An antibiotic produced by Pseudomonas cocovenenans. It is an inhibitor of MITOCHONDRIAL ADP, ATP TRANSLOCASES. Specifically, it blocks adenine nucleotide efflux from mitochondria by enhancing membrane binding.
A glycoside of a kaurene type diterpene that is found in some plants including Atractylis gummifera (ATRACTYLIS); COFFEE; XANTHIUM, and CALLILEPIS. Toxicity is due to inhibition of ADENINE NUCLEOTIDE TRANSLOCASE.
A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization.
A species of gram-negative, aerobic bacteria that acts as both a human and plant pathogen.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria.
Proteins involved in the transport of specific substances across the membranes of the MITOCHONDRIA.
A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X).
Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.
Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions.
A cyclic undecapeptide from an extract of soil fungi. It is a powerful immunosupressant with a specific action on T-lymphocytes. It is used for the prophylaxis of graft rejection in organ and tissue transplantation. (From Martindale, The Extra Pharmacopoeia, 30th ed).
A long pro-domain caspase that contains a caspase recruitment domain in its pro-domain region. Caspase 9 is activated during cell stress by mitochondria-derived proapoptotic factors and by CARD SIGNALING ADAPTOR PROTEINS such as APOPTOTIC PROTEASE-ACTIVATING FACTOR 1. It activates APOPTOSIS by cleaving and activating EFFECTOR CASPASES.
A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539)
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
A family of intracellular CYSTEINE ENDOPEPTIDASES that play a role in regulating INFLAMMATION and APOPTOSIS. They specifically cleave peptides at a CYSTEINE amino acid that follows an ASPARTIC ACID residue. Caspases are activated by proteolytic cleavage of a precursor form to yield large and small subunits that form the enzyme. Since the cleavage site within precursors matches the specificity of caspases, sequential activation of precursors by activated caspases can occur.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)
Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.
A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA.
Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma.

Induction of apoptosis by valinomycin: mitochondrial permeability transition causes intracellular acidification. (1/100)

In order to determine whether disruption of mitochondrial function could trigger apoptosis in murine haematopoietic cells, we used the potassium ionophore valinomycin. Valinomycin induces apoptosis in the murine pre-B cell line BAF3, which cannot be inhibited by interleukin-3 addition or Bcl-2 over-expression. Valinomycin triggers rapid loss of mitochondrial membrane potential. This precedes cytoplasmic acidification, which leads to cysteine-active-site protease activation, DNA fragmentation and cell death. Bongkrekic acid, an inhibitor of the mitochondrial permeability transition, prevents acidification and subsequent induction of apoptosis by valinomycin.  (+info)

Death signals from the B cell antigen receptor target mitochondria, activating necrotic and apoptotic death cascades in a murine B cell line, WEHI-231. (2/100)

B cell antigen receptor (BCR)-mediated cell death has been proposed as a mechanism for purging the immune repertoire of anti-self specificities during B cell differentiation in bone marrow. Mitochondrial alterations and activation of caspases are required for certain aspects of apoptotic cell death, but how the mitochondria and caspases contribute to BCR-mediated cell death is not well understood. In the present study, we used the mouse WEHI-231 B cell line to demonstrate that mitochondrial alterations and activation of caspases are indeed participants in BCR-mediated cell death. The peptide inhibitor of caspases, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), blocked cleavage of poly(ADP-ribose) polymerase and various manifestation of nuclear apoptosis such as nuclear fragmentation, hypodiploidy and DNA fragmentation, indicating that signals from the BCR induced the activation of caspases. In addition, z-VAD-fmk delayed apoptosis-associated changes in cellular reduction-oxidation potentials as determined by hypergeneration of superoxide anion, as well as exposure of phosphatidylserine residues in the outer plasma membrane. By contrast, although z-VAD-fmk retarded cytolysis, it was incapable of preventing disruption of the plasma membrane even under the same condition in which it completely blocked nuclear apoptosis. Mitochondrial membrane potential loss was also not blocked by z-VAD-fmk. Bongkrekic acid, a specific inhibitor of mitochondrial permeability transition pores, suppressed not only the mitochondrial membrane potential but also the change of plasma membrane permeability. Overexpression of Bcl-xL prevented mitochondrial dysfunction, nuclear apoptosis and membrane permeability cell death triggered by BCR signal transduction. These observations indicate that death signals from BCR may first cause mitochondrial alterations followed by activation of both necrotic and apoptotic cascades.  (+info)

Over-expression of Bcl-2 does not protect cells from hypericin photo-induced mitochondrial membrane depolarization, but delays subsequent events in the apoptotic pathway. (3/100)

Hypericin (HY) is a powerful photo-inducer of apoptosis in Jurkat cells as measured by caspase-3 activation, cell shrinkage, phosphatidylserine (PS) exposure and the appearance of hypoploid DNA. These processes are preceded by rapid Bcl-2-independent mitochondrial transmembrane depolarization and a drop in cytoplasmic pH. Pre-incubation of cells with inhibitors of the mitochondrial permeability transition pore, such as cyclosporin A or bongkrekic acid, does not protect cells from mitochondrial membrane potential (deltapsim) decrease. However, monitoring of mitochondrial entrapped calcein by confocal fluorescence imaging gives clear evidence of HY photo-induced mitochondrial permeability. This should be considered as the result of a non-specific alteration of mitochondrial membrane integrity brought about by lipid peroxidation. Nevertheless, synthesis of the anti-apoptotic protein Bcl-2 appears to delay the subsequent time course of PS exposure and to reduce caspase-3 activation and the fraction of cells which become hypoploid. We interpret this partially protective effect as the consequence of a direct interaction of Bcl-2 with cytosolic cytochrome c previously released from mitochondria upon deltapsim decrease and/or of Bcl-2 inhibition of the deleterious retro-effect of caspase-3 on the mitochondrial permeability transition pore and/or the mitochondrial membrane components.  (+info)

Antibody evidence for different conformational states of ADP, ATP translocator protein isolated from mitochondria. (4/100)

Consistent with the previously proposed reorientation mechanism for the ADP,ATP translocator protein of mitochondria, evidence has now been obtained for the existence of two distinct conformational states of the isolated translocator protein. Previous studies indicated that when the mitochondrial translocator protein is in the c-state(i.e., when its binding site faces the cytosol side) the protein binds primarily the ligand carboxyatractylate (CAT), and when the translocator protein is in the m-state(i.e., when its binding site faces the mitochondrial matrix) the translocator protein binds primarily bongkrekate. Direct evidence for this formulation has now come from the application of antibodies to the isolated translocator protein-ligand complex. Two antibodies were produced against the ADP,ATP translocator protein isolated from beef heart mitochondria. One antibody, which was produced against the protein isolated as the CAT-binding protein complex, was found to be highly specific for that complex and did not react with the protein in the conformation state conferred by the bongkrekate ligand. This antibody did not cover the CAT-binding site, as evidenced by the exchange of unlabeled CAT with [35S]CAT bound to the translocator protein. However, the same antibody inhibited a transition of the protein from the c-state to the m-state, as evidenced by an inhibition of the displacement of[35S]CAT by bongkrekate (added jointly with ADP). It appears, therefore, that the antibody immobilized the translocator protein in the c-state. The second antibody produced against the (somewhat less pure) ADP,ATP translocator protein, isolated as the bongkrekate-binding protein complex, did not react with the CAT-binding protein. Thus, the second antibody appeared to be specific for the translocator protein in the m-state. Neither antibody inhibited mitochondrial ADP,ATP transport.  (+info)

Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. (5/100)

In cultured cerebrocortical neurons, mild excitotoxic insults or staurosporine result in apoptosis. We show here that N-methyl-d-aspartate (NMDA) receptor-mediated, but not staurosporine-mediated, apoptosis is preceded by depolarization of the mitochondrial membrane potential (Deltapsi(m)) and ATP loss. Both insults, however, release cytochrome c (Cyt c) into the cytoplasm. What prompts mitochondria to release Cyt c and the mechanism of release are as yet unknown. We examined the effect of inhibition of the adenine nucleotide translocator (ANT), a putative component of the mitochondrial permeability transition pore. Inhibition of the mitochondrial ANT with bongkrekic acid (BA) prevented NMDA receptor-mediated apoptosis of cerebrocortical neurons. Concomitantly, BA prevented Deltapsi(m) depolarization, promoted recovery of cellular ATP content, and blocked caspase-3 activation. However, in the presence of BA, Cyt c was still released. Because BA prevented NMDA-induced caspase-3 activation and apoptosis, the presence of Cyt c in the neuronal cytoplasm is not sufficient for the induction of caspase activity or apoptosis. In contrast to these findings, BA was ineffective in preventing staurosporine-induced activation of caspases or apoptosis. Additionally, staurosporine-induced, but not NMDA-induced, apoptosis was associated with activation of caspase-8. These results indicate that, in cerebrocortical cultures, excessive NMDA receptor activation precipitates neuronal apoptosis by means of mitochondrial dysfunction, whereas staurosporine utilizes a distinct pathway.  (+info)

Mitochondrial amplification of death signals determines thymidine kinase/ganciclovir-triggered activation of apoptosis. (6/100)

Previous clinical experience shows that the efficacy of suicide gene transfer in tumor therapy is limited, resulting from inefficient gene transfer or alternatively, from intrinsic resistance of the tumor in vivo. Herpes simplex virus thymidine kinase/ganciclovir (TK/GCV), a paradigmatic suicide gene therapy system, has been described to exert its cytotoxic effect, at least in part, by inducing apoptosis in target cells. Here, we report that mitochondria amplify TK/GCV-induced apoptosis by regulating p53 accumulation and the effector phase of apoptosis. Treatment with TK/GCV led to mitochondrial perturbations including loss of the mitochondrial membrane potential and release of cytochrome c from mitochondria into the cytosol, inducing caspase activation and nuclear fragmentation. Inhibition of TK/GCV-induced mitochondrial perturbations by Bcl-2 overexpression or by the mitochondrion-specific inhibitor bongkrekic acid also strongly inhibited TK/GCV-induced activation of caspases and apoptosis. TK/GCV-induced mitochondrial perturbations depended on caspase activity possibly initiated by death receptor signaling. Perturbation of mitochondrial function mediated accumulation of wild-type p53 protein, since Bcl-2 overexpression, bongkrekic acid, or inhibition of mitochondrial protein synthesis with chloramphenicol strongly reduced TK/GCV-induced accumulation of wild-type p53 protein. These findings suggest that TK/GCV therapy may be less efficient in tumors in which the mitochondrial amplification of TK/GCV-induced apoptosis is blocked, e.g., by Bcl-2 overexpression. Given the low efficacy of currently used gene therapy systems, our data on molecular mechanisms that regulate sensitivity or resistance toward TK/GCV-induced cytotoxicity might have important implications to improve the clinical application of suicide gene therapy.  (+info)

BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. (7/100)

Many apoptotic signaling pathways are directed to mitochondria, where they initiate the release of apoptogenic proteins and open the proposed mitochondrial permeability transition (PT) pore that ultimately results in the activation of the caspase proteases responsible for cell disassembly. BNIP3 (formerly NIP3) is a member of the Bcl-2 family that is expressed in mitochondria and induces apoptosis without a functional BH3 domain. We report that endogenous BNIP3 is loosely associated with mitochondrial membrane in normal tissue but fully integrates into the mitochondrial outer membrane with the N terminus in the cytoplasm and the C terminus in the membrane during induction of cell death. Surprisingly, BNIP3-mediated cell death is independent of Apaf-1, caspase activation, cytochrome c release, and nuclear translocation of apoptosis-inducing factor. However, cells transfected with BNIP3 exhibit early plasma membrane permeability, mitochondrial damage, extensive cytoplasmic vacuolation, and mitochondrial autophagy, yielding a morphotype that is typical of necrosis. These changes were accompanied by rapid and profound mitochondrial dysfunction characterized by opening of the mitochondrial PT pore, proton electrochemical gradient (Deltapsim) suppression, and increased reactive oxygen species production. The PT pore inhibitors cyclosporin A and bongkrekic acid blocked mitochondrial dysregulation and cell death. We propose that BNIP3 is a gene that mediates a necrosis-like cell death through PT pore opening and mitochondrial dysfunction.  (+info)

Bcl-2 independence of flavopiridol-induced apoptosis. Mitochondrial depolarization in the absence of cytochrome c release. (8/100)

The new chemotherapeutic agent, flavopiridol, presently in clinical trials, has been extensively studied yet little is known about its mechanism of action. In this study we show that the induction of apoptosis by flavopiridol is largely independent of Bcl-2. This is indicated by the observation that neither overexpression nor the antisense oligonucleotide-mediated down-regulation of Bcl-2 had any effect on flavopiridol-induced cell killing. Our results suggest that flavopiridol can induce apoptosis through different pathways of caspase activation with caspase 8 playing a pivotal role. In human lung carcinoma cells, which contain high levels of endogenous Bcl-2 and lack procaspase 8, flavopiridol treatment leads to mitochondrial depolarization in the absence of cytochrome c release, followed by the activation of caspase 3 and cell death. These results clearly differ from observations made with other anti-tumor drugs and might explain, at least in part, the unusual anti-tumor properties of flavopiridol.  (+info)

Bongkrekic acid is a toxic compound that is produced by certain strains of the bacterium Pseudomonas cocovenenans. This bacterium can contaminate foods, particularly coconut products such as tempeh, a traditional Indonesian soybean fermented food. Bongkrekic acid inhibits the function of the mitochondria, the energy-producing structures in cells, leading to cell death and potentially serious illness or death in humans. Consumption of food contaminated with bongkrekic acid can cause a severe form of food poisoning known as bongkrek fever, which is characterized by symptoms such as nausea, vomiting, diarrhea, abdominal pain, and neurological symptoms such as confusion, seizures, and coma. Bongkrek fever is often fatal if not treated promptly and effectively. It is important to handle and store food properly to prevent contamination with bongkrekic acid and other harmful bacteria.

Atractyloside is a toxic diterpene compound that can be found in various plants, including Atractylis gummifera (commonly known as gum cistus or rabbit-ear cistus) and other members of the Asteraceae family. This toxin is known to inhibit the mitochondrial ADP/ATP translocase, which plays a crucial role in cellular energy production.

Inhibition of this translocase leads to a disruption in the balance of adenine nucleotides inside the mitochondria, resulting in a decrease in ATP synthesis and an increase in the formation of reactive oxygen species (ROS). This can ultimately cause cell damage and even cell death.

Atractyloside poisoning can lead to various symptoms, such as gastrointestinal distress, liver and kidney damage, neurological issues, and, in severe cases, multi-organ failure. It is essential to seek immediate medical attention if atractyloside poisoning is suspected.

Mitochondrial ADP/ATP translocases, also known as adenine nucleotide translocators (ANT), are a group of proteins located in the inner mitochondrial membrane that play a crucial role in cellular energy production. These translocases facilitate the exchange of adenosine diphosphate (ADP) and adenosine triphosphate (ATP) across the mitochondrial membrane, which is essential for oxidative phosphorylation and thus, energy homeostasis in the cell.

In more detail, during oxidative phosphorylation, ATP is produced within the mitochondria as a result of the electron transport chain's activity. This ATP must be exported to the cytosol for use by the cell's various processes. Simultaneously, the mitochondria need a continuous supply of ADP to sustain the production of ATP. The mitochondrial ADP/ATP translocases facilitate this exchange, allowing for the import of ADP into the mitochondria and the export of ATP to the cytosol.

There are multiple isoforms of the ADP/ATP translocase in humans (ANT1, ANT2, ANT3, and ANT4), encoded by different genes, with varying tissue distributions and functions. Dysfunction of these translocases has been implicated in several pathological conditions, including neurodegenerative diseases, ischemia-reperfusion injury, and cancer.

'Burkholderia gladioli' is a gram-negative, rod-shaped bacterium that belongs to the Burkholderia cepacia complex (Bcc). This complex includes several closely related species that can cause respiratory infections, particularly in people with weakened immune systems or chronic lung diseases such as cystic fibrosis.

'Burkholderia gladioli' is commonly found in the environment, including soil and water. It has been isolated from a variety of plants, including onions, gladiolus, and other flowers. While it can cause serious infections in humans, it is also being studied for its potential use in bioremediation and as a source of novel antibiotics.

Infections caused by 'Burkholderia gladioli' can be difficult to treat due to the bacterium's resistance to many commonly used antibiotics. Treatment typically involves the use of multiple antibiotics and close monitoring of the patient's response to therapy.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Mitochondrial swelling is a pathological change in the structure of mitochondria, which are the energy-producing organelles found in cells. This condition is characterized by an increase in the volume of the mitochondrial matrix, which is the space inside the mitochondrion that contains enzymes and other molecules involved in energy production.

Mitochondrial swelling can occur as a result of various cellular stressors, such as oxidative damage, calcium overload, or decreased levels of adenosine triphosphate (ATP), which is the primary energy currency of the cell. This swelling can lead to disruption of the mitochondrial membrane and release of cytochrome c, a protein involved in apoptosis or programmed cell death.

Mitochondrial swelling has been implicated in several diseases, including neurodegenerative disorders, ischemia-reperfusion injury, and drug toxicity. It can be observed under an electron microscope as part of an ultrastructural analysis of tissue samples or detected through biochemical assays that measure changes in mitochondrial membrane potential or matrix volume.

Mitochondrial membrane transport proteins are a type of integral membrane proteins located in the inner and outer mitochondrial membranes. They play a crucial role in the regulation of molecule exchange between the cytosol and the mitochondrial matrix, allowing only specific ions and molecules to pass through while maintaining the structural and functional integrity of the mitochondria.

The inner mitochondrial membrane transport proteins, also known as the mitochondrial carrier proteins or the solute carriers, are a family of about 50 different types of proteins that facilitate the passage of various metabolites, such as nucleotides, amino acids, fatty acids, and inorganic ions (like calcium, sodium, and potassium). These transport proteins usually function as exchangers or uniporters, moving one type of solute in one direction in exchange for another type of solute or a proton.

The outer mitochondrial membrane is more permeable than the inner membrane due to the presence of voltage-dependent anion channels (VDACs) and other porins that allow small molecules, ions, and metabolites to pass through. VDACs are the most abundant proteins in the outer mitochondrial membrane and play a significant role in controlling the flow of metabolites between the cytosol and the intermembrane space.

In summary, mitochondrial membrane transport proteins are essential for maintaining the proper functioning of mitochondria by regulating the movement of molecules across the inner and outer membranes. They facilitate the exchange of nutrients, metabolites, and ions required for oxidative phosphorylation, energy production, and other cellular processes.

Oligomycins are a group of antibiotics produced by various species of Streptomyces bacteria. They are characterized by their ability to inhibit the function of ATP synthase, an enzyme that plays a crucial role in energy production within cells. By binding to the F1 component of ATP synthase, oligomycins prevent the synthesis of ATP, which is a key source of energy for cellular processes.

These antibiotics have been used in research to study the mechanisms of ATP synthase and mitochondrial function. However, their therapeutic use as antibiotics is limited due to their toxicity to mammalian cells. Oligomycin A is one of the most well-known and studied members of this group of antibiotics.

Intracellular membranes refer to the membrane structures that exist within a eukaryotic cell (excluding bacteria and archaea, which are prokaryotic and do not have intracellular membranes). These membranes compartmentalize the cell, creating distinct organelles or functional regions with specific roles in various cellular processes.

Major types of intracellular membranes include:

1. Nuclear membrane (nuclear envelope): A double-membraned structure that surrounds and protects the genetic material within the nucleus. It consists of an outer and inner membrane, perforated by nuclear pores that regulate the transport of molecules between the nucleus and cytoplasm.
2. Endoplasmic reticulum (ER): An extensive network of interconnected tubules and sacs that serve as a major site for protein folding, modification, and lipid synthesis. The ER has two types: rough ER (with ribosomes on its surface) and smooth ER (without ribosomes).
3. Golgi apparatus/Golgi complex: A series of stacked membrane-bound compartments that process, sort, and modify proteins and lipids before they are transported to their final destinations within the cell or secreted out of the cell.
4. Lysosomes: Membrane-bound organelles containing hydrolytic enzymes for breaking down various biomolecules (proteins, carbohydrates, lipids, and nucleic acids) in the process called autophagy or from outside the cell via endocytosis.
5. Peroxisomes: Single-membrane organelles involved in various metabolic processes, such as fatty acid oxidation and detoxification of harmful substances like hydrogen peroxide.
6. Vacuoles: Membrane-bound compartments that store and transport various molecules, including nutrients, waste products, and enzymes. Plant cells have a large central vacuole for maintaining turgor pressure and storing metabolites.
7. Mitochondria: Double-membraned organelles responsible for generating energy (ATP) through oxidative phosphorylation and other metabolic processes, such as the citric acid cycle and fatty acid synthesis.
8. Chloroplasts: Double-membraned organelles found in plant cells that convert light energy into chemical energy during photosynthesis, producing oxygen and organic compounds (glucose) from carbon dioxide and water.
9. Endoplasmic reticulum (ER): A network of interconnected membrane-bound tubules involved in protein folding, modification, and transport; it is divided into two types: rough ER (with ribosomes on the surface) and smooth ER (without ribosomes).
10. Nucleus: Double-membraned organelle containing genetic material (DNA) and associated proteins involved in replication, transcription, RNA processing, and DNA repair. The nuclear membrane separates the nucleoplasm from the cytoplasm and contains nuclear pores for transporting molecules between the two compartments.

In the context of medicine and physiology, permeability refers to the ability of a tissue or membrane to allow the passage of fluids, solutes, or gases. It is often used to describe the property of the capillary walls, which control the exchange of substances between the blood and the surrounding tissues.

The permeability of a membrane can be influenced by various factors, including its molecular structure, charge, and the size of the molecules attempting to pass through it. A more permeable membrane allows for easier passage of substances, while a less permeable membrane restricts the movement of substances.

In some cases, changes in permeability can have significant consequences for health. For example, increased permeability of the blood-brain barrier (a specialized type of capillary that regulates the passage of substances into the brain) has been implicated in a number of neurological conditions, including multiple sclerosis, Alzheimer's disease, and traumatic brain injury.

Cyclosporine is a medication that belongs to a class of drugs called immunosuppressants. It is primarily used to prevent the rejection of transplanted organs, such as kidneys, livers, and hearts. Cyclosporine works by suppressing the activity of the immune system, which helps to reduce the risk of the body attacking the transplanted organ.

In addition to its use in organ transplantation, cyclosporine may also be used to treat certain autoimmune diseases, such as rheumatoid arthritis and psoriasis. It does this by suppressing the overactive immune response that contributes to these conditions.

Cyclosporine is available in capsule, oral solution, and injectable forms. Common side effects of the medication include kidney problems, high blood pressure, tremors, headache, and nausea. Long-term use of cyclosporine can also increase the risk of certain types of cancer and infections.

It is important to note that cyclosporine should only be used under the close supervision of a healthcare provider, as it requires regular monitoring of blood levels and kidney function.

Caspase-9 is a type of protease enzyme that plays a crucial role in the execution phase of programmed cell death, also known as apoptosis. It is a member of the cysteine-aspartic acid protease (caspase) family, which are characterized by their ability to cleave proteins after an aspartic acid residue. Caspase-9 is activated through a process called cytochrome c-mediated caspase activation, which occurs in the mitochondria during apoptosis. Once activated, caspase-9 cleaves and activates other downstream effector caspases, such as caspase-3 and caspase-7, leading to the proteolytic degradation of cellular structures and ultimately resulting in cell death. Dysregulation of caspase-9 activity has been implicated in various diseases, including neurodegenerative disorders and cancer.

Cytochrome c is a small protein that is involved in the electron transport chain, a key part of cellular respiration in which cells generate energy in the form of ATP. Cytochrome c contains a heme group, which binds to and transports electrons. The cytochrome c group refers to a class of related cytochromes that have similar structures and functions. These proteins are found in the mitochondria of eukaryotic cells (such as those of plants and animals) and in the inner membranes of bacteria. They play a crucial role in the production of energy within the cell, and are also involved in certain types of programmed cell death (apoptosis).

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Caspases are a family of protease enzymes that play essential roles in programmed cell death, also known as apoptosis. These enzymes are produced as inactive precursors and are activated when cells receive signals to undergo apoptosis. Once activated, caspases cleave specific protein substrates, leading to the characteristic morphological changes and DNA fragmentation associated with apoptotic cell death. Caspases also play roles in other cellular processes, including inflammation and differentiation. There are two types of caspases: initiator caspases (caspase-2, -8, -9, and -10) and effector caspases (caspase-3, -6, and -7). Initiator caspases are activated in response to various apoptotic signals and then activate the effector caspases, which carry out the proteolytic cleavage of cellular proteins. Dysregulation of caspase activity has been implicated in a variety of diseases, including neurodegenerative disorders, ischemic injury, and cancer.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

I'd be happy to help! However, I believe there might be a slight misunderstanding in your question. Mitochondria are organelles found in the cells of all complex living organisms, including humans, while the liver is a large, solid organ located in the upper right portion of the abdomen. They don't have a medical definition together. I can certainly provide you with separate definitions for each:

1. Mitochondria: These are double-membrane-bound cellular organelles that generate most of the chemical energy needed to power the cell's biochemical reactions. Commonly known as the "powerhouse of the cell," mitochondria convert organic substrates, such as glucose, fatty acids, and amino acids, into adenosine triphosphate (ATP) through a process called oxidative phosphorylation. Mitochondria are dynamic structures that can change their shape, size, and number through fission (division) and fusion (merging) processes. They play essential roles in various cellular functions, including calcium signaling, apoptosis (programmed cell death), and the regulation of cellular metabolism.

2. Liver: The liver is a large, lobulated organ that lies mainly in the upper right portion of the abdominal cavity, just below the diaphragm. It plays a crucial role in various physiological functions, such as detoxification, protein synthesis, metabolism, and nutrient storage. The liver is responsible for removing toxins from the bloodstream, producing bile to aid in digestion, regulating glucose levels, synthesizing plasma proteins, and storing glycogen, vitamins, and minerals. It also contributes to the metabolism of carbohydrates, lipids, and amino acids, helping maintain energy homeostasis in the body.

I hope this clarifies any confusion! If you have any further questions or need more information, please don't hesitate to ask.

Adenosine diphosphate (ADP) is a chemical compound that plays a crucial role in energy transfer within cells. It is a nucleotide, which consists of a adenosine molecule (a sugar molecule called ribose attached to a nitrogenous base called adenine) and two phosphate groups.

In the cell, ADP functions as an intermediate in the conversion of energy from one form to another. When a high-energy phosphate bond in ADP is broken, energy is released and ADP is converted to adenosine triphosphate (ATP), which serves as the main energy currency of the cell. Conversely, when ATP donates a phosphate group to another molecule, it is converted back to ADP, releasing energy for the cell to use.

ADP also plays a role in blood clotting and other physiological processes. In the coagulation cascade, ADP released from damaged red blood cells can help activate platelets and initiate the formation of a blood clot.

Caspase-3 is a type of protease enzyme that plays a central role in the execution-phase of cell apoptosis, or programmed cell death. It's also known as CPP32 (CPP for ced-3 protease precursor) or apopain. Caspase-3 is produced as an inactive protein that is activated when cleaved by other caspases during the early stages of apoptosis. Once activated, it cleaves a variety of cellular proteins, including structural proteins, enzymes, and signal transduction proteins, leading to the characteristic morphological and biochemical changes associated with apoptotic cell death. Caspase-3 is often referred to as the "death protease" because of its crucial role in executing the cell death program.

Proto-oncogene proteins c-bcl-2 are a group of proteins that play a role in regulating cell death (apoptosis). The c-bcl-2 gene produces one of these proteins, which helps to prevent cells from undergoing apoptosis. This protein is located on the membrane of mitochondria and endoplasmic reticulum and it can inhibit the release of cytochrome c, a key player in the activation of caspases, which are enzymes that trigger apoptosis.

In normal cells, the regulation of c-bcl-2 protein helps to maintain a balance between cell proliferation and cell death, ensuring proper tissue homeostasis. However, when the c-bcl-2 gene is mutated or its expression is dysregulated, it can contribute to cancer development by allowing cancer cells to survive and proliferate. High levels of c-bcl-2 protein have been found in many types of cancer, including leukemia, lymphoma, and carcinomas, and are often associated with a poor prognosis.

No data available that match "bongkrekic acid"


No FAQ available that match "bongkrekic acid"

No images available that match "bongkrekic acid"