An acetyltransferase with specificity towards the amine group of aromatic alkylamines (arylalkylamines) such as SEROTONIN. This enzyme is also referred to as serotonin acetylase despite the fact that serotonin acetylation can also occur through the action of broad specificity acetyltransferases such as ARYLAMINE N-ACETYLTRANSFERASE.
A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES.
An enzyme that catalyzes the transfer of acetyl groups from ACETYL-COA to arylamines. It can also catalyze acetyl transfer between arylamines without COENZYME A and has a wide specificity for aromatic amines, including SEROTONIN. However, arylamine N-acetyltransferase should not be confused with the enzyme ARYLALKYLAMINE N-ACETYLTRANSFERASE which is also referred to as SEROTONIN ACETYLTRANSFERASE.
A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
An enzyme that catalyzes the transfer of a methyl group from S-adenosylmethionine to N-acetylserotonin to form N-acetyl-5-methoxytryptamine (MELATONIN).
Decarboxylated monoamine derivatives of TRYPTOPHAN.
Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.
The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs and stimuli, hormone secretion, sleeping, and feeding.
Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones.
An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC
An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Formation of an acetyl derivative. (Stedman, 25th ed)
A family of histone acetyltransferases that is structurally-related to CREB-BINDING PROTEIN and to E1A-ASSOCIATED P300 PROTEIN. They function as transcriptional coactivators by bridging between DNA-binding TRANSCRIPTION FACTORS and the basal transcription machinery. They also modify transcription factors and CHROMATIN through ACETYLATION.
An enzyme that catalyzes the formation of O-acetylcarnitine from acetyl-CoA plus carnitine. EC
The rate dynamics in chemical or physical systems.

Substrate specificity and inhibition studies of human serotonin N-acetyltransferase. (1/63)

Arylalkylamine N-acetyltransferase (AANAT) catalyzes the reaction of serotonin with acetyl-CoA to form N-acetylserotonin and plays a major role in the regulation of the melatonin circadian rhythm in vertebrates. In the present study, the human cloned enzyme has been expressed in bacteria, purified, cleaved, and characterized. The specificity of the human enzyme toward substrates (natural as well as synthetic arylethylamines) and cosubstrates (essentially acyl homologs of acetyl-CoA) has been investigated. Peptide combinatorial libraries of tri-, tetra-, and pentapeptides with various amino acid compositions were also screened as potential sources of inhibitors. We report the findings of several peptides with low micromolar inhibitory potency. For activity measurement as well as for specificity studies, an original and rapid method of analysis was developed. The assay was based on the separation and detection of N-[(3)H]acetylarylethylamine formed from various arylethylamines and tritiated acetyl-CoA, by means of high performance liquid chromatography with radiochemical detection. The assay proved to be robust and flexible, could accommodate the use of numerous synthetic substrates, and was successfully used throughout this study. We also screened a large number of pharmacological bioamines among which only one, tranylcypromine, behaved as a substrate. The synthesis and survey of simple arylethylamines also showed that AANAT has a large recognition pattern, including compounds as different as phenyl-, naphthyl-, benzothienyl-, or benzofuranyl-ethylamine derivatives. An extensive enzymatic study allowed us to pinpoint the amino acid residue of the pentapeptide inhibitor, S 34461, which interacts with the cosubstrate-binding site area, in agreement with an in silico study based on the available coordinates of the hAANAT crystal.  (+info)

cAmp regulation of arylalkylamine N-acetyltransferase (AANAT, EC a new cell line (1E7) provides evidence of intracellular AANAT activation. (2/63)

Arylalkylamine N-acetyltransferase (serotonin N-acetyltransferase, AANAT, EC ) is the penultimate enzyme in melatonin synthesis. As described here, a cell line (1E7) expressing human AANAT (hAANAT) has been developed to study the human enzyme. 1E7 hAANAT is detectable in immunoblots as a 23-kDa band and is immunocytochemically visualized in the cytoplasm. The specific concentration of hAANAT in homogenates is comparable to that of the night rat pineal gland. Kinetics of AANAT extracted from 1E7 cells are the same as those of bacterially expressed hAANAT; both preparations of hAANAT are equally sensitive to the inhibitor CoA-S-N-acetyltryptamine. Studies of cAMP regulation indicate that treatment with forskolin, dibutyryl cAMP, isobutylmethylxanthine, or isoproterenol activate cellular hAANAT within intact 1E7 cells approximately 8-fold without markedly increasing the abundance of AANAT protein or the activity of AANAT in broken cell preparations; and, that forskolin, isobutylmethylxanthine and isoproterenol elevate cyclic AMP production. These observations extend our understanding of cAMP regulation of AANAT activity, because it is currently thought that this only involves changes in the steady-state levels of AANAT protein. This previously unrecognized switching mechanism could function physiologically to control melatonin production without changing AANAT protein levels.  (+info)

Role of a pineal cAMP-operated arylalkylamine N-acetyltransferase/14-3-3-binding switch in melatonin synthesis. (3/63)

The daily rhythm in melatonin levels is controlled by cAMP through actions on the penultimate enzyme in melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT; serotonin N-acetyltransferase, EC ). Results presented here describe a regulatory/binding sequence in AANAT that encodes a cAMP-operated binding switch through which cAMP-regulated protein kinase-catalyzed phosphorylation [RRHTLPAN --> RRHpTLPAN] promotes formation of a complex with 14-3-3 proteins. Formation of this AANAT/14-3-3 complex enhances melatonin production by shielding AANAT from dephosphorylation and/or proteolysis and by decreasing the K(m) for 5-hydroxytryptamine (serotonin). Similar switches could play a role in cAMP signal transduction in other biological systems.  (+info)

Retinal ganglion cells are autonomous circadian oscillators synthesizing N-acetylserotonin during the day. (4/63)

Retinal ganglion cells send visual and circadian information to the brain regarding the environmental light-dark cycles. We investigated the capability of retinal ganglion cells of synthesizing melatonin, a highly reliable circadian marker that regulates retinal physiology, as well as the capacity of these cells to function as autonomous circadian oscillators. Chick retinal ganglion cells presented higher levels of melatonin assessed by radioimmunoassay during both the subjective day in constant darkness and the light phase of a light-dark cycle. Similar changes were observed in mRNA levels and activity of arylalkylamine N-acetyltransferase, a key enzyme in melatonin biosynthesis, with the highest levels of both parameters during the subjective day. These daily variations were preceded by the elevation of cyclic-AMP content, the second messenger involved in the regulation of melatonin biosynthesis. Moreover, cultures of immunopurified retinal ganglion cells at embryonic day 8 synchronized by medium exchange synthesized a [3H]melatonin-like indole from [3H]tryptophan. This [3H]indole was rapidly released to the culture medium and exhibited a daily variation, with levels peaking 8 h after synchronization, which declined a few hours later. Cultures of embryonic retinal ganglion cells also showed self-sustained daily rhythms in arylalkylamine N-acetyltransferase mRNA expression during at least three cycles with a period near 24 h. These rhythms were also observed after the application of glutamate. The results demonstrate that chick retinal ganglion cells may function as autonomous circadian oscillators synthesizing a melatonin-like indole during the day.  (+info)

Cellular stability of serotonin N-acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. (5/63)

Large changes in the activity of serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) in the pineal gland control the rhythmic production of the time-keeping hormone melatonin. The activity of AANAT reflects changes in the amount and activation state of the AANAT protein, both of which increase at night. The molecular basis of this regulation is now becoming known, and recent data indicate that this involves phosphorylation-dependent binding to the 14-3-3 protein at two sites, one of which, Ser-205, is located several residues from the C terminus. In this study, we determined whether substitution of this residue with a non-hydrolyzable the phosphoserine/phosphothreonine mimetic would promote binding to the 14-3-3 protein and enhance cellular stability. To accomplish this, a C-terminal AANAT peptide containing the phosphonodifluoromethylene alanine at Ser-205 was synthesized and fused to bacterially expressed AANAT(30-199) using expressed protein ligation. The resulting semisynthetic protein has enhanced affinity for the expressed 14-3-3 protein and exhibits greater cellular stability in microinjection experiments, as compared with the unmodified AANAT. Enhanced 14-3-3 binding was also observed using humanized ovine AANAT, which has a different C-terminal sequence (Gly-Cys) than the ovine enzyme (Asp-Arg), indicating that that characteristic is not unique to the ovine enzyme. These studies provide the first evidence that substitution of Ser-205 with the stable phosphomimetic amino acid phosphonodifluoromethylene alanine enhances binding to 14-3-3 and the cellular stability of AANAT and are consistent with the view that Ser-205 phosphorylation plays a critical role in the regulation of AANAT activity and melatonin production.  (+info)

Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. (6/63)

The nocturnal increase in circulating melatonin in vertebrates is regulated by the activity of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the melatonin pathway (serotonin --> N-acetylserotonin --> melatonin). Large changes in activity are linked to cyclic AMP-dependent protein kinase-mediated phosphorylation of AANAT T31. Phosphorylation of T31 promotes binding of AANAT to the dimeric 14-3-3 protein, which activates AANAT by increasing arylalkylamine affinity. In the current study, a putative second AANAT cyclic AMP-dependent protein kinase phosphorylation site, S205, was found to be approximately 55% phosphorylated at night, when T31 is approximately 40% phosphorylated. These findings indicate that ovine AANAT is dual-phosphorylated. Moreover, light exposure at night decreases T31 and S205 phosphorylation, consistent with a regulatory role of both sites. AANAT peptides containing either T31 or S205 associate with 14-3-3zeta in a phosphorylation-dependent manner; binding through phosphorylated (p)T31 is stronger than that through pS205, consistent with the location of only pT31 in a mode I binding motif, one of two recognized high-affinity 14-3-3-binding motifs AANAT protein binds to 14-3-3zeta through pT31 or pS205. Two-site binding lowers the Km for arylalkylamine substrate to approximately 30 microM. In contrast, single-site pS205 binding increases the Km to approximately 1,200 microM. Accordingly, the switch from dual to single pS205 binding of AANAT to 14-3-3 changes the Km for substrates by approximately 40-fold. pS205 seems to be part of a previously unrecognized 14-3-3-binding motif-pS/pT (X1-2)-COOH, referred to here as mode III.  (+info)

Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. (7/63)

In non-mammalian vertebrates, the pineal gland is photoreceptive and contains an intrinsic circadian oscillator that drives rhythmic production and secretion of melatonin. These features require an accurate spatiotemporal expression of an array of specific genes in the pineal gland. Among these is the arylalkylamine N-acetyltransferase, a key enzyme in the melatonin production pathway. In zebrafish, pineal specificity of zfaanat2 is determined by a region designated the pineal-restrictive downstream module (PRDM), which contains three photoreceptor conserved elements (PCEs) and an E-box, elements that are generally associated with photoreceptor-specific and rhythmic expression, respectively. Here, by using in vivo and in vitro approaches, it was found that the PCEs and E-box of the PRDM mediate a synergistic effect of the photoreceptor-specific homeobox OTX5 and rhythmically expressed clock protein heterodimer, BMAL/CLOCK, on zfaanat2 expression. Furthermore, the distance between the PCEs and the E-box was found to be critical for PRDM function, suggesting a possible physical feature of this synergistic interaction. OTX5-BMAL/CLOCK may act through this mechanism to simultaneously control pineal-specific and rhythmic expression of zfaanat2 and possibly also other pineal and retinal genes.  (+info)

Rhythmic serotonin N-acetyltransferase mRNA degradation is essential for the maintenance of its circadian oscillation. (8/63)

Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) is the key enzyme in melatonin synthesis regulated by circadian rhythm. To date, our understanding of the oscillatory mechanism of melatonin has been limited to autoregulatory transcriptional and posttranslational regulations of AANAT mRNA. In this study, we identify three proteins from pineal glands that associate with cis-acting elements within species-specific AANAT 3' untranslated regions to mediate mRNA degradation. These proteins include heterogeneous nuclear ribonucleoprotein R (hnRNP R), hnRNP Q, and hnRNP L. Their RNA-destabilizing function was determined by RNA interference and overexpression approaches. Expression patterns of these factors in pineal glands display robust circadian rhythm. The enhanced levels detected after midnight correlate with an abrupt decline in AANAT mRNA level. A mathematical model for the AANAT mRNA profile and its experimental evidence with rat pinealocytes indicates that rhythmic AANAT mRNA degradation mediated by hnRNP R, hnRNP Q, and hnRNP L is a key process in the regulation of its circadian oscillation.  (+info)

Arylalkylamine N-acetyltransferase (AANAT) is an enzyme that plays a crucial role in the regulation of melatonin synthesis in the body. It catalyzes the acetylation of serotonin to produce N-acetylserotonin, which is then converted to melatonin by the enzyme acetylserotonin O-methyltransferase (ASMT).

Melatonin is a hormone that helps regulate sleep-wake cycles and other physiological processes in the body. The activity of AANAT is influenced by light exposure, with higher levels of activity occurring in darkness and lower levels during light exposure. This allows melatonin production to be synchronized with the day-night cycle, contributing to the regulation of circadian rhythms.

Genetic variations in the AANAT gene have been associated with differences in sleep patterns, mood regulation, and other physiological processes. Dysregulation of AANAT activity has been implicated in various conditions, including insomnia, depression, and seasonal affective disorder.

The pineal gland, also known as the epiphysis cerebri, is a small endocrine gland located in the brain. It is shaped like a pinecone, hence its name, and is situated near the center of the brain, between the two hemispheres, attached to the third ventricle. The primary function of the pineal gland is to produce melatonin, a hormone that helps regulate sleep-wake cycles and circadian rhythms in response to light and darkness. Additionally, it plays a role in the onset of puberty and has been suggested to have other functions related to cognition, mood, and reproduction, although these are not as well understood.

Arylamine N-acetyltransferase (NAT) is a group of enzymes involved in the metabolism of aromatic amines, which are found in a variety of substances including tobacco smoke, certain drugs, and environmental contaminants. NAT catalyzes the transfer of an acetyl group from acetyl coenzyme A to the aromatic amine, which can help to detoxify these compounds and make them more water-soluble for excretion. There are two main forms of NAT in humans, known as NAT1 and NAT2, which have different tissue distributions and substrate specificities. Variations in NAT activity due to genetic polymorphisms can affect individual susceptibility to certain chemical exposures and diseases, including cancer.

Melatonin is a hormone that is produced by the pineal gland in the brain. It helps regulate sleep-wake cycles and is often referred to as the "hormone of darkness" because its production is stimulated by darkness and inhibited by light. Melatonin plays a key role in synchronizing the circadian rhythm, the body's internal clock that regulates various biological processes over a 24-hour period.

Melatonin is primarily released at night, and its levels in the blood can rise and fall in response to changes in light and darkness in an individual's environment. Supplementing with melatonin has been found to be helpful in treating sleep disorders such as insomnia, jet lag, and delayed sleep phase syndrome. It may also have other benefits, including antioxidant properties and potential uses in the treatment of certain neurological conditions.

It is important to note that while melatonin supplements are available over-the-counter in many countries, they should still be used under the guidance of a healthcare professional, as their use can have potential side effects and interactions with other medications.

Acetylserotonin O-methyltransferase (ASMT) is an enzyme that catalyzes the final step in melatonin synthesis. It transfers a methyl group from S-adenosylmethionine to acetylserotonin, forming melatonin and S-adenosylhomocysteine. ASMT plays a crucial role in regulating the sleep-wake cycle and other physiological processes influenced by melatonin.

Tryptamines are a class of organic compounds that contain a tryptamine skeleton, which is a combination of an indole ring and a ethylamine side chain. They are commonly found in nature and can be synthesized in the lab. Some tryptamines have psychedelic properties and are used as recreational drugs, such as dimethyltryptamine (DMT) and psilocybin. Others have important roles in the human body, such as serotonin, which is a neurotransmitter that regulates mood, appetite, and sleep. Tryptamines can also be found in some plants and animals, including certain species of mushrooms, toads, and catnip.

Acetyltransferases are a type of enzyme that facilitates the transfer of an acetyl group (a chemical group consisting of an acetyl molecule, which is made up of carbon, hydrogen, and oxygen atoms) from a donor molecule to a recipient molecule. This transfer of an acetyl group can modify the function or activity of the recipient molecule.

In the context of biology and medicine, acetyltransferases are important for various cellular processes, including gene expression, DNA replication, and protein function. For example, histone acetyltransferases (HATs) are a type of acetyltransferase that add an acetyl group to the histone proteins around which DNA is wound. This modification can alter the structure of the chromatin, making certain genes more or less accessible for transcription, and thereby influencing gene expression.

Abnormal regulation of acetyltransferases has been implicated in various diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the function and regulation of these enzymes is an important area of research in biomedicine.

A circadian rhythm is a roughly 24-hour biological cycle that regulates various physiological and behavioral processes in living organisms. It is driven by the body's internal clock, which is primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain.

The circadian rhythm controls many aspects of human physiology, including sleep-wake cycles, hormone secretion, body temperature, and metabolism. It helps to synchronize these processes with the external environment, particularly the day-night cycle caused by the rotation of the Earth.

Disruptions to the circadian rhythm can have negative effects on health, leading to conditions such as insomnia, sleep disorders, depression, bipolar disorder, and even increased risk of chronic diseases like cancer, diabetes, and cardiovascular disease. Factors that can disrupt the circadian rhythm include shift work, jet lag, irregular sleep schedules, and exposure to artificial light at night.

Histone Acetyltransferases (HATs) are a group of enzymes that play a crucial role in the regulation of gene expression. They function by adding acetyl groups to specific lysine residues on the N-terminal tails of histone proteins, which make up the structural core of nucleosomes - the fundamental units of chromatin.

The process of histone acetylation neutralizes the positive charge of lysine residues, reducing their attraction to the negatively charged DNA backbone. This leads to a more open and relaxed chromatin structure, facilitating the access of transcription factors and other regulatory proteins to the DNA, thereby promoting gene transcription.

HATs are classified into two main categories: type A HATs, which are primarily found in the nucleus and associated with transcriptional activation, and type B HATs, which are located in the cytoplasm and participate in chromatin assembly during DNA replication and repair. Dysregulation of HAT activity has been implicated in various human diseases, including cancer, neurodevelopmental disorders, and cardiovascular diseases.

Choline O-Acetyltransferase (COAT, ChAT) is an enzyme that plays a crucial role in the synthesis of the neurotransmitter acetylcholine. It catalyzes the transfer of an acetyl group from acetyl CoA to choline, resulting in the formation of acetylcholine. Acetylcholine is a vital neurotransmitter involved in various physiological processes such as memory, cognition, and muscle contraction. COAT is primarily located in cholinergic neurons, which are nerve cells that use acetylcholine to transmit signals to other neurons or muscles. Inhibition of ChAT can lead to a decrease in acetylcholine levels and may contribute to neurological disorders such as Alzheimer's disease and myasthenia gravis.

Chloramphenicol O-acetyltransferase is an enzyme that is encoded by the cat gene in certain bacteria. This enzyme is responsible for adding acetyl groups to chloramphenicol, which is an antibiotic that inhibits bacterial protein synthesis. When chloramphenicol is acetylated by this enzyme, it becomes inactivated and can no longer bind to the ribosome and prevent bacterial protein synthesis.

Bacteria that are resistant to chloramphenicol often have a plasmid-borne cat gene, which encodes for the production of Chloramphenicol O-acetyltransferase. This enzyme allows the bacteria to survive in the presence of chloramphenicol by rendering it ineffective. The transfer of this plasmid between bacteria can also confer resistance to other susceptible strains.

In summary, Chloramphenicol O-acetyltransferase is an enzyme that inactivates chloramphenicol by adding acetyl groups to it, making it an essential factor in bacterial resistance to this antibiotic.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

The retina is the innermost, light-sensitive layer of tissue in the eye of many vertebrates and some cephalopods. It receives light that has been focused by the cornea and lens, converts it into neural signals, and sends these to the brain via the optic nerve. The retina contains several types of photoreceptor cells including rods (which handle vision in low light) and cones (which are active in bright light and are capable of color vision).

In medical terms, any pathological changes or diseases affecting the retinal structure and function can lead to visual impairment or blindness. Examples include age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinitis pigmentosa among others.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

Acetylation is a chemical process that involves the addition of an acetyl group (-COCH3) to a molecule. In the context of medical biochemistry, acetylation often refers to the post-translational modification of proteins, where an acetyl group is added to the amino group of a lysine residue in a protein by an enzyme called acetyltransferase. This modification can alter the function or stability of the protein and plays a crucial role in regulating various cellular processes such as gene expression, DNA repair, and cell signaling. Acetylation can also occur on other types of molecules, including lipids and carbohydrates, and has important implications for drug metabolism and toxicity.

P300 and CREB binding protein (CBP) are both transcriptional coactivators that play crucial roles in regulating gene expression. They function by binding to various transcription factors and modifying the chromatin structure to allow for the recruitment of the transcriptional machinery. The P300-CBP complex is essential for many cellular processes, including development, differentiation, and oncogenesis.

P300-CBP transcription factors refer to a family of proteins that include both p300 and CBP, as well as their various isoforms and splice variants. These proteins share structural and functional similarities and are often referred to together due to their overlapping roles in transcriptional regulation.

The P300-CBP complex plays a key role in the P300-CBP-mediated signal integration, which allows for the coordinated regulation of gene expression in response to various signals and stimuli. Dysregulation of P300-CBP transcription factors has been implicated in several diseases, including cancer, neurodevelopmental disorders, and inflammatory diseases.

In summary, P300-CBP transcription factors are a family of proteins that play crucial roles in regulating gene expression through their ability to bind to various transcription factors and modify the chromatin structure. Dysregulation of these proteins has been implicated in several diseases, making them important targets for therapeutic intervention.

Carnitine O-acetyltransferase (COAT) is an enzyme that plays a crucial role in the transport and metabolism of fatty acids within cells. It is also known as carnitine palmitoyltransferase I (CPT I).

The primary function of COAT is to catalyze the transfer of an acetyl group from acetyl-CoA to carnitine, forming acetylcarnitine and free CoA. This reaction is essential for the entry of long-chain fatty acids into the mitochondrial matrix, where they undergo beta-oxidation to produce energy in the form of ATP.

COAT is located on the outer membrane of the mitochondria and functions as a rate-limiting enzyme in fatty acid oxidation. Its activity can be inhibited by malonyl-CoA, which is an intermediate in fatty acid synthesis. This inhibition helps regulate the balance between fatty acid oxidation and synthesis, ensuring that cells have enough energy while preventing excessive accumulation of lipids.

Deficiencies or mutations in COAT can lead to various metabolic disorders, such as carnitine palmitoyltransferase I deficiency (CPT I deficiency), which may cause symptoms like muscle weakness, hypoglycemia, and cardiomyopathy. Proper diagnosis and management of these conditions often involve dietary modifications, supplementation with carnitine, and avoidance of fasting to prevent metabolic crises.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

... (AANAT) (EC, also known as arylalkylamine N-acetyltransferase or serotonin N- ... Voisin P, Namboodiri MA, Klein DC (1984). "Arylamine N-acetyltransferase and arylalkylamine N-acetyltransferase in the ... AANAT Arylalkylamine N-acetyltransferase Melatonin rhythm enzyme Serotonin acetylase Serotonin acetyltransferase Serotonin N- ... "Entrez Gene: arylalkylamine N-acetyltransferase". Coon SL, Mazuruk K, Bernard M, Roseboom PH, Klein DC, Rodriguez IR (May 1996 ...
... the arylalkylamine N-acetyltransferase (AANAT). On exposure to (day)light, noradrenergic stimulation stops and the protein is ... It has been proposed that histidine residue His122 of serotonin N-acetyl transferase is the catalytic residue that deprotonates ... the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism". Molecular Cell. 3 (1): 23- ... but is also converted into N-acetylserotonin by serotonin N-acetyltransferase with acetyl-CoA. Hydroxyindole O- ...
... arylalkylamine N-acetyltransferase). The expression of the AANAT gene is controlled by the transcription factor pCREB, and this ...
... photic suppression of arylalkylamine-N-acetyltransferase transcript, and acute suppression of locomotor activity by light." ...
... arylalkylamine n-acetyltransferase MeSH D08.811.913.050.313 - arylamine N-acetyltransferase MeSH D08.811.913.050.331 - atp ... acetyl-CoA C-acetyltransferase MeSH D08.811.913.050.134.105 - amino-acid n-acetyltransferase MeSH D08.811.913.050.134.150 - ... phosphate acetyltransferase MeSH D08.811.913.050.134.850 - serine O-acetyltransferase MeSH D08.811.913.050.170 - acyl-carrier ... acetyltransferases MeSH D08.811.913.050.134.029 - acyl-carrier protein s-acetyltransferase MeSH D08.811.913.050.134.060 - ...

No FAQ available that match "arylalkylamine n acetyltransferase"

No images available that match "arylalkylamine n acetyltransferase"