Pyrrole containing pigments found in photosynthetic bacteria.
A specific bacteriochlorophyll that is similar in structure to chlorophyll a.
A phylum of anoxygenic, phototrophic bacteria including the family Chlorobiaceae. They occur in aquatic sediments, sulfur springs, and hot springs and utilize reduced sulfur compounds instead of oxygen.
A genus of gram-negative, rod-shaped, phototrophic bacteria found in aquatic environments. Internal photosynthetic membranes are present as lamellae underlying the cytoplasmic membrane.
Organelles of phototrophic bacteria which contain photosynthetic pigments and which are formed from an invagination of the cytoplasmic membrane.
Spherical phototrophic bacteria found in mud and stagnant water exposed to light.
A genus of phototrophic, obligately anaerobic bacteria in the family Chlorobiaceae. They are found in hydrogen sulfide-containing mud and water environments.
Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX.
Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms.
A genus of gram-negative, spiral bacteria that possesses internal photosynthetic membranes. Its organisms divide by binary fission, are motile by means of polar flagella, and are found in aquatic environments.
Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II.
An order of photosynthetic bacteria representing a physiological community of predominantly aquatic bacteria.
Non-pathogenic ovoid to rod-shaped bacteria that are widely distributed and found in fresh water as well as marine and hypersaline habitats.
The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001)
Vibrio- to spiral-shaped phototrophic bacteria found in stagnant water and mud exposed to light.
The general name for a group of fat-soluble pigments found in green, yellow, and leafy vegetables, and yellow fruits. They are aliphatic hydrocarbons consisting of a polyisoprene backbone.
A genus of gram-negative, ovoid to rod-shaped bacteria that is phototrophic. All species use ammonia as a nitrogen source. Some strains are found only in sulfide-containing freshwater habitats exposed to light while others may occur in marine, estuarine, and freshwater environments.
Processes by which phototrophic organisms use sunlight as their primary energy source. Contrasts with chemotrophic processes which do not depend on light and function in deriving energy from exogenous chemical sources. Photoautotrophy (or photolithotrophy) is the ability to use sunlight as energy to fix inorganic nutrients to be used for other organic requirements. Photoautotrophs include all GREEN PLANTS; GREEN ALGAE; CYANOBACTERIA; and green and PURPLE SULFUR BACTERIA. Photoheterotrophs or photoorganotrophs require a supply of organic nutrients for their organic requirements but use sunlight as their primary energy source; examples include certain PURPLE NONSULFUR BACTERIA. Depending on environmental conditions some organisms can switch between different nutritional modes (AUTOTROPHY; HETEROTROPHY; chemotrophy; or phototrophy) to utilize different sources to meet their nutrients and energy requirements.
A class in the phylum PROTEOBACTERIA comprised mostly of two major phenotypes: purple non-sulfur bacteria and aerobic bacteriochlorophyll-containing bacteria.
Chlorophylls from which the magnesium has been removed by treatment with weak acid.
Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms.
Life or metabolic reactions occurring in an environment containing oxygen.
A family of phototrophic bacteria, in the order Rhodospirillales, isolated from stagnant water and mud.
A family of phototrophic purple sulfur bacteria that deposit globules of elemental sulfur inside their cells. They are found in diverse aquatic environments.
A genus of gram-negative bacteria widely distributed in fresh water as well as marine and hypersaline habitats.
Keto acids that are derivatives of 4-oxopentanoic acids (levulinic acid).
That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range.
Proteins found in any species of bacterium.
Four PYRROLES joined by one-carbon units linking position 2 of one to position 5 of the next. The conjugated bond system results in PIGMENTATION.
One of the early purine analogs showing antineoplastic activity. It functions as an antimetabolite and is easily incorporated into ribonucleic acids.
A family in the order Rhodobacterales, class ALPHAPROTEOBACTERIA.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER.
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
The large pigment cells of fish, amphibia, reptiles and many invertebrates which actively disperse and aggregate their pigment granules. These cells include MELANOPHORES, erythrophores, xanthophores, leucophores and iridiophores. (In algae, chromatophores refer to CHLOROPLASTS. In phototrophic bacteria chromatophores refer to membranous organelles (BACTERIAL CHROMATOPHORES).)
A compound produced from succinyl-CoA and GLYCINE as an intermediate in heme synthesis. It is used as a PHOTOCHEMOTHERAPY for actinic KERATOSIS.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The salinated water of OCEANS AND SEAS that provides habitat for marine organisms.
A genus of obligately aerobic marine phototrophic and chemoorganotrophic bacteria, in the family RHODOBACTERACEAE.
Aerobic bacteria are types of microbes that require oxygen to grow and reproduce, and use it in the process of respiration to break down organic matter and produce energy, often found in environments where oxygen is readily available such as the human body's skin, mouth, and intestines.
The relationships of groups of organisms as reflected by their genetic makeup.
Products of the hydrolysis of chlorophylls in which the phytic acid side chain has been removed and the carboxylic acids saponified.
I'm sorry for any confusion, but the term "North Sea" is geographical and refers to the northernmost part of the Atlantic Ocean, located between eastern England, east Scotland, Norway, Denmark, Germany, the Netherlands, Belgium, and France, rather than having a medical definition.
A family of gram-negative, asporogenous rods or ovoid cells, aerobic or facultative anaerobic chemoorganotrophs. They are commonly isolated from SOIL, activated sludge, or marine environments.
The processes by which organisms utilize organic substances as their nutrient sources. Contrasts with AUTOTROPHIC PROCESSES which make use of simple inorganic substances as the nutrient supply source. Heterotrophs can be either chemoheterotrophs (or chemoorganotrophs) which also require organic substances such as glucose for their primary metabolic energy requirements, or photoheterotrophs (or photoorganotrophs) which derive their primary energy requirements from light. Depending on environmental conditions some organisms can switch between different nutritional modes (AUTOTROPHY; heterotrophy; chemotrophy; or PHOTOTROPHY) to utilize different sources to meet their nutrients and energy requirements.
A family of gram-negative aerobic bacteria consisting of ellipsoidal to rod-shaped cells that occur singly, in pairs, or in chains.
Stable iron atoms that have the same atomic number as the element iron, but differ in atomic weight. Fe-54, 57, and 58 are stable iron isotopes.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Enzymes that catalyze the joining of two molecules by the formation of a carbon-oxygen bond. EC 6.1.
Phytol is a diterpene alcohol that is a degradation product of chlorophyll and is used in the synthesis of vitamins E and K and other compounds in animals, but can also act as a phytoestrogen in certain plants.
Genes, found in both prokaryotes and eukaryotes, which are transcribed to produce the RNA which is incorporated into RIBOSOMES. Prokaryotic rRNA genes are usually found in OPERONS dispersed throughout the GENOME, whereas eukaryotic rRNA genes are clustered, multicistronic transcriptional units.
A genus of vibrioid or rod-shaped cells which are motile by polar flagella. Internal photosynthetic membranes are present as lamellar stacks and contain bacteriochlorophyll a or b and carotenoids. Growth occurs photoautotrophically under anaerobic conditions. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.
Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Stable oxygen atoms that have the same atomic number as the element oxygen, but differ in atomic weight. O-17 and 18 are stable oxygen isotopes.
A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
A genus of facultatively or obligately anaerobic marine phototrophic bacteria, in the family RHODOBACTERACEAE.
A physiologically diverse phylum of acidophilic, gram-negative bacteria found in a wide variety of habitats, but particularly abundant in soils and sediments.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
A phylum of bacteria consisting of the purple bacteria and their relatives which form a branch of the eubacterial tree. This group of predominantly gram-negative bacteria is classified based on homology of equivalent nucleotide sequences of 16S ribosomal RNA or by hybridization of ribosomal RNA or DNA with 16S and 23S ribosomal RNA.
A genus of green nonsulfur bacteria in the family Chloroflexaceae. They are photosynthetic, thermophilic, filamentous gliding bacteria found in hot springs.
Light harvesting proteins found in phycobilisomes.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)
The functional hereditary units of BACTERIA.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A photo-active pigment localized in prolamellar bodies occurring within the proplastids of dark-grown bean leaves. In the process of photoconversion, the highly fluorescent protochlorophyllide is converted to chlorophyll.
Specific particles of membrane-bound organized living substances present in eukaryotic cells, such as the MITOCHONDRIA; the GOLGI APPARATUS; ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.
A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
Photochemistry is the study of chemical reactions induced by absorption of light, resulting in the promotion of electrons to higher energy levels and subsequent formation of radicals or excited molecules that can undergo various reaction pathways.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
The absence of light.
A large group of aerobic bacteria which show up as pink (negative) when treated by the gram-staining method. This is because the cell walls of gram-negative bacteria are low in peptidoglycan and thus have low affinity for violet stain and high affinity for the pink dye safranine.
A group of the proteobacteria comprised of facultatively anaerobic and fermentative gram-negative bacteria.
Water containing no significant amounts of salts, such as water from RIVERS and LAKES.
Inorganic salts of thiosulfuric acid possessing the general formula R2S2O3.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A hardy grain crop, rye, grown in northern climates. It is the most frequent host to ergot (CLAVICEPS), the toxic fungus. Its hybrid with TRITICUM is TRITICALE, another grain.
A class of enzymes that catalyze the cleavage of C-C, C-O, and C-N, and other bonds by other means than by hydrolysis or oxidation. (Enzyme Nomenclature, 1992) EC 4.
A mass of organic or inorganic solid fragmented material, or the solid fragment itself, that comes from the weathering of rock and is carried by, suspended in, or dropped by air, water, or ice. It refers also to a mass that is accumulated by any other natural agent and that forms in layers on the earth's surface, such as sand, gravel, silt, mud, fill, or loess. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1689)
A family in the order Rhizobiales, class ALPHAPROTEOBACTERIA comprised of many genera of budding or appendaged bacteria.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A ubiquitous sodium salt that is commonly used to season food.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
Measurement of the intensity and quality of fluorescence.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis.
Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light.
An element that is a member of the chalcogen family. It has an atomic symbol S, atomic number 16, and atomic weight [32.059; 32.076]. It is found in the amino acids cysteine and methionine.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands.
Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
The rate dynamics in chemical or physical systems.
An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1.
Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica.
Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE.
The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An organization of cells into an organ-like structure. Organoids can be generated in culture. They are also found in certain neoplasms.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds.
A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
The characteristic three-dimensional shape of a molecule.
Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.
A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals.
The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum.
The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)
Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.

Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. (1/78)

We characterized and compared five geographically isolated hot springs with distinct red-layer communities in Yellowstone National Park. Individual red-layer communities were observed to thrive in temperatures ranging from 35 to 60 degrees C and at pH 7 to 9. All communities were dominated by red filamentous bacteria and contained bacteriochlorophyll a (Bchl a), suggesting that they represented novel green nonsulfur (GNS) bacteria. The in vivo absorption spectra of individual sites were different, with two sites showing unusual Bchl a protein absorption bands beyond 900 nm. We prepared and analyzed 16S rRNA libraries from all of these sites by using a combination of general bacterial primers and new GNS-specific primers described here. These studies confirmed the presence of novel GNS-like bacteria in all five communities. All GNS-like clones were most similar to Roseiflexus castenholzii, a red filamentous bacterium from Japan that also contains only Bchl a. Phylogenies constructed by using GNS-like clones from Yellowstone red-layer communities suggest the presence of a moderately diverse new "red" cluster within the GNS lineage. Within this cluster, at least two well-supported subclusters emerged: YRL-A was most similar to Roseiflexus and YRL-B appeared to be novel, containing no known isolates. While these patterns showed some site specificity, they did not correlate with observed Bchl a spectrum differences or obvious features of the habitat.  (+info)

The 7.5-A electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. (2/78)

A novel low-light (LL) adapted light-harvesting complex II has been isolated from Rhodopseudomonas palustris. Previous work has identified a LL B800-850 complex with a heterogeneous peptide composition and reduced absorption at 850 nm. The work presented here shows the 850 nm absorption to be contamination from a high-light B800-850 complex and that the true LL light-harvesting complex II is a novel B800 complex composed of eight alpha beta(d) peptide pairs that exhibits unique absorption and circular dichroism near infrared spectra. Biochemical analysis shows there to be four bacteriochlorophyll molecules per alpha beta peptide rather than the usual three. The electron density of the complex at 7.5 A resolution shows it to be an octamer with exact 8-fold rotational symmetry. A number of bacteriochlorophyll geometries have been investigated by simulation of the circular dichroism and absorption spectra and compared, for consistency, with the electron density. Modeling of the spectra suggests that the B850 bacteriochlorophylls may be arranged in a radial direction rather than the usual tangential arrangement found in B800-850 complexes.  (+info)

Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. (3/78)

Production of a photosynthetic apparatus in Roseateles depolymerans 61A, a recently discovered freshwater beta-Proteobacterium showing characteristics of aerobic phototrophic bacteria, was observed when the cells were subjected to a sudden decrease in carbon sources (e.g., when cells grown with 0.1 to 0.4% Casamino Acids were diluted or transferred into medium containing or=0.2% O(2)), and was reduced in the presence of light. Transcription of the R. depolymerans puf operon is considered to be controlled by changes in carbon nutrients in addition to oxygen tension and light intensity.  (+info)

Thiobaca trueperi gen. nov., sp. nov., a phototrophic purple sulfur bacterium isolated from freshwater lake sediment. (4/78)

Two strains of a novel species of phototrophic micro-organism were isolated from the sediments of a shallow, freshwater, eutrophic lake. Both strains grew photolithoheterotrophically with sulfide as an electron donor, transiently accumulating intracellular sulfur globules. Photolithoautotrophic growth was not observed. One strain was designated BCH(T) (the type strain) and was studied in most detail. Cells contained bacteriochlorophyll a, and the dominant carotenoid was lycopene. Cell suspensions were brown. The photosynthetic membranes had a vesicular arrangement. Acetate, propionate, pyruvate, succinate and fumarate were each used as electron donors and carbon sources in the presence of sulfide and bicarbonate. In the presence of light, growth did not occur with hydrogen, thiosulfate or iron(II). The optimum temperature for growth was between 25 and 30 degrees C, the maximum being 36 degrees C. The G+C content of the genomic DNA of strain BCH(T) was 63 mol%. Analysis of the 16S RNA genes showed that both strains belonged to the gamma-subclass of the Proteobacteria but were phylogenetically distinct from any described phototrophic organisms within the Chromatiaceae. On the basis of phylogenetic and physiological differences from other phototrophic microorganisms, strain BCH(T) is described as a novel species of a new genus, Thiobaca trueperi gen. nov., sp. nov.  (+info)

Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. (5/78)

The excited-state relaxation within bacteriochlorophyll (BChl) e and a in chlorosomes of Chlorobium phaeobacteroides has been studied by femtosecond transient absorption spectroscopy at room temperature. Singlet-singlet annihilation was observed to strongly influence both the isotropic and anisotropic decays. Pump intensities in the order of 10(11) photons x pulse(-1) x cm(-2) were required to obtain annihilation-free conditions. The most important consequence of applied very low excitation doses is an observation of a subpicosecond process within the BChl e manifold (approximately 200-500 fs), manifesting itself as a rise in the red part of the Q(y) absorption band of the BChl e aggregates. The subsequent decay of the kinetics measured in the BChl e region and the corresponding rise in the baseplate BChl a is not single-exponential, and at least two components are necessary to fit the data, corresponding to several BChl e-->BChl a transfer steps. Under annihilation-free conditions, the anisotropic kinetics show a generally slow decay within the BChl e band (10-20 ps) whereas it decays more rapidly in the BChl a region ( approximately 1 ps). Analysis of the experimental data gives a detailed picture of the overall time evolution of the energy relaxation and energy transfer processes within the chlorosome. The results are interpreted within an exciton model based on the proposed structure.  (+info)

Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. (6/78)

Two strains of a novel aerobic, bacteriochlorophyll a-containing species of the alpha-4 subclass of the Proteobacteria were isolated from the hot spring at Alcafache in central Portugal. 16S rRNA gene sequence-based phylogenetic analyses showed the two novel isolates to be phylogenetically related to members of the genera Erythrobacter, Erythromicrobium and Porphyrobacter. The strains produce reddish-orange-pigmented colonies, have an optimum growth temperature of about 50 degrees C and could be distinguished from the species Porphyrobacter tepidarius, which also has a high growth temperature, primarily on the basis of the fatty acid composition. The novel species does not grow anaerobically in the presence or absence of a light source. The strains of the novel species utilize several single carbon sources for growth, most of which are also used by P. tepidarius. The species status of strains ALC-2T and ALC-3 was confirmed by low reassociation values of the DNA with species of the genera Erythrobacter, Erythromicrobium and Porphyrobacter. Phenotypic characteristics and 16S rRNA gene sequence analyses also show that strains ALC-2T (=DSM 12079T =ATCC BAA-386T) and ALC-3 (=DSM 12080) represent a novel species, for which the name Porphyrobacter cryptus sp. nov. is proposed.  (+info)

Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. (7/78)

Two different mechanisms for Mg-protoporphyrin monomethyl ester (MgPMe) cyclization are shown to coexist in Rubrivivax gelatinosus and are proposed to be conserved in all facultative aerobic phototrophs: an anaerobic mechanism active under photosynthesis or low oxygenation, and an aerobic mechanism active only under high oxygenation conditions. This was confirmed by analyzing the bacteriochlorophyll accumulation in the wild type and in three mutant strains grown under low or high aeration. A mutant lacking the acsF gene is photosynthetic, exhibits normal bacteriochlorophyll accumulation under low oxygenation and anaerobiosis, and accumulates MgPMe under high oxygenation. The photosynthesis-deficient bchE mutant produces bacteriochlorophyll only under high oxygenation and accumulates MgPMe under low oxygenation and anaerobiosis. The double knockout mutant is devoid of photosystem and accumulates MgPMe under both conditions indicating the involvement of the two enzymes at the same step of the biosynthesis pathway. Oxygen-mediated expression of bchE was studied in the wild type and in a regulatory mutant. The reverse transcriptase-PCR and the bchE promoter activity results demonstrate that the expression of the bchE gene is oxygen-independent and suggest that it is rather the enzyme activity that should be oxygen-sensitive. No obvious sequence similarities were found between oxygen-dependent AcsF and the oxygen-independent anaerobic Mg-protoporphyrin monomethylester cyclase (BchE) enzymes. However, common to all BchE proteins is the conserved CXXX-CXXC sequence. This motif is essential for 4Fe-4S cluster formation in many anaerobic enzymes. Expression and purification of BchE were achieved, and the UV-visible spectral analyses confirmed the presence of an active 4Fe-4S cluster in this protein. The use of different classes of enzymes catalyzing the same reaction under different oxygen growth conditions appears to be a common feature of different biosynthetic pathways, and the benefit of possessing both aerobic and anaerobic systems is discussed.  (+info)

Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. (8/78)

The crystal structure at 4.8 angstrom resolution of the reaction center-light harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center surrounded by an oval LH1 complex that consists of 15 pairs of transmembrane helical alpha- and beta-apoproteins and their coordinated bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a single transmembrane helix, out of register with the array of inner LH1 alpha-apoproteins. This break, located next to the binding site in the reaction center for the secondary electron acceptor ubiquinone (UQB), may provide a portal through which UQB can transfer electrons to cytochrome b/c1.  (+info)

Bacteriochlorophylls are a type of pigment that are found in certain bacteria and are used in photosynthesis. They are similar to chlorophylls, which are found in plants and algae, but have some differences in their structure and absorption spectrum. Bacteriochlorophylls absorb light at longer wavelengths than chlorophylls, with absorption peaks in the near-infrared region of the electromagnetic spectrum. This allows bacteria that contain bacteriochlorophylls to carry out photosynthesis in environments with low levels of light or at great depths in the ocean where sunlight is scarce.

There are several different types of bacteriochlorophylls, including bacteriochlorophyll a, bacteriochlorophyll b, and bacteriochlorophyll c. These pigments play a role in the capture of light energy during photosynthesis and are involved in the electron transfer processes that occur during this process. Bacteriochlorophylls are also used as a taxonomic marker to help classify certain groups of bacteria.

Bacteriochlorophyll A is a type of pigment-protein complex found in certain photosynthetic bacteria. It plays a crucial role in the process of anaerobic photosynthesis, where it absorbs light energy and converts it into chemical energy through a series of reactions.

The structure of bacteriochlorophyll A is similar to that of chlorophylls found in plants and cyanobacteria, but with some key differences. One major difference is the type of light that it absorbs. While chlorophylls absorb light primarily in the blue and red regions of the electromagnetic spectrum, bacteriochlorophyll A absorbs light in the near-infrared region, between 700 and 1000 nanometers.

Bacteriochlorophyll A is an essential component of the photosynthetic apparatus in purple bacteria and green sulfur bacteria, which are two groups of photosynthetic bacteria that live in environments with low light levels. These bacteria use bacteriochlorophyll A to capture light energy and power the synthesis of ATP and NADPH, which are used to fuel the production of organic compounds from carbon dioxide.

In summary, bacteriochlorophyll A is a type of pigment-protein complex found in certain photosynthetic bacteria that plays a crucial role in anaerobic photosynthesis by absorbing light energy and converting it into chemical energy through a series of reactions.

Chlorobi, also known as green sulfur bacteria, are a group of anaerobic, phototrophic bacteria that contain chlorophylls a and b, as well as bacteriochlorophyll c, d, or e. They obtain energy through photosynthesis, using light as an energy source and sulfide or other reduced sulfur compounds as electron donors. These bacteria are typically found in environments with limited sunlight and high sulfide concentrations, such as in sediments of stratified water bodies or in microbial mats. They play a significant role in the global carbon and sulfur cycles.

Rhodopseudomonas is a genus of gram-negative, rod-shaped bacteria that are capable of photosynthesis. These bacteria contain bacteriochlorophyll and can use light as an energy source in the absence of oxygen, which makes them facultative anaerobes. They typically inhabit freshwater and soil environments, and some species are able to fix nitrogen gas. Rhodopseudomonas species are known to cause various infections in humans, including bacteremia, endocarditis, and respiratory tract infections, particularly in immunocompromised individuals. However, such infections are relatively rare.

Bacterial chromatophores are membranous structures within certain bacteria that contain pigments and are involved in light absorption. They are primarily found in photosynthetic bacteria, where they play a crucial role in the process of photosynthesis by capturing light energy and converting it into chemical energy.

The term "chromatophore" is derived from the Greek words "chroma," meaning color, and "phoros," meaning bearer. In bacteria, chromatophores are typically composed of one or more membrane-bound vesicles called thylakoids, which contain various pigments such as bacteriochlorophylls and carotenoids.

Bacterial chromatophores can be found in several groups of photosynthetic bacteria, including cyanobacteria, green sulfur bacteria, purple sulfur bacteria, and purple nonsulfur bacteria. The specific arrangement and composition of the pigments within the chromatophores determine the type of light that is absorbed and the wavelengths that are utilized for photosynthesis.

Overall, bacterial chromatophores are essential organelles for the survival and growth of many photosynthetic bacteria, allowing them to harness the energy from sunlight to fuel their metabolic processes.

Rhodobacter sphaeroides is not a medical term, but rather a scientific name for a type of bacteria. It belongs to the class of proteobacteria and is commonly found in soil, fresh water, and the ocean. This bacterium is capable of photosynthesis, and it can use light as an energy source, converting it into chemical energy. Rhodobacter sphaeroides is often studied in research settings due to its unique metabolic capabilities and potential applications in biotechnology.

In a medical context, Rhodobacter sphaeroides may be mentioned in relation to rare cases of infection, particularly in individuals with weakened immune systems. However, it is not considered a significant human pathogen, and there are no specific medical definitions associated with this bacterium.

Chlorobium is a genus of photosynthetic bacteria that are primarily found in anaerobic environments, such as freshwater and marine sediments, and in the upper layers of microbial mats. These bacteria contain bacteriochlorophylls and use light energy to convert carbon dioxide into organic compounds through a process called chemosynthesis. Chlorobium species are important contributors to the global carbon cycle and play a significant role in the ecology of anaerobic environments.

The medical relevance of Chlorobium is limited, as these bacteria do not typically interact with humans or animals in a way that causes disease. However, they may be of interest to researchers studying photosynthesis, carbon cycling, and microbial ecology.

Light-harvesting protein complexes are specialized structures in photosynthetic organisms, such as plants, algae, and some bacteria, that capture and transfer light energy to the reaction centers where the initial chemical reactions of photosynthesis occur. These complexes consist of proteins and pigments (primarily chlorophylls and carotenoids) arranged in a way that allows them to absorb light most efficiently. The absorbed light energy is then converted into electrical charges, which are transferred to the reaction centers for further chemical reactions leading to the production of organic compounds and oxygen. The light-harvesting protein complexes play a crucial role in initiating the process of photosynthesis and optimizing its efficiency by capturing and distributing light energy.

Chlorophyll is a green pigment found in the chloroplasts of photosynthetic plants, algae, and some bacteria. It plays an essential role in light-dependent reactions of photosynthesis by absorbing light energy, primarily from the blue and red parts of the electromagnetic spectrum, and converting it into chemical energy to fuel the synthesis of carbohydrates from carbon dioxide and water. The structure of chlorophyll includes a porphyrin ring, which binds a central magnesium ion, and a long phytol tail. There are several types of chlorophyll, including chlorophyll a and chlorophyll b, which have distinct absorption spectra and slightly different structures. Chlorophyll is crucial for the process of photosynthesis, enabling the conversion of sunlight into chemical energy and the release of oxygen as a byproduct.

Rhodospirillum is a genus of purple nonsulfur bacteria that are capable of photosynthesis. These bacteria are gram-negative, motile, and spiral-shaped, with a single flagellum at each end. They are found in freshwater and soil environments, and are capable of using light as an energy source for growth. Rhodospirillum species can also fix nitrogen gas, making them important contributors to the nitrogen cycle in their habitats.

The name "Rhodospirillum" comes from the Greek words "rhodo," meaning rose-colored, and "spira," meaning coil or spiral, referring to the pinkish-red color and spiral shape of these bacteria.

It's important to note that medical definitions typically refer to conditions, diseases, or processes related to human health, so a medical definition of Rhodospirillum may not be readily available as it is not directly related to human health. However, in rare cases, some species of Rhodospirillum have been associated with human infections, such as endocarditis and bacteremia, but these are not common.

Photosynthetic Reaction Center (RC) Complex Proteins are specialized protein-pigment structures that play a crucial role in the primary process of light-driven electron transport during photosynthesis. They are present in the thylakoid membranes of cyanobacteria, algae, and higher plants.

The Photosynthetic Reaction Center Complex Proteins are composed of two major components: the light-harvesting complex (LHC) and the reaction center (RC). The LHC contains antenna pigments like chlorophylls and carotenoids that absorb sunlight and transfer the excitation energy to the RC. The RC is a multi-subunit protein complex containing cofactors such as bacteriochlorophyll, pheophytin, quinones, and iron-sulfur clusters.

When a photon of light is absorbed by the antenna pigments in the LHC, the energy is transferred to the RC, where it initiates a charge separation event. This results in the transfer of an electron from a donor molecule to an acceptor molecule, creating a flow of electrical charge and generating a transmembrane electrochemical gradient. The energy stored in this gradient is then used to synthesize ATP and reduce NADP+, which are essential for carbon fixation and other metabolic processes in the cell.

In summary, Photosynthetic Reaction Center Complex Proteins are specialized protein structures involved in capturing light energy and converting it into chemical energy during photosynthesis, ultimately driving the synthesis of ATP and NADPH for use in carbon fixation and other metabolic processes.

Rhodospirillales is an order of predominantly gram-negative, aerobic or anaerobic, motile bacteria that are found in various environments such as freshwater, marine habitats, and soil. Many species in this order are capable of photosynthesis, particularly those belonging to the family Rhodospirillaceae. These photosynthetic bacteria, called purple bacteria, use bacteriochlorophyll and can grow under anaerobic conditions using light as an energy source. The order Rhodospirillales belongs to the class Alphaproteobacteria within the phylum Proteobacteria.

It is important to note that medical definitions typically focus on bacteria, viruses, or other microorganisms of clinical relevance. While Rhodospirillales does include some species that can be pathogenic in certain circumstances, it is not primarily a medical term and is more commonly used in the context of environmental or general microbiology.

Rhodobacter capsulatus is not a medical term, but a species name in the field of microbiology. It refers to a type of purple nonsulfur bacteria that is capable of photosynthesis and can be found in freshwater and soil environments. These bacteria are known for their ability to switch between using light and organic compounds as sources of energy, depending on the availability of each. They have been studied for their potential applications in biotechnology and renewable energy production.

While not directly related to medical definitions, some research has explored the potential use of Rhodobacter capsulatus in bioremediation and wastewater treatment due to its ability to break down various organic compounds. However, it is not a pathogenic organism and does not have any direct relevance to human health or disease.

Photosynthesis is not strictly a medical term, but it is a fundamental biological process with significant implications for medicine, particularly in understanding energy production in cells and the role of oxygen in sustaining life. Here's a general biological definition:

Photosynthesis is a process by which plants, algae, and some bacteria convert light energy, usually from the sun, into chemical energy in the form of organic compounds, such as glucose (or sugar), using water and carbon dioxide. This process primarily takes place in the chloroplasts of plant cells, specifically in structures called thylakoids. The overall reaction can be summarized as:

6 CO2 + 6 H2O + light energy → C6H12O6 + 6 O2

In this equation, carbon dioxide (CO2) and water (H2O) are the reactants, while glucose (C6H12O6) and oxygen (O2) are the products. Photosynthesis has two main stages: the light-dependent reactions and the light-independent reactions (Calvin cycle). The light-dependent reactions occur in the thylakoid membrane and involve the conversion of light energy into ATP and NADPH, which are used to power the Calvin cycle. The Calvin cycle takes place in the stroma of chloroplasts and involves the synthesis of glucose from CO2 and water using the ATP and NADPH generated during the light-dependent reactions.

Understanding photosynthesis is crucial for understanding various biological processes, including cellular respiration, plant metabolism, and the global carbon cycle. Additionally, research into artificial photosynthesis has potential applications in renewable energy production and environmental remediation.

"Rhodospirillum rubrum" is a gram-negative, facultatively anaerobic, photosynthetic bacteria species. It is commonly found in freshwater and soil environments, and it has the ability to carry out both photosynthesis and respiration, depending on the availability of light and oxygen. The bacteria contain bacteriochlorophyll and carotenoid pigments, which give them a pinkish-red color, hence the name "rubrum." They are known to be important organisms in the study of photosynthesis, nitrogen fixation, and other metabolic processes.

Carotenoids are a class of pigments that are naturally occurring in various plants and fruits. They are responsible for the vibrant colors of many vegetables and fruits, such as carrots, pumpkins, tomatoes, and leafy greens. There are over 600 different types of carotenoids, with beta-carotene, alpha-carotene, lycopene, lutein, and zeaxanthin being some of the most well-known.

Carotenoids have antioxidant properties, which means they can help protect the body's cells from damage caused by free radicals. Some carotenoids, such as beta-carotene, can be converted into vitamin A in the body, which is important for maintaining healthy vision, skin, and immune function. Other carotenoids, such as lycopene and lutein, have been studied for their potential role in preventing chronic diseases, including cancer and heart disease.

In addition to being found in plant-based foods, carotenoids can also be taken as dietary supplements. However, it is generally recommended to obtain nutrients from whole foods rather than supplements whenever possible, as food provides a variety of other beneficial compounds that work together to support health.

"Chromatium" is a genus of bacteria that are commonly found in aquatic environments, particularly in anaerobic or low-oxygen conditions. These bacteria are known for their ability to perform anaerobic respiration using sulfur as the final electron acceptor in the electron transport chain. This process is often referred to as "sulfur reduction" or "sulfur respiration."

The name "Chromatium" comes from the Greek word "chroma," which means "color," and refers to the distinctive purple color of these bacteria, which is due to the presence of bacteriochlorophyll and carotenoid pigments. These pigments allow Chromatium species to perform photosynthesis, using light energy to convert carbon dioxide into organic compounds.

It's worth noting that "Chromatium" is a specific taxonomic name for a genus of bacteria, and should not be confused with the more general term "chromatin," which refers to the complex of DNA, histone proteins, and other molecules that make up the chromosomes in eukaryotic cells.

Phototrophic processes refer to the metabolic pathways used by certain organisms, such as plants, algae, and some bacteria, to convert light energy into chemical energy. This is primarily achieved through a process called photosynthesis, where these organisms use light, usually from the sun, to convert carbon dioxide and water into glucose and oxygen. The glucose serves as an energy source for the organism, while the oxygen is released as a byproduct. This process is fundamental to life on Earth as it provides the majority of the oxygen in our atmosphere and forms the base of many food chains.

Alphaproteobacteria is a class of proteobacteria, a group of gram-negative bacteria. This class includes a diverse range of bacterial species that can be found in various environments, such as soil, water, and the surfaces of plants and animals. Some notable members of Alphaproteobacteria include the nitrogen-fixing bacteria Rhizobium and Bradyrhizobium, which form symbiotic relationships with the roots of leguminous plants, as well as the pathogenic bacteria Rickettsia, which are responsible for causing diseases such as typhus and Rocky Mountain spotted fever.

The Alphaproteobacteria class is further divided into several orders, including Rhizobiales, Rhodobacterales, and Caulobacterales. These orders contain a variety of bacterial species that have different characteristics and ecological roles. For example, members of the order Rhizobiales are known for their ability to fix nitrogen, while members of the order Rhodobacterales include photosynthetic bacteria that can use light as an energy source.

Overall, Alphaproteobacteria is a diverse and important group of bacteria that play various roles in the environment and in the health of plants and animals.

Pheophytins are pigments that are formed when the magnesium ion is lost from chlorophylls, which are the green pigments involved in photosynthesis. This results in the conversion of chlorophyll a and chlorophyll b to pheophytin a and pheophytin b, respectively. Pheophytins do not participate in light absorption during photosynthesis and have a different spectral absorption pattern compared to chlorophylls. They are believed to play a role in the photoprotection of photosystem II by dissipating excess energy absorbed by the antenna complexes as heat, thereby preventing the formation of harmful reactive oxygen species.

Biological pigments are substances produced by living organisms that absorb certain wavelengths of light and reflect others, resulting in the perception of color. These pigments play crucial roles in various biological processes such as photosynthesis, vision, and protection against harmful radiation. Some examples of biological pigments include melanin, hemoglobin, chlorophyll, carotenoids, and flavonoids.

Melanin is a pigment responsible for the color of skin, hair, and eyes in animals, including humans. Hemoglobin is a protein found in red blood cells that contains a porphyrin ring with an iron atom at its center, which gives blood its red color and facilitates oxygen transport. Chlorophyll is a green pigment found in plants, algae, and some bacteria that absorbs light during photosynthesis to convert carbon dioxide and water into glucose and oxygen. Carotenoids are orange, yellow, or red pigments found in fruits, vegetables, and some animals that protect against oxidative stress and help maintain membrane fluidity. Flavonoids are a class of plant pigments with antioxidant properties that have been linked to various health benefits.

Aerobiosis is the process of living, growing, and functioning in the presence of oxygen. It refers to the metabolic processes that require oxygen to break down nutrients and produce energy in cells. This is in contrast to anaerobiosis, which is the ability to live and grow in the absence of oxygen.

In medical terms, aerobiosis is often used to describe the growth of microorganisms, such as bacteria and fungi, that require oxygen to survive and multiply. These organisms are called aerobic organisms, and they play an important role in many biological processes, including decomposition and waste breakdown.

However, some microorganisms are unable to grow in the presence of oxygen and are instead restricted to environments where oxygen is absent or limited. These organisms are called anaerobic organisms, and their growth and metabolism are referred to as anaerobiosis.

Rhodospirillaceae is a family of purple bacteria within the class Alphaproteobacteria. These bacteria are characterized by their ability to perform anoxygenic photosynthesis, using bacteriochlorophyll and other pigments to capture light energy for use in metabolism. They typically contain one or more polar flagella and have a spiral or curved cell shape. Members of this family can be found in various environments such as freshwater, marine habitats, and soil, where they play important roles in carbon and nitrogen cycling. Some species are capable of fixing atmospheric nitrogen, making them significant contributors to the global nitrogen cycle.

Chromatiaceae is a family of bacteria that are primarily characterized by their ability to photosynthesize and store energy in the form of sulfur granules. These bacteria are often found in aquatic environments, such as in salt marshes, freshwater sediments, and marine ecosystems. They are capable of using reduced sulfur compounds as an electron donor during photosynthesis, which distinguishes them from other photosynthetic bacteria that use water as an electron donor.

Chromatiaceae bacteria are gram-negative rods or curved rods, and they typically form distinct layers in the environment where they live. They are often found in stratified water columns, where they can form a layer of purple or brown-colored cells that are visible to the naked eye. The pigmentation comes from bacteriochlorophylls and carotenoids, which are used in light absorption during photosynthesis.

These bacteria play an important role in the biogeochemical cycling of sulfur and carbon in aquatic environments. They can help to remove excess nutrients from the water column, and they can also serve as a food source for other organisms in the ecosystem. However, some species of Chromatiaceae can also be associated with harmful algal blooms or other environmental disturbances that can have negative impacts on water quality and aquatic life.

Rhodobacter is not a medical term, but a genus of bacteria found in the environment. It is commonly found in aquatic environments and can perform photosynthesis, although it is not classified as a plant. Some species of Rhodobacter are capable of fixing nitrogen gas from the atmosphere, making them important contributors to the global nitrogen cycle.

While there may be some medical research into the potential uses or impacts of certain species of Rhodobacter, there is no widely recognized medical definition for this term. If you have any specific concerns about bacteria or infections, it's best to consult with a healthcare professional for accurate information and advice.

Levulinic acid is not specifically a medical term, but it is a chemical compound with the formula C5H8O2. It is a white crystalline solid that is used in the production of various chemicals and materials. However, I can provide you with some general information about levulinic acid:

Levulinic acid is a saturated carboxylic acid, which means it contains a carboxyl group (-COOH) and is fully saturated with hydrogen atoms. It is an alpha-beta unsaturated carboxylic acid due to the presence of a carbon-carbon double bond (C=C) between the second and third carbon atoms in its structure.

Levulinic acid can be found naturally in small amounts in various fruits, such as apples and grapes, and is also present in some fermented foods like beer and wine. It can be produced industrially from biomass sources, such as cellulose or lignocellulosic materials, through a process called acid hydrolysis.

In the medical field, levulinic acid may have potential applications as an antimicrobial agent due to its ability to inhibit the growth of certain bacteria and fungi. It is also used in the synthesis of pharmaceuticals and other chemical products. However, it is not a substance that is typically directly associated with medical treatment or diagnosis.

In the context of medical terminology, "light" doesn't have a specific or standardized definition on its own. However, it can be used in various medical terms and phrases. For example, it could refer to:

1. Visible light: The range of electromagnetic radiation that can be detected by the human eye, typically between wavelengths of 400-700 nanometers. This is relevant in fields such as ophthalmology and optometry.
2. Therapeutic use of light: In some therapies, light is used to treat certain conditions. An example is phototherapy, which uses various wavelengths of ultraviolet (UV) or visible light for conditions like newborn jaundice, skin disorders, or seasonal affective disorder.
3. Light anesthesia: A state of reduced consciousness in which the patient remains responsive to verbal commands and physical stimulation. This is different from general anesthesia where the patient is completely unconscious.
4. Pain relief using light: Certain devices like transcutaneous electrical nerve stimulation (TENS) units have a 'light' setting, indicating lower intensity or frequency of electrical impulses used for pain management.

Without more context, it's hard to provide a precise medical definition of 'light'.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Tetrapyrroles are a class of organic compounds that contain four pyrrole rings joined together in a macrocyclic structure. They are important in biology because they form the core structure of many essential cofactors and prosthetic groups in proteins, including heme, chlorophyll, and cobalamin (vitamin B12).

Heme is a tetrapyrrole that contains iron and is a crucial component of hemoglobin, the protein responsible for oxygen transport in red blood cells. Chlorophyll is another tetrapyrrole that contains magnesium and plays a vital role in photosynthesis, the process by which plants convert light energy into chemical energy. Cobalamin contains cobalt and is essential for DNA synthesis, fatty acid metabolism, and neurotransmitter synthesis.

Abnormalities in tetrapyrrole biosynthesis can lead to various diseases, such as porphyrias, which are characterized by the accumulation of toxic intermediates in the heme biosynthetic pathway.

Azaguanine is a type of antimetabolite drug that is used in medical research and treatment. It is a purine analogue, which means it has a similar chemical structure to the natural purine bases adenine and guanine, which are building blocks of DNA and RNA. Azaguanine can be incorporated into the genetic material of cells, interfering with their normal function and replication. It is used in research to study the effects of such interference on cell growth and development.

In clinical medicine, azaguanine has been used as an anticancer drug, although it is not widely used today due to its toxicity and the availability of more effective treatments. It may also have some activity against certain types of parasitic infections, such as leishmaniasis and malaria.

It's important to note that azaguanine is not a commonly used medication and its use should be under the supervision of a medical professional with experience in its administration and management of potential side effects.

Rhodobacteraceae is a family of purple nonsulfur bacteria within the class Alphaproteobacteria. These bacteria are gram-negative, facultatively anaerobic or aerobic, and can perform photosynthesis under appropriate conditions. They are widely distributed in various environments such as freshwater, marine, and terrestrial habitats. Some members of this family are capable of nitrogen fixation, denitrification, and sulfur oxidation. They play important roles in biogeochemical cycles and have potential applications in wastewater treatment and bioenergy production.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

"Energy transfer" is a general term used in the field of physics and physiology, including medical sciences, to describe the process by which energy is passed from one system, entity, or location to another. In the context of medicine, energy transfer often refers to the ways in which cells and organ systems exchange and utilize various forms of energy for proper functioning and maintenance of life.

In a more specific sense, "energy transfer" may refer to:

1. Bioenergetics: This is the study of energy flow through living organisms, including the conversion, storage, and utilization of energy in biological systems. Key processes include cellular respiration, photosynthesis, and metabolic pathways that transform energy into forms useful for growth, maintenance, and reproduction.
2. Electron transfer: In biochemistry, electrons are transferred between molecules during redox reactions, which play a crucial role in energy production and consumption within cells. Examples include the electron transport chain (ETC) in mitochondria, where high-energy electrons from NADH and FADH2 are passed along a series of protein complexes to generate an electrochemical gradient that drives ATP synthesis.
3. Heat transfer: This is the exchange of thermal energy between systems or objects due to temperature differences. In medicine, heat transfer can be relevant in understanding how body temperature is regulated and maintained, as well as in therapeutic interventions such as hyperthermia or cryotherapy.
4. Mechanical energy transfer: This refers to the transmission of mechanical force or motion from one part of the body to another. For instance, muscle contractions generate forces that are transmitted through tendons and bones to produce movement and maintain posture.
5. Radiation therapy: In oncology, ionizing radiation is used to treat cancer by transferring energy to malignant cells, causing damage to their DNA and leading to cell death or impaired function.
6. Magnetic resonance imaging (MRI): This non-invasive diagnostic technique uses magnetic fields and radio waves to excite hydrogen nuclei in the body, which then release energy as they return to their ground state. The resulting signals are used to generate detailed images of internal structures and tissues.

In summary, "energy transfer" is a broad term that encompasses various processes by which different forms of energy (thermal, mechanical, electromagnetic, etc.) are exchanged or transmitted between systems or objects in the context of medicine and healthcare.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

Chromatophores are pigment-containing cells found in various organisms, including animals and plants. In animals, chromatophores are primarily found in the skin, eyes, and hair or feathers, and they play a crucial role in color changes exhibited by many species. These cells contain pigments that can be concentrated or dispersed to change the color of the cell, allowing the animal to camouflage itself, communicate with other individuals, or regulate its body temperature.

There are several types of chromatophores, including:

1. Melanophores: These cells contain the pigment melanin and are responsible for producing dark colors such as black, brown, and gray. They are found in many animals, including mammals, birds, reptiles, amphibians, and fish.
2. Xanthophores: These cells contain yellow or orange pigments called pteridines and carotenoids. They are found in many animals, including fish, amphibians, and reptiles.
3. Iridophores: These cells do not contain pigments but instead reflect light to produce iridescent colors. They are found in many animals, including fish, reptiles, and amphibians.
4. Erythrophores: These cells contain red or pink pigments called porphyrins and are found in some species of fish and crustaceans.
5. Leucophores: These cells reflect white light and are found in some species of fish, cephalopods (such as squid and octopuses), and crustaceans.

The distribution and concentration of pigments within chromatophores can be controlled by hormones, neurotransmitters, or other signaling molecules, allowing the animal to change its color rapidly in response to environmental stimuli or social cues.

Aminolevulinic acid (ALA) is a naturally occurring compound in the human body and is a key precursor in the biosynthesis of heme, which is a component of hemoglobin in red blood cells. It is also used as a photosensitizer in dermatology for the treatment of certain types of skin conditions such as actinic keratosis and basal cell carcinoma.

In medical terms, ALA is classified as an α-keto acid and a porphyrin precursor. It is synthesized in the mitochondria from glycine and succinyl-CoA in a reaction catalyzed by the enzyme aminolevulinic acid synthase. After its synthesis, ALA is transported to the cytosol where it undergoes further metabolism to form porphyrins, which are then used for heme biosynthesis in the mitochondria.

In dermatology, topical application of ALA followed by exposure to a specific wavelength of light can lead to the production of reactive oxygen species that destroy abnormal cells in the skin while leaving healthy cells unharmed. This makes it an effective treatment for precancerous and cancerous lesions on the skin.

It is important to note that ALA can cause photosensitivity, which means that patients who have undergone ALA-based treatments should avoid exposure to sunlight or other sources of bright light for a period of time after the treatment to prevent adverse reactions.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

I'm sorry for any confusion, but "spectrum analysis" is not a commonly used medical term. Spectrum analysis is a term that is more frequently used in the fields of physics, mathematics, and engineering to describe the process of breaking down a signal or a wave into its different frequencies and amplitudes, creating a visual representation called a spectrum.

If you have any concerns about a medical issue, I would recommend consulting with a healthcare professional for accurate information and guidance.

Seawater is not a medical term, but it is a type of water that covers more than 70% of the Earth's surface. Medically, seawater can be relevant in certain contexts, such as in discussions of marine biology, environmental health, or water safety. Seawater has a high salt content, with an average salinity of around 3.5%, which is much higher than that of freshwater. This makes it unsuitable for drinking or irrigation without desalination.

Exposure to seawater can also have medical implications, such as in cases of immersion injuries, marine envenomations, or waterborne illnesses. However, there is no single medical definition of seawater.

"Roseobacter" is not a medical term, but a genus of bacteria that are widely distributed in various environments such as seawater, marine sediments, and associated with marine organisms. These bacteria play important roles in the biogeochemical cycles of carbon, nitrogen, and sulfur in the ocean. They are often studied in the context of microbial ecology and environmental microbiology, rather than medical research.

Aerobic bacteria are a type of bacteria that require oxygen to live and grow. These bacteria use oxygen as the final electron acceptor in their respiratory chain to generate energy in the form of ATP (adenosine triphosphate). Aerobic bacteria can be found in various environments, including soil, water, and the air, as well as on the surfaces of living things. Some examples of aerobic bacteria include species of Pseudomonas, Bacillus, and Staphylococcus.

It's worth noting that some bacteria can switch between aerobic and anaerobic metabolism depending on the availability of oxygen. These bacteria are called facultative anaerobes. In contrast, obligate anaerobes are bacteria that cannot tolerate oxygen and will die in its presence.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Chlorophyllides are the breakdown products of chlorophyll, which is the green pigment found in plants and algae that is essential for photosynthesis. Chlorophyllides are formed when chlorophyll is broken down by enzymes or through other chemical processes. They differ from chlorophyll in that they lack a phytol tail, which is a long hydrocarbon chain that is attached to the chlorophyll molecule.

Chlorophyllides have been studied for their potential health benefits, as they are thought to have antioxidant and anti-inflammatory properties. Some research has suggested that chlorophyllides may help protect against certain types of cancer, improve immune function, and reduce the risk of heart disease. However, more research is needed to confirm these potential benefits and to determine the optimal dosages and methods for consuming chlorophyllides.

It's worth noting that chlorophyllides are not typically found in significant quantities in the diet, as they are primarily produced during the breakdown of chlorophyll in plants. However, some supplements and green superfood powders may contain chlorophyllides or chlorophyllin, which is a semi-synthetic form of chlorophyll that is more stable and easier to absorb than natural chlorophyll.

I'm sorry for any confusion, but "North Sea" is not a medical term. It refers to the northernmost part of the Atlantic Ocean, located between eastern England, eastern Scotland, Norway, Denmark, Germany, the Netherlands, Belgium, and France. If you have any questions related to medical terminology or health science, I'd be happy to help with those!

Sphingomonadaceae is a family of gram-negative, aerobic bacteria that are commonly found in various environments such as soil, water, and clinical samples. They are characterized by the presence of sphingophospholipids in their outer membrane, which differentiates them from other gram-negative bacteria.

Members of this family are often rod-shaped or coccoid and may be motile or nonmotile. Some species have the ability to degrade various organic compounds, including polychlorinated biphenyls (PCBs) and other aromatic hydrocarbons.

Sphingomonadaceae includes several genera of medical importance, such as Sphingomonas, Sphingopyxis, and Novosphingobium. These bacteria have been associated with various infections in humans, including bacteremia, pneumonia, meningitis, and urinary tract infections, particularly in immunocompromised patients. However, they are generally considered to be opportunistic pathogens, and their clinical significance is not well understood.

Heterotrophic processes refer to the metabolic activities carried out by organisms that cannot produce their own food and have to obtain energy by consuming other organisms or organic substances. These organisms include animals, fungi, and most bacteria. They obtain energy by breaking down complex organic molecules from their environment using enzymes, a process known as respiration or fermentation. The end products of this process are often carbon dioxide, water, and waste materials. This is in contrast to autotrophic processes, where organisms (like plants) synthesize their own food through photosynthesis.

Acetobacteraceae is a family of gram-negative, aerobic bacteria that are capable of converting ethanol into acetic acid, a process known as oxidative fermentation. These bacteria are commonly found in environments such as fruits, flowers, and the gut of insects. They are also used in the industrial production of vinegar and other products. Some members of this family can cause food spoilage or infections in humans with weakened immune systems.

I must clarify that "Iron Isotopes" is not a medical term, but rather a scientific concept from the field of physics and chemistry. However, I can certainly provide a general explanation of isotopes and then focus on iron isotopes specifically.

An isotope is a variant of a chemical element that has the same number of protons (and thus the same atomic number) but a different number of neutrons within its nucleus. This results in variations of the atomic mass of isotopes of the same element. Some isotopes are stable, while others are unstable and will decay over time into other elements or isotopes, a process called radioactive decay.

Iron (Fe) has four naturally occurring stable isotopes: Fe-54, Fe-56, Fe-57, and Fe-58. These iron isotopes have different numbers of neutrons in their nuclei, resulting in slightly different atomic masses. The most abundant iron isotope is Fe-56, which contains 26 protons and 30 neutrons in its nucleus.

In the context of human health, iron is an essential nutrient that plays a crucial role in various biological processes, such as oxygen transport and energy production. However, the concept of iron isotopes does not have a direct medical relevance, but it can be useful in scientific research related to fields like geochemistry, environmental science, or nuclear physics.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Carbon-oxygen ligases are a category of enzymes that catalyze the joining of a carbon atom and an oxygen atom, typically through the formation of a carbon-oxygen bond. These enzymes play important roles in various metabolic processes, such as the synthesis of carbohydrates, lignin, and other organic compounds.

In biochemistry, ligases are enzymes that catalyze the formation of covalent bonds between two molecules, often requiring energy in the form of ATP or another high-energy molecule to drive the reaction. Carbon-oxygen ligases specifically facilitate the formation of carbon-oxygen bonds, which can be found in a wide range of organic compounds, including alcohols, aldehydes, ketones, carboxylic acids, and esters.

Examples of carbon-oxygen ligases include:

1. Alcohol dehydrogenase (ADH): This enzyme catalyzes the interconversion between alcohols and aldehydes or ketones by transferring a hydride ion from the alcohol to a cofactor, such as NAD+ or NADP+, resulting in the formation of a carbon-oxygen bond.
2. Aldolase: This enzyme catalyzes the reversible reaction between an aldehyde and a ketone to form a new carbon-carbon bond and a carbon-oxygen bond, creating a new molecule called an aldol.
3. Carboxylases: These enzymes facilitate the addition of a carboxyl group (-COOH) to various substrates, resulting in the formation of a carbon-oxygen bond between the carboxyl group and the substrate. Examples include acetyl-CoA carboxylase, which catalyzes the formation of malonyl-CoA, an essential intermediate in fatty acid synthesis.
4. Transketolases: These enzymes are involved in the pentose phosphate pathway and facilitate the transfer of a two-carbon ketol group between sugars, resulting in the formation of new carbon-oxygen bonds.
5. Esterases: These enzymes catalyze the hydrolysis or synthesis of esters by breaking or forming carbon-oxygen bonds between an alcohol and an acid.
6. Peroxidases: These enzymes use a reactive oxygen species, such as hydrogen peroxide (H2O2), to oxidize various substrates, resulting in the formation of new carbon-oxygen bonds.
7. Dehydrogenases: These enzymes catalyze the transfer of electrons from a donor molecule to an acceptor molecule, often involving the formation or breaking of carbon-oxygen bonds. Examples include lactate dehydrogenase and alcohol dehydrogenase.
8. Oxidoreductases: This broad class of enzymes catalyzes oxidation-reduction reactions, which can involve the formation or breaking of carbon-oxygen bonds.

Phytol is not a medical term, but rather a chemical compound. It is a diterpene alcohol that is a breakdown product of chlorophyll and is found in green plants. It is used in the synthesis of various compounds, including vitamins E and K, and is also used in the production of perfumes and fragrances. In the context of human health, phytol has been studied for its potential anti-cancer properties.

rRNA (ribosomal RNA) is not a type of gene itself, but rather a crucial component that is transcribed from genes known as ribosomal DNA (rDNA). In cells, rRNA plays an essential role in protein synthesis by assembling with ribosomal proteins to form ribosomes. Ribosomes are complex structures where the translation of mRNA into proteins occurs. There are multiple types of rRNA molecules, including 5S, 5.8S, 18S, and 28S rRNAs in eukaryotic cells, each with specific functions during protein synthesis.

In summary, 'Genes, rRNA' would refer to the genetic regions (genes) that code for ribosomal RNA molecules, which are vital components of the protein synthesis machinery within cells.

Ectothiorhodospira is a genus of photosynthetic bacteria that are characterized by their ability to perform anoxygenic photosynthesis, which means they do not produce oxygen as a byproduct of photosynthesis. These bacteria contain bacteriochlorophyll and carotenoid pigments, which allow them to absorb light for energy production.

The name Ectothiorhodospira comes from the Greek words "ectos," meaning outside, and "thios," meaning sulfur, and "spira," meaning coil or spiral. This refers to the fact that these bacteria have a spiral shape and are often found in environments with high sulfur content, where they can use reduced sulfur compounds as an electron donor during photosynthesis.

Ectothiorhodospira species are typically found in hypersaline or alkaline environments, such as salt lakes, soda lakes, and hot springs. They play an important role in the biogeochemical cycling of sulfur and carbon in these ecosystems.

Base composition in genetics refers to the relative proportion of the four nucleotide bases (adenine, thymine, guanine, and cytosine) in a DNA or RNA molecule. In DNA, adenine pairs with thymine, and guanine pairs with cytosine, so the base composition is often expressed in terms of the ratio of adenine + thymine (A-T) to guanine + cytosine (G-C). This ratio can vary between species and even between different regions of the same genome. The base composition can provide important clues about the function, evolution, and structure of genetic material.

Spectrophotometry, Infrared is a scientific analytical technique used to measure the absorption or transmission of infrared light by a sample. It involves the use of an infrared spectrophotometer, which directs infrared radiation through a sample and measures the intensity of the radiation that is transmitted or absorbed by the sample at different wavelengths within the infrared region of the electromagnetic spectrum.

Infrared spectroscopy can be used to identify and quantify functional groups and chemical bonds present in a sample, as well as to study the molecular structure and composition of materials. The resulting infrared spectrum provides a unique "fingerprint" of the sample, which can be compared with reference spectra to aid in identification and characterization.

Infrared spectrophotometry is widely used in various fields such as chemistry, biology, pharmaceuticals, forensics, and materials science for qualitative and quantitative analysis of samples.

Oxygen isotopes are different forms or varieties of the element oxygen that have the same number of protons in their atomic nuclei, which is 8, but a different number of neutrons. The most common oxygen isotopes are oxygen-16 (^{16}O), which contains 8 protons and 8 neutrons, and oxygen-18 (^{18}O), which contains 8 protons and 10 neutrons.

The ratio of these oxygen isotopes can vary in different substances, such as water molecules, and can provide valuable information about the origins and history of those substances. For example, scientists can use the ratio of oxygen-18 to oxygen-16 in ancient ice cores or fossilized bones to learn about past climate conditions or the diets of ancient organisms.

In medical contexts, oxygen isotopes may be used in diagnostic tests or treatments, such as positron emission tomography (PET) scans, where a radioactive isotope of oxygen (such as oxygen-15) is introduced into the body and emits positrons that can be detected by specialized equipment to create detailed images of internal structures.

Porphyrins are complex organic compounds that contain four pyrrole rings joined together by methine bridges (=CH-). They play a crucial role in the biochemistry of many organisms, as they form the core structure of various heme proteins and other metalloproteins. Some examples of these proteins include hemoglobin, myoglobin, cytochromes, and catalases, which are involved in essential processes such as oxygen transport, electron transfer, and oxidative metabolism.

In the human body, porphyrins are synthesized through a series of enzymatic reactions known as the heme biosynthesis pathway. Disruptions in this pathway can lead to an accumulation of porphyrins or their precursors, resulting in various medical conditions called porphyrias. These disorders can manifest as neurological symptoms, skin lesions, and gastrointestinal issues, depending on the specific type of porphyria and the site of enzyme deficiency.

It is important to note that while porphyrins are essential for life, their accumulation in excessive amounts or at inappropriate locations can result in pathological conditions. Therefore, understanding the regulation and function of porphyrin metabolism is crucial for diagnosing and managing porphyrias and other related disorders.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

I apologize for any confusion, but "Rhodovulum" is not a medical term, but rather a taxonomic genus name in the field of microbiology. It belongs to the family of purple sulfur bacteria, Rhodospirillaceae, and includes several species of photosynthetic, gram-negative bacteria that are commonly found in aquatic environments. These bacteria are capable of using light as an energy source and sulfur compounds as electron donors during photosynthesis. They play a role in the biogeochemical cycling of elements such as carbon, sulfur, and nitrogen in various ecosystems.

Acidobacteria is a phylum of bacteria that are widely distributed in various environments, including soil, freshwater, and marine habitats. They are characterized by their ability to tolerate and thrive in acidic conditions, with some species able to grow at pH levels as low as 3.0.

Members of the Acidobacteria phylum are gram-negative bacteria that typically have a rod or coccoid shape. They are slow-growing organisms and can be difficult to cultivate in the laboratory, which has limited our understanding of their physiology and metabolism. However, recent advances in genomic sequencing and analysis have revealed new insights into their genetic diversity and potential ecological roles.

Acidobacteria are believed to play important roles in biogeochemical cycling, particularly in the cycling of carbon, nitrogen, and sulfur. Some species are capable of degrading complex organic matter, such as lignin and cellulose, making them important contributors to carbon cycling in soils. Additionally, some Acidobacteria species have been shown to oxidize manganese and iron, which can impact the availability of these elements in the environment.

Overall, while our understanding of Acidobacteria is still evolving, it is clear that they are important members of many ecosystems and play key roles in biogeochemical cycling.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Proteobacteria is a major class of Gram-negative bacteria that includes a wide variety of pathogens and free-living organisms. This class is divided into six subclasses: Alpha, Beta, Gamma, Delta, Epsilon, and Zeta proteobacteria. Proteobacteria are characterized by their single circular chromosome and the presence of lipopolysaccharide (LPS) in their outer membrane. They can be found in a wide range of environments, including soil, water, and the gastrointestinal tracts of animals. Some notable examples of Proteobacteria include Escherichia coli, Salmonella enterica, and Yersinia pestis.

Chloroflexus is a genus of bacteria that belongs to the phylum Chloroflexi. These bacteria are known for their unique photosynthetic ability, which involves both oxygenic and anoxygenic processes. They possess flexible filamentous morphology and can form multicellular aggregates or mats in various environments such as hot springs, freshwater, and marine habitats.

The name "Chloroflexus" comes from two Greek words - "chloros," meaning green, and "flexus," meaning flexible. This refers to the green color and filamentous shape of these bacteria. Chloroflexus species are important members of microbial communities in various ecosystems and play a significant role in carbon cycling and energy flow.

It is essential to note that 'Chloroflexus' is not a medical term but rather a taxonomic name for a group of bacteria with unique physiological and ecological characteristics.

Phycobiliproteins are pigment-protein complexes that are found in cyanobacteria (blue-green algae) and certain types of red algae. They are a part of the phycobilisome, a light-harvesting antenna complex located in the thylakoid membrane of these organisms. Phycobiliproteins play a crucial role in photosynthesis by capturing light energy and transferring it to chlorophylls for conversion into chemical energy.

There are three main types of phycobiliproteins:

1. Phycocyanin: This blue-colored pigment is responsible for the blue-green color of cyanobacteria. It absorbs light in the orange and red regions of the spectrum and emits fluorescence in the green region.
2. Phycoerythrin: This pink or red-colored pigment absorbs light in the blue and green regions of the spectrum and emits fluorescence in the orange and red regions. It is found in both cyanobacteria and red algae.
3. Allophycocyanin: This blue-green pigment absorbs light in the yellow and orange regions of the spectrum and emits fluorescence in the red region. It is found in cyanobacteria and some types of red algae.

Phycobiliproteins have been studied for their potential applications in various fields, including biotechnology, food technology, and medicine. For example, they are used as natural food colorants, fluorescent markers in research and diagnostics, and nutritional supplements with antioxidant properties.

The Electron Transport Chain (ETC) is a series of complexes in the inner mitochondrial membrane that are involved in the process of cellular respiration. It is the final pathway for electrons derived from the oxidation of nutrients such as glucose, fatty acids, and amino acids to be transferred to molecular oxygen. This transfer of electrons drives the generation of a proton gradient across the inner mitochondrial membrane, which is then used by ATP synthase to produce ATP, the main energy currency of the cell.

The electron transport chain consists of four complexes (I-IV) and two mobile electron carriers (ubiquinone and cytochrome c). Electrons from NADH and FADH2 are transferred to Complex I and Complex II respectively, which then pass them along to ubiquinone. Ubiquinone then transfers the electrons to Complex III, which passes them on to cytochrome c. Finally, cytochrome c transfers the electrons to Complex IV, where they combine with oxygen and protons to form water.

The transfer of electrons through the ETC is accompanied by the pumping of protons from the mitochondrial matrix to the intermembrane space, creating a proton gradient. The flow of protons back across the inner membrane through ATP synthase drives the synthesis of ATP from ADP and inorganic phosphate.

Overall, the electron transport chain is a crucial process for generating energy in the form of ATP in the cell, and it plays a key role in many metabolic pathways.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

Water microbiology is not a formal medical term, but rather a branch of microbiology that deals with the study of microorganisms found in water. It involves the identification, enumeration, and characterization of bacteria, viruses, parasites, and other microscopic organisms present in water sources such as lakes, rivers, oceans, groundwater, drinking water, and wastewater.

In a medical context, water microbiology is relevant to public health because it helps to assess the safety of water supplies for human consumption and recreational activities. It also plays a critical role in understanding and preventing waterborne diseases caused by pathogenic microorganisms that can lead to illnesses such as diarrhea, skin infections, and respiratory problems.

Water microbiologists use various techniques to study water microorganisms, including culturing, microscopy, genetic analysis, and biochemical tests. They also investigate the ecology of these organisms, their interactions with other species, and their response to environmental factors such as temperature, pH, and nutrient availability.

Overall, water microbiology is a vital field that helps ensure the safety of our water resources and protects public health.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Protochlorophyllide is a pigment involved in the process of photosynthesis. It is a precursor to chlorophyll, which is the main pigment responsible for light absorption during photosynthesis. Protochlorophyllide is present in the chloroplasts of plant cells and certain types of algae. It is converted to chlorophyllide by the action of light during the process of photoactivation, which is the activation of a chemical reaction by light. Defects in the biosynthesis of protochlorophyllide can lead to certain types of genetic disorders that affect photosynthesis and plant growth.

Organelles are specialized structures within cells that perform specific functions essential for the cell's survival and proper functioning. They can be thought of as the "organs" of the cell, and they are typically membrane-bound to separate them from the rest of the cellular cytoplasm. Examples of organelles include the nucleus (which contains the genetic material), mitochondria (which generate energy for the cell), ribosomes (which synthesize proteins), endoplasmic reticulum (which is involved in protein and lipid synthesis), Golgi apparatus (which modifies, sorts, and packages proteins and lipids for transport), lysosomes (which break down waste materials and cellular debris), peroxisomes (which detoxify harmful substances and produce certain organic compounds), and vacuoles (which store nutrients and waste products). The specific organelles present in a cell can vary depending on the type of cell and its function.

Oxidoreductases acting on CH-CH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts upon donors containing a carbon-carbon (CH-CH) bond, where one atom or group of atoms is oxidized and another is reduced during the reaction process. These enzymes play crucial roles in various metabolic pathways, including the breakdown and synthesis of carbohydrates, lipids, and amino acids.

The reactions catalyzed by these enzymes involve the transfer of electrons and hydrogen atoms between the donor and an acceptor molecule. This process often results in the formation or cleavage of carbon-carbon bonds, making them essential for numerous biological processes. The systematic name for this class of enzymes is typically structured as "donor:acceptor oxidoreductase," where donor and acceptor represent the molecules involved in the electron transfer process.

Examples of enzymes that fall under this category include:

1. Aldehyde dehydrogenases (EC 1.2.1.3): These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using NAD+ as an electron acceptor.
2. Dihydrodiol dehydrogenase (EC 1.3.1.14): This enzyme is responsible for the oxidation of dihydrodiols to catechols in the biodegradation of aromatic compounds.
3. Succinate dehydrogenase (EC 1.3.5.1): A key enzyme in the citric acid cycle, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and reduces FAD to FADH2.
4. Xylose reductase (EC 1.1.1.307): This enzyme is involved in the metabolism of pentoses, where it reduces xylose to xylitol using NADPH as a cofactor.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Quinones are a class of organic compounds that contain a fully conjugated diketone structure. This structure consists of two carbonyl groups (C=O) separated by a double bond (C=C). Quinones can be found in various biological systems and synthetic compounds. They play important roles in many biochemical processes, such as electron transport chains and redox reactions. Some quinones are also known for their antimicrobial and anticancer properties. However, some quinones can be toxic or mutagenic at high concentrations.

I'm sorry for any confusion, but "photochemistry" is not a term typically used in medical definitions. Photochemistry is a branch of chemistry that deals with the chemical effects of light. It involves the absorption of light by a substance, which can lead to the promotion of an electron to a higher energy state, and subsequently result in various chemical reactions.

In a medical context, photochemical processes might be discussed in relation to certain therapies or diagnostic techniques, such as photodynamic therapy for cancer treatment, where a photosensitizing agent is used that reacts with light to produce singlet oxygen or other reactive species to destroy nearby cells. However, it's not a term used to define a specific medical condition or concept in the same way that one might define "inflammation" or "metabolism."

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

I am not aware of a medical definition for the term "darkness." In general, darkness refers to the absence of light. It is not a term that is commonly used in the medical field, and it does not have a specific clinical meaning. If you have a question about a specific medical term or concept, I would be happy to try to help you understand it.

Gram-negative aerobic bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, which is a technique used to differentiate bacterial species based on their cell wall composition. These bacteria have a thin peptidoglycan layer and an outer membrane containing lipopolysaccharides (LPS), making them resistant to many antibiotics and disinfectants. They are called aerobic because they require oxygen for their growth and metabolism. Examples of Gram-negative aerobic bacteria include Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. These bacteria can cause various infections in humans, such as pneumonia, urinary tract infections, and sepsis.

Gammaproteobacteria is a class of proteobacteria, a group of Gram-negative bacteria. This class includes several important pathogens that can cause various diseases in humans, animals, and plants. Some examples of Gammaproteobacteria include Escherichia coli (a common cause of food poisoning), Pseudomonas aeruginosa (a leading cause of hospital-acquired infections), Vibrio cholerae (the causative agent of cholera), and Yersinia pestis (the bacterium that causes plague).

Gammaproteobacteria are characterized by their single flagellum, which is used for motility, and their outer membrane, which contains lipopolysaccharides that can elicit an immune response in host organisms. They are found in a wide range of environments, including soil, water, and the guts of animals. Some species are capable of fixing nitrogen, making them important contributors to nutrient cycling in ecosystems.

It's worth noting that while Gammaproteobacteria includes many pathogenic species, the majority of proteobacteria are not harmful and play important roles in various ecological systems.

I'm sorry for any confusion, but "Fresh Water" is not a medical term. It is a term used to describe water that contains low concentrations of dissolved salts and other dissolved minerals. It is distinguished from saline water, which includes saltwater found in the ocean and brackish water found in estuaries. Fresh water is essential for many biological processes and is the primary source of water for human consumption, agriculture, and industrial use.

Thiosulfates are salts or esters of thiosulfuric acid (H2S2O3). In medicine, sodium thiosulfate is used as an antidote for cyanide poisoning and as a topical treatment for wounds, skin irritations, and certain types of burns. It works by converting toxic substances into less harmful forms that can be eliminated from the body. Sodium thiosulfate is also used in some solutions for irrigation of the bladder or kidneys to help prevent the formation of calcium oxalate stones.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

"Secale cereale" is the scientific name for a type of grass that is more commonly known as rye or ergot. It is often used as a food grain and also in the production of certain medicines. However, it's worth noting that ergot, which is a fungus that infects rye and other grains, can produce harmful compounds that can cause serious health problems if ingested. Therefore, it's important to handle and consume rye grain properly to avoid any potential risks.

A lyase is a type of enzyme that catalyzes the breaking of various chemical bonds in a molecule, often resulting in the formation of two new molecules. Lyases differ from other types of enzymes, such as hydrolases and oxidoreductases, because they create double bonds or rings as part of their reaction mechanism.

In the context of medical terminology, lyases are not typically discussed on their own, but rather as a type of enzyme that can be involved in various biochemical reactions within the body. For example, certain lyases play a role in the metabolism of carbohydrates, lipids, and amino acids, among other molecules.

One specific medical application of lyase enzymes is in the diagnosis of certain genetic disorders. For instance, individuals with hereditary fructose intolerance (HFI) lack the enzyme aldolase B, which is a type of lyase that helps break down fructose in the liver. By measuring the activity of aldolase B in a patient's blood or tissue sample, doctors can diagnose HFI and recommend appropriate dietary restrictions to manage the condition.

Overall, while lyases are not a medical diagnosis or condition themselves, they play important roles in various biochemical processes within the body and can be useful in the diagnosis of certain genetic disorders.

I'm sorry for any confusion, but "geologic sediments" is not a term used in medical definitions. Geological sediments are deposits of material that accumulate over time, usually in layers, as a result of natural geological processes such as weathering, erosion, and deposition. These sediments can eventually become rock formations and provide important clues about the Earth's history, including information about past climates, environments, and life on Earth.

Hyphomicrobiaceae is a family of bacteria that are characterized by their unique mode of reproduction known as "budding." This type of reproduction involves the formation of a new cell, or bud, on the surface of the parent cell. Once the bud has reached a certain size, it will separate from the parent cell and become a fully functioning independent organism.

Members of Hyphomicrobiaceae are typically gram-negative, aerobic bacteria that are found in a variety of environments, including soil, water, and plant material. They are often associated with nitrogen fixation, a process by which certain bacteria are able to convert atmospheric nitrogen into ammonia, a form that can be used by plants for growth.

One notable genus within Hyphomicrobiaceae is Hyphomicrobium, which is known for its ability to oxidize methanol and other single-carbon compounds as a source of energy. This makes it an important player in the global carbon cycle, as it helps to convert methane, a potent greenhouse gas, into less harmful forms.

Overall, Hyphomicrobiaceae is an interesting family of bacteria with diverse metabolic capabilities and ecological roles.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Sodium Chloride is defined as the inorganic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is commonly known as table salt or halite, and it is used extensively in food seasoning and preservation due to its ability to enhance flavor and inhibit bacterial growth. In medicine, sodium chloride is used as a balanced electrolyte solution for rehydration and as a topical wound irrigant and antiseptic. It is also an essential component of the human body's fluid balance and nerve impulse transmission.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

Fluorescence spectrometry is a type of analytical technique used to investigate the fluorescent properties of a sample. It involves the measurement of the intensity of light emitted by a substance when it absorbs light at a specific wavelength and then re-emits it at a longer wavelength. This process, known as fluorescence, occurs because the absorbed energy excites electrons in the molecules of the substance to higher energy states, and when these electrons return to their ground state, they release the excess energy as light.

Fluorescence spectrometry typically measures the emission spectrum of a sample, which is a plot of the intensity of emitted light versus the wavelength of emission. This technique can be used to identify and quantify the presence of specific fluorescent molecules in a sample, as well as to study their photophysical properties.

Fluorescence spectrometry has many applications in fields such as biochemistry, environmental science, and materials science. For example, it can be used to detect and measure the concentration of pollutants in water samples, to analyze the composition of complex biological mixtures, or to study the properties of fluorescent nanomaterials.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Puromycin is an antibiotic and antiviral protein synthesis inhibitor. It works by being incorporated into the growing peptide chain during translation, causing premature termination and release of the incomplete polypeptide. This results in the inhibition of protein synthesis and ultimately leads to cell death. In research, puromycin is often used as a selective agent in cell culture to kill cells that have not been transfected with a plasmid containing a resistance gene for puromycin.

Spectrum analysis in the context of Raman spectroscopy refers to the measurement and interpretation of the Raman scattering spectrum of a material or sample. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to examine the vibrational modes of molecules.

When a monochromatic light source, typically a laser, illuminates a sample, a small fraction of the scattered light undergoes a shift in frequency due to interactions with the molecular vibrations of the sample. This shift in frequency is known as the Raman shift and is unique to each chemical bond or functional group within a molecule.

In a Raman spectrum, the intensity of the scattered light is plotted against the Raman shift, which is expressed in wavenumbers (cm-1). The resulting spectrum provides a "fingerprint" of the sample's molecular structure and composition, allowing for the identification and characterization of various chemical components within the sample.

Spectrum analysis in Raman spectroscopy can reveal valuable information about the sample's crystallinity, phase transitions, polymorphism, molecular orientation, and other properties. This technique is widely used across various fields, including materials science, chemistry, biology, pharmaceuticals, and forensics, to analyze a diverse range of samples, from simple liquids and solids to complex biological tissues and nanomaterials.

Sulfur is not typically referred to in the context of a medical definition, as it is an element found in nature and not a specific medical condition or concept. However, sulfur does have some relevance to certain medical topics:

* Sulfur is an essential element that is a component of several amino acids (the building blocks of proteins) and is necessary for the proper functioning of enzymes and other biological processes in the body.
* Sulfur-containing compounds, such as glutathione, play important roles in antioxidant defense and detoxification in the body.
* Some medications and supplements contain sulfur or sulfur-containing compounds, such as dimethyl sulfoxide (DMSO), which is used topically for pain relief and inflammation.
* Sulfur baths and other forms of sulfur-based therapies have been used historically in alternative medicine to treat various conditions, although their effectiveness is not well-established by scientific research.

It's important to note that while sulfur itself is not a medical term, it can be relevant to certain medical topics and should be discussed with a healthcare professional if you have any questions or concerns about its use in medications, supplements, or therapies.

Circular dichroism (CD) is a technique used in physics and chemistry to study the structure of molecules, particularly large biological molecules such as proteins and nucleic acids. It measures the difference in absorption of left-handed and right-handed circularly polarized light by a sample. This difference in absorption can provide information about the three-dimensional structure of the molecule, including its chirality or "handedness."

In more technical terms, CD is a form of spectroscopy that measures the differential absorption of left and right circularly polarized light as a function of wavelength. The CD signal is measured in units of millidegrees (mdeg) and can be positive or negative, depending on the type of chromophore and its orientation within the molecule.

CD spectra can provide valuable information about the secondary and tertiary structure of proteins, as well as the conformation of nucleic acids. For example, alpha-helical proteins typically exhibit a strong positive band near 190 nm and two negative bands at around 208 nm and 222 nm, while beta-sheet proteins show a strong positive band near 195 nm and two negative bands at around 217 nm and 175 nm.

CD spectroscopy is a powerful tool for studying the structural changes that occur in biological molecules under different conditions, such as temperature, pH, or the presence of ligands or other molecules. It can also be used to monitor the folding and unfolding of proteins, as well as the binding of drugs or other small molecules to their targets.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Cytochromes are a type of hemeprotein found in the mitochondria and other cellular membranes of organisms. They contain a heme group, which is a prosthetic group composed of an iron atom surrounded by a porphyrin ring. This structure allows cytochromes to participate in redox reactions, acting as electron carriers in various biological processes.

There are several types of cytochromes, classified based on the type of heme they contain and their absorption spectra. Some of the most well-known cytochromes include:

* Cytochrome c: a small, mobile protein found in the inner mitochondrial membrane that plays a crucial role in the electron transport chain during cellular respiration.
* Cytochrome P450: a large family of enzymes involved in the metabolism of drugs, toxins, and other xenobiotics. They are found in various tissues, including the liver, lungs, and skin.
* Cytochrome b: a component of several electron transport chains, including those found in mitochondria, bacteria, and chloroplasts.

Cytochromes play essential roles in energy production, detoxification, and other metabolic processes, making them vital for the survival and function of living organisms.

Protoporphyrins are organic compounds that are the immediate precursors to heme in the porphyrin synthesis pathway. They are composed of a porphyrin ring, which is a large, complex ring made up of four pyrrole rings joined together, with an acetate and a propionate side chain at each pyrrole. Protoporphyrins are commonly found in nature and are important components of many biological systems, including hemoglobin, the protein in red blood cells that carries oxygen throughout the body.

There are several different types of protoporphyrins, including protoporphyrin IX, which is the most common form found in humans and other animals. Protoporphyrins can be measured in the blood or other tissues as a way to diagnose or monitor certain medical conditions, such as lead poisoning or porphyrias, which are rare genetic disorders that affect the production of heme. Elevated levels of protoporphyrins in the blood or tissues can indicate the presence of these conditions and may require further evaluation and treatment.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Nitrogenase is not a medical term, but a biological term used in the field of microbiology and biochemistry. It refers to an enzyme complex found in certain bacteria and archaea that have the ability to fix nitrogen gas (N2) from the atmosphere into ammonia (NH3), a form of nitrogen that can be utilized by plants and other organisms for growth and development. This process is known as biological nitrogen fixation, which is essential for maintaining the global nitrogen cycle and supporting life on Earth.

The medical field may refer to nitrogenase in relation to human health in the context of understanding the role of nitrogen-fixing bacteria in soil fertility and their impact on agriculture and food production. However, there is no direct medical definition or application for nitrogenase.

Freeze fracturing is not a medical term itself, but it is a technique used in the field of electron microscopy, which is a type of imaging commonly used in scientific research and medical fields to visualize structures at a very small scale, such as cells and cellular components.

In freeze fracturing, a sample is rapidly frozen to preserve its structure and then fractured or split along a plane of weakness, often along the membrane of a cell. The freshly exposed surface is then shadowed with a thin layer of metal, such as platinum or gold, to create a replica of the surface. This replica can then be examined using an electron microscope to reveal details about the structure and organization of the sample at the molecular level.

Freeze fracturing is particularly useful for studying membrane structures, such as lipid bilayers and protein complexes, because it allows researchers to visualize these structures in their native state, without the need for staining or other chemical treatments that can alter or damage the samples.

In chemistry, an alcohol is a broad term that refers to any organic compound characterized by the presence of a hydroxyl (-OH) functional group attached to a carbon atom. This means that alcohols are essentially hydrocarbons with a hydroxyl group. The simplest alcohol is methanol (CH3OH), and ethanol (C2H5OH), also known as ethyl alcohol, is the type of alcohol found in alcoholic beverages.

In the context of medical definitions, alcohol primarily refers to ethanol, which has significant effects on the human body when consumed. Ethanol can act as a central nervous system depressant, leading to various physiological and psychological changes depending on the dose and frequency of consumption. Excessive or prolonged use of ethanol can result in various health issues, including addiction, liver disease, neurological damage, and increased risk of injuries due to impaired judgment and motor skills.

It is important to note that there are other types of alcohols (e.g., methanol, isopropyl alcohol) with different chemical structures and properties, but they are not typically consumed by humans and can be toxic or even lethal in high concentrations.

Cyanobacteria, also known as blue-green algae, are a type of bacteria that obtain their energy through photosynthesis, similar to plants. They can produce oxygen and contain chlorophyll a, which gives them a greenish color. Some species of cyanobacteria can produce toxins that can be harmful to humans and animals if ingested or inhaled. They are found in various aquatic environments such as freshwater lakes, ponds, and oceans, as well as in damp soil and on rocks. Cyanobacteria are important contributors to the Earth's oxygen-rich atmosphere and play a significant role in the global carbon cycle.

X-ray diffraction (XRD) is not strictly a medical definition, but it is a technique commonly used in the field of medical research and diagnostics. XRD is a form of analytical spectroscopy that uses the phenomenon of X-ray diffraction to investigate the crystallographic structure of materials. When a beam of X-rays strikes a crystal, it is scattered in specific directions and with specific intensities that are determined by the arrangement of atoms within the crystal. By measuring these diffraction patterns, researchers can determine the crystal structures of various materials, including biological macromolecules such as proteins and viruses.

In the medical field, XRD is often used to study the structure of drugs and drug candidates, as well as to analyze the composition and structure of tissues and other biological samples. For example, XRD can be used to investigate the crystal structures of calcium phosphate minerals in bone tissue, which can provide insights into the mechanisms of bone formation and disease. Additionally, XRD is sometimes used in the development of new medical imaging techniques, such as phase-contrast X-ray imaging, which has the potential to improve the resolution and contrast of traditional X-ray images.

Organoids are 3D tissue cultures grown from stem cells that mimic the structure and function of specific organs. They are used in research to study development, disease, and potential treatments. The term "organoid" refers to the fact that these cultures can organize themselves into structures that resemble rudimentary organs, with differentiated cell types arranged in a pattern similar to their counterparts in the body. Organoids can be derived from various sources, including embryonic stem cells, induced pluripotent stem cells (iPSCs), or adult stem cells, and they provide a valuable tool for studying complex biological processes in a controlled laboratory setting.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

In the context of medical definitions, 'carbon' is not typically used as a standalone term. Carbon is an element with the symbol C and atomic number 6, which is naturally abundant in the human body and the environment. It is a crucial component of all living organisms, forming the basis of organic compounds, such as proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA).

Carbon forms strong covalent bonds with various elements, allowing for the creation of complex molecules that are essential to life. In this sense, carbon is a fundamental building block of life on Earth. However, it does not have a specific medical definition as an isolated term.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Hydrogen bonding is not a medical term per se, but it is a fundamental concept in chemistry and biology that is relevant to the field of medicine. Here's a general definition:

Hydrogen bonding is a type of attractive force between molecules or within a molecule, which occurs when a hydrogen atom is bonded to a highly electronegative atom (like nitrogen, oxygen, or fluorine) and is then attracted to another electronegative atom. This attraction results in the formation of a partially covalent bond known as a "hydrogen bond."

In biological systems, hydrogen bonding plays a crucial role in the structure and function of many biomolecules, such as DNA, proteins, and carbohydrates. For example, the double helix structure of DNA is stabilized by hydrogen bonds between complementary base pairs (adenine-thymine and guanine-cytosine). Similarly, the three-dimensional structure of proteins is maintained by a network of hydrogen bonds that help to determine their function.

In medical contexts, hydrogen bonding can be relevant in understanding drug-receptor interactions, where hydrogen bonds between a drug molecule and its target protein can enhance the binding affinity and specificity of the interaction, leading to more effective therapeutic outcomes.

Methyltransferases are a class of enzymes that catalyze the transfer of a methyl group (-CH3) from a donor molecule to an acceptor molecule, which is often a protein, DNA, or RNA. This transfer of a methyl group can modify the chemical and physical properties of the acceptor molecule, playing a crucial role in various cellular processes such as gene expression, signal transduction, and DNA repair.

In biochemistry, methyltransferases are classified based on the type of donor molecule they use for the transfer of the methyl group. The most common methyl donor is S-adenosylmethionine (SAM), a universal methyl group donor found in many organisms. Methyltransferases that utilize SAM as a cofactor are called SAM-dependent methyltransferases.

Abnormal regulation or function of methyltransferases has been implicated in several diseases, including cancer and neurological disorders. Therefore, understanding the structure, function, and regulation of these enzymes is essential for developing targeted therapies to treat these conditions.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Molecular conformation, also known as spatial arrangement or configuration, refers to the specific three-dimensional shape and orientation of atoms that make up a molecule. It describes the precise manner in which bonds between atoms are arranged around a molecular framework, taking into account factors such as bond lengths, bond angles, and torsional angles.

Conformational isomers, or conformers, are different spatial arrangements of the same molecule that can interconvert without breaking chemical bonds. These isomers may have varying energies, stability, and reactivity, which can significantly impact a molecule's biological activity and function. Understanding molecular conformation is crucial in fields such as drug design, where small changes in conformation can lead to substantial differences in how a drug interacts with its target.

Intracellular membranes refer to the membrane structures that exist within a eukaryotic cell (excluding bacteria and archaea, which are prokaryotic and do not have intracellular membranes). These membranes compartmentalize the cell, creating distinct organelles or functional regions with specific roles in various cellular processes.

Major types of intracellular membranes include:

1. Nuclear membrane (nuclear envelope): A double-membraned structure that surrounds and protects the genetic material within the nucleus. It consists of an outer and inner membrane, perforated by nuclear pores that regulate the transport of molecules between the nucleus and cytoplasm.
2. Endoplasmic reticulum (ER): An extensive network of interconnected tubules and sacs that serve as a major site for protein folding, modification, and lipid synthesis. The ER has two types: rough ER (with ribosomes on its surface) and smooth ER (without ribosomes).
3. Golgi apparatus/Golgi complex: A series of stacked membrane-bound compartments that process, sort, and modify proteins and lipids before they are transported to their final destinations within the cell or secreted out of the cell.
4. Lysosomes: Membrane-bound organelles containing hydrolytic enzymes for breaking down various biomolecules (proteins, carbohydrates, lipids, and nucleic acids) in the process called autophagy or from outside the cell via endocytosis.
5. Peroxisomes: Single-membrane organelles involved in various metabolic processes, such as fatty acid oxidation and detoxification of harmful substances like hydrogen peroxide.
6. Vacuoles: Membrane-bound compartments that store and transport various molecules, including nutrients, waste products, and enzymes. Plant cells have a large central vacuole for maintaining turgor pressure and storing metabolites.
7. Mitochondria: Double-membraned organelles responsible for generating energy (ATP) through oxidative phosphorylation and other metabolic processes, such as the citric acid cycle and fatty acid synthesis.
8. Chloroplasts: Double-membraned organelles found in plant cells that convert light energy into chemical energy during photosynthesis, producing oxygen and organic compounds (glucose) from carbon dioxide and water.
9. Endoplasmic reticulum (ER): A network of interconnected membrane-bound tubules involved in protein folding, modification, and transport; it is divided into two types: rough ER (with ribosomes on the surface) and smooth ER (without ribosomes).
10. Nucleus: Double-membraned organelle containing genetic material (DNA) and associated proteins involved in replication, transcription, RNA processing, and DNA repair. The nuclear membrane separates the nucleoplasm from the cytoplasm and contains nuclear pores for transporting molecules between the two compartments.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Heme is not a medical term per se, but it is a term used in the field of medicine and biology. Heme is a prosthetic group found in hemoproteins, which are proteins that contain a heme iron complex. This complex plays a crucial role in various biological processes, including oxygen transport (in hemoglobin), electron transfer (in cytochromes), and chemical catalysis (in peroxidases and catalases).

The heme group consists of an organic component called a porphyrin ring, which binds to a central iron atom. The iron atom can bind or release electrons, making it essential for redox reactions in the body. Heme is also vital for the formation of hemoglobin and myoglobin, proteins responsible for oxygen transport and storage in the blood and muscles, respectively.

In summary, heme is a complex organic-inorganic structure that plays a critical role in several biological processes, particularly in electron transfer and oxygen transport.

Ubiquinone, also known as coenzyme Q10 (CoQ10), is a lipid-soluble benzoquinone that plays a crucial role in the mitochondrial electron transport chain as an essential component of Complexes I, II, and III. It functions as an electron carrier, assisting in the transfer of electrons from reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) to molecular oxygen during oxidative phosphorylation, thereby contributing to the generation of adenosine triphosphate (ATP), the primary energy currency of the cell.

Additionally, ubiquinone acts as a potent antioxidant in both membranes and lipoproteins, protecting against lipid peroxidation and oxidative damage to proteins and DNA. Its antioxidant properties stem from its ability to donate electrons and regenerate other antioxidants like vitamin E. Ubiquinone is synthesized endogenously in all human cells, with the highest concentrations found in tissues with high energy demands, such as the heart, liver, kidneys, and skeletal muscles.

Deficiency in ubiquinone can result from genetic disorders, aging, or certain medications (such as statins), leading to impaired mitochondrial function and increased oxidative stress. Supplementation with ubiquinone has been explored as a potential therapeutic strategy for various conditions associated with mitochondrial dysfunction and oxidative stress, including cardiovascular diseases, neurodegenerative disorders, and cancer.

I apologize, but there seems to be a misunderstanding. "Soil microbiology" is not a medical term; rather, it is a branch of microbiology that deals with the study of microorganisms in soil. It involves understanding the diversity, ecology, and biochemistry of bacteria, fungi, algae, protozoa, and other microscopic life forms found in soil. This field has applications in agriculture, environmental science, and waste management but is not directly related to medical definitions or human health.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

A laser is not a medical term per se, but a physical concept that has important applications in medicine. The term "LASER" stands for "Light Amplification by Stimulated Emission of Radiation." It refers to a device that produces and amplifies light with specific characteristics, such as monochromaticity (single wavelength), coherence (all waves moving in the same direction), and high intensity.

In medicine, lasers are used for various therapeutic and diagnostic purposes, including surgery, dermatology, ophthalmology, and dentistry. They can be used to cut, coagulate, or vaporize tissues with great precision, minimizing damage to surrounding structures. Additionally, lasers can be used to detect and measure physiological parameters, such as blood flow and oxygen saturation.

It's important to note that while lasers are powerful tools in medicine, they must be used by trained professionals to ensure safe and effective treatment.

Fluorescence is not a medical term per se, but it is widely used in the medical field, particularly in diagnostic tests, medical devices, and research. Fluorescence is a physical phenomenon where a substance absorbs light at a specific wavelength and then emits light at a longer wavelength. This process, often referred to as fluorescing, results in the emission of visible light that can be detected and measured.

In medical terms, fluorescence is used in various applications such as:

1. In-vivo imaging: Fluorescent dyes or probes are introduced into the body to highlight specific structures, cells, or molecules during imaging procedures. This technique can help doctors detect and diagnose diseases such as cancer, inflammation, or infection.
2. Microscopy: Fluorescence microscopy is a powerful tool for visualizing biological samples at the cellular and molecular level. By labeling specific proteins, nucleic acids, or other molecules with fluorescent dyes, researchers can observe their distribution, interactions, and dynamics within cells and tissues.
3. Surgical guidance: Fluorescence-guided surgery is a technique where surgeons use fluorescent markers to identify critical structures such as blood vessels, nerves, or tumors during surgical procedures. This helps ensure precise and safe surgical interventions.
4. Diagnostic tests: Fluorescence-based assays are used in various diagnostic tests to detect and quantify specific biomarkers or analytes. These assays can be performed using techniques such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), or flow cytometry.

In summary, fluorescence is a physical process where a substance absorbs and emits light at different wavelengths. In the medical field, this phenomenon is harnessed for various applications such as in-vivo imaging, microscopy, surgical guidance, and diagnostic tests.

Nucleic acid hybridization is a process in molecular biology where two single-stranded nucleic acids (DNA, RNA) with complementary sequences pair together to form a double-stranded molecule through hydrogen bonding. The strands can be from the same type of nucleic acid or different types (i.e., DNA-RNA or DNA-cDNA). This process is commonly used in various laboratory techniques, such as Southern blotting, Northern blotting, polymerase chain reaction (PCR), and microarray analysis, to detect, isolate, and analyze specific nucleic acid sequences. The hybridization temperature and conditions are critical to ensure the specificity of the interaction between the two strands.

Transmission electron microscopy (TEM) is a type of microscopy in which an electron beam is transmitted through a ultra-thin specimen, interacting with it as it passes through. An image is formed from the interaction of the electrons with the specimen; the image is then magnified and visualized on a fluorescent screen or recorded on an electronic detector (or photographic film in older models).

TEM can provide high-resolution, high-magnification images that can reveal the internal structure of specimens including cells, viruses, and even molecules. It is widely used in biological and materials science research to investigate the ultrastructure of cells, tissues and materials. In medicine, TEM is used for diagnostic purposes in fields such as virology and bacteriology.

It's important to note that preparing a sample for TEM is a complex process, requiring specialized techniques to create thin (50-100 nm) specimens. These include cutting ultrathin sections of embedded samples using an ultramicrotome, staining with heavy metal salts, and positive staining or negative staining methods.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Electron Spin Resonance (ESR) Spectroscopy, also known as Electron Paramagnetic Resonance (EPR) Spectroscopy, is a technique used to investigate materials with unpaired electrons. It is based on the principle of absorption of energy by the unpaired electrons when they are exposed to an external magnetic field and microwave radiation.

In this technique, a sample is placed in a magnetic field and microwave radiation is applied. The unpaired electrons in the sample absorb energy and change their spin state when the energy of the microwaves matches the energy difference between the spin states. This absorption of energy is recorded as a function of the magnetic field strength, producing an ESR spectrum.

ESR spectroscopy can provide information about the number, type, and behavior of unpaired electrons in a sample, as well as the local environment around the electron. It is widely used in physics, chemistry, and biology to study materials such as free radicals, transition metal ions, and defects in solids.

Structures of major bacteriochlorophylls bacteriochlorophyll a bacteriochlorophyll b bacteriochlorophyll c bacteriochlorophyll ... d bacteriochlorophyll e bacteriochlorophyll f bacteriochlorophyll g Bacteriochlorophylls a, b, and g are bacteriochlorins, ... Gloe, A; Risch, N (1 August 1978). "Bacteriochlorophyll cs, a new bacteriochlorophyll from Chloroflexus aurantiacus". Archives ... "In Vivo Energy Transfer from Bacteriochlorophyll c , d , e , or f to Bacteriochlorophyll a in Wild-Type and Mutant Cells of the ...
It contains bacteriochlorophyll a. It is motile by means of subpolar flagella. Its type strain is OCh101 (= IFO 14126). Shiba, ... nov., an Aerobic Bacterium Which Contains Bacteriochlorophyll a". International Journal of Systematic Bacteriology. 32 (2): 211 ... Shimada, Keizo; Hayashi, Hidenori; Tasumi, Mitsuo (1985). "Bacteriochlorophyll-protein complexes of aerobic bacteria, ...
It contains Bacteriochlorophyll a. It contains spheroidenone, does not synthesize bacteriochlorophyll anaerobically, but shows ... nov., Aerobic Pink-Pigmented Bacteria which Contain Bacteriochlorophyll a". Systematic and Applied Microbiology. 14 (2): 140- ...
It contains Bacteriochlorophyll a. It contains spheroidenone, does not synthesize bacteriochlorophyll anaerobically, but shows ... nov., Aerobic Pink-Pigmented Bacteria which Contain Bacteriochlorophyll a". Systematic and Applied Microbiology. 14 (2): 140- ...
It is a component of the biosynthetic pathway to bacteriochlorophylls. Biosynthesis of bacteriochlorophylls Harada, Jiro; ... R. Caspi (2015-12-08). "Pathway: bacteriochlorophyll a biosynthesis". MetaCyc Metabolic Pathway Database. Retrieved 2020-06-04 ... "Chlorophyllide a Oxidoreductase Works as One of the Divinyl Reductases Specifically Involved in Bacteriochlorophyll a ... gives the characteristic 18-electron aromatic system that distinguishes bacteriochlorophylls from chlorophylls, which retain ...
The phytyl ester of bacteriochlorophyll a is not attached directly: rather, the initial intermediate is the ester with R= ... Chlorophyllide a is also an intermediate in the biosynthesis of bacteriochlorophylls. Chlorophyllide a, is a carboxylic acid (R ... doi:10.1007/0-306-47954-0_8. ISBN 0-7923-3681-X. R. Caspi (2015-12-08). "Pathway: bacteriochlorophyll a biosynthesis". MetaCyc ... Senge, Mathias O.; Smith, Kevin M. (2004). "Biosynthesis and Structures of the Bacteriochlorophylls". Anoxygenic Photosynthetic ...
Chromatophores contain bacteriochlorophyll pigments and carotenoids. In purple bacteria, such as Rhodospirillum rubrum, the ...
Purple bacteria use bacteriochlorophyll and carotenoids to gather light energy. These proteins are arranged in a ring-like ... Their form of bacteriochlorophyll is green. Chlorophylls and carotenoids are important in light-harvesting complexes present in ...
Both of these photosystems use bacteriochlorophyll. There are multiple hypotheses for how oxygenic photosynthesis evolved. The ... the chlorophyll molecules in their chloroplasts while prokaryotic photoautotrophs use chlorophylls and bacteriochlorophylls ...
Scheer, Hugo (2006). "An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and ... Applications". Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration. Vol. 25. pp. 1-26. doi: ...
Bacteriochlorophyll, related compounds in phototrophic bacteria Chlorophyllin, a semi-synthetic derivative of chlorophyll Deep ... cite book}}: ,website= ignored (help) Scheer H (2006). "An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, ... Biophysics, Functions and Applications". Chlorophylls and Bacteriochlorophylls. Advances in Photosynthesis and Respiration. Vol ...
Bacteriochlorophylls and carotenoids are part of the light-harvesting complex; together with the reaction center, this one ... Most of them have bacteriochlorophyll a, with a maximum absorption wavelength of 800-900 nm, and a number of species uniquely ... nov., a novel purple sulfur bacterium with bacteriochlorophyll b." International Journal of Systematic and Evolutionary ... and Isochromatium spp.) and bacteriochlorophyll b-containing genera (Thiococcus spp., Thioflavicoccus spp. and Thioalkalicoccus ...
The majority of these pigments are bacteriochlorophyll (BChl). The reaction center in Roseiflexus castenholzii is closely ...
They contain chlorosomes and bacteriochlorophyll a and c. Like other green sulfur bacteria C. tepidum requires light and ... Frigaard NU, Voigt GD, Bryant DA (June 2002). "Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of ... Within each chlorosome are 215,000 ± 80,000 bacteriochlorophyll C that act as pigment molecules and absorb unique wavelengths ... eds.). Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications. Vol. 25. Springer. 201-221 ...
Tronrud, D.E.; Schmid, M.F.; Matthews, B.W. (April 1986). "Structure and X-ray amino acid sequence of a bacteriochlorophyll a ... Pearlstein, Robert M. (1992). "Theory of the optical spectra of the bacteriochlorophyll an antenna protein trimer from ... Fenna, R. E.; Matthews, B. W. (1975). "Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola". ... Each of the three monomers contains eight bacteriochlorophyll a (BChl a) molecules. They are bound to the protein scaffold via ...
"Origin of the Two Carbonyl Oxygens of Bacteriochlorophyll a. Demonstration of two Different Pathways for the Formation of Ring ...
Purple sulfur bacteria produce bacteriochlorophyll a and bacteriochlorophyll b. In cyanobacteria, many other carotenoids exist ...
nov., a bacteriochlorophyll-containing bacterium isolated from lake water". International Journal of Systematic and ...
It is an obligately aerobic, bacteriochlorophyll a-containing bacteria. Yurkov, V.; Stackebrandt, E.; Holmes, A.; Fuerst, J. A ... Bacteriochlorophyll a-Containing Bacteria and Description of Roseococcus thiosulfatophilus gen. nov., sp. nov., ... the aerobic bacteria Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 is not bound to the bacteriochlorophyll ...
nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil". International Journal of Systematic Bacteriology. 48 ...
nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a". Syst. Appl. Microbiol. 14 (2): 140-145. doi:10.1016 ... both pink-pigmented bacteriochlorophyll a-producing strains isolated from marine algae. The role members of the Roseobacter ...
Fenna RE, Matthews BW (1975). "Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola". Nature. 258 ... and the light-antenna bacteriochlorophyll protein. Beyond his contributions to biochemistry, Matthews is also known in the ...
It is an obligately aerobic, bacteriochlorophyll a-containing bacteria. Parte, A.C. "Erythromicrobium". LPSN. Yurkov, V.; ... Yurkov, V. "Gad'on N, Angerhofer A, Drews G (1994) Light harvesting complexes of aerobic bacteriochlorophyll-containing ... Bacteriochlorophyll a-Containing Bacteria and Description of Roseococcus thiosulfatophilus gen. nov., sp. nov., ... E5 and the transfer of excitation energy from carotenoids to bacteriochlorophyll." Z Naturforsch 49: 579-586. "Erythrobacter ...
... is a phototrophic filamentous, gliding bacterium containing bacteriochlorophyll a that is aerotolerant ... nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a". Archives of Microbiology. 142 (2): 164- ...
nov., a bacteriochlorophyll-containing bacterium isolated from lake water". International Journal of Systematic and ... Blastomonas aquatica is a Gram-negative, bacteriochlorophyll-containing and aerobic bacteria from the genus of Blastomonas ...
nov., a novel purple sulfur bacterium with bacteriochlorophyll b." International Journal of Systematic and Evolutionary ... nov., a novel purple sulfur bacterium with bacteriochlorophyll b. International Journal of Systematic and Evolutionary ... it was found to be the first purple sulfur bacteria that contained bacteriochlorophyll b as the main photosynthetic pigment. ...
It is an obligately aerobic, bacteriochlorophyll a-containing bacterium. Yurkov, V.; Stackebrandt, E.; Holmes, A.; Fuerst, J. A ... Bacteriochlorophyll a-Containing Bacteria and Description of Roseococcus thiosulfatophilus gen. nov., sp. nov., ...
Bacteria may use variants called bacteriochlorophylls. Schneider, Peter W.; Collman, James P. (October 1968). "Complexes of ...
Bacteriochlorins are found in some bacteriochlorophylls; the ring structure is produced by Chlorophyllide a reductase (COR) ...
nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b." International Journal of Systematic and ...
Structures of major bacteriochlorophylls bacteriochlorophyll a bacteriochlorophyll b bacteriochlorophyll c bacteriochlorophyll ... d bacteriochlorophyll e bacteriochlorophyll f bacteriochlorophyll g Bacteriochlorophylls a, b, and g are bacteriochlorins, ... Gloe, A; Risch, N (1 August 1978). "Bacteriochlorophyll cs, a new bacteriochlorophyll from Chloroflexus aurantiacus". Archives ... "In Vivo Energy Transfer from Bacteriochlorophyll c , d , e , or f to Bacteriochlorophyll a in Wild-Type and Mutant Cells of the ...
A specific bacteriochlorophyll that is similar in structure to CHLOROPHYLL A. ... UBacteriochlorophyll a protein. Not Available. Prosthecochloris aestuarii. UBacteriochlorophyll a protein. Not Available. ... Bacteriochlorophyll A. DrugBank Accession Number. DB01853. Background. A specific bacteriochlorophyll that is similar in ... methyl ester, bacteriochlorophyll (CHEBI:30033) Affected organisms. Not Available. Chemical Identifiers. UNII. Not Available. ...
The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A ... The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A ... The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A ... The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A ...
Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum ... Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum ... Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum ...
PHOTOSTABILITY OF BACTERIOCHLOROPHYLL a AND ITS DERIVATIVES AS POTENTIAL SENSITIZERS FOR PHOTODYNAMIC CANCER THERAPY: THE STUDY ... PHOTOSTABILITY OF BACTERIOCHLOROPHYLL a AND ITS DERIVATIVES AS POTENTIAL SENSITIZERS FOR PHOTODYNAMIC CANCER THERAPY: THE STUDY ... 7] Brandis, A.S., Salomon, Y., and Scherz, A., 2006, "Bacteriochlorophyll Sensitizers in Photodynamic Therapy" in Chlorophylls ... 17] Yerushalmi, R., Ashur, I., and Scherz, A., 2006, "Metal-substituted Bacteriochlorophylls: Novel Molecular Tools" in ...
Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus ... Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria. The ... Energy Transfer from Carotenoids to Bacteriochlorophylls. 2009, 213-230. https://doi.org/10.1007/978-1-4020-8815-5_12. ...
nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol. 1999;49:629-34.PubMed ...
BACTERIOCHLOROPHYLL A. C55 H74 Mg N4 O6. DSJXIQQMORJERS-AGGZHOMASA-M. Interactions *Focus chain AB [auth 6] ... Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ ...
Rhodobacter bacteria produce large quantities of the photosynthetic pigment bacteriochlorophyll a. This pigment enabled the ...
bacteriochlorophylls, and RG1 for the Carotenoids. Are there suitable , aliases for these residues as well? I suppose this is ...
nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata ... Strain JA173T contained lamellar internal membranes, bacteriochlorophyll a and carotenoids of the spirilloxanthin series. ... Dark-grown cells of strain DFL-11T contained small amounts of bacteriochlorophyll a (bchl a) and a carotenoid. Cells of strain ...
2002) Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre ... 2002) Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre ...
One reason for this complexity is the high diversity of pigments antenna, the bacteriochlorophylls ... ...
... zinc phthalocyanine and bacteriochlorophyll a) mediate the photooxidation of palmitoyl plasmenylcholine (1-O-alk-1′-Z-enyl-2- ...
... like purple and green bacteria that contain bacteriochlorophyll that absorbs in the infrared). Absent competition from other ...
... obsoleted and distorted bacteriochlorophyll model at the eighth binding site in the FMO protein from Pelodictyon phaeum (PDB ...
... at San Antonio propose to develop biological obscurants for battlefield applications based on the use of bacteriochlorophylls. ...
Solvation effects of bacteriochlorophyll excitons in light-harvesting complex LH2. 2007-01-01 00:00 ... Urboniene, V., Vrublevskaja, O., Trinkunas, G., Gall, A., Robert, B., Valkunas, L., Solvation effects of bacteriochlorophyll ...
... represented by bacteriochlorophyll a, and green sulfur bacteria (GSB), represented by bacteriochlorophyll c, d, and e. HSI ... 2. Influence of Central Metal, Solvent and β-Carotene on Photobleaching of Bacteriochlorophyll Derivatives, Photochem. ... Fiedor, J., Fiedor, L., Kammhuber, N., Scherz, A., and Scheer, H.: Photodynamics of the Bacteriochlorophyll-Carotenoid System. ... This is the first study that reconstructs and quantifies Chlorobi-derived bacteriochlorophylls and its derivatives at high ...
Simpson used bacteriochlorophyll, which has a transition center of gravity (more on that in a minute) of 549 nm, and he was ...
... but instead bacteriochlorophyll, found in aquatic bacteria, that was chemically modified by Prof. Scherzs lab at Weizmann to ... but instead bacteriochlorophyll, found in aquatic bacteria, that was chemically modified by Prof. Scherzs lab at Weizmann to ... a water-insoluble derivative of bacteriochlorophyll that had to be infused as a formulation with some detergents, and achieved ... a water-insoluble derivative of bacteriochlorophyll that had to be infused as a formulation with some detergents, and achieved ...
In the absence of PuhB, the amount of RC was as little as 12% of the wild type level, and it did not bind bacteriochlorophyll ( ... In the absence of PuhB, the amount of RC was as little as 12% of the wild type level, and it did not bind bacteriochlorophyll ( ...
Powered by Pure, Scopus & Elsevier Fingerprint Engine™ All content on this site: Copyright © 2024 Elsevier B.V. or its licensors and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply We use cookies to help provide and enhance our service and tailor content. By continuing you agree to the use of cookies. ...
Bacteriochlorophyll a was absent. The respiratory quinone was Q-10 and the dominant fatty acid was summed feature 8 (C18â :â 1 ...
16. BACTERIOCHLOROPHYLLS [ԲԱԿՏԵՐԻՈՔԼՈՐՈՖԻԼՆԵՐ] ◊ [ԲԱԿՏԵՐԻՈՔԼՈՐՈՖԻԼՆԵՐ] 66. BASE SEQUENCE [ՀԻՄՔԵՐԻ ՀԱՋՈՐԴԱԿԱՆՈՒԹՅՈՒՆ] 17. ...
Synthesis of model bacteriochlorophylls containing substituents of native rings A, C and E ... A route under development for the synthesis of bacteriochlorophyll a and analogues relies on joining an AD-dihydrodipyrrin ( ... Prior synthetic studies afforded the bacteriochlorophyll skeleton containing a gem-dimethyl group in ring B, a trans -dialkyl ... the synthesis of two bacteriochlorophyll analogues thereof was pursued, one with 12-methyl and 3-carboethoxy groups and the ...
Chlorophylls and bacteriochlorophylls. Carotenoids. The phycobissins. The initial reactions primary photochemistry and electron ...
Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Apply. Environ. Microbiol. 47:576-584. ... nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch. Microbiol. 142:164-167. ...
  • nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. (cdc.gov)
  • A class in the phylum PROTEOBACTERIA comprised mostly of two major phenotypes: purple non-sulfur bacteria and aerobic bacteriochlorophyll-containing bacteria. (bvsalud.org)
  • Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. (wikipedia.org)
  • Rhodobacter bacteria produce large quantities of the photosynthetic pigment bacteriochlorophyll a . (laserfocusworld.com)
  • El present treball es centra en l'estudi a diferents nivells dels carotenoides de les espècies marrons de Bacteris Verds del Sofre (GSB, de l'anglès Green Sulfur Bacteria). (tesisenred.net)
  • However, the chlorophyll used to create this photosensitized drug therapy is not the common green chlorophyll, but instead bacteriochlorophyll, found in aquatic bacteria, that was chemically modified by Prof. Scherz's lab at Weizmann to fit the team's pharmaceutical needs. (weizmann-usa.org)
  • Newly identified exterior Cars functioned with the bacteriochlorophyll B800 to block the proposed quinone channel between LHαβ subunits in the nRC-LH, forming a sealed LH ring that was disrupted by transmembrane helices from cytochrome c and subunit X to allow quinone shuttling. (rcsb.org)
  • either two distinct B800 bacteriochlorophyll site energies are involved, or an excitonic dimerization of bacteriochlorophylls within the B800 ring takes place. (lu.se)
  • In the absence of PuhB, the amount of RC was as little as 12% of the wild type level, and it did not bind bacteriochlorophyll (BChl) properly. (ubc.ca)
  • Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. (wikipedia.org)
  • Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. (elsevierpure.com)
  • Dive into the research topics of 'Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. (elsevierpure.com)
  • tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. (lu.se)
  • Bacteriochlorophylls were present throughout the past 10 kyr, confirming geochemical evidence of nearly continuous stratification and sulfidic conditions at Lake Cadagno. (copernicus.org)
  • There are a large number of known bacteriochlorophylls but all have features in common since the biosynthetic pathway involves chlorophyllide a (Chlide a) as an intermediate. (wikipedia.org)
  • SPEC and Dr. James P. Chambers of the University of Texas at San Antonio propose to develop biological obscurants for battlefield applications based on the use of bacteriochlorophylls. (sbir.gov)
  • The bacteriochlorophyll dimer (D), bacteriochlorophyll monomers (B), and bacteriopheophytin monomers (phi) form two branches, A and B, that are approximately related by a twofold symmetry axis. (elsevierpure.com)
  • Brandis, A., O. Mazor, E. Neumark, V. Rosenbach-Belkin, Y. Salomon and A. Scherz (2005) Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins. (photochemcad.com)
  • 10. Bacteriochlorophyll a, and its derivatives: chemistry and perspectives for cancer therapy. (nih.gov)
  • A specific bacteriochlorophyll that is similar in structure to chlorophyll a. (nih.gov)
  • Phenotypic and phylogenetic studies were performed with two strains (OCh 239T and OCh 210T, T = type strain) of aerobic bacteriochlorophyll-containing bacteria isolated from the charophytes and the epiphytes on the stromatolites, respectively, of a saline lake located on the west coast of Australia. (nih.gov)
  • The product is a bacteriochlorophyll derivative, which, after being activated by light, initiates a cascade of pathophysiologic events that result in the instantaneous occlusion of the entire tumor blood supply, followed by rapid ablation of tumor tissue, said principal investigator Abdel Rahmene Azzouzi, MD, a urologist from the University of Angers, France. (medscape.com)
  • In chlorosomes, the mass ratio of protein:bacteriochlorophyll is significantly lower than in other light-harvesting complexes (Table 3). (harvard.edu)