'Bicyclo compounds' in medicinal chemistry refer to organic molecules containing two fused rings, where each ring shares two common atoms, creating a topological structure that resembles two overlapping circles or bicycle tires.
A class of saturated compounds consisting of two rings only, having two or more atoms in common, containing at least one hetero atom, and that take the name of an open chain hydrocarbon containing the same total number of atoms. (From Riguady et al., Nomenclature of Organic Chemistry, 1979, p31)
Eight-carbon saturated hydrocarbon group of the methane series. Include isomers and derivatives.
Imides are organic compounds characterized by the presence of a functional group with the structure R-C(=O)-N-R', where R and R' are organic radicals, often found in pharmaceuticals, dyes, and as intermediates in chemical synthesis.
Changing an open-chain hydrocarbon to a closed ring. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Group of alkaloids containing a benzylpyrrole group (derived from TRYPTOPHAN)
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Synthetic organic reactions that use reactions between unsaturated molecules to form cyclical products.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Drugs that selectively bind to and activate ADENOSINE A3 RECEPTORS.
Compounds that selectively bind to and block the activation of ADENOSINE A3 RECEPTORS.
Attachment of isoprenoids (TERPENES) to other compounds, especially PROTEINS and FLAVONOIDS.
An industrial solvent which causes nervous system degeneration. MBK is an acronym often used to refer to it.
Norbornanes are a class of bicyclic organic compounds consisting of a hydrocarbon skeleton made up of two fused 5-membered rings, where five of the six ring carbons are bonded to hydrogens and one is bonded to two additional carbon atoms, forming a bridge between the rings.
Rhodium. A hard and rare metal of the platinum group, atomic number 45, atomic weight 102.905, symbol Rh. (Dorland, 28th ed)
A group of compounds with an 8-carbon ring. They may be saturated or unsaturated.
Agents that alleviate ANXIETY, tension, and ANXIETY DISORDERS, promote sedation, and have a calming effect without affecting clarity of consciousness or neurologic conditions. ADRENERGIC BETA-ANTAGONISTS are commonly used in the symptomatic treatment of anxiety but are not included here.
A subtype of ADENOSINE RECEPTOR that is found expressed in a variety of locations including the BRAIN and endocrine tissues. The receptor is generally considered to be coupled to the GI, INHIBITORY G-PROTEIN which causes down regulation of CYCLIC AMP.
'Ketones' are organic compounds with a specific structure, characterized by a carbonyl group (a carbon double-bonded to an oxygen atom) and two carbon atoms, formed as byproducts when the body breaks down fats for energy due to lack of glucose, often seen in diabetes and starvation states.
Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed)
Cyclopropanes are a class of hydrocarbons characterized by a small ring structure containing three carbon atoms, each with single bonds to the other two carbons and to hydrogen atoms, making it highly strained and reactive, which has implications for its use as an anesthetic in medicine.
Six-carbon saturated hydrocarbon group of the methane series. Include isomers and derivatives. Various polyneuropathies are caused by hexane poisoning.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Bornanes are a class of bicyclic organic compounds, specifically sesquiterpenes, that contain a bornane skeleton, consisting of a cyclohexane ring fused to a cyclopentane ring, and can be found in various essential oils and plants.
The characteristic three-dimensional shape of a molecule.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Inorganic or organic compounds that contain sulfur as an integral part of the molecule.

Development of muscarinic analgesics derived from epibatidine: role of the M4 receptor subtype. (1/1538)

Epibatidine, a neurotoxin isolated from the skin of Epipedobates tricolor, is an efficacious antinociceptive agent with a potency 200 times that of morphine. The toxicity of epibatidine, because of its nonspecificity for both peripheral and central nicotinic receptors, precludes its development as an analgesic. During the synthesis of epibatidine analogs we developed potent antinociceptive agents, typified by CMI-936 and CMI-1145, whose antinociception, unlike that of epibatidine, is mediated via muscarinic receptors. Subsequently, we used specific muscarinic toxins and antagonists to delineate the muscarinic receptor subtype involved in the antinociception evoked by these agents. Thus, the antinociception produced by CMI-936 and CMI-1145 is inhibited substantially by 1) intrathecal injection of the specific muscarinic M4 toxin, muscarinic toxin-3; 2) intrathecally administered pertussis toxin, which inhibits the G proteins coupled to M2 and M4 receptors; and 3) s.c. injection of the M2/M4 muscarinic antagonist himbacine. These results demonstrate that the antinociception elicited by these epibatidine analogs is mediated via muscarinic M4 receptors located in the spinal cord. Compounds that specifically target the M4 receptor therefore may be of substantial value as alternative analgesics to the opiates.  (+info)

Apicularens A and B, new cytostatic macrolides from Chondromyces species (myxobacteria): production, physico-chemical and biological properties. (2/1538)

A novel macrolide, apicularen A, was produced by several species of the genus Chondromyces. Initially it was discovered by bioassay-guided RP-HPLC-fractionation of culture extracts of Chondromyces robustus, strain Cm a13. Apicularen A showed no antimicrobial activity, but was highly cytotoxic for cultivated human and animal cells, with IC50 values ranging between 0.1 and 3 ng/ml. A cometabolite of apicularen A, the N-acetylglucosamine glycoside apicularen B, was distinctly less cytotoxic with IC50 values between 0.2 and 1.2 microg/ml, and showed weak activity against a few Gram-positive bacteria. Apicularen A is chemically closely related to the salicylihalamides A and B from the marine sponge Haliclona sp.  (+info)

Identifying the bicyclomycin binding domain through biochemical analysis of antibiotic-resistant rho proteins. (3/1538)

Mutations M219K, S266A, and G337S in transcription termination factor Rho have been shown to confer resistance to the antibiotic bicyclomycin (BCM). All three His-tagged mutant Rho proteins exhibited similar Km values for ATP; however, the Vmax values at infinite ATP concentrations were one-fourth to one-third that for the His-tagged wild-type enzyme. BCM inhibition kinetics of poly(C)-dependent ATPase activity for the mutant proteins were non-competitive with respect to ATP (altering catalytic function but not ATP binding) and showed increased Ki values compared with His-tagged wild-type Rho. M219K and G337S exhibited increased ratios of poly(U)/poly(C)-stimulated ATPase activity and lower apparent Km values for ribo(C)10 in the poly(dC).ribo(C)10-dependent ATPase assay compared with His-tagged wild-type Rho. The S266A mutation did not show an increased poly(U)/poly(C) ATPase activity ratio and maintained approximately the same Km for ribo(C)10 in the poly(dC). ribo(C)10-dependent ATPase assay. The kinetic studies indicated that M219K and G337S altered the secondary RNA binding domain in Rho whereas the S266A mutation did not. Transcription termination assays for each mutant showed different patterns of Rho-terminated transcripts. Tyrosine substitution of Ser-266 led to BCM sensitivity intimating that an OH (hydroxyl) moiety at this position is needed for BCM (binding) inhibition. Our results suggest BCM binds to Rho at a site distinct from both the ATP and the primary RNA binding domains but close to the secondary RNA-binding (tracking) site and the ATP hydrolysis pocket.  (+info)

Latrunculin-A causes mydriasis and cycloplegia in the cynomolgus monkey. (4/1538)

PURPOSE: To determine the effect of latrunculin (LAT)-A, which binds to G-actin and disassembles actin filaments, on the pupil, accommodation, and isolated ciliary muscle (CM) contraction in monkeys. METHODS: Pupil diameter (vernier calipers) and refraction (coincidence refractometry) were measured every 15 minutes from 0.75 to 3.5 hours after topical LAT-A 42 microg (approximately 10 microM in the anterior chamber [AC]). Refraction was measured every 5 minutes from 0.5 to 1.5 hours after intracameral injection of 10 microl of 50 microM LAT-A (approximately 5 microM in AC), with intramuscular infusion of 1.5 mg/kg pilocarpine HCl (PILO) during the first 15 minutes of measurements. Pupil diameter was measured at 1 and 2 hours, and refraction was measured every 5 minutes from 1 to 2 hours, after intravitreal injection of 20 microl of 1.25 mM LAT-A (approximately 10 microM in vitreous), with intramuscular infusion of 1.5 mg/kg PILO during the first 15 minutes of measurements (all after topical 2.5% phenylephrine), and contractile response of isolated CM strips, obtained <1 hour postmortem and mounted in a perfusion apparatus, to 10 microM PILO +/- LAT-A was measured at various concentrations. RESULTS: Topical LAT-A of 42 microg dilated the pupil without affecting refraction. Intracameral LAT-A of 5 microM inhibited miotic and accommodative responses to intramuscular PILO. Intravitreal LAT-A of 10 microM had no effect on accommodative or miotic responses to intramuscular PILO. LAT-A dose-dependently relaxed the PILO-contracted CM by up to 50% at 3 microM in both the longitudinal and circular vectors. CONCLUSIONS: In monkeys, LAT-A causes mydriasis and cycloplegia, perhaps related to its known ability to disrupt the actin microfilament network and consequently to affect cell contractility and adhesion. Effects of LAT-A on the iris and CM may have significant physiological and clinical implications.  (+info)

Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes. (5/1538)

OBJECTIVE: 5-HT4 receptors are present in human atrial cells and their stimulation has been implicated in the genesis of atrial arrhythmias including atrial fibrillation. An I(f)-like current has been recorded in human atrial myocytes, where it is modulated by beta-adrenergic stimulation. In the present study, we investigated the effect of serotonin (5-hydroxytryptamine, 5-HT) on I(f) electrophysiological properties, in order to get an insight into the possible contribution of I(f) to the arrhythmogenic action of 5-HT in human atria. METHODS: Human atrial myocytes were isolated by enzymatic digestion from samples of atrial appendage of patients undergoing coeffective cardiac surgery. Patch-clamped cells were superfused with a modified Tyrode's solution in order to amplify I(f) and reduce overlapping currents. RESULTS AND CONCLUSIONS: A time-dependent, cesium-sensitive increasing inward current, that we had previously described having the electrophysiological properties of the pacemaker current I(f), was elicited by negative steps (-60 to -130 mV) from a holding potential of -40 mV. Boltzmann fit of control activation curves gave a midpoint (V1/2) of -88.9 +/- 2.6 mV (n = 14). 5-HT (1 microM) consistently caused a positive shift of V1/2 of 11.0 +/- 2.0 mV (n = 8, p < 0.001) of the activation curve toward less negative potentials, thus increasing the amount of current activated by clamp steps near the physiological maximum diastolic potential of these cells. The effect was dose-dependent, the EC50 being 0.14 microM. Maximum current amplitude was not changed by 5-HT. 5-HT did not increase I(f) amplitude when the current was maximally activated by cAMP perfused into the cell. The selective 5-HT4 antagonists, DAU 6285 (10 microM) and GR 125487 (1 microM), completely prevented the effect of 5-HT on I(f). The shift of V1/2 caused by 1 microM 5-HT in the presence of DAU 6285 or GR 125487 was 0.3 +/- 1 mV (n = 6) and 1.0 +/- 0.6 mV (n = 5), respectively (p < 0.01 versus 5-HT alone). The effect of 5-HT4 receptor blockade was specific, since neither DAU 6285 nor GR 125487 prevented the effect of 1 microM isoprenaline on I(f). Thus, 5-HT4 stimulation increases I(f) in human atrial myocytes; this effect may contribute to the arrhythmogenic action of 5-HT in human atrium.  (+info)

The role of local actin instability in axon formation. (6/1538)

The role of localized instability of the actin network in specifying axonal fate was examined with the use of rat hippocampal neurons in culture. During normal neuronal development, actin dynamics and instability polarized to a single growth cone before axon formation. Consistently, global application of actin-depolymerizing drugs and of the Rho-signaling inactivator toxin B to nonpolarized cells produced neurons with multiple axons. Moreover, disruption of the actin network in one individual growth cone induced its neurite to become the axon. Thus, local instability of the actin network restricted to a single growth cone is a physiological signal specifying neuronal polarization.  (+info)

Amphidinolide B, a powerful activator of actomyosin ATPase enhances skeletal muscle contraction. (7/1538)

Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  (+info)

Metabolism of the antimalarial endoperoxide Ro 42-1611 (arteflene) in the rat: evidence for endoperoxide bioactivation. (8/1538)

Ro 42-1611 (arteflene) is a synthetic endoperoxide antimalarial. The antimalarial activity of endoperoxides is attributed to iron(II)-mediated generation of carbon-centered radicals. An alpha, beta-unsaturated ketone (enone; 4-[2',4' bis(trifluoromethyl)phenyl]-3-buten-2-one), obtained from arteflene by reaction with iron(II), was identified previously as the stable product of a reaction that, by inference, also yields a cyclohexyl radical. The activation of arteflene in vivo has been characterized with particular reference to enone formation. [14C]Arteflene (35 micromol/kg) was given i.v. to anesthetized and cannulated male rats: 42.2 +/- 7.0% (mean +/- S.D., n = 7) of the radiolabel was recovered in bile over 5 h. In the majority of rats, the principal biliary metabolites were 8-hydroxyarteflene glucuronide (14.2 +/- 3. 9% dose, 0-3 h) and the cis and trans isomers of the enone (13.5 +/- 4.6% dose, 0-3 h). In conscious rats, 15.3 +/- 1.6% (mean +/- S.D., n = 8) of the radiolabel was recovered in urine over 24 h. The principal urinary metabolite appeared to be a glycine conjugate of a derivative of the enone. Biliary excretion of the glucuronide, but not of the enones, was inhibited by ketoconazole. 8-Hydroxyarteflene was formed extensively by rat and human liver microsomes but no enone was found. Bioactivation is a major pathway of arteflene's metabolism in the rat. Although the mechanism of in vivo bioactivation is unclear, the reaction is not catalyzed by microsomal cytochrome P-450 enzymes.  (+info)

Bicyclic compounds are organic molecules that contain two rings in their structure, with at least two common atoms shared between the rings. These compounds can be found in various natural and synthetic substances, including some medications and bioactive molecules. The unique structure of bicyclic compounds can influence their chemical and physical properties, which may impact their biological activity or reactivity.

Bicyclo compounds, heterocyclic, refer to a class of organic compounds that contain two rings in their structure, at least one of which is a heterocycle. A heterocycle is a cyclic compound containing atoms of at least two different elements as part of the ring structure. The term "bicyclo" indicates that there are two rings present in the molecule, with at least one common atom between them.

These compounds have significant importance in medicinal chemistry and pharmacology due to their unique structures and properties. They can be found in various natural products and are also synthesized for use as drugs, agrochemicals, and other chemical applications. The heterocyclic rings often contain nitrogen, oxygen, or sulfur atoms, which can interact with biological targets, such as enzymes and receptors, leading to pharmacological activity.

Examples of bicyclo compounds, heterocyclic, include quinolone antibiotics (e.g., ciprofloxacin), benzodiazepines (e.g., diazepam), and camptothecin-derived topoisomerase inhibitors (e.g., irinotecan). These compounds exhibit diverse biological activities, such as antibacterial, antifungal, antiviral, anxiolytic, and anticancer properties.

I'm sorry for any confusion, but "octanes" is not a medical term. It is a term used in chemistry and physics, particularly in reference to fuel. Octane is a hydrocarbon molecule found in gasoline, and it is used as a measure of the fuel's ability to resist engine knocking or pinging during combustion.

The octane rating of gasoline typically ranges from 87 (regular) to 91-93 (premium). Higher-octane fuels are often recommended for high-performance vehicles that have higher compression ratios in their engines. If you have any questions related to medical terminology, I'd be happy to help!

I'm not aware of a medical definition for the term "imides." It is a chemical term that refers to a specific type of organic compound containing a functional group with the structure R-C(=O)-N-R', where R and R' are organic groups, and the nitrogen atom is bonded to two organic groups. This term is more commonly used in chemistry and biochemistry rather than in medical contexts.

Cyclization is a chemical process that involves forming a cyclic structure or ring-shaped molecule from a linear or open-chain compound. In the context of medicinal chemistry and drug design, cyclization reactions are often used to synthesize complex molecules, including drugs, by creating rings or fused ring systems within the molecule's structure.

Cyclization can occur through various mechanisms, such as intramolecular nucleophilic substitution, electrophilic addition, or radical reactions. The resulting cyclized compounds may exhibit different chemical and biological properties compared to their linear precursors, making them valuable targets for drug discovery and development.

In some cases, the cyclization process can lead to the formation of stereocenters within the molecule, which can impact its three-dimensional shape and how it interacts with biological targets. Therefore, controlling the stereochemistry during cyclization reactions is crucial in medicinal chemistry to optimize the desired biological activity.

Overall, cyclization plays a significant role in the design and synthesis of many pharmaceutical compounds, enabling the creation of complex structures that can interact specifically with biological targets for therapeutic purposes.

Indole alkaloids are a type of naturally occurring organic compound that contain an indole structural unit, which is a heterocyclic aromatic ring system consisting of a benzene ring fused to a pyrrole ring. These compounds are produced by various plants and animals as secondary metabolites, and they have diverse biological activities. Some indole alkaloids have important pharmacological properties and are used in medicine as drugs or lead compounds for drug discovery. Examples of medically relevant indole alkaloids include reserpine, which is used to treat hypertension, and vinblastine and vincristine, which are used to treat various types of cancer.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

A cycloaddition reaction is a type of chemical reaction involving the formation of one or more rings through the coupling of two unsaturated molecules. This process typically involves the simultaneous formation of new sigma bonds, resulting in the creation of a cyclic structure. Cycloaddition reactions are classified based on the number of atoms involved in each component molecule and the number of sigma bonds formed during the reaction. For example, a [2+2] cycloaddition involves two unsaturated molecules, each containing two atoms involved in the reaction, resulting in the formation of a four-membered ring. These reactions play a significant role in organic synthesis and are widely used to construct complex molecular architectures in various fields, including pharmaceuticals, agrochemicals, and materials science.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Adenosine A3 receptor agonists are a type of pharmaceutical compound that bind to and activate the adenosine A3 receptor, which is a type of G-protein coupled receptor found in various tissues throughout the body. Activation of the A3 receptor has been shown to have anti-inflammatory and analgesic effects, making it a target for the development of drugs to treat conditions such as rheumatoid arthritis, inflammatory bowel disease, and chronic pain. Examples of adenosine A3 receptor agonists include IB-MECA, Cl-IB-MECA, and MRS1523.

Adenosine A3 receptor antagonists are a class of pharmaceutical compounds that block the action of adenosine at the A3 receptor. Adenosine is a naturally occurring purine nucleoside that acts as a neurotransmitter and modulator of various physiological processes, including cardiovascular function, immune response, and neuromodulation.

The A3 receptor is one of four subtypes of adenosine receptors (A1, A2A, A2B, and A3) that are widely distributed throughout the body. The activation of A3 receptors has been implicated in a variety of pathological conditions, including inflammation, pain, ischemia-reperfusion injury, and cancer.

Adenosine A3 receptor antagonists have been investigated as potential therapeutic agents for various diseases, such as rheumatoid arthritis, chronic pain, ischemic heart disease, and cancer. These compounds work by preventing the binding of adenosine to its receptor, thereby blocking its downstream signaling pathways.

Some examples of Adenosine A3 receptor antagonists include:

* MRS1523
* MRE-2029F20
* LUF5834
* VUF5574
* OT-7962

It is important to note that while Adenosine A3 receptor antagonists have shown promise in preclinical studies, their clinical efficacy and safety profile are still being evaluated in ongoing research.

Prenylation is a post-translational modification process in which a prenyl group, such as a farnesyl or geranylgeranyl group, is added to a protein covalently. This modification typically occurs at a cysteine residue within a CAAX motif (C is cysteine, A is an aliphatic amino acid, and X is any amino acid) found at the carboxyl-terminus of the protein. Prenylation plays a crucial role in membrane association, protein-protein interactions, and intracellular trafficking of proteins, particularly those involved in signal transduction pathways.

Methyl n-Butyl Ketone, also known as Methyl Amyl Ketone or 2-Hexanone, is an organic compound with the molecular formula C6H12O. It is a colorless liquid with a pungent, fruity odor. It is used as a solvent in various industrial applications, including coatings, cleaning agents, and adhesives.

In a medical context, Methyl n-Butyl Ketone is primarily relevant as a potential occupational hazard. Exposure to this chemical can occur through inhalation, skin contact, or accidental ingestion during its use in industrial settings. Acute exposure to high levels of Methyl n-Butyl Ketone can lead to symptoms such as headache, dizziness, nausea, and respiratory irritation. Chronic exposure has been associated with neurological issues, including memory loss, confusion, and peripheral neuropathy.

It is essential for medical professionals to be aware of the potential health effects of Methyl n-Butyl Ketone, particularly in occupational settings, to ensure appropriate prevention measures are in place and to diagnose and manage potential exposures effectively.

Norbornanes are a class of compounds in organic chemistry that contain a norbornane skeleton, which is a bicyclic structure consisting of two fused cyclohexane rings. One of the rings is saturated, while the other contains a double bond. The name "norbornane" comes from the fact that it is a "nor" (short for "norcarene") derivative of bornane, which has a similar structure but with a methyl group attached to one of the carbon atoms in the saturated ring.

Norbornanes have a variety of applications in organic synthesis and medicinal chemistry. Some derivatives of norbornane have been explored for their potential as drugs, particularly in the areas of central nervous system agents and anti-inflammatory agents. However, there is no specific medical definition associated with "norbornanes" as they are a class of chemical compounds rather than a medical term or condition.

I'm sorry for any confusion, but "Rhodium" is not a medical term. It is a chemical element with the symbol Rh and atomic number 45. It is a rare, silvery-white, hard, corrosion-resistant, and chemically inert transition metal. It is found in small quantities in platinum or nickel ores along with some other rare metals.

It's primarily used in industrial applications, such as being a key component in catalytic converters in automobiles, which helps to reduce harmful emissions. It's also used in jewelry, electronics, and scientific instruments due to its properties of resistance to corrosion and heat.

If you have any medical terms or concepts that you would like me to explain, please let me know!

Cyclooctanes are a class of organic compounds that contain a cyclic octane structure, which is an eight-carbon ring. These molecules can exist in various conformations, including "crowded" or "eclipsed" conformations, where the carbon-hydrogen bonds are arranged in a way that leads to steric strain. This strain makes cyclooctanes less stable than other cycloalkanes, such as cyclohexane. The properties and behavior of cyclooctanes can be studied and applied in fields like chemistry, biochemistry, and materials science.

Anti-anxiety agents, also known as anxiolytics, are a class of medications used to manage symptoms of anxiety disorders. These drugs work by reducing the abnormal excitement in the brain and promoting relaxation and calmness. They include several types of medications such as benzodiazepines, azapirone, antihistamines, and beta-blockers.

Benzodiazepines are the most commonly prescribed anti-anxiety agents. They work by enhancing the inhibitory effects of a neurotransmitter called gamma-aminobutyric acid (GABA) in the brain, which results in sedative, hypnotic, anxiolytic, anticonvulsant, and muscle relaxant properties. Examples of benzodiazepines include diazepam (Valium), alprazolam (Xanax), lorazepam (Ativan), and clonazepam (Klonopin).

Azapirones are a newer class of anti-anxiety agents that act on serotonin receptors in the brain. Buspirone (Buspar) is an example of this type of medication, which has fewer side effects and less potential for abuse compared to benzodiazepines.

Antihistamines are medications that are primarily used to treat allergies but can also have anti-anxiety effects due to their sedative properties. Examples include hydroxyzine (Vistaril, Atarax) and diphenhydramine (Benadryl).

Beta-blockers are mainly used to treat high blood pressure and heart conditions but can also help manage symptoms of anxiety such as rapid heartbeat, tremors, and sweating. Propranolol (Inderal) is an example of a beta-blocker used for this purpose.

It's important to note that anti-anxiety agents should be used under the guidance of a healthcare professional, as they can have side effects and potential for dependence or addiction. Additionally, these medications are often used in combination with psychotherapy and lifestyle modifications to manage anxiety disorders effectively.

Adenosine A3 receptor (A3R) is a type of G-protein coupled receptor that binds to adenosine, a purine nucleoside, and plays a role in various physiological processes. The activation of A3R leads to the inhibition of adenylate cyclase activity, which results in decreased levels of intracellular cAMP. This, in turn, modulates several downstream signaling pathways that are involved in anti-inflammatory and neuroprotective effects.

A3R is widely expressed in various tissues, including the brain, heart, lungs, liver, kidneys, and immune cells. In the central nervous system, A3R activation has been shown to have neuroprotective effects, such as reducing glutamate release, protecting against excitotoxicity, and modulating neuroinflammation. Additionally, A3R agonists have been investigated for their potential therapeutic benefits in various pathological conditions, including pain management, ischemia-reperfusion injury, and neurodegenerative diseases.

Overall, the Adenosine A3 receptor is an important target for drug development due to its role in modulating inflammation and cellular responses in various tissues and diseases.

Ketones are organic compounds that contain a carbon atom bound to two oxygen atoms and a central carbon atom bonded to two additional carbon groups through single bonds. In the context of human physiology, ketones are primarily produced as byproducts when the body breaks down fat for energy in a process called ketosis.

Specifically, under conditions of low carbohydrate availability or prolonged fasting, the liver converts fatty acids into ketone bodies, which can then be used as an alternative fuel source for the brain and other organs. The three main types of ketones produced in the human body are acetoacetate, beta-hydroxybutyrate, and acetone.

Elevated levels of ketones in the blood, known as ketonemia, can occur in various medical conditions such as diabetes, starvation, alcoholism, and high-fat/low-carbohydrate diets. While moderate levels of ketosis are generally considered safe, severe ketosis can lead to a life-threatening condition called diabetic ketoacidosis (DKA) in people with diabetes.

A nucleoside is a biochemical molecule that consists of a pentose sugar (a type of simple sugar with five carbon atoms) covalently linked to a nitrogenous base. The nitrogenous base can be one of several types, including adenine, guanine, cytosine, thymine, or uracil. Nucleosides are important components of nucleic acids, such as DNA and RNA, which are the genetic materials found in cells. They play a crucial role in various biological processes, including cell division, protein synthesis, and gene expression.

Cyclopropanes are a class of organic compounds that contain a cyclic structure consisting of three carbon atoms joined by single bonds, forming a three-membered ring. The strain in the cyclopropane ring is due to the fact that the ideal tetrahedral angle at each carbon atom (109.5 degrees) cannot be achieved in a three-membered ring, leading to significant angular strain.

Cyclopropanes are important in organic chemistry because of their unique reactivity and synthetic utility. They can undergo various reactions, such as ring-opening reactions, that allow for the formation of new carbon-carbon bonds and the synthesis of complex molecules. Cyclopropanes have also been used as anesthetics, although their use in this application has declined due to safety concerns.

Heptanes are a group of hydrocarbons that are composed of straight-chain or branched arrangements of six carbon atoms and are commonly found in gasoline. They are colorless liquids at room temperature with a characteristic odor. In a medical context, exposure to heptanes can occur through inhalation, skin contact, or ingestion, and can cause symptoms such as headache, dizziness, nausea, and irritation of the eyes, nose, and throat. Chronic exposure has been linked to more serious health effects, including neurological damage and cancer. Proper handling and use of heptanes, as well as adequate ventilation, are important to minimize exposure and potential health risks.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Spectrophotometry, Infrared is a scientific analytical technique used to measure the absorption or transmission of infrared light by a sample. It involves the use of an infrared spectrophotometer, which directs infrared radiation through a sample and measures the intensity of the radiation that is transmitted or absorbed by the sample at different wavelengths within the infrared region of the electromagnetic spectrum.

Infrared spectroscopy can be used to identify and quantify functional groups and chemical bonds present in a sample, as well as to study the molecular structure and composition of materials. The resulting infrared spectrum provides a unique "fingerprint" of the sample, which can be compared with reference spectra to aid in identification and characterization.

Infrared spectrophotometry is widely used in various fields such as chemistry, biology, pharmaceuticals, forensics, and materials science for qualitative and quantitative analysis of samples.

I'm sorry for any confusion, but "bornanes" is not a medical term or concept. It is a chemical term that refers to a class of compounds called bornane derivatives, which are structurally related to the naturally occurring compound bornane. These compounds have various uses in chemistry and materials science, but they do not have specific relevance to medicine or human health.

Molecular conformation, also known as spatial arrangement or configuration, refers to the specific three-dimensional shape and orientation of atoms that make up a molecule. It describes the precise manner in which bonds between atoms are arranged around a molecular framework, taking into account factors such as bond lengths, bond angles, and torsional angles.

Conformational isomers, or conformers, are different spatial arrangements of the same molecule that can interconvert without breaking chemical bonds. These isomers may have varying energies, stability, and reactivity, which can significantly impact a molecule's biological activity and function. Understanding molecular conformation is crucial in fields such as drug design, where small changes in conformation can lead to substantial differences in how a drug interacts with its target.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Sulfur compounds refer to chemical substances that contain sulfur atoms. Sulfur can form bonds with many other elements, including carbon, hydrogen, oxygen, and nitrogen, among others. As a result, there is a wide variety of sulfur compounds with different structures and properties. Some common examples of sulfur compounds include hydrogen sulfide (H2S), sulfur dioxide (SO2), and sulfonic acids (R-SO3H).

In the medical field, sulfur compounds have various applications. For instance, some are used as drugs or drug precursors, while others are used in the production of medical devices or as disinfectants. Sulfur-containing amino acids, such as methionine and cysteine, are essential components of proteins and play crucial roles in many biological processes.

However, some sulfur compounds can also be harmful to human health. For example, exposure to high levels of hydrogen sulfide or sulfur dioxide can cause respiratory problems, while certain organosulfur compounds found in crude oil and coal tar have been linked to an increased risk of cancer. Therefore, it is essential to handle and dispose of sulfur compounds properly to minimize potential health hazards.

Bicyclo Compounds. Bridged Bicyclo Compounds. Bicyclo Compounds, Heterocyclic. Bridged Bicyclo Compounds, Heterocyclic. ... Heterocyclic Compounds with 4 or More Rings. Heterocyclic Compounds, 4 or More Rings. ...
Bridged Bicyclo Compounds, Heterocyclic / metabolism * Convulsants / metabolism * Dose-Response Relationship, Drug * Drug ...
Bridged Bicyclo Compounds, Heterocyclic [administration & dosage] *Cytochrome P-450 CYP2B6 Inhibitors [administration & dosage ...
Bridged Bicyclo Compounds / metabolism * Bridged Bicyclo Compounds, Heterocyclic* * Convulsants / metabolism * Convulsants / ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Categories: Bicyclo Compounds, Heterocyclic Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
Bridged Bicyclo Compounds, Heterocyclic*; Bridged Bicyclo Compounds/metabolism*; Bridged-Ring Compounds/metabolism*; Kinetics; ...
Bridged Bicyclo Compounds, Heterocyclic / chemistry* Actions. * Search in PubMed * Search in MeSH ...
Bridged Bicyclo Compounds, Heterocyclic / therapeutic use Actions. * Search in PubMed * Search in MeSH ...
Bicyclo Compounds [D04.075.080]. *Bicyclo Compounds, Heterocyclic [D04.075.080.875]. *Azabicyclo Compounds [D04.075.080.875.099 ...
... bicyclo compounds MeSH D02.455.426.100.080.085 - bicyclo compounds, heterocyclic MeSH D02.455.426.100.080.100 - biperiden MeSH ... trialkyltin compounds MeSH D02.691.850.900.910 - triethyltin compounds MeSH D02.691.850.900.950 - trimethyltin compounds MeSH ... mustard compounds MeSH D02.455.526.728.468 - mustard gas MeSH D02.455.526.728.650 - nitrogen mustard compounds MeSH D02.455. ... trimethyl ammonium compounds MeSH D02.092.877.883.077 - betaine MeSH D02.092.877.883.088 - bethanechol compounds MeSH D02.092. ...
Bicyclo Compounds, Heterocyclic Heterocyclic Bicyclo Compounds Heterocyclic Compounds, Bicyclic Heterocyclic Cpds, Bicyclic ... Bicyclic Heterocyclic Compounds. Bicyclic Heterocyclic Cpds. Bicyclo Compounds, Heterocyclic. Heterocyclic Bicyclo Compounds. ... Bridged Bicyclo Compounds, Heterocyclic Entry term(s). Bicyclic Heterocyclic Compounds Bicyclic Heterocyclic Cpds ... Bridged Bicyclo Compounds, Heterocyclic - Preferred Concept UI. M0028488. Scope note. Heterocyclic compounds that contain two ...
Bicyclic Heterocyclic Compounds Bicyclo Compounds, Heterocyclic Heterocyclic Bicyclo Compounds Heterocyclic Cpds, Bicyclic ... Heterocyclic Compounds [D03] * Heterocyclic Compounds, Bridged-Ring [D03.605] * Bridged Bicyclo Compounds, Heterocyclic [ ... Bicyclo Compounds (1975-1995). See Also. Bridged Bicyclo Compounds. Public MeSH Note. 2017; see BICYCLIC COMPOUND, HETEROCYCLIC ... Bridged Bicyclo Compounds, Heterocyclic Preferred Concept UI. M0028488. Registry Number. 0. Scope Note. Heterocyclic compounds ...
Bicyclic Heterocyclic Compounds Bicyclo Compounds, Heterocyclic Heterocyclic Bicyclo Compounds Heterocyclic Cpds, Bicyclic ... Heterocyclic Compounds [D03] * Heterocyclic Compounds, Bridged-Ring [D03.605] * Bridged Bicyclo Compounds, Heterocyclic [ ... Bicyclo Compounds (1975-1995). See Also. Bridged Bicyclo Compounds. Public MeSH Note. 2017; see BICYCLIC COMPOUND, HETEROCYCLIC ... Bridged Bicyclo Compounds, Heterocyclic Preferred Concept UI. M0028488. Registry Number. 0. Scope Note. Heterocyclic compounds ...
Bicyclo Compounds, Heterocyclic,N0000007813, Nitrosourea Compounds,N0000007812, Serpins,N0000007811, Naphthalenesulfonates, ... Heterocyclic Compounds with 4 or More Rings,N0000008261, Heterocyclic Compounds, 2-Ring,N0000008260, Heterocyclic Compounds, 1- ... Heterocyclic Compounds, 3-Ring,N0000008096, Heterocyclic Compounds,N0000008095, Mannans,N0000008094, Thiocarbamates,N0000008093 ... Magnesium Compounds,N0000007803, Iodine Compounds,N0000007802, Fluorine Compounds,N0000007801, Calcium Compounds,N0000007800, ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Bicyclo Compounds, Heterocyclic D4.75.80.875. Biperiden D4.75.80.875.99.332. Blast Crisis C4.557.337.539.250.200 C4.557.337.539 ...
Preparation of bicyclo heterocyclic compounds as antifungal agents. Kawakami, Katsuhiro, Kanai, Kazuo, Horiuchi, Takao, ...
Heterocyclic Compounds, 2-Ring. Bicyclo Compounds, Heterocyclic. Penicillins. Methicillin. Heterocyclic Compounds, Bridged-Ring ...
bicyclo compounds, heterocyclic. *bicyclomycin. *bicycloundecane. *bicycular. Alternative searches for bicyclist:. *. Search ...

No FAQ available that match "bicyclo compounds heterocyclic"