Clavulanic acid and its salts and esters. The acid is a suicide inhibitor of bacterial beta-lactamase enzymes from Streptomyces clavuligerus. Administered alone, it has only weak antibacterial activity against most organisms, but given in combination with other beta-lactam antibiotics it prevents antibiotic inactivation by microbial lactamase.
Acids, salts, and derivatives of clavulanic acid (C8H9O5N). They consist of those beta-lactam compounds that differ from penicillin in having the sulfur of the thiazolidine ring replaced by an oxygen. They have limited antibacterial action, but block bacterial beta-lactamase irreversibly, so that similar antibiotics are not broken down by the bacterial enzymes and therefore can exert their antibacterial effects.
A broad-spectrum semisynthetic antibiotic similar to AMPICILLIN except that its resistance to gastric acid permits higher serum levels with oral administration.
A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065)
A fixed-ratio combination of amoxicillin trihydrate and potassium clavulanate.
A penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It has also been used as an experimental convulsant because of its actions on GAMMA-AMINOBUTYRIC ACID mediated synaptic transmission.
Substances that reduce the growth or reproduction of BACTERIA.
Nonsusceptibility of an organism to the action of penicillins.
An antibiotic derived from penicillin similar to CARBENICILLIN in action.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins.
A broad-spectrum penicillin antibiotic used orally in the treatment of mild to moderate infections by susceptible gram-positive organisms.
A beta-lactamase inhibitor with very weak antibacterial action. The compound prevents antibiotic destruction of beta-lactam antibiotics by inhibiting beta-lactamases, thus extending their spectrum activity. Combinations of sulbactam with beta-lactam antibiotics have been used successfully for the therapy of infections caused by organisms resistant to the antibiotic alone.
A building block of penicillin, devoid of significant antibacterial activity. (From Merck Index, 11th ed)
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria.
Naturally occurring family of beta-lactam cephalosporin-type antibiotics having a 7-methoxy group and possessing marked resistance to the action of beta-lactamases from gram-positive and gram-negative organisms.
A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.
Cyclic AMIDES formed from aminocarboxylic acids by the elimination of water. Lactims are the enol forms of lactams.
Semisynthetic antibiotic prepared by combining penicillin G with PROCAINE.
Semi-synthetic derivative of penicillin that functions as an orally active broad-spectrum antibiotic.
An enzyme catalyzing the hydrolysis of penicillin to penicin and a carboxylic acid anion. EC 3.5.1.11.
A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid.
Ureohydrolases are a class of enzymes that catalyze the hydrolysis of urea into ammonia and carbon dioxide, which can include urease, urease accessory proteins, and other enzymes with similar functions.
A beta-lactamase preferentially cleaving penicillins. (Dorland, 28th ed) EC 3.5.2.-.
Semisynthetic antibiotic prepared by combining the sodium salt of penicillin G with N,N'-dibenzylethylenediamine.
Nonsusceptibility of bacteria to the action of the beta-lactam antibiotics. Mechanisms responsible for beta-lactam resistance may be degradation of antibiotics by BETA-LACTAMASES, failure of antibiotics to penetrate, or low-affinity binding of antibiotics to targets.
Cephalosporinase is an enzyme produced by certain bacteria that can hydrolyze and confer resistance to cephalosporin antibiotics.
Therapy with two or more separate preparations given for a combined effect.
Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Proteins found in any species of bacterium.
Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture.
Semisynthetic, broad-spectrum, AMPICILLIN derived ureidopenicillin antibiotic proposed for PSEUDOMONAS infections. It is also used in combination with other antibiotics.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Bacterial proteins that share the property of binding irreversibly to PENICILLINS and other ANTIBACTERIAL AGENTS derived from LACTAMS. The penicillin-binding proteins are primarily enzymes involved in CELL WALL biosynthesis including MURAMOYLPENTAPEPTIDE CARBOXYPEPTIDASE; PEPTIDE SYNTHASES; TRANSPEPTIDASES; and HEXOSYLTRANSFERASES.
A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals.
Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock.
Beta-lactam antibiotics that differ from PENICILLINS in having the thiazolidine sulfur atom replaced by carbon, the sulfur then becoming the first atom in the side chain. They are unstable chemically, but have a very broad antibacterial spectrum. Thienamycin and its more stable derivatives are proposed for use in combinations with enzyme inhibitors.
Bacteria which retain the crystal violet stain when treated by Gram's method.
Infections by bacteria, general or unspecified.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
'Anaerobic Bacteria' are types of bacteria that do not require oxygen for growth and can often cause diseases in humans, including dental caries, gas gangrene, and tetanus, among others.
A monocyclic beta-lactam antibiotic originally isolated from Chromobacterium violaceum. It is resistant to beta-lactamases and is used in gram-negative infections, especially of the meninges, bladder, and kidneys. It may cause a superinfection with gram-positive organisms.
Broad-spectrum cephalosporin antibiotic resistant to beta-lactamase. It has been proposed for infections with gram-negative and gram-positive organisms, GONORRHEA, and HAEMOPHILUS.
'Azā compounds' are a class of organic molecules containing at least one nitrogen atom in a five-membered ring, often found in naturally occurring substances and pharmaceuticals, with the name derived from the Arabic word "azZa" meaning 'strong' referring to the ring's aromatic stability.
Semisynthetic broad-spectrum cephalosporin.
Gram-negative, non-motile, capsulated, gas-producing rods found widely in nature and associated with urinary and respiratory infections in humans.
One of the PENICILLINS which is resistant to PENICILLINASE.
A semi-synthetic antibiotic that is a chlorinated derivative of OXACILLIN.
The functional hereditary units of BACTERIA.
Broad-spectrum semisynthetic penicillin derivative used parenterally. It is susceptible to gastric juice and penicillinase and may damage platelet function.
A semisynthetic macrolide antibiotic derived from ERYTHROMYCIN that is active against a variety of microorganisms. It can inhibit PROTEIN SYNTHESIS in BACTERIA by reversibly binding to the 50S ribosomal subunits. This inhibits the translocation of aminoacyl transfer-RNA and prevents peptide chain elongation.
A nitroimidazole used to treat AMEBIASIS; VAGINITIS; TRICHOMONAS INFECTIONS; GIARDIASIS; ANAEROBIC BACTERIA; and TREPONEMAL INFECTIONS. It has also been proposed as a radiation sensitizer for hypoxic cells. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985, p133), this substance may reasonably be anticipated to be a carcinogen (Merck, 11th ed).
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Immunologically mediated adverse reactions to medicinal substances used legally or illegally.
Semisynthetic, broad-spectrum antibacterial derived from CEPHALORIDINE and used especially for Pseudomonas and other gram-negative infections in debilitated patients.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms arrange singly, in pairs, or short chains. This genus is commonly found in the intestinal tract and is an opportunistic pathogen that can give rise to bacteremia, pneumonia, urinary tract and several other types of human infection.
A species of HAEMOPHILUS found on the mucous membranes of humans and a variety of animals. The species is further divided into biotypes I through VIII.
Nonsusceptibility of a microbe to the action of ampicillin, a penicillin derivative that interferes with cell wall synthesis.
Inflammation of the MIDDLE EAR including the AUDITORY OSSICLES and the EUSTACHIAN TUBE.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
The action of a drug in promoting or enhancing the effectiveness of another drug.
Semisynthetic thienamycin that has a wide spectrum of antibacterial activity against gram-negative and gram-positive aerobic and anaerobic bacteria, including many multiresistant strains. It is stable to beta-lactamases. Clinical studies have demonstrated high efficacy in the treatment of infections of various body systems. Its effectiveness is enhanced when it is administered in combination with CILASTATIN, a renal dipeptidase inhibitor.
Acyltransferases that use AMINO ACYL TRNA as the amino acid donor in formation of a peptide bond. There are ribosomal and non-ribosomal peptidyltransferases.
Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection.
A semisynthetic ampicillin-derived acylureido penicillin.
The rate dynamics in chemical or physical systems.
A cephalosporin antibiotic.
A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs in the intestines of humans and a wide variety of animals, as well as in manure, soil, and polluted waters. Its species are pathogenic, causing urinary tract infections and are also considered secondary invaders, causing septic lesions at other sites of the body.
Aerobic bacteria are types of microbes that require oxygen to grow and reproduce, and use it in the process of respiration to break down organic matter and produce energy, often found in environments where oxygen is readily available such as the human body's skin, mouth, and intestines.
A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA.
Infections with bacteria of the species STREPTOCOCCUS PNEUMONIAE.
A system of traditional medicine which is based on the beliefs and practices of the Chinese culture.
The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405).
Invasion of the host RESPIRATORY SYSTEM by microorganisms, usually leading to pathological processes or diseases.
Gram-negative bacteria occurring in the lower intestinal tracts of man and other animals. It is the most common species of anaerobic bacteria isolated from human soft tissue infections.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
The giving of drugs, chemicals, or other substances by mouth.
Enzyme which catalyzes the peptide cross-linking of nascent CELL WALL; PEPTIDOGLYCAN.
Inflammatory responses of the epithelium of the URINARY TRACT to microbial invasions. They are often bacterial infections with associated BACTERIURIA and PYURIA.
A species of gram-negative, obligately aerobic rods. Motility occurs by peritrichous flagella. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
A genus of gram-negative, anaerobic, rod-shaped bacteria. Its organisms are normal inhabitants of the oral, respiratory, intestinal, and urogenital cavities of humans, animals, and insects. Some species may be pathogenic.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
Therapeutic approach tailoring therapy for genetically defined subgroups of patients.
Non-susceptibility of an organism to the action of the cephalosporins.
Infections with organisms of the genus HELICOBACTER, particularly, in humans, HELICOBACTER PYLORI. The clinical manifestations are focused in the stomach, usually the gastric mucosa and antrum, and the upper duodenum. This infection plays a major role in the pathogenesis of type B gastritis and peptic ulcer disease.
A large group of aerobic bacteria which show up as pink (negative) when treated by the gram-staining method. This is because the cell walls of gram-negative bacteria are low in peptidoglycan and thus have low affinity for violet stain and high affinity for the pink dye safranine.
A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection.
A semisynthetic cephamycin antibiotic resistant to beta-lactamase.
Monocyclic, bacterially produced or semisynthetic beta-lactam antibiotics. They lack the double ring construction of the traditional beta-lactam antibiotics and can be easily synthesized.
Infections with bacteria of the genus STREPTOCOCCUS.
An antibiotic similar to FLUCLOXACILLIN used in resistant staphylococci infections.
Infections with bacteria of the genus BACTEROIDES.
Preliminary administration of a drug preceding a diagnostic, therapeutic, or surgical procedure. The commonest types of premedication are antibiotics (ANTIBIOTIC PROPHYLAXIS) and anti-anxiety agents. It does not include PREANESTHETIC MEDICATION.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
A 4-methoxy-3,5-dimethylpyridyl, 5-methoxybenzimidazole derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits an H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS.
A surgical specialty concerned with the diagnosis and treatment of disorders and abnormalities of the COLON; RECTUM; and ANAL CANAL.
Inflammation of the middle ear with purulent discharge.
The heritable modification of the properties of a competent bacterium by naked DNA from another source. The uptake of naked DNA is a naturally occuring phenomenon in some bacteria. It is often used as a GENE TRANSFER TECHNIQUE.
Enzymes that catalyze the transfer of hexose groups. EC 2.4.1.-.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
Gram-negative aerobic cocci of low virulence that colonize the nasopharynx and occasionally cause MENINGITIS; BACTEREMIA; EMPYEMA; PERICARDITIS; and PNEUMONIA.
Compounds that contain benzimidazole joined to a 2-methylpyridine via a sulfoxide linkage. Several of the compounds in this class are ANTI-ULCER AGENTS that act by inhibiting the POTASSIUM HYDROGEN ATPASE found in the PROTON PUMP of GASTRIC PARIETAL CELLS.
A medical specialty concerned with the diagnosis and treatment of diseases of the internal organ systems of adults.
A naphthacene antibiotic that inhibits AMINO ACYL TRNA binding during protein synthesis.
A genus of gram-positive, coccoid bacteria whose organisms occur in pairs or chains. No endospores are produced. Many species exist as commensals or parasites on man or animals with some being highly pathogenic. A few species are saprophytes and occur in the natural environment.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Quinolines are heterocyclic aromatic organic compounds consisting of a two-nitrogened benzene ring fused to a pyridine ring, which have been synthesized and used as building blocks for various medicinal drugs, particularly antibiotics and antimalarials.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
Systems of medicine based on cultural beliefs and practices handed down from generation to generation. The concept includes mystical and magical rituals (SPIRITUAL THERAPIES); PHYTOTHERAPY; and other treatments which may not be explained by modern medicine.
A specialty field of radiology concerned with diagnostic, therapeutic, and investigative use of radioactive compounds in a pharmaceutical form.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
System of herbal medicine practiced in Japan by both herbalists and practitioners of modern medicine. Kampo originated in China and is based on Chinese herbal medicine (MEDICINE, CHINESE TRADITIONAL).
Infections with bacteria of the family ENTEROBACTERIACEAE.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The process of cleaving a chemical compound by the addition of a molecule of water.
Inflammation of the tonsils, especially the PALATINE TONSILS but the ADENOIDS (pharyngeal tonsils) and lingual tonsils may also be involved. Tonsillitis usually is caused by bacterial infection. Tonsillitis may be acute, chronic, or recurrent.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria found in soil, water, food, and clinical specimens. It is a prominent opportunistic pathogen for hospitalized patients.
A species of extremophilic bacteria in the family Thermotogaceae. Generally anaerobic but in the presence of OXYGEN, it can produce hydrogen gas as a byproduct of metabolism.
A genus of gram-negative bacteria of the family MORAXELLACEAE, found in soil and water and of uncertain pathogenicity.
A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins.
Infections with bacteria of the genus HAEMOPHILUS.
The utilization of drugs as reported in individual hospital studies, FDA studies, marketing, or consumption, etc. This includes drug stockpiling, and patient drug profiles.
A sulfanilamide that is used as an anti-infective agent.
The relationships of groups of organisms as reflected by their genetic makeup.
A group of beta-lactam antibiotics in which the sulfur atom in the thiazolidine ring of the penicillin molecule is replaced by a carbon atom. THIENAMYCINS are a subgroup of carbapenems which have a sulfur atom as the first constituent of the side chain.
Various agents with different action mechanisms used to treat or ameliorate PEPTIC ULCER or irritation of the gastrointestinal tract. This has included ANTIBIOTICS to treat HELICOBACTER INFECTIONS; HISTAMINE H2 ANTAGONISTS to reduce GASTRIC ACID secretion; and ANTACIDS for symptomatic relief.
Infections with bacteria of the species ESCHERICHIA COLI.
A broad-spectrum cephalosporin antibiotic with a very long half-life and high penetrability to meninges, eyes and inner ears.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria that occurs in water, sewage, soil, meat, hospital environments, and on the skin and in the intestinal tract of man and animals as a commensal.
The art and science of studying, performing research on, preventing, diagnosing, and treating disease, as well as the maintenance of health.
The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy.
A species of gram-negative bacteria causing URINARY TRACT INFECTIONS and SEPTICEMIA.
Inflammation of the throat (PHARYNX).
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes.
Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.
Acute infectious disease characterized by primary invasion of the urogenital tract. The etiologic agent, NEISSERIA GONORRHOEAE, was isolated by Neisser in 1879.
A 2,2,2-trifluoroethoxypyridyl derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS. Lansoprazole is a racemic mixture of (R)- and (S)-isomers.
Elements of limited time intervals, contributing to particular results or situations.
Disease having a short and relatively severe course.
A semi-synthetic macrolide antibiotic structurally related to ERYTHROMYCIN. It has been used in the treatment of Mycobacterium avium intracellulare infections, toxoplasmosis, and cryptosporidiosis.
A third-generation cephalosporin antibiotic that is stable to hydrolysis by beta-lactamases.
A nitrofuran derivative with antiprotozoal and antibacterial activity. Furazolidone acts by gradual inhibition of monoamine oxidase. (From Martindale, The Extra Pharmacopoeia, 30th ed, p514)
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A large group of anaerobic bacteria which show up as pink (negative) when treated by the Gram-staining method.
A genus of gram-positive, aerobic bacteria whose species are widely distributed and are abundant in soil. Some strains are pathogenic opportunists for humans and animals.
'History of Medicine' is a branch of knowledge that deals with the evolution, development, and progression of healthcare practices, medical theories, institutions, and personalities from ancient times to the present.

Clavulanic acid is a type of beta-lactamase inhibitor, which is a compound that is used to increase the effectiveness of certain antibiotics. It works by preventing the breakdown of beta-lactam antibiotics (such as penicillins and cephalosporins) by bacterial enzymes called beta-lactamases. This allows the antibiotic to remain active against the bacteria for a longer period of time, increasing its ability to kill the bacteria and treat the infection.

Clavulanic acid is often combined with amoxicillin in a medication called Augmentin, which is used to treat a variety of bacterial infections, including respiratory tract infections, urinary tract infections, and skin and soft tissue infections. It may also be used in other combinations with other beta-lactam antibiotics.

Like all medications, clavulanic acid can have side effects, including gastrointestinal symptoms such as diarrhea, nausea, and vomiting. It may also cause allergic reactions in some people, particularly those who are allergic to penicillin or other beta-lactam antibiotics. It is important to follow the instructions of a healthcare provider when taking clavulanic acid or any medication.

Clavulanic acid is not a medical condition, but rather an antibacterial compound that is often combined with certain antibiotics to increase their effectiveness against bacteria that have become resistant to the antibiotic alone. It works by inhibiting certain enzymes produced by bacteria that help them to resist the antibiotic, allowing the antibiotic to work more effectively.

Clavulanic acid is typically combined with antibiotics such as amoxicillin or ticarcillin to treat a variety of bacterial infections, including respiratory tract infections, urinary tract infections, and skin and soft tissue infections. It is important to note that clavulanate-containing medications should only be used under the direction of a healthcare provider, as misuse or overuse can contribute to antibiotic resistance.

Amoxicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form cell walls, which is necessary for their growth and survival. By disrupting this process, amoxicillin can kill bacteria and help to clear up infections.

Amoxicillin is used to treat a variety of bacterial infections, including respiratory tract infections, ear infections, skin infections, and urinary tract infections. It is available as a tablet, capsule, chewable tablet, or liquid suspension, and is typically taken two to three times a day.

Like all antibiotics, amoxicillin should be used only under the direction of a healthcare provider, and it is important to take the full course of treatment as prescribed, even if symptoms improve before the medication is finished. Misuse of antibiotics can lead to the development of drug-resistant bacteria, which can make infections more difficult to treat in the future.

Penicillins are a group of antibiotics derived from the Penicillium fungus. They are widely used to treat various bacterial infections due to their bactericidal activity, which means they kill bacteria by interfering with the synthesis of their cell walls. The first penicillin, benzylpenicillin (also known as penicillin G), was discovered in 1928 by Sir Alexander Fleming. Since then, numerous semi-synthetic penicillins have been developed to expand the spectrum of activity and stability against bacterial enzymes that can inactivate these drugs.

Penicillins are classified into several groups based on their chemical structure and spectrum of activity:

1. Natural Penicillins (e.g., benzylpenicillin, phenoxymethylpenicillin): These have a narrow spectrum of activity, mainly targeting Gram-positive bacteria such as streptococci and staphylococci. However, they are susceptible to degradation by beta-lactamase enzymes produced by some bacteria.
2. Penicillinase-resistant Penicillins (e.g., methicillin, oxacillin, nafcillin): These penicillins resist degradation by certain bacterial beta-lactamases and are primarily used to treat infections caused by staphylococci, including methicillin-susceptible Staphylococcus aureus (MSSA).
3. Aminopenicillins (e.g., ampicillin, amoxicillin): These penicillins have an extended spectrum of activity compared to natural penicillins, including some Gram-negative bacteria such as Escherichia coli and Haemophilus influenzae. However, they are still susceptible to degradation by many beta-lactamases.
4. Antipseudomonal Penicillins (e.g., carbenicillin, ticarcillin): These penicillins have activity against Pseudomonas aeruginosa and other Gram-negative bacteria with increased resistance to other antibiotics. They are often combined with beta-lactamase inhibitors such as clavulanate or tazobactam to protect them from degradation.
5. Extended-spectrum Penicillins (e.g., piperacillin): These penicillins have a broad spectrum of activity, including many Gram-positive and Gram-negative bacteria. They are often combined with beta-lactamase inhibitors to protect them from degradation.

Penicillins are generally well-tolerated antibiotics; however, they can cause allergic reactions in some individuals, ranging from mild skin rashes to life-threatening anaphylaxis. Cross-reactivity between different penicillin classes and other beta-lactam antibiotics (e.g., cephalosporins) is possible but varies depending on the specific drugs involved.

The Amoxicillin-Potassium Clavulanate Combination is an antibiotic medication used to treat various infections caused by bacteria. This combination therapy combines the antibiotic amoxicillin with potassium clavulanate, which is a beta-lactamase inhibitor. The addition of potassium clavulanate helps protect amoxicillin from being broken down by certain types of bacteria that produce beta-lactamases, thus increasing the effectiveness of the antibiotic against a broader range of bacterial infections.

Amoxicillin is a type of penicillin antibiotic that works by inhibiting the synthesis of the bacterial cell wall, ultimately leading to bacterial death. However, some bacteria have developed enzymes called beta-lactamases, which can break down and inactivate certain antibiotics like amoxicillin. Potassium clavulanate is added to the combination to inhibit these beta-lactamase enzymes, allowing amoxicillin to maintain its effectiveness against a wider range of bacteria.

This combination medication is used to treat various infections, including skin and soft tissue infections, respiratory tract infections, urinary tract infections, and dental infections. It's essential to follow the prescribed dosage and duration as directed by a healthcare professional to ensure effective treatment and prevent antibiotic resistance.

Common brand names for this combination include Augmentin and Amoxiclav.

Penicillin G is a type of antibiotic that belongs to the class of medications called penicillins. It is a natural antibiotic derived from the Penicillium fungus and is commonly used to treat a variety of bacterial infections. Penicillin G is active against many gram-positive bacteria, as well as some gram-negative bacteria.

Penicillin G is available in various forms, including an injectable solution and a powder for reconstitution into a solution. It works by interfering with the ability of bacteria to form a cell wall, which ultimately leads to bacterial death. Penicillin G is often used to treat serious infections that cannot be treated with other antibiotics, such as endocarditis (inflammation of the inner lining of the heart), pneumonia, and meningitis (inflammation of the membranes surrounding the brain and spinal cord).

It's important to note that Penicillin G is not commonly used for topical or oral treatment due to its poor absorption in the gastrointestinal tract and instability in acidic environments. Additionally, as with all antibiotics, Penicillin G should be used under the guidance of a healthcare professional to ensure appropriate use and to reduce the risk of antibiotic resistance.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Penicillin resistance is the ability of certain bacteria to withstand the antibacterial effects of penicillin, a type of antibiotic. This occurs when these bacteria have developed mechanisms that prevent penicillin from binding to and inhibiting the function of their cell wall biosynthesis proteins, particularly the enzyme transpeptidase.

One common mechanism of penicillin resistance is the production of beta-lactamases, enzymes that can hydrolyze and inactivate the beta-lactam ring structure present in penicillin and other related antibiotics. Another mechanism involves alterations in the bacterial cell wall that prevent penicillin from binding to its target proteins.

Penicillin resistance is a significant concern in clinical settings, as it can limit treatment options for bacterial infections and may necessitate the use of more potent or toxic antibiotics. It is important to note that misuse or overuse of antibiotics can contribute to the development and spread of antibiotic-resistant bacteria, including those resistant to penicillin.

Ticarcillin is an antibiotic medication that belongs to the class of drugs called penicillins. It is primarily used to treat infections caused by susceptible bacteria. Ticarcillin has activity against various gram-positive and gram-negative bacteria, including Pseudomonas aeruginosa.

The drug works by inhibiting the synthesis of bacterial cell walls, leading to bacterial death. It is often administered intravenously in a hospital setting due to its poor oral bioavailability. Common side effects include gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as allergic reactions, including rash and itching.

It's important to note that the use of ticarcillin should be based on the results of bacterial culture and sensitivity testing to ensure its effectiveness against the specific bacteria causing the infection. Additionally, healthcare providers should monitor renal function during treatment, as ticarcillin can affect kidney function in some patients.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Beta-lactamases are enzymes produced by certain bacteria that can break down and inactivate beta-lactam antibiotics, such as penicillins, cephalosporins, and carbapenems. This enzymatic activity makes the bacteria resistant to these antibiotics, limiting their effectiveness in treating infections caused by these organisms.

Beta-lactamases work by hydrolyzing the beta-lactam ring, a structural component of these antibiotics that is essential for their antimicrobial activity. By breaking down this ring, the enzyme renders the antibiotic ineffective against the bacterium, allowing it to continue growing and potentially causing harm.

There are different classes of beta-lactamases (e.g., Ambler Class A, B, C, and D), each with distinct characteristics and mechanisms for breaking down various beta-lactam antibiotics. The emergence and spread of bacteria producing these enzymes have contributed to the growing problem of antibiotic resistance, making it increasingly challenging to treat infections caused by these organisms.

To overcome this issue, researchers have developed beta-lactamase inhibitors, which are drugs that can bind to and inhibit the activity of these enzymes, thus restoring the effectiveness of certain beta-lactam antibiotics. Examples of such combinations include amoxicillin/clavulanate (Augmentin) and piperacillin/tazobactam (Zosyn).

Penicillin V, also known as Penicillin V Potassium, is an antibiotic medication used to treat various bacterial infections. It belongs to the class of medications called penicillins, which work by interfering with the bacteria's ability to form a protective covering (cell wall), causing the bacteria to become more susceptible to destruction by the body's immune system.

Penicillin V is specifically used to treat infections of the respiratory tract, skin, and ear. It is also used to prevent recurrent rheumatic fever and chorea (Sydenham's chorea), a neurological disorder associated with rheumatic fever.

The medication is available as oral tablets or liquid solutions and is typically taken by mouth every 6 to 12 hours, depending on the severity and type of infection being treated. As with any antibiotic, it is important to take Penicillin V exactly as directed by a healthcare professional and for the full duration of treatment, even if symptoms improve before all doses have been taken.

Penicillin V is generally well-tolerated, but like other penicillins, it can cause allergic reactions in some people. It may also interact with certain medications, so it is important to inform a healthcare provider of any other medications being taken before starting Penicillin V therapy.

Sulbactam is not a medication itself, but it's a type of β-lactamase inhibitor. It's often combined with other antibiotics such as ampicillin or cefoperazone to increase their effectiveness against bacteria that produce β-lactamases, enzymes that can inactivate certain types of antibiotics (like penicillins and cephalosporins). By inhibiting these enzymes, sulbactam helps to protect the antibiotic from being deactivated, allowing it to maintain its activity against bacteria.

The combination of sulbactam with other antibiotics is used to treat various infections caused by susceptible bacteria, including skin and soft tissue infections, respiratory tract infections, urinary tract infections, and intra-abdominal infections. It's important to note that the specific medical definition of sulbactam would be a β-lactamase inhibitor used in combination with other antibiotics for treating bacterial infections.

Penicillanic acid is not a term that has a widely accepted or established medical definition in the context of human medicine or clinical practice. It is a chemical compound that is a derivative of penicillin, an antibiotic produced by certain types of mold. Penicillanic acid is a breakdown product of penicillin and is not itself used as a medication.

In chemistry, penicillanic acid is a organic compound with the formula (CH3)2C6H5COOH. It is a derivative of benzene and has a carboxylic acid group and a five-membered ring containing a sulfur atom and a double bond, which is a characteristic feature of penicillin and its derivatives.

It's important to note that while penicillanic acid may have relevance in the context of chemistry or microbiology research, it does not have a direct medical definition or application in clinical medicine.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Beta-lactams are a class of antibiotics that include penicillins, cephalosporins, carbapenems, and monobactams. They contain a beta-lactam ring in their chemical structure, which is responsible for their antibacterial activity. The beta-lactam ring inhibits the bacterial enzymes necessary for cell wall synthesis, leading to bacterial death. Beta-lactams are commonly used to treat a wide range of bacterial infections, including respiratory tract infections, skin and soft tissue infections, urinary tract infections, and bone and joint infections. However, some bacteria have developed resistance to beta-lactams through the production of beta-lactamases, enzymes that can break down the beta-lactam ring and render the antibiotic ineffective. To overcome this resistance, beta-lactam antibiotics are often combined with beta-lactamase inhibitors, which protect the beta-lactam ring from degradation.

Cephamycins are a subclass of cephalosporin antibiotics, which are derived from the fungus Acremonium species. They have a similar chemical structure to other cephalosporins but have an additional methoxy group on their side chain that makes them more resistant to beta-lactamases, enzymes produced by some bacteria that can inactivate other cephalosporins and penicillins.

Cephamycins are primarily used to treat infections caused by Gram-negative bacteria, including Pseudomonas aeruginosa, Proteus species, and Enterobacter species. They have a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, making them useful for treating a variety of infections.

The two main cephamycins that are used clinically are cefoxitin and cefotetan. Cefoxitin is often used to treat intra-abdominal infections, pelvic inflammatory disease, and skin and soft tissue infections. Cefotetan is primarily used for the treatment of surgical prophylaxis, gynecological infections, and pneumonia.

Like other cephalosporins, cephamycins can cause allergic reactions, including rashes, hives, and anaphylaxis. They should be used with caution in patients who have a history of allergies to penicillin or other beta-lactam antibiotics. Additionally, cephamycins can disrupt the normal gut flora, leading to secondary infections such as Clostridioides difficile (C. diff) diarrhea.

Streptomyces is a genus of Gram-positive, aerobic, saprophytic bacteria that are widely distributed in soil, water, and decaying organic matter. They are known for their complex morphology, forming branching filaments called hyphae that can differentiate into long chains of spores.

Streptomyces species are particularly notable for their ability to produce a wide variety of bioactive secondary metabolites, including antibiotics, antifungals, and other therapeutic compounds. In fact, many important antibiotics such as streptomycin, neomycin, tetracycline, and erythromycin are derived from Streptomyces species.

Because of their industrial importance in the production of antibiotics and other bioactive compounds, Streptomyces have been extensively studied and are considered model organisms for the study of bacterial genetics, biochemistry, and ecology.

A lactam is a cyclic amide compound containing a carbonyl group (a double-bonded carbon atom) and a nitrogen atom. The name "lactam" is derived from the fact that these compounds are structurally similar to lactones, which are cyclic esters, but with an amide bond instead of an ester bond.

Lactams can be found in various natural and synthetic compounds, including some antibiotics such as penicillin and cephalosporins. These antibiotics contain a four-membered lactam ring (known as a β-lactam) that is essential for their biological activity. The β-lactam ring makes these compounds highly reactive, allowing them to inhibit bacterial cell wall synthesis and thus kill the bacteria.

In summary, lactams are cyclic amide compounds with a carbonyl group and a nitrogen atom in the ring structure. They can be found in various natural and synthetic compounds, including some antibiotics such as penicillin and cephalosporins.

Penicillin G Procaine is a formulation of penicillin G, an antibiotic derived from the Penicillium fungus, combined with procaine, a local anesthetic. This combination is often used for its extended-release properties and is administered intramuscularly. It is primarily used to treat moderate infections caused by susceptible strains of streptococci and staphylococci.

The procaine component helps to reduce the pain at the injection site, while penicillin G provides the antibacterial action. The extended-release formulation allows for less frequent dosing compared to immediate-release penicillin G. However, its use has become less common due to the development of other antibiotics and routes of administration.

Ampicillin is a penicillin-type antibiotic used to treat a wide range of bacterial infections. It works by interfering with the ability of bacteria to form cell walls, which are essential for their survival. This causes the bacterial cells to become unstable and eventually die.

The medical definition of Ampicillin is:

"A semi-synthetic penicillin antibiotic, derived from the Penicillium mold. It is used to treat a variety of infections caused by susceptible gram-positive and gram-negative bacteria. Ampicillin is effective against both aerobic and anaerobic organisms. It is commonly used to treat respiratory tract infections, urinary tract infections, meningitis, and endocarditis."

It's important to note that Ampicillin is not effective against infections caused by methicillin-resistant Staphylococcus aureus (MRSA) or other bacteria that have developed resistance to penicillins. Additionally, overuse of antibiotics like Ampicillin can lead to the development of antibiotic resistance, which is a significant public health concern.

Penicillin amidase is not a medical term per se, but rather a biochemical term. It's also known as penicillin acylase or simply penicillinase. It refers to an enzyme that can break down certain types of penicillin antibiotics by cleaving the amide bond in the beta-lactam ring, which is the core structure of these antibiotics. This makes the antibiotic ineffective.

Beta-lactam antibiotics include penicillins and cephalosporins, among others. Some bacteria produce penicillin amidases as a form of resistance to these antibiotics. The enzyme can be used in biotechnology to produce semi-synthetic penicillins by cleaving the side chain of a parent penicillin and then attaching a different side chain, creating a new antibiotic with potentially different properties.

Cephalosporins are a class of antibiotics that are derived from the fungus Acremonium, originally isolated from seawater and cow dung. They have a similar chemical structure to penicillin and share a common four-membered beta-lactam ring in their molecular structure.

Cephalosporins work by inhibiting the synthesis of bacterial cell walls, which ultimately leads to bacterial death. They are broad-spectrum antibiotics, meaning they are effective against a wide range of bacteria, including both Gram-positive and Gram-negative organisms.

There are several generations of cephalosporins, each with different spectra of activity and pharmacokinetic properties. The first generation cephalosporins have a narrow spectrum of activity and are primarily used to treat infections caused by susceptible Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus pneumoniae.

Second-generation cephalosporins have an expanded spectrum of activity that includes some Gram-negative organisms, such as Escherichia coli and Haemophilus influenzae. Third-generation cephalosporins have even broader spectra of activity and are effective against many resistant Gram-negative bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumoniae.

Fourth-generation cephalosporins have activity against both Gram-positive and Gram-negative organisms, including some that are resistant to other antibiotics. They are often reserved for the treatment of serious infections caused by multidrug-resistant bacteria.

Cephalosporins are generally well tolerated, but like penicillin, they can cause allergic reactions in some individuals. Cross-reactivity between cephalosporins and penicillin is estimated to occur in 5-10% of patients with a history of penicillin allergy. Other potential adverse effects include gastrointestinal symptoms (such as nausea, vomiting, and diarrhea), neurotoxicity, and nephrotoxicity.

Ureohydrolases are a class of enzymes that catalyze the hydrolysis of urea into ammonia and carbon dioxide. The reaction is as follows:

CO(NH2)2 + H2O → 2 NH3 + CO2

The most well-known example of a ureohydrolase is the enzyme urease, which is found in many organisms including bacteria, fungi, and plants. Ureases are important virulence factors for some pathogenic bacteria, as they allow these microorganisms to survive in the acidic environment of the urinary tract by metabolizing urea present in the urine.

Ureohydrolases play a role in various biological processes, such as nitrogen metabolism and pH regulation. However, their activity can also contribute to the formation of kidney stones and other urological disorders if excessive amounts of ammonia are produced in the urinary tract.

Penicillinase is an enzyme produced by some bacteria that can inactivate penicillin and other beta-lactam antibiotics by breaking down the beta-lactam ring, which is essential for their antimicrobial activity. Bacteria that produce penicillinase are resistant to penicillin and related antibiotics. Penicillinase-resistant penicillins, such as methicillin and oxacillin, have been developed to overcome this form of bacterial resistance.

Penicillin G Benzathine is a type of antibiotic that is used to treat various bacterial infections. According to the International Journal of Antimicrobial Agents, Penicillin G Benzathine is a "water-soluble salt of penicillin G, which has a very high degree of stability and provides prolonged low-level serum concentrations after intramuscular injection."

It is often used to treat infections caused by streptococci and treponema pallidum, the bacterium that causes syphilis. Penicillin G Benzathine works by interfering with the ability of these bacteria to form a cell wall, which is essential for their survival. Without a functional cell wall, the bacteria are unable to grow and multiply, and are eventually destroyed by the body's immune system.

Penicillin G Benzathine is typically administered via intramuscular injection, and its prolonged release allows for less frequent dosing compared to other forms of penicillin. However, it may not be suitable for all patients, particularly those with a history of allergic reactions to penicillin or other antibiotics. As with any medication, Penicillin G Benzathine should only be used under the supervision of a healthcare provider.

Beta-lactam resistance is a type of antibiotic resistance in which bacteria have developed the ability to inactivate or circumvent the action of beta-lactam antibiotics. Beta-lactams are a class of antibiotics that include penicillins, cephalosporins, carbapenems, and monobactams. They work by binding to and inhibiting the activity of enzymes called penicillin-binding proteins (PBPs), which are essential for bacterial cell wall synthesis.

Bacteria can develop beta-lactam resistance through several mechanisms:

1. Production of beta-lactamases: These are enzymes that bacteria produce to break down and inactivate beta-lactam antibiotics. Some bacteria have acquired genes that encode for beta-lactamases that can hydrolyze and destroy the beta-lactam ring, rendering the antibiotic ineffective.
2. Alteration of PBPs: Bacteria can also develop mutations in their PBPs that make them less susceptible to beta-lactams. These alterations can reduce the affinity of PBPs for beta-lactams or change their conformation, preventing the antibiotic from binding effectively.
3. Efflux pumps: Bacteria can also develop efflux pumps that actively pump beta-lactam antibiotics out of the cell, reducing their intracellular concentration and limiting their effectiveness.
4. Biofilm formation: Some bacteria can form biofilms, which are communities of microorganisms that adhere to surfaces and are encased in a protective matrix. Biofilms can make bacteria more resistant to beta-lactams by preventing the antibiotics from reaching their targets.

Beta-lactam resistance is a significant public health concern because it limits the effectiveness of these important antibiotics. The overuse and misuse of beta-lactams have contributed to the emergence and spread of resistant bacteria, making it essential to use these antibiotics judiciously and develop new strategies to combat bacterial resistance.

A cephalosporinase is an enzyme that can break down and inactivate cephalosporins, a group of antibiotics commonly used to treat various bacterial infections. Bacteria that produce this enzyme are referred to as "cephalosporin-resistant" or "cephalosporinase-producing" organisms. The production of cephalosporinases by bacteria can lead to treatment failures and make infections more difficult to manage.

Cephalosporins are broad-spectrum antibiotics, which means they can be effective against a wide range of bacterial species. However, some bacteria have developed resistance mechanisms, such as the production of cephalosporinases, to counteract their effects. These enzymes hydrolyze the beta-lactam ring in cephalosporins, rendering them ineffective.

There are different classes of cephalosporinases (e.g., Ambler classes A, C, and D), each with distinct characteristics and substrate profiles. Some cephalosporinases can hydrolyze a broader range of cephalosporins than others, leading to varying degrees of resistance.

To overcome cephalosporinase-mediated resistance, alternative antibiotics or combinations of antibiotics may be used. Additionally, the development of new cephalosporins with improved stability against these enzymes is an ongoing area of research in the field of antimicrobial drug discovery.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Gram-negative bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, a standard technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This method was developed by Hans Christian Gram in 1884.

The primary characteristic distinguishing Gram-negative bacteria from Gram-positive bacteria is the composition and structure of their cell walls:

1. Cell wall: Gram-negative bacteria have a thin peptidoglycan layer, making it more susceptible to damage and less rigid compared to Gram-positive bacteria.
2. Outer membrane: They possess an additional outer membrane that contains lipopolysaccharides (LPS), which are endotoxins that can trigger strong immune responses in humans and animals. The outer membrane also contains proteins, known as porins, which form channels for the passage of molecules into and out of the cell.
3. Periplasm: Between the inner and outer membranes lies a compartment called the periplasm, where various enzymes and other molecules are located.

Some examples of Gram-negative bacteria include Escherichia coli (E. coli), Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella enterica, Shigella spp., and Neisseria meningitidis. These bacteria are often associated with various infections, such as urinary tract infections, pneumonia, sepsis, and meningitis. Due to their complex cell wall structure, Gram-negative bacteria can be more resistant to certain antibiotics, making them a significant concern in healthcare settings.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

A drug combination refers to the use of two or more drugs in combination for the treatment of a single medical condition or disease. The rationale behind using drug combinations is to achieve a therapeutic effect that is superior to that obtained with any single agent alone, through various mechanisms such as:

* Complementary modes of action: When different drugs target different aspects of the disease process, their combined effects may be greater than either drug used alone.
* Synergistic interactions: In some cases, the combination of two or more drugs can result in a greater-than-additive effect, where the total response is greater than the sum of the individual responses to each drug.
* Antagonism of adverse effects: Sometimes, the use of one drug can mitigate the side effects of another, allowing for higher doses or longer durations of therapy.

Examples of drug combinations include:

* Highly active antiretroviral therapy (HAART) for HIV infection, which typically involves a combination of three or more antiretroviral drugs to suppress viral replication and prevent the development of drug resistance.
* Chemotherapy regimens for cancer treatment, where combinations of cytotoxic agents are used to target different stages of the cell cycle and increase the likelihood of tumor cell death.
* Fixed-dose combination products, such as those used in the treatment of hypertension or type 2 diabetes, which combine two or more active ingredients into a single formulation for ease of administration and improved adherence to therapy.

However, it's important to note that drug combinations can also increase the risk of adverse effects, drug-drug interactions, and medication errors. Therefore, careful consideration should be given to the selection of appropriate drugs, dosing regimens, and monitoring parameters when using drug combinations in clinical practice.

Piperacillin is a type of antibiotic known as a semisynthetic penicillin that is used to treat a variety of infections caused by bacteria. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die.

Piperacillin has a broad spectrum of activity against both gram-positive and gram-negative bacteria, including many strains that are resistant to other antibiotics. It is often used in combination with other antibiotics, such as tazobactam, to increase its effectiveness against certain types of bacteria.

Piperacillin is typically administered intravenously in a hospital setting and is used to treat serious infections such as pneumonia, sepsis, and abdominal or urinary tract infections. As with all antibiotics, it should be used only when necessary and under the guidance of a healthcare professional to reduce the risk of antibiotic resistance.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Penicillin-Binding Proteins (PBPs) are essential bacterial enzymes that play a crucial role in the synthesis and maintenance of the bacterial cell wall. They are called "penicillin-binding" because they possess the ability to bind to penicillin and other beta-lactam antibiotics, which subsequently inhibits their function and leads to the death of the bacteria. PBPs are primary targets for many clinically important antibiotics, including penicillins, cephalosporins, and carbapenems. Inhibition of these proteins interferes with the cross-linking of peptidoglycan in the bacterial cell wall, causing structural weakness and osmotic lysis of the bacteria.

Streptococcus pneumoniae, also known as the pneumococcus, is a gram-positive, alpha-hemolytic bacterium frequently found in the upper respiratory tract of healthy individuals. It is a leading cause of community-acquired pneumonia and can also cause other infectious diseases such as otitis media (ear infection), sinusitis, meningitis, and bacteremia (bloodstream infection). The bacteria are encapsulated, and there are over 90 serotypes based on variations in the capsular polysaccharide. Some serotypes are more virulent or invasive than others, and the polysaccharide composition is crucial for vaccine development. S. pneumoniae infection can be treated with antibiotics, but the emergence of drug-resistant strains has become a significant global health concern.

Isoelectric focusing (IEF) is a technique used in electrophoresis, which is a method for separating proteins or other molecules based on their electrical charges. In IEF, a mixture of ampholytes (molecules that can carry both positive and negative charges) is used to create a pH gradient within a gel matrix. When an electric field is applied, the proteins or molecules migrate through the gel until they reach the point in the gradient where their net charge is zero, known as their isoelectric point (pI). At this point, they focus into a sharp band and stop moving, resulting in a highly resolved separation of the different components based on their pI. This technique is widely used in protein research for applications such as protein identification, characterization, and purification.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Enterobacteriaceae is a family of gram-negative, rod-shaped bacteria that are commonly found in the intestines of humans and animals. Many species within this family are capable of causing various types of infections, particularly in individuals with weakened immune systems. Some common examples of Enterobacteriaceae include Escherichia coli (E. coli), Klebsiella pneumoniae, Proteus mirabilis, and Salmonella enterica.

These bacteria are typically characterized by their ability to ferment various sugars and produce acid and gas as byproducts. They can also be distinguished by their biochemical reactions, such as their ability to produce certain enzymes or resist specific antibiotics. Infections caused by Enterobacteriaceae can range from mild to severe, depending on the species involved and the overall health of the infected individual.

Some infections caused by Enterobacteriaceae include urinary tract infections, pneumonia, bloodstream infections, and foodborne illnesses. Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of these bacteria and reduce the risk of infection.

Thienamycins are a group of antibiotics that are characterized by their beta-lactam structure. They belong to the class of carbapenems and are known for their broad-spectrum antibacterial activity against both gram-positive and gram-negative bacteria, including many that are resistant to other antibiotics. Thienamycins inhibit bacterial cell wall synthesis by binding to penicillin-binding proteins (PBPs), which leads to bacterial cell death.

Thienamycin itself is not used clinically due to its instability, but several semi-synthetic derivatives of thienamycin have been developed and are used in the treatment of serious infections caused by multidrug-resistant bacteria. Examples of thienamycin derivatives include imipenem, meropenem, and ertapenem. These antibiotics are often reserved for the treatment of severe infections that are unresponsive to other antibiotics due to their potential to select for resistant bacteria and their high cost.

Gram-positive bacteria are a type of bacteria that stain dark purple or blue when subjected to the Gram staining method, which is a common technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This staining method was developed by Hans Christian Gram in 1884.

The key characteristic that distinguishes Gram-positive bacteria from other types, such as Gram-negative bacteria, is the presence of a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Additionally, Gram-positive bacteria lack an outer membrane found in Gram-negative bacteria.

Examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Bacillus subtilis. Some Gram-positive bacteria can cause various human diseases, while others are beneficial or harmless.

Bacterial infections are caused by the invasion and multiplication of bacteria in or on tissues of the body. These infections can range from mild, like a common cold, to severe, such as pneumonia, meningitis, or sepsis. The symptoms of a bacterial infection depend on the type of bacteria invading the body and the area of the body that is affected.

Bacteria are single-celled microorganisms that can live in many different environments, including in the human body. While some bacteria are beneficial to humans and help with digestion or protect against harmful pathogens, others can cause illness and disease. When bacteria invade the body, they can release toxins and other harmful substances that damage tissues and trigger an immune response.

Bacterial infections can be treated with antibiotics, which work by killing or inhibiting the growth of bacteria. However, it is important to note that misuse or overuse of antibiotics can lead to antibiotic resistance, making treatment more difficult. It is also essential to complete the full course of antibiotics as prescribed, even if symptoms improve, to ensure that all bacteria are eliminated and reduce the risk of recurrence or development of antibiotic resistance.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Anaerobic bacteria are a type of bacteria that do not require oxygen to grow and survive. Instead, they can grow in environments that have little or no oxygen. Some anaerobic bacteria can even be harmed or killed by exposure to oxygen. These bacteria play important roles in many natural processes, such as decomposition and the breakdown of organic matter in the digestive system. However, some anaerobic bacteria can also cause disease in humans and animals, particularly when they infect areas of the body that are normally oxygen-rich. Examples of anaerobic bacterial infections include tetanus, gas gangrene, and dental abscesses.

Aztreonam is a monobactam antibiotic, which is a type of antibacterial drug used to treat infections caused by bacteria. It works by interfering with the ability of bacterial cells to form cell walls, leading to their death. Aztreonam is specifically active against certain types of gram-negative bacteria, including Pseudomonas aeruginosa and Escherichia coli.

Aztreonam is available in various forms, including injectable solutions and inhaled powder, for use in different clinical settings. It is often used to treat serious infections that have not responded to other antibiotics or that are caused by bacteria that are resistant to other antibiotics.

Like all antibiotics, aztreonam can cause side effects, including nausea, vomiting, diarrhea, and headache. It may also cause allergic reactions in some people, particularly those with a history of allergies to other antibiotics. It is important to use aztreonam only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

Cefuroxime is a type of antibiotic known as a cephalosporin, which is used to treat a variety of bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Without a functional cell wall, the bacteria are unable to grow and multiply, and are eventually destroyed by the body's immune system.

Cefuroxime is effective against many different types of bacteria, including both Gram-positive and Gram-negative organisms. It is often used to treat respiratory tract infections, urinary tract infections, skin and soft tissue infections, and bone and joint infections.

Like all antibiotics, cefuroxime should be used only under the direction of a healthcare provider, and it is important to take the full course of treatment as prescribed, even if symptoms improve before the medication is finished. Misuse of antibiotics can lead to the development of drug-resistant bacteria, which are more difficult to treat and can pose a serious threat to public health.

'Aza compounds' is a general term used in chemistry to describe organic compounds containing a nitrogen atom (denoted by the symbol 'N' or 'aza') that has replaced a carbon atom in a hydrocarbon structure. The term 'aza' comes from the Greek word for nitrogen, 'azote.'

In medicinal chemistry and pharmacology, aza compounds are of particular interest because the presence of the nitrogen atom can significantly affect the chemical and biological properties of the compound. For example, aza compounds may exhibit enhanced bioavailability, metabolic stability, or receptor binding affinity compared to their non-aza counterparts.

Some common examples of aza compounds in medicine include:

1. Aza-aromatic compounds: These are aromatic compounds that contain one or more nitrogen atoms in the ring structure. Examples include pyridine, quinoline, and isoquinoline derivatives, which have been used as anti-malarial, anti-inflammatory, and anti-cancer agents.
2. Aza-heterocyclic compounds: These are non-aromatic compounds that contain one or more nitrogen atoms in a cyclic structure. Examples include azepine, diazepine, and triazole derivatives, which have been used as anxiolytic, anti-viral, and anti-fungal agents.
3. Aza-peptides: These are peptide compounds that contain one or more nitrogen atoms in the backbone structure. Examples include azapeptides and azabicyclopeptides, which have been used as enzyme inhibitors and neuroprotective agents.
4. Aza-sugars: These are sugar derivatives that contain one or more nitrogen atoms in the ring structure. Examples include azasugars and iminosugars, which have been used as glycosidase inhibitors and anti-viral agents.

Overall, aza compounds represent an important class of medicinal agents with diverse chemical structures and biological activities.

Cefotaxime is a third-generation cephalosporin antibiotic, which is used to treat a variety of bacterial infections. It works by inhibiting the synthesis of the bacterial cell wall. Cefotaxime has a broad spectrum of activity and is effective against many Gram-positive and Gram-negative bacteria, including some that are resistant to other antibiotics.

Cefotaxime is often used to treat serious infections such as pneumonia, meningitis, and sepsis. It may also be used to prevent infections during surgery or in people with weakened immune systems. The drug is administered intravenously or intramuscularly, and its dosage depends on the type and severity of the infection being treated.

Like all antibiotics, cefotaxime can cause side effects, including diarrhea, nausea, vomiting, and rash. In rare cases, it may cause serious allergic reactions or damage to the kidneys or liver. It is important to follow the prescribing physician's instructions carefully when taking this medication.

"Klebsiella pneumoniae" is a medical term that refers to a type of bacteria belonging to the family Enterobacteriaceae. It's a gram-negative, encapsulated, non-motile, rod-shaped bacterium that can be found in various environments, including soil, water, and the gastrointestinal tracts of humans and animals.

"Klebsiella pneumoniae" is an opportunistic pathogen that can cause a range of infections, particularly in individuals with weakened immune systems or underlying medical conditions. It's a common cause of healthcare-associated infections, such as pneumonia, urinary tract infections, bloodstream infections, and wound infections.

The bacterium is known for its ability to produce a polysaccharide capsule that makes it resistant to phagocytosis by white blood cells, allowing it to evade the host's immune system. Additionally, "Klebsiella pneumoniae" has developed resistance to many antibiotics, making infections caused by this bacterium difficult to treat and a growing public health concern.

Dicloxacillin is a type of antibiotic known as a penicillinase-resistant penicillin. It is used to treat infections caused by bacteria that are resistant to other types of penicillins. Dicloxacillin is effective against many gram-positive cocci, including staphylococci that produce penicillinases (enzymes that destroy penicillins).

The medical definition of dicloxacillin is:

"A semi-synthetic antibiotic derived from 6-aminopenicillanic acid and dichloroacetyl coenzyme A. It is resistant to staphylococcal penicillinases and is used to treat infections caused by susceptible organisms, including Staphylococcus aureus and Streptococcus pyogenes."

Dicloxacillin is available in oral capsule form and is typically taken two to four times daily, depending on the severity of the infection. It is important to take dicloxacillin for the entire prescribed course of treatment, even if symptoms improve, to ensure that the infection is completely treated and to reduce the risk of antibiotic resistance.

Like all antibiotics, dicloxacillin can cause side effects, including gastrointestinal symptoms such as nausea, vomiting, and diarrhea. It may also cause allergic reactions in some people, ranging from mild skin rashes to life-threatening anaphylaxis. People with a history of penicillin allergy should inform their healthcare provider before taking dicloxacillin or any other antibiics.

Cloxacillin is a type of antibiotic known as a penicillinase-resistant penicillin. It is used to treat infections caused by bacteria that are resistant to other types of penicillins. Cloxacillin works by interfering with the ability of the bacterial cell wall to grow and multiply, ultimately leading to the death of the bacterium.

Cloxacillin is often used to treat skin infections, pneumonia, and other respiratory tract infections. It is available in various forms, including tablets, capsules, and powder for injection. As with all antibiotics, it is important to take cloxacillin exactly as directed by a healthcare provider, and to complete the full course of treatment, even if symptoms improve before all of the medication has been taken.

Like other penicillins, cloxacillin can cause allergic reactions in some people. It may also interact with other medications, so it is important to inform a healthcare provider of all other medications being taken before starting cloxacillin.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form a cell wall, which is necessary for their survival. This causes the bacterial cells to become unstable and eventually die. Carbenicillin is effective against a wide range of gram-negative bacteria, including Pseudomonas aeruginosa, and is often used to treat serious infections caused by these organisms. It is administered orally or intravenously, depending on the type and severity of the infection being treated.

Carbenicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to

Clarithromycin is a antibiotic medication used to treat various types of bacterial infections, including respiratory, skin, and soft tissue infections. It is a member of the macrolide antibiotic family, which works by inhibiting bacterial protein synthesis. Clarithromycin is available by prescription and is often used in combination with other medications to treat conditions such as Helicobacter pylori infection and Mycobacterium avium complex (MAC) infection.

The medical definition of clarithromycin is:

"A antibiotic medication used to treat various types of bacterial infections, belonging to the macrolide antibiotic family. It works by inhibiting bacterial protein synthesis and is available by prescription."

Metronidazole is an antibiotic and antiprotozoal medication. It is primarily used to treat infections caused by anaerobic bacteria and certain parasites. Metronidazole works by interfering with the DNA of these organisms, which inhibits their ability to grow and multiply.

It is available in various forms, including tablets, capsules, creams, and gels, and is often used to treat conditions such as bacterial vaginosis, pelvic inflammatory disease, amebiasis, giardiasis, and pseudomembranous colitis.

Like all antibiotics, metronidazole should be taken only under the direction of a healthcare provider, as misuse can lead to antibiotic resistance and other complications.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Drug hypersensitivity is an abnormal immune response to a medication or its metabolites. It is a type of adverse drug reaction that occurs in susceptible individuals, characterized by the activation of the immune system leading to inflammation and tissue damage. This reaction can range from mild symptoms such as skin rashes, hives, and itching to more severe reactions like anaphylaxis, which can be life-threatening.

Drug hypersensitivity reactions can be classified into two main types: immediate (or IgE-mediated) and delayed (or non-IgE-mediated). Immediate reactions occur within minutes to a few hours after taking the medication and are mediated by the release of histamine and other inflammatory mediators from mast cells and basophils. Delayed reactions, on the other hand, can take several days to develop and are caused by T-cell activation and subsequent cytokine release.

Common drugs that can cause hypersensitivity reactions include antibiotics (such as penicillins and sulfonamides), nonsteroidal anti-inflammatory drugs (NSAIDs), monoclonal antibodies, and chemotherapeutic agents. It is important to note that previous exposure to a medication does not always guarantee the development of hypersensitivity reactions, as they can also occur after the first administration in some cases.

The diagnosis of drug hypersensitivity involves a thorough medical history, physical examination, and sometimes skin or laboratory tests. Treatment typically includes avoiding the offending medication and managing symptoms with antihistamines, corticosteroids, or other medications as needed. In severe cases, emergency medical care may be required to treat anaphylaxis or other life-threatening reactions.

Ceftazidime is a third-generation cephalosporin antibiotic, which is used to treat a variety of bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, leading to bacterial cell death. Ceftazidime has a broad spectrum of activity and is effective against many Gram-negative and some Gram-positive bacteria.

It is often used to treat serious infections such as pneumonia, urinary tract infections, and sepsis, particularly when they are caused by antibiotic-resistant bacteria. Ceftazidime is also commonly used in combination with other antibiotics to treat complicated abdominal infections, bone and joint infections, and hospital-acquired pneumonia.

Like all antibiotics, ceftazidime can cause side effects, including diarrhea, nausea, vomiting, and allergic reactions. It may also affect the kidneys and should be used with caution in patients with impaired renal function. Ceftazidime is available in both intravenous (IV) and oral forms.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Klebsiella is a genus of Gram-negative, facultatively anaerobic, encapsulated, non-motile, rod-shaped bacteria that are part of the family Enterobacteriaceae. They are commonly found in the normal microbiota of the mouth, skin, and intestines, but can also cause various types of infections, particularly in individuals with weakened immune systems.

Klebsiella pneumoniae is the most common species and can cause pneumonia, urinary tract infections, bloodstream infections, and wound infections. Other Klebsiella species, such as K. oxytoca, can also cause similar types of infections. These bacteria are resistant to many antibiotics, making them difficult to treat and a significant public health concern.

Haemophilus influenzae is a gram-negative, coccobacillary bacterium that can cause a variety of infectious diseases in humans. It is part of the normal respiratory flora but can become pathogenic under certain circumstances. The bacteria are named after their initial discovery in 1892 by Richard Pfeiffer during an influenza pandemic, although they are not the causative agent of influenza.

There are six main serotypes (a-f) based on the polysaccharide capsule surrounding the bacterium, with type b (Hib) being the most virulent and invasive. Hib can cause severe invasive diseases such as meningitis, pneumonia, epiglottitis, and sepsis, particularly in children under 5 years of age. The introduction of the Hib conjugate vaccine has significantly reduced the incidence of these invasive diseases.

Non-typeable Haemophilus influenzae (NTHi) strains lack a capsule and are responsible for non-invasive respiratory tract infections, such as otitis media, sinusitis, and exacerbations of chronic obstructive pulmonary disease (COPD). NTHi can also cause invasive diseases but at lower frequency compared to Hib.

Proper diagnosis and antibiotic susceptibility testing are crucial for effective treatment, as Haemophilus influenzae strains may display resistance to certain antibiotics.

Ampicillin resistance is a type of antibiotic resistance where bacteria have the ability to grow in the presence of ampicillin, a beta-lactam antibiotic used to treat various infections. This resistance occurs due to the production of enzymes called beta-lactamases that can break down the ampicillin molecule, rendering it ineffective. Additionally, some bacteria may have mutations that result in changes to their cell wall structure, making them impervious to the effects of ampicillin. Ampicillin resistance is a significant public health concern as it limits treatment options for infections caused by these resistant bacteria and can lead to increased morbidity and mortality.

Otitis media is an inflammation or infection of the middle ear. It can occur as a result of a cold, respiratory infection, or allergy that causes fluid buildup behind the eardrum. The buildup of fluid can lead to infection and irritation of the middle ear, causing symptoms such as ear pain, hearing loss, and difficulty balancing. There are two types of otitis media: acute otitis media (AOM), which is a short-term infection that can cause fever and severe ear pain, and otitis media with effusion (OME), which is fluid buildup in the middle ear without symptoms of infection. In some cases, otitis media may require medical treatment, including antibiotics or the placement of ear tubes to drain the fluid and relieve pressure on the eardrum.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Imipenem is an antibiotic medication that belongs to the class of carbapenems. It is used to treat various types of bacterial infections, including pneumonia, sepsis, and skin infections. Imipenem works by inhibiting the synthesis of bacterial cell walls, leading to bacterial death.

Imipenem is often combined with another medication called cilastatin, which helps to prevent the breakdown of imipenem in the body and increase its effectiveness. The combination of imipenem and cilastatin is available under the brand name Primaxin.

Like other antibiotics, imipenem should be used with caution and only when necessary, as overuse can lead to antibiotic resistance. It is important to follow the prescribing physician's instructions carefully and complete the full course of treatment, even if symptoms improve before the medication is finished.

Peptidyl transferase is not a medical term per se, but rather a biochemical term used to describe an enzymatic function or activity. It is often mentioned in the context of molecular biology, protein synthesis, and ribosome structure.

Peptidyl transferase refers to the catalytic activity of ribosomes that facilitates the formation of peptide bonds between amino acids during protein synthesis. More specifically, peptidyl transferase is responsible for transferring the peptidyl group (the growing polypeptide chain) from the acceptor site (A-site) to the donor site (P-site) of the ribosome, creating a new peptide bond and elongating the polypeptide chain. This activity occurs within the large subunit of the ribosome, near the peptidyl transferase center (PTC).

While it is often attributed to the ribosomal RNA (rRNA) component of the ribosome, recent research suggests that both rRNA and specific ribosomal proteins contribute to this enzymatic activity.

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

Azlocillin is a semisynthetic antibiotic belonging to the class of extended-spectrum penicillins. It is derived from the basic penicillin structure and has an additional side chain that provides it with a broader spectrum of activity, including against many Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa.

Azlocillin works by inhibiting the synthesis of bacterial cell walls, which ultimately leads to bacterial death. It is commonly used in the treatment of severe intra-abdominal infections, urinary tract infections, and septicemia caused by susceptible organisms.

Like other antibiotics, azlocillin should be used with caution and only when necessary, as overuse can lead to the development of antibiotic resistance. It is important to note that individual patient responses to medications may vary, and healthcare providers should consider each patient's unique medical history and current health status before prescribing any medication.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Cephalothin is a type of antibiotic known as a first-generation cephalosporin. It is used to treat a variety of bacterial infections, including respiratory tract infections, skin and soft tissue infections, bone and joint infections, and urinary tract infections.

Cephalothin works by interfering with the ability of bacteria to form cell walls, which are essential for their survival. It binds to specific proteins in the bacterial cell wall, causing the wall to become unstable and ultimately leading to the death of the bacterium.

Like other antibiotics, cephalothin is only effective against certain types of bacteria, and it should be used under the direction of a healthcare professional. It is important to take the full course of treatment as directed, even if symptoms improve, to ensure that the infection is fully treated and to reduce the risk of developing antibiotic resistance.

Common side effects of cephalothin include gastrointestinal symptoms such as nausea, vomiting, and diarrhea. More serious side effects may include allergic reactions, kidney damage, and seizures. It is important to inform your healthcare provider of any medical conditions you have or medications you are taking before starting treatment with cephalothin.

'Proteus' doesn't have a specific medical definition itself, but it is related to a syndrome in medicine. Proteus syndrome is a rare genetic disorder characterized by the overgrowth of various tissues and organs in the body. The name "Proteus" comes from the Greek god Proteus, who could change his form at will, reflecting the diverse and ever-changing nature of this condition's symptoms.

People with Proteus syndrome experience asymmetric overgrowth of bones, skin, and other tissues, leading to abnormalities in body shape and function. The disorder can also affect blood vessels, causing benign tumors called hamartomas to develop. Additionally, individuals with Proteus syndrome are at an increased risk of developing certain types of cancer.

The genetic mutation responsible for Proteus syndrome is found in the AKT1 gene, which plays a crucial role in cell growth and division. This disorder is typically not inherited but instead arises spontaneously as a new mutation in the affected individual. Early diagnosis and management of Proteus syndrome can help improve patients' quality of life and reduce complications associated with the condition.

Aerobic bacteria are a type of bacteria that require oxygen to live and grow. These bacteria use oxygen as the final electron acceptor in their respiratory chain to generate energy in the form of ATP (adenosine triphosphate). Aerobic bacteria can be found in various environments, including soil, water, and the air, as well as on the surfaces of living things. Some examples of aerobic bacteria include species of Pseudomonas, Bacillus, and Staphylococcus.

It's worth noting that some bacteria can switch between aerobic and anaerobic metabolism depending on the availability of oxygen. These bacteria are called facultative anaerobes. In contrast, obligate anaerobes are bacteria that cannot tolerate oxygen and will die in its presence.

Neisseria gonorrhoeae is a species of gram-negative, aerobic diplococcus that is the etiologic agent of gonorrhea, a sexually transmitted infection. It is commonly found in the mucous membranes of the reproductive tract, including the cervix, urethra, and rectum, as well as the throat and eyes. The bacterium can cause a range of symptoms, including discharge, burning during urination, and, in women, abnormal menstrual bleeding. If left untreated, it can lead to more serious complications, such as pelvic inflammatory disease and infertility. It is important to note that N. gonorrhoeae has developed resistance to many antibiotics over time, making treatment more challenging. A culture or nucleic acid amplification test (NAAT) is used for the diagnosis of this infection.

Pneumococcal infections are illnesses caused by the bacterium Streptococcus pneumoniae, also known as pneumococcus. This bacterium can infect different parts of the body, including the lungs (pneumonia), blood (bacteremia or sepsis), and the covering of the brain and spinal cord (meningitis). Pneumococcal infections can also cause ear infections and sinus infections. The bacteria spread through close contact with an infected person, who may spread the bacteria by coughing or sneezing. People with weakened immune systems, children under 2 years of age, adults over 65, and those with certain medical conditions are at increased risk for developing pneumococcal infections.

Traditional Chinese Medicine (TCM) is a system of medicine that has been developed in China over thousands of years. It is based on the philosophy that the body's vital energy (Qi) circulates through a network of channels called meridians, and that disease results from an imbalance or blockage in this flow of Qi.

TCM uses a variety of treatments to restore balance and promote health, including acupuncture, herbal medicine, moxibustion (the burning of herbs near the skin), cupping, dietary therapy, and tuina (Chinese massage). The use of Chinese herbal medicines is a major component of TCM, with formulas often consisting of combinations of several different herbs tailored to the individual patient's needs.

In addition to these treatments, TCM practitioners may also use diagnostic techniques such as pulse diagnosis and tongue examination to assess a person's overall health and determine the underlying cause of their symptoms. The goal of TCM is not only to treat specific symptoms or diseases but to address the root causes of illness and promote overall wellness.

Multiple bacterial drug resistance (MDR) is a medical term that refers to the resistance of multiple strains of bacteria to several antibiotics or antimicrobial agents. This means that these bacteria have developed mechanisms that enable them to survive and multiply despite being exposed to drugs that were previously effective in treating infections caused by them.

MDR is a significant public health concern because it limits the treatment options available for bacterial infections, making them more difficult and expensive to treat. In some cases, MDR bacteria may cause severe or life-threatening infections that are resistant to all available antibiotics, leaving doctors with few or no effective therapeutic options.

MDR can arise due to various mechanisms, including the production of enzymes that inactivate antibiotics, changes in bacterial cell membrane permeability that prevent antibiotics from entering the bacteria, and the development of efflux pumps that expel antibiotics out of the bacteria. The misuse or overuse of antibiotics is a significant contributor to the emergence and spread of MDR bacteria.

Preventing and controlling the spread of MDR bacteria requires a multifaceted approach, including the judicious use of antibiotics, infection control measures, surveillance, and research into new antimicrobial agents.

Helicobacter pylori (H. pylori) is a gram-negative, microaerophilic bacterium that colonizes the stomach of approximately 50% of the global population. It is closely associated with gastritis and peptic ulcer disease, and is implicated in the pathogenesis of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. H. pylori infection is usually acquired in childhood and can persist for life if not treated. The bacterium's spiral shape and flagella allow it to penetrate the mucus layer and adhere to the gastric epithelium, where it releases virulence factors that cause inflammation and tissue damage. Diagnosis of H. pylori infection can be made through various tests, including urea breath test, stool antigen test, or histological examination of a gastric biopsy. Treatment typically involves a combination of antibiotics and proton pump inhibitors to eradicate the bacteria and promote healing of the stomach lining.

Respiratory tract infections (RTIs) are infections that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These infections can be caused by viruses, bacteria, or, less commonly, fungi.

RTIs are classified into two categories based on their location: upper respiratory tract infections (URTIs) and lower respiratory tract infections (LRTIs). URTIs include infections of the nose, sinuses, throat, and larynx, such as the common cold, flu, laryngitis, and sinusitis. LRTIs involve the lower airways, including the bronchi and lungs, and can be more severe. Examples of LRTIs are pneumonia, bronchitis, and bronchiolitis.

Symptoms of RTIs depend on the location and cause of the infection but may include cough, congestion, runny nose, sore throat, difficulty breathing, wheezing, fever, fatigue, and chest pain. Treatment for RTIs varies depending on the severity and underlying cause of the infection. For viral infections, treatment typically involves supportive care to manage symptoms, while antibiotics may be prescribed for bacterial infections.

'Bacteroides fragilis' is a species of gram-negative, anaerobic, rod-shaped bacteria that are commonly found in the human gastrointestinal tract. They are part of the normal gut flora and play an important role in maintaining a healthy digestive system. However, they can also cause infections when they enter other parts of the body, such as the abdomen or bloodstream, particularly in individuals with weakened immune systems.

Bacteroides fragilis is known for its ability to produce enzymes that allow it to resist antibiotics and evade the host's immune system. This makes it a challenging bacterium to treat and can lead to serious and potentially life-threatening infections, such as abscesses, sepsis, and meningitis.

Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of Bacteroides fragilis and other bacteria that can cause infections. If an infection does occur, it is typically treated with a combination of surgical drainage and antibiotics that are effective against anaerobic bacteria.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Oral administration is a route of giving medications or other substances by mouth. This can be in the form of tablets, capsules, liquids, pastes, or other forms that can be swallowed. Once ingested, the substance is absorbed through the gastrointestinal tract and enters the bloodstream to reach its intended target site in the body. Oral administration is a common and convenient route of medication delivery, but it may not be appropriate for all substances or in certain situations, such as when rapid onset of action is required or when the patient has difficulty swallowing.

Muramoylpentapeptide Carboxypeptidase is not a commonly used medical term, but it refers to an enzyme involved in the bacterial cell wall biosynthesis and degradation process. The muramoylpentapeptide is a component of the bacterial cell wall peptidoglycan. Carboxypeptidases are enzymes that cleave peptide bonds, specifically at the carboxyl-terminal end of a protein or peptide.

In this context, Muramoylpentapeptide Carboxypeptidase is an enzyme that removes the terminal D-alanine residue from the muramoylpentapeptide, which is a crucial step in the biosynthesis and recycling of bacterial cell wall components. This enzyme plays a significant role in the regulation of peptidoglycan structure and thus impacts bacterial growth, division, and virulence.

Inhibition or disruption of Muramoylpentapeptide Carboxypeptidase can potentially be used as an antibacterial strategy, targeting essential processes in bacterial cell wall biosynthesis and weakening the structural integrity of pathogenic bacteria.

Urinary Tract Infections (UTIs) are defined as the presence of pathogenic microorganisms, typically bacteria, in any part of the urinary system, which includes the kidneys, ureters, bladder, and urethra, resulting in infection and inflammation. The majority of UTIs are caused by Escherichia coli (E. coli) bacteria, but other organisms such as Klebsiella, Proteus, Staphylococcus saprophyticus, and Enterococcus can also cause UTIs.

UTIs can be classified into two types based on the location of the infection:

1. Lower UTI or bladder infection (cystitis): This type of UTI affects the bladder and urethra. Symptoms may include a frequent and urgent need to urinate, pain or burning during urination, cloudy or strong-smelling urine, and discomfort in the lower abdomen or back.

2. Upper UTI or kidney infection (pyelonephritis): This type of UTI affects the kidneys and can be more severe than a bladder infection. Symptoms may include fever, chills, nausea, vomiting, and pain in the flanks or back.

UTIs are more common in women than men due to their shorter urethra, which makes it easier for bacteria to reach the bladder. Other risk factors for UTIs include sexual activity, use of diaphragms or spermicides, urinary catheterization, diabetes, and weakened immune systems.

UTIs are typically diagnosed through a urinalysis and urine culture to identify the causative organism and determine the appropriate antibiotic treatment. In some cases, imaging studies such as ultrasound or CT scan may be necessary to evaluate for any underlying abnormalities in the urinary tract.

"Ochrobactrum anthropi" is a gram-negative, rod-shaped bacterium that is found in various environments, including soil, water, and clinical samples. It is a conditional pathogen, meaning it can cause infection under certain circumstances, particularly in immunocompromised individuals. Infections caused by Ochrobactrum anthropi are often associated with medical devices or procedures, such as catheter-related bacteremia, pneumonia, and wound infections. It is inherently resistant to many antibiotics, which can make treatment challenging.

Bacteroides are a genus of gram-negative, anaerobic, rod-shaped bacteria that are normally present in the human gastrointestinal tract. They are part of the normal gut microbiota and play an important role in breaking down complex carbohydrates and other substances in the gut. However, some species of Bacteroides can cause opportunistic infections, particularly in individuals with weakened immune systems or when they spread to other parts of the body. They are resistant to many commonly used antibiotics, making infections caused by these bacteria difficult to treat.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Individualized medicine, also known as personalized medicine, is a medical model that uses molecular profiling and various diagnostic tests to understand the genetic and environmental variations affecting an individual's health and disease susceptibility. It aims to tailor medical treatments, including prevention strategies, diagnostics, therapies, and follow-up care, to each person's unique needs and characteristics. By incorporating genomic, proteomic, metabolomic, and other "omics" data into clinical decision-making, individualized medicine strives to improve patient outcomes, reduce adverse effects, and potentially lower healthcare costs.

Cephalosporin resistance refers to the ability of bacteria to resist the antibacterial effects of cephalosporins, a group of widely used antibiotics. These drugs work by interfering with the bacterial cell wall synthesis, thereby inhibiting bacterial growth and reproduction. However, some bacteria have developed mechanisms that enable them to survive in the presence of cephalosporins.

There are several ways in which bacteria can become resistant to cephalosporins. One common mechanism is through the production of beta-lactamases, enzymes that can break down the beta-lactam ring structure of cephalosporins and other related antibiotics. This makes the drugs ineffective against the bacteria.

Another mechanism of resistance involves changes in the bacterial cell membrane or the penicillin-binding proteins (PBPs) that prevent the binding of cephalosporins to their target sites. These changes can occur due to genetic mutations or the acquisition of new genes through horizontal gene transfer.

Cephalosporin resistance is a significant public health concern, as it can limit the treatment options for bacterial infections and increase the risk of morbidity and mortality. The overuse and misuse of antibiotics are major drivers of antibiotic resistance, including cephalosporin resistance. Therefore, it is essential to use these drugs judiciously and follow proper infection prevention and control measures to prevent the spread of resistant bacteria.

Helicobacter infections are caused by the bacterium Helicobacter pylori (H. pylori), which colonizes the stomach lining and is associated with various gastrointestinal diseases. The infection can lead to chronic active gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer.

The spiral-shaped H. pylori bacteria are able to survive in the harsh acidic environment of the stomach by producing urease, an enzyme that neutralizes gastric acid in their immediate vicinity. This allows them to adhere to and colonize the epithelial lining of the stomach, where they can cause inflammation (gastritis) and disrupt the normal functioning of the stomach.

Transmission of H. pylori typically occurs through oral-oral or fecal-oral routes, and infection is more common in developing countries and in populations with lower socioeconomic status. The diagnosis of Helicobacter infections can be confirmed through various tests, including urea breath tests, stool antigen tests, or gastric biopsy with histology and culture. Treatment usually involves a combination of antibiotics and proton pump inhibitors to eradicate the bacteria and reduce stomach acidity.

Gram-negative aerobic bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, which is a technique used to differentiate bacterial species based on their cell wall composition. These bacteria have a thin peptidoglycan layer and an outer membrane containing lipopolysaccharides (LPS), making them resistant to many antibiotics and disinfectants. They are called aerobic because they require oxygen for their growth and metabolism. Examples of Gram-negative aerobic bacteria include Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. These bacteria can cause various infections in humans, such as pneumonia, urinary tract infections, and sepsis.

"Pseudomonas aeruginosa" is a medically important, gram-negative, rod-shaped bacterium that is widely found in the environment, such as in soil, water, and on plants. It's an opportunistic pathogen, meaning it usually doesn't cause infection in healthy individuals but can cause severe and sometimes life-threatening infections in people with weakened immune systems, burns, or chronic lung diseases like cystic fibrosis.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants due to its intrinsic resistance mechanisms and the acquisition of additional resistance determinants. It can cause various types of infections, including respiratory tract infections, urinary tract infections, gastrointestinal infections, dermatitis, and severe bloodstream infections known as sepsis.

The bacterium produces a variety of virulence factors that contribute to its pathogenicity, such as exotoxins, proteases, and pigments like pyocyanin and pyoverdine, which aid in iron acquisition and help the organism evade host immune responses. Effective infection control measures, appropriate use of antibiotics, and close monitoring of high-risk patients are crucial for managing P. aeruginosa infections.

Cefoxitin is a type of antibiotic known as a cephamycin, which is a subclass of the larger group of antibiotics called cephalosporins. Cephalosporins are bactericidal agents that inhibit bacterial cell wall synthesis by binding to and disrupting the function of penicillin-binding proteins (PBPs).

Cefoxitin has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including many strains that are resistant to other antibiotics. It is commonly used to treat infections caused by susceptible organisms such as:

* Staphylococcus aureus (including methicillin-resistant S. aureus or MRSA)
* Streptococcus pneumoniae
* Escherichia coli
* Klebsiella spp.
* Proteus mirabilis
* Bacteroides fragilis and other anaerobic bacteria

Cefoxitin is available in both intravenous (IV) and intramuscular (IM) formulations, and it is typically administered every 6 to 8 hours. The drug is generally well tolerated, but potential side effects include gastrointestinal symptoms such as diarrhea, nausea, and vomiting, as well as allergic reactions, including rash, pruritus, and anaphylaxis.

It's important to note that the use of antibiotics should be based on the results of bacterial cultures and susceptibility testing whenever possible, to ensure appropriate therapy and minimize the development of antibiotic resistance.

Monobactams are a type of antibiotics that contain a single bacterial cell wall-binding component, known as a monocyclic beta-lactam. Aztreonam is an example of a monobactam that is used clinically to treat various infections caused by Gram-negative bacteria, including some strains of Pseudomonas aeruginosa. Monobactams work by inhibiting the enzyme responsible for building the bacterial cell wall, leading to bacterial death. They are not affected by beta-lactamases, which are enzymes produced by some bacteria that can inactivate other types of beta-lactam antibiotics, such as penicillins and cephalosporins.

Streptococcal infections are a type of infection caused by group A Streptococcus bacteria (Streptococcus pyogenes). These bacteria can cause a variety of illnesses, ranging from mild skin infections to serious and potentially life-threatening conditions such as sepsis, pneumonia, and necrotizing fasciitis (flesh-eating disease).

Some common types of streptococcal infections include:

* Streptococcal pharyngitis (strep throat) - an infection of the throat and tonsils that can cause sore throat, fever, and swollen lymph nodes.
* Impetigo - a highly contagious skin infection that causes sores or blisters on the skin.
* Cellulitis - a bacterial infection of the deeper layers of the skin and underlying tissue that can cause redness, swelling, pain, and warmth in the affected area.
* Scarlet fever - a streptococcal infection that causes a bright red rash on the body, high fever, and sore throat.
* Necrotizing fasciitis - a rare but serious bacterial infection that can cause tissue death and destruction of the muscles and fascia (the tissue that covers the muscles).

Treatment for streptococcal infections typically involves antibiotics to kill the bacteria causing the infection. It is important to seek medical attention if you suspect a streptococcal infection, as prompt treatment can help prevent serious complications.

Oxacillin is a type of antibiotic known as a penicillinase-resistant penicillin. It is used to treat infections caused by bacteria that are resistant to other types of penicillins. Oxacillin is commonly used to treat infections of the skin, soft tissue, and bone.

Here is the medical definition of oxacillin:

Oxacillin is a semisynthetic antibiotic derived from penicillin that is resistant to staphylococcal penicillinases. It is used to treat infections caused by susceptible strains of staphylococci and some streptococci, including penicillinase-producing staphylococci. Oxacillin is available as a sterile powder for injection or as a oral capsule.

It is important to note that the overuse or misuse of antibiotics like oxacillin can lead to the development of antibiotic resistance, which makes infections harder to treat. It's essential to use antibiotics only when necessary and as directed by a healthcare professional.

Bacteroides infections refer to illnesses caused by the bacterial genus Bacteroides, which are a group of anaerobic, gram-negative bacilli that are normal inhabitants of the human gastrointestinal tract. However, they can cause intra-abdominal infections, such as appendicitis, peritonitis, and liver abscesses, as well as wound infections, bacteremia, and gynecological infections when they spread to other parts of the body, especially in individuals with compromised immune systems.

Bacteroides species are often resistant to many antibiotics, making infections challenging to treat. Therefore, appropriate antimicrobial therapy, often requiring combination therapy, is essential for successful treatment. Surgical intervention may also be necessary in certain cases of Bacteroides infections, such as abscess drainage or debridement of necrotic tissue.

Premedication is the administration of medication before a medical procedure or surgery to prevent or manage pain, reduce anxiety, minimize side effects of anesthesia, or treat existing medical conditions. The goal of premedication is to improve the safety and outcomes of the medical procedure by preparing the patient's body in advance. Common examples of premedication include administering antibiotics before surgery to prevent infection, giving sedatives to help patients relax before a procedure, or providing medication to control acid reflux during surgery.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Staphylococcus aureus is a type of gram-positive, round (coccal) bacterium that is commonly found on the skin and mucous membranes of warm-blooded animals and humans. It is a facultative anaerobe, which means it can grow in the presence or absence of oxygen.

Staphylococcus aureus is known to cause a wide range of infections, from mild skin infections such as pimples, impetigo, and furuncles (boils) to more severe and potentially life-threatening infections such as pneumonia, endocarditis, osteomyelitis, and sepsis. It can also cause food poisoning and toxic shock syndrome.

The bacterium is often resistant to multiple antibiotics, including methicillin, which has led to the emergence of methicillin-resistant Staphylococcus aureus (MRSA) strains that are difficult to treat. Proper hand hygiene and infection control practices are critical in preventing the spread of Staphylococcus aureus and MRSA.

Omeprazole is defined as a proton pump inhibitor (PPI) used in the treatment of gastroesophageal reflux disease (GERD), gastric ulcers, and other conditions where reducing stomach acid is desired. It works by blocking the action of the proton pumps in the stomach, which are responsible for producing stomach acid. By inhibiting these pumps, omeprazole reduces the amount of acid produced in the stomach, providing relief from symptoms such as heartburn and pain caused by excess stomach acid.

It is available in various forms, including tablets, capsules, and oral suspension, and is typically taken once or twice a day, depending on the condition being treated. As with any medication, omeprazole should be used under the guidance of a healthcare professional, and its potential side effects and interactions with other medications should be carefully considered before use.

Colorectal surgery is a medical specialty that deals with the diagnosis and treatment of disorders affecting the colon, rectum, and anus. This can include conditions such as colorectal cancer, inflammatory bowel disease (such as Crohn's disease or ulcerative colitis), diverticulitis, and anal fistulas or fissures.

The surgical procedures performed by colorectal surgeons may involve minimally invasive techniques, such as laparoscopic or robotic-assisted surgery, or more traditional open surgery. These procedures can range from removing polyps during a colonoscopy to complex resections of the colon, rectum, or anus.

Colorectal surgeons also work closely with other medical specialists, such as gastroenterologists, oncologists, and radiologists, to provide comprehensive care for their patients.

Suppurative Otitis Media is a type of inner ear infection that involves the accumulation of pus (suppuration) in the middle ear space. It can be caused by a bacterial or viral infection and often results from a previous episode of acute otitis media, where fluid builds up behind the eardrum (tympanic membrane).

Suppurative Otitis Media can lead to complications such as hearing loss, damage to the inner ear structures, and spread of infection to nearby areas like the mastoid process or the brain. Treatment typically involves antibiotics to clear the infection and sometimes surgical intervention to drain the pus and relieve pressure on the eardrum.

Bacterial transformation is a natural process by which exogenous DNA is taken up and incorporated into the genome of a bacterial cell. This process was first discovered in 1928 by Frederick Griffith, who observed that dead virulent bacteria could transfer genetic material to live avirulent bacteria, thereby conferring new properties such as virulence to the recipient cells.

The uptake of DNA by bacterial cells typically occurs through a process called "competence," which can be either naturally induced under certain environmental conditions or artificially induced in the laboratory using various methods. Once inside the cell, the exogenous DNA may undergo recombination with the host genome, resulting in the acquisition of new genes or the alteration of existing ones.

Bacterial transformation has important implications for both basic research and biotechnology. It is a powerful tool for studying gene function and for engineering bacteria with novel properties, such as the ability to produce valuable proteins or degrade environmental pollutants. However, it also poses potential risks in the context of genetic engineering and biocontainment, as transformed bacteria may be able to transfer their newly acquired genes to other organisms in the environment.

Hexosyltransferases are a group of enzymes that catalyze the transfer of a hexose (a type of sugar molecule made up of six carbon atoms) from a donor molecule to an acceptor molecule. This transfer results in the formation of a glycosidic bond between the two molecules.

Hexosyltransferases are involved in various biological processes, including the biosynthesis of complex carbohydrates, such as glycoproteins and glycolipids, which play important roles in cell recognition, signaling, and communication. These enzymes can transfer a variety of hexose sugars, including glucose, galactose, mannose, fucose, and N-acetylglucosamine, to different acceptor molecules, such as proteins, lipids, or other carbohydrates.

Hexosyltransferases are classified based on the type of donor molecule they use, the type of sugar they transfer, and the type of glycosidic bond they form. Some examples of hexosyltransferases include:

* Glycosyltransferases (GTs): These enzymes transfer a sugar from an activated donor molecule, such as a nucleotide sugar, to an acceptor molecule. GTs are involved in the biosynthesis of various glycoconjugates, including proteoglycans, glycoproteins, and glycolipids.
* Fucosyltransferases (FUTs): These enzymes transfer fucose, a type of hexose sugar, to an acceptor molecule. FUTs are involved in the biosynthesis of various glycoconjugates, including blood group antigens and Lewis antigens.
* Galactosyltransferases (GALTs): These enzymes transfer galactose, another type of hexose sugar, to an acceptor molecule. GALTs are involved in the biosynthesis of various glycoconjugates, including lactose in milk and gangliosides in the brain.
* Mannosyltransferases (MTs): These enzymes transfer mannose, a type of hexose sugar, to an acceptor molecule. MTs are involved in the biosynthesis of various glycoconjugates, including N-linked glycoproteins and yeast cell walls.

Hexosyltransferases play important roles in many biological processes, including cell recognition, signaling, and adhesion. Dysregulation of these enzymes has been implicated in various diseases, such as cancer, inflammation, and neurodegenerative disorders. Therefore, understanding the mechanisms of hexosyltransferases is crucial for developing new therapeutic strategies.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

2-Pyridinylmethylsulfinylbenzimidazoles is a class of chemical compounds that have both a pyridinylmethylsulfinyl group and a benzimidazole ring in their structure. Pyridinylmethylsulfinyl refers to a functional group consisting of a sulfinyl group (-S(=O)-) attached to a methyl group (-CH2-) that is, in turn, attached to a pyridine ring. Benzimidazoles are heterocyclic compounds containing a fused benzene and imidazole ring.

These types of compounds have been studied for their potential biological activity, including anti-inflammatory, antiviral, and antitumor properties. However, it's important to note that medical definitions typically refer to specific substances or classes of substances that have established clinical use or are under investigation for therapeutic purposes. As such, 2-Pyridinylmethylsulfinylbenzimidazoles do not have a recognized medical definition in this sense.

Internal Medicine is a medical specialty that deals with the prevention, diagnosis, and treatment of internal diseases affecting adults. It encompasses a wide range of medical conditions, including those related to the cardiovascular, respiratory, gastrointestinal, hematological, endocrine, infectious, and immune systems. Internists, or general internists, are trained to provide comprehensive care for adult patients, managing both simple and complex diseases, and often serving as primary care physicians. They may also subspecialize in various fields such as cardiology, gastroenterology, nephrology, or infectious disease, among others.

Tetracycline is a broad-spectrum antibiotic, which is used to treat various bacterial infections. It works by preventing the growth and multiplication of bacteria. It is a part of the tetracycline class of antibiotics, which also includes doxycycline, minocycline, and others.

Tetracycline is effective against a wide range of gram-positive and gram-negative bacteria, as well as some atypical organisms such as rickettsia, chlamydia, mycoplasma, and spirochetes. It is commonly used to treat respiratory infections, skin infections, urinary tract infections, sexually transmitted diseases, and other bacterial infections.

Tetracycline is available in various forms, including tablets, capsules, and liquid solutions. It should be taken orally with a full glass of water, and it is recommended to take it on an empty stomach, at least one hour before or two hours after meals. The drug can cause tooth discoloration in children under the age of 8, so it is generally not recommended for use in this population.

Like all antibiotics, tetracycline should be used only to treat bacterial infections and not viral infections, such as the common cold or flu. Overuse or misuse of antibiotics can lead to antibiotic resistance, which makes it harder to treat infections in the future.

Streptococcus is a genus of Gram-positive, spherical bacteria that typically form pairs or chains when clustered together. These bacteria are facultative anaerobes, meaning they can grow in the presence or absence of oxygen. They are non-motile and do not produce spores.

Streptococcus species are commonly found on the skin and mucous membranes of humans and animals. Some strains are part of the normal flora of the body, while others can cause a variety of infections, ranging from mild skin infections to severe and life-threatening diseases such as sepsis, meningitis, and toxic shock syndrome.

The pathogenicity of Streptococcus species depends on various virulence factors, including the production of enzymes and toxins that damage tissues and evade the host's immune response. One of the most well-known Streptococcus species is Streptococcus pyogenes, also known as group A streptococcus (GAS), which is responsible for a wide range of clinical manifestations, including pharyngitis (strep throat), impetigo, cellulitis, necrotizing fasciitis, and rheumatic fever.

It's important to note that the classification of Streptococcus species has evolved over time, with many former members now classified as different genera within the family Streptococcaceae. The current classification system is based on a combination of phenotypic characteristics (such as hemolysis patterns and sugar fermentation) and genotypic methods (such as 16S rRNA sequencing and multilocus sequence typing).

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Quinolines are a class of organic compounds that consist of a bicyclic structure made up of a benzene ring fused to a piperidine ring. They have a wide range of applications, but they are perhaps best known for their use in the synthesis of various medications, including antibiotics and antimalarial drugs.

Quinolone antibiotics, such as ciprofloxacin and levofloxacin, work by inhibiting the bacterial enzymes involved in DNA replication and repair. They are commonly used to treat a variety of bacterial infections, including urinary tract infections, pneumonia, and skin infections.

Quinoline-based antimalarial drugs, such as chloroquine and hydroxychloroquine, work by inhibiting the parasite's ability to digest hemoglobin in the red blood cells. They are commonly used to prevent and treat malaria.

It is important to note that quinolines have been associated with serious side effects, including tendinitis and tendon rupture, nerve damage, and abnormal heart rhythms. As with any medication, it is important to use quinolines only under the supervision of a healthcare provider, and to follow their instructions carefully.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

Traditional medicine (TM) refers to health practices, approaches, knowledge and beliefs incorporating plant, animal and mineral-based medicines, spiritual therapies, manual techniques and exercises, applied singularly or in combination to treat, diagnose and prevent illnesses or maintain well-being. Although traditional medicine has been practiced since prehistoric times, it is still widely used today and may include:

1. Traditional Asian medicines such as acupuncture, herbal remedies, and qigong from China; Ayurveda, Yoga, Unani and Siddha from India; and Jamu from Indonesia.
2. Traditional European herbal medicines, also known as phytotherapy.
3. North American traditional indigenous medicines, including Native American and Inuit practices.
4. African traditional medicines, such as herbal, spiritual, and manual techniques practiced in various African cultures.
5. South American traditional medicines, like Mapuche, Curanderismo, and Santo Daime practices from different countries.

It is essential to note that traditional medicine may not follow the scientific principles, evidence-based standards, or quality control measures inherent to conventional (also known as allopathic or Western) medicine. However, some traditional medicines have been integrated into modern healthcare systems and are considered complementary or alternative medicines (CAM). The World Health Organization encourages member states to develop policies and regulations for integrating TM/CAM practices into their healthcare systems, ensuring safety, efficacy, and quality while respecting cultural diversity.

Nuclear medicine is a branch of medical imaging that uses small amounts of radioactive material, called radiopharmaceuticals, to diagnose and treat various diseases. The radiopharmaceuticals are taken internally, usually through injection or oral administration, and accumulate in specific organs or tissues. A special camera then detects the radiation emitted by these substances, which helps create detailed images of the body's internal structures and functions.

The images produced in nuclear medicine can help doctors identify abnormalities such as tumors, fractures, infection, or inflammation. Additionally, some radiopharmaceuticals can be used to treat certain conditions, like hyperthyroidism or cancer, by delivering targeted doses of radiation directly to the affected area. Overall, nuclear medicine provides valuable information for the diagnosis, treatment planning, and monitoring of many medical conditions.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Kampo medicine is a traditional Japanese herbal medicine that has been officially integrated into the Japanese healthcare system since the late 19th century. It is based on traditional Chinese medicine (TCM) principles and theories, but it has evolved independently in Japan over centuries to reflect local medical needs, cultural preferences, and pharmacological research.

Kampo medicine typically involves the use of complex formulas containing multiple herbs, rather than single herbs, to address various health conditions and restore balance within the body. The formulas are often adjusted based on individual patient's symptoms, constitution, and physical condition. Kampo practitioners receive extensive training in both modern Western medicine and traditional Japanese medicine, allowing them to integrate both approaches for a more holistic treatment strategy.

Kampo has been recognized by the World Health Organization (WHO) as a valuable component of traditional medicine and is increasingly being studied in clinical trials to evaluate its efficacy and safety for various health issues, including gastrointestinal disorders, menopausal symptoms, and mental health conditions.

Enterobacteriaceae are a large family of gram-negative bacteria that are commonly found in the human gut and surrounding environment. Infections caused by Enterobacteriaceae can occur when these bacteria enter parts of the body where they are not normally present, such as the bloodstream, urinary tract, or abdominal cavity.

Enterobacteriaceae infections can cause a range of symptoms depending on the site of infection. For example:

* Urinary tract infections (UTIs) caused by Enterobacteriaceae may cause symptoms such as frequent urination, pain or burning during urination, and lower abdominal pain.
* Bloodstream infections (bacteremia) caused by Enterobacteriaceae can cause fever, chills, and sepsis, a potentially life-threatening condition characterized by a whole-body inflammatory response to infection.
* Pneumonia caused by Enterobacteriaceae may cause cough, chest pain, and difficulty breathing.
* Intra-abdominal infections (such as appendicitis or diverticulitis) caused by Enterobacteriaceae can cause abdominal pain, fever, and changes in bowel habits.

Enterobacteriaceae infections are typically treated with antibiotics, but the increasing prevalence of antibiotic-resistant strains of these bacteria has made treatment more challenging in recent years. Preventing the spread of Enterobacteriaceae in healthcare settings and promoting good hygiene practices can help reduce the risk of infection.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Tonsillitis is a medical condition characterized by inflammation and infection of the tonsils, which are two masses of lymphoid tissue located on either side of the back of the throat. The tonsils serve as a defense mechanism against inhaled or ingested pathogens; however, they can become infected themselves, leading to tonsillitis.

The inflammation of the tonsils is often accompanied by symptoms such as sore throat, difficulty swallowing, fever, swollen and tender lymph nodes in the neck, cough, headache, and fatigue. In severe or recurrent cases, a tonsillectomy (surgical removal of the tonsils) may be recommended to alleviate symptoms and prevent complications.

Tonsillitis can be caused by both viral and bacterial infections, with group A streptococcus being one of the most common bacterial causes. It is typically diagnosed based on a physical examination and medical history, and sometimes further confirmed through laboratory tests such as a throat swab or rapid strep test. Treatment may include antibiotics for bacterial tonsillitis, pain relievers, and rest to aid in recovery.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

"Serratia marcescens" is a medically significant species of gram-negative, facultatively anaerobic, motile bacillus bacteria that belongs to the family Enterobacteriaceae. It is commonly found in soil, water, and in the gastrointestinal tracts of humans and animals. The bacteria are known for their ability to produce a red pigment called prodigiosin, which gives them a distinctive pink color on many types of laboratory media.

"Serratia marcescens" can cause various types of infections, including respiratory tract infections, urinary tract infections, wound infections, and bacteremia (bloodstream infections). It is also known to be an opportunistic pathogen, which means that it primarily causes infections in individuals with weakened immune systems, such as those with chronic illnesses or who are undergoing medical treatments that suppress the immune system.

In healthcare settings, "Serratia marcescens" can cause outbreaks of infection, particularly in patients who are hospitalized for extended periods of time. It is resistant to many commonly used antibiotics, which makes it difficult to treat and control the spread of infections caused by this organism.

In addition to its medical significance, "Serratia marcescens" has also been used as a model organism in various areas of microbiological research, including studies on bacterial motility, biofilm formation, and antibiotic resistance.

"Thermotoga neapolitana" is not a medical term, but rather a designation for a specific type of bacteria. It belongs to the genus "Thermotoga," which includes extremophile bacteria that thrive in extremely hot environments, such as hydrothermal vents and hot springs. The species "neapolitana" refers to the fact that this bacterium was first isolated from a hot water vent near Naples, Italy.

These bacteria are known for their ability to break down complex organic compounds into simpler molecules, which they use as a source of energy. They are also capable of surviving in temperatures up to 90°C (194°F) and have been studied for their potential applications in biotechnology, such as the production of biofuels and enzymes that can function at high temperatures.

While "Thermotoga neapolitana" itself is not a medical term, like other bacteria, it has the potential to cause infection under certain circumstances, particularly in individuals with weakened immune systems or exposed to contaminated equipment or environments. However, such cases are relatively rare and not well-studied.

'Acinetobacter' is a genus of gram-negative, aerobic bacteria that are commonly found in the environment, including water, soil, and healthcare settings. They are known for their ability to survive in a wide range of temperatures and pH levels, as well as their resistance to many antibiotics.

Some species of Acinetobacter can cause healthcare-associated infections, particularly in patients who are hospitalized, have weakened immune systems, or have been exposed to medical devices such as ventilators or catheters. These infections can include pneumonia, bloodstream infections, wound infections, and meningitis.

Acinetobacter baumannii is one of the most common species associated with human infection and is often resistant to multiple antibiotics, making it a significant public health concern. Infections caused by Acinetobacter can be difficult to treat and may require the use of last-resort antibiotics.

Preventing the spread of Acinetobacter in healthcare settings is important and includes practices such as hand hygiene, environmental cleaning, and contact precautions for patients with known or suspected infection.

Erythromycin is a type of antibiotic known as a macrolide, which is used to treat various types of bacterial infections. It works by inhibiting the bacteria's ability to produce proteins, which are necessary for the bacteria to survive and multiply. Erythromycin is often used to treat respiratory tract infections, skin infections, and sexually transmitted diseases. It may also be used to prevent endocarditis (inflammation of the lining of the heart) in people at risk of this condition.

Erythromycin is generally considered safe for most people, but it can cause side effects such as nausea, vomiting, and diarrhea. It may also interact with other medications, so it's important to tell your doctor about all the drugs you are taking before starting erythromycin.

Like all antibiotics, erythromycin should only be used to treat bacterial infections, as it is not effective against viral infections such as the common cold or flu. Overuse of antibiotics can lead to antibiotic resistance, which makes it harder to treat infections in the future.

Haemophilus infections are caused by bacteria named Haemophilus influenzae. Despite its name, this bacterium does not cause the flu, which is caused by a virus. There are several different strains of Haemophilus influenzae, and some are more likely to cause severe illness than others.

Haemophilus infections can affect people of any age, but they are most common in children under 5 years old. The bacteria can cause a range of infections, from mild ear infections to serious conditions such as meningitis (inflammation of the membranes surrounding the brain and spinal cord) and pneumonia (infection of the lungs).

The bacterium is spread through respiratory droplets when an infected person coughs or sneezes. It can also be spread by touching contaminated surfaces and then touching the mouth, nose, or eyes.

Prevention measures include good hygiene practices such as handwashing, covering the mouth and nose when coughing or sneezing, and avoiding close contact with people who are sick. Vaccination is also available to protect against Haemophilus influenzae type b (Hib) infections, which are the most severe and common form of Haemophilus infection.

Drug utilization refers to the use of medications by patients or healthcare professionals in a real-world setting. It involves analyzing and evaluating patterns of medication use, including prescribing practices, adherence to treatment guidelines, potential duplications or interactions, and outcomes associated with drug therapy. The goal of drug utilization is to optimize medication use, improve patient safety, and minimize costs while achieving the best possible health outcomes. It can be studied through various methods such as prescription claims data analysis, surveys, and clinical audits.

Sulfadimethoxine is an antimicrobial agent, specifically a sulfonamide. It is defined as a synthetic antibacterial drug that contains the sulfanilamide nucleus and is used to treat various bacterial infections in both humans and animals. In human medicine, it is used to treat urinary tract infections, bronchitis, and traveler's diarrhea. In veterinary medicine, it is commonly used to treat coccidiosis in animals such as poultry, cattle, and pets.

The drug works by inhibiting the bacterial synthesis of folic acid, which is essential for bacterial growth. It is usually administered orally and is available in various forms, including tablets, capsules, and powder for suspension. As with any medication, it should be used under the guidance of a healthcare professional to ensure its safe and effective use.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Carbapenems are a class of broad-spectrum beta-lactam antibiotics, which are used to treat severe infections caused by bacteria that are resistant to other antibiotics. They have a similar chemical structure to penicillins and cephalosporins but are more resistant to the enzymes produced by bacteria that can inactivate these other antibiotics. Carbapenems are often reserved for use in serious infections caused by multidrug-resistant organisms, and they are typically given intravenously in a hospital setting. Examples of carbapenems include imipenem, meropenem, doripenem, and ertapenem.

Anti-ulcer agents are a class of medications that are used to treat and prevent ulcers in the gastrointestinal tract. These medications work by reducing the production of stomach acid, neutralizing stomach acid, or protecting the lining of the stomach and duodenum from damage caused by stomach acid.

There are several types of anti-ulcer agents, including:

1. Proton pump inhibitors (PPIs): These medications block the action of proton pumps in the stomach, which are responsible for producing stomach acid. PPIs include drugs such as omeprazole, lansoprazole, and pantoprazole.
2. H-2 receptor antagonists: These medications block the action of histamine on the H-2 receptors in the stomach, reducing the production of stomach acid. Examples include ranitidine, famotidine, and cimetidine.
3. Antacids: These medications neutralize stomach acid and provide quick relief from symptoms such as heartburn and indigestion. Common antacids include calcium carbonate, magnesium hydroxide, and aluminum hydroxide.
4. Protective agents: These medications form a barrier between the stomach lining and stomach acid, protecting the lining from damage. Examples include sucralfate and misoprostol.

Anti-ulcer agents are used to treat conditions such as gastroesophageal reflux disease (GERD), peptic ulcers, and Zollinger-Ellison syndrome. It is important to take these medications as directed by a healthcare provider, as they can have side effects and interactions with other medications.

Escherichia coli (E. coli) infections refer to illnesses caused by the bacterium E. coli, which can cause a range of symptoms depending on the specific strain and site of infection. The majority of E. coli strains are harmless and live in the intestines of healthy humans and animals. However, some strains, particularly those that produce Shiga toxins, can cause severe illness.

E. coli infections can occur through various routes, including contaminated food or water, person-to-person contact, or direct contact with animals or their environments. Common symptoms of E. coli infections include diarrhea (often bloody), abdominal cramps, nausea, and vomiting. In severe cases, complications such as hemolytic uremic syndrome (HUS) can occur, which may lead to kidney failure and other long-term health problems.

Preventing E. coli infections involves practicing good hygiene, cooking meats thoroughly, avoiding cross-contamination of food during preparation, washing fruits and vegetables before eating, and avoiding unpasteurized dairy products and juices. Prompt medical attention is necessary if symptoms of an E. coli infection are suspected to prevent potential complications.

Ceftriaxone is a third-generation cephalosporin antibiotic, which is used to treat a wide range of bacterial infections. It works by inhibiting the synthesis of the bacterial cell wall. Ceftriaxone has a broad spectrum of activity and is effective against many gram-positive and gram-negative bacteria, including some that are resistant to other antibiotics.

Ceftriaxone is available in injectable form and is commonly used to treat serious infections such as meningitis, pneumonia, and sepsis. It is also used to prevent infections after surgery or trauma. The drug is generally well-tolerated, but it can cause side effects such as diarrhea, nausea, vomiting, and rash. In rare cases, it may cause serious side effects such as anaphylaxis, kidney damage, and seizures.

It's important to note that Ceftriaxone should be used only under the supervision of a healthcare professional, and that it is not recommended for use in individuals with a history of allergic reactions to cephalosporins or penicillins. Additionally, as with all antibiotics, it should be taken as directed and for the full duration of the prescribed course of treatment, even if symptoms improve before the treatment is finished.

'Enterobacter cloacae' is a species of Gram-negative, facultatively anaerobic, rod-shaped bacteria that are commonly found in the environment, including in soil, water, and the gastrointestinal tracts of humans and animals. They are part of the family Enterobacteriaceae and can cause various types of infections in humans, particularly in individuals with weakened immune systems or underlying medical conditions.

E. cloacae is known to be an opportunistic pathogen, which means that it typically does not cause disease in healthy people but can take advantage of a weakened host to cause infection. It can cause a range of infections, including urinary tract infections, pneumonia, bacteremia (bloodstream infections), and wound infections.

E. cloacae is often resistant to multiple antibiotics, which can make treatment challenging. In recent years, there has been an increase in the number of E. cloacae isolates that are resistant to carbapenems, a class of antibiotics that are typically reserved for treating serious infections caused by multidrug-resistant bacteria. This has led to concerns about the potential for untreatable infections caused by this organism.

Medicine is a branch of healthcare that deals with the prevention, diagnosis, and treatment of disease, injury, and illness. It encompasses a variety of health profession practices, including but not limited to, the services provided by physicians, nurses, pharmacists, dentists, and allied health professionals.

Medicine can also refer to the substances or compounds used in the treatment and prevention of disease, often referred to as medications or drugs. These substances can be administered in various forms, such as oral (pills, liquids), topical (creams, ointments), injectable (shots, IVs), or inhaled (aerosols, nebulizers).

Overall, medicine is a multidisciplinary field that combines scientific research, clinical expertise, and patient values to promote health, prevent disease, and provide treatment for individuals and communities.

Probenecid is a medication that is primarily used to treat gout and hyperuricemia (high levels of uric acid in the blood). It works by decreasing the production of uric acid in the body and increasing its excretion through the kidneys.

In medical terms, probenecid is a uricosuric agent, which means it increases the urinary excretion of urate, the salt form of uric acid. It does this by inhibiting the reabsorption of urate in the proximal tubules of the kidneys, thereby promoting its elimination in the urine.

Probenecid is also used in conjunction with certain antibiotics, such as penicillin and cephalosporins, to increase their concentration in the body by reducing their excretion by the kidneys. This is known as probenecid-antibiotic interaction.

It's important to note that probenecid should be used under the supervision of a healthcare provider, and its use may be contraindicated in certain medical conditions or in combination with specific medications.

"Klebsiella oxytoca" is a species of Gram-negative, facultatively anaerobic, rod-shaped bacteria that is part of the family Enterobacteriaceae. It is a normal inhabitant of the human gastrointestinal tract and can be found in soil, water, and plants. In clinical settings, K. oxytoca can cause various types of infections, including pneumonia, bloodstream infections, wound infections, and urinary tract infections. It is known to produce a variety of beta-lactamases, enzymes that can hydrolyze and inactivate certain antibiotics, making it resistant to some forms of treatment. Its identification is important for appropriate antimicrobial therapy and infection control measures.

Pharyngitis is the medical term for inflammation of the pharynx, which is the back portion of the throat. This condition is often characterized by symptoms such as sore throat, difficulty swallowing, and scratchiness in the throat. Pharyngitis can be caused by a variety of factors, including viral infections (such as the common cold), bacterial infections (such as strep throat), and irritants (such as smoke or chemical fumes). Treatment for pharyngitis depends on the underlying cause of the condition, but may include medications to relieve symptoms or antibiotics to treat a bacterial infection.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Genetic conjugation is a type of genetic transfer that occurs between bacterial cells. It involves the process of one bacterium (the donor) transferring a piece of its DNA to another bacterium (the recipient) through direct contact or via a bridge-like connection called a pilus. This transferred DNA may contain genes that provide the recipient cell with new traits, such as antibiotic resistance or virulence factors, which can make the bacteria more harmful or difficult to treat. Genetic conjugation is an important mechanism for the spread of antibiotic resistance and other traits among bacterial populations.

Fermentation is a metabolic process in which an organism converts carbohydrates into alcohol or organic acids using enzymes. In the absence of oxygen, certain bacteria, yeasts, and fungi convert sugars into carbon dioxide, hydrogen, and various end products, such as alcohol, lactic acid, or acetic acid. This process is commonly used in food production, such as in making bread, wine, and beer, as well as in industrial applications for the production of biofuels and chemicals.

Gonorrhea is a sexually transmitted infection (STI) caused by the bacterium Neisseria gonorrhoeae, also known as "gono" bacteria. It can infect various parts of the body including the genitals, rectum, and throat. The bacteria are typically transmitted through sexual contact with an infected person.

Symptoms may vary but often include abnormal discharge from the genitals or rectum, painful or burning sensations during urination, and in women, vaginal bleeding between periods. However, many people with gonorrhea do not develop symptoms, making it essential to get tested regularly if you are sexually active with multiple partners or have unprotected sex.

If left untreated, gonorrhea can lead to severe complications such as pelvic inflammatory disease (PID) in women and epididymitis in men, which may result in infertility. In rare cases, it can spread to the bloodstream and cause life-threatening conditions like sepsis.

Gonorrhea is curable with appropriate antibiotic treatment; however, drug-resistant strains of the bacteria have emerged, making accurate diagnosis and effective treatment increasingly challenging. Prevention methods include using condoms during sexual activity and practicing safe sex habits.

Lansoprazole is a medication that belongs to a class of drugs called proton pump inhibitors (PPIs). It works by reducing the amount of acid produced in the stomach. The medical definition of Lansoprazole is:

A substituted benzimidazole that is a selective gastric proton pump inhibitor, which suppresses gastric acid secretion by specific inhibition of the H+/K+ ATPase enzyme system at the secretory surface of the gastric parietal cell. It is used as an effective therapy for various gastrointestinal disorders, including gastric and duodenal ulcers, erosive esophagitis, and gastroesophageal reflux disease (GERD). Lansoprazole is available in the form of capsules or oral granules for delayed-release oral administration.

Here's a brief overview of its mechanism of action:

* Lansoprazole is absorbed into the bloodstream and transported to the parietal cells in the stomach, where it is converted into its active form.
* The active form of lansoprazole binds to and inhibits the H+/K+ ATPase enzyme system, which is responsible for pumping hydrogen ions (protons) from the cytoplasm of the parietal cell into the lumen of the stomach, where they combine with chloride ions to form hydrochloric acid.
* By inhibiting this proton pump, lansoprazole reduces the amount of acid produced in the stomach, which helps to relieve symptoms and promote healing of gastrointestinal disorders.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Azithromycin is a widely used antibiotic drug that belongs to the class of macrolides. It works by inhibiting bacterial protein synthesis, which leads to the death of susceptible bacteria. This medication is active against a broad range of gram-positive and gram-negative bacteria, atypical bacteria, and some parasites.

Azithromycin is commonly prescribed to treat various bacterial infections, such as:

1. Respiratory tract infections, including pneumonia, bronchitis, and sinusitis
2. Skin and soft tissue infections
3. Sexually transmitted diseases, like chlamydia
4. Otitis media (middle ear infection)
5. Traveler's diarrhea

The drug is available in various forms, including tablets, capsules, suspension, and intravenous solutions. The typical dosage for adults ranges from 250 mg to 500 mg per day, depending on the type and severity of the infection being treated.

Like other antibiotics, azithromycin should be used judiciously to prevent antibiotic resistance. It is essential to complete the full course of treatment as prescribed by a healthcare professional, even if symptoms improve before finishing the medication.

Cefixime is a third-generation cephalosporin antibiotic, which is used to treat various bacterial infections. It works by inhibiting the synthesis of the bacterial cell wall. Cefixime is available as an oral suspension or tablet and is commonly prescribed for respiratory tract infections, urinary tract infections, ear infections, and skin infections.

The medical definition of Cefixime can be stated as follows:

Cefixime: A semisynthetic antibiotic derived from cephalosporin, which is used to treat a variety of bacterial infections. It has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including beta-lactamase producing strains. Cefixime is administered orally and is often prescribed for respiratory tract infections, urinary tract infections, ear infections, and skin infections. It has a long half-life and high oral bioavailability, making it a convenient option for outpatient treatment.

Common side effects of Cefixime include diarrhea, nausea, vomiting, abdominal pain, and headache. Serious side effects are rare but may include anaphylaxis, Stevens-Johnson syndrome, and toxic epidermal necrolysis. Caution should be exercised when prescribing Cefixime to patients with a history of allergic reactions to cephalosporins or penicillins.

Furazolidone is defined as an antimicrobial agent with nitrofuran structure. It is primarily used in the treatment of intestinal amebiasis, traveller's diarrhea, and other types of bacterial diarrhea. Furazolidone works by inhibiting certain enzymes necessary for the survival of bacteria, thereby killing or stopping the growth of the microorganisms. It is also used as a preservative in some food products.

It's important to note that Furazolidone has been associated with rare but serious side effects such as lung and liver toxicity, so its use is generally restricted to short-term therapy and under close medical supervision.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Gram-negative anaerobic bacteria are a type of bacteria that do not require oxygen to grow and are characterized by their cell wall structure, which does not retain crystal violet dye in the Gram staining procedure. This is because they lack a thick peptidoglycan layer in their cell walls, which is typically stained dark purple in Gram-positive bacteria. Instead, gram-negative bacteria have an outer membrane that contains lipopolysaccharides (LPS), which can be toxic to human cells and contribute to the pathogenicity of these organisms.

Examples of gram-negative anaerobic bacteria include Bacteroides fragilis, Prevotella species, and Porphyromonas species. These bacteria are commonly found in the human mouth, gastrointestinal tract, and genitourinary tract, and can cause a variety of infections, including abscesses, wound infections, and bacteremia.

It's important to note that while gram-negative anaerobic bacteria do not require oxygen to grow, some may still tolerate or even prefer oxygen-rich environments. Therefore, the term "anaerobe" can be somewhat misleading when used to describe these organisms.

Nocardia is a genus of aerobic, gram-positive, filamentous bacteria that can be found in soil, water, and decaying vegetation. It is known to cause various infectious diseases in humans and animals, known as nocardiosis. The infection often enters the body through inhalation, skin wounds, or surgical procedures. Nocardia species are opportunistic pathogens, meaning they mainly cause disease in individuals with weakened immune systems, such as those with HIV/AIDS, organ transplants, or cancer. The infection can affect various organs, including the lungs, brain, skin, and eyes, leading to symptoms like cough, fever, chest pain, weight loss, and skin abscesses. Proper diagnosis and treatment with antibiotics are crucial for managing nocardiosis.

The "History of Medicine" refers to the evolution and development of medical knowledge, practices, and institutions over time. It includes the study of key figures, discoveries, theories, treatments, and societal attitudes that have shaped the way medicine is practiced and understood in different cultures and historical periods. This can encompass various fields such as clinical medicine, public health, medical ethics, and healthcare systems. The history of medicine provides valuable insights into the advances and setbacks in medical knowledge and offers lessons for addressing current and future medical challenges.

The UK Committee on Safety of Medicines (CSM) recommends that treatments such as amoxicillin/clavulanic acid preparations be ... it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins. In ... Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as ... Clavulanic acid was patented in 1974. Amoxicillin-clavulanic acid is a first-line treatment for many types of infections, ...
"Amoxicillin-sulbactam versus amoxicillin-clavulanic acid for the treatment of non-recurrent-acute otitis media in Argentinean ... occasionally penicillins including penicillin, ampicillin and ampicillin-sulbactam, amoxicillin and amoxicillin-clavulnate, and ... and Piperacillin/tazobactam Ticarcillin/clavulanic acid Certain carbapenems and carbapenem-beta-lactamase-inhibitors ... and ciprofloxacin See also pathogenic bacteria for a list of antibiotics sorted by target bacteria. Note: (Bs): Bacteriostatic ...
... such as penicillin. For this reason, it may be combined with clavulanic acid, a β-lactamase inhibitor. This drug combination is ... ISBN 978-0-632-05244-8. "Amoxicillin". Drug Information Portal. U.S. National Library of Medicine. Portal: Medicine (Articles ... Amoxicillin attaches to the cell wall of susceptible bacteria and results in their death. It also is a bactericidal compound. ... Use of the amoxicillin/clavulanic acid combination for more than one week has caused a drug-induced immunoallergic-type ...
In a 2004 open-label study, it was as effective as ampicillin/sulbactam and amoxicillin/clavulanic acid, and far superior in ... As a protein synthesis inhibitor, linezolid stops the growth and reproduction of bacteria by disrupting translation of ... it should not be used against bacteria that are sensitive to drugs with a narrower spectrum of activity, such as penicillins ... including 19th WHO Model List of Essential Medicines and 5th WHO Model List of Essential Medicines for Children). Geneva: World ...
... should consist of either a penicillin with a B-lactamase inhibitor such as amoxicillin/ticarcillin with clavulanic acid or a ... The atlas of emergency medicine. Kevin J. Knoop, Lawrence B Stack, Alan B Storrow, R. Jason Thurman (Fifth ed.). New York. 2021 ... The empirical therapy should be effective against both aerobic and anaerobic bacteria species commonly involved in Ludwig's ... Oral therapy can then commence to last for 2 weeks, with amoxicillin with clavulanic acid, clindamycin, ciprofloxacin, ...
For example, Augmentin (FGP) is made of amoxicillin (a β-lactam antibiotic) and clavulanic acid (a β-lactamase inhibitor). The ... As a response to the use of β-lactams to control bacterial infections, some bacteria have evolved penicillin binding proteins ... Rossi S (ed.) (2004). Australian Medicines Handbook 2004. Adelaide: Australian Medicines Handbook. ISBN 0-9578521-4-2. ... To overcome this resistance, β-lactam antibiotics can be given with β-lactamase inhibitors such as clavulanic acid. β-lactam ...
Although the inhibitor-resistant TEM variants are resistant to inhibition by clavulanic acid and sulbactam, thereby showing ... Abraham EP, Chain E (1940). "An enzyme from bacteria able to destroy penicillin". Nature. 46 (3713): 837. Bibcode:1940Natur.146 ... thereby showing clinical resistance to the beta-lactam-beta lactamase inhibitor combinations of amoxicillin-clavulanate (Co- ... Jacoby GA, Munoz-Price LS (January 2005). "The new beta-lactamases". The New England Journal of Medicine. 352 (4): 380-91. doi: ...
... amoxicillin or amoxicillin/clavulanic acid) and a macrolide antibiotic, such as azithromycin or clarithromycin, for seven to ... Primary microorganisms are viruses, atypical bacteria, penicillin-sensitive streptococcus pneumoniae and haemophilus influenzae ... October 1999). "Use of the selective oral neuraminidase inhibitor oseltamivir to prevent influenza". The New England Journal of ... José, Ricardo J.; Brown, Jeremy S. (2017). "Adult pneumococcal vaccination". Current Opinion in Pulmonary Medicine. 23 (3): 225 ...
Amoxicillin and amoxicillin/clavulanic acid were the most frequently consumed. Antibiotics are screened for any negative ... Purified penicillin displayed potent antibacterial activity against a wide range of bacteria and had low toxicity in humans. ... For example, β-lactam antibiotics may be used in combination with β-lactamase inhibitors, such as clavulanic acid or sulbactam ... Antibiotics revolutionized medicine in the 20th century. Alexander Fleming (1881-1955) discovered modern day penicillin in 1928 ...
Due to its clavulanic acid component, penicillin amoxicillin-clavulanate is the most common culprit of cholestatic liver injury ... Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group". The New England Journal of Medicine. 336 (10): 691-695. ... These changes facilitate bacteria growth and increase the amount of circulating endotoxin. Moreover, given that patients using ... Indeed, there is a strong association between BSEP inhibition and cholestasis in humans, and BSEP inhibitors are shown to ...
The use of clavulanic acid or tazobactam, β-lactamase inhibitors, alongside penicillin gives penicillin activity against β- ... For this reason Gram-positive bacteria are very susceptible to penicillin (as first evidenced by the discovery of penicillin in ... For instance, penicillin G is large and enters through porins slowly; while smaller ampicillin and amoxicillin diffuse much ... "Penicillin F". PubChem. National Center for Biotechnology Information, National Library of Medicine. Archived from the original ...
... a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, ... Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used ... Bacteroides infections in E Medicine Peptostreptococcus infections in E Medicine (Webarchive template wayback links, Articles ... The agents available for oral therapy are limited and include amoxicillin plus clavulanate, clindamycin, chloramphenicol and ...
Clinclav 625mg Tablet contains Amoxicillin 500mg and Clavulanic acid 125mg it is a combination of two medicines. Amoxicillin is ... is a beta-lactamase inhibitor that helps to decrease the resistance and increase the activity of amoxicillin against bacteria. ... Patients who are allergic to penicillin drugs or Amoxicillin drugs must ensure they are taking this medicine under guidance ... Clinclav 625mg Tablet contains Amoxicillin 500mg and Clavulanic acid 125mg it is a combination of two medicines. Amoxicillin is ...
Clavulanic Acid Oral Suspension for Third Party Manufacturing and PCD Pharma Franchise in India. ... Broad-Spectrum Antibiotic: Amoxicillin is a strong medicine that can kill a lot of different bacteria. ... It is a combination penicillin-type antibiotics (a β-lactam antibiotic, potassium clavulanate, a β-lactamase inhibitor &) used ... Tell your doctor if you have allergies to amoxicillin, clavulanate, penicillin, or other medicines. Allergies can cause ...
The UK Committee on Safety of Medicines (CSM) recommends that treatments such as amoxicillin/clavulanic acid preparations be ... it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins. In ... Clavulanic acid is a β-lactam drug that functions as a mechanism-based β-lactamase inhibitor. While not effective by itself as ... Clavulanic acid was patented in 1974. Amoxicillin-clavulanic acid is a first-line treatment for many types of infections, ...
Amoxicillin, like most penicillins, can be detected in breast milk, as with trace quantities of clavulanic acid (see section ... Amoxicillin is susceptible to degradation by beta-lactamases produced by resistant bacteria and therefore the spectrum of ... Pharmacotherapeutic group: Combinations of penicillins, incl. beta-lactamase inhibitors; ATC code: J01CR02. ... Search emc: Enter medicine name or company. Start typing to retrieve search suggestions. When suggestions are available use up ...
Amoxicillin and Clavulanic Acid). Amoxicillin is related to a group of drugs called penicillins, whereas amoxicillin is known ... Like other medicines, Augmentin can cause some side effects. Most of its side effects are minor or temporary in nature. However ... Augmentin has antibiotics that work by eliminating the bacteria that cause infection. Remember that Augmentin 1000 mg will not ... Clavulanate potassium is a beta-lactamase inhibitor that can prevent you from bacterial attack. ...
It consists of Clavulanic Acid, Amoxycillin. The medicine helps to treat certain types of bacterial infections. It is an ... Amoxicillin is a bacterial body penicillin antibiotic. Clavulanate potassium is an inhibitor of beta-lactamase that helps ... prevent specific bacteria from being amoxicillin resistant.. If you have serious kidney disease, have liver problems or ... Amoxicillin and potassium clavulanate can work best when you start a meal. Every 12 hours you should take your medicine.. Do ...
Community consumption of penicillin/β-lactamase inhibitors, predominantly AMC, increased 34.7% from 2000 to 2006 (Figure 2), ... this bacterium can develop resistance and multidrug resistance to several antimicrobial families; consequently, antimicrobial ... which showed retail pharmacy sales of all medicines acquired with National Health System prescriptions and covered nearly 100% ... Amoxicillin-clavulanic acid (AMC) is one of the most consumed antimicrobial agents in many countries (4-6), principally for ...
Biofield Pharma is the best Amoxycillin Clavulanic Acid Lactic Acid Bacillus Tablets Manufacturer, Supplier and Franchise. ... Bacteria emit B-lactamase, which inactivates amoxicillin or penicillin-like antibiotics, and clavulanic acid deactivates the ... Clavulanic acid is also an antibiotic. It is famous as a suicide inhibitor. If clavulanic acid alone is not effective, a ... As applicable in most medicines, this principle is also useful to this combination drug in case you forget to take the dose at ...
... a B-lactum antibiotic Clavulanic acid , a B-lactamase inhibitor The combination of these two products is used to treat various ... This is a combination antibiotic that consists of two ingredients: Amoxicillin trihydrate, ... infections caused by bacteria. Antibiotics are not meant to fight viral infections like cold, flu etc. the bacterial infections ... Amoxicillin and Clavulanic acid is a combination product. ... Amoxicillin is penicillin like antibiotic. While on the other ...
Amoxicillin - , Advent Dt, Amoxil, Augmentin, Orapred Dispersible, Orapred Oral Drops, Prelone, Questran, Zyloprim. Order ... Clavulanic Acid is a beta-lactamase inhibitor that reduces resistance and enhances the activity of Amoxycillin against bacteria ... It is also used with other medicines to treat H. pylori infection and ulcers of the small intestines. Amoxil is a penicillin ... Advent® DT - tablets, combining two medicines: 400mg of Amoxycillin and 75mg of Clavulanic Acid. Amoxycillin is an antibiotic. ...
The beta-lactamase inhibitor (clavulanic acid) in the preparation expands the spectrum of the antibiotic and makes it active ... against amoxicillin-resistant bacteria that produce the enzyme beta-lactamase.. The names of modern medicines may vary, and the ... In the treatment of purulent tonsillitis in adults and children, antibiotics of the penicillin series are most often prescribed ... Medicines For Angina For Adults: A List Of Inexpensive Drugs, Reviews. Medicines for angina, an acute infectious disease, ...
Clavulanic acid: Belongs to the class of penicillin combinations, including beta-lactamase inhibitors. Used in the systemic ... It is susceptible to degradation by β-lactamases which are produced by certain resistant bacteria.. Clavulanic acid, a β-lactam ... Source: U.S. National Library of Medicine. https://dailymed.nlm.nih.gov/dailymed/. Accessed 9/12/2019. Anon. Amoxicillin and ... Amoxicillin 125 mg and clavulanic acid 31.25 mg per 5 mL oral susp. Amoxicillin 250 mg and clavulanic acid 62.5 mg per 5 mL ...
Purchase Amoxyclav 375 Tablet Generic Medicine Of Amoxicillin/Clavulanic Acid Online At Cheap Price With Strengh Of 625mg Used ... This medicine is manufactured by Abbott Pharmaceuticals Ltd.this medication is Composition of Amoxicillin/Clavulanic Acid, it ... Amoxicillin is an antitoxin having a place with a gathering of medications called penicillins. Amoxicillin battles microscopic ... This medicine is used to many different infections caused by bacteria, such as sinusitis, ear infections, pneumonia, urinary ...
Clavulanic Acid is a beta-lactamase inhibitor which reduces resistance and enhances the activity of Cefixime against bacteria. ... Amoxicillin is in a class of medications called penicillin-like antibiotics. It works by stopping the growth of bacteria. ... Neufix CV Neufix CV is a combination of two medicines: Cefixime and Clavulanic Acid. Cefixime is an antibiotic. It works by ... Clavulanic Acid is a beta-lactamase inhibitor which reduces resistance and enhances the activity of Cefpodoxime Proxetil ...
... medicines, antibiotics are used to treat bacterial infections in both humans and animals. ... The applications of clavulanate and amoxicillin. A penicillin-like antibiotic combination called amoxicillin/clavulanic acid is ... Levofloxacin is often reserved for treating bacteria. infections for which safer medicines are ineffective. ... Penicillin antibiotics like amoxicillin attack germs in the body.. A beta-lactamase inhibitor is called clavulanate potassium. ...
Augmentin DDS Syrup kills bacteria by interfering with the production of the bacterial cell wall (outer coating of bacteria). ... Augmentin DDS Syrup (Amoxicillin / Clavulanic Acid) belongs to a class of antibiotic medicines called penicillin. It is used to ... Clavulanic acid belongs to a group of medicines called beta-lactamase inhibitors. It blocks the activity of a chemical (beta- ... Amoxicillin may reduce the effect of the birth control pills.. Q: Does amoxicillin act against anaerobic bacteria?. A: ...
... and clavulanic acid.[5,7] Amoxicillin is a derivative of penicillin and is considered a third-generation penicillin antibiotic ... Clavulanic acid is an inhibitor of the beta-lactamase enzymes and is added to amoxicillin to help reduce this resistance. ... 5,8] Amoxicillin, like penicillin, has activity against similar types of bacteria, including Enterococcus species, Listeria ... amoxicillin and clavulanate potassium powder, for suspension. U.S. National Library of Medicine. https://dailymed.nlm.nih.gov/ ...
They are not inhibited by beta-lactamase inhibitors (eg, clavulanic acid, tazobactam, sulbactam). Ampicillin and amoxicillin, ... Bacteria-producing ESBLs should be considered resistant to all generations of cephalosporins, all penicillins, and to the ... Stewart G Wolf Endowed Chair in Internal Medicine, Department of Medicine, University of Oklahoma Health Science Center; Master ... are inhibited by clavulanic acid and then able to hydrolyze all the beta-lactams not associated with a beta-lactamase inhibitor ...
Complicated infections from multidrug-resistant Gram-negative bacteria (MDR-GNB) represent a serious problem presenting many ... amoxicillin-clavulanic acid (n = 11), and tigecycline (n = 8) were the most common antimicrobials prescribed prior to the ... to ESBL-positive Enterobacterales induced an increased use of β-lactams and penicillins associated with β-lactamase inhibitors ... Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of infections due to MDR Gram-negative bacteria. Front. Med. 2019 ...
... amoxicillin and clavulanic acid, to create a more effective antibiotic. It belongs to the class of beta-lactamase inhibitors. ... Amoxicillin is a type of penicillin antibiotic that works by stopping the growth of bacteria. However, some bacteria produce an ... Augmentin may also interact with other medications, so it is important to inform your doctor of any other medicines you are ... wide range of bacteria and can treat multiple infections at once due to its dual combination of amoxicillin and clavulanic acid ...
Amoxicillin And Potassium Clavulanate Dry Syrup, Calcium Carbonate And Vitamin D3 Syrup, Lycopene Multivitamin Multi Mineral ... Clavulanic:-. Clavulanic acid and its salts and esters. The acid is a suicide inhibitor of bacterial beta-lactamase enzymes ... This medication is a penicillin-type antibiotic. It works by stopping the growth of bacteria.. This antibiotic treats only ... Ambroxol Levosalbutamol & Guaiphenesin Syrup is a medicine that is used for the treatment of Bronchitis, Back Pain, Cough, ...
Amoxicillin. Mechanism and Characteristics. Beta-Lactamase Sensitive. Combine with Clavulanic Acid. Side Effects. ... Medicine (MD/DO). student. study app.. Picmonic for Medicine (MD/DO). covers information that is relevant to your entire ... Antipseudomonal Penicillins. Drugs. Ticarcillin. Carbenicillin. Piperacillin. Mechanism of Action. Same Mechanism as Penicillin ... Resistant Bacteria. Broad Spectrum Gram-Positive and Gram-Negative. Drugs. Ceftobiprole. Has Pseudomonas Coverage. Ceftaroline ...
Amoxicillin/Clavulanic Acid 875 mg/125 mg is an antibiotic and works by killing bacteria ... What is amoxicillin e acido clavulanico 875 mg 125 mg used for? ... Amoxicillin belongs to a group of medicines called penicillins ... Clavulanic acid is in a class of medications called beta-lactamase inhibitors. It works by preventing bacteria from destroying ... It is a combination of two different drugs: amoxicillin and clavulanic acid. Amoxicillin is a penicillin derivative and has ...
In some formulations, Amoxil is combined with clavulanic acid, a beta-lactamase inhibitor, to overcome this resistance. ... Amoxicillin, the active ingredient in Amoxil, is a semi-synthetic antibiotic with a similar structure to penicillin. It works ... Some bacteria have developed resistance to amoxicillin, often through the production of beta-lactamases, enzymes that break ... In the face of this dilemma, generic medicines like Amoxil provide a vital solution. Amoxil generic name is Amoxicillin. As an ...
Amoxicillin/Clavulanate. Amoxicillin/clavulanic acid, also known as co-amoxiclav or amox-clav, sold under the brand name ... As with similar penicillin drugs, amoxicillin + clavulanate kills bacteria by inhibiting production of the bacteria cell wall. ... Clavulanate is an inhibitor of an enzyme produced by bacteria. This enzyme, beta-lactamase, would ordinarily render amoxicillin ... Human Amoxicillin Not the Same as Pet Amoxicillin. Mahaney, veterinary-specific medicines are the best option. The dangers of ...
... can be avoided by the coadministration of a beta-lactamase inhibitor, clavulanic acid. Its function is to protect amoxicillin ... On the other hand, bacteria with cell walls primarily composed of fatty acids (lipopolysaccharides and lipoproteins) lose the ... The percentage of resistance of S. aureus was greater with antibiotics of the Penicillin group (penicillin G, ampicillin and ... Vancomycin is only used in medicine for the treatment of infections caused by gram-positive microorganisms sensitive to it and ...
Potassium Clavulanate With Lactic Acid Bacillus Tablets manufacturer and supplier, this medicine comes with the branding of ... INDICATIONS: Amoxicillin/clavulanic acid is a penicillin-type antibiotic used to treat a wide variety of bacterial infections. ... Lactobacillus Acidophilus is also included to help restore the balance of beneficial bacteria. Together, Amoxicillin & ... Potassium Clavulanate is a beta-lactamase inhibitor that lowers resistance and improves Amoxycillins antibacterial ...
... particularly in cases where bacteria can no longer be treated with antibiotics alone. This research will be presented at the ... the Miami University in Ohio have optimized a new technique that will allow scientists to evaluate how potential inhibitors ... work on antibiotic-resistant bacteria. This technique, called native state mass spectrometry, provides a quick way for ... which is composed of the antibiotic amoxicillin and the inhibitor clavulanic acid. Clavulanic acid inactivates a key protein ...
  • It is a combination penicillin-type antibiotics (a β-lactam antibiotic, potassium clavulanate, a β-lactamase inhibitor &) used to treat and inhibit the growth of bacteria and bacterial infection. (swisschem.in)
  • It works by stopping bacteria from making enzymes called beta-lactamases, which make them resistant to antibiotics. (swisschem.in)
  • While not effective by itself as an antibiotic, when combined with penicillin-group antibiotics, it can overcome antibiotic resistance in bacteria that secrete β-lactamase, which otherwise inactivates most penicillins. (wikipedia.org)
  • This is, in part, because of its efficacy against gram-negative bacteria which tend to be more difficult to control than gram-positive bacteria with chemotherapeutic antibiotics. (wikipedia.org)
  • Clavulanic acid has negligible intrinsic antimicrobial activity, despite sharing the β-lactam ring that is characteristic of β-lactam antibiotics. (wikipedia.org)
  • However, the similarity in chemical structure allows the molecule to interact with the enzyme β-lactamase secreted by certain bacteria to confer resistance to β-lactam antibiotics. (wikipedia.org)
  • This inhibition restores the antimicrobial activity of β-lactam antibiotics against lactamase-secreting resistant bacteria. (wikipedia.org)
  • If you have serious kidney disease, have liver problems or jaundice while taking this medicine, or if you are allergic to penicillin or cephalosporin antibiotics, you should not take amoxicillin and clavulanate potassium. (kapypharmaceutical.co.in)
  • It belongs to the penicillin-like class of antibiotics. (biofieldpharma.com)
  • In combination with amoxicillin, clavulanic acid can defeat the resistance of bacteria to antibiotics. (biofieldpharma.com)
  • Bacteria emit B-lactamase, which inactivates amoxicillin or penicillin-like antibiotics, and clavulanic acid deactivates the action of bacteria. (biofieldpharma.com)
  • Macrolides are prescribed for intolerance to antibiotics of the penicillin series or cephalosporins, and in the presence of allergy to macrolides, lincosamides are indicated. (abchealthonline.com)
  • Amoxicillin is in a class of medications called penicillin-like antibiotics. (noviquelife.com)
  • Medicines known as antibiotics are used to treat bacterial infections in both humans and animals. (wecare-all.com)
  • Antibiotics may work well against infections brought on by bacteria (germs). (wecare-all.com)
  • Augmentin Syrup is used to increase the effect of certain antibiotics (amoxicillin) to treat bacterial infections of the respiratory tract (bronchitis, pneumonia), urinary tract, ear, nose, sinus and throat, skin and soft tissues, bone and joints, and to prevent infections after surgery. (onlinegenericmed.com)
  • Like these three STDs, other STDs are caused by bacteria, and various antibiotics are used in the treatment . (everlywell.com)
  • Over time, microbes can develop resistance to beta-lactam antibiotics, like amoxicillin, by making an enzyme known as beta-lactamase. (everlywell.com)
  • Augmentin is a combination of two antibiotics, amoxicillin and clavulanic acid. (gcbhllc.org)
  • Patients who have had an allergic reaction to penicillin or cephalosporin antibiotics in the past should not take Augmentin. (gcbhllc.org)
  • Augmentin and amoxicillin are two types of antibiotics. (hoyhistoriagt.org)
  • Both antibiotics are in the penicillin drug class. (hoyhistoriagt.org)
  • Taking antibiotics frequently may lead to the bacteria in your body developing more resistance to the medications. (hoyhistoriagt.org)
  • This technique, called native state mass spectrometry, provides a quick way for scientists to identify the best candidates for effective clinical drugs, particularly in cases where bacteria can no longer be treated with antibiotics alone. (phys.org)
  • In the current study, Thomas and her team studied a bacterial protein called metallo-beta-lactamase, which renders many clinical strains of bacteria resistant to all penicillin-like antibiotics. (phys.org)
  • Penicillin-like antibiotics make up over 60% of the entire antibiotic arsenal that is available to treat bacterial infections. (phys.org)
  • Amoxyclav 375 mg Tablet belongs to a class of antibiotics commonly known as penicillins. (genericmedsaustralia.com)
  • Co-amoxiclav is a combination of two antibiotics, amoxicillin and clavulanic acid. (watsonshealth.com.ph)
  • As unreasonable antibiotics usage remains crucial in the proceeding of resistant bacteria selection, our study could greatly promote the avoidance of unnecessary antibiotic usage. (biomedcentral.com)
  • a sort of library for other bacteria to acquire instructions on how to survive clinically relevant antibiotics. (the-gist.org)
  • If administered alone they are unable to kill bacteria, but with antibiotics, they act to enhance their effect. (the-gist.org)
  • Sometimes, the term antibiotic -literally "opposing life", from the Greek roots ἀντι anti , "against" and βίος bios , "life"-is broadly used to refer to any substance used against microbes, but in the usual medical usage, antibiotics (such as penicillin) are those produced naturally (by one microorganism fighting another), whereas non-antibiotic antibacterials (such as sulfonamides and antiseptics) are fully synthetic. (worldsbest.rehab)
  • Antibacterials" include antiseptic drugs, antibacterial soaps, and chemical disinfectants, whereas antibiotics are an important class of antibacterials used more specifically in medicine and sometimes in livestock feed. (worldsbest.rehab)
  • Antibiotics revolutionized medicine in the 20th century. (worldsbest.rehab)
  • However, the effectiveness and easy access to antibiotics have also led to their overuse and some bacteria have evolved resistance to them. (worldsbest.rehab)
  • Your heart rate can also be altered by other antibiotics such levofloxacin, amoxicillin, and ciprofloxacin. (rizochem.com)
  • many Gram-negative bacteria as a result of widespread use of various antibiotics [ 1,2 ]. (who.int)
  • The β-lactams (penicillins, cephalosporins, carbapenems, monobactams, and others) are one of the most important classes of antibiotics, but resistance to β-lactam antibiotics emerged to a severe problem in anti-infective therapy over the decades. (infectiologyjournal.com)
  • Surveillance and molecular epidemiology of antibiotics resistant bacteria are urgently needed in the study area. (bvsalud.org)
  • This medicine is a kind of antibiotic that is used to treat a variety of bacterial infections. (swisschem.in)
  • This medicine can help with many different types of bacterial infections, such as infections in the lungs, urine, skin, and sinuses. (swisschem.in)
  • The UK Committee on Safety of Medicines (CSM) recommends that treatments such as amoxicillin/clavulanic acid preparations be reserved for bacterial infections likely to be caused by amoxicillin-resistant β-lactamase-producing strains, and that treatment should not normally exceed 14 days. (wikipedia.org)
  • The medicine helps to treat certain types of bacterial infections. (kapypharmaceutical.co.in)
  • Amoxicillin, clavulanic acid, and lactobacillus work together to provide a potent antibiotic that can treat a variety of bacterial infections and rebuild healthy gut flora. (biofieldpharma.com)
  • Buy Amoxyclav Tablets Generic drug of Amoxicillin/Clavulanic Acid online at a low price from most trusted pharmacy to cure Bacterial infections. (safegenericpharmacy.com)
  • Cefclar 200 Cefclar 200 contains Cefpoodoxime 200mg, is an antibiotic medicine used to treat bacterial infections in the body. (noviquelife.com)
  • Doxycycline works by halting the growth of bacteria when treating bacterial infections. (wecare-all.com)
  • Augmentin works by combining two active ingredients, amoxicillin and clavulanate potassium, which work together to fight bacterial infections. (gcbhllc.org)
  • Precautions and Side Effects: Augmentin, a combination of amoxicillin and clavulanic acid, is a widely prescribed antibiotic medication that is commonly used to treat bacterial infections. (gcbhllc.org)
  • Amoxicillin is used to treat a wide variety of bacterial infections. (arklehealthcare.in)
  • Amoxicillin/clavulanate is an antibiotic medication used to treat bacterial infections. (hoyhistoriagt.org)
  • Amoxicillin/clavulanic acid, also known as co-amoxiclav or amox-clav, sold under the brand name Augmentin, among others, is an antibiotic medication used for the treatment of a number of bacterial infections . (keepingdog.com)
  • Amoxicillin + clavulanate is a combination of two drugs that act together (synergistically) to treat or prevent bacterial infections in animals. (keepingdog.com)
  • The combination of these two drugs in the same tablet means they act synergistically to treat bacterial infections that would otherwise have been resistant to amoxicillin alone. (keepingdog.com)
  • An example of this type of therapy is Augmentin, a prescription antibiotic used to treat bacterial infections of the respiratory tract, which is composed of the antibiotic amoxicillin and the inhibitor clavulanic acid. (phys.org)
  • In Treatment of Bacterial infections augmentin 1000 Duo Tablet contains two different medicines, Amoxycillin and Clavulanic Acid, that work together to kill the bacteria that cause infections. (pillgeneric.com)
  • Clavulanic acid 200mg Bacterial infections can occur in many different places of the body, and amoxicillin and clavulanate are used to treat them. (rizochem.com)
  • Clavulanic acid is a beta-lactamase inhibitor that decreases resistance. (drugcarts.com)
  • To determine the evolution and trends of amoxicillin-clavulanic acid resistance among Escherichia coli isolates in Spain, we tested 9,090 blood isolates from 42 Spanish hospitals and compared resistance with trends in outpatient consumption. (cdc.gov)
  • Therefore, a beta-lactamase inhibitor deactivates resistance and increases the effect of amoxicillin against bacteria. (biofieldpharma.com)
  • Clavulanic Acid is a beta-lactamase inhibitor that reduces resistance and enhances the activity of Amoxycillin against bacteria. (hydroxychloroquine-buy.us)
  • Often, using such drugs, bacteria develop a resistance and the efficiency of the treatment falls. (onlinegenericmed.com)
  • Clavulanic acid, as a component of Augmentin drug, provides a resistance of Amoxicillin to the influence of b-lactamase increasing its area of the action. (onlinegenericmed.com)
  • Clavulanic acid is an inhibitor of the beta-lactamase enzymes and is added to amoxicillin to help reduce this resistance. (everlywell.com)
  • Some bacteria are inherently resistant to amoxicillin/clavulanate whereas others can acquire resistance. (hoyhistoriagt.org)
  • A person's antibiotic resistance may also cause amoxicillin to take longer to work. (hoyhistoriagt.org)
  • Despite the combination of amoxicillin plus clavulanate, resistance may still occur with some bacteria and infections unresponsive to treatment. (keepingdog.com)
  • it simply acts as an inhibitor of an important resistance mechanism. (keepingdog.com)
  • Potassium Clavulanate is a beta-lactamase inhibitor that lowers resistance and improves Amoxycillin's antibacterial effectiveness. (soignerpharma.com)
  • One method of combatting antibiotic resistance is using a combination drug/inhibitor therapy," said Caitlyn Thomas, a Ph.D. candidate in chemistry, presenting author on the study. (phys.org)
  • Antimicrobial resistance occurs through different mechanisms, which include spontaneous (natural) genetic mutations and horizontal transfer of resistant genes through deoxyribonucleic acid (DNA). (who.int)
  • Clavulanic Acid is a beta-lactamase inhibitor that lessens resistance and enhances the efficacy of Amoxicillin against bacteria. (genericmedsaustralia.com)
  • The purpose of the study is to discuss the correlation between the resistance rate of gram negative bacteria to fluoroquinolones (FQ) and antibiotic consumption intensity of 145 China tertiary hospitals in 2014. (biomedcentral.com)
  • Each participating hospital required to report annual consumption of each antibiotic, and the resistance rate of gram negative bacteria to FQ. (biomedcentral.com)
  • In this study, the aim was to investigat the correlation between resistance rate of gram-negative bacteria and antibiotic usage. (biomedcentral.com)
  • Resistance to nalidixic acid is a surrogate marker which predicts fluoroquinolones failure and can be used to guide antibiotic therapy. (pediatriconcall.com)
  • The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria. (lookformedical.com)
  • This means that if an antibiotic becomes ineffective due to a resistance mechanism, an adjuvant returns it to being able to kill bacteria. (the-gist.org)
  • The antimicrobial resistance of E. coli occurring in companion animals, especially the multidrug resistance, becomes an emerging problem in veterinary medicine. (pjmonline.org)
  • ESBLs mediate resistance to penicillins, cephalosporins and monobactams, but they are sensitive to β-lactam inhibitors. (pjmonline.org)
  • The advent of antimicrobial resistance is increasingly limiting therapeutic options in human and veterinary medicine. (vin.com)
  • In human medicine, E. coli has developed resistance to the fluorinated quinolones, beta-lactams, or both: it is among the gram-negative organisms that secrete extended-spectrum beta-lactamases (ESBL). (vin.com)
  • The combination of prescription antibiotic is Amoxicillin and Clavulanate potassium. (kapypharmaceutical.co.in)
  • Clavulanate potassium is an inhibitor of beta-lactamase that helps prevent specific bacteria from being amoxicillin resistant. (kapypharmaceutical.co.in)
  • The treatment for a viral infection such as flu or the common cold is not carried out with amoxicillin and clavulanate potassium. (kapypharmaceutical.co.in)
  • Clavulanate potassium is a beta-lactamase inhibitor that keeps certain microscopic organisms from getting to be impervious to amoxicillin. (safegenericpharmacy.com)
  • Here comes the role of clavulanate potassium, which inhibits the activity of beta-lactamase and prevents it from breaking down amoxicillin. (gcbhllc.org)
  • Clavulanate Potassium is a semi-synthetic beta-lactamase inhibitor isolated from streptomyces. (arklehealthcare.in)
  • While amoxicillin/clavulanate potassium can be given without regard to meals, absorption of clavulanate potassium when taken with food is greater relative to the fasted state. (soignerpharma.com)
  • In one study, the relative bioavailability of clavulanate was reduced when amoxicillin/clavulanate potassium was dosed after eating something. (soignerpharma.com)
  • METABOLISM AND EXCRETION: The half-life of amoxicillin after the oral administration of amoxicillin/clavulanate potassium is 1.3 hours and that of clavulanic acid is 1 hour. (soignerpharma.com)
  • Approximately 50% to 70% of the amoxicillin and approximately 25% to 40% of the clavulanic acid are excreted unchanged in urine during the first 6 hours after administration of a single 250 mg/125 mg or 500 mg/125 mg tablet of amoxicillin/clavulanate potassium. (soignerpharma.com)
  • These highlights do not include all the information needed to use AMOXICILLIN AND CLAVULANATE POTASSIUM safely and effectively. (nih.gov)
  • When susceptibility test results show susceptibility to amoxicillin, indicating no beta-lactamase production, amoxicillin and clavulanate potassium should not be used. (nih.gov)
  • To reduce the development of drug-resistant bacteria and maintain the effectiveness of amoxicillin and clavulanate potassium and other antibacterial drugs, amoxicillin and clavulanate potassium should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. (nih.gov)
  • History of a serious hypersensitivity reaction (e.g., anaphylaxis or Stevens-Johnson syndrome) to amoxicillin and clavulanate potassium or to other beta-lactams (e.g., penicillins or cephalosporins). (nih.gov)
  • History of cholestatic jaundice/hepatic dysfunction associated with amoxicillin and clavulanate potassium. (nih.gov)
  • Serious (including fatal) hypersensitivity reactions: Discontinue amoxicillin and clavulanate potassium if a reaction occurs. (nih.gov)
  • Patients with mononucleosis who receive amoxicillin and clavulanate potassium develop skin rash. (nih.gov)
  • Avoid amoxicillin and clavulanate potassium use in these patients. (nih.gov)
  • Concomitant use of amoxicillin and clavulanate potassium and oral anticoagulants may increase the prolongation of prothrombin time. (nih.gov)
  • Amoxicillin and clavulanate potassium may reduce efficacy of oral contraceptives. (nih.gov)
  • When combined with amoxicillin, clavulanate potassium broadens its antibacterial spectrum and provides sufficient antibacterial activity to treat infections brought on by beta-lactamase-producing bacteria. (rizochem.com)
  • The strength of 500 mg of amoxicillin, 125 mg of Clavulanic acid, and Lactic Acid Bacillus is prescribed to fight against infections caused by a variety of bacteria and maintain the balance of healthy gut bacteria. (biofieldpharma.com)
  • The combination of these two products is used to treat various infections caused by bacteria. (monarx.tech)
  • Generic Amoxil is used for treating infections caused by certain bacteria. (hydroxychloroquine-buy.us)
  • This medicine is used to many different infections caused by bacteria, such as sinusitis, ear infections, pneumonia, urinary tract infections, bronchitis, and infections of the skin. (safegenericpharmacy.com)
  • Clavixo 625 Clavixo 625 is a combination of amoxicillin and clavulanic acid is used to treat certain infections caused by bacteria, including infections of the ears, lungs, sinus, skin, and urinary tract. (noviquelife.com)
  • This drug is used in conjunction with beta-lactamase susceptible penicillins to treat infections caused by beta-lactamase producing organisms. (arklehealthcare.in)
  • It is used to treat infections caused by certain bacteria. (spelenmetzonderspeelgoed.nl)
  • Augmentin contains amoxicillin as the primary ingredient in addition to clavulanic acid, which can help treat infections caused by antibiotic-resistant bacteria. (hoyhistoriagt.org)
  • Amoxicillin + clavulanate is administered to treat infections caused by susceptible bacteria. (keepingdog.com)
  • Amoxicillin & Potassium Clavulanate With Lactic Acid Bacillus Tablets which is used to treat a wide variety of infections caused by bacteria. (soignerpharma.com)
  • augmentin 1000 Duo Tablet is a penicillin-type of antibiotic that helps your body fight infections caused by bacteria. (pillgeneric.com)
  • Clinclav 625mg Tablet contains Amoxycillin (500mg) and Clavulanic Acid (125mg) used to treat conditions like a bacterial infection, urinary tract infection, sinus infection, bone and joint infections, respiratory tract infections. (drugcarts.com)
  • Amoxycillin & Potassium Clavulanate Oral Suspension IP is a medicine that has two active ingredients: amoxicillin and clavulanate. (swisschem.in)
  • It consists of Clavulanic Acid, Amoxycillin. (kapypharmaceutical.co.in)
  • AUTOBACT LB: Amoxycillin 500 mg + Clavulanic Acid 125 mg + Lactic Acid Bacillus 60 million Spores is available in a 10*6 strip pack. (biofieldpharma.com)
  • If clavulanic acid alone is not effective, a combination of Amoxycillin and clavulanic acid is recommended for effective symptomatic treatment. (biofieldpharma.com)
  • If you are pregnant or breastfeeding, consult your doctor before taking AUTOBACT LB: Amoxycillin 500 mg + Clavulanic Acid 125 mg + Lactic Acid Bacillus 60 million Spores. (biofieldpharma.com)
  • AUTOBACT LB: Amoxycillin 500 mg + Clavulanic Acid 125 mg + Lactic Acid Bacillus 60 million Spores may cause dizziness, so drive carefully. (biofieldpharma.com)
  • Avoid drinking alcohol while taking AUTOBACT LB: Amoxycillin 500 mg + Clavulanic Acid 125 mg + Lactic Acid Bacillus 60 million Spores to avoid unpleasant Side Effects. (biofieldpharma.com)
  • Advent® DT - tablets, combining two medicines: 400mg of Amoxycillin and 75mg of Clavulanic Acid. (hydroxychloroquine-buy.us)
  • Amoxycillin works by stopping the growth of bacteria. (pillgeneric.com)
  • augmentin 1000 Duo Tablet is a combination of two medicines: Amoxycillin and Clavulanic Acid. (pillgeneric.com)
  • Azivio 250/500 Azivio 250/500 is Azithromycin Tablet is a broad-spectrum type of antibiotic effective in killing many types of gram-positive bacteria, some types of gram-negative bacteria and other microorganisms. (noviquelife.com)
  • With rare exceptions, E cloacae complex species are resistant to the narrow-spectrum penicillins that traditionally have good activity against other Enterobacteriaceae such as E coli (eg, ampicillin, amoxicillin) and to first-generation and second-generation cephalosporins (eg, cefazolin, cefuroxime). (medscape.com)
  • Ampicillin and amoxicillin, first- and second-generation cephalosporins, and cephamycins are strong AmpC beta-lactamase inducers. (medscape.com)
  • Third-generation cephalosporins and extended-spectrum penicillins, although labile to AmpC beta-lactamases, are weak inducers. (medscape.com)
  • Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. (lookformedical.com)
  • The impact on clavulanic acid and sulbactam is not clear, although their use in place of cephalosporins appears to reduce the emergence of ESBL and may reduce the emergence of other resistant pathogens such as Clostridium difficile and vancomycin-resistant enterococci. (vin.com)
  • It prevents the growth of bacteria. (biofieldpharma.com)
  • Amoxicillin works by stopping the growth of bacteria. (monarx.tech)
  • It works by stopping the growth of bacteria. (noviquelife.com)
  • Amoxicillin is a type of penicillin antibiotic that works by stopping the growth of bacteria. (gcbhllc.org)
  • Augmentin works by stopping the growth of bacteria and preventing further infection. (gcbhllc.org)
  • They may either kill or inhibit the growth of bacteria. (worldsbest.rehab)
  • Other related drugs include ampicillin, penicillin G, and ticarcillin. (keepingdog.com)
  • ampicillin for amoxicillin and amoxicillin-clavulanic acid for ampicillin-sulbactam. (vin.com)
  • In its most common preparations, potassium clavulanate (clavulanic acid as a salt of potassium) is combined with: amoxicillin (co-amoxiclav, trade names Augmentin, Clavulin, Tyclav, Clavaseptin (veterinary), Clavamox (veterinary), Synulox (veterinary), and others) ticarcillin (co-ticarclav, trade name Timentin) Clavulanic acid was patented in 1974. (wikipedia.org)
  • Augmentin 625 (500-125 mg)Amoxicillin and Clavulanic acid is a combination product. (monarx.tech)
  • Generic Augmentin is used in the treatment of lower respiratory, middle ear, sinus, skin, and urinary tract infections that are caused by certain specific bacteria. (hydroxychloroquine-buy.us)
  • Augmentin DDS Syrup (Amoxicillin / Clavulanic Acid) belongs to a class of antibiotic medicines called penicillin. (onlinegenericmed.com)
  • Augmentin contains two active components namely amoxicillin and clavulanic acid. (onlinegenericmed.com)
  • Augmentin® is a frequently used oral antibiotic composed of two active ingredients, amoxicillin, and clavulanic acid. (everlywell.com)
  • Augmentin® works by the combined mechanisms of action of amoxicillin and clavulanic acid. (everlywell.com)
  • The CDC treatment guideline lists amoxicillin, a component of Augmentin®, as a recommended alternative therapy for the treatment of chlamydia in pregnant women. (everlywell.com)
  • Augmentin is a medication that combines two active ingredients, amoxicillin and clavulanic acid, to create a more effective antibiotic. (gcbhllc.org)
  • This combined action makes Augmentin more effective against a wider range of bacteria than amoxicillin alone. (gcbhllc.org)
  • Augmentin may also interact with other medications, so it is important to inform your doctor of any other medicines you are taking. (gcbhllc.org)
  • Amoxicillin is a commonly prescribed antibiotic, and Augmentin contains a combination of amoxicillin and clavulanate or clavulanic acid. (hoyhistoriagt.org)
  • The medicine should be applied widely to the skin from different factors how Can I Buy Augmentin Online as The on the skin for 5 Pityriasis versicolor most frequently affects purposes only and is not to be used for medical in women. (kalpanatrust.com)
  • Indications - Amoxicillin-clavulanate is one of the most frequently used antimicrobials in emergency departments and primary care offices worldwide. (hoyhistoriagt.org)
  • Clinclav 625mg Tablet contains Amoxicillin 500mg and Clavulanic acid 125mg it is a combination of two medicines. (drugcarts.com)
  • Adults and children ≥ 40 kg): this formulation of Co-Amoxiclav tablet BP 250/125mg gives a maximum dose of 750 mg amoxicillin and 375 mg clavulanic acid when given as recommended below. (medicines.org.uk)
  • There are the various strength of this medication like Amoxyclav 375 (Amoxicillin 250mg/Clavulanic acid 125mg), Amoxyclav 625 (Amoxicillin 500mg/Clavulanic acid 125mg), Amoxyclav 1000 (Amoxicillin 875mg/Clavulanic acid 125mg). (safegenericpharmacy.com)
  • Clavulanic acid is a suicide inhibitor, covalently bonding to a serine residue in the active site of the β-lactamase. (wikipedia.org)
  • It is famous as a suicide inhibitor. (biofieldpharma.com)
  • The acid is a suicide inhibitor of bacterial beta-lactamase enzymes from Streptomyces clavuligerus. (arklehealthcare.in)
  • Amoxicillin and Clavulanic acid are also known as co-amoxiclav. (swisschem.in)
  • Clavulanic acid inactivates a key protein that the bacterium uses to become resistant to amoxicillin. (phys.org)
  • We are offering Amoxicillin 200mg + Clavulanic 28.5mg in our brand name" AMOXOBIX-DS" with 2.5/30ml packing. (arklehealthcare.in)
  • What is the purpose of Clavulanic acid 200mg? (rizochem.com)
  • Clavulanic acid 200mg Is it a potent antibiotic? (rizochem.com)
  • β-lactam synthetase is a 54.5 kDa protein that is encoded by orf3 of the clavulanic acid gene cluster, and shows similarity to asparagine synthase - Class B enzymes. (wikipedia.org)
  • We conclude that the community could be a reservoir of these ESBL-producing bacteria and enzymes. (who.int)
  • Nous en concluons que les structures de proximité pourraient être un réservoir de bactéries productrices de BLSE et de ces enzymes. (who.int)
  • This mini-review gives an overview on the therapeutically most important classes of boosters/antibiotic enhancers, like β-lactamase inhibitors, inhibitors of CYP enzymes in HIV therapy and hepatitis C. Inhibitors of efflux pumps in pathogenic bacteria and fungi will be addressed shortly. (infectiologyjournal.com)
  • Please visit the below website walgreens pharmacy to order doxocline hydrochloride capsules ip 100mg price walgreens amoxicillin 500mg dose zithromax pregnancy online. (dewysparkle.com)
  • This helps the medicine to be effective against many types of bacteria. (swisschem.in)
  • In some cases, doxycycline hyclate will help you to eliminate certain types of bacteria that cause acne. (adiospestcontrol.com)
  • Clavulanic acid ensures an extended antibacterial activity, but it also interferes with the growth and division procedure of the bacterial cell wall. (kapypharmaceutical.co.in)
  • Amoxicillin is an antibiotic related to penicillin, except that it has a somewhat broader spectrum of antibacterial action. (keepingdog.com)
  • The term "antibacterial" derives from Greek ἀντί ( anti ), "against" + βακτήριον ( baktērion ), diminutive of βακτηρία ( baktēria ), "staff, cane", because the first bacteria to be discovered were rod-shaped. (worldsbest.rehab)
  • Of these inducible bacteria, mutants with constitutive hyperproduction of beta-lactamases can emerge at a rate between 10 5 and 10 8 . (medscape.com)
  • While many research labs throughout the world are attempting to create new inhibitors that inactivate metallo-beta-lactamases, Thomas and collaborators instead analyze how these new inhibitors work. (phys.org)
  • The third salt is Lactobacillus or Lactic Acid Bacillus. (biofieldpharma.com)
  • Together, Amoxicillin & Potassium Clavulanate With Lactic Acid Bacillus Tablets treat bacterial infection and prevent the infectious area from interacting with bacteria while treatment. (soignerpharma.com)
  • Amoxicillin & Potassium Clavulanate With Lactic Acid Bacillus Tablets should be taken once in a day after having a meal to avoid any kind of upset stomach. (soignerpharma.com)
  • Amoxicillin & Potassium Clavulanate With Lactic Acid Bacillus Tablets may cause some side effects which are common but it doesn't mean they do not need any kind of attention. (soignerpharma.com)
  • We are well recognized Amoxicillin and Potassium Clavulanate With Lactic Acid Bacillus Tablets manufacturer and supplier in India. (soignerpharma.com)
  • It is effective against a wide range of bacteria and can treat multiple infections at once due to its dual combination of amoxicillin and clavulanic acid. (gcbhllc.org)
  • The high probability of ESBL production by FQR gram-negative bacteria makes anti-infective treatment more difficult. (biomedcentral.com)
  • The extended-spectrum β-lactamase (ESBL)-producing bacteria have been isolated at increasing frequency worldwide. (scielo.br)
  • The specific mechanism of how this enzyme works is not fully understood, but this enzyme regulates 3 steps in the overall synthesis of clavulanic acid. (wikipedia.org)
  • however, it is known that this enzyme has the ability to couple together glyceraldehyde-3-phosphate with L-arginine in the presence of thiamine diphosphate (TDP or thiamine pyrophosphate), which is the first step of the clavulanic acid biosynthesis. (wikipedia.org)
  • This restructures the clavulanic acid molecule, creating a much more reactive species that attacks another amino acid in the active site, permanently inactivating it, and thus inactivating the enzyme. (wikipedia.org)
  • These bacteria produce a chemical enzyme called beta lactamase that makes some infections particularly difficult to treat. (hydroxychloroquine-buy.us)
  • However, some bacteria produce an enzyme called beta-lactamase, which breaks down amoxicillin and renders it ineffective. (gcbhllc.org)
  • Clavulanate is an inhibitor of an enzyme produced by bacteria. (keepingdog.com)
  • This enzyme, beta-lactamase, would ordinarily render amoxicillin inactive. (keepingdog.com)
  • TEVA Pill 3109 Generic Drug Name: Amoxicillin What It Looks Like: A beige capsule with "TEVA 3109" printed on one side Strength: 500 mg Common Brand Names: Amoxil, Moxatag, Larotid Use: Treating. (spelenmetzonderspeelgoed.nl)
  • TEVA 3109 Amoxicillin Strength 500 mg Imprint TEVA 3109 Color Beige Shape Capsule-shape View details 1 / 3 TEVA 54 Buspirone Hydrochloride Strength 10 mg Imprint TEVA 54 Color White Shape Round View details. (spelenmetzonderspeelgoed.nl)
  • If you develop an itchy rash, swollen face or mouth, or have difficulty breathing, these may be signs that you are allergic to a penicillin antibiotic. (watsonshealth.com.ph)
  • If you have an allergic condition, or if you have ever had an allergic reaction to a medicine. (watsonshealth.com.ph)
  • Amoxicillin and clavulanate may not work as well or be hazardous if you do not use your doctor\'s actual tablet form. (kapypharmaceutical.co.in)
  • Amoxyclav 375 Tablet comprises two functioning agents: Amoxicillin and Clavulanic Acid. (genericmedsaustralia.com)
  • If a higher daily dose of amoxicillin is required, it is recommended that another preparation of Co-Amoxiclav is used in order to avoid administration of unnecessarily high daily doses of clavulanic acid (see sections 4.4 and 5.1). (medicines.org.uk)
  • Dose adjustments are based on the maximum recommended levels of amoxicillin. (medicines.org.uk)
  • 40 kg with a creatinine clearance of less than 30 ml/min, using Co-amoxiclav presentations with an amoxicillin to clavulanic acid ratio of 2:1 is not recommended, as no dose adjustments are available. (medicines.org.uk)
  • Take the medicine as soon as possible if you missed a dose, but skip the missed dose when your next dose is almost time. (kapypharmaceutical.co.in)
  • As applicable in most medicines, this principle is also useful to this combination drug in case you forget to take the dose at a scheduled time, take it immediately but if the time has reached near to the regular time of the next dose, then skip the same to avoid double dosing of the medicine. (biofieldpharma.com)
  • Amoxicillin is a fast-acting antibiotic that begins working almost immediately after someone takes a dose, and it reaches full effectiveness about an hour or two later. (hoyhistoriagt.org)
  • Take this medicine in the dose and duration as advised by your doctor. (pillgeneric.com)
  • Amoxicillin-clavulanic acid is a first-line treatment for many types of infections, including sinus infections, and urinary tract infections, including pyelonephritis. (wikipedia.org)
  • Amoxicillin-clavulanic acid (AMC) is one of the most consumed antimicrobial agents in many countries ( 4 - 6 ), principally for respiratory and urinary tract infections. (cdc.gov)
  • Amoxicillin is a penicillin antibiotic that is used to treat many different types of infection caused by bacteria, such as tonsillitis, bronchitis, pneumonia, and infections of the ear, nose, throat, skin, or urinary tract. (spelenmetzonderspeelgoed.nl)
  • Doctors often prescribe amoxicillin to treat tonsilitis and urinary tract infections. (hoyhistoriagt.org)
  • The phenotypic test using ceftazidime and ceftazidime/clavulanic acid disks (Becton Dickinson) was performed according to the Clinical and Laboratory Standards Institute guidelines (CLSI, 2013) to detect ESBLs production. (pjmonline.org)
  • Conkey agar plates, one supplemented with bacteria is an emerging problem in the 1 µg/mL of cefotaxime and another with community setting in many parts of the 1 µg/mL of ceftazidime, and incubated world [ 6 ]. (who.int)
  • Clavulanate and Amoxicillin potassium may enter the breast milk and cause harm to an infant. (kapypharmaceutical.co.in)
  • Amoxicillin and potassium clavulanate can work best when you start a meal. (kapypharmaceutical.co.in)
  • Leading Manufacturer of amoxicillin and potassium clavulanate dry syrup, calcium carbonate and vitamin d3 syrup, lycopene multivitamin multi mineral syrup, levosulbutamol, ambroxol and guaiphenesin cough syrup, ferrous ascorbate folic acid and zinc syrup and fungal diastase pepsin and multivitamin syrup from Chandigarh. (arklehealthcare.in)
  • It is an antibiotic of penicillin that blocks the growth of the cell wall of the bacterial cells and kills it. (kapypharmaceutical.co.in)
  • It kills bacteria, which helps to improve your symptoms and cure the infection. (noviquelife.com)
  • As with similar penicillin drugs, amoxicillin + clavulanate kills bacteria by inhibiting production of the bacteria cell wall. (keepingdog.com)
  • Amoxicillin is a penicillin antibiotic that kills the bacteria responsible for the infection. (watsonshealth.com.ph)
  • In current usage, the term "antibiotic" is applied to any medication that kills bacteria or inhibits their growth, regardless of whether that medication is produced by a microorganism or not. (worldsbest.rehab)
  • Printed black TEVA on cap and 3109 on body portions of the capsules and contain 500 mg amoxicillin as the trihydrate. (spelenmetzonderspeelgoed.nl)
  • Blood and saliva can transport viruses and pathogenic bacteria which could cause anything from the common cold to other more serious diseases such as labial herpes, hepatitis B and C, pneumonia, tuberculosis and, more rarely, acquired immunodeficiency syndrome (AIDS). (bvsalud.org)
  • Amoxicillin battles microscopic organisms in the body. (safegenericpharmacy.com)
  • 5] Adding clavulanic acid to amoxicillin broadens the coverage to include organisms such as Neisseria species , Proteus species , and Pasteurella multocida . (everlywell.com)
  • Effective against more organisms than amoxicillin by itself. (hoyhistoriagt.org)
  • It contains two different medicines called amoxicillin and clavulanic acid. (hoyhistoriagt.org)
  • Hypersensitivity to the active substances, to any of the penicillins or to any of the excipients. (medicines.org.uk)
  • 4 CONTRAINDICATIONS Amoxicillin is contraindicated in patients who have experienced a serious hypersensitivity reaction (e. (spelenmetzonderspeelgoed.nl)
  • Amoxicillin + clavulanate should not be used in animals with known hypersensitivity or allergy to the drug. (keepingdog.com)
  • This medicine is manufactured by Abbott Pharmaceuticals Ltd.this medication is Composition of Amoxicillin/Clavulanic Acid, it is an active Ingredients. (safegenericpharmacy.com)
  • This medication is Composition of Amoxicillin/Clavulanic Acid, and it is an active Ingredients. (safegenericpharmacy.com)
  • Lansoprazole is a medication that lowers stomach acid. (wecare-all.com)
  • This medication is a penicillin-type antibiotic. (arklehealthcare.in)
  • Clavulanic acid by itself has very little antimicrobial activity, but when combined with amoxicillin, it broadens the antibiotic effects of amoxicillin. (everlywell.com)
  • Certain other drugs can interact with amoxicillin and increase the risk of serious muscle problems. (monarx.tech)
  • Consult with your veterinarian to determine if other drugs your pet is receiving could interact with amoxicillin + clavulanate. (keepingdog.com)
  • The antibiotic amoxicillin and clavulanate combination is a member of the class of drugs known as beta-lactamase inhibitors and penicillins. (rizochem.com)
  • Call your doctor before using antidiarrheal medicine if you have diarrhea which is watery and bloody. (kapypharmaceutical.co.in)
  • It is common for animals to develop diarrhea or loose stools from oral amoxicillin, and the same reaction may occur with amoxicillin + clavulanate. (keepingdog.com)
  • The most common side effects of this medicine include vomiting, nausea, and diarrhea. (pillgeneric.com)
  • Among Gram-negative bacteria (GNB), Enterobacterales ( Enterobacterales ), such as Escherichia coli ( E. coli ) and Klebsiella pneumoniae ( K. pneumoniae ), are the most clinically relevant pathogens in healthcare settings. (frontiersin.org)
  • Outpatient consumption of penicillin/β-lactamase inhibitors (World Health Organization code J01CR02) for the period 2002-2006 was assessed from the Especialidades Consumo de Medicamentos database, which showed retail pharmacy sales of all medicines acquired with National Health System prescriptions and covered nearly 100% of the Spanish population ( 5 ). (cdc.gov)
  • The nalidixic acid resistant S typhi (NARST) is a marker of reduced susceptibility to fluoroquinolones. (pediatriconcall.com)
  • At its forefront are Gram-negative bacteria, (GNB) such as Enterobacterales ( Enterobacterales ), Pseudomonas aeruginosa , and Acinetobacter baumannii , which have become increasingly resistant to most conventional and broad-spectrum antimicrobial agents, including carbapenems ( Nordmann and Poirel, 2019 ). (frontiersin.org)
  • Lactobacillus is added to the above drug combination to help restore the balance of healthy bacteria. (biofieldpharma.com)
  • Lactobacillus Acidophilus is also included to help restore the balance of beneficial bacteria. (soignerpharma.com)
  • The name is derived from strains of Streptomyces clavuligerus, which produces clavulanic acid. (wikipedia.org)
  • Teva 3109 is supplied by Teva Pharmaceuticals USA, which contains the most commonly prescribed antibiotic Amoxicillin 500 mg, and has Teva 3109 as an imprint. (spelenmetzonderspeelgoed.nl)