A synthetic amino acid that depletes glutathione by irreversibly inhibiting gamma-glutamylcysteine synthetase. Inhibition of this enzyme is a critical step in glutathione biosynthesis. It has been shown to inhibit the proliferative response in human T-lymphocytes and inhibit macrophage activation. (J Biol Chem 1995;270(33):1945-7)
Methionine Sulfoximine is a toxic compound that functions as an inhibitor of methionine metabolism, being formed through the oxidation of methionine by the enzyme methionine sulfoxide reductase.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
One of the enzymes active in the gamma-glutamyl cycle. It catalyzes the synthesis of gamma-glutamylcysteine from glutamate and cysteine in the presence of ATP with the formation of ADP and orthophosphate. EC
**Maleates** are organic compounds that contain a carboxylic acid group and a hydroxyl group attached to adjacent carbon atoms, often used as intermediates in the synthesis of pharmaceuticals and other chemicals, or as drugs themselves, such as maleic acid or its salts.
Drugs that are chemically similar to naturally occurring metabolites, but differ enough to interfere with normal metabolic pathways. (From AMA Drug Evaluations Annual, 1994, p2033)
The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates.
One of the enzymes active in the gamma-glutamyl cycle. It catalyzes the synthesis of glutathione from gamma-glutamylcysteine and glycine in the presence of ATP with the formation of ADP and orthophosphate. EC
A GLUTATHIONE dimer formed by a disulfide bond between the cysteine sulfhydryl side chains during the course of being oxidized.
A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
A cyclized derivative of L-GLUTAMIC ACID. Elevated blood levels may be associated with problems of GLUTAMINE or GLUTATHIONE metabolism.
Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration.
A sulfhydryl reagent which oxidizes sulfhydryl groups to the disulfide form. It is a radiation-sensitizing agent of anoxic bacterial and mammalian cells.
An alkylating nitrogen mustard that is used as an antineoplastic in the form of the levo isomer - MELPHALAN, the racemic mixture - MERPHALAN, and the dextro isomer - MEDPHALAN; toxic to bone marrow, but little vesicant action; potential carcinogen.
Compounds containing the -SH radical.
Naturally occurring or synthetic substances that inhibit or retard the oxidation of a substance to which it is added. They counteract the harmful and damaging effects of oxidation in animal tissues.
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of signal transduction and gene expression, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS.
An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid.
A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials.
An enzyme catalyzing the oxidation of 2 moles of glutathione in the presence of hydrogen peroxide to yield oxidized glutathione and water. EC
The action of a drug in promoting or enhancing the effectiveness of another drug.
Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION).
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Inorganic or organic compounds that contain arsenic.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC
Antimetabolites that are useful in cancer chemotherapy.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.

Influence of glutathione levels and heat-shock on the steady-state levels of oxidative DNA base modifications in mammalian cells. (1/573)

The effects of thiols, ascorbic acid and thermal stress on the basal (steady-state) levels of oxidative DNA base modifications were studied. In various types of untreated cultured mammalian cells, the levels of total glutathione were found to be inversely correlated with the levels of DNA base modifications sensitive to the repair endonuclease Fpg protein, which include 8-hydroxyguanine (8-oxoG). A depletion of glutathione by treatment with buthionine sulphoximine increased the steady-state level in AS52 Chinese hamster cells by approximately 50%. However, additional thiols in the culture medium did not reduce the level of Fpg-sensitive base modifications: 0-10 mM N-acetylcysteine had no effect, whereas cysteine ethylester even increased the oxidative DNA damage at concentrations >0.1 mM. Similarly, ascorbic acid (0-20 mM) failed to reduce the steady-state levels. When AS52 cells were grown at elevated temperature (41 degrees C), the steady-state level of the oxidative DNA modifications increased by 40%, in spite of a concomitant 1.6-fold increase of the cellular level of total glutathione. Depletion of glutathione at 41 degrees C nearly doubled the already elevated level of oxidative damage. A constitutive expression of the heat-shock protein Hsp27 in L929 mouse fibrosarcoma cells at 37 degrees C increased the glutathione level by 60%, but had little effect on the level of oxidative DNA damage.  (+info)

Role of antioxidant defenses against ethanol-induced damage in cultured rat gastric epithelial cells. (2/573)

Reactive oxygen species appears to be involved in the pathogenesis of ethanol-induced gastric mucosal injury in vivo. Because ingested ethanol diffuses into the gastric mucosa, targeting both epithelium and endothelium, in the present study we examined the possible protective effect of antioxidants on ethanol damage in gastric epithelial cells and endothelial cells in vitro. Cytotoxicity by ethanol was quantified by measuring 51Cr release. The effects of impairment of the glutathione redox cycle and of inhibition of cellular catalase were examined. The generation of superoxide was assessed by the reduction in cytochrome c. Ethanol caused a time- and dose-dependent increase in 51Cr release from epithelial cells. Incubation of cells with DL-buthionine-(S,R)-sulfoximine, while reducing glutathione production, dose dependently enhanced ethanol-induced injury. 1,3-Bis(chloroethyl)-nitrosourea, while inhibiting glutathione reductase activity, also sensitized cells to ethanol. In contrast, the inhibition of catalase with 3-amino-1,2, 4-triazole did not alter the susceptibility of epithelial cells to ethanol. Ethanol induced damage to endothelial cells in a similar fashion. In endothelial cells, however, neither impairment of the glutathione cycle nor inhibition of catalase influenced ethanol-induced damage. Epithelial cells, when exposed to ethanol, increased superoxide production as a function of ethanol concentration, whereas endothelial cells did not. The glutathione redox cycle, but not cellular catalase, plays a critical role in protecting epithelial cells against ethanol damage, whereas neither antioxidant seems to play a role in protection of endothelial cells. The distinct difference in antioxidant protection against ethanol appears to depend on the capability of each cell to produce cytotoxic oxygen species in response to ethanol exposure.  (+info)

Involvement of N-acetylcysteine-sensitive pathways in ricin-induced apoptotic cell death in U937 cells. (3/573)

We have found that the antioxidant N-acetylcysteine (NAC) strongly inhibited ricin-induced apoptotic cell death in U937 cells (human myeloid leukemia), as judged by cytotoxicity, nuclear morphological change, and DNA fragmentation. Consistent with these observations, a significant depletion of cellular glutathione was observed in ricin-treated cells, and NAC prevented the decrease in cellular glutathione. On the other hand, among the caspase inhibitors tested, Z-Asp-CH2-DCB, which inhibited ricin cytotoxicity, also suppressed ricin-mediated glutathione depletion, while NAC did not affect the generation of caspase-3 like activity in ricin-treated cells. These results suggest that glutathione loss takes place downstream from caspase activation during the ricin-induced apoptotic process. Treatment with a specific inhibitor of glutathione biosynthesis, buthionine sulfoximine (BSO) failed to induce apoptosis, and had no effect on the overall extent of ricin-induced apoptosis, even though the glutathione level was decreased to less than 5% of the control level. However, NAC still protected against ricin-induced apoptosis in the BSO-treated cells. We conclude that glutathione loss is one of several apoptotic changes caused by ricin, but is not a sufficient factor for the progress of apoptosis. NAC may prevent ricin-induced apoptosis through maintaining an intracellular reducing condition by acting as a thiol supplier.  (+info)

Apoptosis in hematopoietic cells (FL5.12) caused by interleukin-3 withdrawal: relationship to caspase activity and the loss of glutathione. (4/573)

The mechanism of cell death caused by cytokine deprivation remains largely unknown. FL5.12 cells (a murine prolymphocytic cell line), following interleukin-3 (IL-3) withdrawal, undergo a decrease in intracellular glutathione (GSH) that precedes the onset of apoptosis. In the present study, the induction of apoptosis following IL-3 withdrawal or GSH depletion with DL-buthionine-[S,R,]-sulfoximine (BSO) was examined. Both conditions caused time-dependent increases in phosphatidylserine externalization, acridine orange and ethidium bromide staining, decreases in mitochondrial membrane potential, processing and activation of caspase-3 and proteolysis of the endogenous caspase substrate poly(adenosine diphosphate ribose)polymerase (PARP). Apoptosis induced by IL-3 deprivation but not BSO also caused lamin B1 cleavage, suggesting activation of caspase-6. Despite a more profound depletion of GSH after BSO than withdrawal of IL-3, the extent of apoptosis was somewhat lower. Benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone (z-VAD.fmk) blocked this caspase activity and prevented cell death after BSO exposure but not after IL-3 deprivation. Following IL-3 withdrawal, the caspase inhibitors z-VAD.fmk and boc-asp(OMe)fluoromethylketone (boc-asp.fmk) prevented the cleavage and activation of caspase-3, the breakdown of lamin B1 and partially mitigated PARP degradation. However, the externalization of phosphatidylserine, the fall in mitochondrial membrane potential and subsequent apoptotic cell death still occurred. These results suggest that IL-3 withdrawal may mediate cell death by a mechanism independent of both caspase activation and the accompanying loss of GSH.  (+info)

ATP-Dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. (5/573)

Non-P-glycoprotein-mediated multidrug-resistant C-A120 cells that overexpressed multidrug resistance protein (MRP) were 10.8- and 29. 6-fold more resistant to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11) and SN-38, respectively, than parental KB-3-1 cells. To see whether MRP is involved in CPT-11 and SN-38 resistance, MRP cDNA was transfected into KB-3-1 cells. The transfectant, KB/MRP, which overexpressed MRP, was resistant to both CPT-11 and SN-38. 2-[4-Diphenylmethyl)-1-piperazinyl]ethyl-5-(trans-4,6-dimethyl-1,3 , 2-dioxaphosphorinan-2-yl)-2, 6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylate P-oxide (PAK-104P) and MK571, which reversed drug resistance in MRP overexpressing multidrug-resistant cells, significantly increased the sensitivity of C-A120 and KB/MRP cells, but not of KB-3-1 cells, to CPT-11 and SN-38. The accumulation of both CPT-11 and SN-38 in C-A120 and KB/MRP cells was lower than that in KB-3-1 cells. The treatment with 10 microM PAK-104P increased the accumulation of CPT-11 and SN-38 in C-A120 and KB/MRP cells to a level similar to that found in KB-3-1 cells. The ATP-dependent efflux of CPT-11 and SN-38 from C-A120 and KB/MRP cells was inhibited by PAK-104P. DNA topoisomerase I expression, activity, and sensitivity to SN-38 were similar in the three cell lines. Furthermore, the conversion of CPT-11 to SN-38 in KB-3-1 and C-A120 cell lines was similar. These findings suggest that MRP transports CPT-11 and SN-38 and is involved in resistance to CPT-11 and SN-38 and that PAK-104P reverses the resistance to CPT-11 and SN-38 in tumors that overexpress MRP.  (+info)

Protection against hydrogen peroxide cytotoxicity in rat-1 fibroblasts provided by the oncoprotein Bcl-2: maintenance of calcium homoeostasis is secondary to the effect of Bcl-2 on cellular glutathione. (6/573)

The oncoprotein Bcl-2 protects cells against apoptosis, but the exact molecular mechanism that underlies this function has not yet been identified. Studying H2O2-induced cell injury in Rat-1 fibroblast cells, we observed that Bcl-2 had a protective effect against the increase in cytosolic calcium concentration and subsequent cell death. Furthermore, overexpression of Bcl-2 resulted in an alteration of cellular glutathione status: the total amount of cellular glutathione was increased by about 60% and the redox potential of the cellular glutathione pool was maintained in a more reduced state during H2O2 exposure compared with non-Bcl-2-expressing controls. In our cytotoxicity model, disruption of cellular glutathione homoeostasis closely correlated with the pathological elevation of cytosolic calcium concentration. Stabilization of the glutathione pool by Bcl-2, N-acetylcysteine or glucose delayed the cytosolic calcium increase and subsequent cell death, whereas depletion of glutathione by dl-buthionine-(S, R)-sulphoximine, sensitized Bcl-2-transfected cells towards cytosolic calcium increase and cell death. We therefore suggest that the protection exerted by Bcl-2 against H2O2-induced cytosolic calcium elevation and subsequent cell death is secondary to its effect on the cellular glutathione metabolism.  (+info)

Significance of glutathione-dependent antioxidant system in diabetes-induced embryonic malformations. (7/573)

Hyperglycemia-induced embryonic malformations may be due to an increase in radical formation and depletion of intracellular glutathione (GSH) in embryonic tissues. In the past, we have investigated the role of the glutathione-dependent antioxidant system and GSH on diabetes-related embryonic malformations. Embryos from streptozotocin-induced diabetic rats on gestational day 11 showed a significantly higher frequency of embryonic malformations (neural lesions 21.5 vs. 2.8%, P<0.001; nonneural lesions 47.4 vs. 6.4%, P<0.001) and growth retardation than those of normal mothers. The formation of intracellular reactive oxygen species (ROS), estimated by flow cytometry, was increased in isolated embryonic cells of diabetic rats on gestational day 11. The concentration of intracellular GSH in embryonic tissues of diabetic pregnant rats on day 11 was significantly lower than that of normal rats. The activity of y-glutamylcysteine synthetase (gamma-GCS), the rate-limiting GSH synthesizing enzyme, in embryos of diabetic rats was significantly low, associated with reduced expression of gamma-GCS mRNA. Administration of buthionine sulfoxamine (BSO), a specific inhibitor of gamma-GCS, to diabetic rats during the period of maximal teratogenic susceptibility (days 6-11 of gestation) reduced GSH by 46.7% and increased the frequency of neural lesions (62.1 vs. 21.5%, P<0.01) and nonneural lesions (79.3 vs. 47.4%, P<0.01). Administration of GSH ester to diabetic rats restored GSH concentration in the embryos and reduced the formation of ROS, leading to normalization of neural lesions (1.9 vs. 21.5%) and improvement in nonneural lesions (26.7 vs. 47.4%) and growth retardation. Administration of insulin in another group of pregnant rats during the same period resulted in complete normalization of neural lesions (4.3 vs. 21.5%), nonneural lesions (4.3 vs. 47.4%), and growth retardation with the restoration of GSH contents. Our results indicate that GSH depletion and impaired responsiveness of GSH-synthesizing enzyme to oxidative stress during organogenesis may have important roles in the development of embryonic malformations in diabetes.  (+info)

Molecular basis for hepatic detoxifying enzyme induction by 2-(allylthio)pyrazine in rats in comparison with oltipraz: effects on prooxidant production and DNA degradation. (8/573)

The expression of hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferases (GSTs) by 2-(allylthio)pyrazine (2-AP), an experimental chemopreventive agent, was investigated in rats. Northern blot analysis revealed that 2-AP caused increases in mEH, rGSTA2/3/5, and rGSTM1/2 mRNA levels. mEH and rGSTA2 proteins were also induced. Molecular basis of the enzyme induction by 2-AP was studied in comparison with oltipraz (Olt). Rats exposed to buthionine sulfoximine, a GSH-depleting agent, before treatment with either 2-AP or Olt exhibited greater increases in the mRNA levels than the individual treatment. Conversely, increases of the mRNAs were prevented by cysteine treatment, indicating that metabolic intermediates or reactive oxygens produced from the agents could be reduced by cysteine. Gel shift analysis revealed that nuclear factor-kappaB, which is associated with the altered cellular redox state, was not activated by the agents. Effects of these agents on the breakage of phix-174 DNA were compared in vitro. 2-AP effectively reduced the conversion of supercoiled DNA to the open circular form induced by benzenetriol and prevented benzenetriol- and iron-catalyzed degradation of DNA, whereas Olt failed to prevent strand breakage of DNA. These results provided evidence that: 1) 2-AP was effective in elevating the hepatic mEH and GST gene expression in rats, which might be mediated with the production of reactive oxygen species; 2) nuclear factor-kappaB activation was not involved in the induction of the detoxifying enzymes by either 2-AP or Olt in spite of their production of reactive oxygens in vivo; and 3) the antioxidant effect of 2-AP in vitro differed from that of Olt.  (+info)

Buthionine Sulfoximine (BSO) is a chemical compound that is known to inhibit the enzyme gamma-glutamylcysteine synthetase, which plays a crucial role in the production of glutathione, a powerful antioxidant in the body. By inhibiting this enzyme, BSO can deplete glutathione levels in cells, making it a useful tool in research to study the effects of glutathione depletion on various biological processes. It is often used in laboratory experiments and clinical trials for its potential therapeutic benefits in cancer treatment and other diseases associated with oxidative stress. However, its use as a therapeutic agent is still being investigated and has not yet been approved by regulatory agencies for widespread clinical use.

Methionine Sulfoximine (MSO) is not a medical term itself, but it is a compound that has been used in research and scientific studies. It's a stable analogue of the essential amino acid methionine, which can be found in some foods like sesame seeds, Brazil nuts, and fish.

Methionine Sulfoximine has been used in research to study the metabolism and transport of methionine in cells and organisms. It is also known for its ability to inhibit the enzyme cystathionine β-synthase (CBS), which plays a role in the metabolism of homocysteine, an amino acid associated with cardiovascular disease when present at high levels.

However, Methionine Sulfoximine is not used as a therapeutic agent or medication in humans due to its potential toxicity and lack of established clinical benefits.

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

Glutamate-cysteine ligase (GCL) is an essential enzyme in the biosynthesis of glutathione, a major antioxidant in cells. It catalyzes the reaction between glutamate and cysteine to form γ-glutamylcysteine, which is then combined with glycine by glutathione synthetase to produce glutathione.

GCL has two subunits: a catalytic subunit (GCLC) and a modulatory subunit (GCLM). The former contains the active site for the formation of the peptide bond between glutamate and cysteine, while the latter regulates the activity of GCLC by affecting its sensitivity to feedback inhibition by glutathione.

The proper functioning of GCL is critical for maintaining cellular redox homeostasis and protecting against oxidative stress, making it a potential target for therapeutic intervention in various diseases associated with oxidative damage, such as neurodegenerative disorders, cancer, and aging-related conditions.

"Maleate" is not a medical term in and of itself, but it is a chemical compound that can be found in some medications. Maleic acid or its salts (maleates) are used as a keratolytic agent in topical medications, which means they help to break down and remove dead skin cells. They can also be used as a preservative or a buffering agent in various pharmaceutical preparations.

Maleic acid is a type of organic compound known as a dicarboxylic acid, which contains two carboxyl groups. In the case of maleic acid, these carboxyl groups are located on a single carbon atom, which makes it a cis-conjugated diacid. This structural feature gives maleic acid unique chemical properties that can be useful in various pharmaceutical and industrial applications.

It's worth noting that maleic acid and its salts should not be confused with "maleate" as a gender-specific term, which refers to something related to or characteristic of males.

Antimetabolites are a class of drugs that interfere with the normal metabolic processes of cells, particularly those involved in DNA replication and cell division. They are commonly used as chemotherapeutic agents to treat various types of cancer because many cancer cells divide more rapidly than normal cells. Antimetabolites work by mimicking natural substances needed for cell growth and division, such as nucleotides or amino acids, and getting incorporated into the growing cells' DNA or protein structures, which ultimately leads to the termination of cell division and death of the cancer cells. Examples of antimetabolites include methotrexate, 5-fluorouracil, and capecitabine.

Acetylcysteine is a medication that is used for its antioxidant effects and to help loosen thick mucus in the lungs. It is commonly used to treat conditions such as chronic bronchitis, emphysema, and cystic fibrosis. Acetylcysteine is also known by the brand names Mucomyst and Accolate. It works by thinning and breaking down mucus in the airways, making it easier to cough up and clear the airways. Additionally, acetylcysteine is an antioxidant that helps to protect cells from damage caused by free radicals. It is available as a oral tablet, liquid, or inhaled medication.

Glutathione synthase is a type of enzyme involved in the synthesis of glutathione, a vital antioxidant that helps protect cells from damage caused by free radicals and peroxides. Glutathione synthase specifically catalyzes the final step in glutathione biosynthesis, which is the reaction between gamma-glutamylcysteine and glycine to form glutathione. This enzyme plays a crucial role in maintaining cellular health and function by helping to regulate oxidative stress and other important physiological processes.

Glutathione disulfide (GSSG) is the oxidized form of glutathione (GSH), which is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It plays a crucial role in maintaining cellular redox homeostasis by scavenging free radicals and reactive oxygen species (ROS) in the body.

Glutathione exists in two forms - reduced (GSH) and oxidized (GSSG). In the reduced form, glutathione has a sulfhydryl group (-SH), which can donate an electron to neutralize free radicals and ROS. When glutathione donates an electron, it becomes oxidized and forms glutathione disulfide (GSSG).

Glutathione disulfide is a dimer of two glutathione molecules linked by a disulfide bond (-S-S-) between the sulfur atoms of their cysteine residues. The body can recycle GSSG back to its reduced form (GSH) through the action of an enzyme called glutathione reductase, which requires NADPH as a reducing agent.

Maintaining a proper balance between GSH and GSSG is essential for cellular health, as it helps regulate various physiological processes such as DNA synthesis, gene expression, immune function, and apoptosis (programmed cell death). An imbalance in glutathione homeostasis can lead to oxidative stress, inflammation, and the development of various diseases.

Cystine is a naturally occurring amino acid in the body, which is formed from the oxidation of two cysteine molecules. It is a non-essential amino acid, meaning that it can be produced by the body and does not need to be obtained through diet. Cystine plays important roles in various biological processes, including protein structure and antioxidant defense. However, when cystine accumulates in large amounts, it can form crystals or stones, leading to conditions such as cystinuria, a genetic disorder characterized by the formation of cystine kidney stones.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Pyrrolidonecarboxylic acid, also known as Proline or Prolinic acid, is an organic compound with the formula N-pyrrolidinecarboxylic acid. It is a cyclic amino acid, which means that its side chain is bonded to the rest of the molecule in a ring structure.

Proline is an important constituent of many proteins and plays a crucial role in maintaining the structural integrity of the protein. It is classified as a non-essential amino acid because it can be synthesized by the human body from other amino acids, such as glutamic acid.

Pyrrolidonecarboxylic acid has a variety of uses in medicine and industry, including as a chiral auxiliary in organic synthesis, a building block for pharmaceuticals, and a component in cosmetics and personal care products. It is also used as a buffering agent and a stabilizer in various medical and industrial applications.

Glutathione reductase (GR) is an enzyme that plays a crucial role in maintaining the cellular redox state. The primary function of GR is to reduce oxidized glutathione (GSSG) to its reduced form (GSH), which is an essential intracellular antioxidant. This enzyme utilizes nicotinamide adenine dinucleotide phosphate (NADPH) as a reducing agent in the reaction, converting it to NADP+. The medical definition of Glutathione Reductase is:

Glutathione reductase (GSR; EC is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH as a cofactor. This enzyme is essential for maintaining the cellular redox balance and protecting cells from oxidative stress by regenerating the active form of glutathione, a vital antioxidant and detoxifying agent.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Drug resistance, also known as antimicrobial resistance, is the ability of a microorganism (such as bacteria, viruses, fungi, or parasites) to withstand the effects of a drug that was originally designed to inhibit or kill it. This occurs when the microorganism undergoes genetic changes that allow it to survive in the presence of the drug. As a result, the drug becomes less effective or even completely ineffective at treating infections caused by these resistant organisms.

Drug resistance can develop through various mechanisms, including mutations in the genes responsible for producing the target protein of the drug, alteration of the drug's target site, modification or destruction of the drug by enzymes produced by the microorganism, and active efflux of the drug from the cell.

The emergence and spread of drug-resistant microorganisms pose significant challenges in medical treatment, as they can lead to increased morbidity, mortality, and healthcare costs. The overuse and misuse of antimicrobial agents, as well as poor infection control practices, contribute to the development and dissemination of drug-resistant strains. To address this issue, it is crucial to promote prudent use of antimicrobials, enhance surveillance and monitoring of resistance patterns, invest in research and development of new antimicrobial agents, and strengthen infection prevention and control measures.

I couldn't find a medical definition for "diamide" as it is not a term commonly used in medicine or biomedical sciences. The term "diamide" is a chemical name that refers to a compound containing two amide groups. It may have various uses in different scientific fields, such as chemistry and biochemistry, but it is not a medical term.

Melphalan is an antineoplastic agent, specifically an alkylating agent. It is used in the treatment of multiple myeloma and other types of cancer. The medical definition of Melphalan is:

A nitrogen mustard derivative that is used as an alkylating agent in the treatment of cancer, particularly multiple myeloma and ovarian cancer. Melphalan works by forming covalent bonds with DNA, resulting in cross-linking of the double helix and inhibition of DNA replication and transcription. This ultimately leads to cell cycle arrest and apoptosis (programmed cell death) in rapidly dividing cells, such as cancer cells.

Melphalan is administered orally or intravenously, and its use is often accompanied by other anticancer therapies, such as radiation therapy or chemotherapy. Common side effects of Melphalan include nausea, vomiting, diarrhea, and bone marrow suppression, which can lead to anemia, neutropenia, and thrombocytopenia. Other potential side effects include hair loss, mucositis, and secondary malignancies.

It is important to note that Melphalan should be used under the close supervision of a healthcare professional, as it can cause serious adverse reactions if not administered correctly.

Sulfhydryl compounds, also known as thiol compounds, are organic compounds that contain a functional group consisting of a sulfur atom bonded to a hydrogen atom (-SH). This functional group is also called a sulfhydryl group. Sulfhydryl compounds can be found in various biological systems and play important roles in maintaining the structure and function of proteins, enzymes, and other biomolecules. They can also act as antioxidants and help protect cells from damage caused by reactive oxygen species. Examples of sulfhydryl compounds include cysteine, glutathione, and coenzyme A.

Antioxidants are substances that can prevent or slow damage to cells caused by free radicals, which are unstable molecules that the body produces as a reaction to environmental and other pressures. Antioxidants are able to neutralize free radicals by donating an electron to them, thus stabilizing them and preventing them from causing further damage to the cells.

Antioxidants can be found in a variety of foods, including fruits, vegetables, nuts, and grains. Some common antioxidants include vitamins C and E, beta-carotene, and selenium. Antioxidants are also available as dietary supplements.

In addition to their role in protecting cells from damage, antioxidants have been studied for their potential to prevent or treat a number of health conditions, including cancer, heart disease, and age-related macular degeneration. However, more research is needed to fully understand the potential benefits and risks of using antioxidant supplements.

Reactive Oxygen Species (ROS) are highly reactive molecules containing oxygen, including peroxides, superoxide, hydroxyl radical, and singlet oxygen. They are naturally produced as byproducts of normal cellular metabolism in the mitochondria, and can also be generated by external sources such as ionizing radiation, tobacco smoke, and air pollutants. At low or moderate concentrations, ROS play important roles in cell signaling and homeostasis, but at high concentrations, they can cause significant damage to cell structures, including lipids, proteins, and DNA, leading to oxidative stress and potential cell death.

Gamma-glutamyltransferase (GGT), also known as gamma-glutamyl transpeptidase, is an enzyme found in many tissues, including the liver, bile ducts, and pancreas. GGT is involved in the metabolism of certain amino acids and plays a role in the detoxification of various substances in the body.

GGT is often measured as a part of a panel of tests used to evaluate liver function. Elevated levels of GGT in the blood may indicate liver disease or injury, bile duct obstruction, or alcohol consumption. However, it's important to note that several other factors can also affect GGT levels, so abnormal results should be interpreted in conjunction with other clinical findings and diagnostic tests.

Hydrogen peroxide (H2O2) is a colorless, odorless, clear liquid with a slightly sweet taste, although drinking it is harmful and can cause poisoning. It is a weak oxidizing agent and is used as an antiseptic and a bleaching agent. In diluted form, it is used to disinfect wounds and kill bacteria and viruses on the skin; in higher concentrations, it can be used to bleach hair or remove stains from clothing. It is also used as a propellant in rocketry and in certain industrial processes. Chemically, hydrogen peroxide is composed of two hydrogen atoms and two oxygen atoms, and it is structurally similar to water (H2O), with an extra oxygen atom. This gives it its oxidizing properties, as the additional oxygen can be released and used to react with other substances.

Glutathione peroxidase (GPx) is a family of enzymes with peroxidase activity whose main function is to protect the organism from oxidative damage. They catalyze the reduction of hydrogen peroxide, lipid peroxides, and organic hydroperoxides to water or corresponding alcohols, using glutathione (GSH) as a reducing agent, which is converted to its oxidized form (GSSG). There are several isoforms of GPx found in different tissues, including GPx1 (also known as cellular GPx), GPx2 (gastrointestinal GPx), GPx3 (plasma GPx), GPx4 (also known as phospholipid hydroperoxide GPx), and GPx5-GPx8. These enzymes play crucial roles in various biological processes, such as antioxidant defense, cell signaling, and apoptosis regulation.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Medical definitions of "oxidants" refer to them as oxidizing agents or substances that can gain electrons and be reduced. They are capable of accepting electrons from other molecules in chemical reactions, leading to the production of oxidation products. In biological systems, oxidants play a crucial role in various cellular processes such as energy production and immune responses. However, an imbalance between oxidant and antioxidant levels can lead to a state of oxidative stress, which has been linked to several diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. Examples of oxidants include reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, and hydroxyl radical, as well as reactive nitrogen species (RNS), such as nitric oxide and peroxynitrite.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Arsenicals are a group of chemicals that contain arsenic, a naturally occurring element that is toxic to humans and animals. Arsenic can combine with other elements such as chlorine, sulfur, or carbon to form various inorganic and organic compounds known as arsenicals. These compounds have been used in a variety of industrial and agricultural applications, including wood preservatives, pesticides, and herbicides.

Exposure to high levels of arsenic can cause serious health effects, including skin damage, circulatory problems, and increased risk of cancer. Long-term exposure to lower levels of arsenic can also lead to chronic health issues, such as neurological damage and diabetes. Therefore, the use of arsenicals is regulated in many countries to minimize human and environmental exposure.

Glutathione transferases (GSTs) are a group of enzymes involved in the detoxification of xenobiotics and endogenous compounds. They facilitate the conjugation of these compounds with glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, which results in more water-soluble products that can be easily excreted from the body.

GSTs play a crucial role in protecting cells against oxidative stress and chemical injury by neutralizing reactive electrophilic species and peroxides. They are found in various tissues, including the liver, kidneys, lungs, and intestines, and are classified into several families based on their structure and function.

Abnormalities in GST activity have been associated with increased susceptibility to certain diseases, such as cancer, neurological disorders, and respiratory diseases. Therefore, GSTs have become a subject of interest in toxicology, pharmacology, and clinical research.

Glutamate-ammonia ligase, also known as glutamine synthetase, is an enzyme that plays a crucial role in nitrogen metabolism. It catalyzes the formation of glutamine from glutamate and ammonia in the presence of ATP, resulting in the conversion of ammonia to a less toxic form. This reaction is essential for maintaining nitrogen balance in the body and for the synthesis of various amino acids, nucleotides, and other biomolecules. The enzyme is widely distributed in various tissues, including the brain, liver, and muscle, and its activity is tightly regulated through feedback inhibition by glutamine and other metabolites.

Antimetabolites are a class of antineoplastic (chemotherapy) drugs that interfere with the metabolism of cancer cells and inhibit their growth and proliferation. These agents are structurally similar to naturally occurring metabolites, such as amino acids, nucleotides, and folic acid, which are essential for cellular replication and growth. Antimetabolites act as false analogs and get incorporated into the growing cells' DNA or RNA, causing disruption of the normal synthesis process, leading to cell cycle arrest and apoptosis (programmed cell death).

Examples of antimetabolite drugs include:

1. Folate antagonists: Methotrexate, Pemetrexed
2. Purine analogs: Mercaptopurine, Thioguanine, Fludarabine, Cladribine
3. Pyrimidine analogs: 5-Fluorouracil (5-FU), Capecitabine, Cytarabine, Gemcitabine

These drugs are used to treat various types of cancers, such as leukemias, lymphomas, breast, ovarian, and gastrointestinal cancers. Due to their mechanism of action, antimetabolites can also affect normal, rapidly dividing cells in the body, leading to side effects like myelosuppression (decreased production of blood cells), mucositis (inflammation and ulceration of the gastrointestinal tract), and alopecia (hair loss).

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

Catalase is a type of enzyme that is found in many living organisms, including humans. Its primary function is to catalyze the decomposition of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from the harmful effects of hydrogen peroxide, which can be toxic at high concentrations.

The chemical reaction catalyzed by catalase can be represented as follows:

H2O2 + Catalase → H2O + O2 + Catalase

Catalase is a powerful antioxidant enzyme that plays an important role in protecting cells from oxidative damage. It is found in high concentrations in tissues that produce or are exposed to hydrogen peroxide, such as the liver, kidneys, and erythrocytes (red blood cells).

Deficiency in catalase activity has been linked to several diseases, including cancer, neurodegenerative disorders, and aging. On the other hand, overexpression of catalase has been shown to have potential therapeutic benefits in various disease models, such as reducing inflammation and oxidative stress.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

... (BSO) is a sulfoximine derivative which reduces levels of glutathione and is being investigated as an ... Buthionine sulfoximine may also be used to increase the sensitivity of parasites to oxidative antiparasitic drugs. Defty, CL; ... "Definition of buthionine sulfoximine - National Cancer Institute Drug Dictionary". 2011-02-02. v t e (Articles without KEGG ... Sulfoximines, All stub articles, Organic compound stubs). ...
... buthionine sulfoximine (BSO)). The result is an overall increase in endogenous ROS, which when above a cellular tolerability ...
"Glutathione Levels And Chemosensitizing Effects Of Buthionine Sulfoximine In Human Malignant Glioma Cells". Journal of Neuro- ...
"Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine)". J Biol ...
Piwien-Pilipuk G, Galigniana MD (February 2000). "Oxidative stress induced by L-buthionine-(S,R)-sulfoximine, a selective ...
... inhibition of iNOS with L-NAME in isolated perfused livers and also in rat livers depleted of GSH with buthionine sulfoximine. ...
... and oxygen Buthionine sulfoximine, a chemical substance inhibiting glutathione synthesis Brain storm optimization algorithm ...
... methionine sulfoximine MeSH D12.125.166.676.620.125 - buthionine sulfoximine MeSH D12.125.166.676.900 - selenomethionine MeSH ...
... methionine sulfoximine MeSH D02.886.030.676.620.125 - buthionine sulfoximine MeSH D02.886.030.676.900 - selenomethionine MeSH ...
... buthionine sulfoximine C cell - c-erbB-2 - c-kit - CA 19-9 assay - CA-125 - CA-125 test - cachexia - calcitonin - calcitriol - ...
Buthionine Sulfoximine and Suppressive Antiretroviral Therapy Induce Post-Therapy Control of Viremia in Chronically SIVmac251 ...
Buthionine sulfoximine (BSO) is a sulfoximine derivative which reduces levels of glutathione and is being investigated as an ... Buthionine sulfoximine may also be used to increase the sensitivity of parasites to oxidative antiparasitic drugs. Defty, CL; ... "Definition of buthionine sulfoximine - National Cancer Institute Drug Dictionary". 2011-02-02. v t e (Articles without KEGG ... Sulfoximines, All stub articles, Organic compound stubs). ...
L-Buthionine sulfoximine. Induces ferroptosis by inhibiting glutathione synthesis. 7821. ML 162. ...
Oral supplementation of l-buthionine-(S,R)-sulfoximine (BSO) inhibited glutathione synthesis. Dorsiflexor muscles in the ... L-Buthionine-(S,R)-sulfoximine; Muscle; Oxidative stress; Stretch-shortening contraction ...
L-S,R-buthionine sulfoximine: historical development and clinical issues. Chem Biol Interact. 1998; 111-112:239-54. Google ... L-buthionine sulfoximine (Sigma, St. Louis, MO, USA) was freshly prepared for each experiment as a 10 mM solution in water and ... Hedley DW, McCulloch EA, Minden MD, Chow S, Curtis J. Antileukemic action of buthionine sulfoximine: evidence for an intrinsic ... Our studies demonstrate that depletion of cellular glutathione using dl-buthionine-[S,R]-sulfoximine (BSO) enhances ATO ...
Maitra, I., Serbinova, E., Trischler, H., and Packer, L. Alpha-lipoic acid prevents buthionine sulfoximine-induced cataract ...
Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, ...
The effects of glutathione (GSH) and the potent inhibitor of GSH synthesis buthionine sulfoximine (BSO) on the MeHg induced- ...
15. Ooi TC, Chan KM, Sharif R. Zinc L-Carnosine Protects CCD-18co Cells from L-Buthionine Sulfoximine-Induced Oxidative Stress ...
keywords = "Buthionine sulfoximine, Drug resistance, Glutathione, Ovarian tumor cells, Selenite, Selenodiglutathione",. author ... Pre-exposure of the two cell types to buthionine sulfoximine eliminated the difference in their intracellular glutathione ... Pre-exposure of the two cell types to buthionine sulfoximine eliminated the difference in their intracellular glutathione ... Pre-exposure of the two cell types to buthionine sulfoximine eliminated the difference in their intracellular glutathione ...
keywords = "Buthionine sulfoximine, Fenretinide, Free radicals, Glutathione, Neuroblastoma, Reactive oxygen species, Spheroids ... 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines ... 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines ... 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines ...
Galactose (Gal), 2-deoxy-d-glucose (2DG), d,l-buthionine-(S, R)-sulfoximine (BSO) and tumour necrosis factor alpha (TNF-α) were ... mMSC mouse mesenchymal stem cell, MSC mesenchymal stem cell, Gal galactose medium, BSO buthioninesulfoximine, 2DG 2-deoxy-d- ...
Inhibition of glutathione with DL-buthionine-sulfoximine (BSO; 22.2 mg/kg, 40 min, n = 6) drastically decreased Frank-Starling ...
ltGLICOs were cultured in 50uM buthionine sulphoximine (BSO), an inhibitor of glutathione-synthetase an enzyme critical for the ... detected in control 5-month-old ltGLICO and 5-month-old ltGLICO treated for 6 weeks with 50uM Buthionine sulfoximine (BSO) ...
Aqueous extract of Trigonella foenum-graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide ...
2012) biotic pathogens of Aloe Vera Plant Extract Against Cyclophosphamide and Buthionine Sulfoximine Induced Toxicities in the ...
This is L-Buthionine-(S,R)-sulfoximine connected with type 2 diabetes and regarded area of the metabolic symptoms [1]. Insulin ...
Besides, Buthionine sulfoximine (BSO) could promote cuproptosis by depleting GSH which inhibits cuproptosis by acting as a ...
Glutamate, cystine deprivation, homocysteic acid, and the glutathione synthesis inhibitor buthionine sulfoximine all cause ...
... enhanced by boosting intracellular glutathione using glutathione monoethyl ester or decreased using buthionine sulfoximine. The ... enhanced by boosting intracellular glutathione using glutathione monoethyl ester or decreased using buthionine sulfoximine. The ... DNA, Genetic Vectors, Glutathione, Luciferases, Methionine Sulfoximine, Oxidation-Reduction, Polyethyleneimine, Polymethacrylic ...
... showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the ...
Objective: In the current study we aimed to investigate the effects of buthionine sulfoximine (BSO, inhibitor for glutathione ...
22 When de-novo GSH synthesis is inhibited by buthionine sulphoximine (an irreversible inhibitor of. 911. rercent or ...
L-Buthionine-(S,R)-sulfoximine. *R788. *Triapine. Monthly Archives: September 2020 Post navigation. ← Older posts ...
L-Buthionine-(S,R)-sulfoximine. Monthly Archives: October 2023 Post navigation. ← Older posts ...
  • Oral supplementation of l-buthionine-(S,R)-sulfoximine (BSO) inhibited glutathione synthesis. (cdc.gov)
  • To enhance the efficacy of fenretinide (4HPR)-induced reactive oxygen species (ROS) in neuroblastoma, 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines and spheroids, the latter being a three-dimensional tumor model. (prinsesmaximacentrum.nl)
  • Causality was established in in vivo experiments in rats that, first, showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the nucleus accumbens impaired effort-based reward-incentivized performance. (epfl.ch)
  • In of L. major infections [ 5 ] and, secondly, this way, it has been shown that buthionine that prostaglandins can inhibit the develop- sulfoximine, an inhibitor of GSH synthesis, ment of Th1 response and enhance the exerts an inhibitory effect on L. donovani development of type 2 helper (Th2) cell growth [ 1 ]. (who.int)
  • Pre-exposure of the two cell types to buthionine sulfoximine eliminated the difference in their intracellular glutathione levels, as well as most of their differential sensitivity to selenite. (researchwithrutgers.com)
  • Disulphide-linked complexes showed 40-100-fold higher transfection activity than thioether-linked ones, and activity was selectively further enhanced by boosting intracellular glutathione using glutathione monoethyl ester or decreased using buthionine sulfoximine. (ox.ac.uk)
  • Besides, Buthionine sulfoximine (BSO) could promote cuproptosis by depleting GSH which inhibits cuproptosis by acting as a thiol-containing copper chelator. (biomedcentral.com)
  • Buthionine sulfoximine may also be used to increase the sensitivity of parasites to oxidative antiparasitic drugs. (wikipedia.org)
  • Our studies demonstrate that depletion of cellular glutathione using dl-buthionine-[S,R]-sulfoximine (BSO) enhances ATO activity against CML cells. (haematologica.org)
  • Buthionine sulfoximine (BSO) is a sulfoximine derivative which reduces levels of glutathione and is being investigated as an adjunct with chemotherapy in the treatment of cancer. (wikipedia.org)
  • The effects of GSH-modulation on the antileukemic activity of ATO in CML were studied using dl-buthionine-[S,R]-sulfoximine (BSO), a specific and irreversible inhibitior of the rate limiting enzyme in GSH-biosynthesis γ-glutamylcysteine synthetase. (haematologica.org)
  • In this way, it has been shown that buthionine sulfoximine, an inhibitor of GSH synthesis, exerts an inhibitory effect on L. donovani growth [1]. (who.int)
  • In combination with the GSH synthesis inhibitor buthionine sulfoximine, complete GSH depletion, diminished clonogenic capacity, enhanced radiosensitivity, and extended chemosensitivity were achievable selectively in high MRP1-expressing cancer cells. (edu.au)
  • In of L. major infections [ 5 ] and, secondly, this way, it has been shown that buthionine that prostaglandins can inhibit the develop- sulfoximine, an inhibitor of GSH synthesis, ment of Th1 response and enhance the exerts an inhibitory effect on L. donovani development of type 2 helper (Th2) cell growth [ 1 ]. (who.int)
  • 13. Glutathione depletion by L-buthionine sulfoximine antagonizes taxol cytotoxicity. (nih.gov)
  • 14. Depletion of glutathione by buthionine sulfoxine is cytotoxic for human neuroblastoma cell lines via apoptosis. (nih.gov)
  • 1. Antagonism of buthionine sulfoximine cytotoxicity for human neuroblastoma cell lines by hypoxia is reversed by the bioreductive agent tirapazamine. (nih.gov)
  • 3. Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy. (nih.gov)
  • Furthermore, pre-treatment with 100-500 mu M buthionine sulfoximine (BSO) of LLC-MK2 potentiates DAB cytotoxicity, whereas 5 mM N-acetyl-cysteine (NAC) protects cells from oxidative stress. (unifesp.br)
  • As MRP1 expression in NSCLC was also associated with NRF2 activation, a key driver of treatment resistance in NSCLC, the modulator and buthionine sulfoximine combination was tested and found to be effective against cell lines representative of this highly resistant subset of NSCLC. (edu.au)
  • 6. Enhancement of arsenic trioxide-induced apoptosis in renal cell carcinoma cells by L-buthionine sulfoximine. (nih.gov)
  • 7. The effects of N-acetyl cysteine, buthionine sulfoximine, diethyldithiocarbamate or 3-amino-1,2,4-triazole on antimycin A-treated Calu-6 lung cells in relation to cell growth, reactive oxygen species and glutathione. (nih.gov)
  • 11. Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. (nih.gov)
  • In vivo production of different chloroform metabolites: effect of phenobarbital and buthionine sulfoximine pretreatment. (nih.gov)