A glycoside of a kaurene type diterpene that is found in some plants including Atractylis gummifera (ATRACTYLIS); COFFEE; XANTHIUM, and CALLILEPIS. Toxicity is due to inhibition of ADENINE NUCLEOTIDE TRANSLOCASE.
An antibiotic produced by Pseudomonas cocovenenans. It is an inhibitor of MITOCHONDRIAL ADP, ATP TRANSLOCASES. Specifically, it blocks adenine nucleotide efflux from mitochondria by enhancing membrane binding.
A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization.
A ketotriose compound. Its addition to blood preservation solutions results in better maintenance of 2,3-diphosphoglycerate levels during storage. It is readily phosphorylated to dihydroxyacetone phosphate by triokinase in erythrocytes. In combination with naphthoquinones it acts as a sunscreening agent.
Trioses are monosaccharides, specifically simple sugars, that contain three carbon atoms, and can be glyceraldehydes or dihydroxyacetones, which are important intermediates in metabolic pathways such as glycolysis.
Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed)
A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X).
Proteins involved in the transport of specific substances across the membranes of the MITOCHONDRIA.
Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)
An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria.
Salts and derivatives of acetoacetic acid.
Adenine nucleotides are molecules that consist of an adenine base attached to a ribose sugar and one, two, or three phosphate groups, including adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP), which play crucial roles in energy transfer and signaling processes within cells.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds.
Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions.
Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.
Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Pyruvates, in the context of medical and biochemistry definitions, are molecules that result from the final step of glycolysis, containing a carboxylic acid group and an aldehyde group, playing a crucial role in cellular metabolism, including being converted into Acetyl-CoA to enter the Krebs cycle or lactate under anaerobic conditions.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.

Inhibition of nucleoside diphosphate kinase in rat liver mitochondria by added 3'-azido-3'-deoxythymidine. (1/184)

The effect of 3'-azido-3'-deoxythymidine on nucleoside diphosphate kinase of isolated rat liver mitochondria has been studied. This is done by monitoring the increase in the rate of oxygen uptake by nucleoside diphosphate (TDP, UDP, CDP or GDP) addition to mitochondria in state 4. It is shown that 3'-azido-3'-deoxythymidine inhibits the mitochondrial nucleoside diphosphate kinase in a competitive manner, with a Ki value of about 10 microM as measured for each tested nucleoside diphosphate. It is also shown that high concentrations of GDP prevent 3'-azido-3'-deoxythymidine inhibition of the nucleoside diphosphate kinase.  (+info)

Carboxyatractyloside increases the effect of oleate on mitochondrial permeability transition. (2/184)

Addition of a low concentration of carboxyatractyloside (0.075 microM) renders mitochondria susceptible to the opening of the non-specific pore by 5 microM oleate, in a cyclosporin A-sensitive fashion. Matrix Ca2+ efflux as well as collapse of the transmembrane potential reveal permeability transition. The effect of oleate is reached after the titration, by carboxyatractyloside, of 38 pmol of adenine nucleotide translocase per mg mitochondrial protein. We propose that permeability transition may result from an additive action of carboxyatractyloside plus oleate on the ADP/ATP carrier.  (+info)

The mitochondrial adenine nucleotide translocator from Dictyostelium discoideum. Functional characterization and DNA sequencing. (3/184)

The mitochondrial adenine nucleotide translocator (ANT) catalyses the exchange of ATP and ADP between the mitochondria and the cytosol. We have cloned and sequenced the gene encoding the Dictyostelium discoideum ANT (DdANT) and analysed its transcriptional regulation. The single copy D. discoideum ant gene encodes a protein of 309 amino acid residues with a predicted molecular mass of 33,469 Da and a pI of 9.85. These values are comparable to those of ANTs from mammals, insects and fungi. The long N-terminal extension characteristic of plant ANT is absent in DdANT. The protein coding region of the D. discoideum ant gene is interrupted by three introns. Polyclonal antibodies directed against the beef heart mitochondrial ANT or its C-terminal peptide recognized the D. discoideum protein. Northern blot analysis revealed that the expression of the D. discoideum ant gene decreased rapidly during the first hours of multicellular development but the amount of protein remained stable throughout differentiation.  (+info)

Studies on the adenine nucleotide translocase from rat liver mitochondria. Isolation, partial characterization and immunochemical properties of carboxyatractylate-binding protein. (4/184)

1. Solubility of mitochondrial membranes in various solvent systems was determined quantitatively. The most effective agent was the anionic detergent, sodium dodecylsulphate, which solubilizes 90% of the protein at the concentration of 0.1% followed by Triton X-100 (70%), sodium deoxycholate (60%), Brij 56 (50%), and guanidine hydrochloride (40%) at a concentration of 2 M. 2. Affinity chromatography of a clear 0.1% sodium dodecylsulphate solution of digitonized mitochondria on Sepharose 4B containing carboxyatractylate always resulted in the separation of two fractions, one of which was not retained by the column and the other which could be obtained after elution with 2% sodium dodecylsulphate. 3. The retained protein showed a high binding specificity for ATP and [3H]atractylate when compared with the unretained fraction. The amount of bound [3H]atractylate or carboxyatractylate-sensitive binding of ATP was 10.5 +/- 4 nmol/mg protein, and 22 +/- 8 nmol/mg protein, respectively. 4. The major component within the retained fraction, comprising 85% of the total weight, was protein, followed by phospholipids (14%) and approximately 1% triglycerides. Sodium dodecylsulphate-polyacrylamide gel electrophoresis revealed a major (95%) and a minor (5%) component with an apparent molecular weight of 26000 +/- 1000 and 8300 +/- 400, respectively. The gels did not stain for carbohydrates. Ultracentrifugal analysis showed a single, symmetrical boundry. 5. Double immunodiffusion analysis gave a single precipitin line with the corresponding antiserum. [14C]ADP exchange of digitonin particles was completely inhibited by an antiserum to the carboxyatractylate binding protein fraction, whereas the adenine nucleotide transport of intact mitochondria remained unaffected. In the presence of specific immunoglobulins state-3 respiration rate of digitonin particles was prolonged and reduced by approximately 25%. State-4 respiration rate was unaffected.  (+info)

Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore. (5/184)

The overexpression of Bax kills cells by a mechanism that depends on induction of the mitochondrial permeability transition (MPT) (Pastorino, J. G., Chen, S.-T., Tafani, M., Snyder, J. W., and Farber, J. L. (1998) J. Biol. Chem. 273, 7770-7775). In the present study, purified, recombinant Bax opened the mitochondrial permeability transition pore (PTP). Depending on its concentration, Bax had two distinct effects. At a concentration of 125 nM, Bax caused the release of the intermembranous proteins cytochrome c and adenylate kinase and the release from the matrix of sequestered calcein, effects prevented by the inhibitor of the PTP cyclosporin A (CSA). At this concentration of Bax, there was no detectable mitochondrial swelling or depolarization. These effects of low Bax concentrations are interpreted as the consequence of transient, non-synchronous activation of the PTP followed by a prompt recovery of mitochondrial integrity. By contrast, Bax concentrations between 250 nM and 1 microM caused a sustained opening of the PTP with consequent persistent mitochondrial swelling and deenergization (the MPT). CSA prevented the MPT induced by Bax. Increasing concentrations of calcium caused a greater proportion of the mitochondria to undergo the MPT in the presence of Bax. Importantly, two known mediators of apoptosis, ceramide and GD3 ganglioside, potentiated the induction by Bax of the MPT. The data imply that Bax mediates the opening of the mitochondrial PTP with the resultant release of cytochrome c from the intermembranous space.  (+info)

Dual responses of CNS mitochondria to elevated calcium. (6/184)

Isolated brain mitochondria were examined for their responses to calcium challenges under varying conditions. Mitochondrial membrane potential was monitored by following the distribution of tetraphenylphosphonium ions in the mitochondrial suspension, mitochondrial swelling by observing absorbance changes, calcium accumulation by an external calcium electrode, and oxygen consumption with an oxygen electrode. Both the extent and rate of calcium-induced mitochondrial swelling and depolarization varied greatly depending on the energy source provided to the mitochondria. When energized with succinate plus glutamate, after a calcium challenge, CNS mitochondria depolarized transiently, accumulated substantial calcium, and increased in volume, characteristic of a mitochondrial permeability transition. When energized with 3 mM succinate, CNS mitochondria maintained a sustained calcium-induced depolarization without appreciable swelling and were slow to accumulate calcium. Maximal oxygen consumption was also restricted under these conditions, preventing the electron transport chain from compensating for this increased proton permeability. In 3 mM succinate, cyclosporin A and ADP plus oligomycin restored potential and calcium uptake. This low conductance permeability was not effected by bongkrekic acid or carboxyatractylate, suggesting that the adenine nucleotide translocator was not directly involved. Fura-2FF measurements of [Ca(2+)](i) suggest that in cultured hippocampal neurons glutamate-induced increases reached tens of micromolar levels, approaching those used with mitochondria. We propose that in the restricted substrate environment, Ca(2+) activated a low-conductance permeability pathway responsible for the sustained mitochondrial depolarization.  (+info)

Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. (7/184)

Bcl-2 family protein including anti-apoptotic (Bcl-2) or pro-apoptotic (Bax) members can form ion channels when incorporated into synthetic lipid bilayers. This contrasts with the observation that Bcl-2 stabilizes the mitochondrial membrane barrier function and inhibits the permeability transition pore complex (PTPC). Here we provide experimental data which may explain this apparent paradox. Bax and adenine nucleotide translocator (ANT), the most abundant inner mitochondrial membrane protein, can interact in artificial lipid bilayers to yield an efficient composite channel whose electrophysiological properties differ quantitatively and qualitatively from the channels formed by Bax or ANT alone. The formation of this composite channel can be observed in conditions in which Bax protein alone has no detectable channel activity. Cooperative channel formation by Bax and ANT is stimulated by the ANT ligand atractyloside (Atr) but inhibited by ATP, indicating that it depends on the conformation of ANT. In contrast to the combination of Bax and ANT, ANT does not form active channels when incorporated into membranes with Bcl-2. Rather, ANT and Bcl-2 exhibit mutual inhibition of channel formation. Bcl-2 prevents channel formation by Atr-treated ANT and neutralizes the cooperation between Bax and ANT. Our data are compatible with a menage a trois model of mitochondrial apoptosis regulation in which ANT, the likely pore forming protein within the PTPC, interacts with Bax or Bcl-2 which influence its pore forming potential in opposing manners.  (+info)

Antibody evidence for different conformational states of ADP, ATP translocator protein isolated from mitochondria. (8/184)

Consistent with the previously proposed reorientation mechanism for the ADP,ATP translocator protein of mitochondria, evidence has now been obtained for the existence of two distinct conformational states of the isolated translocator protein. Previous studies indicated that when the mitochondrial translocator protein is in the c-state(i.e., when its binding site faces the cytosol side) the protein binds primarily the ligand carboxyatractylate (CAT), and when the translocator protein is in the m-state(i.e., when its binding site faces the mitochondrial matrix) the translocator protein binds primarily bongkrekate. Direct evidence for this formulation has now come from the application of antibodies to the isolated translocator protein-ligand complex. Two antibodies were produced against the ADP,ATP translocator protein isolated from beef heart mitochondria. One antibody, which was produced against the protein isolated as the CAT-binding protein complex, was found to be highly specific for that complex and did not react with the protein in the conformation state conferred by the bongkrekate ligand. This antibody did not cover the CAT-binding site, as evidenced by the exchange of unlabeled CAT with [35S]CAT bound to the translocator protein. However, the same antibody inhibited a transition of the protein from the c-state to the m-state, as evidenced by an inhibition of the displacement of[35S]CAT by bongkrekate (added jointly with ADP). It appears, therefore, that the antibody immobilized the translocator protein in the c-state. The second antibody produced against the (somewhat less pure) ADP,ATP translocator protein, isolated as the bongkrekate-binding protein complex, did not react with the CAT-binding protein. Thus, the second antibody appeared to be specific for the translocator protein in the m-state. Neither antibody inhibited mitochondrial ADP,ATP transport.  (+info)

Atractyloside is a toxic diterpene compound that can be found in various plants, including Atractylis gummifera (commonly known as gum cistus or rabbit-ear cistus) and other members of the Asteraceae family. This toxin is known to inhibit the mitochondrial ADP/ATP translocase, which plays a crucial role in cellular energy production.

Inhibition of this translocase leads to a disruption in the balance of adenine nucleotides inside the mitochondria, resulting in a decrease in ATP synthesis and an increase in the formation of reactive oxygen species (ROS). This can ultimately cause cell damage and even cell death.

Atractyloside poisoning can lead to various symptoms, such as gastrointestinal distress, liver and kidney damage, neurological issues, and, in severe cases, multi-organ failure. It is essential to seek immediate medical attention if atractyloside poisoning is suspected.

Bongkrekic acid is a toxic compound that is produced by certain strains of the bacterium Pseudomonas cocovenenans. This bacterium can contaminate foods, particularly coconut products such as tempeh, a traditional Indonesian soybean fermented food. Bongkrekic acid inhibits the function of the mitochondria, the energy-producing structures in cells, leading to cell death and potentially serious illness or death in humans. Consumption of food contaminated with bongkrekic acid can cause a severe form of food poisoning known as bongkrek fever, which is characterized by symptoms such as nausea, vomiting, diarrhea, abdominal pain, and neurological symptoms such as confusion, seizures, and coma. Bongkrek fever is often fatal if not treated promptly and effectively. It is important to handle and store food properly to prevent contamination with bongkrekic acid and other harmful bacteria.

Mitochondrial ADP/ATP translocases, also known as adenine nucleotide translocators (ANT), are a group of proteins located in the inner mitochondrial membrane that play a crucial role in cellular energy production. These translocases facilitate the exchange of adenosine diphosphate (ADP) and adenosine triphosphate (ATP) across the mitochondrial membrane, which is essential for oxidative phosphorylation and thus, energy homeostasis in the cell.

In more detail, during oxidative phosphorylation, ATP is produced within the mitochondria as a result of the electron transport chain's activity. This ATP must be exported to the cytosol for use by the cell's various processes. Simultaneously, the mitochondria need a continuous supply of ADP to sustain the production of ATP. The mitochondrial ADP/ATP translocases facilitate this exchange, allowing for the import of ADP into the mitochondria and the export of ATP to the cytosol.

There are multiple isoforms of the ADP/ATP translocase in humans (ANT1, ANT2, ANT3, and ANT4), encoded by different genes, with varying tissue distributions and functions. Dysfunction of these translocases has been implicated in several pathological conditions, including neurodegenerative diseases, ischemia-reperfusion injury, and cancer.

Dihydroxyacetone (DHA) is a simple sugar that is used as an ingredient in many self-tanning products. When applied to the skin, DHA reacts with amino acids in the dead layer of the skin to temporarily darken the skin color. This process is known as the Maillard reaction, which is a chemical reaction between an amino acid and a sugar. The effect of DHA is limited to the uppermost layer of the skin and it does not provide any protection against sunburn or UV radiation. The tanning effect produced by DHA usually lasts for about 5-7 days.

It's important to note that while DHA is considered safe for external use, it should not be inhaled or ingested, as it can cause irritation and other adverse effects. Additionally, some people may experience skin irritation or allergic reactions to products containing DHA, so it's always a good idea to do a patch test before using a new self-tanning product.

Trioses are simple sugars that contain three carbon atoms and a functional group called a ketone or aldehyde. They are the simplest type of sugar molecule, after monosaccharides such as glyceraldehyde and dihydroxyacetone.

Triose sugars can exist in two structural forms:

* Dihydroxyacetone (DHA), which is a ketotriose with the formula CH2OH-CO-CH2OH, and
* Glyceraldehyde (GA), which is an aldotriose with the formula HO-CHOH-CHO.

Trioses play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle of photosynthesis. In particular, DHA and GA are intermediates in the conversion of glucose to pyruvate during glycolysis, and they are also produced from pyruvate during gluconeogenesis.

Trioses can be synthesized chemically or biochemically through various methods, such as enzymatic reactions or microbial fermentation. They have potential applications in the food, pharmaceutical, and chemical industries, as they can serve as building blocks for more complex carbohydrates or as precursors for other organic compounds.

Glycosides are organic compounds that consist of a glycone (a sugar component) linked to a non-sugar component, known as an aglycone, via a glycosidic bond. They can be found in various plants, microorganisms, and some animals. Depending on the nature of the aglycone, glycosides can be classified into different types, such as anthraquinone glycosides, cardiac glycosides, and saponin glycosides.

These compounds have diverse biological activities and pharmacological effects. For instance:

* Cardiac glycosides, like digoxin and digitoxin, are used in the treatment of heart failure and certain cardiac arrhythmias due to their positive inotropic (contractility-enhancing) and negative chronotropic (heart rate-slowing) effects on the heart.
* Saponin glycosides have potent detergent properties and can cause hemolysis (rupture of red blood cells). They are used in various industries, including cosmetics and food processing, and have potential applications in drug delivery systems.
* Some glycosides, like amygdalin found in apricot kernels and bitter almonds, can release cyanide upon hydrolysis, making them potentially toxic.

It is important to note that while some glycosides have therapeutic uses, others can be harmful or even lethal if ingested or otherwise introduced into the body in large quantities.

Oligomycins are a group of antibiotics produced by various species of Streptomyces bacteria. They are characterized by their ability to inhibit the function of ATP synthase, an enzyme that plays a crucial role in energy production within cells. By binding to the F1 component of ATP synthase, oligomycins prevent the synthesis of ATP, which is a key source of energy for cellular processes.

These antibiotics have been used in research to study the mechanisms of ATP synthase and mitochondrial function. However, their therapeutic use as antibiotics is limited due to their toxicity to mammalian cells. Oligomycin A is one of the most well-known and studied members of this group of antibiotics.

Mitochondrial membrane transport proteins are a type of integral membrane proteins located in the inner and outer mitochondrial membranes. They play a crucial role in the regulation of molecule exchange between the cytosol and the mitochondrial matrix, allowing only specific ions and molecules to pass through while maintaining the structural and functional integrity of the mitochondria.

The inner mitochondrial membrane transport proteins, also known as the mitochondrial carrier proteins or the solute carriers, are a family of about 50 different types of proteins that facilitate the passage of various metabolites, such as nucleotides, amino acids, fatty acids, and inorganic ions (like calcium, sodium, and potassium). These transport proteins usually function as exchangers or uniporters, moving one type of solute in one direction in exchange for another type of solute or a proton.

The outer mitochondrial membrane is more permeable than the inner membrane due to the presence of voltage-dependent anion channels (VDACs) and other porins that allow small molecules, ions, and metabolites to pass through. VDACs are the most abundant proteins in the outer mitochondrial membrane and play a significant role in controlling the flow of metabolites between the cytosol and the intermembrane space.

In summary, mitochondrial membrane transport proteins are essential for maintaining the proper functioning of mitochondria by regulating the movement of molecules across the inner and outer membranes. They facilitate the exchange of nutrients, metabolites, and ions required for oxidative phosphorylation, energy production, and other cellular processes.

I'd be happy to help! However, I believe there might be a slight misunderstanding in your question. Mitochondria are organelles found in the cells of all complex living organisms, including humans, while the liver is a large, solid organ located in the upper right portion of the abdomen. They don't have a medical definition together. I can certainly provide you with separate definitions for each:

1. Mitochondria: These are double-membrane-bound cellular organelles that generate most of the chemical energy needed to power the cell's biochemical reactions. Commonly known as the "powerhouse of the cell," mitochondria convert organic substrates, such as glucose, fatty acids, and amino acids, into adenosine triphosphate (ATP) through a process called oxidative phosphorylation. Mitochondria are dynamic structures that can change their shape, size, and number through fission (division) and fusion (merging) processes. They play essential roles in various cellular functions, including calcium signaling, apoptosis (programmed cell death), and the regulation of cellular metabolism.

2. Liver: The liver is a large, lobulated organ that lies mainly in the upper right portion of the abdominal cavity, just below the diaphragm. It plays a crucial role in various physiological functions, such as detoxification, protein synthesis, metabolism, and nutrient storage. The liver is responsible for removing toxins from the bloodstream, producing bile to aid in digestion, regulating glucose levels, synthesizing plasma proteins, and storing glycogen, vitamins, and minerals. It also contributes to the metabolism of carbohydrates, lipids, and amino acids, helping maintain energy homeostasis in the body.

I hope this clarifies any confusion! If you have any further questions or need more information, please don't hesitate to ask.

Mitochondrial swelling is a pathological change in the structure of mitochondria, which are the energy-producing organelles found in cells. This condition is characterized by an increase in the volume of the mitochondrial matrix, which is the space inside the mitochondrion that contains enzymes and other molecules involved in energy production.

Mitochondrial swelling can occur as a result of various cellular stressors, such as oxidative damage, calcium overload, or decreased levels of adenosine triphosphate (ATP), which is the primary energy currency of the cell. This swelling can lead to disruption of the mitochondrial membrane and release of cytochrome c, a protein involved in apoptosis or programmed cell death.

Mitochondrial swelling has been implicated in several diseases, including neurodegenerative disorders, ischemia-reperfusion injury, and drug toxicity. It can be observed under an electron microscope as part of an ultrastructural analysis of tissue samples or detected through biochemical assays that measure changes in mitochondrial membrane potential or matrix volume.

Acetoacetates are compounds that are produced in the liver as a part of fatty acid metabolism, specifically during the breakdown of fatty acids for energy. Acetoacetates are formed from the condensation of two acetyl-CoA molecules and are intermediate products in the synthesis of ketone bodies, which can be used as an alternative energy source by tissues such as the brain during periods of low carbohydrate availability or intense exercise.

In clinical settings, high levels of acetoacetates in the blood may indicate a condition called diabetic ketoacidosis (DKA), which is a complication of diabetes mellitus characterized by high levels of ketone bodies in the blood due to insulin deficiency or resistance. DKA can lead to serious complications such as cerebral edema, cardiac arrhythmias, and even death if left untreated.

Adenine nucleotides are molecules that consist of a nitrogenous base called adenine, which is linked to a sugar molecule (ribose in the case of adenosine monophosphate or AMP, and deoxyribose in the case of adenosine diphosphate or ADP and adenosine triphosphate or ATP) and one, two, or three phosphate groups. These molecules play a crucial role in energy transfer and metabolism within cells.

AMP contains one phosphate group, while ADP contains two phosphate groups, and ATP contains three phosphate groups. When a phosphate group is removed from ATP, energy is released, which can be used to power various cellular processes such as muscle contraction, nerve impulse transmission, and protein synthesis. The reverse reaction, in which a phosphate group is added back to ADP or AMP to form ATP, requires energy input and often involves the breakdown of nutrients such as glucose or fatty acids.

In addition to their role in energy metabolism, adenine nucleotides also serve as precursors for other important molecules, including DNA and RNA, coenzymes, and signaling molecules.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Oxidative phosphorylation is the metabolic process by which cells use enzymes to generate energy in the form of adenosine triphosphate (ATP) from the oxidation of nutrients, such as glucose or fatty acids. This process occurs in the inner mitochondrial membrane of eukaryotic cells and is facilitated by the electron transport chain, which consists of a series of protein complexes that transfer electrons from donor molecules to acceptor molecules. As the electrons are passed along the chain, they release energy that is used to pump protons across the membrane, creating a gradient. The ATP synthase enzyme then uses the flow of protons back across the membrane to generate ATP, which serves as the main energy currency for cellular processes.

In the context of medicine and physiology, permeability refers to the ability of a tissue or membrane to allow the passage of fluids, solutes, or gases. It is often used to describe the property of the capillary walls, which control the exchange of substances between the blood and the surrounding tissues.

The permeability of a membrane can be influenced by various factors, including its molecular structure, charge, and the size of the molecules attempting to pass through it. A more permeable membrane allows for easier passage of substances, while a less permeable membrane restricts the movement of substances.

In some cases, changes in permeability can have significant consequences for health. For example, increased permeability of the blood-brain barrier (a specialized type of capillary that regulates the passage of substances into the brain) has been implicated in a number of neurological conditions, including multiple sclerosis, Alzheimer's disease, and traumatic brain injury.

Adenosine diphosphate (ADP) is a chemical compound that plays a crucial role in energy transfer within cells. It is a nucleotide, which consists of a adenosine molecule (a sugar molecule called ribose attached to a nitrogenous base called adenine) and two phosphate groups.

In the cell, ADP functions as an intermediate in the conversion of energy from one form to another. When a high-energy phosphate bond in ADP is broken, energy is released and ADP is converted to adenosine triphosphate (ATP), which serves as the main energy currency of the cell. Conversely, when ATP donates a phosphate group to another molecule, it is converted back to ADP, releasing energy for the cell to use.

ADP also plays a role in blood clotting and other physiological processes. In the coagulation cascade, ADP released from damaged red blood cells can help activate platelets and initiate the formation of a blood clot.

Intracellular membranes refer to the membrane structures that exist within a eukaryotic cell (excluding bacteria and archaea, which are prokaryotic and do not have intracellular membranes). These membranes compartmentalize the cell, creating distinct organelles or functional regions with specific roles in various cellular processes.

Major types of intracellular membranes include:

1. Nuclear membrane (nuclear envelope): A double-membraned structure that surrounds and protects the genetic material within the nucleus. It consists of an outer and inner membrane, perforated by nuclear pores that regulate the transport of molecules between the nucleus and cytoplasm.
2. Endoplasmic reticulum (ER): An extensive network of interconnected tubules and sacs that serve as a major site for protein folding, modification, and lipid synthesis. The ER has two types: rough ER (with ribosomes on its surface) and smooth ER (without ribosomes).
3. Golgi apparatus/Golgi complex: A series of stacked membrane-bound compartments that process, sort, and modify proteins and lipids before they are transported to their final destinations within the cell or secreted out of the cell.
4. Lysosomes: Membrane-bound organelles containing hydrolytic enzymes for breaking down various biomolecules (proteins, carbohydrates, lipids, and nucleic acids) in the process called autophagy or from outside the cell via endocytosis.
5. Peroxisomes: Single-membrane organelles involved in various metabolic processes, such as fatty acid oxidation and detoxification of harmful substances like hydrogen peroxide.
6. Vacuoles: Membrane-bound compartments that store and transport various molecules, including nutrients, waste products, and enzymes. Plant cells have a large central vacuole for maintaining turgor pressure and storing metabolites.
7. Mitochondria: Double-membraned organelles responsible for generating energy (ATP) through oxidative phosphorylation and other metabolic processes, such as the citric acid cycle and fatty acid synthesis.
8. Chloroplasts: Double-membraned organelles found in plant cells that convert light energy into chemical energy during photosynthesis, producing oxygen and organic compounds (glucose) from carbon dioxide and water.
9. Endoplasmic reticulum (ER): A network of interconnected membrane-bound tubules involved in protein folding, modification, and transport; it is divided into two types: rough ER (with ribosomes on the surface) and smooth ER (without ribosomes).
10. Nucleus: Double-membraned organelle containing genetic material (DNA) and associated proteins involved in replication, transcription, RNA processing, and DNA repair. The nuclear membrane separates the nucleoplasm from the cytoplasm and contains nuclear pores for transporting molecules between the two compartments.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Pyruvate is a negatively charged ion or group of atoms, called anion, with the chemical formula C3H3O3-. It is formed from the decomposition of glucose and other sugars in the process of cellular respiration. Pyruvate plays a crucial role in the metabolic pathways that generate energy for cells.

In the cytoplasm, pyruvate is produced through glycolysis, where one molecule of glucose is broken down into two molecules of pyruvate, releasing energy and producing ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

In the mitochondria, pyruvate can be further metabolized through the citric acid cycle (also known as the Krebs cycle) to produce more ATP. The process involves the conversion of pyruvate into acetyl-CoA, which then enters the citric acid cycle and undergoes a series of reactions that generate energy in the form of ATP, NADH, and FADH2 (reduced flavin adenine dinucleotide).

Overall, pyruvate is an important intermediate in cellular respiration and plays a central role in the production of energy for cells.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Additionally, the preparation of plants with atractyloside in some traditional medicines affects the atractyloside content. The ... Atractyloside (ATR) is a natural, toxic glycoside present in numerous plant species worldwide in the daisy family including ... Atractyloside is found in numerous plant species in the daisy family e.g. Atractylis gummifera, Callilepis laureola, Xanthium ... Atractyloside is a hydrophilic glycoside. A modified glucose is linked to the hydrophobic diterpene atractyligenin by a β1- ...
It is about 10 times more potent than its analog atractyloside. While atractyloside is effective in the inhibition of oxidative ... "Probing the interactions of carboxy-atractyloside and atractyloside with the yeast mitochondrial ADP/ATP carrier". Structure. ... Along with atractyloside, it is also one of the main poisonous substances in the Atractylis gummifera thistle. Kedrov A, ... Luciani S, Martini N, Santi R (September 1971). "Effects of carboxyatractyloside a structural analogue of atractyloside on ...
Bruni A, Luciani S, Contessa AR (March 1964). "Inhibition by atractyloside of the binding of adenine-nucleotides to rat-liver ... The first family, which includes atractyloside (ATR) and carboxyatractyloside (CATR), binds to the ADP/ATP translocase from the ... uncovered an inhibitory effect of atractyloside on the energy-transfer system (oxidative phosphorylation) and ADP binding sites ... Kunji ER, Harding M (September 2003). "Projection structure of the atractyloside-inhibited mitochondrial ADP/ATP carrier of ...
The plant has a history of use in folk medicine, but it is very toxic due to the presence of atractyloside and ... The toxicity of Chamaeleon gummifer is thought to be caused by two related glycosides, atractyloside and carboxyatractyloside. ...
... a phonological feature in linguistics Atractyloside, a toxin and inhibitor of "ADP/ATP translocase" ATR0, an axiom system in ...
... atractyloside MeSH D02.455.849.291.206 - diterpenes, abietane MeSH D02.455.849.291.228 - diterpenes, clerodane MeSH D02.455. ...
Additionally, the preparation of plants with atractyloside in some traditional medicines affects the atractyloside content. The ... Atractyloside (ATR) is a natural, toxic glycoside present in numerous plant species worldwide in the daisy family including ... Atractyloside is found in numerous plant species in the daisy family e.g. Atractylis gummifera, Callilepis laureola, Xanthium ... Atractyloside is a hydrophilic glycoside. A modified glucose is linked to the hydrophobic diterpene atractyligenin by a β1- ...
Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. Katia Vancompernolle (UGent) , F VAN ...
... and herbal medications with atractyloside, a diterpenoid glycoside found in the extracts of the tuber of Callilepis laureola ( ...
Atractyloside A (PubChem CID: 71307451); Biepiasterolide (PubChem CID: 11351701); Caffeic acid (PubChem CID: 689043); D- ...
... and herbal medications with atractyloside, a diterpenoid glycoside found in the extracts of the tuber of Callilepis laureola ( ...
Stewart MJ, Steenkamp V. The biochemistry and toxicity of atractyloside: a review. Therapeutic Drug Monitoring, 2000, 22:641- ... This can be explained by the pathologic action of atractyloside and carboxyatractyloside, which involves inhibition of ... The toxic effect of this plant arises from 2 diterpenoid toxicants causing toxicity-atractyloside and carboxyatractyloside- ...
In all cases mitochondria were Ca2+ depleted, where 200mM ADP and 8.34mM atractyloside were added serially. Respiration was ...
Atractyloside. *Atracurium Besylate(Neuromuscular blocking agent.). *Atranorin. *Atrasentan(Antineoplastic.). *Atrazine. * ...
9. Human papillomavirus (HPV) 16 E6 sensitizes cells to atractyloside-induced apoptosis: role of p53, ICE-like proteases and ...
... and herbal medications with atractyloside, a diterpenoid glycoside found in the extracts of the tuber of Callilepis laureola ( ...
Atractyloside Preferred Term Term UI T003802. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Atractyloside Preferred Concept UI. M0001921. Registry Number. 17754-44-8. Scope Note. A glycoside of a kaurene type diterpene ... Atractyloside. Tree Number(s). D02.455.849.291.162. D09.408.105. Unique ID. D001278. RDF Unique Identifier. http://id.nlm.nih. ...
Atractyloside Preferred Term Term UI T003802. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Atractyloside Preferred Concept UI. M0001921. Registry Number. 17754-44-8. Scope Note. A glycoside of a kaurene type diterpene ... Atractyloside. Tree Number(s). D02.455.849.291.162. D09.408.105. Unique ID. D001278. RDF Unique Identifier. http://id.nlm.nih. ...
Members contain ATRACTYLOSIDE.. Allowable Qualifiers:. AE adverse effects. AH anatomy & histology. CH chemistry. CL ...
Atractyloside A CAS No.: 126054-77-1 Formula: C21H36O10 M. Wt : 448.5 ...
Antiviral effects of Atractyloside A on the influenza B virus (Victoria strain) infection Google New: Influenza ...
callilepis. Medical Information Search
The daisy family produces a type of toxic terpene called atractyloside. While this is considered a medicinal herb, high ... Stewart, M. J., & Steenkamp, V. (2000). The biochemistry and toxicity of atractyloside: a review. Therapeutic drug monitoring, ...
Even with atractyloside we occasionally see this. I have now taken to designing my experiments based on whether I am interested ... We and others have seen the same thing, and at least we have yet to resolve it - instead we opt to use atractyloside, though I ... For the oligomycin issue, try uncoupling your fibers without adding oligomycin or atractyloside - they may not have much ...
Cassette Transporters N0000180226 ATP-Dependent Endopeptidases N0000167596 ATP-Dependent Proteases N0000168478 Atractyloside ...
RESULTS: HPLC-MS identified dihydroisotanshinone, dihydroisotanshinone I, cryptotanshinone, harpagoside, and atractyloside A in ...
Atractyloside Levels in Xanthium strumarium and Atractyloside Concentrations in the Serum of Rats Given Xanthium strumarium ...
Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, M?ller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper DL, Golenbock DT. Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol. 2005 May 15; 174(10):6449-55 ...
Evans blue is even more potent (IC50 ~40 nM) whereas 200 µM atractyloside inhibits SLC17A9 only in the presence of Mg2+. All ...
Follow-up of Atractyloside Dipotassium Salt the baseline cohort through the completed 2-12 months cycles to date has averaged ... Participants were asked if a physician experienced ever told them that they had any of a list of Atractyloside Dipotassium Salt ... A subsequent genome-wide linkage sib-pair analysis in 229 African-American family members reported linkage Atractyloside ... locus in the etiology of sarcoidosis and also demonstrate that percent African ancestry is definitely associated Atractyloside ...
Categorized as Acetylcholine Muscarinic Receptors Tagged Atractyloside Dipotassium Salt supplier, Plat. Post navigation. ... galactosidase and luciferase reporter actions in cell components were assessed by Atractyloside Dipotassium Salt supplier ... Planning of nuclear ingredients and electrophoretic flexibility Atractyloside Dipotassium Salt supplier shift evaluation (EMSA ... Transfection of SiRNA oligonucleotides SiRNA duplex oligonucleotides (siGENOME SMARTpool reagent) focusing on Atractyloside ...
... completely reverses atractyloside inhibition of inner membrane contraction induced by exogenous adenine nucleotides, and (c) ...
Atractyloside (a plant glycoside) and bongkrekic acid (a toxic antibiotic formed by Pseudomonas cocovenans growing on coconut ...
admin October 30, 2016 Adrenergic ??1 Receptors Atractyloside Dipotassium Salt, Rabbit Polyclonal to RAB3IP. ...
  • The chemical structure and charge distribution of atractyloside is similar to that of ADP: the sulfate groups correspond to the phosphate groups, the glucose part corresponds to the ribose part, and the hydrophobic atractyligenine residue corresponds to the hydrophobic purine residue of ADP. (wikipedia.org)
  • Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. (nih.gov)
  • Atractyloside (ATR) is a natural, toxic glycoside present in numerous plant species worldwide in the daisy family including Atractylis gummifera and Callilepis laureola, and it's used for a variety of therapeutic, religious, and toxic purposes. (wikipedia.org)
  • Atractyloside is found in numerous plant species in the daisy family e.g. (wikipedia.org)
  • After high-profile accidental poisonings-children in Italy and Algeria ate parts of the plant in 1955 and 1975, respectively-renewed interest in atractyloside resulted in future research. (wikipedia.org)
  • Today's outcomes from a people of African-American females support the function from the gene and the 5q31 locus in the etiology of sarcoidosis and also demonstrate that percent African ancestry is definitely associated Atractyloside Dipotassium Salt with disease risk. (ecologicalsgardens.com)
  • 2003). A subsequent genome-wide linkage sib-pair analysis in 229 African-American family members reported linkage Atractyloside Dipotassium Salt peaks at several chromosomes but failed to detect linkage in the MHC region (Iannuzzi et al. (ecologicalsgardens.com)
  • Participants were asked if a physician experienced ever told them that they had any of a list of Atractyloside Dipotassium Salt medical conditions. (ecologicalsgardens.com)
  • Total RNA from tagged nuclei was isolated and equivalent levels of radioactive RNAs (10C30 106 matters/min) had been hybridized to nitrocellulose membranes made up of immobilized plasmid DNAs made up of Atractyloside Dipotassium Salt supplier human being IL-8 and GAPDH cDNAs and pBluescript. (monossabios.com)
  • galactosidase and luciferase reporter actions in cell components were assessed by Atractyloside Dipotassium Salt supplier chemiluminescence assays (Tropix, Bedford, MA and Promega, Madison, WI). (monossabios.com)
  • Transfection of SiRNA oligonucleotides SiRNA duplex oligonucleotides (siGENOME SMARTpool reagent) focusing on Atractyloside Dipotassium Salt supplier human being sphingosine kinase (Human being SPHK1) and non-targeting SiRNA duplex oligonucleotides had been bought from Dharmacon RNA Systems (Lafayette, CO). The SMARTpool SiRNA oligonucleotides include four SiRNAs mixed into a solitary pool. (monossabios.com)
  • Atractyloside (ATR) is a natural, toxic glycoside present in numerous plant species worldwide in the daisy family including Atractylis gummifera and Callilepis laureola, and it's used for a variety of therapeutic, religious, and toxic purposes. (wikipedia.org)
  • The daisy family produces a type of toxic terpene called atractyloside . (finestlabs.com)
  • Atractyloside is found in numerous plant species in the daisy family e.g. (wikipedia.org)
  • 9. Human papillomavirus (HPV) 16 E6 sensitizes cells to atractyloside-induced apoptosis: role of p53, ICE-like proteases and the mitochondrial permeability transition. (nih.gov)