A genus of gram-negative, aerobic bacteria whose cells are minute coccobacilli. It consists of both parasitic and pathogenic species.
A species of gram-negative, aerobic bacteria that is the causative agent of WHOOPING COUGH. Its cells are minute coccobacilli that are surrounded by a slime sheath.
A species of BORDETELLA that is parasitic and pathogenic. It is found in the respiratory tract of domestic and wild mammalian animals and can be transmitted from animals to man. It is a common cause of bronchopneumonia in lower animals.
Infections with bacteria of the genus BORDETELLA.
A species of BORDETELLA with similar morphology to BORDETELLA PERTUSSIS, but growth is more rapid. It is found only in the RESPIRATORY TRACT of humans.
A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor.
A species of BORDETELLA isolated from the respiratory tracts of TURKEYS and other BIRDS. It causes a highly contagious bordetellosis.
A suspension of killed Bordetella pertussis organisms, used for immunization against pertussis (WHOOPING COUGH). It is generally used in a mixture with diphtheria and tetanus toxoids (DTP). There is an acellular pertussis vaccine prepared from the purified antigenic components of Bordetella pertussis, which causes fewer adverse reactions than whole-cell vaccine and, like the whole-cell vaccine, is generally used in a mixture with diphtheria and tetanus toxoids. (From Dorland, 28th ed)
Agents that cause agglutination of red blood cells. They include antibodies, blood group antigens, lectins, autoimmune factors, bacterial, viral, or parasitic blood agglutinins, etc.
One of the virulence factors produced by virulent BORDETELLA organisms. It is a bifunctional protein with both ADENYLYL CYCLASES and hemolysin components.
One of the virulence factors produced by BORDETELLA PERTUSSIS. It is a multimeric protein composed of five subunits S1 - S5. S1 contains mono ADPribose transferase activity.
A chronic inflammation in which the NASAL MUCOSA gradually changes from a functional to a non-functional lining without mucociliary clearance. It is often accompanied by degradation of the bony TURBINATES, and the foul-smelling mucus which forms a greenish crust (ozena).
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Proteins isolated from the outer membrane of Gram-negative bacteria.
Proteins found in any species of bacterium.
Cell-surface components or appendages of bacteria that facilitate adhesion (BACTERIAL ADHESION) to other cells or to inanimate surfaces. Most fimbriae (FIMBRIAE, BACTERIAL) of gram-negative bacteria function as adhesins, but in many cases it is a minor subunit protein at the tip of the fimbriae that is the actual adhesin. In gram-positive bacteria, a protein or polysaccharide surface layer serves as the specific adhesin. What is sometimes called polymeric adhesin (BIOFILMS) is distinct from protein adhesin.
An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
The top portion of the pharynx situated posterior to the nose and superior to the SOFT PALATE. The nasopharynx is the posterior extension of the nasal cavities and has a respiratory function.
Low-molecular-weight compounds produced by microorganisms that aid in the transport and sequestration of ferric iron. (The Encyclopedia of Molecular Biology, 1994)
Vaccines that are produced by using only the antigenic part of the disease causing organism. They often require a "booster" every few years to maintain their effectiveness.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Substances, usually of biological origin, that cause cells or other organic particles to aggregate and stick to each other. They include those ANTIBODIES which cause aggregation or agglutination of particulate or insoluble ANTIGENS.
A transient increase in the number of leukocytes in a body fluid.
The functional hereditary units of BACTERIA.
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Substances elaborated by bacteria that have antigenic activity.
The scroll-like bony plates with curved margins on the lateral wall of the NASAL CAVITY. Turbinates, also called nasal concha, increase the surface area of nasal cavity thus providing a mechanism for rapid warming and humidification of air as it passes to the lung.
Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity.
Specific substances elaborated by plants, microorganisms or animals that cause damage to the skin; they may be proteins or other specific factors or substances; constituents of spider, jellyfish or other venoms cause dermonecrosis and certain bacteria synthesize dermolytic agents.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
Preparations of pathogenic organisms or their derivatives made nontoxic and intended for active immunologic prophylaxis. They include deactivated toxins. Anatoxin toxoids are distinct from anatoxins that are TROPANES found in CYANOBACTERIA.
Large woodland game BIRDS in the subfamily Meleagridinae, family Phasianidae, order GALLIFORMES. Formerly they were considered a distinct family, Melegrididae.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Excess of normal lymphocytes in the blood or in any effusion.
The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Tests that are dependent on the clumping of cells, microorganisms, or particles when mixed with specific antiserum. (From Stedman, 26th ed)
A vaccine consisting of DIPHTHERIA TOXOID; TETANUS TOXOID; and whole-cell PERTUSSIS VACCINE. The vaccine protects against diphtheria, tetanus, and whooping cough.
Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX).
The proximal portion of the respiratory passages on either side of the NASAL SEPTUM. Nasal cavities, extending from the nares to the NASOPHARYNX, are lined with ciliated NASAL MUCOSA.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Diseases of domestic swine and of the wild boar of the genus Sus.
Invasion of the host RESPIRATORY SYSTEM by microorganisms, usually leading to pathological processes or diseases.
The aggregation of ERYTHROCYTES by AGGLUTININS, including antibodies, lectins, and viral proteins (HEMAGGLUTINATION, VIRAL).
Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria normally found in the flora of the mouth and respiratory tract of animals and birds. It causes shipping fever (see PASTEURELLOSIS, PNEUMONIC); HEMORRHAGIC BACTEREMIA; and intestinal disease in animals. In humans, disease usually arises from a wound infection following a bite or scratch from domesticated animals.
Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence.
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
An iron-binding cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine. It is produced by E COLI and other enteric bacteria.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.

Role of antibodies against Bordetella pertussis virulence factors in adherence of Bordetella pertussis and Bordetella parapertussis to human bronchial epithelial cells. (1/308)

Immunization with whole-cell pertussis vaccines (WCV) containing heat-killed Bordetella pertussis cells and with acellular vaccines containing genetically or chemically detoxified pertussis toxin (PT) in combination with filamentous hemagglutinin (FHA), pertactin (Prn), or fimbriae confers protection in humans and animals against B. pertussis infection. In an earlier study we demonstrated that FHA is involved in the adherence of these bacteria to human bronchial epithelial cells. In the present study we investigated whether mouse antibodies directed against B. pertussis FHA, PTg, Prn, and fimbriae, or against two other surface molecules, lipopolysaccharide (LPS) and the 40-kDa outer membrane porin protein (OMP), that are not involved in bacterial adherence, were able to block adherence of B. pertussis and B. parapertussis to human bronchial epithelial cells. All antibodies studied inhibited the adherence of B. pertussis to these epithelial cells and were equally effective in this respect. Only antibodies against LPS and 40-kDa OMP affected the adherence of B. parapertussis to epithelial cells. We conclude that antibodies which recognize surface structures on B. pertussis or on B. parapertussis can inhibit adherence of the bacteria to bronchial epithelial cells, irrespective whether these structures play a role in adherence of the bacteria to these cells.  (+info)

The detection of DNA from a range of bacterial species in the joints of patients with a variety of arthritides using a nested, broad-range polymerase chain reaction. (2/308)

OBJECTIVE: Bacteria have been implicated in the pathogenesis of many types of inflammatory arthritides. The aim of this study was to identify any bacterial DNA in synovial fluid (SF) from patients with a range of inflammatory arthritides. METHODS: A highly sensitive, broad-range, nested polymerase chain reaction (PCR) protocol targeting the bacterial 16S rRNA gene was designed and applied to SF from 65 patients with a range of rheumatic diseases. RESULTS: Bacterial DNA was detected in 26 SF samples, including eight from patients with rheumatoid arthritis and five with juvenile arthritides. PCR products were identified by sequencing and searching of bacterial genomic databases; 'best fits' included Haemophilus influenzae, Bordetella and Yersinia. CONCLUSIONS: These finding suggest an association between bacterial infection and inflammatory arthritides in some patients. Further research is required to determine the role of these organisms in the pathogenesis and whether such patients might respond to prolonged antibiotic therapy.  (+info)

Genetic characterization of wild-type and mutant fur genes of Bordetella avium. (3/308)

For most, if not all, organisms, iron (Fe) is an essential element. In response to the nutritional requirement for Fe, bacteria evolved complex systems to acquire the element from the environment. The genes encoding these systems are often coordinately regulated in response to the Fe concentration. Recent investigations revealed that Bordetella avium, a respiratory pathogen of birds, expressed a number of Fe-regulated genes (T. D. Connell, A. Dickenson, A. J. Martone, K. T. Militello, M. J. Filiatraut, M. L. Hayman, and J. Pitula, Infect. Immun. 66:3597-3605, 1998). By using manganese selection on an engineered strain of B. avium that carried an Fe-regulated alkaline phosphatase reporter gene, a mutant was obtained that was affected in expression of Fe-regulated genes. To determine if Fe-dependent regulation in B. avium was mediated by a fur-like gene, a fragment of the B. avium chromosome, corresponding to the fur locus of B. pertussis, was cloned by PCR. Sequencing revealed that the fragment from B. avium encoded a polypeptide with 92% identity to the Fur protein of B. pertussis. In vivo experiments showed that the cloned gene complemented H1780, a fur mutant of Escherichia coli. Southern hybridizations and PCRs demonstrated that the manganese mutant had a deletion of 2 to 3 kbp of nucleotide sequence in the region located immediately 5' of the fur open reading frame. A spontaneous PCR-derived mutant of the B. avium fur gene was isolated that encoded a Fur protein in which a histidine was substituted for an arginine at amino acid position 18 (R18H). Genetic analysis showed that the R18H mutant gene when cloned into a low-copy-number vector did not complement the fur mutation in H1780. However, the R18H mutant gene was able to complement the fur mutation when cloned into a high-copy-number vector. The cloned wild-type fur gene will be useful as a genetic tool to identify Fur-regulated genes in the B. avium chromosome.  (+info)

Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. (4/308)

We isolated Bordetella holmesii, generally associated with septicemia in patients with underlying conditions, from nasopharyngeal specimens of otherwise healthy young persons with a cough. The proportion of B. holmesii-positive specimens submitted to the Massachusetts State Laboratory Institute increased from 1995 to 1998.  (+info)

Identification of functional domains of Bordetella dermonecrotizing toxin. (5/308)

Bordetella dermonecrotizing toxin (DNT) stimulates the assembly of actin stress fibers and focal adhesions by deamidating Gln63 of the small GTPase Rho. To clarify the functional and structural organization of DNT, we cloned and sequenced the DNT gene and examined the functions of various DNT mutants. Our analyses of the nucleotide and amino acid sequences revealed that the start codon of the DNT gene is a GTG triplet located 39 bp upstream of the reported putative initiation ATG codon; consequently, DNT contains an additional 13 amino acids at its N-terminal end. All of the N-terminally truncated mutants were found to modify Rho. The shortest fragment of DNT possessing the Rho modification activity consists of amino acids from Ile1176 to the C-terminal end. This fragment overlaps the region homologous to Escherichia coli cytotoxic necrotizing factors (CNFs), which show activity similar to that of DNT. The introduction of a mutation at Cys1305 located in the highly conserved region between CNFs and DNT eliminated the activity, indicating that this domain is the catalytic center of DNT. The N-terminal fragment (1 to 531) of DNT failed to modify Rho but reduced the DNT-induced polynucleation in MC3T3-E1 cells when simultaneously added with the holotoxin, suggesting competitive inhibition in the receptor-binding or internalizing step. Our finding that DNT consists of an N-terminal receptor-binding and/or internalizing domain and a C-terminal catalytically active domain may facilitate analysis of the overall action of the toxin on the mammalian target cells.  (+info)

Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae. (6/308)

Bordetella bronchiseptica and Bordetella parapertussis express a surface polysaccharide, attached to a lipopolysaccharide, which has been called O antigen. This structure is absent from Bordetella pertussis. We report the identification of a large genetic locus in B. bronchiseptica and B. parapertussis that is required for O-antigen biosynthesis. The locus is replaced by an insertion sequence in B. pertussis, explaining the lack of O-antigen biosynthesis in this species. The DNA sequence of the B. bronchiseptica locus has been determined and the presence of 21 open reading frames has been revealed. We have ascribed putative functions to many of these open reading frames based on database searches. Mutations in the locus in B. bronchiseptica and B. parapertussis prevent O-antigen biosynthesis and provide tools for the study of the role of O antigen in infections caused by these bacteria.  (+info)

Pertussis in the preantibiotic and prevaccine era, with emphasis on adult pertussis. (7/308)

Pertussis was first recognized as an epidemic disease in the 16th century. The classic illness is a three-stage illness (catarrhal, spasmodic, and convalescent), with a distinctive cough, and its characteristics today are similar to those in the prevaccine era. In the prevaccine era, the calculated attack rate was 872/100,000 population, and the majority of cases occurred in children <5 years of age. On average, there were 7,300 deaths/year; the death rate began to decline before antimicrobial therapy and vaccination. Reported pertussis in adults was rare, but numerous investigators noted that atypical cases of pertussis were common in adults.  (+info)

Parapertussis and pertussis: differences and similarities in incidence, clinical course, and antibody responses. (8/308)

OBJECTIVES: To compare the incidence, clinical course, and serologic response to Bordetella antigens in patients with parapertussis and pertussis. DESIGN: Two studies were performed in Sweden during the 1990s, when pertussis vaccines were used only in clinical trials. Study I was a retrospective study of patients with positive Bordetella cultures obtained in clinical routine, and study II involved an active search for patients with Bordetella infections during a placebo-controlled trial of a pertussis toxoid vaccine. RESULTS: Study I includes 58, and study II 23 patients with parapertussis. In study I, the incidence of parapertussis was 0.016 cases per 100 person years in children 0 to 6 years old and 0 in older children and adults. In study II, the incidence rates of parapertussis and pertussis were 0.2 and 16.2 per 100 person years, respectively, in children followed from 3 months to 3 years of age. The median number of days with cough was 21 in parapertussis and 59 in pertussis. The proportions of children with whooping and vomiting were lower in parapertussis than in pertussis. Geometric mean serum filamentous hemagglutinin IgG increased from 6 to 63, and pertactin IgG from 4 to 12 units/mL in parapertussis patients, which was similar to increases in children with pertussis. CONCLUSIONS: Disease caused by Bordetella parapertussis is diagnosed less commonly and is milder and of shorter duration than disease caused by Bordetella pertussis. Parapertussis induced serum IgG against filamentous hemagglutinin and pertactin of similar magnitude as does pertussis, and did not induce serum IgG against pertussis toxin.  (+info)

"Bordetella" is a genus of gram-negative, aerobic bacteria that are known to cause respiratory infections in humans and animals. The most well-known species within this genus is Bordetella pertussis, which is the primary causative agent of whooping cough (pertussis) in humans.

Whooping cough is a highly contagious respiratory infection that is characterized by severe coughing fits, followed by a high-pitched "whoop" sound upon inhalation. The bacteria attach to the cilia lining the respiratory tract and release toxins that damage the cilia and cause inflammation, leading to the characteristic symptoms of the disease.

Other species within the Bordetella genus include Bordetella parapertussis, which can also cause a milder form of whooping cough, and Bordetella bronchiseptica, which is associated with respiratory infections in animals but can occasionally infect humans as well.

Prevention of Bordetella infections typically involves vaccination, with vaccines available for both infants and adults to protect against B. pertussis and B. parapertussis. Good hygiene practices, such as covering the mouth and nose when coughing or sneezing, can also help prevent the spread of these bacteria.

'Bordetella pertussis' is a gram-negative, coccobacillus bacterium that is the primary cause of whooping cough (pertussis) in humans. This highly infectious disease affects the respiratory system, resulting in severe coughing fits and other symptoms. The bacteria's ability to evade the immune system and attach to ciliated epithelial cells in the respiratory tract contributes to its pathogenicity.

The bacterium produces several virulence factors, including pertussis toxin, filamentous hemagglutinin, fimbriae, and tracheal cytotoxin, which contribute to the colonization and damage of respiratory tissues. The pertussis toxin, in particular, is responsible for many of the clinical manifestations of the disease, such as the characteristic whooping cough and inhibition of immune responses.

Prevention and control measures primarily rely on vaccination using acellular pertussis vaccines (aP) or whole-cell pertussis vaccines (wP), which are included in combination with other antigens in pediatric vaccines. Continuous efforts to improve vaccine efficacy, safety, and coverage are essential for controlling the global burden of whooping cough caused by Bordetella pertussis.

'Bordetella bronchiseptica' is a gram-negative, aerobic bacterium that primarily colonizes the respiratory tract of animals, including dogs, cats, and rabbits. It can also cause respiratory infections in humans, particularly in individuals with compromised immune systems or underlying lung diseases.

The bacterium produces several virulence factors, such as adhesins, toxins, and proteases, which allow it to attach to and damage the ciliated epithelial cells lining the respiratory tract. This can lead to inflammation, bronchitis, pneumonia, and other respiratory complications.

'Bordetella bronchiseptica' is closely related to 'Bordetella pertussis', the bacterium that causes whooping cough in humans. However, while 'Bordetella pertussis' is highly adapted to infecting humans, 'Bordetella bronchiseptica' has a broader host range and can cause disease in a variety of animal species.

In animals, 'Bordetella bronchiseptica' is often associated with kennel cough, a highly contagious respiratory infection that spreads rapidly among dogs in close quarters, such as boarding facilities or dog parks. Vaccines are available to prevent kennel cough caused by 'Bordetella bronchiseptica', and they are often recommended for dogs that are at high risk of exposure.

Bordetella infections are caused by bacteria called Bordetella pertussis or Bordetella parapertussis, which result in a highly contagious respiratory infection known as whooping cough or pertussis. These bacteria primarily infect the respiratory cilia (tiny hair-like structures lining the upper airways) and produce toxins that cause inflammation and damage to the respiratory tract.

The infection typically starts with cold-like symptoms, including a runny nose, sneezing, and a mild cough. After about one to two weeks, the cough becomes more severe, leading to episodes of intense, uncontrollable coughing fits that can last for several minutes. These fits often end with a high-pitched "whoop" sound as the person gasps for air. Vomiting may occur following the coughing spells.

Bordetella infections can be particularly severe and even life-threatening in infants, young children, and people with weakened immune systems. Complications include pneumonia, seizures, brain damage, and, in rare cases, death.

Prevention is primarily through vaccination, which is part of the recommended immunization schedule for children. A booster dose is also recommended for adolescents and adults to maintain immunity. Antibiotics can be used to treat Bordetella infections and help prevent the spread of the bacteria to others. However, antibiotics are most effective when started early in the course of the illness.

'Bordetella parapertussis' is a gram-negative, coccobacillus bacterium that can cause a respiratory infection in humans. It is one of the several species in the genus Bordetella and is closely related to Bordetella pertussis, which causes whooping cough (pertussis).

Bordetella parapertussis infection often results in symptoms similar to those of pertussis but are usually less severe. The illness is sometimes referred to as "mild whooping cough" or "whooping cough-like illness."

The bacterium primarily infects the respiratory tract, attaching to the ciliated epithelial cells lining the airways. This leads to inflammation and damage of the respiratory mucosa, causing a persistent cough, which may be accompanied by paroxysms (intense fits of coughing), inspiratory whoop, and post-tussive vomiting.

Transmission occurs through respiratory droplets when an infected person sneezes or coughs near someone else. The incubation period for Bordetella parapertussis infection is typically 7 to 10 days but can range from 5 to 21 days.

Prevention and control measures include vaccination, good hygiene practices (such as covering the mouth and nose when coughing or sneezing), and early detection and treatment of infected individuals. Antibiotics such as macrolides (e.g., azithromycin, erythromycin) are often used to treat Bordetella parapertussis infections, helping to reduce the duration of symptoms and limit transmission to others.

Virulence factors in Bordetella pertussis, the bacterium that causes whooping cough, refer to the characteristics or components of the organism that contribute to its ability to cause disease. These virulence factors include:

1. Pertussis Toxin (PT): A protein exotoxin that inhibits the immune response and affects the nervous system, leading to the characteristic paroxysmal cough of whooping cough.
2. Adenylate Cyclase Toxin (ACT): A toxin that increases the levels of cAMP in host cells, disrupting their function and contributing to the pathogenesis of the disease.
3. Filamentous Hemagglutinin (FHA): A surface protein that allows the bacterium to adhere to host cells and evade the immune response.
4. Fimbriae: Hair-like appendages on the surface of the bacterium that facilitate adherence to host cells.
5. Pertactin (PRN): A surface protein that also contributes to adherence and is a common component of acellular pertussis vaccines.
6. Dermonecrotic Toxin: A toxin that causes localized tissue damage and necrosis, contributing to the inflammation and symptoms of whooping cough.
7. Tracheal Cytotoxin: A toxin that damages ciliated epithelial cells in the respiratory tract, impairing mucociliary clearance and increasing susceptibility to infection.

These virulence factors work together to enable Bordetella pertussis to colonize the respiratory tract, evade the host immune response, and cause the symptoms of whooping cough.

"Bordetella avium" is a gram-negative, rod-shaped bacterium that belongs to the family Alcaligenaceae. It is a respiratory pathogen that primarily affects birds, particularly pigeons and other Columbiformes. The bacterium can cause upper respiratory tract infections, pneumonia, and other respiratory diseases in these birds.

In humans, "Bordetella avium" has been rarely reported as a causative agent of respiratory infections, particularly in individuals with compromised immune systems or underlying lung conditions. However, its clinical significance in human disease is not well established, and further research is needed to determine the true extent of its pathogenicity in humans.

A Pertussis vaccine is a type of immunization used to protect against pertussis, also known as whooping cough. It contains components that stimulate the immune system to produce antibodies against the bacteria that cause pertussis, Bordetella pertussis. There are two main types of pertussis vaccines: whole-cell pertussis (wP) vaccines and acellular pertussis (aP) vaccines. wP vaccines contain killed whole cells of B. pertussis, while aP vaccines contain specific components of the bacteria, such as pertussis toxin and other antigens. Pertussis vaccines are often combined with diphtheria and tetanus to form combination vaccines, such as DTaP (diphtheria, tetanus, and acellular pertussis) and TdaP (tetanus, diphtheria, and acellular pertussis). These vaccines are typically given to young children as part of their routine immunization schedule.

Hemagglutinins are proteins found on the surface of some viruses, including influenza viruses. They have the ability to bind to specific receptors on the surface of red blood cells, causing them to clump together (a process known as hemagglutination). This property is what allows certain viruses to infect host cells and cause disease. Hemagglutinins play a crucial role in the infection process of influenza viruses, as they facilitate the virus's entry into host cells by binding to sialic acid receptors on the surface of respiratory epithelial cells. There are 18 different subtypes of hemagglutinin (H1-H18) found in various influenza A viruses, and they are a major target of the immune response to influenza infection. Vaccines against influenza contain hemagglutinins from the specific strains of virus that are predicted to be most prevalent in a given season, and induce immunity by stimulating the production of antibodies that can neutralize the virus.

Adenylate cyclase toxin is a type of exotoxin produced by certain bacteria, including Bordetella pertussis (the causative agent of whooping cough) and Vibrio cholerae. This toxin functions by entering host cells and catalyzing the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP), leading to increased intracellular cAMP levels.

The elevated cAMP levels can disrupt various cellular processes, such as signal transduction and ion transport, resulting in a range of physiological effects that contribute to the pathogenesis of the bacterial infection. For example, in the case of Bordetella pertussis, adenylate cyclase toxin impairs the function of immune cells, allowing the bacteria to evade host defenses and establish a successful infection.

In summary, adenylate cyclase toxin is a virulence factor produced by certain pathogenic bacteria that increases intracellular cAMP levels in host cells, leading to disrupted cellular processes and contributing to bacterial pathogenesis.

Pertussis toxin is an exotoxin produced by the bacterium Bordetella pertussis, which is responsible for causing whooping cough in humans. This toxin has several effects on the host organism, including:

1. Adenylyl cyclase activation: Pertussis toxin enters the host cell and modifies a specific G protein (Gαi), leading to the continuous activation of adenylyl cyclase. This results in increased levels of intracellular cAMP, which disrupts various cellular processes.
2. Inhibition of immune response: Pertussis toxin impairs the host's immune response by inhibiting the migration and function of immune cells like neutrophils and macrophages. It also interferes with antigen presentation and T-cell activation, making it difficult for the body to clear the infection.
3. Increased inflammation: The continuous activation of adenylyl cyclase by pertussis toxin leads to increased production of proinflammatory cytokines, contributing to the severe coughing fits and other symptoms associated with whooping cough.

Pertussis toxin is an essential virulence factor for Bordetella pertussis, and its effects contribute significantly to the pathogenesis of whooping cough. Vaccination against pertussis includes inactivated or genetically detoxified forms of pertussis toxin, which provide immunity without causing disease symptoms.

Atrophic rhinitis is a chronic inflammatory condition of the nasal passages and sinuses characterized by the atrophy (wasting away) of the nasal mucous membranes. This results in decreased mucus production, crusting, and eventually, shrinkage of the nasal structures. The symptoms may include a stuffy or runny nose, loss of smell, and crusting inside the nose. Atrophic rhinitis can be caused by various factors such as infection, trauma, radiation therapy, or surgery. In some cases, the cause may be unknown. It is often difficult to treat, and treatment typically aims to alleviate symptoms and prevent complications.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Bacterial outer membrane proteins (OMPs) are a type of protein found in the outer membrane of gram-negative bacteria. The outer membrane is a unique characteristic of gram-negative bacteria, and it serves as a barrier that helps protect the bacterium from hostile environments. OMPs play a crucial role in maintaining the structural integrity and selective permeability of the outer membrane. They are involved in various functions such as nutrient uptake, transport, adhesion, and virulence factor secretion.

OMPs are typically composed of beta-barrel structures that span the bacterial outer membrane. These proteins can be classified into several groups based on their size, function, and structure. Some of the well-known OMP families include porins, autotransporters, and two-partner secretion systems.

Porins are the most abundant type of OMPs and form water-filled channels that allow the passive diffusion of small molecules, ions, and nutrients across the outer membrane. Autotransporters are a diverse group of OMPs that play a role in bacterial pathogenesis by secreting virulence factors or acting as adhesins. Two-partner secretion systems involve the cooperation between two proteins to transport effector molecules across the outer membrane.

Understanding the structure and function of bacterial OMPs is essential for developing new antibiotics and therapies that target gram-negative bacteria, which are often resistant to conventional treatments.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Bacterial adhesins are proteins or structures on the surface of bacterial cells that allow them to attach to other cells or surfaces. This ability to adhere to host tissues is an important first step in the process of bacterial infection and colonization. Adhesins can recognize and bind to specific receptors on host cells, such as proteins or sugars, enabling the bacteria to establish a close relationship with the host and evade immune responses.

There are several types of bacterial adhesins, including fimbriae, pili, and non-fimbrial adhesins. Fimbriae and pili are thin, hair-like structures that extend from the bacterial surface and can bind to a variety of host cell receptors. Non-fimbrial adhesins are proteins that are directly embedded in the bacterial cell wall and can also mediate attachment to host cells.

Bacterial adhesins play a crucial role in the pathogenesis of many bacterial infections, including urinary tract infections, respiratory tract infections, and gastrointestinal infections. Understanding the mechanisms of bacterial adhesion is important for developing new strategies to prevent and treat bacterial infections.

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

The nasopharynx is the uppermost part of the pharynx (throat), which is located behind the nose. It is a muscular cavity that serves as a passageway for air and food. The nasopharynx extends from the base of the skull to the lower border of the soft palate, where it continues as the oropharynx. Its primary function is to allow air to flow into the respiratory system through the nostrils while also facilitating the drainage of mucus from the nose into the throat. The nasopharynx contains several important structures, including the adenoids and the opening of the Eustachian tubes, which connect the middle ear to the back of the nasopharynx.

Siderophores are low-molecular-weight organic compounds that are secreted by microorganisms, such as bacteria and fungi, to chelate and solubilize iron from their environment. They are able to bind ferric iron (Fe3+) with very high affinity and form a siderophore-iron complex, which can then be taken up by the microorganism through specific transport systems. This allows them to acquire iron even in environments where it is present at very low concentrations or in forms that are not readily available for uptake. Siderophores play an important role in the survival and virulence of many pathogenic microorganisms, as they help them to obtain the iron they need to grow and multiply.

Acellular vaccines are a type of vaccine that contain one or more antigens but do not contain whole cell parts or components of the pathogen. They are designed to produce an immune response in the body that is specific to the antigen(s) contained within the vaccine, while minimizing the risk of adverse reactions associated with whole cell vaccines.

Acellular vaccines are often produced using recombinant DNA technology, where a specific gene from the pathogen is inserted into a different organism (such as yeast or bacteria) that can produce large quantities of the antigen. The antigen is then purified and used to create the vaccine.

One example of an acellular vaccine is the DTaP vaccine, which is used to protect against diphtheria, tetanus, and pertussis (whooping cough). This vaccine contains only a small portion of the pertussis bacterium, along with purified versions of the toxins produced by the bacteria. By contrast, whole cell pertussis vaccines contain entire killed bacteria, which can cause more frequent and severe side effects.

Overall, acellular vaccines offer a safer and more targeted approach to immunization than whole cell vaccines, while still providing effective protection against infectious diseases.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Agglutinins are antibodies that cause the particles (such as red blood cells, bacteria, or viruses) to clump together. They recognize and bind to specific antigens on the surface of these particles, forming a bridge between them and causing them to agglutinate or clump. Agglutinins are an important part of the immune system's response to infection and help to eliminate pathogens from the body.

There are two main types of agglutinins:

1. Naturally occurring agglutinins: These are present in the blood serum of most individuals, even before exposure to an antigen. They can agglutinate some bacteria and red blood cells without prior sensitization. For example, anti-A and anti-B agglutinins are naturally occurring antibodies found in people with different blood groups (A, B, AB, or O).
2. Immune agglutinins: These are produced by the immune system after exposure to an antigen. They develop as part of the adaptive immune response and target specific antigens that the body has encountered before. Immunization with vaccines often leads to the production of immune agglutinins, which can provide protection against future infections.

Agglutination reactions are widely used in laboratory tests for various diagnostic purposes, such as blood typing, detecting bacterial or viral infections, and monitoring immune responses.

Leukocytosis is a condition characterized by an increased number of leukocytes (white blood cells) in the peripheral blood. A normal white blood cell count ranges from 4,500 to 11,000 cells per microliter of blood in adults. Leukocytosis is typically considered present when the white blood cell count exceeds 11,000 cells/µL. However, the definition might vary slightly depending on the laboratory and clinical context.

Leukocytosis can be a response to various underlying conditions, including bacterial or viral infections, inflammation, tissue damage, leukemia, and other hematological disorders. It is essential to investigate the cause of leukocytosis through further diagnostic tests, such as blood smears, differential counts, and additional laboratory and imaging studies, to guide appropriate treatment.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

In medical terms, turbinates refer to the curled bone shelves that are present inside the nasal passages. They are covered by a mucous membrane and are responsible for warming, humidifying, and filtering the air that we breathe in through our nose. There are three pairs of turbinates in each nasal passage: inferior, middle, and superior turbinates. The inferior turbinate is the largest and most significant contributor to nasal airflow resistance. Inflammation or enlargement of the turbinates can lead to nasal congestion and difficulty breathing through the nose.

Bacterial adhesion is the initial and crucial step in the process of bacterial colonization, where bacteria attach themselves to a surface or tissue. This process involves specific interactions between bacterial adhesins (proteins, fimbriae, or pili) and host receptors (glycoproteins, glycolipids, or extracellular matrix components). The attachment can be either reversible or irreversible, depending on the strength of interaction. Bacterial adhesion is a significant factor in initiating biofilm formation, which can lead to various infectious diseases and medical device-associated infections.

Dermatotoxins are substances that can cause damage or irritation to the skin. They are typically toxic chemicals or venoms that can produce a range of reactions when they come into contact with the skin, such as redness, swelling, itching, blistering, and necrosis (tissue death).

Dermatotoxins can be found in various sources, including certain plants, animals, and synthetic compounds. For example, some snakes and insects produce venoms that contain dermatotoxic components, while certain chemicals used in industrial processes or agricultural applications can also have dermatotoxic effects.

Exposure to dermatotoxins can occur through various routes, such as direct contact with the skin, inhalation, or ingestion. In some cases, dermatotoxins can cause systemic effects if they are absorbed into the bloodstream through the skin.

If you suspect exposure to a dermatotoxin, it is important to seek medical attention promptly. Treatment may include washing the affected area with soap and water, applying topical creams or ointments, and in some cases, administering antivenom or other medications to counteract the toxic effects.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

Toxoids are inactivated bacterial toxins that have lost their toxicity but retain their antigenicity. They are often used in vaccines to stimulate an immune response and provide protection against certain diseases without causing the harmful effects associated with the active toxin. The process of converting a toxin into a toxoid is called detoxication, which is typically achieved through chemical or heat treatment.

One example of a toxoid-based vaccine is the diphtheria and tetanus toxoids (DT) or diphtheria, tetanus, and pertussis toxoids (DTaP or TdaP) vaccines. These vaccines contain inactivated forms of the diphtheria and tetanus toxins, as well as inactivated pertussis toxin in the case of DTaP or TdaP vaccines. By exposing the immune system to these toxoids, the body learns to recognize and mount a response against the actual toxins produced by the bacteria, thereby providing immunity and protection against the diseases they cause.

I'm not aware of any recognized medical term or condition specifically referred to as "turkeys." The term "turkey" is most commonly used in a non-medical context to refer to the large, bird-like domesticated fowl native to North America, scientifically known as Meleagris gallopavo.

However, if you are referring to a medical condition called "turkey neck," it is a colloquial term used to describe sagging or loose skin around the neck area, which can resemble a turkey's wattle. This condition is not a formal medical diagnosis but rather a descriptive term for an aesthetic concern some people may have about their appearance.

If you meant something else by "turkeys," please provide more context so I can give you a more accurate answer.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Lymphocytosis is a medical term that refers to an abnormal increase in the number of lymphocytes (a type of white blood cell) in the peripheral blood. A normal lymphocyte count ranges from 1,000 to 4,800 cells per microliter (μL) of blood in adults. Lymphocytosis is typically defined as a lymphocyte count greater than 4,800 cells/μL in adults or higher than age-specific normal values in children.

There are various causes of lymphocytosis, including viral infections (such as mononucleosis), bacterial infections, tuberculosis, fungal infections, parasitic infections, autoimmune disorders, allergies, and certain cancers like chronic lymphocytic leukemia or lymphoma. It is essential to investigate the underlying cause of lymphocytosis through a thorough clinical evaluation, medical history, physical examination, and appropriate diagnostic tests, such as blood tests, imaging studies, or biopsies.

It's important to note that an isolated episode of mild lymphocytosis is often not clinically significant and may resolve on its own without any specific treatment. However, persistent or severe lymphocytosis requires further evaluation and management based on the underlying cause.

The Respiratory System is a complex network of organs and tissues that work together to facilitate the process of breathing, which involves the intake of oxygen and the elimination of carbon dioxide. This system primarily includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, bronchioles, lungs, and diaphragm.

The nostrils or mouth take in air that travels through the pharynx, larynx, and trachea into the lungs. Within the lungs, the trachea divides into two bronchi, one for each lung, which further divide into smaller tubes called bronchioles. At the end of these bronchioles are tiny air sacs known as alveoli where the exchange of gases occurs. Oxygen from the inhaled air diffuses through the walls of the alveoli into the bloodstream, while carbon dioxide, a waste product, moves from the blood to the alveoli and is exhaled out of the body.

The diaphragm, a large muscle that separates the chest from the abdomen, plays a crucial role in breathing by contracting and relaxing to change the volume of the chest cavity, thereby allowing air to flow in and out of the lungs. Overall, the Respiratory System is essential for maintaining life by providing the body's cells with the oxygen needed for metabolism and removing waste products like carbon dioxide.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Agglutination tests are laboratory diagnostic procedures used to detect the presence of antibodies or antigens in a sample, such as blood or serum. These tests work by observing the clumping (agglutination) of particles, like red blood cells or bacteriophages, coated with specific antigens or antibodies when mixed with a patient's sample.

In an agglutination test, the sample is typically combined with a reagent containing known antigens or antibodies on the surface of particles, such as latex beads, red blood cells, or bacteriophages. If the sample contains the corresponding antibodies or antigens, they will bind to the particles, forming visible clumps or agglutinates. The presence and strength of agglutination are then assessed visually or with automated equipment to determine the presence and quantity of the target antigen or antibody in the sample.

Agglutination tests are widely used in medical diagnostics for various applications, including:

1. Bacterial and viral infections: To identify specific bacterial or viral antigens in a patient's sample, such as group A Streptococcus, Legionella pneumophila, or HIV.
2. Blood typing: To determine the ABO blood group and Rh type of a donor or recipient before a blood transfusion or organ transplantation.
3. Autoimmune diseases: To detect autoantibodies in patients with suspected autoimmune disorders, such as rheumatoid arthritis, systemic lupus erythematosus, or Hashimoto's thyroiditis.
4. Allergies: To identify specific IgE antibodies in a patient's sample to determine allergic reactions to various substances, such as pollen, food, or venom.
5. Drug monitoring: To detect and quantify the presence of drug-induced antibodies, such as those developed in response to penicillin or hydralazine therapy.

Agglutination tests are simple, rapid, and cost-effective diagnostic tools that provide valuable information for clinical decision-making and patient management. However, they may have limitations, including potential cross-reactivity with other antigens, false-positive results due to rheumatoid factors or heterophile antibodies, and false-negative results due to the prozone effect or insufficient sensitivity. Therefore, it is essential to interpret agglutination test results in conjunction with clinical findings and other laboratory data.

The Diphtheria-Tetanus-Pertussis (DTaP) vaccine is a combination immunization that protects against three bacterial diseases: diphtheria, tetanus (lockjaw), and pertussis (whooping cough).

Diphtheria is an upper respiratory infection that can lead to breathing difficulties, heart failure, paralysis, or even death. Tetanus is a bacterial infection that affects the nervous system and causes muscle stiffness and spasms, leading to "lockjaw." Pertussis is a highly contagious respiratory infection characterized by severe coughing fits, which can make it difficult to breathe and may lead to pneumonia, seizures, or brain damage.

The DTaP vaccine contains inactivated toxins (toxoids) from the bacteria that cause these diseases. It is typically given as a series of five shots, with doses administered at 2 months, 4 months, 6 months, 15-18 months, and 4-6 years of age. The vaccine helps the immune system develop protection against the diseases without causing the actual illness.

It is important to note that there are other combination vaccines available that protect against these same diseases, such as DT (diphtheria and tetanus toxoids) and Tdap (tetanus, diphtheria, and acellular pertussis), which contain higher doses of the diphtheria and pertussis components. These vaccines are recommended for different age groups and may be used as booster shots to maintain immunity throughout adulthood.

Bacterial fimbriae are thin, hair-like protein appendages that extend from the surface of many types of bacteria. They are involved in the attachment of bacteria to surfaces, other cells, or extracellular structures. Fimbriae enable bacteria to adhere to host tissues and form biofilms, which contribute to bacterial pathogenicity and survival in various environments. These protein structures are composed of several thousand subunits of a specific protein called pilin. Some fimbriae can recognize and bind to specific receptors on host cells, initiating the process of infection and colonization.

The nasal cavity is the air-filled space located behind the nose, which is divided into two halves by the nasal septum. It is lined with mucous membrane and is responsible for several functions including respiration, filtration, humidification, and olfaction (smell). The nasal cavity serves as an important part of the upper respiratory tract, extending from the nares (nostrils) to the choanae (posterior openings of the nasal cavity that lead into the pharynx). It contains specialized structures such as turbinate bones, which help to warm, humidify and filter incoming air.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Swine diseases refer to a wide range of infectious and non-infectious conditions that affect pigs. These diseases can be caused by viruses, bacteria, fungi, parasites, or environmental factors. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): a viral disease that causes reproductive failure in sows and respiratory problems in piglets and grower pigs.
2. Classical Swine Fever (CSF): also known as hog cholera, is a highly contagious viral disease that affects pigs of all ages.
3. Porcine Circovirus Disease (PCVD): a group of diseases caused by porcine circoviruses, including Porcine CircoVirus Associated Disease (PCVAD) and Postweaning Multisystemic Wasting Syndrome (PMWS).
4. Swine Influenza: a respiratory disease caused by type A influenza viruses that can infect pigs and humans.
5. Mycoplasma Hyopneumoniae: a bacterial disease that causes pneumonia in pigs.
6. Actinobacillus Pleuropneumoniae: a bacterial disease that causes severe pneumonia in pigs.
7. Salmonella: a group of bacteria that can cause food poisoning in humans and a variety of diseases in pigs, including septicemia, meningitis, and abortion.
8. Brachyspira Hyodysenteriae: a bacterial disease that causes dysentery in pigs.
9. Erysipelothrix Rhusiopathiae: a bacterial disease that causes erysipelas in pigs.
10. External and internal parasites, such as lice, mites, worms, and flukes, can also cause diseases in swine.

Prevention and control of swine diseases rely on good biosecurity practices, vaccination programs, proper nutrition, and management practices. Regular veterinary check-ups and monitoring are essential to detect and treat diseases early.

Respiratory tract infections (RTIs) are infections that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These infections can be caused by viruses, bacteria, or, less commonly, fungi.

RTIs are classified into two categories based on their location: upper respiratory tract infections (URTIs) and lower respiratory tract infections (LRTIs). URTIs include infections of the nose, sinuses, throat, and larynx, such as the common cold, flu, laryngitis, and sinusitis. LRTIs involve the lower airways, including the bronchi and lungs, and can be more severe. Examples of LRTIs are pneumonia, bronchitis, and bronchiolitis.

Symptoms of RTIs depend on the location and cause of the infection but may include cough, congestion, runny nose, sore throat, difficulty breathing, wheezing, fever, fatigue, and chest pain. Treatment for RTIs varies depending on the severity and underlying cause of the infection. For viral infections, treatment typically involves supportive care to manage symptoms, while antibiotics may be prescribed for bacterial infections.

Hemagglutination is a medical term that refers to the agglutination or clumping together of red blood cells (RBCs) in the presence of an agglutinin, which is typically a protein or a polysaccharide found on the surface of certain viruses, bacteria, or incompatible blood types.

In simpler terms, hemagglutination occurs when the agglutinin binds to specific antigens on the surface of RBCs, causing them to clump together and form visible clumps or aggregates. This reaction is often used in diagnostic tests to identify the presence of certain viruses or bacteria, such as influenza or HIV, by mixing a sample of blood or other bodily fluid with a known agglutinin and observing whether hemagglutination occurs.

Hemagglutination inhibition (HI) assays are also commonly used to measure the titer or concentration of antibodies in a serum sample, by adding serial dilutions of the serum to a fixed amount of agglutinin and observing the highest dilution that still prevents hemagglutination. This can help determine whether a person has been previously exposed to a particular pathogen and has developed immunity to it.

Bacterial vaccines are types of vaccines that are created using bacteria or parts of bacteria as the immunogen, which is the substance that triggers an immune response in the body. The purpose of a bacterial vaccine is to stimulate the immune system to develop protection against specific bacterial infections.

There are several types of bacterial vaccines, including:

1. Inactivated or killed whole-cell vaccines: These vaccines contain entire bacteria that have been killed or inactivated through various methods, such as heat or chemicals. The bacteria can no longer cause disease, but they still retain the ability to stimulate an immune response.
2. Subunit, protein, or polysaccharide vaccines: These vaccines use specific components of the bacterium, such as proteins or polysaccharides, that are known to trigger an immune response. By using only these components, the vaccine can avoid using the entire bacterium, which may reduce the risk of adverse reactions.
3. Live attenuated vaccines: These vaccines contain live bacteria that have been weakened or attenuated so that they cannot cause disease but still retain the ability to stimulate an immune response. This type of vaccine can provide long-lasting immunity, but it may not be suitable for people with weakened immune systems.

Bacterial vaccines are essential tools in preventing and controlling bacterial infections, reducing the burden of diseases such as tuberculosis, pneumococcal disease, meningococcal disease, and Haemophilus influenzae type b (Hib) disease. They work by exposing the immune system to a harmless form of the bacteria or its components, which triggers the production of antibodies and memory cells that can recognize and fight off future infections with that same bacterium.

It's important to note that while vaccines are generally safe and effective, they may cause mild side effects such as pain, redness, or swelling at the injection site, fever, or fatigue. Serious side effects are rare but can occur, so it's essential to consult with a healthcare provider before receiving any vaccine.

"Pasteurella multocida" is a gram-negative, facultatively anaerobic, coccobacillus bacterium that is part of the normal flora in the respiratory tract of many animals, including birds, dogs, and cats. It can cause a variety of infections in humans, such as respiratory infections, skin and soft tissue infections, and bloodstream infections, particularly in individuals who have close contact with animals or animal bites or scratches. The bacterium is named after Louis Pasteur, who developed a vaccine against it in the late 19th century.

Transglutaminases are a family of enzymes that catalyze the post-translational modification of proteins by forming isopeptide bonds between the carboxamide group of peptide-bound glutamine residues and the ε-amino group of lysine residues. This process is known as transamidation or cross-linking. Transglutaminases play important roles in various biological processes, including cell signaling, differentiation, apoptosis, and tissue repair. There are several types of transglutaminases, such as tissue transglutaminase (TG2), factor XIII, and blood coagulation factor XIIIA. Abnormal activity or expression of these enzymes has been implicated in various diseases, such as celiac disease, neurodegenerative disorders, and cancer.

Vaccination is a simple, safe, and effective way to protect people against harmful diseases, before they come into contact with them. It uses your body's natural defenses to build protection to specific infections and makes your immune system stronger.

A vaccination usually contains a small, harmless piece of a virus or bacteria (or toxins produced by these germs) that has been made inactive or weakened so it won't cause the disease itself. This piece of the germ is known as an antigen. When the vaccine is introduced into the body, the immune system recognizes the antigen as foreign and produces antibodies to fight it.

If a person then comes into contact with the actual disease-causing germ, their immune system will recognize it and immediately produce antibodies to destroy it. The person is therefore protected against that disease. This is known as active immunity.

Vaccinations are important for both individual and public health. They prevent the spread of contagious diseases and protect vulnerable members of the population, such as young children, the elderly, and people with weakened immune systems who cannot be vaccinated or for whom vaccination is not effective.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Enterobactin is a siderophore, which is a low molecular weight compound that chelates ferric iron (Fe3+) with high affinity. It is produced by many gram-negative bacteria, including species of the genera Escherichia, Salmonella, Shigella, and Yersinia. Enterobactin is composed of a cyclic trimer of 2,3-dihydroxybenzoyl serine residues and is synthesized through the enzymatic activities of enterobactin synthase.

Enterobactin plays an important role in the pathogenesis of bacterial infections by scavenging iron from host proteins, which is essential for bacterial growth and survival. Once ferric iron is bound to enterobactin, it is transported into the bacterial cell through a specific transport system, where it is reduced to ferrous iron (Fe2+) and used for various metabolic processes.

In summary, enterobactin is a siderophore produced by gram-negative bacteria that chelates ferric iron with high affinity and plays an important role in bacterial pathogenesis by scavenging iron from host proteins.

DNA transposable elements, also known as transposons or jumping genes, are mobile genetic elements that can change their position within a genome. They are composed of DNA sequences that include genes encoding the enzymes required for their own movement (transposase) and regulatory elements. When activated, the transposase recognizes specific sequences at the ends of the element and catalyzes the excision and reintegration of the transposable element into a new location in the genome. This process can lead to genetic variation, as the insertion of a transposable element can disrupt the function of nearby genes or create new combinations of gene regulatory elements. Transposable elements are widespread in both prokaryotic and eukaryotic genomes and are thought to play a significant role in genome evolution.

The Bordetella vaccine is also only about 70% effective. There are three licensed ways to deliver the Bordetella vaccine to ... After 42 days, the dogs were exposed to Bordetella bronchiseptica. This study determined that the live intranasal Bordetella ... The Bordetella vaccine specifically targets Bordetella bronchiseptica, the species typically responsible for kennel cough. The ... and Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies". Clin ...
... Pit Staedtler pit.staedtler at ruhr-uni-bochum.de Mon Oct 13 16:25:34 EST 1997 *Previous message: ... Dear scientists, I´m looking for a liquid medium for cultivation of Bordetella pertussis. Does anybody have the recipe of ...
Nasopharyngeal swab (calcium alginate or dacron swab) in Regan-Lowe transport media is also acceptable. Do not use rayon or cotton-tipped swabs.. ...
What is Bordetella?. What is Bordetella? Bordetella bronchiseptica is a bacterium that is associated with respiratory disease ... The bordetella vaccine, along with the core vaccines, is offered at our vaccine clinics at both the Milwaukee, Ozaukee, Racine ... There are bordetella vaccines available for dogs which can lessen the severity of disease and can even prevent infection ...
Timeline for Species Bordetella pertussis [TaxId:520] from a.7.13.1 Exonuclease VII small subunit XseB: *Species Bordetella ... PDB entry in Species: Bordetella pertussis [TaxId: 520]:. *Domain(s) for 1vp7: *. Domain d1vp7a_: 1vp7 A: [113941]. Structural ... Species Bordetella pertussis [TaxId:520] from a.7.13.1 Exonuclease VII small subunit XseB appears in SCOPe 2.07. ... Lineage for Species: Bordetella pertussis [TaxId: 520]. *Root: SCOPe 2.08 *. Class a: All alpha proteins [46456] (290 folds). ...
Bordetella bronchiseptica RB50). Find diseases associated with this biological target and compounds tested against it in ...
... effector in the classical Bordetella, the etiological agents of pertussis and related mammalian respiratory diseases. Currently ... Characterization of the N-terminal domain of BteA: a Bordetella type III secreted cytotoxic effector PLoS One. 2013;8(1):e55650 ... BteA, a 69-kDa cytotoxic protein, is a type III secretion system (T3SS) effector in the classical Bordetella, the etiological ...
Protect your dogs and buy bordetella vaccines for them today. ... Bordetella vaccines can be administered in three different ways ... When Should a Dog Receive a Bordetella Vaccine?. A dog should receive a Bordetella vaccine if the dog is around other dogs. ... If you have a question about kennel cough or you would like to buy Bordetella vaccine over the phone, call our Pet Care Pros at ... Our Pet Care Pros have the vaccine knowledge to answer any questions you may have on the Bordetella vaccine. We also offer a ...
Unraveling the interactions between Bordetella pertussis and the innate immune system Unraveling the interactions between ... Unraveling the interactions between Bordetella pertussis and the innate immune system PDF , 13.11 MB ...
CCUG24727 - Bordetella trematum, Deposit Date: 1989-05-19
Bordetella avium, trachea, 7 days after infection. Scanning electron microscopy of a trachea from a poult 7 days after ...
It consists of diphtheria toxoid, tetanus toxoid and three purified antigens of Bordetella pertussis, i.e., pertussis toxoid ( ... T. b. brucei Destroys DTPa Vaccine-Induced Protection against Bordetella Pertussis. Mice were vaccinated and boosted with the ... Morel, S.; Denoel, P.; Godfroid, F.; Cortvrindt, C.; Vanderheyde, N.; Poolman, J. Induction of Bordetella pertussis-specific ... "African Trypanosomosis Obliterates DTPa Vaccine-Induced Functional Memory So That Post-Treatment Bordetella pertussis Challenge ...
Bordetella pertussis, vasta-aineet] EPTIS factsheet 411798 , Last revision 2017-09-15 , URL: https://www.eptis.bam.de/pts411798 ...
Summary The virulence of Bordetella bronchiseptica in gnotobiotic piglets was studied by intranasal infection with 11 cultures ... 1971; Protein toxins from Bordetella pertussis . Kadis S, Montie T C, Ajl S J. Microbial toxins 2A Academic Press; New York:271 ... Virulence of Bordetella Bronchiseptica in the Porcine Respiratory Tract * Louise A. Collings1, J. M. Rutter1 ... 1981; Phase-shift markers in Bordetella: alterations in envelope proteins. Journal of Infectious Diseases 143:562-569 ...
Rare Detection of Bordetella pertussis Pertactin-Deficient Strains in Argentina Cite CITE. Title : Rare Detection of Bordetella ... Acellular Vaccine Antibody Titers Bacteria Bordetella Pertussis Pertactin Pertactin-Deficient Bordetella Pertussis, Vaccine- ... "Rare Detection of Bordetella pertussis Pertactin-Deficient Strains in Argentina" vol. 25, no. 11, 2019. Export RIS Citation ... 2021). Pertactin-Deficient Bordetella pertussis, Vaccine-Driven Evolution, and Reemergence of Pertussis. 27(6). Ma, Longhuan et ...
Bordetella parapertussis 12822). Find diseases associated with this biological target and compounds tested against it in ...
Learn all about the respiratory infection Bordetella in cats. Our vet-written guide will help you identify symptoms and how to ... How Common Bordetella Is. Bordetella bronchiseptica is a common bacteria in the feline population. The bacteria can be isolated ... Diagnosis of Feline Bordetella. If your DVM veterinarian suspects that your cat may have Bordetella Bronchiseptica infection, ... Prevention of Feline Bordetella. An intranasal Bordetella vaccination is available for cats in some jurisdictions. This may be ...
Hello Dr. Marie....Rianna had her booster for Bordatella first of October..she has not missed a booster in ten years. She snorted it out right back at the vet...
Browse our collection of Bordetella products. Purchase your Bordetella bronchiseptica clinical isolate, titered (1 mL) Online ... Bordetella bronchiseptica clinical isolate, titered (1 mL) online at ZeptoMetrix. ...
... DSpace/ ... its importance in protection against Bordetella pertussis, and reveals potential molecular correlates of vaccine immunity to ...
... whooping cough can also be caused by the gram-negative bacteria Bordetella parapertusis, Bordetella holmesii, and Bordetella ... Diagnosis of whooping cough in Switzerland: differentiating Bordetella pertussis from Bordetella holmesii by polymerase chain ... Seasonal Bordetella pertussis pattern in the period from 2008 to 2018 in Germany. *Daniel Allermann Hitz1, ... TaqMan probes for B. pertussis, B. parapertussis, B. holmesii, Bordetella spp. and internal control were labelled with reporter ...
Prevalence of Bordetella pertussis and Bordetella parapertussis infections in Tunisian hospitalized infants: results of a 4- ... The prevalence of Bordetella infection was 20% between 2007 and 2011. Most of these cases corresponded to patients younger than ... and Bordetella spp. were detected in 82%, 6%, and 4% of the samples, respectively. The simultaneous presence of B. pertussis ... applied for the first time in a Tunisian prospective study in order to get a first estimation of the prevalence of Bordetella ...
Bordetella pseudohinzii. Bacteria. Genome editing. Protospacer. Type II CRISPR. Cas9. SpyCas9. GC-content. HGT. ... A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease.pdf. 2.92 MB ... Ivanov, Y. V., Shariat, N., Register, K. B., Linz, B., Rivera, I., Hu, K., et al (2015). A newly discovered Bordetella species ... A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease. ...
Cílem této bakalářské práce bylo objasnit problematiku patogeneze Bordetella pertussis. Charakterizovala jsem etiologické agens ...
What is Bordetella?. Bordetella bronchiseptica (Bb) is a bacterium closely related to Bordetella pertussis, the cause of ... Bordetella. Bordetella is not particularly common in the average pet cat but can be a significant problem where a number of ... Can I catch Bordetella from my cat?. There have been reports of dogs and cats in the same household suffering from infection ... Can Bordetella infection be treated?. There is no treatment for viral infections that are the primary cause of flu in cats. ...
Influenza, Coronavirus, Leptospirosis, Bordetella, Lyme disease per lifestyle. Every 1 - 3 years. Rabies (as required by law). ... Influenza, Leptospirosis, Bordetella, Lyme disease per lifestyle as recommended by veterinarian. 16 - 18 weeks. DHPP, rabies. ... Bordetella. 10 - 12 weeks. DHPP (vaccines for distemper, adenovirus [hepatitis], parainfluenza, and parvovirus). ... Bordetella Bronchiseptica. This highly infectious bacterium causes severe fits of coughing, whooping, vomiting, and, in rare ...

No FAQ available that match "bordetella"

No images available that match "bordetella"