rab GTP-Binding Proteins: A large family of MONOMERIC GTP-BINDING PROTEINS that play a key role in cellular secretory and endocytic pathways. EC 3.6.1.-.GTP-Binding Proteins: Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.rab5 GTP-Binding Proteins: A genetically related subfamily of RAB GTP-BINDING PROTEINS involved in transport from the cell membrane to early endosomes. This enzyme was formerly listed as EC 3.6.1.47.rab4 GTP-Binding Proteins: A genetically related subfamily of RAB GTP-BINDING PROTEINS involved in recycling of proteins such as cell surface receptors from early endosomes to the cell surface. This enzyme was formerly listed as EC 3.6.1.47.Guanosine Triphosphate: Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety.rab3A GTP-Binding Protein: The most abundant member of the RAB3 GTP-BINDING PROTEINS. It is involved in calcium-dependent EXOCYTOSIS and is localized to neurons and neuroendocrine cells. This enzyme was formerly listed as EC 3.6.1.47.rab3 GTP-Binding Proteins: A genetically related subfamily of RAB GTP-BINDING PROTEINS involved in calcium-dependent EXOCYTOSIS. This enzyme was formerly listed as EC 3.6.1.47.rab2 GTP-Binding Protein: A protein involved in transport between the ENDOPLASMIC RETICULUM and the GOLGI APPARATUS. This enzyme was formerly listed as EC 3.6.1.47.rab1 GTP-Binding Proteins: A genetically related subfamily of RAB GTP-BINDING PROTEINS involved in vesicle transport between the ENDOPLASMIC RETICULUM and the GOLGI APPARATUS and through early Golgi compartments. This enzyme was formerly listed as EC 3.6.1.47.GTP Phosphohydrolases: Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Guanosine Diphosphate: A guanine nucleotide containing two phosphate groups esterified to the sugar moiety.Guanine Nucleotide Dissociation Inhibitors: Protein factors that inhibit the dissociation of GDP from GTP-BINDING PROTEINS.Endosomes: Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface.Protein Prenylation: A post-translational modification of proteins by the attachment of an isoprenoid to the C-terminal cysteine residue. The isoprenoids used, farnesyl diphosphate or geranylgeranyl diphosphate, are derived from the same biochemical pathway that produces cholesterol.Monomeric GTP-Binding Proteins: A class of monomeric, low molecular weight (20-25 kDa) GTP-binding proteins that regulate a variety of intracellular processes. The GTP bound form of the protein is active and limited by its inherent GTPase activity, which is controlled by an array of GTPase activators, GDP dissociation inhibitors, and guanine nucleotide exchange factors. This enzyme was formerly listed as EC 3.6.1.47Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Golgi Apparatus: A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)Guanosine 5'-O-(3-Thiotriphosphate): Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes.ADP-Ribosylation Factors: MONOMERIC GTP-BINDING PROTEINS that were initially recognized as allosteric activators of the MONO(ADP-RIBOSE) TRANSFERASE of the CHOLERA TOXIN catalytic subunit. They are involved in vesicle trafficking and activation of PHOSPHOLIPASE D. This enzyme was formerly listed as EC 3.6.1.47Guanine Nucleotide Exchange Factors: Protein factors that promote the exchange of GTP for GDP bound to GTP-BINDING PROTEINS.GTPase-Activating Proteins: Proteins that activate the GTPase of specific GTP-BINDING PROTEINS.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Pertussis Toxin: One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity.Virulence Factors, Bordetella: A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.rho GTP-Binding Proteins: A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47.ADP Ribose Transferases: Enzymes that transfer the ADP-RIBOSE group of NAD or NADP to proteins or other small molecules. Transfer of ADP-ribose to water (i.e., hydrolysis) is catalyzed by the NADASES. The mono(ADP-ribose)transferases transfer a single ADP-ribose. POLY(ADP-RIBOSE) POLYMERASES transfer multiple units of ADP-ribose to protein targets, building POLY ADENOSINE DIPHOSPHATE RIBOSE in linear or branched chains.Adenosine Diphosphate Ribose: An ester formed between the aldehydic carbon of RIBOSE and the terminal phosphate of ADENOSINE DIPHOSPHATE. It is produced by the hydrolysis of nicotinamide-adenine dinucleotide (NAD) by a variety of enzymes, some of which transfer an ADP-ribosyl group to target proteins.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Botulinum Toxins: Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS.Choroideremia: An X chromosome-linked abnormality characterized by atrophy of the choroid and degeneration of the retinal pigment epithelium causing night blindness.Thionucleotides: Nucleotides in which the base moiety is substituted with one or more sulfur atoms.Cell Membrane: The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.Kinetics: The rate dynamics in chemical or physical systems.Vesicular Transport Proteins: A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported.ras Proteins: Small, monomeric GTP-binding proteins encoded by ras genes (GENES, RAS). The protooncogene-derived protein, PROTO-ONCOGENE PROTEIN P21(RAS), plays a role in normal cellular growth, differentiation and development. The oncogene-derived protein (ONCOGENE PROTEIN P21(RAS)) can play a role in aberrant cellular regulation during neoplastic cell transformation (CELL TRANSFORMATION, NEOPLASTIC). This enzyme was formerly listed as EC 3.6.1.47.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.rhoA GTP-Binding Protein: A RHO GTP-BINDING PROTEIN involved in regulating signal transduction pathways that control assembly of focal adhesions and actin stress fibers. This enzyme was formerly listed as EC 3.6.1.47.Protein Transport: The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.Alkyl and Aryl Transferases: A somewhat heterogeneous class of enzymes that catalyze the transfer of alkyl or related groups (excluding methyl groups). EC 2.5.Poly(A)-Binding Proteins: Proteins that bind to the 3' polyadenylated region of MRNA. When complexed with RNA the proteins serve an array of functions such as stabilizing the 3' end of RNA, promoting poly(A) synthesis and stimulating mRNA translation.Cattle: Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Endocytosis: Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Melanosomes: Melanin-containing organelles found in melanocytes and melanophores.GTP Cyclohydrolase: (GTP cyclohydrolase I) or GTP 7,8-8,9-dihydrolase (pyrophosphate-forming) (GTP cyclohydrolase II). An enzyme group that hydrolyzes the imidazole ring of GTP, releasing carbon-8 as formate. Two C-N bonds are hydrolyzed and the pentase unit is isomerized. This is the first step in the synthesis of folic acid from GTP. EC 3.5.4.16 (GTP cyclohydrolase I) and EC 3.5.4.25 (GTP cyclohydrolase II).Prenylation: Attachment of isoprenoids (TERPENES) to other compounds, especially PROTEINS and FLAVONOIDS.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Hydrolysis: The process of cleaving a chemical compound by the addition of a molecule of water.Transport Vesicles: Vesicles that are involved in shuttling cargo from the interior of the cell to the cell surface, from the cell surface to the interior, across the cell or around the cell to various locations.Exocytosis: Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.rho-Specific Guanine Nucleotide Dissociation Inhibitors: A subcategory of guanine nucleotide dissociation inhibitors that are specific for RHO GTP-BINDING PROTEINS.Guanine NucleotidesSaccharomyces cerevisiae Proteins: Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Cytosol: Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.Tacrolimus Binding Proteins: A family of immunophilin proteins that bind to the immunosuppressive drugs TACROLIMUS (also known as FK506) and SIROLIMUS. EC 5.2.1.-Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Secretory Vesicles: Vesicles derived from the GOLGI APPARATUS containing material to be released at the cell surface.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Endoplasmic Reticulum: A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)Poly(A)-Binding Protein I: A poly(A) binding protein that has a variety of functions such as mRNA stabilization and protection of RNA from nuclease activity. Although poly(A) binding protein I is considered a major cytoplasmic RNA-binding protein it is also found in the CELL NUCLEUS and may be involved in transport of mRNP particles.Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.Cell Compartmentation: A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc.Guanylyl Imidodiphosphate: A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES.Transferases: Transferases are enzymes transferring a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). The classification is based on the scheme "donor:acceptor group transferase". (Enzyme Nomenclature, 1992) EC 2.Cricetinae: A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.Two-Hybrid System Techniques: Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.Adaptor Proteins, Signal Transducing: A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymesDNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Insulin-Like Growth Factor Binding Proteins: A family of soluble proteins that bind insulin-like growth factors and modulate their biological actions at the cellular level. (Int J Gynaecol Obstet 1992;39(1):3-9)Cytoplasmic Granules: Condensed areas of cellular material that may be bounded by a membrane.RNA-Binding Proteins: Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.Green Fluorescent Proteins: Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.Lysosomes: A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured. Such rupture is supposed to be under metabolic (hormonal) control. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Intracellular Membranes: Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.Bacterial Proteins: Proteins found in any species of bacterium.Mutagenesis, Site-Directed: Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Nerve Tissue ProteinsMicroscopy, Fluorescence: Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Dogs: The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)Electrophoresis, Polyacrylamide Gel: Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.Fatty Acid-Binding Proteins: Intracellular proteins that reversibly bind hydrophobic ligands including: saturated and unsaturated FATTY ACIDS; EICOSANOIDS; and RETINOIDS. They are considered a highly conserved and ubiquitously expressed family of proteins that may play a role in the metabolism of LIPIDS.Membrane Fusion: The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes.Fungal Proteins: Proteins found in any species of fungus.Molecular Weight: The sum of the weight of all the atoms in a molecule.DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.ADP-Ribosylation Factor 1: ADP-RIBOSYLATION FACTOR 1 is involved in regulating intracellular transport by modulating the interaction of coat proteins with organelle membranes in the early secretory pathway. It is a component of COAT PROTEIN COMPLEX I. This enzyme was formerly listed as EC 3.6.1.47.Guanosine Monophosphate: A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature.Binding, Competitive: The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.Dynamins: A family of high molecular weight GTP phosphohydrolases that play a direct role in vesicle transport. They associate with microtubule bundles (MICROTUBULES) and are believed to produce mechanical force via a process linked to GTP hydrolysis. This enzyme was formerly listed as EC 3.6.1.50.Cell Polarity: Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.Blotting, Western: Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.Transducin: A heterotrimeric GTP-binding protein that mediates the light activation signal from photolyzed rhodopsin to cyclic GMP phosphodiesterase and is pivotal in the visual excitation process. Activation of rhodopsin on the outer membrane of rod and cone cells causes GTP to bind to transducin followed by dissociation of the alpha subunit-GTP complex from the beta/gamma subunits of transducin. The alpha subunit-GTP complex activates the cyclic GMP phosphodiesterase which catalyzes the hydrolysis of cyclic GMP to 5'-GMP. This leads to closure of the sodium and calcium channels and therefore hyperpolarization of the rod cells. EC 3.6.1.-.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Peptide Elongation Factor Tu: A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP.Crystallography, X-Ray: The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Protein Processing, Post-Translational: Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Transglutaminases: Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence.Calcium: A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.Proteins: Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.Phosphorylation: The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.SNARE Proteins: A superfamily of small proteins which are involved in the MEMBRANE FUSION events, intracellular protein trafficking and secretory processes. They share a homologous SNARE motif. The SNARE proteins are divided into subfamilies: QA-SNARES; QB-SNARES; QC-SNARES; and R-SNARES. The formation of a SNARE complex (composed of one each of the four different types SNARE domains (Qa, Qb, Qc, and R)) mediates MEMBRANE FUSION. Following membrane fusion SNARE complexes are dissociated by the NSFs (N-ETHYLMALEIMIDE-SENSITIVE FACTORS), in conjunction with SOLUBLE NSF ATTACHMENT PROTEIN, i.e., SNAPs (no relation to SNAP 25.)Calcium-Binding Proteins: Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS.Poly(A)-Binding Protein II: A poly(A) binding protein that is involved in promoting the extension of the poly A tails of MRNA. The protein requires a minimum of ten ADENOSINE nucleotides in order for binding to mRNA. Once bound it works in conjunction with CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR to stimulate the rate of poly A synthesis by POLY A POLYMERASE. Once poly-A tails reach around 250 nucleotides in length poly(A) binding protein II no longer stimulates POLYADENYLATION. Mutations within a GCG repeat region in the gene for poly(A) binding protein II have been shown to cause the disease MUSCULAR DYSTROPHY, OCULOPHARYNGEAL.Adenosine Triphosphate: An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.Macromolecular Substances: Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.Proto-Oncogene Proteins p21(ras): Cellular proteins encoded by the H-ras, K-ras and N-ras genes. The proteins have GTPase activity and are involved in signal transduction as monomeric GTP-binding proteins. Elevated levels of p21 c-ras have been associated with neoplasia. This enzyme was formerly listed as EC 3.6.1.47.Protein Conformation: The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).GTP Phosphohydrolase-Linked Elongation Factors: Factors that utilize energy from the hydrolysis of GTP to GDP for peptide chain elongation. EC 3.6.1.-.COS Cells: CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)Peptide Elongation Factor G: Peptide Elongation Factor G catalyzes the translocation of peptidyl-tRNA from the A to the P site of bacterial ribosomes by a process linked to hydrolysis of GTP to GDP.Brain: The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.Enzyme Activation: Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.CHO Cells: CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.Periplasmic Binding Proteins: Periplasmic proteins that scavenge or sense diverse nutrients. In the bacterial environment they usually couple to transporters or chemotaxis receptors on the inner bacterial membrane.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Ribosomes: Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.Insulin-Like Growth Factor Binding Protein 3: One of the six homologous soluble proteins that bind insulin-like growth factors (SOMATOMEDINS) and modulate their mitogenic and metabolic actions at the cellular level.Tubulin: A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE.Subcellular Fractions: Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163)Mevalonic AcidAdenylosuccinate Synthase: A carbon-nitrogen ligase. During purine ribonucleotide biosynthesis, this enzyme catalyzes the synthesis of adenylosuccinate from GTP; IMP; and aspartate with the formation of orthophosphate and GDP. EC 6.3.4.4.Peptide Elongation Factors: Protein factors uniquely required during the elongation phase of protein synthesis.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Affinity Labels: Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids.Structure-Activity Relationship: The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Oncogene Protein p21(ras): Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47.Rabbits: The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.Protein Biosynthesis: The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.Tacrolimus Binding Protein 1A: A 12-KDa tacrolimus binding protein that is found associated with and may modulate the function of calcium release channels. It is a peptidyl-prolyl cis/trans isomerase which is inhibited by both tacrolimus (commonly called FK506) and SIROLIMUS.Protein Structure, Secondary: The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.Chromatography, Gel: Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.Peptide Fragments: Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.Latent TGF-beta Binding Proteins: A family of secreted multidomain proteins that were originally identified by their association with the latent form of TRANSFORMING GROWTH FACTORS. They interact with a variety of EXTRACELLULAR MATRIX PROTEINS and may play a role in the regulation of TGB-beta bioavailability.3T3 Cells: Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.Cross-Linking Reagents: Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other.Transferrin: An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states.Actins: Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.Amino Acid Substitution: The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.Conserved Sequence: A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.PhosphoproteinsChromatography, Affinity: A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Insulin-Like Growth Factor Binding Protein 2: One of the six homologous soluble proteins that bind insulin-like growth factors (SOMATOMEDINS) and modulate their mitogenic and metabolic actions at the cellular level.trans-Golgi Network: A network of membrane compartments, located at the cytoplasmic side of the GOLGI APPARATUS, where proteins and lipids are sorted for transport to various locations in the cell or cell membrane.TATA-Box Binding Protein: A general transcription factor that plays a major role in the activation of eukaryotic genes transcribed by RNA POLYMERASES. It binds specifically to the TATA BOX promoter element, which lies close to the position of transcription initiation in RNA transcribed by RNA POLYMERASE II. Although considered a principal component of TRANSCRIPTION FACTOR TFIID it also takes part in general transcription factor complexes involved in RNA POLYMERASE I and RNA POLYMERASE III transcription.Dimerization: The process by which two molecules of the same chemical composition form a condensation product or polymer.cdc42 GTP-Binding Protein: A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS. It is associated with a diverse array of cellular functions including cytoskeletal changes, filopodia formation and transport through the GOLGI APPARATUS. This enzyme was formerly listed as EC 3.6.1.47.Point Mutation: A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.Nucleotides: The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed)Septins: A family of GTP-binding proteins that were initially identified in YEASTS where they were shown to initiate the process of septation and bud formation. Septins form into hetero-oligomeric complexes that are comprised of several distinct septin subunits. These complexes can act as cytoskeletal elements that play important roles in CYTOKINESIS, cytoskeletal reorganization, BIOLOGICAL TRANSPORT, and membrane dynamics.Magnesium: A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.Cholera Toxin: An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells, and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells.Retinol-Binding Proteins: Proteins which bind with RETINOL. The retinol-binding protein found in plasma has an alpha-1 mobility on electrophoresis and a molecular weight of about 21 kDa. The retinol-protein complex (MW=80-90 kDa) circulates in plasma in the form of a protein-protein complex with prealbumin. The retinol-binding protein found in tissue has a molecular weight of 14 kDa and carries retinol as a non-covalently-bound ligand.Cell Fractionation: Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS.Cyclic AMP Response Element-Binding Protein: A protein that has been shown to function as a calcium-regulated transcription factor as well as a substrate for depolarization-activated CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASES. This protein functions to integrate both calcium and cAMP signals.Spectrometry, Fluorescence: Measurement of the intensity and quality of fluorescence.Polymerase Chain Reaction: In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.Insulin-Like Growth Factor Binding Protein 1: One of the six homologous proteins that specifically bind insulin-like growth factors (SOMATOMEDINS) and modulate their mitogenic and metabolic actions. The function of this protein is not completely defined. However, several studies demonstrate that it inhibits IGF binding to cell surface receptors and thereby inhibits IGF-mediated mitogenic and cell metabolic actions. (Proc Soc Exp Biol Med 1993;204(1):4-29)Myosin Type V: A subclass of myosin involved in organelle transport and membrane targeting. It is abundantly found in nervous tissue and neurosecretory cells. The heavy chains of myosin V contain unusually long neck domains that are believed to aid in translocating molecules over large distances.Cysteine: A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.Mutagenesis: Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.Tumor Cells, Cultured: Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Kidney: Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Multigene Family: A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)CREB-Binding Protein: A member of the p300-CBP transcription factor family that was initially identified as a binding partner for CAMP RESPONSE ELEMENT-BINDING PROTEIN. Mutations in CREB-binding protein are associated with RUBINSTEIN-TAYBI SYNDROME.S100 Calcium Binding Protein G: A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D.CCAAT-Enhancer-Binding Proteins: A class of proteins that were originally identified by their ability to bind the DNA sequence CCAAT. The typical CCAAT-enhancer binding protein forms dimers and consists of an activation domain, a DNA-binding basic region, and a leucine-rich dimerization domain (LEUCINE ZIPPERS). CCAAT-BINDING FACTOR is structurally distinct type of CCAAT-enhancer binding protein consisting of a trimer of three different subunits.Protein Isoforms: Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING.Ligands: A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)Escherichia coli Proteins: Proteins obtained from ESCHERICHIA COLI.Receptors, Cell Surface: Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.Dynamin I: A subtype of dynamin found primarily in the NEURONS of the brain.Microscopy, Confocal: A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible.Microtubules: Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.Peptide Termination Factors: Proteins that are involved in the peptide chain termination reaction (PEPTIDE CHAIN TERMINATION, TRANSLATIONAL) on RIBOSOMES. They include codon-specific class-I release factors, which recognize stop signals (TERMINATOR CODON) in the MESSENGER RNA; and codon-nonspecific class-II release factors.Cytoskeletal Proteins: Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible.Adenylate Cyclase: An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1.RNA, Small Interfering: Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
  • We present here the crystal structure of folliculin carboxy-terminal domain and demonstrate that it is distantly related to differentially expressed in normal cells and neoplasia (DENN) domain proteins, a family of Rab guanine nucleotide exchange factors (GEFs). (embl.de)
  • Using biochemical analysis, we show that folliculin has GEF activity, indicating that folliculin is probably a distantly related member of this class of Rab GEFs. (embl.de)
  • Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. (embl.de)
  • This domain occurred 119 times on human genes ( 207 proteins). (umbc.edu)
  • Here we use microarray gene profiling and electron microscopic stereology to reveal lower expression of synaptic-function-related genes (CALM2, SYN1, RAB3A, RAB4B and TUBB4) in the dlPFC of subjects with MDD and a corresponding lower number of synapses. (psych.ac.cn)
  • Tax is a 40-kDa nuclear-localizing protein that increases viral transcription from the HTLV-1 LTR as well as a number of cellular genes involved in host cell proliferation ( 17 , 30 , 34 ). (asm.org)
  • The mitogen-activated protein kinases (MAPKs) have been shown to regulate skeletal muscle function. (bireme.br)
  • Rabin8 has been shown to interact with the BBSome, a protein complex implicated in Bardet-Biedl Syndrome, and regulate cilia formation ( 8 ). (pnas.org)
  • As a control, Rabin8 did not bind to Rab5a, which is known to regulate early endosomal trafficking ( 18 ). (pnas.org)
  • Moreover, using coimmunoprecipitation assays, we identify the direct binding of p12 I with both calreticulin and calnexin, resident ER proteins which regulate calcium storage. (asm.org)
  • In several cases, a mammalian Rab can functionally replace its yeast counterpart, demonstrating conservation of functions of the proteins within the eukaryotes. (biomedcentral.com)
  • The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene. (embl.de)
  • The cDNAs were derived from a gene, designated ypt1, which codes for a protein of 205 amino acids with 71% homology to the yeast YPT1 gene product. (embl.de)
  • A monoclonal antibody specifically recognizing the 23.5-kd yeast YPT1 protein cross-reacted with a protein of identical size on protein blots of mouse, rat, pig, bovine and human cell lines. (embl.de)
  • A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. (embl.de)
  • Dong H, Roeder G. Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. (labome.org)
  • We purified from bovine brain a MEK kinase which activated MEK in a GTPgammaS-Ki-Ras-dependent manner in a cell-free system and identified it as B-Raf complexed with 14-3-3 proteins. (nii.ac.jp)
  • Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson's disease, a considerable amount of work has gone into uncovering its basic cellular function. (biomedcentral.com)
  • Leucine-rich repeat kinase 2 (LRRK2) is an enigmatic protein that has been at the centre of an increasing amount of research since its discovery in 2004. (biomedcentral.com)
  • Connecdenn 3/DENND1C binds actin linking Rab35 activation to the actin cytoskeleton. (embl.de)
  • Motility is regulated by the activity of organelle-associated motor proteins, kinesins, dyneins and myosins, which move cargo along polar MT (microtubule) and actin tracks. (portlandpress.com)
  • If you cannot find the target and/or product is not available in our catalog, please click here to contact us and request the product or submit your request for custom elisa kit production , custom recombinant protein production or custom antibody production . (mybiosource.com)
  • Custom ELISA Kits, Recombinant Proteins and Antibodies can be designed, manufactured and produced according to the researcher's specifications. (mybiosource.com)
  • Small volumes of RABIF recombinant protein vial(s) may occasionally become entrapped in the seal of the product vial during shipment and storage. (mybiosource.com)
  • Recombinant human RABIF protein, fused to His-tag at N-terminus, was expressed in E Coli and purified by using conventional chromatography techniques. (mybiosource.com)
  • Incubation of rat liver cytosol with GST-Rab1-GTP [recombinant glutathione S-transferase (GST)-Rab1 fusion protein immobilized on glutathione-Sepharose beads and loaded with guanosine 5′- O -(3′-thiotriphosphate) (GTPγS)] preferentially retained a select set of putative effector proteins when compared to controls ( Fig. 1 A, asterisks) ( 5 ). (sciencemag.org)
  • Purified, recombinant p115 (1.0 μM) directly bound GST-Rab1-GTP (lane e), but not GST-Rab1-GDP (lane d) (both at 1.0 μM). (sciencemag.org)
  • Here, combining high-resolution mass spectrometry and chemical labeling (iTRAQ) together with quantitative immunoblotting and fluorescence microscopy, we have determined the exocytotic (Rab3a, Rab3b, Rab3c, and Rab27b) and endocytic (Rab4b, Rab5a/b, Rab10, Rab11b, and Rab14) Rab machinery of SVs. (jneurosci.org)
  • Using a set of GM130 deletion mutants we also demonstrate that the rab1b binding is independent of the N‐ and C‐termini of GM130. (embopress.org)
  • Synaptotagmin I (Syt I) functions in the regulation of neurotransmitter release and multiple other cellular processes through its C2 domain binding to other molecules. (bireme.br)
  • In general, these proteins do not show sequence similarity to each other and, in fact, may have diverse functional roles ranging from stabilizing the active form of the rab ( 9 , 13 , 14 ) to mediating interactions with the cytoskeleton ( 7 ). (pnas.org)
  • Rather, loss of Rab18 is associated with widespread disruption of the neuronal cytoskeleton, including abnormal accumulations of neurofilament and microtubule proteins in synaptic terminals, and gross disorganisation of the cytoskeleton in peripheral nerves. (biologists.org)
  • Rab11, in particular, has been shown to play a key role in plasma membrane receptor recycling, because expression of a form of this protein that cannot be activated by GTP binding inhibited transport of endocytosed transferrin receptors from sorting endosomes to a pericentriolar recycling compartment, from where receptors normally are returned to the cell surface ( 15 , 16 ). (pnas.org)