A small leucine-rich proteoglycan found in a variety of tissues including CAPILLARY ENDOTHELIUM; SKELETAL MUSCLE; CARTILAGE; BONE; and TENDONS. The protein contains two glycosaminoglycan chains and is similar in structure to DECORIN.
A small leucine-rich proteoglycan that interacts with FIBRILLAR COLLAGENS and modifies the EXTRACELLULAR MATRIX structure of CONNECTIVE TISSUE. Decorin has also been shown to play additional roles in the regulation of cellular responses to GROWTH FACTORS. The protein contains a single glycosaminoglycan chain and is similar in structure to BIGLYCAN.
Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ).
Glycoproteins which have a very high polysaccharide content.
Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains.
HYALURONAN-containing proteoglycans found in the EXTRACELLULAR MATRIX of a variety of tissues and organs. Several versican isoforms exist due to multiple ALTERNATIVE SPLICING of the versican MESSENGER RNA.
A non-fibrillar collagen that forms a network of MICROFIBRILS within the EXTRACELLULAR MATRIX of CONNECTIVE TISSUE. The alpha subunits of collagen type VI assemble into antiparallel, overlapping dimers which then align to form tetramers.
A naturally occurring glycosaminoglycan found mostly in the skin and in connective tissue. It differs from CHONDROITIN SULFATE A (see CHONDROITIN SULFATES) by containing IDURONIC ACID in place of glucuronic acid, its epimer, at carbon atom 5. (from Merck, 12th ed)
A sulfated mucopolysaccharide initially isolated from bovine cornea. At least two types are known. Type I, found mostly in the cornea, contains D-galactose and D-glucosamine-6-O-sulfate as the repeating unit; type II, found in skeletal tissues, contains D-galactose and D-galactosamine-6-O-sulfate as the repeating unit.
Large HYALURONAN-containing proteoglycans found in articular cartilage (CARTILAGE, ARTICULAR). They form into aggregates that provide tissues with the capacity to resist high compressive and tensile forces.
Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine or N-acetylgalactosamine.
A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere.
An enzyme that catalyzes the eliminative degradation of polysaccharides containing 1,4-beta-D-hexosaminyl and 1,3-beta-D-glucuronosyl or 1,3-alpha-L-iduronosyl linkages to disaccharides containing 4-deoxy-beta-D-gluc-4-enuronosyl groups. (Enzyme Nomenclature, 1992)
Works containing information articles on subjects in every field of knowledge, usually arranged in alphabetical order, or a similar work limited to a special field or subject. (From The ALA Glossary of Library and Information Science, 1983)
The branch of chemistry dealing with detection (qualitative) and determination (quantitative) of substances. (Grant & Hackh's Chemical Dictionary, 5th ed)

Connective tissues: matrix composition and its relevance to physical therapy. (1/269)

In the last 2 decades, the understanding of CT structure and function has increased enormously. It is now clear that the cells of the various CTs synthesize a variety of ECM components that act not only to underpin the specific biomechanical and functional properties of tissues, but also to regulate a variety of cellular functions. Importantly for the physical therapist, and as discussed above, CTs are responsive to changes in the mechanical environment, both naturally occurring and applied. The relative proportions of collagens and PGs largely determine the mechanical properties of CTs. The relationship between the fibril-forming collagens and PG concentration is reciprocal. Connective tissues designed to resist high tensile forces are high in collagen and low in total PG content (mostly dermatan sulphate PGs), whereas CTs subjected to compressive forces have a greater PG content (mostly chondroitin sulphate PGs). Hyaluronan has multiple roles and not only provides tissue hydration and facilitation of gliding and sliding movements but also forms an integral component of large PG aggregates in pressure-resisting tissues. The smaller glycoproteins help to stabilize and link collagens and PGs to the cell surface. The result is a complex interacting network of matrix molecules, which determines both the mechanical properties and the metabolic responses of tissues. Patients with CT problems affecting movement are frequently examined and treated by physical therapists. A knowledge of the CT matrix composition and its relationship to the biomechanical properties of these tissues, particularly the predictable responses to changing mechanical forces, offers an opportunity to provide a rational basis for treatments. The complexity of the interplay among the components, however, requires that further research be undertaken to determine more precisely the effects of treatments on the structure and function of CTs.  (+info)

Distinct secondary structures of the leucine-rich repeat proteoglycans decorin and biglycan. Glycosylation-dependent conformational stability. (2/269)

Biglycan and decorin have been overexpressed in eukaryotic cells and two major glycoforms isolated under native conditions: a proteoglycan substituted with glycosaminoglycan chains; and a core protein form secreted devoid of glycosaminoglycans (Hocking, A. M., Strugnell, R. A., Ramamurthy, P., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19571-19577; Ramamurthy, P., Hocking, A. M., and McQuillan, D. J. (1996) J. Biol. Chem. 271, 19578-19584). Far-UV CD spectroscopy of decorin and biglycan proteoglycans indicates that, although they are predominantly beta-sheet, biglycan has a significantly higher content of alpha-helical structure. Decorin proteoglycan and core protein are very similar, whereas the biglycan core protein exhibits closer similarity to the decorin glycoforms than to the biglycan proteoglycan form. However, enzymatic removal of the chondroitin sulfate chains from biglycan proteoglycan does not induce a shift to the core protein structure, suggesting that the final form is influenced by polysaccharide addition only during biosynthesis. Fluorescence emission spectroscopy demonstrated that the single tryptophan residue, which is at a conserved position at the C-terminal domain of both biglycan and decorin, is found in similar microenvironments. This indicates that in this specific domain the different glycoforms do exhibit apparent conservation of structure. Exposure of decorin and biglycan to 10 M urea resulted in an increase in fluorescent intensity, which indicates that the emission from tryptophan in the native state is quenched. Comparison of urea-induced protein unfolding curves provide further evidence that decorin and biglycan assume different structures in solution. Decorin proteoglycan and core protein unfold in a manner similar to a classic two-state model, in which there is a steep transition to an unfolded state between 1 and 2 M urea. The biglycan core protein also shows a similar steep transition. However, biglycan proteoglycan shows a broad unfolding transition between 1 and 6 M urea, probably indicating the presence of stable unfolding intermediates.  (+info)

Decorin is a Zn2+ metalloprotein. (3/269)

Decorin is ubiquitously distributed in the extracellular matrix of mammals and a member of the proteoglycan family characterized by a core protein dominated by leucine-rich repeat motifs. We show here that decorin extracted from bovine tissues under denaturing conditions or produced in recombinant "native" form by cultured mammalian cells has a high affinity for Zn2+ as demonstrated by equilibrium dialyses. The Zn2+-binding sites are localized to the N-terminal domain of the core protein that contains 4 Cys residues in a spacing reminiscent of a zinc finger. A recombinant 41-amino acid long peptide representing the N-terminal domain of decorin has full Zn2+ binding activity and binds two Zn2+ ions with an average KD of 3 x 10(-7) M. Binding of Zn2+ to this peptide results in a change in secondary structure as shown by circular dichroism spectroscopy. Biglycan, a proteoglycan that is structurally closely related to decorin contains a similar high affinity Zn2+-binding segment, whereas the structurally more distantly related proteoglycans, epiphycan and osteoglycin, do not bind Zn2+ with high affinity.  (+info)

Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. (4/269)

A bovine nasal-cartilage culture system has been utilized to analyse the catabolic events occurring in response to interleukin-1beta over a 14-day period. An early event following the start of interleukin-1 treatment was the release of glycosaminoglycan into the culture medium. This release was accompanied by the appearance in the tissue, and shortly thereafter also in the culture media, of a globular domain (G1)-containing aggrecan degradation product generated by the action of aggrecanase. Link protein was also released from the cartilage with a similar timeframe to that of the G1 fragment, although there was no evidence of its proteolytic degradation. By comparison with aggrecan, the small leucine-rich repeat proteoglycans decorin, biglycan and lumican showed a resistance to both proteolytic cleavage and release throughout the culture period. In contrast, fibromodulin exhibited a marked decrease in size after day 4, presumably due to proteolytic modification, but the major degradation product was retained throughout the culture period. Also in contrast with the early changes in the components of the proteoglycan aggregate, type II collagen did not display signs of extensive degradation until much later in the culture period. Collagen degradation products compatible with collagenase action first appeared in the medium by day 10 and increased thereafter. These data demonstrate that the leucine-rich repeat proteoglycans are resistant to proteolytic action during interleukin-1-stimulated cartilage catabolism, compared with aggrecan. This resistance and continued interaction with the surface of the collagen fibrils may help to stabilize the collagen fibrillar network and protect it from extensive proteolytic attack during the early phases of cartilage degeneration.  (+info)

Differential regulation of extracellular matrix molecules by mechanical strain of fetal lung cells. (5/269)

We have previously shown that an intermittent mechanical strain regimen (5% elongation, 60 cycles/min, 15 min/h) that simulates fetal breathing movements stimulated fetal rat lung cell proliferation. Because normal lung growth requires proper coordination between cell proliferation and extracellular matrix (ECM) remodeling, we subjected organotypic cultures of fetal rat lung cells (day 19 of gestation, term = 22 days) to this strain regimen and examined alterations in ECM gene and protein expression. Northern analysis revealed that mechanical strain reduced messages for procollagen-alpha1(I) and biglycan and increased the levels of mRNA for collagen-alpha1(IV) and -alpha2(IV), whereas laminin beta-chain mRNA levels remained constant. Regardless of mRNA changes, mechanical strain increased the protein content of type I and type IV collagen as well as of biglycan in the medium. Mechanical strain did not affect gene expression of several matrix metalloproteinases (MMPs), such as MMP-1 (interstitial collagenase), MMP-2 (gelatinase A), and MMP-3 (stromelysin-1). Neither collagenase nor gelatinase (A and B) activities in conditioned medium were affected by mechanical strain. Tissue inhibitor of metalloproteinase activities in conditioned medium remained unchanged during the 48-h intermittent mechanical stretching. These data suggest that an intermittent mechanical strain differentially regulates gene and protein expression of ECM molecules in fetal lung cells. The observed increase in matrix accumulation appears to be mainly a result of an increased synthesis of ECM molecules and not of decreasing activity of degradative enzymes.  (+info)

The macromolecular characteristics of cartilage proteoglycans do not change when synthesis is up-regulated by link protein peptide. (6/269)

Previous studies have shown that a synthetic, unglycosylated analogue of the N-terminal peptide from link protein can function as a growth factor and up-regulate proteoglycan biosynthesis in explant cultures of normal human articular cartilage from a wide age range of subjects (McKenna et al., Arthritis Rheum. 41 (1998) 157-162). The present work further shows that link peptide increased proteoglycan synthesis by cartilage cultured in both the presence and absence of serum, suggesting that the mechanism of up-regulation may be different from that of insulin-like growth factors. The proteoglycans synthesised during stimulation with link peptide were of normal hydrodynamic size and the ratio of core protein to glycosaminoglycan side chains and the proportions of the large proteoglycan aggrecan to the small proteoglycans, decorin and biglycan, remained constant. Aggrecan molecules were equally capable of forming aggregates as those from control tissues and the relative proportions of decorin and biglycan were unchanged showing that both were co-ordinately up-regulated. These results confirmed that this novel peptide is a potent stimulator of proteoglycan synthesis by articular cartilage and showed that the newly synthesised proteoglycans were of normal composition.  (+info)

External beam radiation after stent implantation increases neointimal hyperplasia by augmenting smooth muscle cell proliferation and extracellular matrix accumulation. (7/269)

OBJECTIVES: We sought to examine the effects of high volume external beam radiation (EBR) after stent implantation on neointimal hyperplasia, smooth muscle cell (SMC) proliferation, presence of inflammatory cells and expression of extracellular matrix (ECM). BACKGROUND: Endovascular irradiation has been shown to reduce restenosis rates after angioplasty in preliminary trials, but conflicting results have been reported for the effects of external beam irradiation. METHODS: Forty-three Palmaz-Schatz stents were implanted into iliac arteries of New Zealand White rabbits. The arteries were externally irradiated after stent implantation with a single dose of 8 Gy (at day 3) or 16 Gy in two fractions (8 Gy at days 3 and 4) by means of a linear accelerator. In the control rabbits, no radiation was applied after stent implantation. Smooth muscle cells, macrophages and ECM were studied by immunohistochemistry at one and 12 weeks after stent implantation. Collagen type I and biglycan messenger ribonucleic acid (mRNA) levels were assessed by Northern blot analysis at one week. Neointimal cell densities and arterial lumen stenosis were measured by histomorphometry at 12 weeks. RESULTS: At 1 week, SMC proliferation at the site of stent implantation was increased after EBR with 8 and 16 Gy (26 +/- 5%, 32 +/- 3% vs. 17 +/- 8%; p < 0.01, 16 Gy vs. control). External beam radiation with 8 and 16 Gy augmented SMC proliferation proximal and distal to the angioplasty site (11 +/- 3%, 14 +/- 3 vs. 6 +/- 1%; p < 0.01, 16 Gy vs. control). Collagen type I and biglycan mRNA levels were elevated in stented arteries after EBR with 16 Gy. At 12 weeks, a marked decrease in neointimal cell density (248 +/- 97 vs. 498 +/- 117 SMCs/0.1 mm2 neointima; p < 0.005 vs. control) was noted after EBR with 16 Gy. Irradiation with 8 and 16 Gy increased arterial lumen stenosis compared with nonirradiated control rabbits (45 +/- 7%, 55 +/- 9% vs. 33 +/- 7%; p < 0.05, 8 Gy and p < 0.001, 16 Gy vs. control). CONCLUSIONS: High volume external beam radiation at doses of 8 or 16 Gy causes restenosis by augmenting proliferative activity at and adjacent to the site of stent implantation, and by dose-dependent up-regulation of extracellular matrix expression. The study suggests that excessive matrix accumulation is an important determinant of failure of radiation therapy to prevent restenosis.  (+info)

Cyclic expression of mRNA transcripts for connective tissue components in the mouse ovary. (8/269)

In the ovary, differentiation of germinal cells into primordial follicles, functional ovulatory follicles and corpus luteum, all take place in a connective tissue matrix. We postulated that extracellular matrix (ECM) of the ovary participates actively in ovarian functions. To test this, the mRNA levels for several ECM components were determined in the mouse ovary at six distinct stages of the 4-day oestrous cycle. Northern analysis revealed statistically significant cyclic expression patterns for the mRNAs coding for type III, IV and VI collagens as well as for the small proteoglycan, biglycan, and for syndecan-1 and osteonectin. The cyclic changes observed in the mRNAs for these structural components exceeded those for matrix metalloproteinases (MMP)-2, -9 and -13, and for tissue inhibitors of matrix metalloproteinases (TIMP)-1, -2 and -3, where the changes were not statistically significant, despite their apparent role in ECM remodelling in the ovary. These observations support the hypothesis that cyclic changes in the production and degradation of ECM are part of normal ovarian function connected with follicular maturation, rupture and corpus luteum formation.  (+info)

Biglycan is a type of small leucine-rich proteoglycan (SLRP) that is found in the extracellular matrix of various tissues, including bone, cartilage, and tendons. It plays important roles in the organization and stabilization of the extracellular matrix, as well as in the regulation of cell behavior and signaling pathways.

Biglycan is composed of a core protein and one or more glycosaminoglycan (GAG) chains, which are long, unbranched polysaccharides made up of repeating disaccharide units. The GAG chains attach to the core protein via specific serine residues, forming a proteoglycan.

In addition to its structural roles, biglycan has been shown to interact with various growth factors and cytokines, modulating their activity and influencing cellular responses such as proliferation, differentiation, and migration. Dysregulation of biglycan expression or function has been implicated in several diseases, including osteoarthritis, cancer, and fibrosis.

Decorin is a small proteoglycan, a type of protein with a attached sugar chain, that is found in the extracellular matrix of connective tissues in the body. It is composed of a core protein and one or more glycosaminoglycan (GAG) chains, specifically dermatan sulfate. Decorin plays important roles in the organization and biomechanical properties of collagen fibrils, regulation of cell proliferation and migration, and modulation of growth factor activity. It has been studied for its potential role in various physiological and pathological processes, including wound healing, fibrosis, and cancer.

Extracellular matrix (ECM) proteins are a group of structural and functional molecules that provide support, organization, and regulation to the cells in tissues and organs. The ECM is composed of a complex network of proteins, glycoproteins, and carbohydrates that are secreted by the cells and deposited outside of them.

ECM proteins can be classified into several categories based on their structure and function, including:

1. Collagens: These are the most abundant ECM proteins and provide strength and stability to tissues. They form fibrils that can withstand high tensile forces.
2. Proteoglycans: These are complex molecules made up of a core protein and one or more glycosaminoglycan (GAG) chains. The GAG chains attract water, making proteoglycans important for maintaining tissue hydration and resilience.
3. Elastin: This is an elastic protein that allows tissues to stretch and recoil, such as in the lungs and blood vessels.
4. Fibronectins: These are large glycoproteins that bind to cells and ECM components, providing adhesion, migration, and signaling functions.
5. Laminins: These are large proteins found in basement membranes, which provide structural support for epithelial and endothelial cells.
6. Tenascins: These are large glycoproteins that modulate cell adhesion and migration, and regulate ECM assembly and remodeling.

Together, these ECM proteins create a microenvironment that influences cell behavior, differentiation, and function. Dysregulation of ECM proteins has been implicated in various diseases, including fibrosis, cancer, and degenerative disorders.

Proteoglycans are complex, highly negatively charged macromolecules that are composed of a core protein covalently linked to one or more glycosaminoglycan (GAG) chains. They are a major component of the extracellular matrix (ECM) and play crucial roles in various biological processes, including cell signaling, regulation of growth factor activity, and maintenance of tissue structure and function.

The GAG chains, which can vary in length and composition, are long, unbranched polysaccharides that are composed of repeating disaccharide units containing a hexuronic acid (either glucuronic or iduronic acid) and a hexosamine (either N-acetylglucosamine or N-acetylgalactosamine). These GAG chains can be sulfated to varying degrees, which contributes to the negative charge of proteoglycans.

Proteoglycans are classified into four major groups based on their core protein structure and GAG composition: heparan sulfate/heparin proteoglycans, chondroitin/dermatan sulfate proteoglycans, keratan sulfate proteoglycans, and hyaluronan-binding proteoglycans. Each group has distinct functions and is found in specific tissues and cell types.

In summary, proteoglycans are complex macromolecules composed of a core protein and one or more GAG chains that play important roles in the ECM and various biological processes, including cell signaling, growth factor regulation, and tissue structure maintenance.

Chondroitin sulfate proteoglycans (CSPGs) are complex molecules found in the extracellular matrix of various connective tissues, including cartilage. They are composed of a core protein covalently linked to one or more glycosaminoglycan (GAG) chains, such as chondroitin sulfate and dermatan sulfate.

CSPGs play important roles in the structure and function of tissues, including:

1. Regulating water content and providing resilience to tissues due to their high negative charge, which attracts cations and bound water molecules.
2. Interacting with other matrix components, such as collagen and elastin, to form a highly organized network that provides tensile strength and elasticity.
3. Modulating cell behavior by interacting with various growth factors, cytokines, and cell surface receptors, thereby influencing processes like cell adhesion, proliferation, differentiation, and migration.
4. Contributing to the maintenance of the extracellular matrix homeostasis through their involvement in matrix turnover and remodeling.

In articular cartilage, CSPGs are particularly abundant and contribute significantly to its load-bearing capacity and overall health. Dysregulation of CSPGs has been implicated in various pathological conditions, such as osteoarthritis, where altered proteoglycan composition and content can lead to cartilage degradation and joint dysfunction.

Versican is a type of proteoglycan, which is a complex protein molecule that contains one or more long sugar chains (glycosaminoglycans) attached to it. Proteoglycans are important components of the extracellular matrix (the material that provides structural support and regulates cell behavior in tissues and organs).

Versican is primarily found in the extracellular matrix of connective tissues, including skin, tendons, ligaments, and blood vessels. It plays a role in regulating cell adhesion, migration, and proliferation, as well as in maintaining the structural integrity of tissues. Versican has been implicated in various physiological and pathological processes, such as embryonic development, wound healing, inflammation, and cancer progression.

There are several isoforms of versican (V0, V1, V2, and V3) that differ in their structure and function, depending on the specific glycosaminoglycan chains attached to them. Abnormal expression or regulation of versican has been associated with various diseases, including cancer, fibrosis, and inflammatory disorders.

Collagen Type VI is a type of collagen that is widely expressed in various tissues, including skeletal muscle, skin, and blood vessels. It is a major component of the extracellular matrix and plays important roles in maintaining tissue structure and function. Collagen Type VI forms microfilaments that provide structural support to the basement membrane and regulate cell-matrix interactions. Mutations in the genes encoding collagen Type VI can lead to several inherited connective tissue disorders, such as Bethlem myopathy and Ullrich congenital muscular dystrophy.

Dermatan sulfate is a type of glycosaminoglycan, which is a long, unbranched sugar chain found on the proteoglycan core protein in the extracellular matrix of animal tissues. It is composed of repeating disaccharide units of iduronic acid and N-acetylgalactosamine, with alternating sulfation at the 4-position of the iduronic acid and the 6-position of the galactosamine.

Dermatan sulfate is found in various tissues, including skin, heart valves, and blood vessels, where it plays important roles in regulating cell behavior, tissue development, and homeostasis. It also binds to a variety of growth factors, cytokines, and enzymes, modulating their activities and contributing to the regulation of various biological processes.

Abnormalities in dermatan sulfate metabolism can lead to several genetic disorders, such as Hunter syndrome and Hurler-Scheie syndrome, which are characterized by skeletal abnormalities, cardiac defects, and neurological impairment.

Keratan sulfate is a type of glycosaminoglycan (GAG), which is a complex carbohydrate found in connective tissues, including the cornea and cartilage. It is composed of repeating disaccharide units of galactose and N-acetylglucosamine, with sulfate groups attached to some of the sugar molecules.

Keratan sulfate is unique among GAGs because it contains a high proportion of non-sulfated sugars and is often found covalently linked to proteins in structures called proteoglycans. In the cornea, keratan sulfate plays important roles in maintaining transparency and regulating hydration. In cartilage, it contributes to the elasticity and resilience of the tissue.

Abnormalities in keratan sulfate metabolism have been associated with several genetic disorders, including corneal dystrophies and skeletal dysplasias.

Aggrecan is a large, complex proteoglycan molecule found in the extracellular matrix of articular cartilage and other connective tissues. It is a key component of the structural framework of these tissues, helping to provide resiliency, cushioning, and protection to the cells within. Aggrecan contains numerous glycosaminoglycan (GAG) chains, which are negatively charged molecules that attract water and ions, creating a swelling pressure that contributes to the tissue's load-bearing capacity.

The medical definition of 'Aggrecans' can be described as:

1. A large proteoglycan molecule found in articular cartilage and other connective tissues.
2. Composed of a core protein with attached glycosaminoglycan (GAG) chains, primarily chondroitin sulfate and keratan sulfate.
3. Plays a crucial role in the biomechanical properties of articular cartilage by attracting water and ions, creating a swelling pressure that contributes to the tissue's load-bearing capacity.
4. Aggrecan degradation or loss is associated with various joint diseases, such as osteoarthritis, due to reduced structural integrity and shock-absorbing capabilities of articular cartilage.

Glycosaminoglycans (GAGs) are long, unbranched polysaccharides composed of repeating disaccharide units. They are a major component of the extracellular matrix and connective tissues in the body. GAGs are negatively charged due to the presence of sulfate and carboxyl groups, which allows them to attract positively charged ions and water molecules, contributing to their ability to retain moisture and maintain tissue hydration and elasticity.

GAGs can be categorized into four main groups: heparin/heparan sulfate, chondroitin sulfate/dermatan sulfate, keratan sulfate, and hyaluronic acid. These different types of GAGs have varying structures and functions in the body, including roles in cell signaling, inflammation, and protection against enzymatic degradation.

Heparin is a highly sulfated form of heparan sulfate that is found in mast cells and has anticoagulant properties. Chondroitin sulfate and dermatan sulfate are commonly found in cartilage and contribute to its resiliency and ability to withstand compressive forces. Keratan sulfate is found in corneas, cartilage, and bone, where it plays a role in maintaining the structure and function of these tissues. Hyaluronic acid is a large, nonsulfated GAG that is widely distributed throughout the body, including in synovial fluid, where it provides lubrication and shock absorption for joints.

The extracellular matrix (ECM) is a complex network of biomolecules that provides structural and biochemical support to cells in tissues and organs. It is composed of various proteins, glycoproteins, and polysaccharides, such as collagens, elastin, fibronectin, laminin, and proteoglycans. The ECM plays crucial roles in maintaining tissue architecture, regulating cell behavior, and facilitating communication between cells. It provides a scaffold for cell attachment, migration, and differentiation, and helps to maintain the structural integrity of tissues by resisting mechanical stresses. Additionally, the ECM contains various growth factors, cytokines, and chemokines that can influence cellular processes such as proliferation, survival, and differentiation. Overall, the extracellular matrix is essential for the normal functioning of tissues and organs, and its dysregulation can contribute to various pathological conditions, including fibrosis, cancer, and degenerative diseases.

Chondroitin ABC lyase, also known as chondroitinase ABC or chondroitin sulfate eliminase, is an enzyme that breaks down chondroitin sulfate proteoglycans (CSPGs), which are major components of the extracellular matrix in various tissues including cartilage. CSPGs contain chondroitin sulfate chains, which are long, negatively charged polysaccharides composed of alternating sugars (N-acetylgalactosamine and glucuronic acid) with sulfate groups attached at specific positions.

Chondroitin ABC lyase cleaves chondroitin sulfate chains by removing a disaccharide unit from the polymer, resulting in the formation of unsaturated bonds between the remaining sugars. This enzymatic activity has been used in research to study the structure and function of CSPGs and their role in various biological processes, such as cell migration, tissue repair, and neural plasticity. Additionally, chondroitin ABC lyase has potential therapeutic applications for treating conditions associated with excessive accumulation of CSPGs, such as fibrosis and some neurological disorders.

An encyclopedia is a comprehensive reference work containing articles on various topics, usually arranged in alphabetical order. In the context of medicine, a medical encyclopedia is a collection of articles that provide information about a wide range of medical topics, including diseases and conditions, treatments, tests, procedures, and anatomy and physiology. Medical encyclopedias may be published in print or electronic formats and are often used as a starting point for researching medical topics. They can provide reliable and accurate information on medical subjects, making them useful resources for healthcare professionals, students, and patients alike. Some well-known examples of medical encyclopedias include the Merck Manual and the Stedman's Medical Dictionary.

Analytical chemistry is a branch of chemistry that focuses on the identification and quantification of chemical components within a sample. This field involves developing and using various analytical techniques and methods to determine the presence, concentration, structure, and purity of different chemicals or compounds in a mixture.

Some common analytical techniques include:

1. Spectroscopy: Using light or other electromagnetic radiation to study the interaction between matter and energy, providing information about the composition, structure, and properties of a sample. Examples include UV-Vis, IR, NMR, and mass spectrometry.
2. Chromatography: A separation technique that separates components in a mixture based on their interactions with a mobile phase (gas or liquid) and a stationary phase (solid or liquid). Common methods include gas chromatography (GC), liquid chromatography (LC), and thin-layer chromatography (TLC).
3. Electrochemical analysis: Measuring the electrical properties of a sample, such as potential, current, or resistance, to determine its composition or concentration. Examples include potentiometry, voltammetry, and conductometry.
4. Thermal analysis: Examining the physical and chemical changes that occur in a sample when it is heated or cooled, providing information about its composition, structure, and properties. Techniques include differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA).
5. Spectrometry: Measuring the intensity of light dispersed by a sample as a function of wavelength or frequency to determine its composition, structure, or properties. Examples include atomic absorption spectroscopy (AAS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence spectrometry (XRF).

Analytical chemists often work in various industries, such as pharmaceuticals, food, environmental testing, and forensics, to ensure product quality, safety, and compliance with regulations. They may also contribute to research and development efforts by developing new analytical methods or improving existing ones.

In humans, biglycan is encoded by the BGN gene which is located on the X chromosome. The name "biglycan" was proposed in an ... Biglycan is believed to play a role in the mineralization of bone. Knock-out mice that have had the gene for biglycan ... Biglycan has been shown to interact with SGCA. Biglycan is a particularly important proteoglycan for binding to lipoprotein in ... There is also evidence that biglycan binds to TGF-beta 1. Biglycan interacts with collagen, both via the core protein and GAG ...
Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. I: Journal of Biological Chemistry. ... Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. Journal of Biological Chemistry. 2001 ... Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. / Wiberg, Charlotte; Hedbom, Erik; ... Utforska forskningsämnen för "Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix". ...
In response to tissue damage, the ECM-derived soluble form of biglycan acts as a danger signal by triggering an inflammatory ... Biglycan, a small leucine-rich proteoglycan (SLRP), is a crucial component of the extracellular matrix (ECM) associated with ... Evaluation of the In Vitro and In Vivo Effects of Biglycan in Innate Immunity Methods Mol Biol. 2023:2619:109-124. doi: 10.1007 ... Biglycan, a small leucine-rich proteoglycan (SLRP), is a crucial component of the extracellular matrix (ECM) associated with ...
Biglycan (Bgn), an extracellular ... Biglycan regulates bone development and regeneration February ...
... decorin and biglycan). At 3 h in culture, the rate of growth cone extension was reduced on decorin and biglycan, but by 20-24 h ... Although chicken biglycan has thus far not been cloned, embryonic chick tissue expresses a biglycanated form of decorin that is ... Inhibition of attachment to substrata containing versican (A), biglycan (B), and decorin (C) were similar to inhibition by ... 1A). In contrast, CSPG members of the decorin family (decorin and biglycan) are smaller and have fewer CS substitution sites ( ...
Bowe MA, Mendis DB, Fallon JR (Feb 2000). "The small leucine-rich repeat proteoglycan biglycan binds to alpha-dystroglycan and ... "The small leucine-rich repeat proteoglycan biglycan binds to alpha-dystroglycan and is upregulated in dystrophic muscle". The ... SGCA has been shown to interact with Biglycan. GRCh38: Ensembl release 89: ENSG00000108823 - Ensembl, May 2017 GRCm38: Ensembl ...
All these CAF markers highly interacted with other structural ECM components: BGN (biglycan), THBS1/2 (thrombospondin 1/2), and ...
Genomic deletion of TLR2 increased the protein level of biglycan, but not HMGB1, in AD mice. Biglycan and high mobility group ... Figure 9. Expression of endogenous ligands for TLR2. (A) Expression of biglycan in AD-TLR2KO mice increased significantly ... As shown in Figure 9, the protein level of biglycan in AD-TLR2KO mice was significant higher that that in WT, TLRKO, and AD ... 51. Moreth K, Frey H, Hubo M, Zeng-Brouwers J, Nastase MV, Hsieh LT, Haceni R, Pfeilschifter J, Iozzo RV, Schaefer L. Biglycan- ...
Cultured astrocytes express biglycan, a chondroitin/dermatan sulfate proteoglycan supporting the survival of neocortical ...
Crystal structure of the biglycan dimer core protein. 2id5. Crystal Structure of the Lingo-1 Ectodomain. ...
Growth factor-mediated hyper-elongation of glycosaminoglycan chains on biglycan requires transcription and translation. Arch ...
Biglycan enhances gastric cancer invasion by activating FAK signaling pathway. Oncotarget. 2014;5:1885-96 ...
Ovarian transplants in wild type and biglycan/decorin knockout mice Cardiovascular response to peer rejection as a biomarker ...
The PGs studied in this thesis are mostly extracellularly located and include aggrecan, biglycan and decorin. READ MORE ...
... biglycan, matrix GLAprotein, and von Willebrand factor demonstrated progressively increasing expression. Similar trends of ... biglycan, matrix GLAprotein, and von Willebrand factor demonstrated progressively increasing expression. Similar trends of ...
Biglycan appears to accelerate corneal wound healing in vivo by modulating myofibroblast apoptosis, resulting in removal of ... Taken together, results present an interesting possibility to combine BPC implantation and topical biglycan treatment to ... Effect of biglycan and PRP on keratocyte phenotype and survival was evaluated by immunohistochemistry, and real time PCR using ... to evaluate the effect of biglycan and platelet rich plasma (PRP) treatment during wound healing after corneal incision, and to ...
... biglycan, neutrophil gelatinase-associated lipocalin, and matrix metalloproteinase-9 in familial amyloid polyneuropathy. FASEB ...
And these proteoglycans, decorin and biglycan, kind of theyre floating around, and then they get picked up by different immune ...
biglycan [Source:HGNC Symbol;Acc:HGNC.... 201309_x_at. 9315. NREP. neuronal regeneration related protein.... ...
Among them, Biglycan (BGN) and Decorin (DCN), two small leucine-rich proteoglycans (SLRP), can bind different types of collagen ... Biglycan and fibromodulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in ... and Decorin and Biglycan (greater than in ASC-CM) (Fig. 4b and Supplementary Table 5). At last, a manual check for other ...
... biglycan, and syndecans 1 and 3) and mitogenesis-related signaling proteins (e.g., mitogen-activated protein kinase 3, signal ...
Biglycan Has a Major Role in Maintenance of Mature Tendon Mechanics. February 18, 2022. by Jeremy ... Biglycan knockdown also decreased the cell nuclear aspect ratio, indicating a more spindle-like nuclear shape. Overall, the ... Decorin and biglycan are two small leucine-rich proteoglycans (SLRPs) that regulate collagen fibrillogenesis and extracellular ... Specifically, knockdown of biglycan resulted in reduced insertion modulus, maximum stress, dynamic modulus, stress relaxation, ...
Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and ... Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and ...
Biglycan Medicine & Life Sciences 43% * Idiopathic Pulmonary Fibrosis Medicine & Life Sciences 41% ...
Non-enzymatic decomposition of collagen fibers by a biglycan antibody and a plausible mechanism for rheumatoid arthritis ...
Biglycan-deficient and biglycan wild-type Ldlr-/- mice were made diabetic via streptozotocin and fed a high cholesterol diet. ... Biglycan-deficient and biglycan wild-type Ldlr-/- mice were made diabetic via streptozotocin and fed a high cholesterol diet. ... Biglycan-deficient and biglycan wild-type Ldlr-/- mice were made diabetic via streptozotocin and fed a high cholesterol diet. ... Biglycan-deficient and biglycan wild-type Ldlr-/- mice were made diabetic via streptozotocin and fed a high cholesterol diet. ...
2017; Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical ...

No FAQ available that match "biglycan"

No images available that match "biglycan"