One of four subsections of the hippocampus described by Lorente de No, located furthest from the DENTATE GYRUS.
A subsection of the hippocampus, described by Lorente de No, that is located between the HIPPOCAMPUS CA2 FIELD and the DENTATE GYRUS.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy.
A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions.
A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID.
A sesquiterpene lactone found in roots of THAPSIA. It inhibits CA(2+)-TRANSPORTING ATPASE mediated uptake of CALCIUM into SARCOPLASMIC RETICULUM.
A class of drugs that act by selective inhibition of calcium influx through cellular membranes.
A fluorescent calcium chelating agent which is used to study intracellular calcium in tissues.
An electrogenic ion exchange protein that maintains a steady level of calcium by removing an amount of calcium equal to that which enters the cells. It is widely distributed in most excitable membranes, including the brain and heart.
A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling.
Long-lasting voltage-gated CALCIUM CHANNELS found in both excitable and nonexcitable tissue. They are responsible for normal myocardial and vascular smooth muscle contractility. Five subunits (alpha-1, alpha-2, beta, gamma, and delta) make up the L-type channel. The alpha-1 subunit is the binding site for calcium-based antagonists. Dihydropyridine-based calcium antagonists are used as markers for these binding sites.
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.
Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin.
Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.
A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES.
Intracellular receptors that bind to INOSITOL 1,4,5-TRISPHOSPHATE and play an important role in its intracellular signaling. Inositol 1,4,5-trisphosphate receptors are calcium channels that release CALCIUM in response to increased levels of inositol 1,4,5-trisphosphate in the CYTOPLASM.
A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels.
Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS.
Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS.
Calcium-transporting ATPases that catalyze the active transport of CALCIUM into the SARCOPLASMIC RETICULUM vesicles from the CYTOPLASM. They are primarily found in MUSCLE CELLS and play a role in the relaxation of MUSCLES.
A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A subsection of the hippocampus, described by Lorente de No, that is located between the HIPPOCAMPUS CA1 FIELD and the HIPPOCAMPUS CA3 FIELD.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
A divalent calcium ionophore that is widely used as a tool to investigate the role of intracellular calcium in cellular processes.
Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes.
The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability.
The fluid inside CELLS.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions.
A class of compounds composed of repeating 5-carbon units of HEMITERPENES.
A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
Lanthanum. The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A photoprotein isolated from the bioluminescent jellyfish Aequorea. It emits visible light by an intramolecular reaction when a trace amount of calcium ion is added. The light-emitting moiety in the bioluminescence reaction is believed to be 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine (AF-350).
Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture.
An inorganic dye used in microscopy for differential staining and as a diagnostic reagent. In research this compound is used to study changes in cytoplasmic concentrations of calcium. Ruthenium red inhibits calcium transport through membrane channels.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Compounds with three aromatic rings in linear arrangement with an OXYGEN in the center ring.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Potassium channels whose activation is dependent on intracellular calcium concentrations.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC).
Elements of limited time intervals, contributing to particular results or situations.
An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Contractile activity of the MYOCARDIUM.
An element of the alkaline earth family of metals. It has the atomic symbol Sr, atomic number 38, and atomic weight 87.62.
Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis.
Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes.
Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
Use of electric potential or currents to elicit biological responses.
The ability of a substrate to allow the passage of ELECTRONS.
Established cell cultures that have the potential to propagate indefinitely.
Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits.
An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS.
The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
The nonstriated involuntary muscle tissue of blood vessels.
Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region.
A heterogenous group of transient or low voltage activated type CALCIUM CHANNELS. They are found in cardiac myocyte membranes, the sinoatrial node, Purkinje cells of the heart and the central nervous system.
A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS.
A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible.
Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A multifunctional calcium-calmodulin-dependent protein kinase subtype that occurs as an oligomeric protein comprised of twelve subunits. It differs from other enzyme subtypes in that it lacks a phosphorylatable activation domain that can respond to CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASE KINASE.
A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)
A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA.
A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation.
Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Unsaturated derivatives of the ESTRANES with methyl groups at carbon-13, with no carbon at carbon-10, and with no more than one carbon at carbon-17. They must contain one or more double bonds.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
Inorganic or organic compounds that contain boron as an integral part of the molecule.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Calcium-transporting ATPases found on the PLASMA MEMBRANE that catalyze the active transport of CALCIUM from the CYTOPLASM into the extracellular space. They play a role in maintaining a CALCIUM gradient across plasma membrane.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
The processes whereby the internal environment of an organism tends to remain balanced and stable.
A major class of calcium activated potassium channels whose members are voltage-dependent. MaxiK channels are activated by either membrane depolarization or an increase in intracellular Ca(2+). They are key regulators of calcium and electrical signaling in a variety of tissues.
A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
A subgroup of TRP cation channels that contain 3-4 ANKYRIN REPEAT DOMAINS and a conserved C-terminal domain. Members are highly expressed in the CENTRAL NERVOUS SYSTEM. Selectivity for calcium over sodium ranges from 0.5 to 10.
The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)
A calcium channel blocker that is a class IV anti-arrhythmia agent.
Contractile tissue that produces movement in animals.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Measurement of the intensity and quality of fluorescence.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
An anticonvulsant used for several types of seizures, including myotonic or atonic seizures, photosensitive epilepsy, and absence seizures, although tolerance may develop. It is seldom effective in generalized tonic-clonic or partial seizures. The mechanism of action appears to involve the enhancement of GAMMA-AMINOBUTYRIC ACID receptor responses.
A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium poisoning.
The rate dynamics in chemical or physical systems.
A group of compounds that are derivatives of oxo-pyrrolidines. A member of this group is 2-oxo pyrrolidine, which is an intermediate in the manufacture of polyvinylpyrrolidone. (From Merck Index, 11th ed)
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.
A pyridine nucleotide that mobilizes CALCIUM. It is synthesized from nicotinamide adenine dinucleotide (NAD) by ADP RIBOSE CYCLASE.
Chemical bond cleavage reactions resulting from absorption of radiant energy.
Compounds that contain a BENZENE ring fused to a furan ring.
Quinolines substituted in any position by one or more amino groups.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The hollow, muscular organ that maintains the circulation of the blood.
A family of zinc-containing enzymes that catalyze the reversible hydration of carbon dioxide. They play an important role in the transport of CARBON DIOXIDE from the tissues to the LUNG. EC 4.2.1.1.
Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases.
A proton ionophore that is commonly used as an uncoupling agent in biochemical studies.
A phenothiazine with actions similar to CHLORPROMAZINE. It is used as an antipsychotic and an antiemetic.
Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions.
Pyridine moieties which are partially saturated by the addition of two hydrogen atoms in any position.
A class of G-protein-coupled receptors that react to varying extracellular CALCIUM levels. Calcium-sensing receptors in the PARATHYROID GLANDS play an important role in the maintenance of calcium HOMEOSTASIS by regulating the release of PARATHYROID HORMONE. They differ from INTRACELLULAR CALCIUM-SENSING PROTEINS which sense intracellular calcium levels.
The measurement of frequency or oscillation changes.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
One of the three polypeptide chains that make up the TROPONIN complex of skeletal muscle. It is a calcium-binding protein.
Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation.
A process fundamental to muscle physiology whereby an electrical stimulus or action potential triggers a myocyte to depolarize and contract. This mechanical muscle contraction response is regulated by entry of calcium ions into the cell.
Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS.
Sialylated Lewis blood group carbohydrate antigen found in many adenocarcinomas of the digestive tract, especially pancreatic tumors.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure.
Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.
Proteins prepared by recombinant DNA technology.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
A benzothiazepine derivative with vasodilating action due to its antagonism of the actions of CALCIUM ion on membrane functions.
Skeletal muscle relaxant that acts by interfering with excitation-contraction coupling in the muscle fiber. It is used in spasticity and other neuromuscular abnormalities. Although the mechanism of action is probably not central, dantrolene is usually grouped with the central muscle relaxants.
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
A method for the study of certain organic compounds within cells, in situ, by measuring the light intensities of the selectively stained areas of cytoplasm. The compounds studied and their locations in the cells are made to fluoresce and are observed under a microscope.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Carbohydrate antigen most commonly seen in tumors of the ovary and occasionally seen in breast, kidney, and gastrointestinal tract tumors and normal tissue. CA 125 is clearly tumor-associated but not tumor-specific.
A potent local anesthetic of the ester type used for surface and spinal anesthesia.
A neurotoxic peptide, which is a cleavage product (VIa) of the omega-Conotoxin precursor protein contained in venom from the marine snail, CONUS geographus. It is an antagonist of CALCIUM CHANNELS, N-TYPE.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction.
Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277)
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
A major class of calcium-activated potassium channels that are found primarily in excitable CELLS. They play important roles in the transmission of ACTION POTENTIALS and generate a long-lasting hyperpolarization known as the slow afterhyperpolarization.
An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter.
An element with atomic symbol Cd, atomic number 48, and atomic weight 114. It is a metal and ingestion will lead to CADMIUM POISONING.
A 37-amino acid residue peptide isolated from the scorpion Leiurus quinquestriatus hebraeus. It is a neurotoxin that inhibits calcium activated potassium channels.
Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system.
Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS.
The distal terminations of axons which are specialized for the release of neurotransmitters. Also included are varicosities along the course of axons which have similar specializations and also release transmitters. Presynaptic terminals in both the central and peripheral nervous systems are included.
A highly neurotoxic polypeptide from the venom of the honey bee (Apis mellifera). It consists of 18 amino acids with two disulfide bridges and causes hyperexcitability resulting in convulsions and respiratory paralysis.
Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL.
Cyclic compounds with a ring size of approximately 1-4 dozen atoms.
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion.
A potassium-selective ion channel blocker. (From J Gen Phys 1994;104(1):173-90)
Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.
Carbohydrate antigens expressed by malignant tissue. They are useful as tumor markers and are measured in the serum by means of a radioimmunoassay employing monoclonal antibodies.
A photographic fixative used also in the manufacture of resins. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), this substance may reasonably be anticipated to be a carcinogen (Merck Index, 9th ed). Many of its derivatives are ANTITHYROID AGENTS and/or FREE RADICAL SCAVENGERS.
Cells that store epinephrine secretory vesicles. During times of stress, the nervous system signals the vesicles to secrete their hormonal content. Their name derives from their ability to stain a brownish color with chromic salts. Characteristically, they are located in the adrenal medulla and paraganglia (PARAGANGLIA, CHROMAFFIN) of the sympathetic nervous system.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A CALCIUM and CALMODULIN-dependent serine/threonine protein phosphatase that is composed of the calcineurin A catalytic subunit and the calcineurin B regulatory subunit. Calcineurin has been shown to dephosphorylate a number of phosphoproteins including HISTONES; MYOSIN LIGHT CHAIN; and the regulatory subunits of CAMP-DEPENDENT PROTEIN KINASES. It is involved in the regulation of signal transduction and is the target of an important class of immunophilin-immunosuppressive drug complexes.
Proteins which bind calmodulin. They are found in many tissues and have a variety of functions including F-actin cross-linking properties, inhibition of cyclic nucleotide phosphodiesterase and calcium and magnesium ATPases.
An ethylmercury-sulfidobenzoate that has been used as a preservative in VACCINES; ANTIVENINS; and OINTMENTS. It was formerly used as a topical antiseptic. It degrades to ethylmercury and thiosalicylate.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE).
One of the minor protein components of skeletal muscle. Its function is to serve as the calcium-binding component in the troponin-tropomyosin B-actin-myosin complex by conferring calcium sensitivity to the cross-linked actin and myosin filaments.
Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.
The hemodynamic and electrophysiological action of the HEART VENTRICLES.
An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.
Uridine 5'-(tetrahydrogen triphosphate). A uracil nucleotide containing three phosphate groups esterified to the sugar moiety.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Coronary vasodilator that is an analog of iproveratril (VERAPAMIL) with one more methoxy group on the benzene ring.
A major class of calcium-activated potassium channels that were originally discovered in ERYTHROCYTES. They are found primarily in non-excitable CELLS and set up electrical gradients for PASSIVE ION TRANSPORT.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A benzimidazoyl-substituted tetraline that selectively binds and inhibits CALCIUM CHANNELS, T-TYPE.

The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. (1/24)

 (+info)

Reduced ratio of afferent to total vascular density in mesial temporal sclerosis. (2/24)

 (+info)

Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task. (3/24)

 (+info)

Afferent-specific properties of interneuron synapses underlie selective long-term regulation of feedback inhibitory circuits in CA1 hippocampus. (4/24)

 (+info)

Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. (5/24)

 (+info)

RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. (6/24)

 (+info)

Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys. (7/24)

 (+info)

Mild cognitive impairment: differential atrophy in the hippocampal subfields. (8/24)

 (+info)

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

There are many different types of cardiac arrhythmias, including:

1. Tachycardias: These are fast heart rhythms that can be too fast for the body's needs. Examples include atrial fibrillation and ventricular tachycardia.
2. Bradycardias: These are slow heart rhythms that can cause symptoms like fatigue, dizziness, and fainting. Examples include sinus bradycardia and heart block.
3. Premature beats: These are extra beats that occur before the next regular beat should come in. They can be benign but can also indicate an underlying arrhythmia.
4. Supraventricular arrhythmias: These are arrhythmias that originate above the ventricles, such as atrial fibrillation and paroxysmal atrial tachycardia.
5. Ventricular arrhythmias: These are arrhythmias that originate in the ventricles, such as ventricular tachycardia and ventricular fibrillation.

Cardiac arrhythmias can be diagnosed through a variety of tests including electrocardiograms (ECGs), stress tests, and holter monitors. Treatment options for cardiac arrhythmias vary depending on the type and severity of the condition and may include medications, cardioversion, catheter ablation, or implantable devices like pacemakers or defibrillators.

There are different types of anoxia, including:

1. Cerebral anoxia: This occurs when the brain does not receive enough oxygen, leading to cognitive impairment, confusion, and loss of consciousness.
2. Pulmonary anoxia: This occurs when the lungs do not receive enough oxygen, leading to shortness of breath, coughing, and chest pain.
3. Cardiac anoxia: This occurs when the heart does not receive enough oxygen, leading to cardiac arrest and potentially death.
4. Global anoxia: This is a complete lack of oxygen to the entire body, leading to widespread tissue damage and death.

Treatment for anoxia depends on the underlying cause and the severity of the condition. In some cases, hospitalization may be necessary to provide oxygen therapy, pain management, and other supportive care. In severe cases, anoxia can lead to long-term disability or death.

Prevention of anoxia is important, and this includes managing underlying medical conditions such as heart disease, diabetes, and respiratory problems. It also involves avoiding activities that can lead to oxygen deprivation, such as scuba diving or high-altitude climbing, without proper training and equipment.

In summary, anoxia is a serious medical condition that occurs when there is a lack of oxygen in the body or specific tissues or organs. It can cause cell death and tissue damage, leading to serious health complications and even death if left untreated. Early diagnosis and treatment are crucial to prevent long-term disability or death.

There are several types of acidosis, including:

1. Respiratory acidosis: This occurs when the lung's ability to remove carbon dioxide from the blood is impaired, leading to an increase in blood acidity.
2. Metabolic acidosis: This type of acidosis occurs when there is an excessive production of acid in the body due to factors such as diabetes, starvation, or kidney disease.
3. Mixed acidosis: This type of acidosis is a combination of respiratory and metabolic acidosis.
4. Severe acute respiratory acidosis (SARA): This is a life-threatening condition that occurs suddenly, usually due to a severe lung injury or aspiration of a corrosive substance.

The symptoms of acidosis can vary depending on the type and severity of the condition. Common symptoms include:

1. Fatigue
2. Weakness
3. Confusion
4. Headaches
5. Nausea and vomiting
6. Abdominal pain
7. Difficulty breathing
8. Rapid heart rate
9. Muscle twitching

If left untreated, acidosis can lead to complications such as:

1. Kidney damage
2. Seizures
3. Coma
4. Heart arrhythmias
5. Respiratory failure

Treatment of acidosis depends on the underlying cause and the severity of the condition. Some common treatments include:

1. Oxygen therapy
2. Medications to help regulate breathing and heart rate
3. Fluid and electrolyte replacement
4. Dietary changes
5. Surgery, in severe cases.

In conclusion, acidosis is a serious medical condition that can have severe consequences if left untreated. It is important to seek medical attention immediately if you suspect that you or someone else may have acidosis. With prompt and appropriate treatment, it is possible to effectively manage the condition and prevent complications.

Insulinoma is a rare type of pancreatic tumor that produces excess insulin, leading to low blood sugar levels. These tumors are typically benign and can be treated with surgery or medication.

Insulinomas account for only about 5% of all pancreatic neuroendocrine tumors. They usually occur in the head of the pancreas and can cause a variety of symptoms, including:

1. Hypoglycemia (low blood sugar): The excess insulin produced by the tumor can cause blood sugar levels to drop too low, leading to symptoms such as shakiness, dizziness, confusion, and rapid heartbeat.
2. Hyperinsulinism (elevated insulin levels): In addition to hypoglycemia, insulinomas can also cause elevated insulin levels in the blood.
3. Abdominal pain: Insulinomas can cause abdominal pain and discomfort.
4. Weight loss: Patients with insulinomas may experience unexplained weight loss.
5. Nausea and vomiting: Some patients may experience nausea and vomiting due to the hypoglycemia or other symptoms caused by the tumor.

Insulinomas are usually diagnosed through a combination of imaging tests such as CT scans, MRI scans, and PET scans, and by measuring insulin and C-peptide levels in the blood. Treatment options for insulinomas include surgery to remove the tumor, medications to control hypoglycemia and hyperinsulinism, and somatostatin analogs to reduce hormone secretion.

Insulinoma is a rare and complex condition that requires careful management by a multidisciplinary team of healthcare professionals, including endocrinologists, surgeons, and radiologists. With appropriate treatment, most patients with insulinomas can experience long-term remission and improved quality of life.

The exact cause of malignant hyperthermia is not fully understood, but it is believed to be related to a genetic predisposition and exposure to certain anesthetic agents. The condition can be triggered by a variety of factors, including the use of certain anesthetics, stimulation of the sympathetic nervous system, and changes in blood sugar levels.

Symptoms of malignant hyperthermia can include:

* Elevated body temperature (usually above 104°F/40°C)
* Muscle rigidity and stiffness
* Heart arrhythmias and palpitations
* Shivering or tremors
* Confusion, agitation, or other neurological symptoms
* Shortness of breath or respiratory failure

If left untreated, malignant hyperthermia can lead to serious complications such as seizures, brain damage, and even death. Treatment typically involves the immediate discontinuation of any triggering anesthetic agents, cooling measures such as ice packs or cold compresses, and medications to help regulate body temperature and reduce muscle rigidity. In severe cases, mechanical ventilation may be necessary to support breathing.

Overall, malignant hyperthermia is a rare but potentially life-threatening condition that requires prompt recognition and treatment to prevent serious complications and improve outcomes.

Medical Term: Cardiomegaly

Definition: An abnormal enlargement of the heart.

Symptoms: Difficulty breathing, shortness of breath, fatigue, swelling of legs and feet, chest pain, and palpitations.

Causes: Hypertension, cardiac valve disease, myocardial infarction (heart attack), congenital heart defects, and other conditions that affect the heart muscle or cardiovascular system.

Diagnosis: Physical examination, electrocardiogram (ECG), chest x-ray, echocardiography, and other diagnostic tests as necessary.

Treatment: Medications such as diuretics, vasodilators, and beta blockers, lifestyle changes such as exercise and diet modifications, surgery or other interventions in severe cases.

Note: Cardiomegaly is a serious medical condition that requires prompt diagnosis and treatment to prevent complications such as heart failure and death. If you suspect you or someone else may have cardiomegaly, seek medical attention immediately.

There are two main types of heart failure:

1. Left-sided heart failure: This occurs when the left ventricle, which is the main pumping chamber of the heart, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the lungs and other organs.
2. Right-sided heart failure: This occurs when the right ventricle, which pumps blood to the lungs, becomes weakened and is unable to pump blood effectively. This can lead to congestion in the body's tissues and organs.

Symptoms of heart failure may include:

* Shortness of breath
* Fatigue
* Swelling in the legs, ankles, and feet
* Swelling in the abdomen
* Weight gain
* Coughing up pink, frothy fluid
* Rapid or irregular heartbeat
* Dizziness or lightheadedness

Treatment for heart failure typically involves a combination of medications and lifestyle changes. Medications may include diuretics to remove excess fluid from the body, ACE inhibitors or beta blockers to reduce blood pressure and improve blood flow, and aldosterone antagonists to reduce the amount of fluid in the body. Lifestyle changes may include a healthy diet, regular exercise, and stress reduction techniques. In severe cases, heart failure may require hospitalization or implantation of a device such as an implantable cardioverter-defibrillator (ICD) or a left ventricular assist device (LVAD).

It is important to note that heart failure is a chronic condition, and it requires ongoing management and monitoring to prevent complications and improve quality of life. With proper treatment and lifestyle changes, many people with heart failure are able to manage their symptoms and lead active lives.

Neuroblastoma is caused by a genetic mutation that affects the development and growth of nerve cells. The cancerous cells are often sensitive to chemotherapy, but they can be difficult to remove surgically because they are deeply embedded in the nervous system.

There are several different types of neuroblastoma, including:

1. Infantile neuroblastoma: This type of neuroblastoma occurs in children under the age of one and is often more aggressive than other types of the cancer.
2. Juvenile neuroblastoma: This type of neuroblastoma occurs in children between the ages of one and five and tends to be less aggressive than infantile neuroblastoma.
3. Adult neuroblastoma: This type of neuroblastoma occurs in adults and is rare.
4. Metastatic neuroblastoma: This type of neuroblastoma has spread to other parts of the body, such as the bones or liver.

Symptoms of neuroblastoma can vary depending on the location and size of the tumor, but they may include:

* Abdominal pain
* Fever
* Loss of appetite
* Weight loss
* Fatigue
* Bone pain
* Swelling in the abdomen or neck
* Constipation
* Increased heart rate

Diagnosis of neuroblastoma typically involves a combination of imaging tests, such as CT scans and MRI scans, and biopsies to confirm the presence of cancerous cells. Treatment for neuroblastoma usually involves a combination of chemotherapy, surgery, and radiation therapy. The prognosis for neuroblastoma varies depending on the type of cancer, the age of the child, and the stage of the disease. In general, the younger the child and the more aggressive the treatment, the better the prognosis.

Adenomas are typically benign (non-cancerous) growths, but they can sometimes become malignant (cancerous) over time if left untreated. Islet cell tumors are relatively rare, making up only about 5% of all pancreatic tumors. They can occur in anyone, regardless of age or gender, although they are most commonly diagnosed in adults between the ages of 40 and 60.

Symptoms of an adenoma, islet cell can vary depending on the size and location of the tumor, but they may include abdominal pain, weight loss, diabetes, and changes in bowel movements or urination patterns. Treatment options for an adenoma, islet cell depend on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.

In summary, an adenoma, islet cell is a rare type of cancer that develops in the cells of the pancreas, specifically in the islets of Langerhans. It can be benign or malignant, and symptoms can vary depending on the size and location of the tumor. Treatment options depend on the type and stage of the tumor.

Brain hypoxia is a serious medical condition that requires prompt treatment to prevent long-term damage and improve outcomes for patients. Treatment options may include oxygen therapy, medications to improve blood flow to the brain, and surgery to remove any blockages or obstructions in blood vessels.

The term "basophilic" refers to the staining properties of these abnormal cells, which have a distinctive appearance under a microscope. The disease is often referred to as "acute" because it progresses rapidly and can be fatal within weeks or months if left untreated.

There are two main subtypes of basophilic leukemia: acute and chronic. Acute basophilic leukemia is the more aggressive and common form of the disease, accounting for approximately 75% of all cases. It typically affects adults in their 40s and 50s and is characterized by a high white blood cell count, anemia, and splenomegaly (enlargement of the spleen).

Chronic basophilic leukemia, on the other hand, is a rarer form of the disease that progresses more slowly and typically affects adults in their 60s and 70s. It is characterized by a lower white blood cell count, splenomegaly, and an increased risk of developing myelodysplastic syndrome (a precancerous condition).

The exact cause of basophilic leukemia is not known, but it is believed to be linked to genetic mutations and exposure to certain chemicals or radiation. Treatment typically involves chemotherapy and/or bone marrow transplantation, and the prognosis varies depending on the subtype and overall health of the patient.

Benign ovarian neoplasms include:

1. Serous cystadenoma: A fluid-filled sac that develops on the surface of the ovary.
2. Mucinous cystadenoma: A tumor that is filled with mucin, a type of protein.
3. Endometrioid tumors: Tumors that are similar to endometrial tissue (the lining of the uterus).
4. Theca cell tumors: Tumors that develop in the supportive tissue of the ovary called theca cells.

Malignant ovarian neoplasms include:

1. Epithelial ovarian cancer (EOC): The most common type of ovarian cancer, which arises from the surface epithelium of the ovary.
2. Germ cell tumors: Tumors that develop from germ cells, which are the cells that give rise to eggs.
3. Stromal sarcomas: Tumors that develop in the supportive tissue of the ovary.

Ovarian neoplasms can cause symptoms such as pelvic pain, abnormal bleeding, and abdominal swelling. They can also be detected through pelvic examination, imaging tests such as ultrasound and CT scan, and biopsy. Treatment options for ovarian neoplasms depend on the type, stage, and location of the tumor, and may include surgery, chemotherapy, and radiation therapy.

MRI can occur in various cardiovascular conditions, such as myocardial infarction (heart attack), cardiac arrest, and cardiac surgery. The severity of MRI can range from mild to severe, depending on the extent and duration of the ischemic event.

The pathophysiology of MRI involves a complex interplay of various cellular and molecular mechanisms. During ischemia, the heart muscle cells undergo changes in energy metabolism, electrolyte balance, and cell membrane function. When blood flow is restored, these changes can lead to an influx of calcium ions into the cells, activation of enzymes, and production of reactive oxygen species (ROS), which can damage the cells and their membranes.

The clinical presentation of MRI can vary depending on the severity of the injury. Some patients may experience chest pain, shortness of breath, and fatigue. Others may have more severe symptoms, such as cardiogenic shock or ventricular arrhythmias. The diagnosis of MRI is based on a combination of clinical findings, electrocardiography (ECG), echocardiography, and cardiac biomarkers.

The treatment of MRI is focused on addressing the underlying cause of the injury and managing its symptoms. For example, in patients with myocardial infarction, thrombolysis or percutaneous coronary intervention may be used to restore blood flow to the affected area. In patients with cardiac arrest, cardiopulmonary resuscitation (CPR) and other life-saving interventions may be necessary.

Prevention of MRI is crucial in reducing its incidence and severity. This involves aggressive risk factor management, such as controlling hypertension, diabetes, and dyslipidemia, as well as smoking cessation and stress reduction. Additionally, patients with a history of MI should adhere to their medication regimen, which may include beta blockers, ACE inhibitors or ARBs, statins, and aspirin.

In conclusion, myocardial injury with ST-segment elevation (MRI) is a life-threatening condition that requires prompt recognition and treatment. While the clinical presentation can vary depending on the severity of the injury, early diagnosis and management are crucial in reducing morbidity and mortality. Prevention through aggressive risk factor management and adherence to medication regimens is also essential in preventing MRI.

The term ischemia refers to the reduction of blood flow, and it is often used interchangeably with the term stroke. However, not all strokes are caused by ischemia, as some can be caused by other factors such as bleeding in the brain. Ischemic stroke accounts for about 87% of all strokes.

There are different types of brain ischemia, including:

1. Cerebral ischemia: This refers to the reduction of blood flow to the cerebrum, which is the largest part of the brain and responsible for higher cognitive functions such as thought, emotion, and voluntary movement.
2. Cerebellar ischemia: This refers to the reduction of blood flow to the cerebellum, which is responsible for coordinating and regulating movement, balance, and posture.
3. Brainstem ischemia: This refers to the reduction of blood flow to the brainstem, which is responsible for controlling many of the body's automatic functions such as breathing, heart rate, and blood pressure.
4. Territorial ischemia: This refers to the reduction of blood flow to a specific area of the brain, often caused by a blockage in a blood vessel.
5. Global ischemia: This refers to the reduction of blood flow to the entire brain, which can be caused by a cardiac arrest or other systemic conditions.

The symptoms of brain ischemia can vary depending on the location and severity of the condition, but may include:

1. Weakness or paralysis of the face, arm, or leg on one side of the body
2. Difficulty speaking or understanding speech
3. Sudden vision loss or double vision
4. Dizziness or loss of balance
5. Confusion or difficulty with memory
6. Seizures
7. Slurred speech or inability to speak
8. Numbness or tingling sensations in the face, arm, or leg
9. Vision changes, such as blurred vision or loss of peripheral vision
10. Difficulty with coordination and balance.

It is important to seek medical attention immediately if you experience any of these symptoms, as brain ischemia can cause permanent damage or death if left untreated.

Pancreatic adenocarcinoma is the most common type of malignant pancreatic neoplasm and accounts for approximately 85% of all pancreatic cancers. It originates in the glandular tissue of the pancreas and has a poor prognosis, with a five-year survival rate of less than 10%.

Pancreatic neuroendocrine tumors (PNETs) are less common but more treatable than pancreatic adenocarcinoma. These tumors originate in the hormone-producing cells of the pancreas and can produce excess hormones that cause a variety of symptoms, such as diabetes or high blood sugar. PNETs are classified into two main types: functional and non-functional. Functional PNETs produce excess hormones and are more aggressive than non-functional tumors.

Other rare types of pancreatic neoplasms include acinar cell carcinoma, ampullary cancer, and oncocytic pancreatic neuroendocrine tumors. These tumors are less common than pancreatic adenocarcinoma and PNETs but can be equally aggressive and difficult to treat.

The symptoms of pancreatic neoplasms vary depending on the type and location of the tumor, but they often include abdominal pain, weight loss, jaundice, and fatigue. Diagnosis is typically made through a combination of imaging tests such as CT scans, endoscopic ultrasound, and biopsy. Treatment options for pancreatic neoplasms depend on the type and stage of the tumor but may include surgery, chemotherapy, radiation therapy, or a combination of these.

Prognosis for patients with pancreatic neoplasms is generally poor, especially for those with advanced stages of disease. However, early detection and treatment can improve survival rates. Research into the causes and mechanisms of pancreatic neoplasms is ongoing, with a focus on developing new and more effective treatments for these devastating diseases.




Darier disease is a rare genetic disorder that affects the skin and mucous membranes, characterized by thickened, crusted, or scaly skin plaques and blisters on the palms of the hands and soles of the feet. It is caused by mutations in the gene encoding the enzyme keratin 5 (KRT5), which leads to abnormal production of keratin proteins that are essential for maintaining the skin's integrity. The disease is named after Dr. Jean Darier, a French dermatologist who first described it in the early 20th century.

Etymology: Named after Jean Darier, a French dermatologist who first described the condition in the early 20th century.

Symptoms of Darier disease typically appear in the first few months of life and may include:

* Thickened, crusted, or scaly skin plaques on the palms of the hands and soles of the feet
* Blisters that may burst and crust over
* Cracks in the skin that can become infected
* Redness and swelling around the affected areas
* Skin fold dermatitis (inflammation of the skin folds, such as those found in the armpits or groin)

Darier disease is a rare condition, affecting approximately 1 in 50,000 to 1 in 100,000 individuals worldwide. It can be challenging to diagnose, as it can resemble other skin conditions such as eczema or psoriasis. A diagnosis of Darier disease is typically made based on a combination of clinical features and genetic testing.

Treatment for Darier disease may include topical medications, such as corticosteroids or retinoids, to reduce inflammation and promote skin healing. In severe cases, systemic medications such as antibiotics or immunosuppressants may be prescribed. Phototherapy, which involves exposure to specific wavelengths of light, can also be helpful in managing the condition.

In addition to these treatments, individuals with Darier disease may need to take precautions to protect their skin from irritation and infection. This may include avoiding harsh soaps or detergents, wearing loose-fitting clothing, and staying hydrated to maintain skin moisture.

Overall, while Darier disease can be a challenging condition to manage, with appropriate treatment and self-care, individuals with this condition can lead fulfilling lives. It is important for individuals with Darier disease to work closely with their healthcare provider to develop a personalized treatment plan that meets their individual needs.

Symptoms of pheochromocytoma can include:

* Rapid heartbeat
* High blood pressure
* Sweating
* Weight loss
* Fatigue
* Headaches
* Nausea and vomiting

If left untreated, pheochromocytoma can lead to complications such as heart failure, stroke, and even death. Therefore, it is important that individuals who experience any of the above symptoms seek medical attention as soon as possible.

Treatment options for pheochromocytoma may include surgery to remove the tumor, medication to manage symptoms, and in some cases, radiation therapy. In rare cases, the tumor may recur after treatment, so regular monitoring is necessary to ensure that any new symptoms are detected early on.

Overall, while pheochromocytoma is a rare and potentially life-threatening condition, prompt medical attention and appropriate treatment can help manage symptoms and prevent complications.

There are many different types of seizures, each with its own unique set of symptoms. Some common types of seizures include:

1. Generalized seizures: These seizures affect both sides of the brain and can cause a range of symptoms, including convulsions, loss of consciousness, and muscle stiffness.
2. Focal seizures: These seizures affect only one part of the brain and can cause more specific symptoms, such as weakness or numbness in a limb, or changes in sensation or vision.
3. Tonic-clonic seizures: These seizures are also known as grand mal seizures and can cause convulsions, loss of consciousness, and muscle stiffness.
4. Absence seizures: These seizures are also known as petit mal seizures and can cause a brief loss of consciousness or staring spell.
5. Myoclonic seizures: These seizures can cause sudden, brief muscle jerks or twitches.
6. Atonic seizures: These seizures can cause a sudden loss of muscle tone, which can lead to falls or drops.
7. Lennox-Gastaut syndrome: This is a rare and severe form of epilepsy that can cause multiple types of seizures, including tonic, atonic, and myoclonic seizures.

Seizures can be diagnosed through a combination of medical history, physical examination, and diagnostic tests such as electroencephalography (EEG) or imaging studies. Treatment for seizures usually involves anticonvulsant medications, but in some cases, surgery or other interventions may be necessary.

Overall, seizures are a complex and multifaceted symptom that can have a significant impact on an individual's quality of life. It is important to seek medical attention if you or someone you know is experiencing seizures, as early diagnosis and treatment can help to improve outcomes and reduce the risk of complications.

There are several types of cardiomyopathies, each with distinct characteristics and symptoms. Some of the most common forms of cardiomyopathy include:

1. Hypertrophic cardiomyopathy (HCM): This is the most common form of cardiomyopathy and is characterized by an abnormal thickening of the heart muscle, particularly in the left ventricle. HCM can lead to obstruction of the left ventricular outflow tract and can increase the risk of sudden death.
2. Dilated cardiomyopathy: This type of cardiomyopathy is characterized by a decrease in the heart's ability to pump blood effectively, leading to enlargement of the heart and potentially life-threatening complications such as congestive heart failure.
3. Restrictive cardiomyopathy: This type of cardiomyopathy is characterized by stiffness of the heart muscle, which makes it difficult for the heart to fill with blood. This can lead to shortness of breath and fatigue.
4. Left ventricular non-compaction (LVNC): This is a rare type of cardiomyopathy that occurs when the left ventricle does not properly compact, leading to reduced cardiac function and potentially life-threatening complications.
5. Cardiac amyloidosis: This is a condition in which abnormal proteins accumulate in the heart tissue, leading to stiffness and impaired cardiac function.
6. Right ventricular cardiomyopathy (RVCM): This type of cardiomyopathy is characterized by impaired function of the right ventricle, which can lead to complications such as pulmonary hypertension and heart failure.
7. Endocardial fibroelastoma: This is a rare type of cardiomyopathy that occurs when abnormal tissue grows on the inner lining of the heart, leading to reduced cardiac function and potentially life-threatening complications.
8. Cardiac sarcoidosis: This is a condition in which inflammatory cells accumulate in the heart, leading to impaired cardiac function and potentially life-threatening complications.
9. Hypertrophic cardiomyopathy (HCM): This is a condition in which the heart muscle thickens, leading to reduced cardiac function and potentially life-threatening complications such as arrhythmias and sudden death.
10. Hypokinetic left ventricular cardiomyopathy: This type of cardiomyopathy is characterized by decreased contraction of the left ventricle, leading to reduced cardiac function and potentially life-threatening complications such as heart failure.

It's important to note that some of these types of cardiomyopathy are more common in certain populations, such as hypertrophic cardiomyopathy being more common in young athletes. Additionally, some types of cardiomyopathy may have overlapping symptoms or co-occurring conditions, so it's important to work with a healthcare provider for an accurate diagnosis and appropriate treatment.

There are many different types of nerve degeneration that can occur in various parts of the body, including:

1. Alzheimer's disease: A progressive neurological disorder that affects memory and cognitive function, leading to degeneration of brain cells.
2. Parkinson's disease: A neurodegenerative disorder that affects movement and balance, caused by the loss of dopamine-producing neurons in the brain.
3. Amyotrophic lateral sclerosis (ALS): A progressive neurological disease that affects nerve cells in the brain and spinal cord, leading to muscle weakness, paralysis, and eventually death.
4. Multiple sclerosis: An autoimmune disease that affects the central nervous system, causing inflammation and damage to nerve fibers.
5. Diabetic neuropathy: A complication of diabetes that can cause damage to nerves in the hands and feet, leading to pain, numbness, and weakness.
6. Guillain-Barré syndrome: An autoimmune disorder that can cause inflammation and damage to nerve fibers, leading to muscle weakness and paralysis.
7. Chronic inflammatory demyelinating polyneuropathy (CIDP): An autoimmune disorder that can cause inflammation and damage to nerve fibers, leading to muscle weakness and numbness.

The causes of nerve degeneration are not always known or fully understood, but some possible causes include:

1. Genetics: Some types of nerve degeneration may be inherited from one's parents.
2. Aging: As we age, our nerve cells can become damaged or degenerate, leading to a decline in cognitive and physical function.
3. Injury or trauma: Physical injury or trauma to the nervous system can cause nerve damage and degeneration.
4. Infections: Certain infections, such as viral or bacterial infections, can cause nerve damage and degeneration.
5. Autoimmune disorders: Conditions such as Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy (CIDP) are caused by the immune system attacking and damaging nerve cells.
6. Toxins: Exposure to certain toxins, such as heavy metals or pesticides, can damage and degenerate nerve cells.
7. Poor nutrition: A diet that is deficient in essential nutrients, such as vitamin B12 or other B vitamins, can lead to nerve damage and degeneration.
8. Alcoholism: Long-term alcohol abuse can cause nerve damage and degeneration due to the toxic effects of alcohol on nerve cells.
9. Drug use: Certain drugs, such as chemotherapy drugs and antiviral medications, can damage and degenerate nerve cells.
10. Aging: As we age, our nerve cells can deteriorate and become less functional, leading to a range of cognitive and motor symptoms.

It's important to note that in some cases, nerve damage and degeneration may be irreversible, but there are often strategies that can help manage symptoms and improve quality of life. If you suspect you have nerve damage or degeneration, it's important to seek medical attention as soon as possible to receive an accurate diagnosis and appropriate treatment.

There are many different types of epilepsy, each with its own unique set of symptoms and characteristics. Some common forms of epilepsy include:

1. Generalized Epilepsy: This type of epilepsy affects both sides of the brain and can cause a range of seizure types, including absence seizures, tonic-clonic seizures, and atypical absence seizures.
2. Focal Epilepsy: This type of epilepsy affects only one part of the brain and can cause seizures that are localized to that area. There are several subtypes of focal epilepsy, including partial seizures with complex symptoms and simple partial seizures.
3. Tonic-Clonic Epilepsy: This type of epilepsy is also known as grand mal seizures and can cause a loss of consciousness, convulsions, and muscle stiffness.
4. Lennox-Gastaut Syndrome: This is a rare and severe form of epilepsy that typically develops in early childhood and can cause multiple types of seizures, including tonic, atonic, and myoclonic seizures.
5. Dravet Syndrome: This is a rare genetic form of epilepsy that typically develops in infancy and can cause severe, frequent seizures.
6. Rubinstein-Taybi Syndrome: This is a rare genetic disorder that can cause intellectual disability, developmental delays, and various types of seizures.
7. Other forms of epilepsy include Absence Epilepsy, Myoclonic Epilepsy, and Atonic Epilepsy.

The symptoms of epilepsy can vary widely depending on the type of seizure disorder and the individual affected. Some common symptoms of epilepsy include:

1. Seizures: This is the most obvious symptom of epilepsy and can range from mild to severe.
2. Loss of consciousness: Some people with epilepsy may experience a loss of consciousness during a seizure, while others may remain aware of their surroundings.
3. Confusion and disorientation: After a seizure, some people with epilepsy may feel confused and disoriented.
4. Memory loss: Seizures can cause short-term or long-term memory loss.
5. Fatigue: Epilepsy can cause extreme fatigue, both during and after a seizure.
6. Emotional changes: Some people with epilepsy may experience emotional changes, such as anxiety, depression, or mood swings.
7. Cognitive changes: Epilepsy can affect cognitive function, including attention, memory, and learning.
8. Sleep disturbances: Some people with epilepsy may experience sleep disturbances, such as insomnia or sleepiness.
9. Physical symptoms: Depending on the type of seizure, people with epilepsy may experience physical symptoms such as muscle weakness, numbness or tingling, and sensory changes.
10. Social isolation: Epilepsy can cause social isolation due to fear of having a seizure in public or stigma associated with the condition.

It's important to note that not everyone with epilepsy will experience all of these symptoms, and some people may have different symptoms depending on the type of seizure they experience. Additionally, some people with epilepsy may experience additional symptoms not listed here.

Myocardial ischemia can be caused by a variety of factors, including coronary artery disease, high blood pressure, diabetes, and smoking. It can also be triggered by physical exertion or stress.

There are several types of myocardial ischemia, including:

1. Stable angina: This is the most common type of myocardial ischemia, and it is characterized by a predictable pattern of chest pain that occurs during physical activity or emotional stress.
2. Unstable angina: This is a more severe type of myocardial ischemia that can occur without any identifiable trigger, and can be accompanied by other symptoms such as shortness of breath or vomiting.
3. Acute coronary syndrome (ACS): This is a condition that includes both stable angina and unstable angina, and it is characterized by a sudden reduction in blood flow to the heart muscle.
4. Heart attack (myocardial infarction): This is a type of myocardial ischemia that occurs when the blood flow to the heart muscle is completely blocked, resulting in damage or death of the cardiac tissue.

Myocardial ischemia can be diagnosed through a variety of tests, including electrocardiograms (ECGs), stress tests, and imaging studies such as echocardiography or cardiac magnetic resonance imaging (MRI). Treatment options for myocardial ischemia include medications such as nitrates, beta blockers, and calcium channel blockers, as well as lifestyle changes such as quitting smoking, losing weight, and exercising regularly. In severe cases, surgical procedures such as coronary artery bypass grafting or angioplasty may be necessary.

The symptoms of BFP typically appear in early adulthood and can include:

* Blisters and sores on the skin and mucous membranes
* Pain and discomfort
* Scarring and disfigurement
* Difficulty swallowing (in severe cases)

BFP is diagnosed through a combination of clinical evaluation, family history, and genetic testing. Treatment for the condition typically involves managing the symptoms and preventing complications. This may include:

* Topical medications to reduce inflammation and promote healing
* Oral medications to suppress the immune system and prevent further blistering
* Physical therapy to improve mobility and reduce pain

While there is no cure for BFP, early diagnosis and appropriate treatment can help to manage the symptoms and improve quality of life. The condition is typically inherited in an autosomal dominant pattern, which means that a single copy of the mutated gene is enough to cause the condition. However, some cases may be caused by spontaneous mutations rather than inheritance.

Some common types of calcium metabolism disorders include:

1. Hypocalcemia (low calcium levels): This can be caused by a deficiency in dietary calcium intake, malabsorption of calcium, or excessive urinary excretion of calcium. Symptoms can include muscle cramps, tremors, and tingling sensations in the fingers and toes.
2. Hypercalcemia (high calcium levels): This can be caused by an overactive parathyroid gland, cancer, or excessive intake of vitamin D. Symptoms can include fatigue, nausea, constipation, and kidney stones.
3. Osteoporosis: This is a condition characterized by weak and brittle bones that can lead to fractures. It is often associated with hormonal imbalances, vitamin D deficiency, or other factors that disrupt calcium metabolism.
4. Hyperparathyroidism (overactive parathyroid gland): This is a condition in which the parathyroid glands produce too much parathyroid hormone (PTH), leading to elevated calcium levels and potential complications such as kidney stones, bone loss, and cardiovascular disease.
5. Vitamin D-dependent rickets type 1: This is a rare genetic disorder that affects the body's ability to absorb vitamin D and maintain normal calcium levels. It can lead to softening of the bones and other skeletal deformities.
6. Familial hypophosphatemic rickets type 1: This is a rare genetic disorder that affects the body's ability to regulate phosphate levels, leading to softening of the bones and other skeletal deformities.
7. Tumor-induced osteomalacia: This is a condition in which cancerous tumors, typically found in the lung or breast, produce high levels of proteins that interfere with the body's ability to absorb vitamin D and maintain normal calcium levels. It can lead to softening of the bones and other skeletal deformities.
8. Chronic kidney disease: This is a condition in which the kidneys are not functioning properly, leading to elevated levels of phosphate and other waste products in the blood. It can lead to softening of the bones and other complications such as heart disease.
9. Paget's disease of bone: This is a condition that affects the way bones grow and repair themselves, leading to deformities and pain. It is often associated with inflammation and elevated levels of calcium in the blood.
10. Chronic alcoholism: Prolonged heavy drinking can lead to deficiencies in vitamin D and calcium, as well as other nutrients that are essential for bone health. It can increase the risk of osteoporosis and fractures.

There are two main types of status epilepticus:

1. Generalized status epilepticus: This type affects the entire brain and is characterized by severe convulsions, loss of consciousness, and muscle stiffness.
2. Focal status epilepticus: This type affects only one part of the brain and can cause more subtle symptoms, such as weakness or numbness in a limb, speech difficulties, or confusion.

The diagnosis of status epilepticus is based on clinical findings, medical history, and electroencephalography (EEG) recordings. Treatment typically involves prompt administration of anticonvulsant medications, such as benzodiazepines or barbiturates, to control seizures and prevent further brain damage. In severe cases, sedation, mechanical ventilation, or anesthesia may be required to support the patient's vital functions.

The prognosis for status epilepticus depends on several factors, including the underlying cause, the severity of the seizure, and the promptness and effectiveness of treatment. In general, the earlier the treatment is initiated, the better the outcome. However, long-term neurological and cognitive deficits can occur in some cases.

Preventive measures for status epilepticus include proper management of underlying conditions that may trigger seizures, such as epilepsy or head trauma, and avoiding triggers like alcohol or drugs. Additionally, prompt medical attention should be sought if seizure warning signs are present, such as changes in sensation, confusion, or convulsions.

Example sentence: "The patient experienced a transient ischemic attack, which was caused by a temporary blockage in one of the blood vessels in their brain."

Synonyms: TIA, mini-stroke.

Tachycardia, ventricular can be classified into several types based on its duration and the presence of other symptoms. These include:

1. Paroxysmal ventricular tachycardia (PVT): This is a rapid heart rate that occurs in episodes lasting less than 30 seconds and may be accompanied by palpitations, shortness of breath, or dizziness.
2. Sustained ventricular tachycardia: This is a rapid heart rate that persists for more than 30 seconds and may require medical intervention to return the heart to normal rhythm.
3. Ventricular fibrillation (VF): This is a life-threatening condition in which the ventricles are unable to pump blood effectively due to rapid, disorganized electrical activity.

Symptoms of tachycardia, ventricular may include:

* Palpitations or rapid heartbeat
* Shortness of breath
* Dizziness or lightheadedness
* Chest pain or discomfort
* Fatigue or weakness

Diagnosis of tachycardia, ventricular is typically made based on a physical examination, medical history, and results of diagnostic tests such as electrocardiogram (ECG), echocardiogram, or stress test. Treatment options may include medications to regulate heart rhythm, cardioversion to restore normal heart rhythm, and in some cases, implantation of a cardioverter-defibrillator (ICD) to prevent sudden death.

In summary, tachycardia, ventricular is a rapid heart rate that originates in the ventricles and can be caused by a variety of conditions. It is important to seek medical attention if symptoms persist or worsen over time. With proper diagnosis and treatment, it is possible to manage the condition and improve quality of life.

There are two types of hypertension:

1. Primary Hypertension: This type of hypertension has no identifiable cause and is also known as essential hypertension. It accounts for about 90% of all cases of hypertension.
2. Secondary Hypertension: This type of hypertension is caused by an underlying medical condition or medication. It accounts for about 10% of all cases of hypertension.

Some common causes of secondary hypertension include:

* Kidney disease
* Adrenal gland disorders
* Hormonal imbalances
* Certain medications
* Sleep apnea
* Cocaine use

There are also several risk factors for hypertension, including:

* Age (the risk increases with age)
* Family history of hypertension
* Obesity
* Lack of exercise
* High sodium intake
* Low potassium intake
* Stress

Hypertension is often asymptomatic, and it can cause damage to the blood vessels and organs over time. Some potential complications of hypertension include:

* Heart disease (e.g., heart attacks, heart failure)
* Stroke
* Kidney disease (e.g., chronic kidney disease, end-stage renal disease)
* Vision loss (e.g., retinopathy)
* Peripheral artery disease

Hypertension is typically diagnosed through blood pressure readings taken over a period of time. Treatment for hypertension may include lifestyle changes (e.g., diet, exercise, stress management), medications, or a combination of both. The goal of treatment is to reduce the risk of complications and improve quality of life.

Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.

There are several ways to measure body weight, including:

1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.

It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.

Types of Experimental Diabetes Mellitus include:

1. Streptozotocin-induced diabetes: This type of EDM is caused by administration of streptozotocin, a chemical that damages the insulin-producing beta cells in the pancreas, leading to high blood sugar levels.
2. Alloxan-induced diabetes: This type of EDM is caused by administration of alloxan, a chemical that also damages the insulin-producing beta cells in the pancreas.
3. Pancreatectomy-induced diabetes: In this type of EDM, the pancreas is surgically removed or damaged, leading to loss of insulin production and high blood sugar levels.

Experimental Diabetes Mellitus has several applications in research, including:

1. Testing new drugs and therapies for diabetes treatment: EDM allows researchers to evaluate the effectiveness of new treatments on blood sugar control and other physiological processes.
2. Studying the pathophysiology of diabetes: By inducing EDM in animals, researchers can study the progression of diabetes and its effects on various organs and tissues.
3. Investigating the role of genetics in diabetes: Researchers can use EDM to study the effects of genetic mutations on diabetes development and progression.
4. Evaluating the efficacy of new diagnostic techniques: EDM allows researchers to test new methods for diagnosing diabetes and monitoring blood sugar levels.
5. Investigating the complications of diabetes: By inducing EDM in animals, researchers can study the development of complications such as retinopathy, nephropathy, and cardiovascular disease.

In conclusion, Experimental Diabetes Mellitus is a valuable tool for researchers studying diabetes and its complications. The technique allows for precise control over blood sugar levels and has numerous applications in testing new treatments, studying the pathophysiology of diabetes, investigating the role of genetics, evaluating new diagnostic techniques, and investigating complications.

Necrosis is a type of cell death that occurs when cells are exposed to excessive stress, injury, or inflammation, leading to damage to the cell membrane and the release of cellular contents into the surrounding tissue. This can lead to the formation of gangrene, which is the death of body tissue due to lack of blood supply.

There are several types of necrosis, including:

1. Coagulative necrosis: This type of necrosis occurs when there is a lack of blood supply to the tissues, leading to the formation of a firm, white plaque on the surface of the affected area.
2. Liquefactive necrosis: This type of necrosis occurs when there is an infection or inflammation that causes the death of cells and the formation of pus.
3. Caseous necrosis: This type of necrosis occurs when there is a chronic infection, such as tuberculosis, and the affected tissue becomes soft and cheese-like.
4. Fat necrosis: This type of necrosis occurs when there is trauma to fatty tissue, leading to the formation of firm, yellowish nodules.
5. Necrotizing fasciitis: This is a severe and life-threatening form of necrosis that affects the skin and underlying tissues, often as a result of bacterial infection.

The diagnosis of necrosis is typically made through a combination of physical examination, imaging studies such as X-rays or CT scans, and laboratory tests such as biopsy. Treatment depends on the underlying cause of the necrosis and may include antibiotics, surgical debridement, or amputation in severe cases.

The signs and symptoms of CE can vary depending on the location of the tumor, but they may include:

* Lumps or swelling in the neck, underarm, or groin area
* Fever
* Fatigue
* Weight loss
* Night sweats
* Swollen lymph nodes
* Pain in the affected area

CE is caused by a genetic mutation that leads to uncontrolled cell growth and division. The exact cause of the mutation is not fully understood, but it is believed to be linked to exposure to certain viruses or chemicals.

Diagnosis of CE typically involves a combination of physical examination, imaging tests such as CT scans or PET scans, and biopsy to confirm the presence of cancer cells. Treatment options for CE depend on the stage and location of the tumor, but may include:

* Chemotherapy to kill cancer cells
* Radiation therapy to shrink the tumor
* Surgery to remove the tumor
* Immunotherapy to boost the immune system's ability to fight the cancer

Overall, CE is a rare and aggressive form of cancer that requires prompt diagnosis and treatment to improve outcomes.

Some common types of pituitary neoplasms include:

1. Adenomas: These are benign tumors that grow slowly and often do not cause any symptoms in the early stages.
2. Craniopharyngiomas: These are rare, slow-growing tumors that can be benign or malignant. They can affect the pituitary gland, the hypothalamus, and other areas of the brain.
3. Pituitary carcinomas: These are malignant tumors that grow quickly and can spread to other parts of the body.
4. Pituitary metastases: These are tumors that have spread to the pituitary gland from another part of the body, such as breast cancer or lung cancer.

Symptoms of pituitary neoplasms can vary depending on the size and location of the tumor, but they may include:

* Headaches
* Vision changes, such as blurred vision or loss of peripheral vision
* Hormonal imbalances, which can lead to a variety of symptoms including fatigue, weight gain or loss, and irregular menstrual cycles
* Cognitive changes, such as memory loss or difficulty with concentration
* Pressure on the brain, which can cause nausea, vomiting, and weakness or numbness in the limbs

Diagnosis of pituitary neoplasms typically involves a combination of imaging tests, such as MRI or CT scans, and hormone testing to determine the level of hormones in the blood. Treatment options can vary depending on the type and size of the tumor, but they may include:

* Watchful waiting: Small, benign tumors may not require immediate treatment and can be monitored with regular imaging tests.
* Medications: Hormone replacement therapy or medications to control hormone levels may be used to manage symptoms.
* Surgery: Tumors can be removed through a transsphenoidal surgery, which involves removing the tumor through the nasal cavity and sphenoid sinus.
* Radiation therapy: May be used to treat residual tumor tissue after surgery or in cases where the tumor cannot be completely removed with surgery.

Overall, pituitary neoplasms are rare and can have a significant impact on the body if left untreated. If you suspect you may have a pituitary neoplasm, it is important to seek medical attention for proper diagnosis and treatment.

Some common types of adrenal gland neoplasms include:

1. Adrenocortical carcinoma: A rare and aggressive malignancy that arises in the outer layer of the adrenal cortex.
2. Adrenocortical adenoma: A benign tumor that arises in the outer layer of the adrenal cortex.
3. Pheochromocytoma: A rare tumor that arises in the inner part of the adrenal medulla and produces excessive amounts of hormones such as epinephrine and norepinephrine.
4. Paraganglioma: A rare tumor that arises in the sympathetic nervous system, often near the adrenal glands.

Symptoms of adrenal gland neoplasms can include:

* Weight gain or weight loss
* High blood pressure
* Fatigue
* Abdominal pain
* Headache
* Nausea and vomiting
* Palpitations

Diagnosis of adrenal gland neoplasms typically involves imaging tests such as computed tomography (CT) scans, magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, as well as hormone level assessments. Treatment options vary depending on the type and size of the tumor, and may include surgery, chemotherapy, and hormone therapy.

1. Duchenne muscular dystrophy: This is the most common form of muscular dystrophy in children, caused by a defect in the DMD gene that codes for dystrophin protein. It affects boys primarily and can lead to progressive muscle weakness and wasting, as well as cardiac and other complications.
2. Becker muscular dystrophy: This is a milder form of muscular dystrophy than Duchenne, caused by a defect in the DMD gene that codes for dystrophin protein. It primarily affects boys but can also affect girls.
3. Limb-girdle muscular dystrophy: This is a group of disorders characterized by progressive muscle weakness and degeneration, particularly affecting the shoulder and pelvic girdles. There are several types of limb-girdle muscular dystrophy, including type 1A, 1B, 2A, and 2B.
4. Facioscapulohumeral muscular dystrophy: This is a type of muscular dystrophy that affects the muscles of the face, shoulder blades, and upper arms. It can cause progressive muscle weakness, wasting, and fatigue.
5. Myotonic muscular dystrophy: This is the most common form of adult-onset muscular dystrophy, caused by a defect in the DMPK gene that codes for myotonia protein. It can cause progressive muscle stiffness, spasms, and weakness, as well as other complications such as cataracts and type 2 diabetes.

In animals, muscular dystrophy is similar to human forms of the disorder, caused by genetic mutations that affect muscle function and strength. It can be caused by a variety of factors, including genetics, nutrition, and environmental exposures.

Symptoms of muscular dystrophy in animals can include:

1. Progressive muscle weakness and wasting
2. Loss of coordination and balance
3. Difficulty walking or running
4. Muscle cramps and spasms
5. Poor appetite and weight loss
6. Increased breathing rate and difficulty breathing
7. Cardiac problems, such as arrhythmias and heart failure
8. Cognitive decline and seizures

Diagnosis of muscular dystrophy in animals is similar to human patients, involving a combination of physical examination, medical history, and diagnostic tests such as blood tests, imaging studies, and muscle biopsy.

Treatment for muscular dystrophy in animals is limited, but may include:

1. Supportive care, such as antibiotics for respiratory infections and pain management
2. Physical therapy to maintain joint mobility and prevent deformities
3. Nutritional support to ensure adequate nutrition and hydration
4. Medications to manage symptoms such as muscle spasms and seizures
5. Assistive devices, such as wheelchairs or slings, to improve mobility and quality of life

Prevention of muscular dystrophy in animals is not possible at present, but research into the genetic causes and potential treatments for the disease is ongoing. It is important for pet owners to be aware of the signs of muscular dystrophy and seek veterinary care if they suspect their pet may be affected.

Some common causes of hypocalcemia include:

1. Vitamin D deficiency: Vitamin D is essential for the absorption of calcium from the diet. A lack of vitamin D can lead to low levels of calcium in the blood.
2. Parathyroid gland disorders: The parathyroid glands are located in the neck and regulate calcium levels in the blood. Disorders such as hypoparathyroidism (underactive parathyroid glands) or hyperparathyroidism (overactive parathyroid glands) can cause hypocalcemia.
3. Malabsorption: Certain conditions, such as celiac disease or Crohn's disease, can lead to malabsorption of nutrients, including calcium.
4. Kidney problems: Kidney failure can cause hypocalcemia by reducing the amount of calcium that is excreted in the urine.
5. Hypomagnesemia (low levels of magnesium): Magnesium is important for calcium metabolism, and low levels of magnesium can contribute to hypocalcemia.

Symptoms of hypocalcemia can include:

1. Muscle cramps
2. Weakness
3. Twitching or tremors
4. Seizures
5. Tingling or numbness in the fingers and toes
6. Difficulty swallowing
7. Palpitations
8. Headaches
9. Fatigue
10. Depression

Treatment for hypocalcemia usually involves addressing the underlying cause of the condition. For example, if the condition is caused by a vitamin D deficiency, supplements may be prescribed. If the condition is caused by a parathyroid gland disorder, surgery may be necessary to remove the affected gland or glands. In some cases, calcium supplements may be prescribed to help restore normal calcium levels.

It's important to note that hypocalcemia can be a sign of an underlying condition, and it should be treated promptly to prevent complications. If you suspect you or someone you know may have hypocalcemia, it is important to seek medical attention as soon as possible. A healthcare professional can diagnose the condition and recommend appropriate treatment.

HFCM is caused by mutations in genes that encode proteins involved in the structure and function of the heart muscle. These mutations can be inherited from one's parents or can occur spontaneously. The condition typically affects multiple members of a family, and the age of onset and severity of symptoms can vary widely.

HFCM is diagnosed through a combination of physical examination, medical history, and diagnostic tests such as echocardiography, electrocardiography, and cardiac MRI. Treatment options for HFCM include medications to manage symptoms, lifestyle modifications such as regular exercise and a healthy diet, and in some cases, surgery or other procedures to repair or replace damaged heart tissue.

In summary, Cardiomyopathy, Hypertrophic, Familial (HFCM) is a genetic disorder that affects the heart muscle, leading to thickening of the heart muscle and potentially causing heart failure and other complications. It is characterized by an abnormal thickening of the heart muscle, particularly in the left ventricle, and can be inherited or caused by spontaneous mutations in genes that encode proteins involved in heart muscle structure and function.

Here are some of the possible causes of magnesium deficiency:

1. Poor diet: A diet low in magnesium-rich foods such as dark leafy greens, nuts, seeds, and whole grains can lead to a deficiency.
2. Gastrointestinal disorders: Certain conditions such as irritable bowel syndrome (IBS), Crohn's disease, and celiac disease can make it difficult for the body to absorb magnesium from food.
3. Medications: Diuretics, antibiotics, and proton pump inhibitors can cause magnesium deficiency by increasing urinary excretion or interfering with absorption.
4. Malabsorption: Conditions such as celiac disease, pancreatic insufficiency, and small intestine bacterial overgrowth (SIBO) can lead to malabsorption of magnesium.
5. Chronic alcoholism: Alcohol can interfere with magnesium absorption and increase urinary excretion.
6. Chronic stress: Stress can cause the body to excrete more magnesium, leading to a deficiency.
7. Genetic disorders: Certain genetic disorders such as Bartter's syndrome and Gitelman's syndrome can affect the body's ability to absorb or retain magnesium.

Symptoms of magnesium deficiency can include muscle cramps, twitching, weakness, fatigue, anxiety, depression, insomnia, seizures, and heart arrhythmias. If left untreated, magnesium deficiency can lead to more severe complications such as osteoporosis, cardiovascular disease, and kidney stones.

Treatment of magnesium deficiency typically involves correcting the underlying cause and increasing dietary intake of magnesium. Supplements may also be prescribed to restore normal levels of magnesium in the body. It is important to consult with a healthcare professional before starting any supplements or making significant changes to your diet.

There are several types of channelopathies, including:

1. Long QT syndrome: This is a condition that affects the ion channels in the heart, leading to abnormal heart rhythms and increased risk of sudden death.
2. Short QT syndrome: This is a rare condition that has the opposite effect of long QT syndrome, causing the heart to beat too quickly.
3. Catecholaminergic polymorphic ventricular tachycardia (CPVT): This is a rare disorder that affects the ion channels in the heart, leading to abnormal heart rhythms and increased risk of sudden death.
4. Brugada syndrome: This is a condition that affects the ion channels in the heart, leading to abnormal heart rhythms and increased risk of sudden death.
5. Wolff-Parkinson-White (WPW) syndrome: This is a condition that affects the ion channels in the heart, leading to abnormal heart rhythms and increased risk of sudden death.
6. Neuromuscular disorders: These are disorders that affect the nerve-muscle junction, leading to muscle weakness and wasting. Examples include muscular dystrophy and myasthenia gravis.
7. Dystrophinopathies: These are a group of disorders that affect the structure of muscle cells, leading to muscle weakness and wasting. Examples include Duchenne muscular dystrophy and Becker muscular dystrophy.
8. Myotonia: This is a condition that affects the muscles, causing them to become stiff and rigid.
9. Hyperkalemic periodic paralysis: This is a rare condition that causes muscle weakness and paralysis due to abnormal potassium levels in the body.
10. Hypokalemic periodic paralysis: This is a rare condition that causes muscle weakness and paralysis due to low potassium levels in the body.
11. Thyrotoxic periodic paralysis: This is a rare condition that causes muscle weakness and paralysis due to an overactive thyroid gland.
12. Hyperthyroidism: This is a condition where the thyroid gland becomes overactive, leading to increased heart rate, weight loss, and muscle weakness.
13. Hypothyroidism: This is a condition where the thyroid gland becomes underactive, leading to fatigue, weight gain, and muscle weakness.
14. Pituitary tumors: These are tumors that affect the pituitary gland, which regulates hormone production in the body.
15. Adrenal tumors: These are tumors that affect the adrenal glands, which produce hormones such as cortisol and aldosterone.
16. Carcinoid syndrome: This is a condition where cancer cells in the digestive system produce hormones that can cause muscle weakness and wasting.
17. Multiple endocrine neoplasia (MEN): This is a genetic disorder that affects the endocrine system and can cause tumors to grow in the thyroid, adrenal, and parathyroid glands.

These are just some of the many potential causes of muscle weakness. It's important to see a healthcare professional for an accurate diagnosis and appropriate treatment.

There are several types of gliomas, including:

1. Astrocytoma: This is the most common type of glioma, accounting for about 50% of all cases. It arises from the star-shaped cells called astrocytes that provide support and nutrients to the brain's nerve cells.
2. Oligodendroglioma: This type of glioma originates from the oligodendrocytes, which are responsible for producing the fatty substance called myelin that insulates the nerve fibers.
3. Glioblastoma (GBM): This is the most aggressive and malignant type of glioma, accounting for about 70% of all cases. It is fast-growing and often spreads to other parts of the brain.
4. Brain stem glioma: This type of glioma arises in the brain stem, which is responsible for controlling many of the body's vital functions such as breathing, heart rate, and blood pressure.

The symptoms of glioma depend on the location and size of the tumor. Common symptoms include headaches, seizures, weakness or numbness in the arms or legs, and changes in personality, memory, or speech.

Gliomas are diagnosed through a combination of imaging tests such as CT or MRI scans, and tissue biopsy to confirm the presence of cancer cells. Treatment options for glioma depend on the type and location of the tumor, as well as the patient's overall health. Surgery is often the first line of treatment to remove as much of the tumor as possible, followed by radiation therapy and/or chemotherapy to kill any remaining cancer cells.

The prognosis for glioma patients varies depending on the type and location of the tumor, as well as the patient's overall health. In general, the prognosis is better for patients with slow-growing, low-grade tumors, while those with fast-growing, high-grade tumors have a poorer prognosis. Overall, the 5-year survival rate for glioma patients is around 30-40%.

Measurement:

Cardiac output is typically measured using invasive or non-invasive methods. Invasive methods involve inserting a catheter into the heart to directly measure cardiac output. Non-invasive methods include echocardiography, MRI, and CT scans. These tests can provide an estimate of cardiac output based on the volume of blood being pumped out of the heart and the rate at which it is being pumped.

Causes:

There are several factors that can contribute to low cardiac output. These include:

1. Heart failure: This occurs when the heart is unable to pump enough blood to meet the body's needs, leading to fatigue and shortness of breath.
2. Anemia: A low red blood cell count can reduce the amount of oxygen being delivered to the body's tissues, leading to fatigue and weakness.
3. Medication side effects: Certain medications, such as beta blockers, can slow down the heart rate and reduce cardiac output.
4. Sepsis: A severe infection can lead to inflammation throughout the body, which can affect the heart's ability to pump blood effectively.
5. Myocardial infarction (heart attack): This occurs when the heart muscle is damaged due to a lack of oxygen, leading to reduced cardiac output.

Symptoms:

Low cardiac output can cause a range of symptoms, including:

1. Fatigue and weakness
2. Dizziness and lightheadedness
3. Shortness of breath
4. Pale skin
5. Decreased urine output
6. Confusion and disorientation

Treatment:

The treatment of low cardiac output depends on the underlying cause. Treatment may include:

1. Medications to increase heart rate and contractility
2. Diuretics to reduce fluid buildup in the body
3. Oxygen therapy to increase oxygenation of tissues
4. Mechanical support devices, such as intra-aortic balloon pumps or ventricular assist devices
5. Surgery to repair or replace damaged heart tissue
6. Lifestyle changes, such as a healthy diet and regular exercise, to improve cardiovascular health.

Prevention:

Preventing low cardiac output involves managing any underlying medical conditions, taking medications as directed, and making lifestyle changes to improve cardiovascular health. This may include:

1. Monitoring and controlling blood pressure
2. Managing diabetes and other chronic conditions
3. Avoiding substances that can damage the heart, such as tobacco and excessive alcohol
4. Exercising regularly
5. Eating a healthy diet that is low in saturated fats and cholesterol
6. Maintaining a healthy weight.

The symptoms of hypercalcemia may include:

* Fatigue
* Nausea and vomiting
* Weakness
* Constipation
* Abdominal pain
* Kidney stones
* Bone pain or fractures

If left untreated, hypercalcemia can lead to complications such as kidney damage, heart problems, and an increased risk of osteoporosis. Treatment options may include medications to reduce calcium levels, surgery to remove a tumor or overactive parathyroid gland, or dialysis if the patient has kidney failure.

Early diagnosis and treatment are important to prevent long-term complications and improve the patient's quality of life.

In the medical field, autolysis is a term used to describe the self-destruction or breakdown of cells or tissues within an organism. This process occurs naturally in response to various forms of cellular stress, such as exposure to radiation or certain chemicals, and it is also involved in the immune system's removal of dead cells and debris. Autolysis can be triggered by a variety of factors, including oxidative stress, heat shock, and exposure to certain enzymes or toxins.

There are several types of autolysis, including:

1. Autophagy: a process by which cells break down and recycle their own components, such as proteins and organelles, in order to maintain cellular homeostasis and survive under conditions of limited nutrient availability.
2. Necrosis: a form of autolysis that occurs as a result of cellular injury or stress, leading to the release of harmful substances into the surrounding tissue and triggering an inflammatory response.
3. Apoptosis: a programmed form of cell death that involves the breakdown of cells and their components, and is involved in various physiological processes, such as development and immune system function.
4. Lipofuscinogenesis: a process by which lipid-rich organelles undergo autolysis, leading to the formation of lipofuscin, a type of cellular waste product.
5. Chaperone-mediated autophagy: a process by which proteins are broken down and recycled in the presence of chaperone proteins, which help to fold and stabilize the target proteins.

Autolysis can be studied using various techniques, including:

1. Light microscopy: a technique that uses visible light to visualize cells and their components, allowing researchers to observe the effects of autolysis on cellular structures.
2. Electron microscopy: a technique that uses a beam of electrons to produce high-resolution images of cells and their components, allowing researchers to observe the ultrastructure of cells and the effects of autolysis at the molecular level.
3. Biochemical assays: techniques that measure the levels of specific cellular components or metabolites in order to assess the progress of autolysis.
4. Gene expression analysis: a technique that measures the levels of specific messenger RNAs (mRNAs) in order to assess the activity of genes involved in autolysis.
5. Proteomics: a technique that measures the levels and modifications of specific proteins in order to assess the effects of autolysis on protein turnover and degradation.

Autolysis plays an important role in various cellular processes, including:

1. Cellular detoxification: Autolysis can help to remove damaged or misfolded proteins, which can be toxic to cells, by breaking them down into smaller peptides and amino acids that can be further degraded.
2. Cellular renewal: Autolysis can help to remove old or damaged cellular components, such as organelles and protein aggregates, and recycle their building blocks to support the synthesis of new cellular components.
3. Cellular defense: Autolysis can help to protect cells against pathogens, such as bacteria and viruses, by breaking down and removing infected cellular components.
4. Apoptosis: Autolysis is involved in the execution of apoptosis, a programmed form of cell death that is important for maintaining tissue homeostasis and preventing cancer.

Dysregulation of autolysis has been implicated in various diseases, including:

1. Cancer: Autolysis can promote the growth and survival of cancer cells by providing them with a source of energy and building blocks for protein synthesis.
2. Neurodegenerative diseases: Autolysis can contribute to the degeneration of neurons in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease.
3. Infectious diseases: Autolysis can help pathogens to evade the host immune system by breaking down and removing infected cellular components.
4. Aging: Dysregulation of autolysis has been implicated in the aging process, as it can lead to the accumulation of damaged or misfolded proteins and the degradation of cellular components.

Overall, autolysis is a complex and highly regulated process that plays a critical role in maintaining cellular homeostasis and responding to environmental stressors. Further research is needed to fully understand the mechanisms of autolysis and its implications for human health and disease.

Reperfusion injury can cause inflammation, cell death, and impaired function in the affected tissue or organ. The severity of reperfusion injury can vary depending on the duration and severity of the initial ischemic event, as well as the promptness and effectiveness of treatment to restore blood flow.

Reperfusion injury can be a complicating factor in various medical conditions, including:

1. Myocardial infarction (heart attack): Reperfusion injury can occur when blood flow is restored to the heart muscle after a heart attack, leading to inflammation and cell death.
2. Stroke: Reperfusion injury can occur when blood flow is restored to the brain after an ischemic stroke, leading to inflammation and damage to brain tissue.
3. Organ transplantation: Reperfusion injury can occur when a transplanted organ is subjected to ischemia during harvesting or preservation, and then reperfused with blood.
4. Peripheral arterial disease: Reperfusion injury can occur when blood flow is restored to a previously occluded peripheral artery, leading to inflammation and damage to the affected tissue.

Treatment of reperfusion injury often involves medications to reduce inflammation and oxidative stress, as well as supportive care to manage symptoms and prevent further complications. In some cases, experimental therapies such as stem cell transplantation or gene therapy may be used to promote tissue repair and regeneration.

There are different types of Breast Neoplasms such as:

1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.

2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.

3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.

4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.

5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.

Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.

Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.

It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.

Epilepsy, temporal lobe can cause a variety of seizure types, including:

1. Partial seizures: These are seizures that affect only one part of the brain, such as the temporal lobe.
2. Simple partial seizures: These are seizures that do not involve convulsions or loss of consciousness.
3. Complex partial seizures: These are seizures that involve impaired awareness or altered perception, and may involve convulsions or muscle stiffness.
4. Tonic-clonic seizures (formerly known as grand mal seizures): These are seizures that involve convulsions, loss of consciousness, and muscle stiffness.

The symptoms of epilepsy, temporal lobe can vary depending on the location of the seizure focus within the temporal lobe and the individual's age, but may include:

1. Auras (sensory disturbances such as flashing lights or unusual smells)
2. Confusion or disorientation
3. Memory loss or difficulty with memory
4. Emotional changes (such as fear, anxiety, or euphoria)
5. Speech difficulties
6. Muscle stiffness or weakness
7. Coordination problems
8. Vision changes (such as blurred vision or double vision)
9. Hearing changes (such as ringing in the ears)
10. Numbness or tingling sensations

Epilepsy, temporal lobe is typically diagnosed using a combination of medical history, physical examination, and diagnostic tests such as electroencephalography (EEG) or magnetic resonance imaging (MRI). Treatment options may include medication, surgery, or lifestyle modifications.

There are several possible causes of dilated cardiomyopathy, including:

1. Coronary artery disease: This is the most common cause of dilated cardiomyopathy, and it occurs when the coronary arteries become narrowed or blocked, leading to a decrease in blood flow to the heart muscle.
2. High blood pressure: Prolonged high blood pressure can cause the heart muscle to become weakened and enlarged.
3. Heart valve disease: Dysfunctional heart valves can lead to an increased workload on the heart, which can cause dilated cardiomyopathy.
4. Congenital heart defects: Some congenital heart defects can lead to an enlarged heart and dilated cardiomyopathy.
5. Alcohol abuse: Chronic alcohol abuse can damage the heart muscle and lead to dilated cardiomyopathy.
6. Viral infections: Some viral infections, such as myocarditis, can cause inflammation of the heart muscle and lead to dilated cardiomyopathy.
7. Genetic disorders: Certain genetic disorders, such as hypertrophic cardiomyopathy, can cause dilated cardiomyopathy.
8. Obesity: Obesity is a risk factor for developing dilated cardiomyopathy, particularly in younger people.
9. Diabetes: Diabetes can increase the risk of developing dilated cardiomyopathy, especially if left untreated or poorly controlled.
10. Age: Dilated cardiomyopathy is more common in older adults, with the majority of cases occurring in people over the age of 65.

It's important to note that many people with these risk factors will not develop dilated cardiomyopathy, and some people without any known risk factors can still develop the condition. If you suspect you or someone you know may have dilated cardiomyopathy, it's important to consult a healthcare professional for proper diagnosis and treatment.

Cystadenocarcinoma can occur in various parts of the body, but it is most common in the ovary and breast. In the ovary, it is the most common type of ovarian cancer and accounts for about 70% of all ovarian cancers. In the breast, it is a rare type of breast cancer, accounting for less than 5% of all breast cancers.

The symptoms of cystadenocarcinoma can vary depending on the location of the tumor, but they may include:

* Abnormal vaginal bleeding or discharge
* Pelvic pain or discomfort
* Abdominal swelling or bloating
* Painful urination
* Weakness and fatigue

Cystadenocarcinoma is diagnosed through a combination of imaging tests, such as ultrasound, CT scan, or MRI, and biopsy. Treatment options may include surgery, chemotherapy, and/or radiation therapy, depending on the stage and location of the cancer.

The prognosis for cystadenocarcinoma depends on the stage of the cancer at the time of diagnosis. In general, early detection and treatment improve the chances of a successful outcome. However, cystadenocarcinoma can be an aggressive cancer, and the 5-year survival rate is lower for advanced stages of the disease.

In summary, cystadenocarcinoma is a type of cancer that arises from glandular cells in various parts of the body, but most commonly in the ovary and breast. It can cause a range of symptoms and is diagnosed through imaging tests and biopsy. Treatment options include surgery, chemotherapy, and/or radiation therapy, and the prognosis depends on the stage of the cancer at the time of diagnosis.

There are several types of alkalosis, including:

1. Respiratory alkalosis: This type is caused by an excessive breathing of carbon dioxide into the lungs, which increases the bicarbonate levels in the blood.
2. Metabolic alkalosis: This type is caused by a decrease in the production of acid in the body, such as in diabetic ketoacidosis or liver disease.
3. Inherited alkalosis: This type is caused by inherited genetic disorders that affect the regulation of acid-base homeostasis.
4. Drug-induced alkalosis: Certain medications, such as antacids and diuretics, can increase bicarbonate levels in the blood.
5. Post-operative alkalosis: This type can occur after surgery, particularly gastrointestinal surgery, due to the release of bicarbonate from damaged tissues.

The symptoms of alkalosis can vary depending on the severity and duration of the condition. They may include:

* Nausea and vomiting
* Abdominal pain
* Headache
* Fatigue
* Muscle weakness
* Tingling sensations in the extremities
* Confusion and disorientation

If left untreated, alkalosis can lead to more severe complications such as:

* Respiratory acidosis (a decrease in blood pH due to a lack of oxygen)
* Cardiac arrhythmias (irregular heartbeats)
* Seizures
* Coma

Diagnosis of alkalosis is based on a combination of physical examination, medical history, and laboratory tests. Laboratory tests may include:

* Arterial blood gas (ABG) analysis to measure the pH and PCO2 levels in the blood
* Serum electrolyte levels to assess the levels of sodium, potassium, and chloride
* Urine testing to assess the levels of bicarbonate and other electrolytes

Treatment of alkalosis depends on the underlying cause and severity of the condition. General measures may include:

* Correction of any underlying metabolic disorders, such as diabetes or kidney disease
* Discontinuation of medications that may be contributing to the alkalosis
* Fluid and electrolyte replacement to correct dehydration or imbalances
* Oxygen therapy to treat respiratory acidosis

In severe cases, hospitalization may be necessary to monitor and treat the condition. In some cases, medications such as sodium bicarbonate may be prescribed to help restore acid-base balance. Surgery may be required in cases where the alkalosis is caused by a structural problem, such as a hiatal hernia.

Prognosis for alkalosis depends on the underlying cause and severity of the condition. In general, early diagnosis and treatment can improve outcomes. However, untreated severe alkalosis can lead to complications such as seizures, coma, and cardiac arrhythmias.

Prevention of alkalosis involves identifying and treating underlying conditions that may contribute to the development of the condition. This includes managing chronic diseases such as diabetes and kidney disease, and avoiding medications that may cause alkalosis. Additionally, maintaining a balanced diet and staying hydrated can help prevent electrolyte imbalances that can lead to alkalosis.

In conclusion, alkalosis is a condition characterized by an excess of base in the body, which can lead to respiratory and metabolic disturbances. The diagnosis of alkalosis is based on a combination of physical examination, medical history, and laboratory tests. Treatment depends on the underlying cause and severity of the condition, and may include fluid and electrolyte replacement, medication, and addressing any underlying conditions. Early diagnosis and treatment can improve outcomes for patients with alkalosis.

During myocardial stunning, the heart muscle cells experience a temporary reduction in contractility and an increase in the amount of lactic acid produced. This can lead to symptoms such as chest pain, shortness of breath, and fatigue. In severe cases, myocardial stunning can progress to myocardial infarction (heart attack) or cardiac arrest.

Myocardial stunning is often seen in athletes who engage in intense exercise, such as marathon runners or professional football players. It can also occur in people with pre-existing heart conditions, such as coronary artery disease or hypertension.

Treatment of myocardial stunning typically involves addressing the underlying cause, such as reducing stress on the heart or improving blood flow to the myocardium. In severe cases, medications such as nitrates or beta blockers may be used to reduce the workload on the heart and improve contractility. In some cases, hospitalization may be necessary to monitor the condition and provide appropriate treatment.

Prevention of myocardial stunning involves taking steps to reduce the risk factors for heart disease, such as maintaining a healthy diet, exercising regularly, and managing stress. It is also important to seek medical attention if symptoms of myocardial stunning are present, as prompt treatment can help prevent more severe complications.

There are several subtypes of astrocytoma, including:

1. Low-grade astrocytoma: These tumors grow slowly and are less aggressive. They can be treated with surgery, radiation therapy, or chemotherapy.
2. High-grade astrocytoma: These tumors grow more quickly and are more aggressive. They are often resistant to treatment and may recur after initial treatment.
3. Anaplastic astrocytoma: These are the most aggressive type of astrocytoma, growing rapidly and spreading to other parts of the brain.
4. Glioblastoma (GBM): This is the most common and deadliest type of primary brain cancer, accounting for 55% of all astrocytomas. It is highly aggressive and resistant to treatment, often recurring after initial surgery, radiation, and chemotherapy.

The symptoms of astrocytoma depend on the location and size of the tumor. Common symptoms include headaches, seizures, weakness or numbness in the arms or legs, and changes in personality or behavior.

Astrocytomas are diagnosed through a combination of imaging tests such as MRI or CT scans, and tissue biopsy. Treatment options vary depending on the type and location of the tumor, but may include surgery, radiation therapy, chemotherapy, or a combination of these.

The prognosis for astrocytoma varies based on the subtype and location of the tumor, as well as the patient's age and overall health. In general, low-grade astrocytomas have a better prognosis than high-grade tumors. However, even with treatment, the survival rate for astrocytoma is generally lower compared to other types of cancer.

There are several types of hypertrophy, including:

1. Muscle hypertrophy: The enlargement of muscle fibers due to increased protein synthesis and cell growth, often seen in individuals who engage in resistance training exercises.
2. Cardiac hypertrophy: The enlargement of the heart due to an increase in cardiac workload, often seen in individuals with high blood pressure or other cardiovascular conditions.
3. Adipose tissue hypertrophy: The excessive growth of fat cells, often seen in individuals who are obese or have insulin resistance.
4. Neurological hypertrophy: The enlargement of neural structures such as brain or spinal cord due to an increase in the number of neurons or glial cells, often seen in individuals with neurodegenerative diseases such as Alzheimer's or Parkinson's.
5. Hepatic hypertrophy: The enlargement of the liver due to an increase in the number of liver cells, often seen in individuals with liver disease or cirrhosis.
6. Renal hypertrophy: The enlargement of the kidneys due to an increase in blood flow and filtration, often seen in individuals with kidney disease or hypertension.
7. Ovarian hypertrophy: The enlargement of the ovaries due to an increase in the number of follicles or hormonal imbalances, often seen in individuals with polycystic ovary syndrome (PCOS).

Hypertrophy can be diagnosed through various medical tests such as imaging studies (e.g., CT scans, MRI), biopsies, and blood tests. Treatment options for hypertrophy depend on the underlying cause and may include medications, lifestyle changes, and surgery.

In conclusion, hypertrophy is a growth or enlargement of cells, tissues, or organs in response to an excessive stimulus. It can occur in various parts of the body, including the brain, liver, kidneys, heart, muscles, and ovaries. Understanding the underlying causes and diagnosis of hypertrophy is crucial for effective treatment and management of related health conditions.

There are several factors that can contribute to bone resorption, including:

1. Hormonal changes: Hormones such as parathyroid hormone (PTH) and calcitonin can regulate bone resorption. Imbalances in these hormones can lead to excessive bone resorption.
2. Aging: As we age, our bones undergo remodeling more frequently, leading to increased bone resorption.
3. Nutrient deficiencies: Deficiencies in calcium, vitamin D, and other nutrients can impair bone health and lead to excessive bone resorption.
4. Inflammation: Chronic inflammation can increase bone resorption, leading to bone loss and weakening.
5. Genetics: Some genetic disorders can affect bone metabolism and lead to abnormal bone resorption.
6. Medications: Certain medications, such as glucocorticoids and anticonvulsants, can increase bone resorption.
7. Diseases: Conditions such as osteoporosis, Paget's disease of bone, and bone cancer can lead to abnormal bone resorption.

Bone resorption can be diagnosed through a range of tests, including:

1. Bone mineral density (BMD) testing: This test measures the density of bone in specific areas of the body. Low BMD can indicate bone loss and excessive bone resorption.
2. X-rays and imaging studies: These tests can help identify abnormal bone growth or other signs of bone resorption.
3. Blood tests: Blood tests can measure levels of certain hormones and nutrients that are involved in bone metabolism.
4. Bone biopsy: A bone biopsy can provide a direct view of the bone tissue and help diagnose conditions such as Paget's disease or bone cancer.

Treatment for bone resorption depends on the underlying cause and may include:

1. Medications: Bisphosphonates, hormone therapy, and other medications can help slow or stop bone resorption.
2. Diet and exercise: A healthy diet rich in calcium and vitamin D, along with regular exercise, can help maintain strong bones.
3. Physical therapy: In some cases, physical therapy may be recommended to improve bone strength and mobility.
4. Surgery: In severe cases of bone resorption, surgery may be necessary to repair or replace damaged bone tissue.

The symptoms of LEMS typically develop gradually over time and may include:

1. Muscle weakness that worsens with activity and improves with rest.
2. Weakness in the legs, hips, and shoulders.
3. Fatigue and muscle cramps.
4. Difficulty walking or standing upright.
5. Double vision or other eye problems.
6. Dry mouth and difficulty swallowing.
7. Increased heart rate and blood pressure.
8. Impaired reflexes.
9. Decreased sweating.
10. Weight loss.

The exact cause of LEMS is not known, but it is believed to be an autoimmune disorder in which the immune system mistakenly attacks the VGCCs in the neuromuscular junction. The condition is often associated with other autoimmune disorders such as thyroiditis, vitiligo, and adrenal insufficiency.

There is no cure for LEMS, but treatment options are available to manage the symptoms. These may include:

1. Immunosuppressive medications such as prednisone to reduce inflammation and suppress the immune system.
2. Intracranial pressure-lowering medications such as acetazolamide to reduce the pressure in the brain.
3. Muscle strengthening exercises to improve muscle function.
4. Physical therapy to maintain muscle strength and flexibility.
5. Orthostatic hypotension medications to manage orthostatic hypotension (a drop in blood pressure when standing).
6. Pain management medications to relieve muscle cramps, spasms, or pain.
7. Nutritional support to ensure adequate nutrition and prevent weight loss.
8. Respiratory support as needed to manage respiratory muscle weakness.
9. Speech therapy to improve communication skills.
10. Psychological support to cope with the emotional and social challenges of the condition.

It is important for individuals with LEMS to work closely with their healthcare team to manage their symptoms and prevent complications. With proper treatment, many people with LEMS can lead active and fulfilling lives.

The symptoms of Alzheimer's disease can vary from person to person and may progress slowly over time. Early symptoms may include memory loss, confusion, and difficulty with problem-solving. As the disease progresses, individuals may experience language difficulties, visual hallucinations, and changes in mood and behavior.

There is currently no cure for Alzheimer's disease, but there are several medications and therapies that can help manage its symptoms and slow its progression. These include cholinesterase inhibitors, memantine, and non-pharmacological interventions such as cognitive training and behavioral therapy.

Alzheimer's disease is a significant public health concern, affecting an estimated 5.8 million Americans in 2020. It is the sixth leading cause of death in the United States, and its prevalence is expected to continue to increase as the population ages.

There is ongoing research into the causes and potential treatments for Alzheimer's disease, including studies into the role of inflammation, oxidative stress, and the immune system. Other areas of research include the development of biomarkers for early detection and the use of advanced imaging techniques to monitor progression of the disease.

Overall, Alzheimer's disease is a complex and multifactorial disorder that poses significant challenges for individuals, families, and healthcare systems. However, with ongoing research and advances in medical technology, there is hope for improving diagnosis and treatment options in the future.

Examples of neoplasms, glandular and epithelial include:

* Adenomas: These are benign tumors that arise from glandular tissue. Examples include colon adenomas and prostate adenomas.
* Carcinomas: These are malignant tumors that arise from glandular or epithelial tissue. Examples include breast carcinoma, lung carcinoma, and ovarian carcinoma.
* Sarcomas: These are malignant tumors that arise from connective tissue. Examples include soft tissue sarcoma and bone sarcoma.

The diagnosis of neoplasms, glandular and epithelial is typically made through a combination of imaging tests such as X-rays, CT scans, MRI scans, and PET scans, along with a biopsy to confirm the presence of cancer cells. Treatment options for these types of neoplasms depend on the location, size, and stage of the tumor, but may include surgery, chemotherapy, radiation therapy, or a combination of these.

Overall, the term "neoplasms, glandular and epithelial" refers to a wide range of tumors that arise from glandular or epithelial tissue, and can be either benign or malignant. These types of neoplasms are common and can affect many different parts of the body.

There are two main types of hemolysis:

1. Intravascular hemolysis: This type occurs within the blood vessels and is caused by factors such as mechanical injury, oxidative stress, and certain infections.
2. Extravascular hemolysis: This type occurs outside the blood vessels and is caused by factors such as bone marrow disorders, splenic rupture, and certain medications.

Hemolytic anemia is a condition that occurs when there is excessive hemolysis of RBCs, leading to a decrease in the number of healthy red blood cells in the body. This can cause symptoms such as fatigue, weakness, pale skin, and shortness of breath.

Some common causes of hemolysis include:

1. Genetic disorders such as sickle cell anemia and thalassemia.
2. Autoimmune disorders such as autoimmune hemolytic anemia (AIHA).
3. Infections such as malaria, babesiosis, and toxoplasmosis.
4. Medications such as antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs), and blood thinners.
5. Bone marrow disorders such as aplastic anemia and myelofibrosis.
6. Splenic rupture or surgical removal of the spleen.
7. Mechanical injury to the blood vessels.

Diagnosis of hemolysis is based on a combination of physical examination, medical history, and laboratory tests such as complete blood count (CBC), blood smear examination, and direct Coombs test. Treatment depends on the underlying cause and may include supportive care, blood transfusions, and medications to suppress the immune system or prevent infection.

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.

What is a Chronic Disease?

A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:

1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke

Impact of Chronic Diseases

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.

Addressing Chronic Diseases

Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:

1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.

Conclusion

Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.

There are several subtypes of carcinoma, including:

1. Adenocarcinoma: This type of carcinoma originates in glandular cells, which produce fluids or mucus. Examples include breast cancer, prostate cancer, and colon cancer.
2. Squamous cell carcinoma: This type of carcinoma originates in squamous cells, which are found on the surface layers of skin and mucous membranes. Examples include head and neck cancers, cervical cancer, and anal cancer.
3. Basal cell carcinoma: This type of carcinoma originates in the deepest layer of skin, called the basal layer. It is the most common type of skin cancer and tends to grow slowly.
4. Neuroendocrine carcinoma: This type of carcinoma originates in cells that produce hormones and neurotransmitters. Examples include lung cancer, pancreatic cancer, and thyroid cancer.
5. Small cell carcinoma: This type of carcinoma is a highly aggressive form of lung cancer that spreads quickly to other parts of the body.

The signs and symptoms of carcinoma depend on the location and stage of the cancer. Some common symptoms include:

* A lump or mass
* Pain
* Skin changes, such as a new mole or a change in the color or texture of the skin
* Changes in bowel or bladder habits
* Abnormal bleeding

The diagnosis of carcinoma typically involves a combination of imaging tests, such as X-rays, CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a small sample of tissue for examination under a microscope. Treatment options for carcinoma depend on the location and stage of the cancer and may include surgery, radiation therapy, chemotherapy, or a combination of these.

In conclusion, carcinoma is a type of cancer that originates in epithelial cells and can occur in various parts of the body. Early detection and treatment are important for improving outcomes.

References:

1. American Cancer Society. (2022). Carcinoma. Retrieved from
2. Mayo Clinic. (2022). Carcinoma. Retrieved from
3. MedlinePlus. (2022). Carcinoma. Retrieved from

The symptoms of DMD typically become apparent in early childhood and progress rapidly. They include:

* Delayed motor development
* Weakness and wasting of muscles, particularly in the legs and pelvis
* Muscle weakness that worsens over time
* Loss of muscle mass and fatigue
* Difficulty walking, running, or standing
* Heart problems, such as cardiomyopathy and arrhythmias
* Respiratory difficulties, such as breathing problems and pneumonia

DMD is diagnosed through a combination of clinical evaluation, muscle biopsy, and genetic testing. Treatment options are limited and focus on managing symptoms and improving quality of life. These may include:

* Physical therapy to maintain muscle strength and function
* Medications to manage pain, spasms, and other symptoms
* Assistive devices, such as braces and wheelchairs, to improve mobility and independence
* Respiratory support, such as ventilation assistance, to manage breathing difficulties

The progression of DMD is highly variable, with some individuals experiencing a more rapid decline in muscle function than others. The average life expectancy for individuals with DMD is approximately 25-30 years, although some may live into their 40s or 50s with appropriate medical care and support.

Duchenne muscular dystrophy is a devastating and debilitating condition that affects thousands of individuals worldwide. While there is currently no cure for the disorder, ongoing research and advancements in gene therapy and other treatments offer hope for improving the lives of those affected by DMD.

Some common types of memory disorders include:

1. Amnesia: A condition where an individual experiences memory loss, either partial or total, due to brain damage or other causes.
2. Dementia: A broad term that describes a decline in cognitive function, including memory loss, confusion, and difficulty with communication and daily activities. Alzheimer's disease is the most common cause of dementia.
3. Mild Cognitive Impairment (MCI): A condition characterized by memory loss and other cognitive symptoms that are more severe than normal age-related changes but not as severe as dementia.
4. Attention Deficit Hyperactivity Disorder (ADHD): A neurodevelopmental disorder that affects attention, impulse control, and hyperactivity. Memory problems are often a component of ADHD.
5. Traumatic Brain Injury (TBI): A condition that occurs when the brain is injured due to a blow or jolt to the head, which can result in memory loss and other cognitive problems.
6. Stroke: A condition where blood flow to the brain is interrupted, leading to brain cell death and potential memory loss.
7. Meningitis: An inflammatory condition that affects the membranes covering the brain and spinal cord, which can lead to memory loss and other cognitive problems.
8. Encephalitis: An inflammatory condition that affects the brain directly, leading to memory loss and other cognitive problems.
9. Chronic Fatigue Syndrome (CFS): A condition characterized by persistent fatigue, memory loss, and other cognitive symptoms.
10. Sleep Disorders: Sleep disturbances can affect memory and cognitive function, including conditions such as insomnia, sleep apnea, and restless leg syndrome.

The diagnosis of memory disorders typically involves a combination of medical history, physical examination, laboratory tests, and neuropsychological evaluations. The specific treatment approach will depend on the underlying cause of the memory loss, but may include medication, behavioral interventions, and lifestyle changes.

Erythroleukemia typically affects adults in their 50s and 60s, although it can occur at any age. Symptoms may include fever, night sweats, weight loss, and fatigue. The cancer cells can spread to other parts of the body, including the spleen, liver, and lymph nodes.

Erythroleukemia is diagnosed through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment typically involves chemotherapy and/or radiation therapy to kill cancer cells and restore normal blood cell production. In some cases, a bone marrow transplant may be necessary. The prognosis for erythroleukemia is generally poor, with a five-year survival rate of about 20%.

Erythroleukemia is classified as an acute leukemia, meaning it progresses rapidly and can lead to life-threatening complications if left untreated. It is important for patients to receive prompt and appropriate treatment to improve their chances of survival and quality of life.

Symptoms of nephrocalcinosis may include nausea, vomiting, abdominal pain, frequent urination, and blood in the urine. Diagnosis is typically made through imaging tests such as X-rays, CT scans, or ultrasound, and blood tests to determine calcium levels and kidney function.

Treatment for nephrocalcinosis depends on the underlying cause of the condition and may include medications to lower calcium levels, dietary changes to reduce calcium intake, and in severe cases, dialysis or kidney transplantation may be necessary. It is important to seek medical attention if symptoms persist or worsen over time, as early detection and treatment can help prevent long-term damage to the kidneys.

Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.

Types of Neoplasms

There are many different types of neoplasms, including:

1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.

Causes and Risk Factors of Neoplasms

The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:

1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.

Signs and Symptoms of Neoplasms

The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:

1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.

Diagnosis and Treatment of Neoplasms

The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.

The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:

1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.

Prevention of Neoplasms

While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:

1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.

It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.

There are different types of myocardial infarctions, including:

1. ST-segment elevation myocardial infarction (STEMI): This is the most severe type of heart attack, where a large area of the heart muscle is damaged. It is characterized by a specific pattern on an electrocardiogram (ECG) called the ST segment.
2. Non-ST-segment elevation myocardial infarction (NSTEMI): This type of heart attack is less severe than STEMI, and the damage to the heart muscle may not be as extensive. It is characterized by a smaller area of damage or a different pattern on an ECG.
3. Incomplete myocardial infarction: This type of heart attack is when there is some damage to the heart muscle but not a complete blockage of blood flow.
4. Collateral circulation myocardial infarction: This type of heart attack occurs when there are existing collateral vessels that bypass the blocked coronary artery, which reduces the amount of damage to the heart muscle.

Symptoms of a myocardial infarction can include chest pain or discomfort, shortness of breath, lightheadedness, and fatigue. These symptoms may be accompanied by anxiety, fear, and a sense of impending doom. In some cases, there may be no noticeable symptoms at all.

Diagnosis of myocardial infarction is typically made based on a combination of physical examination findings, medical history, and diagnostic tests such as an electrocardiogram (ECG), cardiac enzyme tests, and imaging studies like echocardiography or cardiac magnetic resonance imaging.

Treatment of myocardial infarction usually involves medications to relieve pain, reduce the amount of work the heart has to do, and prevent further damage to the heart muscle. These may include aspirin, beta blockers, ACE inhibitors or angiotensin receptor blockers, and statins. In some cases, a procedure such as angioplasty or coronary artery bypass surgery may be necessary to restore blood flow to the affected area.

Prevention of myocardial infarction involves managing risk factors such as high blood pressure, high cholesterol, smoking, diabetes, and obesity. This can include lifestyle changes such as a healthy diet, regular exercise, and stress reduction, as well as medications to control these conditions. Early detection and treatment of heart disease can help prevent myocardial infarction from occurring in the first place.

The exact cause of HCM is not fully understood, but it is thought to be related to a combination of genetic and environmental factors. Some people with HCM have a family history of the condition, and it is also more common in certain populations such as athletes and individuals with a history of hypertension or diabetes.

Symptoms of HCM can vary from person to person and may include shortness of breath, fatigue, palpitations, and chest pain. In some cases, HCM may not cause any symptoms at all and may be detected only through a physical examination or diagnostic tests such as an echocardiogram or electrocardiogram (ECG).

Treatment for HCM typically focuses on managing symptoms and reducing the risk of complications. This may include medications to reduce blood pressure, control arrhythmias, or improve heart function, as well as lifestyle modifications such as regular exercise and a healthy diet. In some cases, surgery or other procedures may be necessary to treat HCM.

Prognosis for individuals with HCM varies depending on the severity of the condition and the presence of any complications. With appropriate treatment and management, many people with HCM can lead active and fulfilling lives, but it is important to receive regular monitoring and care from a healthcare provider to manage the condition effectively.

Syndactyly is caused by an abnormality during embryonic development, which can be hereditary or due to certain genetic syndromes. It is usually diagnosed at birth and may be detected on physical examination. Imaging studies such as ultrasound or MRI may also be used to confirm the diagnosis.

Treatment for syndactyly depends on the severity of the condition. In mild cases, no treatment may be necessary, while in more severe cases, surgery may be required to separate the joined digits. The goal of surgery is to improve hand or foot function and appearance.

Syndactyly can also occur as a part of other congenital conditions such as polydactyly (extra fingers or toes) or postaxial polydactyly (extra finger on the little finger side). In these cases, treatment may involve a combination of surgery and physical therapy to improve hand or foot function.

In summary, syndactyly is a congenital condition where two or more fingers or toes are joined together by a flap of skin, it can be mild or severe, and treatment may include surgery and/or physical therapy depending on the severity of the condition and other associated congenital conditions.

There are several types of ischemia, including:

1. Myocardial ischemia: Reduced blood flow to the heart muscle, which can lead to chest pain or a heart attack.
2. Cerebral ischemia: Reduced blood flow to the brain, which can lead to stroke or cognitive impairment.
3. Peripheral arterial ischemia: Reduced blood flow to the legs and arms.
4. Renal ischemia: Reduced blood flow to the kidneys.
5. Hepatic ischemia: Reduced blood flow to the liver.

Ischemia can be diagnosed through a variety of tests, including electrocardiograms (ECGs), stress tests, and imaging studies such as CT or MRI scans. Treatment for ischemia depends on the underlying cause and may include medications, lifestyle changes, or surgical interventions.

During ventricular remodeling, the heart muscle becomes thicker and less flexible, leading to a decrease in the heart's ability to fill with blood and pump it out to the body. This can lead to shortness of breath, fatigue, and swelling in the legs and feet.

Ventricular remodeling is a natural response to injury, but it can also be exacerbated by factors such as high blood pressure, diabetes, and obesity. Treatment for ventricular remodeling typically involves medications and lifestyle changes, such as exercise and a healthy diet, to help manage symptoms and slow the progression of the condition. In some cases, surgery or other procedures may be necessary to repair or replace damaged heart tissue.

The process of ventricular remodeling is complex and involves multiple cellular and molecular mechanisms. It is thought to be driven by a variety of factors, including changes in gene expression, inflammation, and the activity of various signaling pathways.

Overall, ventricular remodeling is an important condition that can have significant consequences for patients with heart disease. Understanding its causes and mechanisms is crucial for developing effective treatments and improving outcomes for those affected by this condition.

Hyperalgesia is often seen in people with chronic pain conditions, such as fibromyalgia, and it can also be a side effect of certain medications or medical procedures. Treatment options for hyperalgesia depend on the underlying cause of the condition, but may include pain management techniques, physical therapy, and medication adjustments.

In clinical settings, hyperalgesia is often assessed using a pinprick test or other pain tolerance tests to determine the patient's sensitivity to different types of stimuli. The goal of treatment is to reduce the patient's pain and improve their quality of life.

LVH can lead to a number of complications, including:

1. Heart failure: The enlarged left ventricle can become less efficient at pumping blood throughout the body, leading to heart failure.
2. Arrhythmias: The abnormal electrical activity in the heart can lead to irregular heart rhythms.
3. Sudden cardiac death: In some cases, LVH can increase the risk of sudden cardiac death.
4. Atrial fibrillation: The enlarged left atrium can lead to atrial fibrillation, a common type of arrhythmia.
5. Mitral regurgitation: The enlargement of the left ventricle can cause the mitral valve to become incompetent, leading to mitral regurgitation.
6. Heart valve problems: The enlarged left ventricle can lead to heart valve problems, such as mitral regurgitation or aortic stenosis.
7. Coronary artery disease: LVH can increase the risk of coronary artery disease, which can lead to a heart attack.
8. Pulmonary hypertension: The enlarged left ventricle can lead to pulmonary hypertension, which can further strain the heart and increase the risk of complications.

Evaluation of LVH typically involves a physical examination, medical history, electrocardiogram (ECG), echocardiography, and other diagnostic tests such as stress test or cardiac MRI. Treatment options for LVH depend on the underlying cause and may include medications, lifestyle changes, and in some cases, surgery or other interventions.

There are several types of disease susceptibility, including:

1. Genetic predisposition: This refers to the inherent tendency of an individual to develop a particular disease due to their genetic makeup. For example, some families may have a higher risk of developing certain diseases such as cancer or heart disease due to inherited genetic mutations.
2. Environmental susceptibility: This refers to the increased risk of developing a disease due to exposure to environmental factors such as pollutants, toxins, or infectious agents. For example, someone who lives in an area with high levels of air pollution may be more susceptible to developing respiratory problems.
3. Lifestyle susceptibility: This refers to the increased risk of developing a disease due to unhealthy lifestyle choices such as smoking, lack of exercise, or poor diet. For example, someone who smokes and is overweight may be more susceptible to developing heart disease or lung cancer.
4. Immune system susceptibility: This refers to the increased risk of developing a disease due to an impaired immune system. For example, people with autoimmune disorders such as HIV/AIDS or rheumatoid arthritis may be more susceptible to opportunistic infections.

Understanding disease susceptibility can help healthcare providers identify individuals who are at risk of developing certain diseases and provide preventive measures or early intervention to reduce the risk of disease progression. Additionally, genetic testing can help identify individuals with a high risk of developing certain diseases, allowing for earlier diagnosis and treatment.

In summary, disease susceptibility refers to the predisposition of an individual to develop a particular disease or condition due to various factors such as genetics, environment, lifestyle choices, and immune system function. Understanding disease susceptibility can help healthcare providers identify individuals at risk and provide appropriate preventive measures or early intervention to reduce the risk of disease progression.

There are several types of Urinary Bladder Calculi, including:

1. Calcium Oxalate Stones: These are the most common type of bladder stone and are formed from a combination of calcium and oxalate. They can occur in people with conditions such as kidney disease, gout, or inflammatory bowel disease.
2. Uric Acid Stones: These stones are formed from uric acid, a waste product that is normally present in the urine. They can occur in people with conditions such as gout, diabetes, or certain types of cancer.
3. Cystine Stones: These stones are formed from cystine, an amino acid that is present in small amounts in the body. They can occur in people with conditions such as cystinuria, a genetic disorder that affects the transport of cystine and other amino acids in the kidneys.
4. Struvite Stones: These stones are formed from a combination of magnesium, ammonium, and phosphate, and can occur in people with urinary tract infections.

The symptoms of Urinary Bladder Calculi can vary depending on the size and location of the stone, but may include:

1. Severe pain in the lower abdomen or back
2. Frequent urination or a strong, persistent urge to urinate
3. Blood in the urine
4. Cloudy or strong-smelling urine
5. Fever and chills
6. Nausea and vomiting

If you suspect that you have Urinary Bladder Calculi, it is important to seek medical attention as soon as possible. Your healthcare provider may perform a physical examination, take a medical history, and order diagnostic tests such as a urinalysis, imaging studies (such as X-rays or CT scans), or a cystoscopy (a procedure that uses a thin, flexible tube with a camera on the end to examine the inside of the bladder) to confirm the diagnosis and determine the appropriate treatment.

Treatment for Urinary Bladder Calculi may include:

1. Drinking plenty of water to help flush out small stones
2. Medications such as alpha-blockers or potassium citrate to help dissolve larger stones
3. Ureteroscopy, a minimally invasive procedure in which a small, flexible scope is used to remove the stone
4. Lithotripsy, a procedure that uses shock waves to break up larger stones into smaller pieces that can be passed more easily
5. Catheterization, a procedure in which a thin tube is placed through the urethra and bladder to drain urine and flush out small stones
6. Surgery, such as open or laparoscopic surgery, to remove larger stones or repair any damage to the urinary tract.

In some cases, Urinary Bladder Calculi may recur, so it is important to follow up with your healthcare provider regularly to monitor for any new stones or complications.

The causes of colorectal neoplasms are not fully understood, but factors such as age, genetics, diet, and lifestyle have been implicated. Symptoms of colorectal cancer can include changes in bowel habits, blood in the stool, abdominal pain, and weight loss. Screening for colorectal cancer is recommended for adults over the age of 50, as it can help detect early-stage tumors and improve survival rates.

There are several subtypes of colorectal neoplasms, including adenomas (which are precancerous polyps), carcinomas (which are malignant tumors), and lymphomas (which are cancers of the immune system). Treatment options for colorectal cancer depend on the stage and location of the tumor, but may include surgery, chemotherapy, radiation therapy, or a combination of these.

Research into the causes and treatment of colorectal neoplasms is ongoing, and there has been significant progress in recent years. Advances in screening and treatment have improved survival rates for patients with colorectal cancer, and there is hope that continued research will lead to even more effective treatments in the future.

There are several types of ataxia, each with different symptoms and causes. Some common forms of ataxia include:

1. Spinocerebellar ataxia (SCA): This is the most common form of ataxia and is caused by a degeneration of the cerebellum and spinal cord. It can cause progressive weakness, loss of coordination, and difficulty with speaking and swallowing.
2. Friedreich's ataxia: This is the second most common form of ataxia and is caused by a deficiency of vitamin E in the body. It can cause weakness in the legs, difficulty walking, and problems with speech and language.
3. Ataxia-telangiectasia (AT): This is a rare form of ataxia that is caused by a gene mutation. It can cause progressive weakness, loss of coordination, and an increased risk of developing cancer.
4. Acute cerebellar ataxia: This is a sudden and temporary form of ataxia that can be caused by a variety of factors such as infections, injuries, or certain medications.
5. Drug-induced ataxia: Certain medications can cause ataxia as a side effect.
6. Vitamin deficiency ataxia: Deficiencies in vitamins such as vitamin B12 or folate can cause ataxia.
7. Metabolic disorders: Certain metabolic disorders such as hypothyroidism, hyperthyroidism, and hypoglycemia can cause ataxia.
8. Stroke or brain injury: Ataxia can be a result of a stroke or brain injury.
9. Multiple system atrophy (MSA): This is a rare progressive neurodegenerative disorder that can cause ataxia, parkinsonism, and autonomic dysfunction.
10. Spinocerebellar ataxia (SCA): This is a group of rare genetic disorders that can cause progressive cerebellar ataxia, muscle wasting, and other signs and symptoms.

It's important to note that this is not an exhaustive list and there may be other causes of ataxia not mentioned here. If you suspect you or someone you know may have ataxia, it is important to consult a healthcare professional for proper diagnosis and treatment.

The term "nemaline" refers to the rod-like structures that are found in the muscle fibers of people with this condition. These structures are composed of abnormally folded myofibrils (the basic units of muscle tissue) and are thought to be caused by faulty protein synthesis or degradation.

Nemaline myopathy can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner, depending on the specific mutations that cause the condition. The disorder is usually diagnosed through muscle biopsy and genetic testing. Treatment options are limited and may include physical therapy, bracing, and medications to manage symptoms such as muscle spasms and weakness.

The progression of nemaline myopathy can vary widely among individuals, with some experiencing mild symptoms while others may have more severe muscle weakness and wasting. In some cases, the disorder may be associated with other medical conditions such as intellectual disability, seizures, or congenital anomalies.

The exact prevalence of nemaline myopathy is not known, but it is estimated to affect approximately 1 in 50,000 to 1 in 100,000 individuals worldwide. The disorder can occur at any age, but most cases are diagnosed in infancy or childhood. With advances in medical technology and ongoing research, there is hope for improved treatment options and management strategies for nemaline myopathy in the future.

Examples of inborn errors of renal tubular transport include:

1. Cystinuria: This is a disorder that affects the reabsorption of cystine, an amino acid, in the renal tubules. It can lead to the formation of cystine stones in the kidneys.
2. Lowe syndrome: This is a rare genetic disorder that affects the transport of sodium and potassium ions across the renal tubules. It can cause a range of symptoms, including delayed development, intellectual disability, and seizures.
3. Glycine encephalopathy: This is a rare genetic disorder that affects the transport of glycine, an amino acid, across the renal tubules. It can cause a range of symptoms, including muscle weakness, developmental delays, and seizures.
4. Hartnup disease: This is a rare genetic disorder that affects the transport of tryptophan, an amino acid, across the renal tubules. It can cause a range of symptoms, including diarrhea, weight loss, and skin lesions.
5. Maple syrup urine disease: This is a rare genetic disorder that affects the transport of branched-chain amino acids (leucine, isoleucine, and valine) across the renal tubules. It can cause a range of symptoms, including seizures, developmental delays, and kidney damage.

Inborn errors of renal tubular transport can be diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment depends on the specific disorder and may include dietary modifications, medications, and dialysis. Early detection and treatment can help manage symptoms and prevent complications.

There are two types of heart arrest:

1. Asystole - This is when the heart stops functioning completely and there is no electrical activity in the heart.
2. Pulseless ventricular tachycardia or fibrillation - This is when the heart is still functioning but there is no pulse and the rhythm is abnormal.

Heart arrest can be diagnosed through various tests such as electrocardiogram (ECG), blood tests, and echocardiography. Treatment options for heart arrest include cardiopulmonary resuscitation (CPR), defibrillation, and medications to restore a normal heart rhythm.

In severe cases of heart arrest, the patient may require advanced life support measures such as mechanical ventilation and cardiac support devices. The prognosis for heart arrest is generally poor, especially if it is not treated promptly and effectively. However, with proper treatment and support, some patients can recover and regain normal heart function.

Disease progression can be classified into several types based on the pattern of worsening:

1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.

Disease progression can be influenced by various factors, including:

1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.

Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.

1. Muscular dystrophy: A group of genetic disorders characterized by progressive muscle weakness and degeneration.
2. Myopathy: A condition where the muscles become damaged or diseased, leading to muscle weakness and wasting.
3. Fibromyalgia: A chronic condition characterized by widespread pain, fatigue, and muscle stiffness.
4. Rhabdomyolysis: A condition where the muscle tissue is damaged, leading to the release of myoglobin into the bloodstream and potentially causing kidney damage.
5. Polymyositis/dermatomyositis: Inflammatory conditions that affect the muscles and skin.
6. Muscle strain: A common injury caused by overstretching or tearing of muscle fibers.
7. Cervical dystonia: A movement disorder characterized by involuntary contractions of the neck muscles.
8. Myasthenia gravis: An autoimmune disorder that affects the nerve-muscle connection, leading to muscle weakness and fatigue.
9. Oculopharyngeal myopathy: A condition characterized by weakness of the muscles used for swallowing and eye movements.
10. Inclusion body myositis: An inflammatory condition that affects the muscles, leading to progressive muscle weakness and wasting.

These are just a few examples of the many different types of muscular diseases that can affect individuals. Each condition has its unique set of symptoms, causes, and treatment options. It's important for individuals experiencing muscle weakness or wasting to seek medical attention to receive an accurate diagnosis and appropriate care.

The diagnosis of absence epilepsy is typically made based on a combination of clinical findings, including:
-A history of recurrent brief loss of awareness or staring spells
-Normal neurological examination between episodes
-Abnormal EEG activity during seizures (spikes or sharp waves)

Treatment for absence epilepsy usually involves medication, such as ethosuximide, valproic acid, or lamotrigine. In some cases, surgery may be considered if medications are ineffective or have significant side effects.

It is important to note that absence epilepsy can be a challenging condition to diagnose and treat, as the spells can be difficult to distinguish from other conditions such as daydreaming or attention deficit hyperactivity disorder (ADHD).

There are many different types of heart diseases, including:

1. Coronary artery disease: The buildup of plaque in the coronary arteries, which supply blood to the heart muscle, leading to chest pain or a heart attack.
2. Heart failure: When the heart is unable to pump enough blood to meet the body's needs, leading to fatigue, shortness of breath, and swelling in the legs.
3. Arrhythmias: Abnormal heart rhythms, such as atrial fibrillation or ventricular tachycardia, which can cause palpitations, dizziness, and shortness of breath.
4. Heart valve disease: Problems with the heart valves, which can lead to blood leaking back into the chambers or not being pumped effectively.
5. Cardiomyopathy: Disease of the heart muscle, which can lead to weakened heart function and heart failure.
6. Heart murmurs: Abnormal sounds heard during a heartbeat, which can be caused by defects in the heart valves or abnormal blood flow.
7. Congenital heart disease: Heart defects present at birth, such as holes in the heart or abnormal blood vessels.
8. Myocardial infarction (heart attack): Damage to the heart muscle due to a lack of oxygen, often caused by a blockage in a coronary artery.
9. Cardiac tamponade: Fluid accumulation around the heart, which can cause compression of the heart and lead to cardiac arrest.
10. Endocarditis: Infection of the inner lining of the heart, which can cause fever, fatigue, and heart valve damage.

Heart diseases can be diagnosed through various tests such as electrocardiogram (ECG), echocardiogram, stress test, and blood tests. Treatment options depend on the specific condition and may include lifestyle changes, medication, surgery, or a combination of these.

Some common symptoms of respiratory acidosis include:

* Rapid breathing rate
* Shallow breathing
* Fatigue
* Confusion or disorientation
* Headaches
* Muscle weakness
* Numbness or tingling in the hands and feet

If left untreated, respiratory acidosis can lead to serious complications such as seizures, coma, and even death. Treatment typically involves addressing the underlying cause of the condition, such as surgery for a weakened diaphragm or other breathing muscles, or using mechanical ventilation if necessary.

It is important to seek medical attention if you experience any symptoms of respiratory acidosis, as early diagnosis and treatment can help prevent complications and improve outcomes.

There are several different types of pain, including:

1. Acute pain: This type of pain is sudden and severe, and it usually lasts for a short period of time. It can be caused by injuries, surgery, or other forms of tissue damage.
2. Chronic pain: This type of pain persists over a long period of time, often lasting more than 3 months. It can be caused by conditions such as arthritis, fibromyalgia, or nerve damage.
3. Neuropathic pain: This type of pain results from damage to the nervous system, and it can be characterized by burning, shooting, or stabbing sensations.
4. Visceral pain: This type of pain originates in the internal organs, and it can be difficult to localize.
5. Psychogenic pain: This type of pain is caused by psychological factors such as stress, anxiety, or depression.

The medical field uses a range of methods to assess and manage pain, including:

1. Pain rating scales: These are numerical scales that patients use to rate the intensity of their pain.
2. Pain diaries: These are records that patients keep to track their pain over time.
3. Clinical interviews: Healthcare providers use these to gather information about the patient's pain experience and other relevant symptoms.
4. Physical examination: This can help healthcare providers identify any underlying causes of pain, such as injuries or inflammation.
5. Imaging studies: These can be used to visualize the body and identify any structural abnormalities that may be contributing to the patient's pain.
6. Medications: There are a wide range of medications available to treat pain, including analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs), and muscle relaxants.
7. Alternative therapies: These can include acupuncture, massage, and physical therapy.
8. Interventional procedures: These are minimally invasive procedures that can be used to treat pain, such as nerve blocks and spinal cord stimulation.

It is important for healthcare providers to approach pain management with a multi-modal approach, using a combination of these methods to address the physical, emotional, and social aspects of pain. By doing so, they can help improve the patient's quality of life and reduce their suffering.

The main difference between primary hyperparathyroidism (HPT) and secondary HPT is the underlying cause of the disorder. In primary HPT, the overactive parathyroid glands are due to a genetic mutation or an autoimmune response, while in secondary HPT, the overactivity is caused by another condition or medication that affects vitamin D levels.

The symptoms of SHPT are similar to those of primary HPT and may include:

* Bone pain or weakness
* Osteoporosis or osteopenia
* Kidney stones or other kidney problems
* High blood pressure
* Headaches
* Fatigue
* Nausea or vomiting
* Increased urination

SHPT can be diagnosed with a combination of physical examination, laboratory tests, and imaging studies such as ultrasound or CT scans. Treatment typically involves addressing the underlying cause of the condition and replacing vitamin D deficiency with supplements. In some cases, surgery may be necessary to remove part or all of the parathyroid glands.

While SHPT is rare, it is important for healthcare providers to be aware of this condition in patients who present with symptoms suggestive of HPT but have normal imaging studies and no family history of the condition. Early diagnosis and treatment can help prevent complications and improve quality of life for affected individuals.

In summary, secondary hyperparathyroidism is a rare endocrine disorder caused by a deficiency in vitamin D that leads to overactive parathyroid glands and an imbalance in calcium levels. It can cause a range of symptoms, including bone pain, osteoporosis, high blood pressure, and kidney problems. Treatment involves addressing the underlying cause of the condition and replacing vitamin D deficiency with supplements. Early diagnosis and treatment can help prevent complications and improve quality of life for affected individuals.

* Heart block: A condition where the electrical signals that control the heart's rhythm are blocked or delayed, leading to a slow heart rate.
* Sinus node dysfunction: A condition where the sinus node, which is responsible for setting the heart's rhythm, is not functioning properly, leading to a slow heart rate.
* Medications: Certain medications, such as beta blockers, can slow down the heart rate.
* Heart failure: In severe cases of heart failure, the heart may become so weak that it cannot pump blood effectively, leading to a slow heart rate.
* Electrolyte imbalance: An imbalance of electrolytes, such as potassium or magnesium, can affect the heart's ability to function properly and cause a slow heart rate.
* Other medical conditions: Certain medical conditions, such as hypothyroidism (an underactive thyroid) or anemia, can cause bradycardia.

Bradycardia can cause symptoms such as:

* Fatigue
* Weakness
* Dizziness or lightheadedness
* Shortness of breath
* Chest pain or discomfort

In some cases, bradycardia may not cause any noticeable symptoms at all.

If you suspect you have bradycardia, it is important to consult with a healthcare professional for proper diagnosis and treatment. They may perform tests such as an electrocardiogram (ECG) or stress test to determine the cause of your slow heart rate and develop an appropriate treatment plan. Treatment options for bradycardia may include:

* Medications: Such as atropine or digoxin, to increase the heart rate.
* Pacemakers: A small device that is implanted in the chest to help regulate the heart's rhythm and increase the heart rate.
* Cardiac resynchronization therapy (CRT): A procedure that involves implanting a device that helps both ventricles of the heart beat together, improving the heart's pumping function.

It is important to note that bradycardia can be a symptom of an underlying condition, so it is important to address the underlying cause in order to effectively treat the bradycardia.

The effects of hypoxia-ischemia on the brain can vary depending on the severity and duration of the insult, but may include:

* Cellular damage and death
* Inflammation and oxidative stress
* Neurotransmitter imbalances
* Blood-brain barrier disruption
* White matter degeneration

The long-term consequences of hypoxia-ischemia, brain may include cognitive impairments such as memory loss, attention deficits, and language difficulties. Behavioral changes, such as depression, anxiety, and mood swings, may also occur. In severe cases, the condition can lead to permanent vegetative state or death.

The diagnosis of hypoxia-ischemia, brain is based on a combination of clinical evaluation, laboratory tests, and imaging studies such as CT or MRI scans. Treatment options may include supportive care, medications, and rehabilitation therapies to address cognitive and behavioral impairments. In some cases, surgical interventions may be necessary to relieve pressure or restore blood flow to the affected areas.

Overall, hypoxia-ischemia, brain is a serious medical condition that requires prompt recognition and appropriate treatment to minimize long-term cognitive and functional impairments.

Gliosis is made up of glial cells, which are non-neuronal cells that provide support and protection to neurons. When neural tissue is damaged, glial cells proliferate and form a scar-like tissue to fill in the gap and repair the damage. This scar tissue can be made up of astrocytes, oligodendrocytes, or microglia, depending on the type of injury and the location of the damage.

Gliosis can have both beneficial and harmful effects on the brain. On one hand, it can help to prevent further damage by providing a physical barrier against invading substances and protecting the surrounding neural tissue. It can also promote healing by bringing in immune cells and growth factors that aid in the repair process.

On the other hand, gliosis can also have negative effects on brain function. The scar tissue can disrupt normal communication between neurons, leading to impaired cognitive and motor function. In addition, if the scar tissue is too extensive or severe, it can compress or displaces surrounding neural tissue, leading to long-term neurological deficits or even death.

There are several ways to diagnose gliosis, including magnetic resonance imaging (MRI), positron emission tomography (PET), and histopathology. Treatment options for gliosis depend on the underlying cause of the condition and can include medications, surgery, or a combination of both.

In summary, gliosis is a type of scar tissue that forms in the brain and spinal cord as a result of damage to neural tissue. It can have both beneficial and harmful effects on brain function, and diagnosis and treatment options vary depending on the underlying cause of the condition.

Migraine with aura is considered to be a more severe form of migraine than migraine without aura, which does not have the same neurological symptoms before the headache. Migraine with aura is also associated with a higher risk of other health problems, such as stroke and dementia.

There are several treatments available for migraine with aura, including medications that can help to reduce the frequency and severity of the headaches, as well as lifestyle changes such as avoiding triggers and getting regular exercise. It is important for people who experience migraine with aura to work closely with their healthcare provider to develop an effective treatment plan.

There are several types of colonic neoplasms, including:

1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.

Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.

Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.

There are several key features of inflammation:

1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.

Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.

There are several types of inflammation, including:

1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.

There are several ways to reduce inflammation, including:

1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.

It's important to note that chronic inflammation can lead to a range of health problems, including:

1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.

Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.

There are several risk factors for developing AF, including:

1. Age: The risk of developing AF increases with age, with the majority of cases occurring in people over the age of 65.
2. Hypertension (high blood pressure): High blood pressure can damage the heart and increase the risk of developing AF.
3. Heart disease: People with heart disease, such as coronary artery disease or heart failure, are at higher risk of developing AF.
4. Diabetes mellitus: Diabetes can increase the risk of developing AF.
5. Sleep apnea: Sleep apnea can increase the risk of developing AF.
6. Certain medications: Certain medications, such as thyroid medications and asthma medications, can increase the risk of developing AF.
7. Alcohol consumption: Excessive alcohol consumption has been linked to an increased risk of developing AF.
8. Smoking: Smoking is a risk factor for many cardiovascular conditions, including AF.
9. Obesity: Obesity is a risk factor for many cardiovascular conditions, including AF.

Symptoms of AF can include:

1. Palpitations (rapid or irregular heartbeat)
2. Shortness of breath
3. Fatigue
4. Dizziness or lightheadedness
5. Chest pain or discomfort

AF can be diagnosed with the help of several tests, including:

1. Electrocardiogram (ECG): This is a non-invasive test that measures the electrical activity of the heart.
2. Holter monitor: This is a portable device that records the heart's rhythm over a 24-hour period.
3. Event monitor: This is a portable device that records the heart's rhythm over a longer period of time, usually 1-2 weeks.
4. Echocardiogram: This is an imaging test that uses sound waves to create pictures of the heart.
5. Cardiac MRI: This is an imaging test that uses magnetic fields and radio waves to create detailed pictures of the heart.

Treatment for AF depends on the underlying cause and may include medications, such as:

1. Beta blockers: These medications slow the heart rate and reduce the force of the heart's contractions.
2. Antiarrhythmics: These medications help regulate the heart's rhythm.
3. Blood thinners: These medications prevent blood clots from forming and can help reduce the risk of stroke.
4. Calcium channel blockers: These medications slow the entry of calcium into the heart muscle cells, which can help slow the heart rate and reduce the force of the heart's contractions.

In some cases, catheter ablation may be recommended to destroy the abnormal electrical pathway causing AF. This is a minimally invasive procedure that involves inserting a catheter through a vein in the leg and guiding it to the heart using x-ray imaging. Once the catheter is in place, energy is applied to the abnormal electrical pathway to destroy it and restore a normal heart rhythm.

It's important to note that AF can increase the risk of stroke, so anticoagulation therapy may be recommended to reduce this risk. This can include medications such as warfarin or aspirin, or in some cases, implantable devices such as a left atrial appendage closure device.

In conclusion, atrial fibrillation is a common heart rhythm disorder that can increase the risk of stroke and heart failure. Treatment options depend on the underlying cause and may include medications, cardioversion, catheter ablation, or anticoagulation therapy. It's important to work closely with a healthcare provider to determine the best course of treatment for AF.

Some common examples of digestive system diseases include:

1. Irritable Bowel Syndrome (IBS): This is a chronic condition characterized by abdominal pain, bloating, and changes in bowel habits such as constipation or diarrhea.
2. Inflammatory Bowel Disease (IBD): This includes conditions such as Crohn's disease and ulcerative colitis, which cause chronic inflammation in the digestive tract.
3. Gastroesophageal Reflux Disease (GERD): This is a condition where stomach acid flows back up into the esophagus, causing heartburn and other symptoms.
4. Peptic Ulcer: This is a sore on the lining of the stomach or duodenum (the first part of the small intestine) that can cause pain, nausea, and vomiting.
5. Diverticulosis: This is a condition where small pouches form in the wall of the colon, which can become inflamed and cause symptoms such as abdominal pain and changes in bowel habits.
6. Constipation: This is a common condition where the stool is hard and difficult to pass, which can be caused by a variety of factors such as poor diet, dehydration, or certain medications.
7. Diabetes: This is a chronic condition that affects how the body regulates blood sugar levels, which can also affect the digestive system and cause symptoms such as nausea, vomiting, and abdominal pain.
8. Celiac Disease: This is an autoimmune disorder where the immune system reacts to gluten, a protein found in wheat, barley, and rye, causing inflammation and damage to the small intestine.
9. Lipidosis: This is a condition where there is an abnormal accumulation of fat in the body, which can cause symptoms such as abdominal pain, nausea, and vomiting.
10. Sarcoidosis: This is a chronic inflammatory disease that can affect various organs in the body, including the digestive system, causing symptoms such as abdominal pain, diarrhea, and weight loss.

It's important to note that this list is not exhaustive and there are many other conditions that can cause abdominal pain. If you are experiencing persistent or severe abdominal pain, it's important to seek medical attention to determine the underlying cause and receive proper treatment.

In Vfib, the electrical activity of the heart becomes disorganized, leading to a fibrillatory pattern of contraction. This means that the ventricles are contracting in a rapid, unsynchronized manner, rather than the coordinated, synchronized contractions that occur in normal heart function.

Vfib can be caused by a variety of factors, including coronary artery disease, heart attack, cardiomyopathy, and electrolyte imbalances. It can also be triggered by certain medications, such as digoxin, or by electrical shocks to the heart.

Symptoms of Vfib include palpitations, shortness of breath, chest pain, and loss of consciousness. If not treated promptly, Vfib can lead to cardiac arrest and death.

Treatment of Vfib typically involves electrical cardioversion, which involves delivering an electric shock to the heart to restore a normal heart rhythm. In some cases, medications may also be used to help regulate the heart rhythm. In more severe cases, surgery or other interventions may be necessary to address any underlying causes of Vfib.

Overall, ventricular fibrillation is a serious medical condition that requires prompt treatment to prevent complications and ensure effective cardiac function.

There are several types of tachycardia, including:

1. Sinus tachycardia: This is the most common type and is caused by an increase in the rate of the normal sinus node. It is often seen in response to physical activity or stress.
2. Atrial fibrillation: This is a type of arrhythmia where the heart's upper chambers (atria) contract irregularly and rapidly, leading to a rapid heart rate.
3. Ventricular tachycardia: This is a type of arrhythmia where the heart's lower chambers (ventricles) contract rapidly, often with a rate above 100 bpm.
4. Premature ventricular contractions (PVCs): These are early or extra beats that originate in the ventricles, causing a rapid heart rate.

Tachycardia can cause a range of symptoms, including palpitations, shortness of breath, chest pain, and dizziness. In severe cases, it can lead to cardiac arrhythmias, heart failure, and even death.

Diagnosis of tachycardia typically involves a physical examination, electrocardiogram (ECG), and other tests such as stress tests or echocardiography. Treatment options vary depending on the underlying cause, but may include medications to regulate the heart rate, cardioversion to restore a normal heart rhythm, or in severe cases, implantation of a pacemaker or defibrillator.

Example Sentence: The patient was diagnosed with pulmonary hypertension and began treatment with medication to lower her blood pressure and improve her symptoms.

Word class: Noun phrase / medical condition

Symptoms of cystic fibrosis can vary from person to person, but may include:

* Persistent coughing and wheezing
* Thick, sticky mucus that clogs airways and can lead to respiratory infections
* Difficulty gaining weight or growing at the expected rate
* Intestinal blockages or digestive problems
* Fatty stools
* Nausea and vomiting
* Diarrhea
* Rectal prolapse
* Increased risk of liver disease and respiratory failure

Cystic fibrosis is usually diagnosed in infancy, and treatment typically includes a combination of medications, respiratory therapy, and other supportive care. Management of the disease focuses on controlling symptoms, preventing complications, and improving quality of life. With proper treatment and care, many people with cystic fibrosis can lead long, fulfilling lives.

In summary, cystic fibrosis is a genetic disorder that affects the respiratory, digestive, and reproductive systems, causing thick and sticky mucus to build up in these organs, leading to serious health problems. It can be diagnosed in infancy and managed with a combination of medications, respiratory therapy, and other supportive care.

The most common cause of hyperthyroidism is an autoimmune disorder called Graves' disease, which causes the thyroid gland to produce too much thyroxine (T4) and triiodothyronine (T3). Other causes include inflammation of the thyroid gland (thyroiditis), thyroid nodules, and certain medications.

Symptoms of hyperthyroidism can vary depending on the severity of the condition, but may include:

* Rapid weight loss
* Nervousness or irritability
* Increased heart rate
* Heat intolerance
* Changes in menstrual cycle
* Fatigue
* Muscle weakness
* tremors

If left untreated, hyperthyroidism can lead to more serious complications such as heart problems, bone loss, and eye problems. Treatment options for hyperthyroidism include medications to reduce hormone production, radioactive iodine therapy to destroy part of the thyroid gland, and surgery to remove part or all of the thyroid gland.

In pregnant women, untreated hyperthyroidism can increase the risk of miscarriage, preterm labor, and intellectual disability in the baby. Treatment options for pregnant women with hyperthyroidism are similar to those for non-pregnant adults, but may need to be adjusted to avoid harm to the developing fetus.

It is important for individuals suspected of having hyperthyroidism to seek medical attention as soon as possible to receive proper diagnosis and treatment. Early treatment can help prevent complications and improve quality of life.

There are several types of biliary tract diseases, including:

1. Gallstones: Small, pebble-like deposits that form in the gallbladder and can cause pain and blockages.
2. Cholangitis: An infection of the bile ducts that can cause fever, chills, and abdominal pain.
3. Biliary cirrhosis: Scarring of the liver and bile ducts that can lead to liver failure.
4. Pancreatitis: Inflammation of the pancreas that can cause abdominal pain and digestive problems.
5. Cancer of the biliary tract: Cancer that affects the liver, gallbladder, or bile ducts.

Biliary tract diseases can be caused by a variety of factors, including genetics, obesity, alcohol consumption, and certain medications. Diagnosis is typically made through a combination of imaging tests, such as CT scans and endoscopic ultrasound, and laboratory tests, such as blood tests and liver function tests.

Treatment for biliary tract diseases depends on the underlying cause and severity of the condition. In some cases, treatment may involve medications to dissolve gallstones or treat infections. In more severe cases, surgery may be necessary to remove the gallbladder or repair damaged bile ducts.

Prevention is key in avoiding biliary tract diseases, and this includes maintaining a healthy diet and lifestyle, managing risk factors such as obesity and alcohol consumption, and getting regular medical check-ups. Early detection and treatment of biliary tract diseases can help to improve outcomes and reduce the risk of complications.

There are several causes of pancreatitis, including:

1. Gallstones: These can block the pancreatic duct, causing inflammation.
2. Alcohol consumption: Heavy alcohol use can damage the pancreas and lead to inflammation.
3. High triglycerides: Elevated levels of triglycerides in the blood can cause pancreatitis.
4. Infections: Viral or bacterial infections can infect the pancreas and cause inflammation.
5. Genetic factors: Some people may be more susceptible to pancreatitis due to inherited genetic mutations.
6. Pancreatic trauma: Physical injury to the pancreas can cause inflammation.
7. Certain medications: Some medications, such as certain antibiotics and chemotherapy drugs, can cause pancreatitis as a side effect.

Symptoms of pancreatitis may include:

1. Abdominal pain
2. Nausea and vomiting
3. Fever
4. Diarrhea or bloating
5. Weight loss
6. Loss of appetite

Treatment for pancreatitis depends on the underlying cause and the severity of the condition. In some cases, hospitalization may be necessary to manage symptoms and address any complications. Treatment options may include:

1. Pain management: Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs) or opioids may be used to manage abdominal pain.
2. Fluid replacement: Intravenous fluids may be given to replace lost fluids and electrolytes.
3. Antibiotics: If the pancreatitis is caused by an infection, antibiotics may be prescribed to treat the infection.
4. Nutritional support: Patients with pancreatitis may require nutritional support to ensure they are getting enough calories and nutrients.
5. Pancreatic enzyme replacement therapy: In some cases, pancreatic enzyme replacement therapy may be necessary to help the body digest food.
6. Surgery: In severe cases of pancreatitis, surgery may be necessary to remove damaged tissue or repair damaged blood vessels.

It is important to seek medical attention if you experience persistent abdominal pain or other symptoms of pancreatitis, as early treatment can help prevent complications and improve outcomes.

There are several different types of brain injuries that can occur, including:

1. Concussions: A concussion is a type of mild traumatic brain injury that occurs when the brain is jolted or shaken, often due to a blow to the head.
2. Contusions: A contusion is a bruise on the brain that can occur when the brain is struck by an object, such as during a car accident.
3. Coup-contrecoup injuries: This type of injury occurs when the brain is injured as a result of the force of the body striking another object, such as during a fall.
4. Penetrating injuries: A penetrating injury occurs when an object pierces the brain, such as during a gunshot wound or stab injury.
5. Blast injuries: This type of injury occurs when the brain is exposed to a sudden and explosive force, such as during a bombing.

The symptoms of brain injuries can vary depending on the severity of the injury and the location of the damage in the brain. Some common symptoms include:

* Headaches
* Dizziness or loss of balance
* Confusion or disorientation
* Memory loss or difficulty with concentration
* Slurred speech or difficulty with communication
* Vision problems, such as blurred vision or double vision
* Sleep disturbances
* Mood changes, such as irritability or depression
* Personality changes
* Difficulty with coordination and balance

In some cases, brain injuries can be treated with medication, physical therapy, and other forms of rehabilitation. However, in more severe cases, the damage may be permanent and long-lasting. It is important to seek medical attention immediately if symptoms persist or worsen over time.

The symptoms of RVH can include shortness of breath, fatigue, swelling in the legs and feet, and chest pain. If left untreated, RVH can lead to heart failure and other complications.

RVH is typically diagnosed through a physical examination, medical history, and diagnostic tests such as electrocardiogram (ECG), echocardiogram, and right heart catheterization. Treatment options for RVH depend on the underlying cause of the condition, but may include medications to reduce blood pressure, oxygen therapy, and in severe cases, heart transplantation.

Preventing RVH involves managing underlying conditions such as pulmonary hypertension, managing high blood pressure, and avoiding harmful substances such as tobacco and alcohol. Early detection and treatment of RVH can help prevent complications and improve outcomes for patients with this condition.

There are two main types of hyperparathyroidism: primary and secondary. Primary hyperparathyroidism is caused by a benign tumor in one of the parathyroid glands, while secondary hyperparathyroidism is caused by another condition that leads to overproduction of PTH, such as kidney disease or vitamin D deficiency.

Symptoms of hyperparathyroidism can include:

* High blood calcium levels
* Bone loss or osteoporosis
* Kidney stones
* Pancreatitis (inflammation of the pancreas)
* Hyperthyroidism (an overactive thyroid gland)
* Fatigue
* Weakness
* Nausea and vomiting
* Abdominal pain
* Headaches

Treatment for hyperparathyroidism usually involves surgery to remove the affected parathyroid gland or glands. In some cases, medications may be used to manage symptoms before surgery. It is important for individuals with hyperparathyroidism to receive prompt medical attention, as untreated hyperparathyroidism can lead to serious complications such as heart disease and kidney failure.

PALL is a rare form of leukemia, accounting for only about 5-10% of all cases of acute leukemia. It is most commonly seen in adults between the ages of 40 and 60, although it can occur at any age.

The symptoms of PALL are similar to those of other types of leukemia and may include fatigue, fever, night sweats, weight loss, and an enlarged spleen. The diagnosis of PALL is typically made through a combination of physical examination, medical history, and laboratory tests, including a bone marrow biopsy.

Treatment for PALL usually involves chemotherapy, which can be effective in achieving a complete remission in many cases. In some instances, bone marrow transplantation may also be considered as a form of treatment. The prognosis for PALL is generally poor, with a five-year survival rate of about 20-30%. However, with prompt and appropriate treatment, many people with PALL can achieve long-term remission and a good quality of life.

Neoplastic metastasis can occur in any type of cancer but are more common in solid tumors such as carcinomas (breast, lung, colon). It is important for cancer diagnosis and prognosis because metastasis indicates that the cancer has spread beyond its original site and may be more difficult to treat.

Metastases can appear at any distant location but commonly found sites include the liver, lungs, bones, brain, and lymph nodes. The presence of metastases indicates a higher stage of cancer which is associated with lower survival rates compared to localized cancer.

The symptoms of T-cell leukemia can vary depending on the severity of the disease, but they may include:

* Fatigue
* Weakness
* Frequent infections
* Easy bruising or bleeding
* Swollen lymph nodes
* Pain in the bones or joints
* Headaches
* Confusion or seizures (in severe cases)

T-cell leukemia is diagnosed through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment typically involves chemotherapy and/or radiation therapy to kill cancer cells and restore the body's normal production of blood cells. In some cases, bone marrow transplantation may be recommended.

The prognosis for T-cell leukemia varies depending on the patient's age and overall health, as well as the aggressiveness of the disease. However, with current treatments, the 5-year survival rate is around 70% for children and adolescents, and around 40% for adults.

It's important to note that T-cell leukemia is relatively rare compared to other types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL). However, it can be a very aggressive and difficult-to-treat form of cancer, and patients with T-cell leukemia often require intensive treatment and close follow-up care.

Hypothermia can be mild, moderate, or severe. Mild hypothermia is characterized by shivering and a body temperature of 95 to 97 degrees Fahrenheit (32 to 36.1 degrees Celsius). Moderate hypothermia has a body temperature of 82 to 94 degrees Fahrenheit (28 to 34 degrees Celsius), and the person may appear lethargic, drowsy, or confused. Severe hypothermia is characterized by a body temperature below 82 degrees Fahrenheit (28 degrees Celsius) and can lead to coma and even death if not treated promptly.

Treatment for hypothermia typically involves warming the person up slowly, using blankets or heating pads, and providing warm fluids to drink. In severe cases, medical professionals may use a specialized warm water bath or apply warm packs to specific areas of the body.

Preventing hypothermia is important, especially in cold weather conditions. This can be done by dressing appropriately for the weather, staying dry and avoiding wet clothing, eating regularly to maintain energy levels, and seeking shelter if you become stranded or lost. It's also essential to recognize the signs of hypothermia early on so that treatment can begin promptly.

SCC typically appears as a firm, flat, or raised bump on the skin, and may be pink, red, or scaly. The cancer cells are usually well-differentiated, meaning they resemble normal squamous cells, but they can grow rapidly and invade surrounding tissues if left untreated.

SCC is more common in fair-skinned individuals and those who spend a lot of time in the sun, as UV radiation can damage the skin cells and increase the risk of cancer. The cancer can also spread to other parts of the body, such as lymph nodes or organs, and can be life-threatening if not treated promptly and effectively.

Treatment for SCC usually involves surgery to remove the cancerous tissue, and may also include radiation therapy or chemotherapy to kill any remaining cancer cells. Early detection and treatment are important to improve outcomes for patients with SCC.

There are several types of lung neoplasms, including:

1. Adenocarcinoma: This is the most common type of lung cancer, accounting for approximately 40% of all lung cancers. It is a malignant tumor that originates in the glands of the respiratory tract and can be found in any part of the lung.
2. Squamous cell carcinoma: This type of lung cancer accounts for approximately 25% of all lung cancers and is more common in men than women. It is a malignant tumor that originates in the squamous cells lining the airways of the lungs.
3. Small cell lung cancer (SCLC): This is a highly aggressive form of lung cancer that accounts for approximately 15% of all lung cancers. It is often found in the central parts of the lungs and can spread quickly to other parts of the body.
4. Large cell carcinoma: This is a rare type of lung cancer that accounts for only about 5% of all lung cancers. It is a malignant tumor that originates in the large cells of the respiratory tract and can be found in any part of the lung.
5. Bronchioalveolar carcinoma (BAC): This is a rare type of lung cancer that originates in the cells lining the airways and alveoli of the lungs. It is more common in women than men and tends to affect older individuals.
6. Lymphangioleiomyomatosis (LAM): This is a rare, progressive, and often fatal lung disease that primarily affects women of childbearing age. It is characterized by the growth of smooth muscle-like cells in the lungs and can lead to cysts, lung collapse, and respiratory failure.
7. Hamartoma: This is a benign tumor that originates in the tissue of the lungs and is usually found in children. It is characterized by an overgrowth of normal lung tissue and can be treated with surgery.
8. Secondary lung cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
9. Metastatic cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
10. Mesothelioma: This is a rare and aggressive form of cancer that originates in the lining of the lungs or abdomen. It is caused by asbestos exposure and can be treated with surgery, chemotherapy, and radiation therapy.

Lung diseases can also be classified based on their cause, such as:

1. Infectious diseases: These are caused by bacteria, viruses, or other microorganisms and can include pneumonia, tuberculosis, and bronchitis.
2. Autoimmune diseases: These are caused by an overactive immune system and can include conditions such as sarcoidosis and idiopathic pulmonary fibrosis.
3. Genetic diseases: These are caused by inherited mutations in genes that affect the lungs and can include cystic fibrosis and primary ciliary dyskinesia.
4. Environmental diseases: These are caused by exposure to harmful substances such as tobacco smoke, air pollution, and asbestos.
5. Radiological diseases: These are caused by exposure to ionizing radiation and can include conditions such as radiographic breast cancer and lung cancer.
6. Vascular diseases: These are caused by problems with the blood vessels in the lungs and can include conditions such as pulmonary embolism and pulmonary hypertension.
7. Tumors: These can be benign or malignant and can include conditions such as lung metastases and lung cancer.
8. Trauma: This can include injuries to the chest or lungs caused by accidents or other forms of trauma.
9. Congenital diseases: These are present at birth and can include conditions such as bronchopulmonary foregut malformations and congenital cystic adenomatoid malformation.

Each type of lung disease has its own set of symptoms, diagnosis, and treatment options. It is important to seek medical attention if you experience any persistent or severe respiratory symptoms, as early diagnosis and treatment can improve outcomes and quality of life.

Some common types of blood platelet disorders include:

1. Thrombocytopenia: This is a condition in which there are too few platelets in the blood. It can be caused by a variety of factors, including autoimmune disorders, bone marrow disorders, and certain medications.
2. Bernard-Soulier syndrome: This is a rare inherited disorder that affects the function of platelets and causes easy bruising and prolonged bleeding.
3. Glanzmann's thrombasthenia: This is a rare inherited disorder that affects the platelets' ability to clot properly, leading to excessive bleeding.
4. Platelet dysfunction: This can be caused by a variety of factors, including certain medications, infections, and autoimmune disorders. It can lead to excessive bleeding or prolonged bleeding after injury or surgery.
5. Congenital amegakaryocytic thrombocytopenia: This is a rare inherited disorder that affects the development of platelets in the bone marrow, leading to a lack of platelets in the blood.
6. Grey platelet syndrome: This is a rare inherited disorder that affects the structure of platelets, making them more prone to rupture and lead to easy bruising and prolonged bleeding.
7. Platelet-type von Willebrand disease: This is a mild bleeding disorder caused by a deficiency of von Willebrand factor, a protein that helps platelets stick together to form clots.
8. acquired platelet dysfunction: This can be caused by various conditions such as infections, medications, and autoimmune disorders.

These disorders can be diagnosed through blood tests, including a complete blood count (CBC) and a platelet function test. Treatment options vary depending on the specific disorder and may include medication, surgery, or lifestyle changes.

Hypercapnia is a medical condition where there is an excessive amount of carbon dioxide (CO2) in the bloodstream. This can occur due to various reasons such as:

1. Respiratory failure: When the lungs are unable to remove enough CO2 from the body, leading to an accumulation of CO2 in the bloodstream.
2. Lung disease: Certain lung diseases such as chronic obstructive pulmonary disease (COPD) or pneumonia can cause hypercapnia by reducing the ability of the lungs to exchange gases.
3. Medication use: Certain medications, such as anesthetics and sedatives, can slow down breathing and lead to hypercapnia.

The symptoms of hypercapnia can vary depending on the severity of the condition, but may include:

1. Headaches
2. Dizziness
3. Confusion
4. Shortness of breath
5. Fatigue
6. Sleep disturbances

If left untreated, hypercapnia can lead to more severe complications such as:

1. Respiratory acidosis: When the body produces too much acid, leading to a drop in blood pH.
2. Cardiac arrhythmias: Abnormal heart rhythms can occur due to the increased CO2 levels in the bloodstream.
3. Seizures: In severe cases of hypercapnia, seizures can occur due to the changes in brain chemistry caused by the excessive CO2.

Treatment for hypercapnia typically involves addressing the underlying cause and managing symptoms through respiratory support and other therapies as needed. This may include:

1. Oxygen therapy: Administering oxygen through a mask or nasal tubes to help increase oxygen levels in the bloodstream and reduce CO2 levels.
2. Ventilation assistance: Using a machine to assist with breathing, such as a ventilator, to help remove excess CO2 from the lungs.
3. Carbon dioxide removal: Using a device to remove CO2 from the bloodstream, such as a dialysis machine.
4. Medication management: Adjusting medications that may be contributing to hypercapnia, such as anesthetics or sedatives.
5. Respiratory therapy: Providing breathing exercises and other techniques to help improve lung function and reduce symptoms.

It is important to seek medical attention if you suspect you or someone else may have hypercapnia, as early diagnosis and treatment can help prevent complications and improve outcomes.

Exocrine disorders affect the pancreas' ability to produce digestive enzymes, leading to symptoms such as abdominal pain, diarrhea, and malnutrition. The most common exocrine disorder is chronic pancreatitis, which is inflammation of the pancreas that can lead to permanent damage and scarring. Other exocrine disorders include acute pancreatitis, pancreatic insufficiency, and pancreatic cancer.

Endocrine disorders affect the pancreas' ability to produce hormones, leading to symptoms such as diabetes, hypoglycemia, and Cushing's syndrome. The most common endocrine disorder is diabetes mellitus, which is caused by a deficiency of insulin production or insulin resistance. Other endocrine disorders include hyperglycemia, hypoglycemia, and pancreatic polypeptide-secreting tumors.

Pancreatic diseases can be caused by a variety of factors, including genetics, lifestyle choices, and certain medical conditions. Treatment options for pancreatic diseases vary depending on the underlying cause and severity of the condition, and may include medications, surgery, or lifestyle changes. Early diagnosis and treatment are critical for improving outcomes in patients with pancreatic diseases.

Some of the most common types of pancreatic diseases include:

1. Diabetes mellitus: a group of metabolic disorders characterized by high blood sugar levels.
2. Chronic pancreatitis: inflammation of the pancreas that can lead to permanent damage and scarring.
3. Acute pancreatitis: sudden and severe inflammation of the pancreas, often caused by gallstones or excessive alcohol consumption.
4. Pancreatic cancer: a malignancy that can arise in the pancreas and spread to other parts of the body.
5. Pancreatic neuroendocrine tumors (PNETs): tumors that arise in the hormone-producing cells of the pancreas and can produce excessive amounts of hormones, leading to a variety of symptoms.
6. Pancreatic polypeptide-secreting tumors: rare tumors that produce excessive amounts of pancreatic polypeptide, leading to hypoglycemia and other symptoms.
7. Glucagonoma: a rare tumor that produces excessive amounts of glucagon, leading to high blood sugar levels and other symptoms.
8. Insulinoma: a rare tumor that produces excessive amounts of insulin, leading to low blood sugar levels and other symptoms.
9. Multiple endocrine neoplasia (MEN) type 1: an inherited disorder characterized by multiple endocrine tumors, including those in the pancreas.
10. Familial pancreatico-ductal adenocarcinoma (FPDA): an inherited disorder characterized by a high risk of developing pancreatic cancer.

These are just some of the possible causes of pancreatic disease, and there may be others not listed here. It is important to consult with a healthcare professional for an accurate diagnosis and appropriate treatment.

They pass through hippocampal commissures to reach contralateral regions of hippocampus. Hippocampal commissures have dorsal ... Commissural fibers that originate from CA3 Pyramidal cells go to CA3, CA2 and CA1 regions. Like mossy cells, a single CA3 ... Hippocampal sulcus (sulc.) or fissure is a cell-free region that separates the CA1 field from the dentate gyrus. Because the ... Fimbria-fornix fibers are the hippocampal and subicular gateway to and from subcortical brain regions. Different parts of this ...
The SuM projects it's afferent signals exclusively to the dentate gyrus and CA2 region of the hippocampus. These SuM neurons ... Because of its role in modulating hippocampal theta, it is implicated in spatial and emotional memory formation. The axons of ... KIRK, I (March 1998). "Frequency Modulation of Hippocampal Theta by the Supramammillary Nucleus, and Other Hypothalamo- ... Hippocampal Interactions: Mechanisms and Functional Implications". Neuroscience & Biobehavioral Reviews. 22 (2): 291-302. doi: ...
CA2 is a small region located between CA1 and CA3. It receives some input from layer II of the entorhinal cortex via the ... Diagram of hippocampal regions in a rat brain. Jerome Engel TAP, ed. Epilepsy: A Comprehensive Textbook in Three Volumes. ... The pyramidal cells in CA3 send some axons back to the dentate gyrus hilus, but they mostly project to regions CA2 and CA1 via ... There are four hippocampal subfields, regions in the hippocampus proper which form a neural circuit called the trisynaptic ...
... the innermost area of the hippocampal formation, and region CA2. The CA1 is separated from the dentate gyrus by the hippocampal ... The hippocampal relay involves 3 main regions within the hippocampus which are classified according to their cell type and ... Florian, C.; Roullet, P. (2004). "Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water ... a large bundle of axon that connects the left and right hippocampal formations. The fornix plays a key role in hippocampal ...
CA2 differs from other regions because it is one of the few areas to survive Temporal Lobe Epilepsy. Kainic acid, used to model ... In neocortical and hippocampal foci, a decrease in length and branching complexity of dendritic arbors and a reduction in the ... CA2 and CA3 can be distinguished using histological stains because the proximal apical dendrites of CA2 do not possess ... The most proximal regions of CA3 pyramidal dendrites receive mossy fiber input exclusively, mid-dendritic regions (strata ...
Its abbreviation CA is used in naming the hippocampal subfields CA1, CA2, CA3, and CA4. It can be distinguished as an area ... The dorsal hippocampus also has more place cells than both the ventral and intermediate hippocampal regions. The intermediate ... CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration". The Neuroscientist. 25 (2): 167- ... of the hippocampal population These two hippocampal activity modes can be seen in primates as well as rats, with the exception ...
The stratum lucidum is located within the CA3 region of the hippocampus distally to the dentate gyrus and proximally to the CA2 ... The stratum pyramidale is the third deepest hippocampal layer, and in relation to the stratum lucidum, is located underneath it ... In the CA3 region of the hippocampus, the stratum pyramidale connects with the stratum lucidum by mossy fibers that run through ... This situation is described in the mossy fiber axon connection in the CA3 stratum lucidum region of the hippocampus as is in ...
Dudek discussed her work on the CA2 region of the hippocampus. She discusses her work in which she observed the CA2 region in ... "Insights Into Hippocampal Circuitry and Function From Studies of Synaptic Plasticity". neuronline-uat.sfn.org. Retrieved 2021- ... Her team then removed and observed the rat brains and found that caffeine improved synaptic strength in the CA2 region of the ... is an American neuroscientist known for her work on long-term depression and synaptic plasticity in the CA2 region of the ...
Young WS, Li J, Wersinger SR, Palkovits M (2006). "The Vasopressin 1b Receptor is Prominent in the Hippocampal Area CA2 Where ... AVPR1B maps to chromosome region 1q32 and is a member of the vasopressin/oxytocin family subfamily. AVPR1B was initially ...
In alcoholics, certain regions of the amygdala are associated with higher levels of DNA methyltransferases. 5-azacitidine (5- ... Misra, K., Roy, A., Pandey, S.C. (2001). Effects of voluntary ethanol intake on the expression of Ca2?/calmodulin-dependent ... Lovinger, D.M., White, G., Weight, F.F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science, ... CREB binds a DNA sequence called CREB Response Element (CRE) in promoter regions and activates transcription via recruitment of ...
In the CA3 region of the hippocampus, basket cells can often form recurrent inhibition loops with pyramidal cells. Projections ... Hippocampal basket cells target somata and proximal dendrites of pyramidal neurons. Similar to their counterparts in the cortex ... Tan, Y. P.; Llano, I. (1999). "Modulation by K+channels of action potential-evoked intracellular Ca2+concentration rises in rat ... Basket cells are inhibitory GABAergic interneurons of the brain, found throughout different regions of the cortex and ...
... there is experience-dependent modulation of activity during NREM sleep in the hippocampal regions, but not during REM sleep ... As many as 15-30 percent of neurons in 50-200 ms fire synchronously in the CA3-CA2-CA1, subicular complex and entorhinal cortex ... Increased sleepiness was also correlated with activation in a ventral prefrontal region, but only one region. The divided ... Therefore, brain regions that take part in a learning process are modulated by both the sequential structure of the learned ...
Under increased acidic conditions, a proton binds to the channel in the extracellular region, activating the ion channel to go ... Baron, A.; Waldmann, R.; Lazdunski, M. (2002). "ASIC-like, proton-activated currents in rat hippocampal neurons. The Journal of ... to pH 5.0-6.9 and contribute to the pathology of ischemic brain injury because their activation causes a small increase in Ca2+ ... ASIC's have a large, fist-like extracellular region that consumes most of the proteins structure. Within its "fist-like" ...
Based on this, it has been suggested that reduced limbic regulation by prefrontal regions plays a role in bipolar. Findings ... Hajek, T; Kopecek, M; Höschl, C; Alda, M (September 2012). "Smaller hippocampal volumes in patients with bipolar disorder are ... People with bipolar demonstrate reduced expression of GAD67 in CA3/CA2 subregion of the hippocampus. More extensive reductions ... Although unipolar depression was associated with reductions in the ventral most and dorsal most regions of the mPFC and bipolar ...
The temporal lobe is the most epileptogenic region of the brain. In fact, 90% of patients with temporal interictal epileptiform ... Hippocampal sclerosis involves hippocampal cell loss in the CA1 and CA3 regions and the dentate hilus. The CA2 region is ... Hippocampal sclerosis. Approximately two thirds of patients with temporal lobe epilepsy treated surgically have hippocampal ... The temporal lobe is the most epileptogenic region of the brain. In fact, 90% of patients with temporal interictal epileptiform ...
"Hippocampal CA2 Development under the Influence of Prenatal Spironolactone". Mentors: Dr. Katharine McCann, Dr. Serena Dudek. ... "Treacle N-Terminal Region Missense Mutations Decrease Protein Stability and DNA Binding". Mentors: Dr. Scott Williams, Dr. ... "Mossy Fiber Inputs to Hippocampal Area CA2". Mentors: Dr. Serena Dudek, Dr. Daniel Radzicki. Lab: Neurobiology ... "Prenatal Exposure to Anti-Mineralocorticoid Spironolactone Results in Altered CA2 Axonal Phenotype and Anxiety-Like Behavior". ...
These changes are associated with relative sparing of the CA2 pyramidal region and an intermediate severity of the lesion in ... particularly in the hippocampal formation. A common lesion is hippocampal sclerosis, which consists of a pattern of gliosis and ... For example, hippocampal pyramidal neurons may not be able to assemble alpha 5 beta 3 gamma 3 receptors because of deletion of ... More subtle and apparently more common than overt hippocampal sclerosis is mossy-fiber sprouting. [9] The mossy fibers are the ...
... a standardized area in the CA1 region subtracting the fluorescence in a square placed in an undamaged area outside of the CA2/ ... D, GLT-1 immunoreactivity in hippocampal CA1 and DG regions of organotypic hippocampal brain slices subjected to 15 min OGD ... B, Changes in GLT-1 staining in hippocampal CA1 and DG regions of a rat subjected to 10 min forebrain ischemia followed by 5 h ... C, Quantification of the changes by Western blot in GFAP and GLT-1 staining in hippocampal CA1 and DG regions of rats subjected ...
Previous studies have shown that the hippocampus, in particular the CA2 region, is critical for encoding social memories. ... Hopes lab at NIDA IRP to investigate the role of hippocampal neuronal ensembles in volitional social learning and memory. Dr. ...
CA2 Region, Hippocampal Preferred Term Term UI T732756. Date01/06/2009. LexicalTag ABX. ThesaurusID NLM (2010). ... CA2 Pyramidal Cell Area CA2 Pyramidal Cell Layer CA2 Stratum Pyramidale CA2 Stratum Radiatum Cornu Ammonis 2 Area Hippocampal ... CA2 Region, Hippocampal Preferred Concept UI. M0528211. Scope Note. A subsection of the hippocampus, described by Lorente de No ... CA2 Region, Hippocampal. Tree Number(s). A08.186.211.180.405.149. A08.186.211.200.885.287.500.345.149. Unique ID. D056651. RDF ...
CA1 Region, Hippocampal MeSH CA2 Region, Hippocampal MeSH CA3 Region, Hippocampal MeSH ... The axons may have local collaterals but also project outside their cortical region. ... The axons may have local collaterals but also project outside their cortical region.. ...
In red is hippocampal zone CA2. Its important for forming memories of social interactions. These nerve cells harbor a very ... At the top right, you can see a portion of another brain region, the cerebral cortex. Some of the neurons there also appear ... Tags: art, brain, CA neurons, CA1, CA2, CA3, cadherin, cadherin-10, cerebral cortex, dentate gyrus, hippocampus, mouse ... As Basu notes, less is always more when photographing any of the cell-dense regions of the brain that block and badly distort ...
The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the ... We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM ... The deep sublayer Va of MEC (MECVa) serves as the output stage of the entorhinal-hippocampal system and sends extensive ... Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically ...
Abbreviations: anterior commissure, Aca; hippocampal subfields, CA1, CA2, CA3; corpus callosum, cc; dentate gyrus, DG; dorsal ... The µ-opioid receptor (MOR), also known as OPRM1, is highly expressed in several brain regions and the most targeted opioid ... Additional phenotypic characterization is recommended for brain region and experimental paradigm of interest. ...
Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model. ... Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding. Neuron. 2018;100(4):926- ... Reset of hippocampal-prefrontal circuitry facilitates learning. Nature. 2021;591(7851):615-619. ... Differential Synaptic Dynamics and Circuit Connectivity of Hippocampal and Thalamic Inputs to the Prefrontal Cortex. Cereb ...
On the Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples. ... A, B) Single confocal sections of the boxed regions in (F), (H), and (J), show the features of the. Patr-1 could promote ... Interestingly, this initial colocalization occurs at the posterior region or pole cells in low price oxytrol nc10 and nc14. ...
Região CA2 Hipocampal. CA2 Region, Hippocampal. Región CA2 Hipocampal. Região CA3 Hipocampal. CA3 Region, Hippocampal. Región ... t-Complex Genome Region. Región del Complejo T del Genoma. Variação Estrutural do Genoma. Genomic Structural Variation. ...
This antibody stains spinal cord, cerebral cortex and pyramidal cells in the hippocampal CA2 region. The antigen recognized by ...
Enkephalin release from VIP interneurons in the hippocampal CA2/3a region mediates heterosynaptic plasticity and social memory ... A hypothalamic novelty signal modulates hippocampal memory. Adam Caccavano. NICHD. ...
The gene is highly expressed in the brain region called the hippocampal area CA2, and appears to play significant roles in CA2 ... Her team focuses on the CA2 region.. "CA2 had already been reported to be linked to social behavior, by us and others," she ... Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol ... These differently methylated regions overlapped regions previously identified as areas of genetic risk for ASD. The researchers ...
Mercer A (2012) SP-SR interneurones: a novel class of neurones of the CA2 region of the hippocampus. in Hippocampus ... Hippocampal interneurones can be classified by their gross morphology, targets, neurochemistry, firing patterns etc. This ... Mercer A (2012) Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus. in ... In particular, a detailed study of the cell classes and the circuits to which they belong within the CA2 region of the ...
... and hippocampal formation (CA1 (-14%), CA2 (-15%), CA3 (-18%), and dentate gyrus (-18%)). After repeated PCP administration for ... resulted in a significant decrease in the mGluR5 mRNA expression of group I mGluR in the subcortical regions (thalamus (-15%), ... and hippocampal formation (CA1 (-14%), CA2 (-15%), CA3 (-18%), and dentate gyrus (-18%)). After repeated PCP administration for ... and hippocampal formation (CA1 (-14%), CA2 (-15%), CA3 (-18%), and dentate gyrus (-18%)). After repeated PCP administration for ...
Neuronal loss in the hippocampal regions of CA1 and CA4 and less severely CA2 and CA3. Additional loss of hippocampal stratum ... HN - 2023 BX - Ammon Horn Sclerosis BX - CA1 Hippocampal Sclerosis BX - CA4 Hippocampal Sclerosis BX - Endfolium Sclerosis BX ... HN - 2023 MH - Hippocampal Sclerosis UI - D000092223 MN - C10.500.507.400.187 MN - C16.131.666.507.400.187 MS - ... HN - 2023 BX - Resource Limited Areas BX - Resource Limited Regions MH - Ribosome Profiling UI - D000094506 MN - E5.393.332.125 ...
Hippocampal subfield volumes were smaller in MDD patients than HC for CA1 (left only), CA2/3 (left and right) and CA4 (right ... These findings identify core hippocampal regions in the pathology of MDD, suggesting a potential marker of disease progression ... MDD patients had smaller hippocampal volumes, in particular within the cornu ammonis (CA) and dentate gyrus (DG) regions. ... would impact on hippocampal volume, and in particular the core hippocampal structures, DG and cornu ammonis (CA) subfields, and ...
Região CA2 Hipocampal. CA2 Region, Hippocampal. Región CA2 Hipocampal. Região CA3 Hipocampal. CA3 Region, Hippocampal. Región ... t-Complex Genome Region. Región del Complejo T del Genoma. Variação Estrutural do Genoma. Genomic Structural Variation. ...
Região CA2 Hipocampal. CA2 Region, Hippocampal. Región CA2 Hipocampal. Região CA3 Hipocampal. CA3 Region, Hippocampal. Región ... t-Complex Genome Region. Región del Complejo T del Genoma. Variação Estrutural do Genoma. Genomic Structural Variation. ...
Região CA2 Hipocampal. CA2 Region, Hippocampal. Región CA2 Hipocampal. Região CA3 Hipocampal. CA3 Region, Hippocampal. Región ... t-Complex Genome Region. Región del Complejo T del Genoma. Variação Estrutural do Genoma. Genomic Structural Variation. ...
Abnormal tau (or silver-positive) neurofibrillary lesions in the hippocampus, especially in CA2 and CA4 regions, which differ ... and severe hippocampal neurofibrillary degeneration, including extracellular tangles best seen with silver stains. ... Slides included 19 brain regions from 25 cases of CTE and other disorders that might be in the differential diagnosis of CTE, ... described nerve cell loss and accumulation of abnormal tau protein forming neurofibrillary tangles in affected brain regions. ...
Here we report that a distinct population of hippocampal neurons, located in the CA2 subregion, signals current location during ... The BMI uses signals from hundreds of neurons recorded simultaneously in two regions of the monkeys brains that are involved ... How does an animal know where it is when it stops moving? Hippocampal place cells fire at discrete locations as subjects ... Public access) - "A hippocampal network for spatial coding during immobility and sleep" by Kenneth Kay, Marielena Sosa, Jason E ...
Mercer A, Eastlake K, Trigg HL, Thomson AM (2012) Local circuitry involving parvalbumin-positive basket cells in the CA2 region ... Citations for Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016). Legends:. Link ... Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and ... Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]. ...
Note that these LCM samples were acquired simultaneously from different brain regions (CA1 vs. CA2) on the same sections from ... Representative image of a glass slide with five dehydrated mouse brain sections post-LCM of hippocampal subregions CA1 and CA2 ... A) Correlation plot of the CA2 RNA-Seq mean expression data presented here (N = 3) vs. the CA2 RNA-Seq data published in ... Amigo2-EGFP mouse hippocampus showing the fluorescently labeled CA2 cells and projections prior to LCM and (right) post LCM. (C ...
Note that these LCM samples were acquired simultaneously from different brain regions (CA1 vs. CA2) on the same sections from ... Representative image of a glass slide with five dehydrated mouse brain sections post-LCM of hippocampal subregions CA1 and CA2 ... A) Correlation plot of the CA2 RNA-Seq mean expression data presented here (N = 3) vs. the CA2 RNA-Seq data published in ... Amigo2-EGFP mouse hippocampus showing the fluorescently labeled CA2 cells and projections prior to LCM and (right) post LCM. (C ...
Possible implication of the CA2 Hippocampal circuit in social cognition deficits observed in the neuroligin 3 knock-out mouse, ... If intrinsic excitability of dPAG neurons is increased in Nlgn3−/y rats, additional stimulation of this brain region may cause ... Grey regions indicated amino acid sequence shared with the full-length isoform, dotted lines indicate a 17 amino acid section ... Ventral and dorsolateral regions of the midbrain periaqueductal gray PAG control different stages of defensive behavior. ...
  • 15. 2-Deoxy-D-glucose-induced changes in membrane potential, input resistance, and excitatory postsynaptic potentials of CA1 hippocampal neurons. (nih.gov)
  • Transient global ischemia, as with cardiac arrest, causes loss of CA1 hippocampal neurons 2-4 d later, whereas nearby dentate gyrus (DG) neurons are relatively resistant. (jneurosci.org)
  • This study provides evidence for the novel hypothesis that selective hippocampal astrocytic impairment is responsible for the selective loss of CA1 hippocampal neurons after global or forebrain ischemia. (jneurosci.org)
  • To learn more about this part of the hippocampus, the researchers created a transgenic mouse in which CA2 neurons could be selectively inhibited in adult animals. (columbia.edu)
  • This possibility is supported by findings of a decreased number of CA2 inhibitory neurons in individuals with schizophrenia and bipolar disorder and altered vasopressin signaling in autism. (columbia.edu)
  • In fact, the red staining indicates the presence of a protein, RGS14, that's uniquely made by CA2 neurons. (nih.gov)
  • The dentate gyrus is one of the few mammalian brain regions where new neurons are generated throughout life. (pasteur.fr)
  • The BMI uses signals from hundreds of neurons recorded simultaneously in two regions of the monkeys' brains that are involved in movement and sensation. (uncommondescent.com)
  • Here we report that a distinct population of hippocampal neurons, located in the CA2 subregion, signals current location during immobility, and does so in association with a previously unidentified hippocampus-wide network pattern. (uncommondescent.com)
  • From newborn mice pups, we isolated tissues from cochlear region for presynaptic neurons and MNTB regions for postsynaptic neurons. (oist.jp)
  • More recently, an in vivo study in Nlgn3 KO mice demonstrated an increase in excitability of neurons in CA2 linked to social cognition deficits [ 47 ], raising the intriguing possibility that mutations in Nlgn3 could alter the intrinsic physiology of neurons. (biomedcentral.com)
  • depicts an ultraviolet microscopy image showing the positive green fluorescent, empiric staining by Fluoro-Jade B of necrotic hippocampal pyramidal cells (blue arrow). (nih.gov)
  • 13. Gabapentin actions on Kir3 currents and N-type Ca2+ channels via GABAB receptors in hippocampal pyramidal cells. (nih.gov)
  • The pyramidal cell layer (stratum pyramidale) of the HIPPOCAMPUS CA2 FIELD . (nih.gov)
  • This antibody stains spinal cord, cerebral cortex and pyramidal cells in the hippocampal CA2 region. (xenbase.org)
  • Ih is of particular interest having been implicated in generation and coordination of theta rhythms across hippocampal subfields and between hippocampus and sub-cortical structures participating in theta. (ukri.org)
  • Arnold SEFranz BRGur RCGur REShapiro RMMoberg PJTrojanowski JQ Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. (jamanetwork.com)
  • Arnold SELee VMGur RETrojanowski JQ Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. (jamanetwork.com)
  • Within the hippocampus, recent studies show that area CA2 is important for social memory and is an anomaly compared to its better-understood neighboring region, CA1. (nih.gov)
  • 2016), and CA2 activity controls population oscillatory activity in the slow γ and ripple ranges within hippocampus (Kay et al. (nih.gov)
  • CUMC researchers have found that a small region of the hippocampus known as CA2 is essential for social memory, the ability of an animal to recognize another of the same species. (columbia.edu)
  • In this cross-section of the mouse hippocampus, CA2 is highlighted in green Credit: Nature). (columbia.edu)
  • However, the role of CA2, a relatively small region of the hippocampus sandwiched between CA3 and CA1, has remained largely unknown," said senior author Steven A. Siegelbaum, PhD, professor of neuroscience and pharmacology, chair of the Department of Neuroscience, a member of the Mortimer B. Zuckerman Mind Brain Behavior Institute and Kavli Institute for Brain Science, and a Howard Hughes Medical Institute Investigator. (columbia.edu)
  • This image shows distinct neural connections in a cross section of a mouse's hippocampus, a region of the brain involved in the memory of facts and events. (nih.gov)
  • The hippocampus is a brain region intimately involved in recognising where we are in our environment, a role that is dependent upon the coordination of rhythmic activity by inhibitory interneurones. (ukri.org)
  • This project focusses on a much neglected region of hippocampus (CA2) with unique pathology in schizophrenia and particularly on the interneurones here which display combinations of characteristics unique to this region. (ukri.org)
  • More interestingly however perfusion increases were observed in a few cortical and subcortical regions of the contralateral hemisphere: the supplementary motor area, the primary somatosensory area, the posterior insula and posterior putamen, the hippocampus and bilaterally the retrosplenial cortex . (brainmaps.org)
  • A better grasp of the function of CA2 could prove useful in understanding and treating disorders characterized by altered social behaviors, such as autism, schizophrenia, and bipolar disorder. (columbia.edu)
  • Young CEArima KXie JHu LBeach TGFalkai PHoner WG SNAP-25 deficit and hippocampal connectivity in schizophrenia. (jamanetwork.com)
  • Because several neuropsychiatric disorders are associated with altered social behaviors, our findings raise the possibility that CA2 dysfunction may contribute to these behavioral changes. (columbia.edu)
  • The axons may have local collaterals but also project outside their cortical region. (bvsalud.org)
  • The deep sublayer Va of MEC (MECVa) serves as the output stage of the entorhinal-hippocampal system and sends extensive projections to brain cortical areas. (bvsalud.org)
  • After repeated PCP administration for 14 days, the mGluR2 mRNA expression of group II mGluR in the anterior cingulate cortex (-23%) and the mGluR4 mRNA expression of group III mGluR in the cortical regions (parietal (-11%), temporal (-13%) and entorhinal cortices (-18%)), the caudate putamen (-12%), thalamus (-17%), and subiculum (-25%) were significantly decreased. (elsevierpure.com)
  • The retrosplenial cortex consists of areas 29a-d, each of which has different connections with other cortical and subcortical regions. (brainmaps.org)
  • Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. (yale.edu)
  • We will therefore test the hypothesis that the long, horizontally oriented dendrites of CA2 interneurones express HCN subunits and postsynaptic receptors and receive excitatory inputs that are distinct from those of their vertically oriented dendrites in SR and SLM. (ukri.org)
  • We will employ dual and triple intracellular recordings to compare inputs to CA2 interneurones from pyramids in CA1, CA2 and CA3, manipulate Ih and postsynaptic receptors pharmacologically, reveal cellular markers and the localization of HCN subunits and postsynaptic receptors in these biocytin-labelled cells using confocal immuno-fluorescence and identify the locations of recorded synapses histologically. (ukri.org)
  • At the top right, you can see a portion of another brain region, the cerebral cortex. (nih.gov)
  • Here, we investigated the early astrocyte response to ischemic injury comparing the selectively vulnerable CA1 region with the more resistant DG. (jneurosci.org)
  • Unlike CA1 baskets, but like OLM cells, CA2 basket and some bistratified cells have very broad dendritic arbours in s. oriens-alveus that span all 3 sub-fields, although their arbours in s. radiatum (SR) and SLM resemble those of CA1 interneurones. (ukri.org)
  • There is evidence for alterations of glutamate-glutamine, N-acetylaspartate (NAA) and GABA in the anterior cingulate cortex (ACC), a stress-sensitive region affected by hypothalamic-pituitary-adrenal axis (HPA). (stanford.edu)
  • A potential clue comes from the dense, reciprocal connections between the anterior thalamic nuclei and retrosplenial cortex , another region vital for memory. (brainmaps.org)
  • In our experiment, however, mice with an inactivated CA2 region showed no preference for a novel mouse versus a previously encountered mouse, indicating a lack of social memory. (columbia.edu)
  • In two separate novel-object recognition tests, the CA2-deficient mice showed a normal preference for an object they had not previously encountered, showing that the mice did not have a global lack of interest in novelty. (columbia.edu)
  • The critical role of persistent sodium current in hippocampal gamma oscillations. (uams.edu)
  • We demonstrate, for the first time, differential responses of astrocytes from different hippocampal subregions to ischemia: generation of reactive oxygen species, changes in mitochondrial membrane potential, and uptake of glutamate. (jneurosci.org)
  • Brodmann's areas (BAs) 23, 7, and 30, respectively], regions known to support memory formation and retrieval, and in the SMA (BA 6) and the dorsal midcingulate ("motor cingulate") cortex (BA 24d), regions known to be important for motor learning. (brainmaps.org)
  • The large, crescent-shaped area in green is hippocampal zone CA1. (nih.gov)
  • The gene is highly expressed in the brain region called the hippocampal area CA2, and appears to play significant roles in CA2 development. (nih.gov)
  • Hippocampal place cells interact extensively with head direction cells , whose activity acts as an inertial compass, and conjecturally with grid cells in the neighboring entorhinal cortex . (wikipedia.org)
  • Hippocampal place cells fire at discrete locations as subjects traverse space, thereby providing an explicit neural code for current location during locomotion. (uncommondescent.com)
  • NIMH's basic neuroscience investment in complex social and affective behaviors has a strong foundation in several areas, including classical and operant conditioning, face-processing, emotion regulation, and the function of single brain regions in responses to unimodal stimuli. (nih.gov)
  • On the Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples. (kellersign.com)
  • A few studies have suggested that CA2 might be involved in social memory, as this region has a high level of expression of a receptor for vasopressin, a hormone linked to sexual motivation, bonding, and other social behaviors. (columbia.edu)
  • The paper is titled, "The hippocampal CA2 region is essential for social memory. (columbia.edu)
  • A key goal in hippocampal research is to understand how neuronal activity is generated and organized across hippocampal subregions to enable memory formation and retrieval. (nih.gov)
  • The CA1 region is critical for all forms of memory. (columbia.edu)
  • By employing a range of techniques we will reveal the functional, molecular and structural features unique to this region and test its contributions to controlling network activity. (ukri.org)
  • (Public access) - "A hippocampal network for spatial coding during immobility and sleep" by Kenneth Kay, Marielena Sosa, Jason E. Chung, Mattias P. Karlsson, Margaret C. Larkin and Loren M. Frank in Nature. (uncommondescent.com)
  • CA2 had already been reported to be linked to social behavior, by us and others," she said. (nih.gov)
  • This protein serves as a kind of molecular glue that likely imparts specific functional properties to this region. (nih.gov)
  • It was, therefore, surprising to find that in CA2, PV-immuno-positive basket cells exhibited an electrophysiological profile virtually indistinguishable from OLM cells including pronounced ?sag? (ukri.org)
  • The temporal lobe is the most epileptogenic region of the brain. (medscape.com)
  • 7. The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca ++ and low Mg++ model in the hippocampal slice preparation. (nih.gov)
  • 6. Spontaneous interictal-like activity originates in multiple areas of the CA2-CA3 region of hippocampal slices. (nih.gov)
  • Neuronal activity in CA2 is regulated by spatial and social investigation as well as by novelty (Mankin et al. (nih.gov)
  • 16. Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine. (nih.gov)
  • Moreover, the EPSPs these cells receive from CA2 pyramids do not display depression, indeed some show modest facilitation. (ukri.org)
  • Further, important substantiating evidence of brain tissue injury is represented by the edematous vacuolar change of the subjacent neuropil and the presence of necrotic condensed (pyknotic) nuclei of glial cells (arrowhead) within that region. (nih.gov)
  • This initiative will encourage investigators to test the neurophysiological relevance of long-standing psychological models, 10-14 and to extend beyond a region-based, modular, static and sequential view of social and emotional information processing. (nih.gov)