoform pool could diverge from the physiological status, affecting cytosolic Ca2+-signaling, and in turn perturbing cell division, leading to cell death or to neoplastic transformation.
It affects both men and women and is not contagious. The disease often starts during or later than the teenage years, typically by the third decade. The symptoms of the disease are thought to be caused by an abnormality in the desmosome-keratin filament complex leading to a breakdown in cell adhesion. It most commonly affects the chest, neck, back, ears, forehead, and groin, but may involve other body areas. The rash associated with Dariers disease often has a distinct odor. The rash can be aggravated by heat, humidity, and exposure to sunlight. ...
Intracellular calcium recycling plays a critical role in regulation of systolic and diastolic function in cardiomyocytes. Here, we...
Abdominal Pain, Enlarged Vesicles of Sarcoplasmic Reticulum Origin, Pregnancy Symptom Checker: Possible causes include Ovarian Cyst, Constipation, Iron Deficiency. Check the full list of possible causes and conditions now! Talk to our Chatbot to narrow down your search.
Buy Thapsigargin - an affordable, high quality SERCA inhibitor from Hello Bio, a trusted supplier for life science researchers worldwide
Reactivity: Chicken, Cow, Dog and more. Compare 15 different CA-P60A ELISA Kits & buy the right one directly at antibodies-online.com!
Expression and characterization of P-type ATPases for structural studies [Elektronische Ressource] / von Sivaram Chandra Chintalapati : Expression and Characterization ofP-type ATPases for Structural StudiesDissertationZur Erlangung des Doktorgrades der Naturwissenschaftenvorgelegt beim Fachbereich Biochemie, Chemie und PharmaziederJohann Wolfgang Goethe Universität in Frankfurt am MainvonSivaram Chandra Chintalapatiaus Tenali, IndienFrankfurt am Main 2007Die Arbeit wurde in der Abteilung Structural Biology des
Providing premium quality antibodies to cardiovascular phosphorylated targets. Fully validated by western blotting and immunofluorescence microscopy by PhD scientists. We supply antibodies to Phospholamban, SERCA, RYR2 and their phosphorylated forms.
Find 10 listings related to Spca in Hayward on YP.com. See reviews, photos, directions, phone numbers and more for Spca locations in Hayward, CA.
Gentaur molecular products has all kinds of products like :search , Biovis \ Thapsigargin1 mg \ 1558-1 for more molecular products just contact us
Käännös sanalle thapsigargin englannista suomeksi. Suomienglantisanakirja.fi on suomen ja englannin kääntämiseen keskittyvä ilmainen sanakirja.
Tips and advice on caring for cats. Learn about introducing cats, litterbox training, indoor vs outdoor, overcoming behaviour issues, medical care and more.
namiescie.pl zostala zarejstrowana 6 years 1 month temu. Domena z rozszerzeniem .pl . Jej przyblizona wartosc to PLN 26.85 , a dzienny przychod z reklam jest na poziomie ok. PLN 0.45. Nie stwierdzono potencjalnych zagrozen, namiescie.pl jest bezpieczna do surfowania.. ...
DARIERS DISEASE. What are the aims of this leaflet?. This leaflet has been written to help you understand more about Dariers disease. It tells you what it is, what causes it, what can be done about it, and where you can find out more about it.. What is Dariers disease?. It is a rare inherited skin condition characterised by the loss of binding (acantholysis) between skin surface cells and there is also some thickening of the skin. It is also known as Keratosis Follicularis. The nails and mouth may also be affected.. What causes Dariers disease?. It is the result of an abnormality in the gene involved in calcium transport within cells. The defective calcium transport leads to reduced cell binding. Normally, in the outer layer (epidermis) of the skin, the skin cells are held together like bricks cemented in a wall. In Dariers disease the sticky junctions that hold the skin cells together are not made properly, and the skin may be easily irritated and becomes inflamed and weeping. It is not ...
TY - JOUR. T1 - Sarcoplasmic reticulum Ca2+ regulatory protein gene expression in human right atrium under hemodynamic overload. AU - Sadamatsu, Kenji. AU - Urabe, Yoshitoshi. AU - Tsutsui, Hiroyuki. AU - Tagawa, Hirofumi. AU - Maruoka, Fumio. AU - Igarashi-Saito, Keiko. AU - Takeda, Kotaro. AU - Kawachi, Yoshito. AU - Yasui, Hisataka. AU - Takeshita, Akira. PY - 1999/1/1. Y1 - 1999/1/1. N2 - Sarcoplasmic reticulum (SR) Ca2+-adenosine triphosphatase (ATPase) mRNA expression is reduced in the failing human myocardium. However, it is not known whether SR Ca2+-regulatory protein gene expression is altered in human myocardial tissue subjected to pressure overload or volume overload. We sought to determine whether SR Ca2+-regulatory protein gene expression is altered in human atrial tissue subjected to mechanical overload. We obtained right atrial myocardial tissue (about 250 mg) at open-heart surgery from three groups of patients: no hemodynamic overload to the right atrium (control group; 12 ...
The regulation of the guinea-pig pancreatic acinar plasma membrane Ca2+ pump by protein kinase A, protein kinase C and calmodulin was investigated. The results were compared with the effects of these regulators on the high affinity Ca2+-ATPase found in this membrane preparation. The catalytic subunit of cyclic AMP-dependent protein kinase stimulated Ca2+ transport 2-fold, but had no effect on Ca2+-dependent ATPase activity. Purified protein kinase C, the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate and diacylglycerol derivative, 1-stearoyl-2-arachidonoyl-sn-glycerol, failed to stimulate the Ca2+-uptake but augmented the Ca2+-dependent ATPase activity. Exogenously added calmodulin failed to stimulate either activity. In addition, two antagonists of calmodulin activity, trifluoperazine and compound 48/80 produced a concentration-dependent inhibition of Ca2+-transport. These data suggest the presence of endogenous calmodulin within guinea-pig pancreatic acinar plasma membranes. Both calmodulin
Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV node mimicking beta blockade can be therapeutic in the management of atrial fibrillation. G protein overexpression to modify the AV node also is experimental. Modification and expression of potassium channel genes altering the delayed rectifier potassium currents may permit better management of congenital long QT syndromes. Arrhythmias in a failing heart are due to abnormal calcium cycling. Potential targets for genetic modulation include the sarcoplasmic reticulum calcium pump, calsequestrin and sodium calcium ...
Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV node mimicking beta blockade can be therapeutic in the management of atrial fibrillation. G protein overexpression to modify the AV node also is experimental. Modification and expression of potassium channel genes altering the delayed rectifier potassium currents may permit better management of congenital long QT syndromes. Arrhythmias in a failing heart are due to abnormal calcium cycling. Potential targets for genetic modulation include the sarcoplasmic reticulum calcium pump, calsequestrin and sodium calcium ...
Cardiomyocyte calcium overloading has been implicated in the pathogenesis of Duchenne muscular dystrophy (DMD) heart disease. The cardiac isoform of sarcoplasmic reticulum calcium ATPase (SERCA2a) plays a major role in removing cytosolic calcium duri
TY - JOUR. T1 - Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. AU - Krishnan, Bharathi. AU - Massilamany, Chandirasegaran. AU - Basavalingappa, Rakesh H.. AU - Gangaplara, Arunakumar. AU - Rajasekaran, Rajkumar A.. AU - Afzal, Muhammad Z.. AU - Khalilzad-Sharghi, Vahid. AU - Zhou, You. AU - Riethoven, Jean-Jack M. AU - Nandi, Shyam S.. AU - Mishra, Paras Kumar. AU - Sobel, Raymond A.. AU - Strande, Jennifer L.. AU - Steffen, David J. AU - Reddy, N R Jayagopala. PY - 2018/1/15. Y1 - 2018/1/15. N2 - Sarcoplasmic/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA)2a, a critical regulator of calcium homeostasis, is known to be decreased in heart failure. Patients with myocarditis or dilated cardiomyopathy develop autoantibodies to SERCA2a suggesting that they may have pathogenetic significance. In this report, we describe epitope mapping analysis of SERCA2a in A/J mice that leads us to make five observations: 1) SERCA2a ...
TY - JOUR. T1 - Store-independent activation of orai1 by SPCA2 in mammary tumors. AU - Feng, Mingye. AU - Grice, Desma M.. AU - Faddy, Helen M.. AU - Nguyen, Nguyen. AU - Leitch, Sharon. AU - Wang, Yingyu. AU - Muend, Sabina. AU - Kenny, Paraic A.. AU - Sukumar, Saraswati. AU - Roberts-Thomson, Sarah J.. AU - Monteith, Gregory R.. AU - Rao, Rajini. PY - 2010/10/1. Y1 - 2010/10/1. N2 - Ca2+ is an essential and ubiquitous second messenger. Changes in cytosolic Ca2+ trigger events critical for tumorigenesis, such as cellular motility, proliferation, and apoptosis. We show that an isoform of Secretory Pathway Ca2+-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuates basal Ca2+ levels and tumorigenicity. Contrary to its conventional role in Golgi Ca2+ sequestration, expression of SPCA2 increased Ca2+ influx by a mechanism dependent on the store-operated Ca2+ channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER ...
Hailey-Hailey disease, also known as benign chronic pemphigus, is a rare autosomal dominant cutaneous disorder that usually becomes manifest in the third or fourth decade of life with erythema, vesicles, and erosions involving the body folds, particularly the groin and axillary regions. Other sites of the body, such as the neck, perianal, and submammary regions, may likewise be affected (summary by Poblete-Gutierrez et al., 2004). This disorder was first described by the dermatologist brothers Hailey and Hailey (1939).
With each heartbeat, a small amount of calcium entering the cell through membrane channels triggers the release of a larger amount of calcium from intracellular...
Sodium/potassium-transporting ATPase subunit alpha-1 is an enzyme that in humans is encoded by the ATP1A1 gene. The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of Na+/K+-ATPases. Na+/K+-ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium-coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle. This enzyme is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). The catalytic subunit of Na+/K+-ATPase is encoded by multiple genes. This gene encodes an alpha 1 subunit. Alternatively spliced transcript variants encoding different isoforms have been identified. In melanocytic cells ATP1A1 gene expression may be regulated by MITF. Mutations in this gene have been ...
The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of Na+/K+ -ATPases. Na+/K+ -ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium-coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle. This enzyme is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). The catalytic subunit of Na+/K+ -ATPase is encoded by multiple genes. This gene encodes an alpha 3 subunit. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012 ...
The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of aminophospholipid-transporting ATPases. The aminophospholipid translocases transport phosphatidylserine and phosphatidylethanolamine from one side of a bilayer to another. This gene is maternally expressed. It maps within the most common interval of deletion responsible for Angelman syndrome, also known as happy puppet syndrome. [provided by RefSeq, Jul 2008 ...
A: 1. by increasing open time of the calcium channels, and more calcium rush into the cardiac muscle cell. From the extracellular fluid. 2. Phosphorylate (activate) phospholamban, whch increases Calcium ATPase in the sarcoplasmic reticulum. This increases calcium stores in the SR, so more is released when needed, leading to forceful contractions. Calcium is also removed from the cytosol faster, shortening the calcium-troponin binding time, which causes shorter duration of contraction.. Q: What is the isovolumic systole ...
View and buy high purity Cyclopiazonic acid from Tocris Bioscience, the leading worldwide supplier of high performance life science reagents.
Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure ...
What Pumps Are You Using? - posted in Equipment: Which IV pumps are you guys flying with? I am currently working on getting some new pumps for my program and am curious as to see what everyone likes and doesnt like.
TALK-1 channels control beta cell endoplasmic reticulum Ca(2+) homeostasis. Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA. Sci Signal. 2017 Sep 19;10(497). pii: 10/497/eaan2883. doi: 10.1126/scisignal.aan2883. ...
Proton or sodium translocating F-type and V-type ATPases. P-P-bond hydrolysis-driven transporters[edit]. *P-type calcium ATPase ... FadL outer membrane protein transport family, including Fatty acid transporter FadL (n=14,S=14) ... Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They ...
... , unlike caffeine, acts as an enzymatic effector of Na+/K+ ATPase. As a result, it is responsible for increased ... transport of potassium ions into skeletal muscle tissue. Similarly, the compound also stimulates increases in calcium ion ... Hawke TJ, Willmets RG, Lindinger MI (November 1999). "K+ transport in resting rat hind-limb skeletal muscle in response to ...
Sarcoplasmic Reticulum Calcium-Transporting ATPases at the US National Library of Medicine Medical Subject Headings (MeSH). ... SERCA, or sarco/endoplasmic reticulum Ca2+-ATPase, or SR Ca2+-ATPase, is a calcium ATPase-type P-ATPase. SERCA resides in the ... It seems that, in addition to the calcium-transporting properties, SERCA1 generates heat in some adipocytes and can improve ... Another protein, calsequestrin, binds calcium within the SR and helps to reduce the concentration of free calcium within the SR ...
... also slows cardiac metabolism via calcium transport delay by blockade of magnesium-dependent calcium transport ATPase. It also ... Prenylamine (Segontin) is a calcium channel blocker of the amphetamine chemical class which was used as a vasodilator in the ... Godfraind, Theophile; Herman, Arnold G.; Wellens, Donald (2012). Calcium Entry Blockers in Cardiovascular and Cerebral ...
This typically occurs through active transport. Water uptake. This follows the osmotic gradient established by Na+/K+ ATPase on ... The major functions of enterocytes include: Ion uptake, including sodium, calcium, magnesium, iron, zinc, and copper. ... Smaller lipids are transported into intestinal capillaries, while larger lipids are processed by the Golgi and smooth ... Microvilli on the apical surface increase surface area for the digestion and transport of molecules from the intestinal lumen. ...
Calcium-transporting ATPase type 2C member 1 is an enzyme that in humans is encoded by the ATP2C1 gene. This gene encodes one ... "Entrez Gene: ATP2C1 ATPase, Ca++ transporting, type 2C, member 1". Human ATP2C1 genome location and ATP2C1 gene details page in ... This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium. Defects in this gene ... ATPase SPCA1". Cell Calcium. 34 (2): 157-62. doi:10.1016/S0143-4160(03)00070-8. PMID 12810057. Aronchik I, Behne MJ, Leypoldt L ...
The protein is thought to be a P-type ATPase involved in calcium ion transport. It was suggested in 2003 that PfATP6 is a ... PfATP6, also known as PfSERCA or PfATPase6, is a calcium ATPase gene encoded by the malaria parasite Plasmodium falciparum. ... Kimura, M.; Yamaguchi, Y.; Takada, S.; Tanabe, K. (1993). "Cloning of a Ca(2+)-ATPase gene of Plasmodium falciparum and ... The authors suggested that the original results might have been affected by low ATPase signals, few experimental repeats and ...
Plasma membrane calcium-transporting ATPase 2 is an enzyme that in humans is encoded by the ATP2B2 gene. The protein encoded by ... "Entrez Gene: ATP2B2 ATPase, Ca++ transporting, plasma membrane 2". Human ATP2B2 genome location and ATP2B2 gene details page in ... The mammalian plasma membrane calcium ATPase isoforms are encoded by at least four separate genes and the diversity of these ... Møller JV, Juul B, le Maire M (1996). "Structural organization, ion transport, and energy transduction of P-type ATPases". ...
Plasma membrane calcium-transporting ATPase 4 is an enzyme that in humans is encoded by the ATP2B4 gene. The protein encoded by ... "Entrez Gene: ATP2B4 ATPase, Ca++ transporting, plasma membrane 4". Schuh, Kai; Uldrijan Stjepan; Gambaryan Stepan; Roethlein ... The mammalian plasma membrane calcium ATPase isoforms are encoded by at least four separate genes and the diversity of these ... Møller JV, Juul B, le Maire M (1996). "Structural organization, ion transport, and energy transduction of P-type ATPases". ...
Plasma membrane calcium-transporting ATPase 3 is an enzyme that in humans is encoded by the ATP2B3 gene. The protein encoded by ... 2004). "Expression and role of calcium-ATPase pump and sodium-calcium exchanger in differentiated trophoblasts from human term ... "Entrez Gene: ATP2B3 ATPase, Ca++ transporting, plasma membrane 3". Human ATP2B3 genome location and ATP2B3 gene details page in ... The mammalian plasma membrane calcium ATPase isoforms are encoded by at least four separate genes and the diversity of these ...
... plays a role in the promotion of urinary calcium transport in the epithelial cells of kidney cortex. Overexpression ... Regucalcin has been shown to have an activatory effect on Ca pumping enzyme (Ca-ATPase) in heart sarcoplasmic reticulum. ... It may have an important role in calcium homeostasis. Studies in rats indicate that this protein may also play a role in aging ... Regucalcin is a proposed name for a calcium-binding protein that was discovered in 1978. This protein is also known as ...
Mutations in genes affecting V-ATPase synthesis and assembly,[10] vesicle transport machinery, protein sorting machinery all ... potent target as it is the main non-mitochondrial producer of ATP but also has numerous other functions such as calcium ... Pathways which are affected by pyocyanin include the electron transport chain, vesicular transport, and cell growth. An ... Therefore, the inactivation of vacuolar-ATPase by hydrogen peroxide produced by pyocyanin has huge consequences for the lung. ...
This symporter is a channel responsible for the transport of multiple electrolytes such as sodium, chloride, calcium, magnesium ... When the sodium-chloride cotransporter is inactivated, continued action of the basolateral Na+/K+-ATPase creates a favorable ... This increases the reabsorption of divalent cations by secondary active transport. It is currently unknown why calcium ... Loss of this transporter also has the indirect effect of increasing calcium reabsorption in a transcellular fashion. This has ...
Na+/K+-ATPase is an ion transport system of sodium and potassium ions and requires energy. It is often used in many types of ... increased intracellular calcium causes more calcium to be released, thereby making more calcium available to bind to troponin-C ... This is because the calcium-sodium exchange pump's activity decreases. The calcium-sodium exchange pump exchanges Ca2+ and Na+ ... Cerberin is able to bind to the extracellular part of the Na+/K+-ATPase pump and can block the dephosphorylation step. Due to ...
The gene codes for a P-type (cation transport enzyme) ATPase that transports copper into bile and incorporates it into ... calcium accumulation in the kidneys), a weakening of bones (due to calcium and phosphate loss), and occasionally aminoaciduria ... which is active in the brain and other tissues and also appears to be involved in transporting copper. A role for the ApoE gene ... failure of the parathyroid glands leading to low calcium levels), infertility, and habitual abortion. The Wilson's disease gene ...
... thereafter it is known to interfere with many physiological processes including the uptake and transport of calcium and other ... The proton pump, H+-ATPase, of the plasmalemma of root cells works to maintain the near-neutral pH of their cytoplasm. A high ... calcium silicate), and oyster shells. These products increase the pH of soils through various acid-base reactions. Calcium ... However, in high-pH soils with a high calcium carbonate content (more than 2%), it can be very costly and/or ineffective to ...
This increases the reabsorption of divalent cations by secondary active transport. It is currently unknown why calcium ... When the sodium-chloride cotransporter is inactivated, continued action of the basolateral Na+/K+-ATPase creates a favorable ... This symporter is a channel responsible for the transport of multiple electrolytes such as sodium, chloride, calcium, magnesium ... A model of transport mechanisms in the distal convoluted tubule. Sodium chloride (NaCl) enters the cell via the apical thiazide ...
... along with the other calcium transport proteins, calbindin and the calcium-pumping ATPase, PMCA1. The TRPV6 calcium transporter ... TRPV6 is a membrane calcium channel which is particularly involved in the first step in calcium absorption in the intestine. ... and also stimulated the transport of calcium, probably through increased TRPV6 expression. In human duodenal explants, TRPV6 ... The protein is located in the apical brush-border membrane of the intestinal enterocyte where it regulates calcium entry into ...
2005). "The loss of sarco/endoplasmic reticulum calcium transport ATPase 3 expression is an early event during the multistep ... Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 is an enzyme that in humans is encoded by the ATP2A3 gene. This gene ... "Entrez Gene: ATP2A3 ATPase, Ca++ transporting, ubiquitous". Human ATP2A3 genome location and ATP2A3 gene details page in the ... Borge PD, Wolf BA (2003). "Insulin receptor substrate 1 regulation of sarco-endoplasmic reticulum calcium ATPase 3 in insulin- ...
... such as acto-myosin ATPase and calcium ATPase involved in muscle contraction, and sodium/potassium ATPase involved in sodium ... as well as for intracellular energy transport by the PCr shuttle or circuit.[2] Thus creatine kinase is an important enzyme in ... which can then be used as energy source by the ATPases (CK is associated intimately with the ATPases, forming a functionally ... PCr generated by mtCK in mitochondria is shuttled to cytosolic CK that is coupled to ATP-dependent processes, e.g. ATPases, ...
A major cation transporter in cells is calcium ATPase. In the Ca++-bound crystal structures the two calcium ions side-by-side ... within the transmembrane domain are thought to be at the halfway stage of being transported. As well as being bound by various ... Toyoshima, C; Mizutani (2004). "Crystal structure of the calcium pump with a bound ATP analogue". Nature. 430 (6999): 529-535. ... side chain carbonyl groups, one of these calcium ions is bound by a niche3/niche4 (both in the one motif) at residues 304-307 ...
... thereafter it is known to interfere with many physiological processes including the uptake and transport of calcium and other ... The proton pump, H+-ATPase, of the plasmalemma of root cells works to maintain the near-neutral pH of their cytoplasm. A high ... Manganese is an essential plant nutrient, so plants transport Mn into leaves. Classic symptoms of Mn toxicity are crinkling or ... For example, increasing the amount of sodium in an alkaline soil tends to induce dissolution of calcium carbonate, which ...
Osmolyte Myo-Inositol Taurine and Taurine-transporting ATPase Creatine Betaines Trimethylglycine - A Betaine and metabolite of ... In eukaryotes, calcium acts as one of the primary regulators of osmotic stress. Intracellular calcium levels rise during hypo- ... During hyper-osmotic stress extracellular albumin binds calcium. extracellular sequestering of Calcium by blood Albumin. ... Extracellular calcium removal was found to prevent Taurine efflux by 50%, and removal of extracellular Ca2+ and simultaneous ...
Osmotic pressure Outer mitochondrial membrane Outline of biophysics Overhead throwing motion P-type ATPase P-type calcium ... 5-HT3 receptor ACCN1 ANO1 AP2 adaptor complex Aaron Klug Acid-sensing ion channel Activating function Active transport Adolf ... Calcium-activated potassium channel Calcium-activated potassium channel subunit alpha-1 Calcium 2-aminoethylphosphate Calcium ... Protein-lipid interaction Protomer Protoplast Pseudopeptidoglycan Pseudopodia Pterygium Q-type calcium channel R-type calcium ...
Once transported into the tubule cells, sodium ions are actively transported across the basolateral membrane by Na+/K+-ATPases ... Magnesium deficiency and calcium deficiency: These patients will also have low serum and urine magnesium and calcium Patients ... The basolateral calcium-sensing receptor has the ability to downregulate the activity of this transporter upon activation. ... The Na-K-Cl cotransporter is involved in electroneutral transport of one sodium, one potassium, and two chloride ions across ...
Zlokovic BV, Frangione B (2003). Transport-clearance hypothesis for Alzheimer's disease and potential therapeutic implications ... Como resultado o amiloide beta promove a despolarización da membrana sináptica, un fluxo excesivo de calcio e a alteración ... altera a función das ATPases iónicas, transportadores de glicosa e transportadores de glutamato. ... Yao ZX, Papadopoulos V (October 2002). "Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity". FASEB J. ...
Ca2+-transporting ATPase activity, calcium ABC transporter, calcium efflux ATPase, calcium pump, calcium transporting ATPase ... ATP phosphohydrolase (Ca2+-transporting), Ca(2+)-transporting ATPase activity, Ca2+-pumping ATPase activity, ... Gene Ontology Term: calcium-transporting ATPase activity. GO ID. GO:0005388 Aspect. Molecular Function. Description. Catalysis ... calcium-translocating P-type ATPase activity, plasma membrane Ca-ATPase, sarco(endo)plasmic reticulum Ca2+-ATPase, sarcoplasmic ...
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to ... IPR023299 ATPase_P-typ_cyto_dom_N. IPR018303 ATPase_P-typ_P_site. IPR023298 ATPase_P-typ_TM_dom_sf. IPR008250 ATPase_P-typ_ ... IPR023299 ATPase_P-typ_cyto_dom_N. IPR018303 ATPase_P-typ_P_site. IPR023298 ATPase_P-typ_TM_dom_sf. IPR008250 ATPase_P-typ_ ... Calcium-transporting ATPase 4, endoplasmic reticulum-typeAdd BLAST. 1061. Proteomic databases. PaxDb, a database of protein ...
What is calcium-transporting ATPase? Meaning of calcium-transporting ATPase medical term. What does calcium-transporting ATPase ... Looking for online definition of calcium-transporting ATPase in the Medical Dictionary? calcium-transporting ATPase explanation ... Calcium-transporting ATPase , definition of calcium-transporting ATPase by Medical dictionary https://medical-dictionary. ... calcium pump. (redirected from calcium-transporting ATPase). Also found in: Encyclopedia. pump. [pump] 1. an apparatus for ...
P. Catty, A. Goffeau; Identification and phylogenetic classification of eleven putative P-type calcium transport ATPase genes ... Identification and phylogenetic classification of eleven putative P-type calcium transport ATPase genes in the yeasts ... So far, only four genes coding for calcium translocating ATPases had been discovered in yeast. The recent completion of the ... Two of them comprises seven proteins which might belong to a new class of P-type ATPases of unknown subcellular location and of ...
Phosphorylation of the calcium transport atpase of cardiac sarcoplasmic reticulum by ortho phosphate ... Transient state kinetic studies of calcium dependent atpase and calcium transport by cardiac sarcoplasmic reticulum effect of ... carnitine on cardiac plasma membrane sodium potassium atpase and sarcoplasmic reticulum calcium atpase and calcium transport. ... Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle ...
The Plasmodium falciparum ATPase 6 (Pfatp6), homolog of sarco-endoplasmic reticulum, calcium-dependent ATPase in malaria ... Artemisinin also inhibits calcium-dependent ATPase activity in T. cruzi membranes, suggesting a mode of action via membrane ... a sarcoplasmic reticulum calcium ATPase and proposed target for semisynthetic peroxidic artemisinin derivatives. RBX11160 ... ATPase (SERCA) in the malaria parasite. Artemisinin is also effective against Toxoplasma in vitro and in vivo, although it is ...
Calcium-transporting ATPases (Ca(2+) pumps) are major players in maintaining calcium homeostasis in the cell and have been ... A functional calcium transporting ATPase encoded by Chlorella viruses.. Anno. 2010. Autori. Bonza MC, Martin H, Kang M, Lewis G ... To our knowledge this is the first report of a functional P-type Ca(2+)-transporting ATPase encoded by a virus. ... Complementation analysis of the triple yeast mutant K616 confirmed that M535L transports calcium ions and, unusually for group ...
The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma ... positive regulation of calcium:sodium antiporter activity Source: Ensembl. *positive regulation of potassium ion import Source ... Cell adhesion, Ion transport, Potassium transport, Sodium transport, Sodium/potassium transport, Transport. ... Sodium/potassium-transporting ATPase subunit beta-1Add BLAST. 304. Amino acid modifications. Feature key. Position(s). ...
Sarcoplasmic/endoplasmic reticulum calcium ATPase 1/2 (IPR030332). *Calcium-transporting ATPase type 2C member 2 (IPR030334) ... There are many different classes of P-ATPases, which transport specific types of ion: H+, Na+, K+, Mg2+, Ca2+, Ag+ and Ag2+, Zn ... P-ATPases (also known as E1-E2 ATPases) (EC:3.6.3.-) are found in bacteria and in a number of eukaryotic plasma membranes and ... P-type ATPase, cytoplasmic domain N (IPR023299). Short name: ATPase_P-typ_cyto_dom_N ...
IPR034304 Plasma membrane calcium-transporting ATPase 4. IPR022141 Plasma membrane calcium transporting P-type ATPase, C- ... IPR006068 Cation-transporting P-type ATPase, C-terminal. IPR004014 Cation-transporting P-type ATPase, N-terminal ...
... calcium-transporting ATPase activity, cellular calcium ion homeostasis ... IPR023299. ATPase_P-typ_cyto_dom_N. IPR018303. ATPase_P-typ_P_site. IPR023298. ATPase_P-typ_TM_dom_sf. IPR008250. ATPase_P-typ_ ... IPR023299. ATPase_P-typ_cyto_dom_N. IPR018303. ATPase_P-typ_P_site. IPR023298. ATPase_P-typ_TM_dom_sf. IPR008250. ATPase_P-typ_ ... Probable cation-transporting ATPase 13A5Add BLAST. 1216. Amino acid modifications. Feature key. Position(s). DescriptionActions ...
2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605-611. ... Mechanism of Cu+-transporting ATPases: Soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Manuel ... Mechanism of Cu+-transporting ATPases: Soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites ... Mechanism of Cu+-transporting ATPases: Soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites ...
Sodium-Potassium-Exchanging ATPase / physiology * Time Factors Substances * Calcium-Transporting ATPases * Sodium-Potassium- ...
IPR023298 P-type ATPase, transmembrane domain superfamily. IPR030332 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1/2 ... ATP2A2, ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2. Orthology source: HGNC, HomoloGene ... IPR005782 P-type ATPase, subfamily IIA, SERCA-type. ... IPR006068 Cation-transporting P-type ATPase, C-terminal. ...
... a potential calcium ATPase binding protein. A proteomic interaction screen with PISP/PDZK11 identified the calcium transporting ... PISP/PDZK11-pY7 Peptide Pull-Down Revealed Interaction with Myosins and with the Calcium Transporting ATPase SERCA2A.. Among ... 6 and SI Tables 9 and 10). Because PISP/PDZK11 is a potential calcium ATPase binding partner and we find that it interacts with ... which in turn is quickly removed by calcium-pumps that either eject the calcium ions into the lumen of the endoplasmic ...
T2 - Calcium transporters (Na+/Ca2+ exchanger, calcium binding proteins, Ca channels, Ca-ATPase) ... Takeuchi K. Molecular mechanism in biological transport in the kidney: Calcium transporters (Na+/Ca2+ exchanger, calcium ... Takeuchi, K 2006, Molecular mechanism in biological transport in the kidney: Calcium transporters (Na+/Ca2+ exchanger, calcium ... Molecular mechanism in biological transport in the kidney: Calcium transporters (Na+/Ca2+ exchanger, calcium binding proteins, ...
... calcium-transporting ATPase (targeted by miR4376), conserved hypothetical protein (targeted by miR4376), MYB-like transcription ... factor (targeted by miR159), heavy metal transport (targeted by novel-121), and N-acetyltransferase (targeted by novel-71) were ...
Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and ... Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to ... Valuable contributions to the study of K+ in membrane stabilisation, turgor maintenance and phloem transport have allowed us to ... Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and ...
Calcium-Binding Protein, Vitamin D-Dependent / metabolism. Calcium-Transporting ATPases / metabolism. Caspase 3 / metabolism. ... 0/Calcium-Binding Protein, Vitamin D-Dependent; 0/Excitatory Amino Acid Agonists; 0/Plant Preparations; 0/Proto-Oncogene ... Additionally, calcium pump activity and calbindin-D28k expression were dramatically increased after GHE treatment, implicating ... that the modulation of calcium homeostasis could be involved in the mechanism underlying neuroprotection of GHE against ...
Calcium ion-regulated thin filaments from vascular smooth muscle Biochem J (February, 1980) ... A Comparative Study of Erythrocyte Sodium-Potassium Atpase and Sodium Transport in Obese and thin Normal Subjects M.A. Mir M.A ... A Comparative Study of Erythrocyte Sodium-Potassium Atpase and Sodium Transport in Obese and thin Normal Subjects. Clin Sci ( ...
transporting ATPase (EC 3.6.3.8).. calcium channel blocker One of a class of drugs that acts by selective inhibition of calcium ... Thapsigargin inhibits Ca2+-transporting ATPase mediated uptake of calcium ions into sarcoplasmic reticulum and is used in ... thapsigargin (CHEBI:9516) has role EC 3.6.3.8 (Ca2+-transporting ATPase) inhibitor (CHEBI:60186) thapsigargin (CHEBI:9516) is a ... EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor An EC 3.6.3.* (acid anhydride hydrolase catalysing transmembrane movement of ...
... a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a ... Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), ... Sarcoplasmic Reticulum Calcium-Transporting ATPases * Atp2a2 protein, mouse Grant support * HHSN268201000045C/HL/NHLBI NIH HHS/ ... Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating ...
Plasma Membrane Calcium-transporting Atpases. Calcium-transporting ATPases found on the PLASMA MEMBRANE that catalyze the ... active transport of CALCIUM from the CYTOPLASM into the extracellular space. They play a role in maintaining a CALCIUM gradient ... and transports waste products away from those same cells. In vertebrates, it is composed of blo... ...
... to rabbits causes impairment of cardiac contractility and decreased gene expression of the calcium-induced calcium release ... EC 3.6.1.8/Calcium-Transporting ATPases; EC 3.6.3.8/Sarcoplasmic Reticulum Calcium-Transporting ATPases ... Calcium-Transporting ATPases / genetics, metabolism. Down-Regulation. Doxorubicin / analogs & derivatives, chemistry, ... Sarcoplasmic Reticulum Calcium-Transporting ATPases. Ventricular Dysfunction, Left / chemically induced, genetics, metabolism ...
Plasma Membrane Calcium-transporting Atpases. Calcium-transporting ATPases found on the PLASMA MEMBRANE that catalyze the ... active transport of CALCIUM from the CYTOPLASM into the extracellular space. They play a role in maintaining a CALCIUM gradient ... Calcium Chloride. A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium ... Prophylactic infusion of calcium gluconate to prevent a symptomatic fall in plasma ionized calcium during therapeutic plasma ...