Kaeng Khoi virus from naturally infected bedbugs (cimicidae) and immature free-tailed bats.
(1/55)
Kaeng Khoi virus was recovered from bedbugs (Stricticimex parvus and Cimex insuetus) and from suckling wrinkle-lipped bats (Tadarida plicata) collected in central Thailand. The data implicate bedbugs as possible vectors of this virus. (
+info)
The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases.
(2/55)
Apyrases are enzymes that hydrolyze nucleotide di- and triphosphates to orthophosphate and mononucleotides. At least two families of enzymes, belonging to the 5'-nucleotidase and to the actin/heat shock 70/sugar kinase superfamily, have evolved independently to serve the apyrase reaction. Both families require either Ca(2+) or Mg(2+) for their action. A novel apyrase enzyme sequence, with no homology to any other known protein sequence, was found recently in the salivary glands of the hematophagous bed bug Cimex lectularius. This enzyme functions exclusively with Ca(2+). Here, we report the finding of a cDNA similar to that of the C. lectularius salivary apyrase isolated from a salivary gland cDNA library of Phlebotomus papatasi. Transfection of insect cells with the P. papatasi salivary gland apyrase cDNA resulted in the secretion of a Ca(2+)-dependent apyrase whose activity was indistinguishable from that in salivary homogenates of P. papatasi. Homologous sequences were found in humans, in another sand fly (Lutzomyia longipalpis), in the fruit fly Drosophila melanogaster, in the nematode Caenorhabditis elegans and in the protozoan Cryptosporidium parvum, indicating that this family of enzymes is widespread among animal species. (
+info)
A matter of taste: direct detection of female mating status in the bedbug.
(3/55)
Males of the bedbug, Cimex lectularius, traumatically inseminate females by inserting a needle-like intromittent organ (penis) through the female's abdominal wall after she has fed. We demonstrate that: (i) mating duration determines ejaculate size; (ii) a female's first copulation in a bout of copulations always lasts longer than subsequent copulations; (iii) the intromittent organ bears sensillae; (iv) males use their intromittent organ to 'taste' whether their current mate has recently copulated; and (v) the consequence of detecting female mating status is the reduction of copulation duration and ejaculate size. We discuss why male bedbugs might show this pattern of ejaculate-size adjustment. (
+info)
Reducing a cost of traumatic insemination: female bedbugs evolve a unique organ.
(4/55)
The frequent wounding of female bedbugs (Cimex lectularius: Cimicidae) during copulation has been shown to decrease their fitness, but how females have responded to this cost in evolutionary terms is unclear. The evolution of a unique anatomical structure found in female bedbugs, the spermalege, into which the male's intromittent organ passes during traumatic insemination, is a possible counteradaptation to harmful male traits. Several functions have been proposed for this organ, and we test two hypotheses related to its role in sexual conflict. We examine the hypotheses that the spermalege functions to (i) defend against pathogens introduced during traumatic insemination; and (ii) reduce the costs of wound healing during traumatic insemination. Our results support the 'defence against pathogens' hypothesis, suggesting that the evolution of this unique cimicid organ resulted, at least partly, from selection to reduce the costs of mating-associated infection. We found no evidence that the spermalege reduces the costs of wound healing. (
+info)
Costly traumatic insemination and a female counter-adaptation in bed bugs.
(5/55)
Male bed bugs pierce females through the body wall and inseminate directly into the body cavity. It has previously been shown that such traumatic insemination carries costs for females, and sexual conflict regarding the mode of insemination should thus propel male-female coevolution. Since males accumulate sexually antagonistic adaptations, females should evolve counter-adaptations that efficiently abate the costs to females of sexual interactions. Yet, unambiguous experimental evidence for female counter-adaptations is lacking. In bed bugs, the spermalege (a highly modified region of the abdomen where the male usually pierces the female) may represent a female counter-adaptation. We assess the female costs of traumatic insemination by varying the rate of insemination on the one hand, and the rate and mode of piercing trauma to females on the other. Our results show that female mating costs are not extreme-elevated mating rate shortened female lifespan but had no significant effect on lifetime egg production. More importantly, additional abdominal piercing in the spermalege had no effect on females whereas even a very low rate of such piercing outside the spermalege reduced female lifetime egg production by 50%. Thus, females are well counter-adapted to the intrusive mode of insemination exhibited by male bed bugs and the costs of elevated mating are comparable with those in other insects, as predicted by theory. We therefore demonstrate that the spermalege efficiently reduces the direct costs of piercing trauma to females, and hence provide experimental evidence for a female counter-adaptation to a sexually antagonistic male trait. (
+info)
Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein.
(6/55)
Certain bloodsucking insects deliver nitric oxide (NO) while feeding, to induce vasodilation and inhibit blood coagulation. We have expressed, characterized, and determined the crystal structure of the Cimex lectularius (bedbug) nitrophorin, the protein responsible for NO storage and delivery, to understand how the insect successfully handles this reactive molecule. Surprisingly, NO binds not only to the ferric nitrophorin heme, but it can also be stored as an S-nitroso (SNO) conjugate of the proximal heme cysteine (Cys-60) when present at higher concentrations. EPR- and UV-visible spectroscopies, and a crystallographic structure determination to 1.75-A resolution, reveal SNO formation to proceed with reduction of the heme iron, yielding an Fe-NO complex. Stopped-flow kinetic measurements indicate that an ordered reaction mechanism takes place: initial NO binding occurs at the ferric heme and is followed by heme reduction, Cys-60 release from the heme iron, and SNO formation. Release of NO occurs through a reversal of these steps. These data provide, to our knowledge, the first view of reversible metal-assisted SNO formation in a protein and suggest a mechanism for its role in NO release from ferrous heme. This mechanism and Cimex nitrophorin structure are completely unlike those of the nitrophorins from Rhodnius prolixus, where NO protection is provided by a large conformational change that buries the heme nitrosyl complex, highlighting the remarkable evolution of proteins that assist insects in bloodfeeding. (
+info)
Bed bug infestations in an urban environment.
(7/55)
Until recently, bed bugs have been considered uncommon in the industrialized world. This study determined the extent of reemerging bed bug infestations in homeless shelters and other locations in Toronto, Canada. Toronto Public Health documented complaints of bed bug infestations from 46 locations in 2003, most commonly apartments (63%), shelters (15%), and rooming houses (11%). Pest control operators in Toronto (N = 34) reported treating bed bug infestations at 847 locations in 2003, most commonly single-family dwellings (70%), apartments (18%), and shelters (8%). Bed bug infestations were reported at 20 (31%) of 65 homeless shelters. At 1 affected shelter, 4% of residents reported having bed bug bites. Bed bug infestations can have an adverse effect on health and quality of life in the general population, particularly among homeless persons living in shelters. (
+info)
Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis.
(8/55)
We report for the first time that saliva of the hard tick and Lyme disease vector, Ixodes scapularis, is a potent inhibitor of angiogenesis. Saliva (< or = 1:500 dilutions) or salivary gland (0.1-0.5 pairs/assay) dose-dependently inhibits microvascular endothelial cell (MVEC) proliferation. Inhibition was also detected with the saliva of the cattle tick Boophilus microplus but not with the salivary gland of Anopheles gambiae, An. stephensi, Lutzomyia longipalpis, Phlebotomus papatasi, Aedes aegypti, Culex quinquefasciatus, and Cimex lectularius. Inhibition of MVEC proliferation by I. Scapularis saliva was accompanied by a change in cell shape (shrinkage of the cytoplasm with loss of cell-cell interactions) and apoptosis which was estimated by expression of phosphatidylserine using the Apopercentage dye, and by a typical pattern of chromatin margination, condensation, and fragmentation as revealed by nuclear staining with Hoechst 33258. The effect of saliva appears to be mediated by endothelial cell alpha5beta1 integrin, because monoclonal antibodies against this but not alphavbeta3, alphavbeta5, alpha9beta1, or alpha2beta1 integrins remarkably block its effect. In addition, SDS/PAGE shows that saliva specifically degrades purified alpha5beta1 but not alphavbeta5 or alphavbeta3 integrins. Incubation of saliva with EDTA and 1,10-phenanthroline, but not phenylmethylsulfonyl fluoride (PMSF), inhibits saliva-dependent degradation of purified alpha5beta1 integrin, suggesting that a metalloprotease is responsible for the activity. Finally, saliva at < or = 1:1,000 dilutions blocks sprouting formation from chick embryo aorta implanted in Matrigel, an in vitro model of angiogenesis. These findings introduce the concept that tick saliva is a negative modulator of angiogenesis-dependent wound healing and tissue repair, therefore allowing ticks to feed for days. Inhibition of angiogenesis was hitherto an unidentified biologic property of the saliva of any blood-sucking arthropod studied so far. Its presence in tick saliva may be regarded as an additional source of angiogenesis inhibitors with potential applications for the study of both vector and vascular biology. (
+info)