A group of compounds with the general formula M10(PO4)6(OH)2, where M is barium, strontium, or calcium. The compounds are the principal mineral in phosphorite deposits, biological tissue, human bones, and teeth. They are also used as an anticaking agent and polymer catalysts. (Grant & Hackh's Chemical Dictionary, 5th ed)
Inorganic salts of phosphoric acid.
Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements.
Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins.
An ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed)
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.
'Sugar phosphates' are organic compounds that consist of a sugar molecule linked to one or more phosphate groups, playing crucial roles in biochemical processes such as energy transfer and nucleic acid metabolism.
Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
Calcium compounds used as food supplements or in food to supply the body with calcium. Dietary calcium is needed during growth for bone development and for maintenance of skeletal integrity later in life to prevent osteoporosis.
An aldotriose which is an important intermediate in glycolysis and in tryptophan biosynthesis.
An oxidative decarboxylation process that converts GLUCOSE-6-PHOSPHATE to D-ribose-5-phosphate via 6-phosphogluconate. The pentose product is used in the biosynthesis of NUCLEIC ACIDS. The generated energy is stored in the form of NADPH. This pathway is prominent in tissues which are active in the synthesis of FATTY ACIDS and STEROIDS.
Glucose-6-Phosphate Dehydrogenase (G6PD) is an enzyme that plays a critical role in the pentose phosphate pathway, catalyzing the oxidation of glucose-6-phosphate to 6-phosphoglucono-δ-lactone while reducing nicotinamide adenine dinucleotide phosphate (NADP+) to nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), thereby protecting cells from oxidative damage and maintaining redox balance.
The rate dynamics in chemical or physical systems.
Carbonic acid calcium salt (CaCO3). An odorless, tasteless powder or crystal that occurs in nature. It is used therapeutically as a phosphate buffer in hemodialysis patients and as a calcium supplement.
An important intermediate in lipid biosynthesis and in glycolysis.
Membrane proteins that are involved in the active transport of phosphate.
This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).
An aldose-ketose isomerase that catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-phosphate. In prokaryotic and eukaryotic organisms it plays an essential role in glycolytic and gluconeogenic pathways. In mammalian systems the enzyme is found in the cytoplasm and as a secreted protein. This secreted form of glucose-6-phosphate isomerase has been referred to as autocrine motility factor or neuroleukin, and acts as a cytokine which binds to the AUTOCRINE MOTILITY FACTOR RECEPTOR. Deficiency of the enzyme in humans is an autosomal recessive trait, which results in CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA.
'Glucosephosphates' are organic compounds resulting from the reaction of glucose with phosphoric acid, playing crucial roles in various metabolic processes, such as energy transfer and storage within cells.
An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed)
An enzyme that transfers acyl groups from acyl-CoA to glycerol-3-phosphate to form monoglyceride phosphates. It acts only with CoA derivatives of fatty acids of chain length above C-10. Also forms diglyceride phosphates. EC 2.3.1.15.
Any salt or ester of glycerophosphoric acid.
Pentosephosphates are monosaccharides, specifically pentoses, that have a phosphate group attached, playing crucial roles in carbohydrate metabolism, such as being intermediates in the pentose phosphate pathway and serving as precursors for nucleotide synthesis.
The monoanhydride of carbamic acid with PHOSPHORIC ACID. It is an important intermediate metabolite and is synthesized enzymatically by CARBAMYL-PHOSPHATE SYNTHASE (AMMONIA) and CARBAMOYL-PHOSPHATE SYNTHASE (GLUTAMINE-HYDROLYZING).
Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal.
Hexosephosphates are sugar phosphate molecules, specifically those derived from hexoses (six-carbon sugars), such as glucose-6-phosphate and fructose-6-phosphate, which play crucial roles in various metabolic pathways including glycolysis, gluconeogenesis, and the pentose phosphate pathway.
Stable calcium atoms that have the same atomic number as the element calcium, but differ in atomic weight. Ca-42-44, 46, and 48 are stable calcium isotopes.
A salt used to replenish calcium levels, as an acid-producing diuretic, and as an antidote for magnesium poisoning.
Proteins that bind to and are involved in the metabolism of phosphate ions.
A non-metal element that has the atomic symbol P, atomic number 15, and atomic weight 31. It is an essential element that takes part in a broad variety of biochemical reactions.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Phosphatidylinositols in which one or more alcohol group of the inositol has been substituted with a phosphate group.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
Ribose substituted in the 1-, 3-, or 5-position by a phosphoric acid moiety.
Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P(=O)(O)3 structure. Note that several specific classes of endogenous phosphorus-containing compounds such as NUCLEOTIDES; PHOSPHOLIPIDS; and PHOSPHOPROTEINS are listed elsewhere.
Enzymes that catalyze a reverse aldol condensation. A molecule containing a hydroxyl group and a carbonyl group is cleaved at a C-C bond to produce two smaller molecules (ALDEHYDES or KETONES). EC 4.1.2.
Glycerolphosphate Dehydrogenase is an enzyme (EC 1.1.1.8) that catalyzes the reversible conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, using nicotinamide adenine dinucleotide (NAD+) as an electron acceptor in the process.
A subfamily of lysophospholipid receptors with specificity for LYSOSPHINGOLIPIDS such as sphingosine-1-phosphate and sphingosine phosphorylcholine.
Fructosephosphates are organic compounds resulting from the combination of fructose with a phosphate group, playing crucial roles in various metabolic processes, particularly within carbohydrate metabolism.
A receptor that is specific for IGF-II and mannose-6-phosphate. The receptor is a 250-kDa single chain polypeptide which is unrelated in structure to the type 1 IGF receptor (RECEPTOR, IGF TYPE 1) and does not have a tyrosine kinase domain.
A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
The calcium salt of oxalic acid, occurring in the urine as crystals and in certain calculi.
An enzyme that catalyzes the synthesis of fructose-6-phosphate plus GLUTAMINE from GLUTAMATE plus glucosamine-6-phosphate.
Phosphoric acid esters of mannose.
Phosphoric or pyrophosphoric acid esters of polyisoprenoids.
Long-lasting voltage-gated CALCIUM CHANNELS found in both excitable and nonexcitable tissue. They are responsible for normal myocardial and vascular smooth muscle contractility. Five subunits (alpha-1, alpha-2, beta, gamma, and delta) make up the L-type channel. The alpha-1 subunit is the binding site for calcium-based antagonists. Dihydropyridine-based calcium antagonists are used as markers for these binding sites.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The calcium salt of gluconic acid. The compound has a variety of uses, including its use as a calcium replenisher in hypocalcemic states.
A group of enzymes that transfers a phosphate group onto an alcohol group acceptor. EC 2.7.1.
Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7.
Trioses are monosaccharides, specifically simple sugars, that contain three carbon atoms, and can be glyceraldehydes or dihydroxyacetones, which are important intermediates in metabolic pathways such as glycolysis.
Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes.
A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Inorganic compounds that contain calcium as an integral part of the molecule.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. EC 3.1.3.
An enzyme that catalyzes the synthesis of UDPgalactose from UTP and galactose-1-phosphate. It is present in low levels in fetal and infant liver, but increases with age, thereby enabling galactosemic infants who survive to develop the capacity to metabolize galactose. EC 2.7.7.10.
Enzymes that catalyze the interconversion of aldose and ketose compounds.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A condition of abnormally high level of PHOSPHATES in the blood, usually significantly above the normal range of 0.84-1.58 mmol per liter of serum.
An enzyme that catalyzes the formation of myo-inositol-1-phosphate from glucose-6-phosphate in the presence of NAD. EC 5.5.1.4.
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Elements of limited time intervals, contributing to particular results or situations.
An NAD-dependent glyceraldehyde-3-phosphate dehydrogenase found in the cytosol of eucaryotes. It catalyses the dehydrogenation and phosphorylation of GLYCERALDEHYDE 3-PHOSPHATE to 3-phospho-D-glyceroyl phosphate, which is an important step in the GLYCOLYSIS pathway.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID.
A family of symporters that facilitate sodium-dependent membrane transport of phosphate.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids.
Ribulose substituted by one or more phosphoric acid moieties.
An enzyme of the transferase class that catalyzes the reaction sedoheptulose 7-phosphate and D-glyceraldehyde 3-phosphate to yield D-erythrose 4-phosphate and D-fructose phosphate in the PENTOSE PHOSPHATE PATHWAY. (Dorland, 27th ed) EC 2.2.1.2.
An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43.
A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH.
These compounds function as activated monosaccharide carriers in the biosynthesis of glycoproteins and oligosaccharide phospholipids. Obtained from a nucleoside diphosphate sugar and a polyisoprenyl phosphate.
The process of cleaving a chemical compound by the addition of a molecule of water.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A class of enzymes that transfers substituted phosphate groups. EC 2.7.8.
A mixture of isomeric tritolyl phosphates. Used in the sterilization of certain surgical instruments and in many industrial processes.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
CALCIUM CHANNELS that are concentrated in neural tissue. Omega toxins inhibit the actions of these channels by altering their voltage dependence.
Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.
A condition of an abnormally low level of PHOSPHATES in the blood.
Phosphoric acid esters of mannitol.
Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture.
Established cell cultures that have the potential to propagate indefinitely.
Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS.
Derivatives of propylene glycol (1,2-propanediol). They are used as humectants and solvents in pharmaceutical preparations.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Enzymes that catalyze the epimerization of chiral centers within carbohydrates or their derivatives. EC 5.1.3.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An enzyme that catalyzes the reversible isomerization of D-mannose-6-phosphate to form D-fructose-6-phosphate, an important step in glycolysis. EC 5.3.1.8.
Inorganic or organic salts and esters of arsenic acid.
Compounds functioning as activated glycosyl carriers in the biosynthesis of glycoproteins and glycophospholipids. They include the polyisoprenyl pyrophosphates.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996)
A four-carbon sugar that is found in algae, fungi, and lichens. It is twice as sweet as sucrose and can be used as a coronary vasodilator.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
The mineral component of bones and teeth; it has been used therapeutically as a prosthetic aid and in the prevention and treatment of osteoporosis.
An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems.
Phosphorus used in foods or obtained from food. This element is a major intracellular component which plays an important role in many biochemical pathways relating to normal physiological functions. High concentrations of dietary phosphorus can cause nephrocalcinosis which is associated with impaired kidney function. Low concentrations of dietary phosphorus cause an increase in calcitriol in the blood and osteoporosis.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues.
An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction.
Contractile tissue that produces movement in animals.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A group of enzymes that catalyzes the transfer of a phosphate group onto a phosphate group acceptor. EC 2.7.4.
Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
Proteins prepared by recombinant DNA technology.
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.
The sum of the weight of all the atoms in a molecule.
Linear polymers in which orthophosphate residues are linked with energy-rich phosphoanhydride bonds. They are found in plants, animals, and microorganisms.
Phosphoric acid esters of galactose.
An enzyme that catalyzes the formation of 7-phospho-2-keto-3-deoxy-D-arabinoheptonate from phosphoenolpyruvate and D-erythrose-4-phosphate. It is one of the first enzymes in the biosynthesis of TYROSINE and PHENYLALANINE. This enzyme was formerly listed as EC 4.1.2.15.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin.
Lanthanum. The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Diphosphoric acid esters of fructose. The fructose-1,6- diphosphate isomer is most prevalent. It is an important intermediate in the glycolysis process.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
An enzyme that catalyzes the formation of carbamoyl phosphate from ATP, carbon dioxide, and ammonia. This enzyme is specific for arginine biosynthesis or the urea cycle. Absence or lack of this enzyme may cause CARBAMOYL-PHOSPHATE SYNTHASE I DEFICIENCY DISEASE. EC 6.3.4.16.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A calcium salt that is used for a variety of purposes including: building materials, as a desiccant, in dentistry as an impression material, cast, or die, and in medicine for immobilizing casts and as a tablet excipient. It exists in various forms and states of hydration. Plaster of Paris is a mixture of powdered and heat-treated gypsum.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Phosphoenolpyruvate (PEP) is a high-energy organic compound, an intermediate in the glycolytic pathway, that plays a crucial role in the transfer of energy during metabolic processes, and serves as a substrate for various biosynthetic reactions.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
A family of G-protein-coupled receptors that bind to specific LYSOPHOSPHOLIPIDS such as lysophosphatidic acid and lysosphinglipids such as sphingosine-1-phosphate. They play an important role in the formation and function of the CARDIOVASCULAR SYSTEM.
A white powder prepared from lime that has many medical and industrial uses. It is in many dental formulations, especially for root canal filling.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
An enzyme that catalyzes the formation of UDPglucose from UTP plus glucose 1-phosphate. EC 2.7.7.9.
An enzyme that catalyses the reaction of D-glucosamine 6-phosphate with ACETYL-COA to form N-acetylglucosamine 6-phosphate.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts.
The processes whereby the internal environment of an organism tends to remain balanced and stable.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure.
Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis.
A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS.
Adenine nucleotides are molecules that consist of an adenine base attached to a ribose sugar and one, two, or three phosphate groups, including adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP), which play crucial roles in energy transfer and signaling processes within cells.
A group of phosphate minerals that includes ten mineral species and has the general formula X5(YO4)3Z, where X is usually calcium or lead, Y is phosphorus or arsenic, and Z is chlorine, fluorine, or OH-. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An inherited condition of abnormally low serum levels of PHOSPHATES (below 1 mg/liter) which can occur in a number of genetic diseases with defective reabsorption of inorganic phosphorus by the PROXIMAL RENAL TUBULES. This leads to phosphaturia, HYPOPHOSPHATEMIA, and disturbances of cellular and organ functions such as those in X-LINKED HYPOPHOSPHATEMIC RICKETS; OSTEOMALACIA; and FANCONI SYNDROME.
An inorganic pyrophosphate which affects calcium metabolism in mammals. Abnormalities in its metabolism occur in some human diseases, notably HYPOPHOSPHATASIA and pseudogout (CHONDROCALCINOSIS).
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
A fluorescent calcium chelating agent which is used to study intracellular calcium in tissues.
Inorganic salts of phosphoric acid that contain two phosphate groups.
An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1.
"Citrates, in a medical context, are compounds containing citric acid, often used in medical solutions for their chelating properties and as a part of certain types of nutritional support."
Synthetic or natural materials for the replacement of bones or bone tissue. They include hard tissue replacement polymers, natural coral, hydroxyapatite, beta-tricalcium phosphate, and various other biomaterials. The bone substitutes as inert materials can be incorporated into surrounding tissue or gradually replaced by original tissue.
Proteins found in any species of bacterium.
Stones in the KIDNEY, usually formed in the urine-collecting area of the kidney (KIDNEY PELVIS). Their sizes vary and most contains CALCIUM OXALATE.
An electrogenic sodium-dependent phosphate transporter. It is present primarily in BRUSH BORDER membranes of PROXIMAL RENAL TUBULES.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
An enzyme of the shikimate pathway of AROMATIC AMINO ACID biosynthesis, it generates 5-enolpyruvylshikimate 3-phosphate and ORTHOPHOSPHATE from PHOSPHOENOLPYRUVATE and shikimate-3-phosphate. The shikimate pathway is present in BACTERIA and PLANTS but not in MAMMALS.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope.
A sesquiterpene lactone found in roots of THAPSIA. It inhibits CA(2+)-TRANSPORTING ATPASE mediated uptake of CALCIUM into SARCOPLASMIC RETICULUM.
A family of highly conserved and widely expressed sodium-phosphate cotransporter proteins. They are electrogenic sodium-dependent transporters of phosphate that were originally identified as retroviral receptors in HUMANS and have been described in yeast and many other organisms.
An analytical technique for resolution of a chemical mixture into its component compounds. Compounds are separated on an adsorbent paper (stationary phase) by their varied degree of solubility/mobility in the eluting solvent (mobile phase).
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Pathologic deposition of calcium salts in tissues.
Disorders in the processing of phosphorus in the body: its absorption, transport, storage, and utilization.
An enzyme of the transferase class that catalyzes the conversion of sedoheptulose 7-phosphate and D-glyceraldehyde 3-phosphate to D-ribose 5-phosphate and D-xylulose 5-phosphate in the PENTOSE PHOSPHATE PATHWAY. (Dorland, 27th ed) EC 2.2.1.1.
Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Abnormally high level of calcium in the blood.
A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, and sweetening agent.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent.
A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Reduction of the blood calcium below normal. Manifestations include hyperactive deep tendon reflexes, Chvostek's sign, muscle and abdominal cramps, and carpopedal spasm. (Dorland, 27th ed)
An enzyme that catalyzes the synthesis of acetylphosphate from acetyl-CoA and inorganic phosphate. Acetylphosphate serves as a high-energy phosphate compound. EC 2.3.1.8.
A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive.
The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)

Hydroxyapatite is a calcium phosphate mineral that makes up about 70% of the inorganic component of bone and teeth in humans and other animals. It has the chemical formula Ca10(PO4)6(OH)2. Hydroxyapatite is a naturally occurring mineral form of calcium apatite, with the idealized crystal structure consisting of alternating calcium and phosphate layers.

In addition to its natural occurrence in bone and teeth, hydroxyapatite has various medical applications due to its biocompatibility and osteoconductive properties. It is used as a coating on orthopedic implants to promote bone growth and integration with the implant, and it is also used in dental and oral healthcare products for remineralization of tooth enamel. Furthermore, hydroxyapatite has been studied for its potential use in drug delivery systems, tissue engineering, and other biomedical applications.

Phosphates, in a medical context, refer to the salts or esters of phosphoric acid. Phosphates play crucial roles in various biological processes within the human body. They are essential components of bones and teeth, where they combine with calcium to form hydroxyapatite crystals. Phosphates also participate in energy transfer reactions as phosphate groups attached to adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Additionally, they contribute to buffer systems that help maintain normal pH levels in the body.

Abnormal levels of phosphates in the blood can indicate certain medical conditions. High phosphate levels (hyperphosphatemia) may be associated with kidney dysfunction, hyperparathyroidism, or excessive intake of phosphate-containing products. Low phosphate levels (hypophosphatemia) might result from malnutrition, vitamin D deficiency, or certain diseases affecting the small intestine or kidneys. Both hypophosphatemia and hyperphosphatemia can have significant impacts on various organ systems and may require medical intervention.

Calcium phosphates are a group of minerals that are important components of bones and teeth. They are also found in some foods and are used in dietary supplements and medical applications. Chemically, calcium phosphates are salts of calcium and phosphoric acid, and they exist in various forms, including hydroxyapatite, which is the primary mineral component of bone tissue. Other forms of calcium phosphates include monocalcium phosphate, dicalcium phosphate, and tricalcium phosphate, which are used as food additives and dietary supplements. Calcium phosphates are important for maintaining strong bones and teeth, and they also play a role in various physiological processes, such as nerve impulse transmission and muscle contraction.

Calcium signaling is the process by which cells regulate various functions through changes in intracellular calcium ion concentrations. Calcium ions (Ca^2+^) are crucial second messengers that play a critical role in many cellular processes, including muscle contraction, neurotransmitter release, gene expression, and programmed cell death (apoptosis).

Intracellular calcium levels are tightly regulated by a complex network of channels, pumps, and exchangers located on the plasma membrane and intracellular organelles such as the endoplasmic reticulum (ER) and mitochondria. These proteins control the influx, efflux, and storage of calcium ions within the cell.

Calcium signaling is initiated when an external signal, such as a hormone or neurotransmitter, binds to a specific receptor on the plasma membrane. This interaction triggers the opening of ion channels, allowing extracellular Ca^2+^ to flow into the cytoplasm. In some cases, this influx of calcium ions is sufficient to activate downstream targets directly. However, in most instances, the increase in intracellular Ca^2+^ serves as a trigger for the release of additional calcium from internal stores, such as the ER.

The release of calcium from the ER is mediated by ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs), which are activated by specific second messengers generated in response to the initial external signal. The activation of these channels leads to a rapid increase in cytoplasmic Ca^2+^, creating a transient intracellular calcium signal known as a "calcium spark" or "calcium puff."

These localized increases in calcium concentration can then propagate throughout the cell as waves of elevated calcium, allowing for the spatial and temporal coordination of various cellular responses. The duration and amplitude of these calcium signals are finely tuned by the interplay between calcium-binding proteins, pumps, and exchangers, ensuring that appropriate responses are elicited in a controlled manner.

Dysregulation of intracellular calcium signaling has been implicated in numerous pathological conditions, including neurodegenerative diseases, cardiovascular disorders, and cancer. Therefore, understanding the molecular mechanisms governing calcium homeostasis and signaling is crucial for the development of novel therapeutic strategies targeting these diseases.

Glucose-6-phosphate (G6P) is a vital intermediate compound in the metabolism of glucose, which is a simple sugar that serves as a primary source of energy for living organisms. G6P plays a critical role in both glycolysis and gluconeogenesis pathways, contributing to the regulation of blood glucose levels and energy production within cells.

In biochemistry, glucose-6-phosphate is defined as:

A hexose sugar phosphate ester formed by the phosphorylation of glucose at the 6th carbon atom by ATP in a reaction catalyzed by the enzyme hexokinase or glucokinase. This reaction is the first step in both glycolysis and glucose storage (glycogen synthesis) processes, ensuring that glucose can be effectively utilized for energy production or stored for later use.

G6P serves as a crucial metabolic branch point, leading to various pathways such as:

1. Glycolysis: In the presence of sufficient ATP and NAD+ levels, G6P is further metabolized through glycolysis to generate pyruvate, which enters the citric acid cycle for additional energy production in the form of ATP, NADH, and FADH2.
2. Gluconeogenesis: During periods of low blood glucose levels, G6P can be synthesized back into glucose through the gluconeogenesis pathway, primarily occurring in the liver and kidneys. This process helps maintain stable blood glucose concentrations and provides energy to cells when dietary intake is insufficient.
3. Pentose phosphate pathway (PPP): A portion of G6P can be shunted into the PPP, an alternative metabolic route that generates NADPH, ribose-5-phosphate for nucleotide synthesis, and erythrose-4-phosphate for aromatic amino acid production. The PPP is essential in maintaining redox balance within cells and supporting biosynthetic processes.

Overall, glucose-6-phosphate plays a critical role as a central metabolic intermediate, connecting various pathways to regulate energy homeostasis, redox balance, and biosynthesis in response to cellular demands and environmental cues.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme that plays a crucial role in the metabolic pathway of glycolysis. Its primary function is to convert glyceraldehyde-3-phosphate (a triose sugar phosphate) into D-glycerate 1,3-bisphosphate, while also converting nicotinamide adenine dinucleotide (NAD+) into its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has also been implicated in various non-metabolic processes, including DNA replication, repair, and transcription regulation, due to its ability to interact with different proteins and nucleic acids.

Sugar phosphates are organic compounds that play crucial roles in various biological processes, particularly in the field of genetics and molecular biology. They are formed by the attachment of a phosphate group to a sugar molecule, most commonly to the 5-carbon sugar ribose or deoxyribose.

In genetics, sugar phosphates form the backbone of nucleic acids, such as DNA and RNA. In DNA, the sugar phosphate backbone consists of alternating deoxyribose (a sugar) and phosphate groups, linked together by covalent bonds between the 5' carbon atom of one sugar molecule and the 3' carbon atom of another sugar molecule. This forms a long, twisted ladder-like structure known as a double helix.

Similarly, in RNA, the sugar phosphate backbone is formed by ribose (a sugar) and phosphate groups, creating a single-stranded structure that can fold back on itself to form complex shapes. These sugar phosphate backbones provide structural support for the nucleic acids and help to protect the genetic information stored within them.

Sugar phosphates also play important roles in energy metabolism, as they are involved in the formation and breakdown of high-energy compounds such as ATP (adenosine triphosphate) and GTP (guanosine triphosphate). These molecules serve as energy currency for cells, storing and releasing energy as needed to power various cellular processes.

Calcium channels are specialized proteins that span the membrane of cells and allow calcium ions (Ca²+) to flow in and out of the cell. They are crucial for many physiological processes, including muscle contraction, neurotransmitter release, hormone secretion, and gene expression.

There are several types of calcium channels, classified based on their biophysical and pharmacological properties. The most well-known are:

1. Voltage-gated calcium channels (VGCCs): These channels are activated by changes in the membrane potential. They are further divided into several subtypes, including L-type, P/Q-type, N-type, R-type, and T-type. VGCCs play a critical role in excitation-contraction coupling in muscle cells and neurotransmitter release in neurons.
2. Receptor-operated calcium channels (ROCCs): These channels are activated by the binding of an extracellular ligand, such as a hormone or neurotransmitter, to a specific receptor on the cell surface. ROCCs are involved in various physiological processes, including smooth muscle contraction and platelet activation.
3. Store-operated calcium channels (SOCCs): These channels are activated by the depletion of intracellular calcium stores, such as those found in the endoplasmic reticulum. SOCCs play a critical role in maintaining calcium homeostasis and signaling within cells.

Dysregulation of calcium channel function has been implicated in various diseases, including hypertension, arrhythmias, migraine, epilepsy, and neurodegenerative disorders. Therefore, calcium channels are an important target for drug development and therapy.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

Dietary calcium is a type of calcium that is obtained through food sources. Calcium is an essential mineral that is necessary for many bodily functions, including bone formation and maintenance, muscle contraction, nerve impulse transmission, and blood clotting.

The recommended daily intake of dietary calcium varies depending on age, sex, and other factors. For example, the recommended daily intake for adults aged 19-50 is 1000 mg, while women over 50 and men over 70 require 1200 mg per day.

Good dietary sources of calcium include dairy products such as milk, cheese, and yogurt; leafy green vegetables like broccoli and kale; fortified cereals and juices; and certain types of fish, such as salmon and sardines. It is important to note that some foods can inhibit the absorption of calcium, including oxalates found in spinach and rhubarb, and phytates found in whole grains and legumes.

If a person is unable to get enough calcium through their diet, they may need to take calcium supplements. However, it is important to talk to a healthcare provider before starting any new supplement regimen, as excessive intake of calcium can lead to negative health effects.

Glyceraldehyde 3-phosphate (G3P) is a crucial intermediate in both glycolysis and gluconeogenesis metabolic pathways. It is an triose sugar phosphate, which means it contains three carbon atoms and has a phosphate group attached to it.

In the glycolysis process, G3P is produced during the third step of the process from the molecule dihydroxyacetone phosphate (DHAP) via the enzyme triosephosphate isomerase. In the following steps, G3P is converted into 1,3-bisphosphoglycerate, which eventually leads to the production of ATP and NADH.

In gluconeogenesis, G3P is produced from the reverse reaction of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, using the molecule dihydroxyacetone phosphate (DHAP) as a starting point. G3P is then converted into glucose-6-phosphate, which can be further metabolized or released from the cell.

It's important to note that Glyceraldehyde 3-Phosphate plays a key role in energy production and carbohydrate metabolism.

The Pentose Phosphate Pathway (also known as the Hexose Monophosphate Shunt or HMP Shunt) is a metabolic pathway that runs parallel to glycolysis. It serves two major functions:

1. Providing reducing equivalents in the form of NADPH for reductive biosynthesis and detoxification processes.
2. Generating ribose-5-phosphate, a pentose sugar used in the synthesis of nucleotides and nucleic acids (DNA and RNA).

This pathway begins with the oxidation of glucose-6-phosphate to form 6-phosphogluconolactone, catalyzed by the enzyme glucose-6-phosphate dehydrogenase. The resulting NADPH is used in various anabolic reactions and antioxidant defense systems.

The Pentose Phosphate Pathway also includes a series of reactions called the non-oxidative branch, which interconverts various sugars to meet cellular needs for different types of monosaccharides. These conversions are facilitated by several enzymes including transketolase and transaldolase.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), also known as Glucosephosphate Dehydrogenase, is an enzyme that plays a crucial role in cellular metabolism, particularly in the glycolytic pathway. It catalyzes the conversion of glyceraldehyde 3-phosphate (G3P) to 1,3-bisphosphoglycerate (1,3-BPG), while also converting nicotinamide adenine dinucleotide (NAD+) to its reduced form NADH. This reaction is essential for the production of energy in the form of adenosine triphosphate (ATP) during cellular respiration. GAPDH has been widely used as a housekeeping gene in molecular biology research due to its consistent expression across various tissues and cells, although recent studies have shown that its expression can vary under certain conditions.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks and in the shells of many marine animals. As a mineral, it is known as calcite or aragonite.

In the medical field, calcium carbonate is often used as a dietary supplement to prevent or treat calcium deficiency. It is also commonly used as an antacid to neutralize stomach acid and relieve symptoms of heartburn, acid reflux, and indigestion.

Calcium carbonate works by reacting with hydrochloric acid in the stomach to form water, carbon dioxide, and calcium chloride. This reaction helps to raise the pH level in the stomach and neutralize excess acid.

It is important to note that excessive use of calcium carbonate can lead to hypercalcemia, a condition characterized by high levels of calcium in the blood, which can cause symptoms such as nausea, vomiting, constipation, confusion, and muscle weakness. Therefore, it is recommended to consult with a healthcare provider before starting any new supplement regimen.

Dihydroxyacetone Phosphate (DHAP) is a 3-carbon organic compound that plays a crucial role in the metabolic pathway called glycolysis. It is an intermediate molecule formed during the conversion of glucose into pyruvate, which ultimately produces energy in the form of ATP.

In the glycolytic process, DHAP is produced from glyceraldehyde 3-phosphate (G3P) in a reaction catalyzed by the enzyme triose phosphate isomerase. Then, DHAP is converted back to G3P in a subsequent step, which prepares it for further processing in the glycolytic pathway. This reversible conversion of DHAP and G3P helps maintain the equilibrium of the glycolytic process.

Apart from its role in energy metabolism, DHAP is also involved in other biochemical processes, such as the synthesis of glucose during gluconeogenesis and the formation of lipids in the liver.

Phosphate transport proteins are membrane-bound proteins responsible for the active transport of phosphate ions across cell membranes. They play a crucial role in maintaining appropriate phosphate concentrations within cells and between intracellular compartments, which is essential for various biological processes such as energy metabolism, signal transduction, and bone formation.

These proteins utilize the energy derived from ATP hydrolysis or other sources to move phosphate ions against their concentration gradient, thereby facilitating cellular uptake of phosphate even when extracellular concentrations are low. Phosphate transport proteins can be classified based on their structure, function, and localization into different types, including sodium-dependent and sodium-independent transporters, secondary active transporters, and channels.

Dysregulation of phosphate transport proteins has been implicated in several pathological conditions, such as renal Fanconi syndrome, tumoral calcinosis, and hypophosphatemic rickets. Therefore, understanding the molecular mechanisms underlying phosphate transport protein function is essential for developing targeted therapies to treat these disorders.

Pyridoxal phosphate (PLP) is the active form of vitamin B6 and functions as a cofactor in various enzymatic reactions in the human body. It plays a crucial role in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Pyridoxal phosphate is involved in more than 140 different enzyme-catalyzed reactions, making it one of the most versatile cofactors in human biochemistry.

As a cofactor, pyridoxal phosphate helps enzymes carry out their functions by facilitating chemical transformations in substrates (the molecules on which enzymes act). In particular, PLP is essential for transamination, decarboxylation, racemization, and elimination reactions involving amino acids. These processes are vital for the synthesis and degradation of amino acids, neurotransmitters, hemoglobin, and other crucial molecules in the body.

Pyridoxal phosphate is formed from the conversion of pyridoxal (a form of vitamin B6) by the enzyme pyridoxal kinase, using ATP as a phosphate donor. The human body obtains vitamin B6 through dietary sources such as whole grains, legumes, vegetables, nuts, and animal products like poultry, fish, and pork. It is essential to maintain adequate levels of pyridoxal phosphate for optimal enzymatic function and overall health.

Glucose-6-phosphate isomerase (GPI) is an enzyme involved in the glycolytic and gluconeogenesis pathways. It catalyzes the interconversion of glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P), which are key metabolic intermediates in these pathways. This reaction is a reversible step that helps maintain the balance between the breakdown and synthesis of glucose in the cell.

In glycolysis, GPI converts G6P to F6P, which subsequently gets converted to fructose-1,6-bisphosphate (F1,6BP) by the enzyme phosphofructokinase-1 (PFK-1). In gluconeogenesis, the reaction is reversed, and F6P is converted back to G6P.

Deficiency or dysfunction of Glucose-6-phosphate isomerase can lead to various metabolic disorders, such as glycogen storage diseases and hereditary motor neuropathies.

Glucose phosphates are organic compounds that result from the reaction of glucose (a simple sugar) with phosphate groups. These compounds play a crucial role in various metabolic processes, particularly in energy metabolism within cells. The addition of phosphate groups to glucose makes it more reactive and enables it to undergo further reactions that lead to the formation of important molecules such as adenosine triphosphate (ATP), which is a primary source of energy for cellular functions.

One notable example of a glucose phosphate is glucose 1-phosphate, which is an intermediate in several metabolic pathways, including glycogenesis (the process of forming glycogen, a storage form of glucose) and glycolysis (the breakdown of glucose to release energy). Another example is glucose 6-phosphate, which is a key regulator of carbohydrate metabolism and serves as an important intermediate in the pentose phosphate pathway, a metabolic route that generates reducing equivalents (NADPH) and ribose sugars for nucleotide synthesis.

In summary, glucose phosphates are essential compounds in cellular metabolism, facilitating energy production, storage, and utilization.

Sphingosine is not a medical term per se, but rather a biological compound with importance in the field of medicine. It is a type of sphingolipid, a class of lipids that are crucial components of cell membranes. Sphingosine itself is a secondary alcohol with an amino group and two long-chain hydrocarbons.

Medically, sphingosine is significant due to its role as a precursor in the synthesis of other sphingolipids, such as ceramides, sphingomyelins, and gangliosides, which are involved in various cellular processes like signal transduction, cell growth, differentiation, and apoptosis (programmed cell death).

Moreover, sphingosine-1-phosphate (S1P), a derivative of sphingosine, is an important bioactive lipid mediator that regulates various physiological functions, including immune response, vascular maturation, and neuronal development. Dysregulation of S1P signaling has been implicated in several diseases, such as cancer, inflammation, and cardiovascular disorders.

In summary, sphingosine is a crucial biological compound with medical relevance due to its role as a precursor for various sphingolipids involved in cellular processes and as a precursor for the bioactive lipid mediator S1P.

Glycerol-3-Phosphate O-Acyltransferase (GPAT) is an enzyme that plays a crucial role in the biosynthesis of triacylglycerols and phospholipids, which are major components of cellular membranes and energy storage molecules. The GPAT enzyme catalyzes the initial and rate-limiting step in the glycerolipid synthesis pathway, specifically the transfer of an acyl group from an acyl-CoA donor to the sn-1 position of glycerol-3-phosphate, forming lysophosphatidic acid (LPA). This reaction is essential for the production of various glycerolipids, including phosphatidic acid, diacylglycerol, and triacylglycerol. There are four isoforms of GPAT (GPAT1-4) in humans, each with distinct subcellular localizations and functions. Dysregulation of GPAT activity has been implicated in several pathological conditions, such as metabolic disorders, cardiovascular diseases, and cancers.

Glycerophosphates are esters of glycerol and phosphoric acid. In the context of biochemistry and medicine, glycerophosphates often refer to glycerol 3-phosphate (also known as glyceraldehyde 3-phosphate or glycerone phosphate) and its derivatives.

Glycerol 3-phosphate plays a crucial role in cellular metabolism, particularly in the process of energy production and storage. It is an important intermediate in both glycolysis (the breakdown of glucose to produce energy) and gluconeogenesis (the synthesis of glucose from non-carbohydrate precursors).

In addition, glycerophosphates are also involved in the formation of phospholipids, a major component of cell membranes. The esterification of glycerol 3-phosphate with fatty acids leads to the synthesis of phosphatidic acid, which is a key intermediate in the biosynthesis of other phospholipids.

Abnormalities in glycerophosphate metabolism have been implicated in various diseases, including metabolic disorders and neurological conditions.

Pentose phosphates are monosaccharides that contain five carbon atoms and one phosphate group. They play a crucial role in various metabolic pathways, including the pentose phosphate pathway (PPP), which is a major source of NADPH and ribose-5-phosphate for the synthesis of nucleotides.

The pentose phosphate pathway involves two main phases: the oxidative phase and the non-oxidative phase. In the oxidative phase, glucose-6-phosphate is converted to ribulose-5-phosphate, producing NADPH and CO2 as byproducts. Ribulose-5-phosphate can then be further metabolized in the non-oxidative phase to produce other pentose phosphates or converted back to glucose-6-phosphate through a series of reactions.

Pentose phosphates are also important intermediates in the synthesis of nucleotides, coenzymes, and other metabolites. Abnormalities in pentose phosphate pathway enzymes can lead to various metabolic disorders, such as defects in erythrocyte function and increased susceptibility to oxidative stress.

Carbamyl Phosphate is a chemical compound that plays a crucial role in the biochemical process of nitrogen metabolism, particularly in the urea cycle. It is synthesized in the liver and serves as an important intermediate in the conversion of ammonia to urea, which is then excreted by the kidneys.

In medical terms, Carbamyl Phosphate Synthetase I (CPS I) deficiency is a rare genetic disorder that affects the production of Carbamyl Phosphate. This deficiency can lead to hyperammonemia, which is an excess of ammonia in the bloodstream, and can cause severe neurological symptoms and brain damage if left untreated.

It's important to note that while Carbamyl Phosphate is a critical component of the urea cycle, it is not typically used as a medication or therapeutic agent in clinical practice.

Lysophospholipids are a type of glycerophospholipid, which is a major component of cell membranes. They are characterized by having only one fatty acid chain attached to the glycerol backbone, as opposed to two in regular phospholipids. This results in a more polar and charged molecule, which can play important roles in cell signaling and regulation.

Lysophospholipids can be derived from the breakdown of regular phospholipids through the action of enzymes such as phospholipase A1 or A2. They can also be synthesized de novo in the cell. Some lysophospholipids, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), have been found to act as signaling molecules that bind to specific G protein-coupled receptors and regulate various cellular processes, including proliferation, survival, and migration.

Abnormal levels of lysophospholipids have been implicated in several diseases, such as cancer, inflammation, and neurological disorders. Therefore, understanding the biology of lysophospholipids has important implications for developing new therapeutic strategies.

Hexose phosphates are organic compounds that consist of a hexose sugar molecule (a monosaccharide containing six carbon atoms, such as glucose or fructose) that has been phosphorylated, meaning that a phosphate group has been added to it. This process is typically facilitated by enzymes called kinases, which transfer a phosphate group from a donor molecule (usually ATP) to the sugar molecule.

Hexose phosphates play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. For example, glucose-6-phosphate is a key intermediate in both glycolysis and gluconeogenesis, while fructose-6-phosphate and fructose-1,6-bisphosphate are important intermediates in glycolysis. The pentose phosphate pathway, which is involved in the production of NADPH and ribose-5-phosphate, begins with the conversion of glucose-6-phosphate to 6-phosphogluconolactone by the enzyme glucose-6-phosphate dehydrogenase.

Overall, hexose phosphates are important metabolic intermediates that help regulate energy production and utilization in cells.

Calcium isotopes refer to variants of the chemical element calcium (ca) that have different numbers of neutrons in their atomic nuclei, and therefore differ in their atomic masses while having the same number of protons. The most common and stable calcium isotope is Calcium-40, which contains 20 protons and 20 neutrons. However, calcium has several other isotopes, including Calcium-42, Calcium-43, Calcium-44, and Calcium-46 to -52, each with different numbers of neutrons. Some of these isotopes are radioactive and decay over time. The relative abundances of calcium isotopes can vary in different environments and can provide information about geological and biological processes.

Calcium chloride is an inorganic compound with the chemical formula CaCl2. It is a white, odorless, and tasteless solid that is highly soluble in water. Calcium chloride is commonly used as a de-icing agent, a desiccant (drying agent), and a food additive to enhance texture and flavor.

In medical terms, calcium chloride can be used as a medication to treat hypocalcemia (low levels of calcium in the blood) or hyperkalemia (high levels of potassium in the blood). It is administered intravenously and works by increasing the concentration of calcium ions in the blood, which helps to regulate various physiological processes such as muscle contraction, nerve impulse transmission, and blood clotting.

However, it is important to note that calcium chloride can have adverse effects if not used properly or in excessive amounts. It can cause tissue irritation, cardiac arrhythmias, and other serious complications. Therefore, its use should be monitored carefully by healthcare professionals.

Phosphate-binding proteins are a type of protein that play a crucial role in regulating the concentration of phosphates in cells. They function by binding to phosphate ions and facilitating their transport, storage, or excretion. These proteins can be found in various organisms, including bacteria, plants, and animals.

In humans, one example of a phosphate-binding protein is the plasma protein known as fetuin-A. Fetuin-A helps regulate the amount of phosphate in the blood by binding to it and preventing it from forming insoluble precipitates with calcium, which can lead to the formation of kidney stones or calcifications in soft tissues.

Another example is the intracellular protein called alkaline phosphatase, which plays a role in removing phosphate groups from molecules within the cell. This enzyme helps regulate the levels of phosphates and other ions within the cell, as well as contributing to various metabolic processes.

Overall, phosphate-binding proteins are essential for maintaining proper phosphate homeostasis in the body, which is critical for numerous physiological functions, including energy metabolism, bone health, and signal transduction.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Phosphatidylinositol phosphates (PIPs) are a family of lipid molecules that play crucial roles as secondary messengers in intracellular signaling pathways. They are formed by the phosphorylation of the hydroxyl group on the inositol ring of phosphatidylinositol (PI), a fundamental component of cell membranes.

There are seven main types of PIPs, classified based on the number and position of phosphate groups attached to the inositol ring:

1. Phosphatidylinositol 4-monophosphate (PI4P) - one phosphate group at the 4th position
2. Phosphatidylinositol 5-monophosphate (PI5P) - one phosphate group at the 5th position
3. Phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) - two phosphate groups at the 3rd and 4th positions
4. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) - two phosphate groups at the 3rd and 5th positions
5. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] - two phosphate groups at the 4th and 5th positions
6. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] - three phosphate groups at the 3rd, 4th, and 5th positions
7. Phosphatidylinositol 3-phosphate (PI3P) - one phosphate group at the 3rd position

These PIPs are involved in various cellular processes such as membrane trafficking, cytoskeleton organization, cell survival, and metabolism. Dysregulation of PIP metabolism has been implicated in several diseases, including cancer, diabetes, and neurological disorders.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Ribose monophosphates are organic compounds that play a crucial role in the metabolism of cells, particularly in energy transfer and nucleic acid synthesis. A ribose monophosphate is formed by the attachment of a phosphate group to a ribose molecule, which is a type of sugar known as a pentose.

In biochemistry, there are two important ribose monophosphates:

1. Alpha-D-Ribose 5-Phosphate (ADP-Ribose): This compound serves as an essential substrate in various cellular processes, including DNA repair, chromatin remodeling, and protein modification. The enzyme that catalyzes the formation of ADP-ribose is known as poly(ADP-ribose) polymerase (PARP).
2. Ribulose 5-Phosphate: This compound is a key intermediate in the Calvin cycle, which is the process by which plants and some bacteria convert carbon dioxide into glucose during photosynthesis. Ribulose 5-phosphate is formed from ribose 5-phosphate through a series of enzymatic reactions.

Ribose monophosphates are essential for the proper functioning of cells and have implications in various physiological processes, as well as in certain disease states.

Organophosphates are a group of chemicals that include insecticides, herbicides, and nerve gases. They work by inhibiting an enzyme called acetylcholinesterase, which normally breaks down the neurotransmitter acetylcholine in the synapse between nerves. This leads to an overaccumulation of acetylcholine, causing overstimulation of the nervous system and resulting in a wide range of symptoms such as muscle twitching, nausea, vomiting, diarrhea, sweating, confusion, and potentially death due to respiratory failure. Organophosphates are highly toxic and their use is regulated due to the risks they pose to human health and the environment.

Aldehyde-lyases are a class of enzymes that catalyze the breakdown or synthesis of molecules involving an aldehyde group through a reaction known as lyase cleavage. This type of reaction results in the removal of a molecule, typically water or carbon dioxide, from the substrate.

In the case of aldehyde-lyases, these enzymes specifically catalyze reactions that involve the conversion of an aldehyde into a carboxylic acid or vice versa. These enzymes are important in various metabolic pathways and play a crucial role in the biosynthesis and degradation of several biomolecules, including carbohydrates, amino acids, and lipids.

The systematic name for this class of enzymes is "ald(e)hyde-lyases." They are classified under EC number 4.3.1 in the Enzyme Commission (EC) system.

Glycerol-3-phosphate dehydrogenase (GPD) is an enzyme that plays a crucial role in the metabolism of glucose and lipids. It catalyzes the conversion of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate (G3P), which is a key intermediate in the synthesis of triglycerides, phospholipids, and other glycerophospholipids.

There are two main forms of GPD: a cytoplasmic form (GPD1) and a mitochondrial form (GPD2). The cytoplasmic form is involved in the production of NADH, which is used in various metabolic processes, while the mitochondrial form is involved in the production of ATP, the main energy currency of the cell.

Deficiencies or mutations in GPD can lead to a variety of metabolic disorders, including glycerol kinase deficiency and congenital muscular dystrophy. Elevated levels of GPD have been observed in certain types of cancer, suggesting that it may play a role in tumor growth and progression.

Lysosphingolipid receptors are a type of cell surface receptor that bind to lysosphingolipids, which are bioactive lipids derived from the degradation of sphingolipids. Sphingolipids are a class of lipids that play important roles in cell signaling and membrane structure.

Lysosphingolipids, such as lysosulfatide, lyso-Gb1 (lysoganglioside GM1), and lyso-PS (lysophosphatidylserine), have been implicated in various physiological and pathological processes, including cell proliferation, differentiation, inflammation, and apoptosis.

Lysosphingolipid receptors include several proteins, such as P2X7 receptor, G2A receptor, and Mas-related G protein-coupled receptor member X2 (MRGX2), that have been identified to interact with lysosphingolipids and mediate their downstream signaling.

Abnormal accumulation of lysosphingolipids has been associated with several diseases, including lysosomal storage disorders, neurodegenerative disorders, and cancer. Therefore, understanding the biology of lysosphingolipid receptors may provide insights into the development of new therapeutic strategies for these diseases.

Fructose-1,6-bisphosphate (also known as fructose 1,6-diphosphate or Fru-1,6-BP) is the chemical compound that plays a crucial role in cellular respiration and glucose metabolism. It is not accurate to refer to "fructosephosphates" as a medical term, but fructose-1-phosphate and fructose-1,6-bisphosphate are important fructose phosphates with specific functions in the body.

Fructose-1-phosphate is an intermediate metabolite formed during the breakdown of fructose in the liver, while fructose-1,6-bisphosphate is a key regulator of glycolysis, the process by which glucose is broken down to produce energy in the form of ATP. Fructose-1,6-bisphosphate allosterically regulates the enzyme phosphofructokinase, which is the rate-limiting step in glycolysis, and its levels are tightly controlled to maintain proper glucose metabolism. Dysregulation of fructose metabolism has been implicated in various metabolic disorders, including insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).

IGF-2 (Insulin-like Growth Factor 2) receptor is a type of transmembrane protein that plays a role in cell growth, differentiation, and survival. Unlike other receptors in the insulin and IGF family, IGF-2 receptor does not mediate the activation of intracellular signaling pathways upon binding to its ligand (IGF-2). Instead, it acts as a clearance receptor that facilitates the removal of IGF-2 from circulation by transporting it to lysosomes for degradation.

The IGF-2 receptor is also known as cation-independent mannose-6-phosphate receptor (CI-M6PR) because it can also bind and transport mannose-6-phosphate-containing enzymes to lysosomes for degradation.

Mutations in the IGF-2 receptor gene have been associated with certain types of cancer, as well as developmental disorders such as Beckwith-Wiedemann syndrome.

Magnesium is an essential mineral that plays a crucial role in various biological processes in the human body. It is the fourth most abundant cation in the body and is involved in over 300 enzymatic reactions, including protein synthesis, muscle and nerve function, blood glucose control, and blood pressure regulation. Magnesium also contributes to the structural development of bones and teeth.

In medical terms, magnesium deficiency can lead to several health issues, such as muscle cramps, weakness, heart arrhythmias, and seizures. On the other hand, excessive magnesium levels can cause symptoms like diarrhea, nausea, and muscle weakness. Magnesium supplements or magnesium-rich foods are often recommended to maintain optimal magnesium levels in the body.

Some common dietary sources of magnesium include leafy green vegetables, nuts, seeds, legumes, whole grains, and dairy products. Magnesium is also available in various forms as a dietary supplement, including magnesium oxide, magnesium citrate, magnesium chloride, and magnesium glycinate.

Calcium oxalate is a chemical compound with the formula CaC2O4. It is the most common type of stone found in kidneys, also known as kidney stones. Calcium oxalate forms when there is too much calcium or oxalate in the urine. This can occur due to various reasons such as dietary habits, dehydration, medical conditions like hyperparathyroidism, or genetic factors.

Calcium oxalate stones are hard and crystalline and can cause severe pain during urination or while passing through the urinary tract. They may also lead to other symptoms like blood in the urine, nausea, vomiting, or fever. Prevention strategies for calcium oxalate stones include staying hydrated, following a balanced diet, and taking prescribed medications to control the levels of calcium and oxalate in the body.

I'm sorry for any confusion, but "Mannosephosphates" is not a widely recognized or established term in medicine or biochemistry. It seems that this term may be a combination of "mannose," which is a type of sugar (monosaccharide), and "phosphates," which are compounds containing phosphorus. However, without more context, it's difficult to provide an accurate medical definition for this term.

In biochemistry, mannose can be linked to phosphate groups in various ways, such as in the context of mannose-1-phosphate or mannose-6-phosphate, which are involved in different metabolic pathways. If you could provide more information about where you encountered this term, I might be able to give a more precise definition or explanation.

Polyisoprenyl phosphates are a type of organic compound that play a crucial role in the biosynthesis of various essential biomolecules in cells. They are formed by the addition of isoprene units, which are five-carbon molecules with a branched structure, to a phosphate group.

In medical terms, polyisoprenyl phosphates are primarily known for their role as intermediates in the biosynthesis of dolichols and farnesylated proteins. Dolichols are long-chain isoprenoids that function as lipid carriers in the synthesis of glycoproteins, which are proteins that contain carbohydrate groups attached to them. Farnesylated proteins, on the other hand, are proteins that have been modified with a farnesyl group, which is a 15-carbon isoprenoid. This modification plays a role in the localization and function of certain proteins within the cell.

Abnormalities in the biosynthesis of polyisoprenyl phosphates and their downstream products have been implicated in various diseases, including cancer, neurological disorders, and genetic syndromes. Therefore, understanding the biology and regulation of these compounds is an active area of research with potential therapeutic implications.

Calcium channels, L-type, are a type of voltage-gated calcium channel that are widely expressed in many excitable cells, including cardiac and skeletal muscle cells, as well as certain neurons. These channels play a crucial role in the regulation of various cellular functions, such as excitation-contraction coupling, hormone secretion, and gene expression.

L-type calcium channels are composed of five subunits: alpha-1, alpha-2, beta, gamma, and delta. The alpha-1 subunit is the pore-forming subunit that contains the voltage sensor and the selectivity filter for calcium ions. It has four repeated domains (I-IV), each containing six transmembrane segments (S1-S6). The S4 segment in each domain functions as a voltage sensor, moving outward upon membrane depolarization to open the channel and allow calcium ions to flow into the cell.

L-type calcium channels are activated by membrane depolarization and have a relatively slow activation and inactivation time course. They are also modulated by various intracellular signaling molecules, such as protein kinases and G proteins. L-type calcium channel blockers, such as nifedipine and verapamil, are commonly used in the treatment of hypertension, angina, and certain cardiac arrhythmias.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Calcium gluconate is a medical compound that is used primarily as a medication to treat conditions related to low calcium levels in the body (hypocalcemia) or to prevent calcium deficiency. It is also used as an antidote for treating poisoning from certain chemicals, such as beta-blockers and fluoride.

Calcium gluconate is a form of calcium salt, which is combined with gluconic acid, a natural organic acid found in various fruits and honey. This compound has a high concentration of calcium, making it an effective supplement for increasing calcium levels in the body.

In medical settings, calcium gluconate can be administered orally as a tablet or liquid solution, or it can be given intravenously (directly into a vein) by a healthcare professional. The intravenous route is typically used in emergency situations to quickly raise calcium levels and treat symptoms of hypocalcemia, such as muscle cramps, spasms, or seizures.

It's important to note that while calcium gluconate can be beneficial for treating low calcium levels, it should only be used under the guidance of a healthcare provider, as improper use or overdose can lead to serious side effects, including kidney damage and heart problems.

Organophosphorus compounds are a class of chemical substances that contain phosphorus bonded to organic compounds. They are used in various applications, including as plasticizers, flame retardants, pesticides (insecticides, herbicides, and nerve gases), and solvents. In medicine, they are also used in the treatment of certain conditions such as glaucoma. However, organophosphorus compounds can be toxic to humans and animals, particularly those that affect the nervous system by inhibiting acetylcholinesterase, an enzyme that breaks down the neurotransmitter acetylcholine. Exposure to these compounds can cause symptoms such as nausea, vomiting, muscle weakness, and in severe cases, respiratory failure and death.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

Phosphotransferases are a group of enzymes that catalyze the transfer of a phosphate group from a donor molecule to an acceptor molecule. This reaction is essential for various cellular processes, including energy metabolism, signal transduction, and biosynthesis.

The systematic name for this group of enzymes is phosphotransferase, which is derived from the general reaction they catalyze: D-donor + A-acceptor = D-donor minus phosphate + A-phosphate. The donor molecule can be a variety of compounds, such as ATP or a phosphorylated protein, while the acceptor molecule is typically a compound that becomes phosphorylated during the reaction.

Phosphotransferases are classified into several subgroups based on the type of donor and acceptor molecules they act upon. For example, kinases are a subgroup of phosphotransferases that transfer a phosphate group from ATP to a protein or other organic compound. Phosphatases, another subgroup, remove phosphate groups from molecules by transferring them to water.

Overall, phosphotransferases play a critical role in regulating many cellular functions and are important targets for drug development in various diseases, including cancer and neurological disorders.

Trioses are simple sugars that contain three carbon atoms and a functional group called a ketone or aldehyde. They are the simplest type of sugar molecule, after monosaccharides such as glyceraldehyde and dihydroxyacetone.

Triose sugars can exist in two structural forms:

* Dihydroxyacetone (DHA), which is a ketotriose with the formula CH2OH-CO-CH2OH, and
* Glyceraldehyde (GA), which is an aldotriose with the formula HO-CHOH-CHO.

Trioses play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle of photosynthesis. In particular, DHA and GA are intermediates in the conversion of glucose to pyruvate during glycolysis, and they are also produced from pyruvate during gluconeogenesis.

Trioses can be synthesized chemically or biochemically through various methods, such as enzymatic reactions or microbial fermentation. They have potential applications in the food, pharmaceutical, and chemical industries, as they can serve as building blocks for more complex carbohydrates or as precursors for other organic compounds.

Calcium radioisotopes are radioactive isotopes of the element calcium. An isotope is a variant of an element that has the same number of protons in its atoms but a different number of neutrons, resulting in different mass numbers. Calcium has several radioisotopes, including calcium-41, calcium-45, calcium-47, and calcium-49.

These radioisotopes are used in various medical applications, such as in diagnostic imaging and research. For example, calcium-45 is commonly used in bone scans to help diagnose conditions like fractures, tumors, or infections. When administered to the patient, the calcium-45 is taken up by the bones, and a special camera can detect the gamma rays emitted by the radioisotope, providing images of the skeleton.

Similarly, calcium-47 is used in research to study calcium metabolism and bone physiology. The short half-life and low energy of the radiation emitted by these radioisotopes make them relatively safe for medical use, with minimal risk of harm to patients. However, as with any medical procedure involving radiation, appropriate precautions must be taken to ensure safety and minimize exposure.

Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is a genetic disorder that affects the normal functioning of an enzyme called G6PD. This enzyme is found in red blood cells and plays a crucial role in protecting them from damage.

In people with G6PD deficiency, the enzyme's activity is reduced or absent, making their red blood cells more susceptible to damage and destruction, particularly when they are exposed to certain triggers such as certain medications, infections, or foods. This can lead to a condition called hemolysis, where the red blood cells break down prematurely, leading to anemia, jaundice, and in severe cases, kidney failure.

G6PD deficiency is typically inherited from one's parents in an X-linked recessive pattern, meaning that males are more likely to be affected than females. While there is no cure for G6PD deficiency, avoiding triggers and managing symptoms can help prevent complications.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Calcium compounds are chemical substances that contain calcium ions (Ca2+) bonded to various anions. Calcium is an essential mineral for human health, and calcium compounds have numerous biological and industrial applications. Here are some examples of calcium compounds with their medical definitions:

1. Calcium carbonate (CaCO3): A common mineral found in rocks and sediments, calcium carbonate is also a major component of shells, pearls, and bones. It is used as a dietary supplement to prevent or treat calcium deficiency and as an antacid to neutralize stomach acid.
2. Calcium citrate (C6H8CaO7): A calcium salt of citric acid, calcium citrate is often used as a dietary supplement to prevent or treat calcium deficiency. It is more soluble in water and gastric juice than calcium carbonate, making it easier to absorb, especially for people with low stomach acid.
3. Calcium gluconate (C12H22CaO14): A calcium salt of gluconic acid, calcium gluconate is used as a medication to treat or prevent hypocalcemia (low blood calcium levels) and hyperkalemia (high blood potassium levels). It can be given intravenously, orally, or topically.
4. Calcium chloride (CaCl2): A white, deliquescent salt, calcium chloride is used as a de-icing agent, a food additive, and a desiccant. In medical settings, it can be used to treat hypocalcemia or hyperkalemia, or as an antidote for magnesium overdose.
5. Calcium lactate (C6H10CaO6): A calcium salt of lactic acid, calcium lactate is used as a dietary supplement to prevent or treat calcium deficiency. It is less commonly used than calcium carbonate or calcium citrate but may be better tolerated by some people.
6. Calcium phosphate (Ca3(PO4)2): A mineral found in rocks and bones, calcium phosphate is used as a dietary supplement to prevent or treat calcium deficiency. It can also be used as a food additive or a pharmaceutical excipient.
7. Calcium sulfate (CaSO4): A white, insoluble powder, calcium sulfate is used as a desiccant, a plaster, and a fertilizer. In medical settings, it can be used to treat hypocalcemia or as an antidote for magnesium overdose.
8. Calcium hydroxide (Ca(OH)2): A white, alkaline powder, calcium hydroxide is used as a disinfectant, a flocculant, and a building material. In medical settings, it can be used to treat hyperkalemia or as an antidote for aluminum overdose.
9. Calcium acetate (Ca(C2H3O2)2): A white, crystalline powder, calcium acetate is used as a food additive and a medication. It can be used to treat hyperphosphatemia (high blood phosphate levels) in patients with kidney disease.
10. Calcium carbonate (CaCO3): A white, chalky powder, calcium carbonate is used as a dietary supplement, a food additive, and a pharmaceutical excipient. It can also be used as a building material and a mineral supplement.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Phosphoric monoester hydrolases are a class of enzymes that catalyze the hydrolysis of phosphoric monoesters into alcohol and phosphate. This class of enzymes includes several specific enzymes, such as phosphatases and nucleotidases, which play important roles in various biological processes, including metabolism, signal transduction, and regulation of cellular processes.

Phosphoric monoester hydrolases are classified under the EC number 3.1.3 by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB). The enzymes in this class share a common mechanism of action, which involves the nucleophilic attack on the phosphorus atom of the substrate by a serine or cysteine residue in the active site of the enzyme. This results in the formation of a covalent intermediate, which is then hydrolyzed to release the products.

Phosphoric monoester hydrolases are important therapeutic targets for the development of drugs that can modulate their activity. For example, inhibitors of phosphoric monoester hydrolases have been developed as potential treatments for various diseases, including cancer, neurodegenerative disorders, and infectious diseases.

UTP-hexose-1-phosphate uridylyltransferase is an enzyme that catalyzes the transfer of a uridine monophosphate (UMP) group from a uridine triphosphate (UTP) molecule to a hexose-1-phosphate molecule, forming a UDP-hexose molecule. This reaction is an essential step in the biosynthesis of various glycosylated compounds, including glycoproteins and polysaccharides.

The systematic name for this enzyme is UTP:alpha-D-hexose-1-phosphate uridylyltransferase. It is also known as UDP-glucose pyrophosphorylase, which is a more specific name that refers to the formation of UDP-glucose from glucose-1-phosphate and UTP.

The enzyme plays a crucial role in carbohydrate metabolism and has been implicated in several diseases, including diabetes and cancer. Inhibitors of this enzyme have been explored as potential therapeutic agents for the treatment of these conditions.

Aldose-ketose isomerases are a group of enzymes that catalyze the interconversion between aldoses and ketoses, which are different forms of sugars. These enzymes play an essential role in carbohydrate metabolism by facilitating the reversible conversion of aldoses to ketoses and vice versa.

Aldoses are sugars that contain a carbonyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom) at the end of the carbon chain, while ketoses have their carbonyl group located in the middle of the chain. The isomerization process catalyzed by aldose-ketose isomerases helps maintain the balance between these two forms of sugars and enables cells to utilize them more efficiently for energy production and other metabolic processes.

There are several types of aldose-ketose isomerases, including:

1. Triose phosphate isomerase (TPI): This enzyme catalyzes the interconversion between dihydroxyacetone phosphate (a ketose) and D-glyceraldehyde 3-phosphate (an aldose), which are both trioses (three-carbon sugars). TPI plays a crucial role in glycolysis, the metabolic pathway that breaks down glucose to produce energy.
2. Xylulose kinase: This enzyme is involved in the pentose phosphate pathway, which is a metabolic route that generates reducing equivalents (NADPH) and pentoses for nucleic acid synthesis. Xylulose kinase catalyzes the conversion of D-xylulose (a ketose) to D-xylulose 5-phosphate, an important intermediate in the pentose phosphate pathway.
3. Ribulose-5-phosphate 3-epimerase: This enzyme is also part of the pentose phosphate pathway and catalyzes the interconversion between D-ribulose 5-phosphate (an aldose) and D-xylulose 5-phosphate (a ketose).
4. Phosphoglucomutase: This enzyme catalyzes the reversible conversion of glucose 1-phosphate (an aldose) to glucose 6-phosphate (an aldose), which is an important intermediate in both glycolysis and gluconeogenesis.
5. Phosphomannomutase: This enzyme catalyzes the reversible conversion of mannose 1-phosphate (a ketose) to mannose 6-phosphate (an aldose), which is involved in the biosynthesis of complex carbohydrates.

These are just a few examples of enzymes that catalyze the interconversion between aldoses and ketoses, highlighting their importance in various metabolic pathways.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Hyperphosphatemia is a medical condition characterized by an excessively high level of phosphate (a form of the chemical element phosphorus) in the blood. Phosphate is an important component of various biological molecules, such as DNA, RNA, and ATP, and it plays a crucial role in many cellular processes, including energy metabolism and signal transduction.

In healthy individuals, the concentration of phosphate in the blood is tightly regulated within a narrow range to maintain normal physiological functions. However, when the phosphate level rises above this range (typically defined as a serum phosphate level greater than 4.5 mg/dL or 1.46 mmol/L), it can lead to hyperphosphatemia.

Hyperphosphatemia can result from various underlying medical conditions, including:

* Kidney dysfunction: The kidneys are responsible for filtering excess phosphate out of the blood and excreting it in the urine. When the kidneys fail to function properly, they may be unable to remove enough phosphate, leading to its accumulation in the blood.
* Hypoparathyroidism: The parathyroid glands produce a hormone called parathyroid hormone (PTH), which helps regulate calcium and phosphate levels in the body. In hypoparathyroidism, the production of PTH is insufficient, leading to an increase in phosphate levels.
* Hyperparathyroidism: In contrast, excessive production of PTH can also lead to hyperphosphatemia by increasing the release of phosphate from bones and decreasing its reabsorption in the kidneys.
* Excessive intake of phosphate-rich foods or supplements: Consuming large amounts of phosphate-rich foods, such as dairy products, nuts, and legumes, or taking phosphate supplements can raise blood phosphate levels.
* Tumor lysis syndrome: This is a complication that can occur after the treatment of certain types of cancer, particularly hematological malignancies. The rapid destruction of cancer cells releases large amounts of intracellular contents, including phosphate, into the bloodstream, leading to hyperphosphatemia.
* Rhabdomyolysis: This is a condition in which muscle tissue breaks down, releasing its contents, including phosphate, into the bloodstream. It can be caused by various factors, such as trauma, infection, or drug toxicity.

Hyperphosphatemia can have several adverse effects on the body, including calcification of soft tissues, kidney damage, and metabolic disturbances. Therefore, it is essential to diagnose and manage hyperphosphatemia promptly to prevent complications. Treatment options may include dietary modifications, medications that bind phosphate in the gastrointestinal tract, and dialysis in severe cases.

Myo-Inositol-1-Phosphate Synthase (MIPS) is an enzyme that catalyzes the conversion of glucose-6-phosphate to inositol 1,4-bisphosphate, which is the first and rate-limiting step in the biosynthesis of myo-inositol. Myo-inositol is a six-carbon cyclic polyol that serves as a precursor for various secondary messengers and structural lipids, including phosphatidylinositols and inositol phosphates, which play crucial roles in cell signaling pathways.

MIPS is widely distributed in nature and has been identified in bacteria, plants, fungi, and animals. In humans, MIPS is encoded by the ISO1 gene and is primarily localized in the cytoplasm of cells. Defects in MIPS have been associated with several diseases, including neurological disorders and cancer, highlighting its importance in maintaining cellular homeostasis.

NADP (Nicotinamide Adenine Dinucleotide Phosphate) is a coenzyme that plays a crucial role as an electron carrier in various redox reactions in the human body. It exists in two forms: NADP+, which functions as an oxidizing agent and accepts electrons, and NADPH, which serves as a reducing agent and donates electrons.

NADPH is particularly important in anabolic processes, such as lipid and nucleotide synthesis, where it provides the necessary reducing equivalents to drive these reactions forward. It also plays a critical role in maintaining the cellular redox balance by participating in antioxidant defense mechanisms that neutralize harmful reactive oxygen species (ROS).

In addition, NADP is involved in various metabolic pathways, including the pentose phosphate pathway and the Calvin cycle in photosynthesis. Overall, NADP and its reduced form, NADPH, are essential molecules for maintaining proper cellular function and energy homeostasis.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

I apologize, but I am not able to provide a medical definition for "Egtazic Acid" because it is not a term that is recognized in the field of medicine or pharmacology. It is possible that you may have meant "Egтарic Acid," which also does not have a specific medical meaning, or "Ethylene Glycol Tetraacetic Acid (EGTA)," which is a chemical compound used in research and medicine for its ability to bind calcium ions. If you have any other questions, I would be happy to try to help answer them.

Sodium-phosphate cotransporter proteins are membrane transport proteins that facilitate the active transport of sodium and inorganic phosphate ions across biological membranes. These proteins play a crucial role in maintaining phosphate homeostasis within the body by regulating the absorption and excretion of phosphate in the kidneys and intestines. They exist in two major types, type I (NaPi-I) and type II (NaPi-II), each having multiple subtypes with distinct tissue distributions and regulatory mechanisms.

Type I sodium-phosphate cotransporters are primarily expressed in the kidney's proximal tubules and play a significant role in reabsorbing phosphate from the primary urine back into the bloodstream. Type II sodium-phosphate cotransporters, on the other hand, are found in both the kidneys and intestines. In the kidneys, they contribute to phosphate reabsorption, while in the intestines, they facilitate phosphate absorption from food.

These proteins function by coupling the passive downhill movement of sodium ions (driven by the electrochemical gradient) with the active uphill transport of phosphate ions against their concentration gradient. This coupled transport process enables cells to maintain intracellular phosphate concentrations within a narrow range, despite fluctuations in dietary intake and renal function.

Dysregulation of sodium-phosphate cotransporter proteins has been implicated in various pathological conditions, such as chronic kidney disease (CKD), tumoral calcinosis, and certain genetic disorders affecting phosphate homeostasis.

Phosphatidylinositols (PIs) are a type of phospholipid that are abundant in the cell membrane. They contain a glycerol backbone, two fatty acid chains, and a head group consisting of myo-inositol, a cyclic sugar molecule, linked to a phosphate group.

Phosphatidylinositols can be phosphorylated at one or more of the hydroxyl groups on the inositol ring, forming various phosphoinositides (PtdInsPs) with different functions. These signaling molecules play crucial roles in regulating cellular processes such as membrane trafficking, cytoskeletal organization, and signal transduction pathways that control cell growth, differentiation, and survival.

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a prominent phosphoinositide involved in the regulation of ion channels, enzymes, and cytoskeletal proteins. Upon activation of certain receptors, PIP2 can be cleaved by the enzyme phospholipase C into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (InsP3), which act as second messengers to trigger downstream signaling events.

Ribulose phosphates are organic compounds that play a crucial role in the Calvin cycle, which is a part of photosynthesis. The Calvin cycle is the process by which plants, algae, and some bacteria convert carbon dioxide into glucose and other simple sugars.

Ribulose phosphates are sugar phosphates that contain five carbon atoms and have the chemical formula C5H10O5P. They exist in two forms: ribulose 5-phosphate (Ru5P) and ribulose 1,5-bisphosphate (RuBP).

Ribulose 1,5-bisphosphate is the starting point for carbon fixation in the Calvin cycle. In this process, an enzyme called RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyzes the reaction between RuBP and carbon dioxide to form two molecules of 3-phosphoglycerate, which are then converted into glucose and other sugars.

Ribulose phosphates are also involved in other metabolic pathways, such as the pentose phosphate pathway, which generates reducing power in the form of NADPH and produces ribose-5-phosphate, a precursor for nucleotide synthesis.

Transaldolase is not a medical term per se, but it is a term used in biochemistry and molecular biology. Transaldolase is an enzyme involved in the pentose phosphate pathway (PPP), which is a metabolic pathway that supplies reducing energy to cells by converting glucose-6-phosphate into ribulose-5-phosphate, a key intermediate in the synthesis of nucleotides.

The medical relevance of transaldolase lies in its role in maintaining cellular redox balance and providing precursors for nucleic acid synthesis. Defects in the PPP can lead to various metabolic disorders, including some forms of congenital cataracts, neurological dysfunction, and growth retardation. However, specific diseases or conditions directly attributed to transaldolase deficiency are not well-established.

Phosphogluconate dehydrogenase (PGD) is an enzyme that plays a crucial role in the pentose phosphate pathway, which is a metabolic pathway that supplies reducing energy to cells by converting glucose into ribose-5-phosphate and NADPH.

PGD catalyzes the third step of this pathway, in which 6-phosphogluconate is converted into ribulose-5-phosphate, with the concurrent reduction of NADP+ to NADPH. This reaction is essential for the generation of NADPH, which serves as a reducing agent in various cellular processes, including fatty acid synthesis and antioxidant defense.

Deficiencies in PGD can lead to several metabolic disorders, such as congenital nonspherocytic hemolytic anemia, which is characterized by the premature destruction of red blood cells due to a defect in the pentose phosphate pathway.

Glycolysis is a fundamental metabolic pathway that occurs in the cytoplasm of cells, consisting of a series of biochemical reactions. It's the process by which a six-carbon glucose molecule is broken down into two three-carbon pyruvate molecules. This process generates a net gain of two ATP molecules (the main energy currency in cells), two NADH molecules, and two water molecules.

Glycolysis can be divided into two stages: the preparatory phase (or 'energy investment' phase) and the payoff phase (or 'energy generation' phase). During the preparatory phase, glucose is phosphorylated twice to form glucose-6-phosphate and then converted to fructose-1,6-bisphosphate. These reactions consume two ATP molecules but set up the subsequent breakdown of fructose-1,6-bisphosphate into triose phosphates in the payoff phase. In this second stage, each triose phosphate is further oxidized and degraded to produce one pyruvate molecule, one NADH molecule, and one ATP molecule through substrate-level phosphorylation.

Glycolysis does not require oxygen to proceed; thus, it can occur under both aerobic (with oxygen) and anaerobic (without oxygen) conditions. In the absence of oxygen, the pyruvate produced during glycolysis is further metabolized through fermentation pathways such as lactic acid fermentation or alcohol fermentation to regenerate NAD+, which is necessary for glycolysis to continue.

In summary, glycolysis is a crucial process in cellular energy metabolism, allowing cells to convert glucose into ATP and other essential molecules while also serving as a starting point for various other biochemical pathways.

Polyisoprenyl phosphate monosaccharides are a type of glycosylated lipid intermediate molecule involved in the biosynthesis of isoprenoid-linked oligosaccharides, which are crucial for various cellular processes such as protein glycosylation and membrane trafficking.

These molecules consist of a polyisoprenyl phosphate tail, typically formed by the addition of multiple isoprene units (such as farnesyl or geranylgeranyl groups), which is attached to a single monosaccharide sugar moiety, such as glucose, mannose, or galactose.

The polyisoprenyl phosphate tail serves as a lipid anchor that helps tether the glycosylated molecule to cellular membranes during biosynthesis and transport. The monosaccharide component can be further modified by the addition of additional sugar residues, leading to the formation of more complex oligosaccharides that play important roles in various biological processes.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

A buffer in the context of physiology and medicine refers to a substance or system that helps to maintain stable or neutral conditions, particularly in relation to pH levels, within the body or biological fluids.

Buffers are weak acids or bases that can react with strong acids or bases to minimize changes in the pH level. They do this by taking up excess hydrogen ions (H+) when acidity increases or releasing hydrogen ions when alkalinity increases, thereby maintaining a relatively constant pH.

In the human body, some of the key buffer systems include:

1. Bicarbonate buffer system: This is the major buffer in blood and extracellular fluids. It consists of bicarbonate ions (HCO3-) and carbonic acid (H2CO3). When there is an increase in acidity, the bicarbonate ion accepts a hydrogen ion to form carbonic acid, which then dissociates into water and carbon dioxide. The carbon dioxide can be exhaled, helping to remove excess acid from the body.
2. Phosphate buffer system: This is primarily found within cells. It consists of dihydrogen phosphate (H2PO4-) and monohydrogen phosphate (HPO42-) ions. When there is an increase in alkalinity, the dihydrogen phosphate ion donates a hydrogen ion to form monohydrogen phosphate, helping to neutralize the excess base.
3. Protein buffer system: Proteins, particularly histidine-rich proteins, can also act as buffers due to the presence of ionizable groups on their surfaces. These groups can bind or release hydrogen ions in response to changes in pH, thus maintaining a stable environment within cells and organelles.

Maintaining appropriate pH levels is crucial for various biological processes, including enzyme function, cell membrane stability, and overall homeostasis. Buffers play a vital role in preserving these balanced conditions despite internal or external challenges that might disrupt them.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Tritolyl phosphates are not a medical term, but rather a class of industrial chemicals. They are organophosphate esters made from the reaction of toluene with phosphoric acid. These chemicals have various uses, including as plasticizers, flame retardants, and hydraulic fluids.

Exposure to high levels of tritolyl phosphates can cause irritation to the skin, eyes, and respiratory tract. However, they are not typically considered a significant health concern at the low levels encountered in most occupational or environmental settings. There is no known medical condition specifically associated with "tritolyl phosphates."

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Calcium channels, N-type ( Cav2.2) are voltage-gated calcium channels found in excitable cells such as neurons and cardiac myocytes. They play a crucial role in regulating various cellular functions, including neurotransmitter release, gene expression, and cell excitability.

N-type calcium channels are composed of five subunits: an alpha1 (Cav2.2) subunit that forms the ion-conducting pore, and four auxiliary subunits (alpha2delta, beta, and gamma) that modulate channel function and stability. The alpha1 subunit contains the voltage sensor and the selectivity filter for calcium ions.

N-type calcium channels are activated by depolarization of the cell membrane and mediate a rapid influx of calcium ions into the cytoplasm. This calcium influx triggers neurotransmitter release from presynaptic terminals, regulates gene expression in the nucleus, and contributes to the electrical excitability of neurons.

N-type calcium channels are also targets for various drugs and toxins that modulate their activity. For example, the peptide toxin from cone snail venom, known as ω-conotoxin MVIIA (Ziconotide), specifically binds to N-type calcium channels and inhibits their activity, making it a potent analgesic for treating chronic pain.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Hypophosphatemia is a medical condition characterized by abnormally low levels of phosphate (phosphorus) in the blood, specifically below 2.5 mg/dL. Phosphate is an essential electrolyte that plays a crucial role in various bodily functions such as energy production, bone formation, and maintaining acid-base balance.

Hypophosphatemia can result from several factors, including malnutrition, vitamin D deficiency, alcoholism, hormonal imbalances, and certain medications. Symptoms of hypophosphatemia may include muscle weakness, fatigue, bone pain, confusion, and respiratory failure in severe cases. Treatment typically involves correcting the underlying cause and administering phosphate supplements to restore normal levels.

I'm sorry for any confusion, but "Mannitol Phosphates" is not a recognized medical term or concept in the way that, for example, "sodium chloride" is a specific chemical compound or "myocardial infarction" is a medical condition.

Mannitol is a sugar alcohol used as a medication, typically as an osmotic diuretic to reduce intracranial pressure or as a treatment for kidney failure. It can be administered intravenously or by mouth.

Phosphates, on the other hand, are a group of salts that contain the phosphate ion (PO43-). They have various uses in medicine and biology, such as in nutrition supplements, antacids, and laxatives.

It's possible that you may be looking for information on mannitol or phosphates separately, or there may be a specific medical context or compound that you have in mind. If you could provide more information about what you are looking for, I would be happy to help you further!

Calcium channel agonists are substances that increase the activity or function of calcium channels. Calcium channels are specialized proteins in cell membranes that regulate the flow of calcium ions into and out of cells. They play a crucial role in various physiological processes, including muscle contraction, hormone secretion, and nerve impulse transmission.

Calcium channel agonists can enhance the opening of these channels, leading to an increased influx of calcium ions into the cells. This can result in various pharmacological effects, depending on the type of cell and tissue involved. For example, calcium channel agonists may be used to treat conditions such as hypotension (low blood pressure) or heart block by increasing cardiac contractility and heart rate. However, these agents should be used with caution due to their potential to cause adverse effects, including increased heart rate, hypertension, and arrhythmias.

Examples of calcium channel agonists include drugs such as Bay K 8644, FPL 64176, and A23187. It's important to note that some substances can act as both calcium channel agonists and antagonists, depending on the dose, concentration, or duration of exposure.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Chelating agents are substances that can bind and form stable complexes with certain metal ions, preventing them from participating in chemical reactions. In medicine, chelating agents are used to remove toxic or excessive amounts of metal ions from the body. For example, ethylenediaminetetraacetic acid (EDTA) is a commonly used chelating agent that can bind with heavy metals such as lead and mercury, helping to eliminate them from the body and reduce their toxic effects. Other chelating agents include dimercaprol (BAL), penicillamine, and deferoxamine. These agents are used to treat metal poisoning, including lead poisoning, iron overload, and copper toxicity.

Propylene glycol is not a medical term, but rather a chemical compound. Medically, it is classified as a humectant, which means it helps retain moisture. It is used in various pharmaceutical and cosmetic products as a solvent, preservative, and moisturizer. In medical settings, it can be found in topical creams, oral and injectable medications, and intravenous (IV) fluids.

The chemical definition of propylene glycol is:

Propylene glycol (IUPAC name: propan-1,2-diol) is a synthetic organic compound with the formula CH3CH(OH)CH2OH. It is a viscous, colorless, and nearly odorless liquid that is miscible with water, acetone, and chloroform. Propylene glycol is used as an antifreeze when mixed with water, as a solvent in the production of polymers, and as a moisturizer in various pharmaceutical and cosmetic products. It has a sweet taste and is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA) for use as a food additive.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Carbohydrate epimerases are a group of enzymes that catalyze the interconversion of specific stereoisomers (epimers) of carbohydrates by the reversible oxidation and reduction of carbon atoms, usually at the fourth or fifth position. These enzymes play important roles in the biosynthesis and modification of various carbohydrate-containing molecules, such as glycoproteins, proteoglycans, and glycolipids, which are involved in numerous biological processes including cell recognition, signaling, and adhesion.

The reaction catalyzed by carbohydrate epimerases involves the transfer of a hydrogen atom and a proton between two adjacent carbon atoms, leading to the formation of new stereochemical configurations at these positions. This process can result in the conversion of one epimer into another, thereby expanding the structural diversity of carbohydrates and their derivatives.

Carbohydrate epimerases are classified based on the type of substrate they act upon and the specific stereochemical changes they induce. Some examples include UDP-glucose 4-epimerase, which interconverts UDP-glucose and UDP-galactose; UDP-N-acetylglucosamine 2-epimerase, which converts UDP-N-acetylglucosamine to UDP-N-acetylmannosamine; and GDP-fucose synthase, which catalyzes the conversion of GDP-mannose to GDP-fucose.

Understanding the function and regulation of carbohydrate epimerases is crucial for elucidating their roles in various biological processes and developing strategies for targeting them in therapeutic interventions.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Mannose-6-Phosphate Isomerase (MPI) is an enzyme that catalyzes the interconversion between mannose-6-phosphate and fructose-6-phosphate, which are both key metabolites in the glycolysis and gluconeogenesis pathways. This enzyme plays a crucial role in maintaining the balance between these two metabolic pathways, allowing cells to either break down or synthesize glucose depending on their energy needs.

The gene that encodes for MPI is called MPI1 and is located on chromosome 4 in humans. Defects in this gene can lead to a rare genetic disorder known as Mannose-6-Phosphate Isomerase Deficiency or Congenital Disorder of Glycosylation Type IIm, which is characterized by developmental delay, intellectual disability, seizures, and various other neurological symptoms.

Arsenates are salts or esters of arsenic acid (AsO4). They contain the anion AsO4(3-), which consists of an arsenic atom bonded to four oxygen atoms in a tetrahedral arrangement. Arsenates can be found in various minerals, and they have been used in pesticides, wood preservatives, and other industrial applications. However, arsenic is highly toxic to humans and animals, so exposure to arsenates should be limited. Long-term exposure to arsenic can cause skin lesions, cancer, and damage to the nervous system, among other health problems.

Polyisoprenyl phosphate sugars are a type of glycosylated lipid that plays a crucial role in the biosynthesis of isoprenoid-derived natural products, including sterols and dolichols. These molecules consist of a polyisoprenyl phosphate group linked to one or more sugar moieties, such as glucose, mannose, or fructose. They serve as essential intermediates in the biosynthetic pathways that produce various isoprenoid-derived compounds, which have diverse functions in cellular metabolism and homeostasis.

The polyisoprenyl phosphate group is synthesized from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), the building blocks of isoprenoid biosynthesis, through a series of enzymatic reactions. The sugar moiety is then transferred to the polyisoprenyl phosphate group by specific glycosyltransferases, resulting in the formation of polyisoprenyl phosphate sugars.

These molecules are involved in various cellular processes, such as protein prenylation, where they serve as lipid anchors that facilitate the attachment of isoprenoid groups to proteins, thereby modulating their localization, stability, and activity. Additionally, polyisoprenyl phosphate sugars participate in the biosynthesis of bacterial cell wall components, such as peptidoglycan and lipopolysaccharides, highlighting their importance in both eukaryotic and prokaryotic organisms.

In summary, polyisoprenyl phosphate sugars are a class of glycosylated lipids that play a critical role in isoprenoid biosynthesis and related cellular processes, including protein prenylation and bacterial cell wall synthesis.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Adenosine diphosphate (ADP) is a chemical compound that plays a crucial role in energy transfer within cells. It is a nucleotide, which consists of a adenosine molecule (a sugar molecule called ribose attached to a nitrogenous base called adenine) and two phosphate groups.

In the cell, ADP functions as an intermediate in the conversion of energy from one form to another. When a high-energy phosphate bond in ADP is broken, energy is released and ADP is converted to adenosine triphosphate (ATP), which serves as the main energy currency of the cell. Conversely, when ATP donates a phosphate group to another molecule, it is converted back to ADP, releasing energy for the cell to use.

ADP also plays a role in blood clotting and other physiological processes. In the coagulation cascade, ADP released from damaged red blood cells can help activate platelets and initiate the formation of a blood clot.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Phosphocreatine (PCr) is a high-energy phosphate compound found in the skeletal muscles, cardiac muscle, and brain. It plays a crucial role in energy metabolism and storage within cells. Phosphocreatine serves as an immediate energy reserve that helps regenerate ATP (adenosine triphosphate), the primary source of cellular energy, during short bursts of intense activity or stress. This process is facilitated by the enzyme creatine kinase, which catalyzes the transfer of a phosphate group from phosphocreatine to ADP (adenosine diphosphate) to form ATP.

In a medical context, phosphocreatine levels may be assessed in muscle biopsies or magnetic resonance spectroscopy (MRS) imaging to evaluate muscle energy metabolism and potential mitochondrial dysfunction in conditions such as muscular dystrophies, mitochondrial disorders, and neuromuscular diseases. Additionally, phosphocreatine depletion has been implicated in various pathological processes, including ischemia-reperfusion injury, neurodegenerative disorders, and heart failure.

Erythritol is a type of sugar alcohol (a carbohydrate that is metabolized differently than other sugars) used as a sugar substitute in food and drinks. It has about 0.24 calories per gram and contains almost no carbohydrates or sugar, making it a popular choice for people with diabetes or those following low-carb diets. Erythritol is naturally found in some fruits and fermented foods, but most commercial erythritol is made from cornstarch. It has a sweet taste similar to sugar but contains fewer calories and does not raise blood sugar levels.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Dura Mater: The tough, outer membrane that covers the brain and spinal cord.

Hydroxyapatite: A naturally occurring mineral form of calcium apatite, also known as dahllite, with the formula Ca5(PO4)3(OH), is the primary mineral component of biological apatites found in bones and teeth.

Therefore, "Durapatite" isn't a recognized medical term, but it seems like it might be a combination of "dura mater" and "hydroxyapatite." If you meant to ask about a material used in medical or dental applications that combines properties of both dura mater and hydroxyapatite, please provide more context.

Calcimycin is a ionophore compound that is produced by the bacterium Streptomyces chartreusensis. It is also known as Calcineurin A inhibitor because it can bind to and inhibit the activity of calcineurin, a protein phosphatase. In medical research, calcimycin is often used to study calcium signaling in cells.
It has been also used in laboratory studies for its antiproliferative and pro-apoptotic effects on certain types of cancer cells. However, it is not approved for use as a drug in humans.

Dietary Phosphorus is a mineral that is an essential nutrient for human health. It is required for the growth, maintenance, and repair of body tissues, including bones and teeth. Phosphorus is also necessary for the production of energy, the formation of DNA and RNA, and the regulation of various physiological processes.

In the diet, phosphorus is primarily found in protein-containing foods such as meat, poultry, fish, dairy products, legumes, and nuts. It can also be found in processed foods that contain additives such as phosphoric acid, which is used to enhance flavor or as a preservative.

The recommended daily intake of phosphorus for adults is 700 milligrams (mg) per day. However, it's important to note that excessive intake of phosphorus, particularly from supplements and fortified foods, can lead to health problems such as kidney damage and calcification of soft tissues. Therefore, it's recommended to obtain phosphorus primarily from whole foods rather than supplements.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Phosphofructokinase-1 (PFK-1) is a rate-limiting enzyme in the glycolytic pathway, which is the metabolic pathway that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. PFK-1 plays a crucial role in regulating the rate of glycolysis by catalyzing the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, using ATP as the phosphate donor.

PFK-1 is allosterically regulated by various metabolites, such as AMP, ADP, and ATP, which act as positive or negative effectors of the enzyme's activity. For example, an increase in the intracellular concentration of AMP or ADP can activate PFK-1, promoting glycolysis and energy production, while an increase in ATP levels can inhibit the enzyme's activity, conserving glucose for use under conditions of low energy demand.

Deficiencies in PFK-1 can lead to a rare genetic disorder called Tarui's disease or glycogen storage disease type VII, which is characterized by exercise intolerance, muscle cramps, and myoglobinuria (the presence of myoglobin in the urine due to muscle damage).

Inositol is not considered a true "vitamin" because it can be created by the body from glucose. However, it is an important nutrient and is sometimes referred to as vitamin B8. It is a type of sugar alcohol that is found in both animals and plants. Inositol is involved in various biological processes, including:

1. Signal transduction: Inositol phospholipids are key components of cell membranes and play a crucial role in intracellular signaling pathways. They act as secondary messengers in response to hormones, neurotransmitters, and growth factors.
2. Insulin sensitivity: Inositol and its derivatives, such as myo-inositol and D-chiro-inositol, are involved in insulin signal transduction. Abnormalities in inositol metabolism have been linked to insulin resistance and conditions like polycystic ovary syndrome (PCOS).
3. Cerebral and ocular functions: Inositol is essential for the proper functioning of neurons and has been implicated in various neurological and psychiatric disorders, such as depression, anxiety, and bipolar disorder. It also plays a role in maintaining eye health.
4. Lipid metabolism: Inositol participates in the breakdown and transport of fats within the body.
5. Gene expression: Inositol and its derivatives are involved in regulating gene expression through epigenetic modifications.

Inositol can be found in various foods, including fruits, beans, grains, nuts, and vegetables. It is also available as a dietary supplement for those who wish to increase their intake.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Phosphorus radioisotopes are radioactive isotopes or variants of the element phosphorus that emit radiation. Phosphorus has several radioisotopes, with the most common ones being phosphorus-32 (^32P) and phosphorus-33 (^33P). These radioisotopes are used in various medical applications such as cancer treatment and diagnostic procedures.

Phosphorus-32 has a half-life of approximately 14.3 days and emits beta particles, making it useful for treating certain types of cancer, such as leukemia and lymphoma. It can also be used in brachytherapy, a type of radiation therapy that involves placing a radioactive source close to the tumor.

Phosphorus-33 has a shorter half-life of approximately 25.4 days and emits both beta particles and gamma rays. This makes it useful for diagnostic procedures, such as positron emission tomography (PET) scans, where the gamma rays can be detected and used to create images of the body's internal structures.

It is important to note that handling and using radioisotopes requires specialized training and equipment to ensure safety and prevent radiation exposure.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Biological transport, active is the process by which cells use energy to move materials across their membranes from an area of lower concentration to an area of higher concentration. This type of transport is facilitated by specialized proteins called transporters or pumps that are located in the cell membrane. These proteins undergo conformational changes to physically carry the molecules through the lipid bilayer of the membrane, often against their concentration gradient.

Active transport requires energy because it works against the natural tendency of molecules to move from an area of higher concentration to an area of lower concentration, a process known as diffusion. Cells obtain this energy in the form of ATP (adenosine triphosphate), which is produced through cellular respiration.

Examples of active transport include the uptake of glucose and amino acids into cells, as well as the secretion of hormones and neurotransmitters. The sodium-potassium pump, which helps maintain resting membrane potential in nerve and muscle cells, is a classic example of an active transporter.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Polyphosphates are compounds consisting of many phosphate groups linked together in the form of chains or rings. They are often used in various medical and healthcare applications, such as:

* Dental care products: Polyphosphates can help prevent the formation of dental plaque and calculus by binding to calcium ions in saliva and inhibiting the growth of bacteria that cause tooth decay.
* Nutritional supplements: Polyphosphates are sometimes used as a source of phosphorus in nutritional supplements, particularly for people who have kidney disease or other medical conditions that require them to limit their intake of phosphorus from food sources.
* Medical devices: Polyphosphates may be used in the manufacture of medical devices, such as contact lenses and catheters, to improve their biocompatibility and resistance to bacterial growth.

It's worth noting that while polyphosphates have various medical uses, they can also be found in many non-medical products, such as food additives, water treatment chemicals, and cleaning agents.

I'm sorry for any confusion, but "galactosephosphates" is not a widely recognized or established term in medicine or biochemistry. It seems that this term may be a combination of "galactose," which is a simple sugar, and "phosphate," which is a common ion found in biological systems. However, without more context, it's difficult to provide an accurate medical definition for this term.

Galactose is a monosaccharide that is metabolized in the body through the Leloir pathway, and defects in this pathway can lead to genetic disorders such as galactosemia. Phosphates are often found in biological molecules, including nucleic acids (DNA and RNA) and certain sugars (like glucose-1-phosphate).

Without further context or information about how "galactosephosphates" is being used, I would be cautious about assuming that it refers to a specific medical concept or condition.

3-Deoxy-7-phosphoheptulonate synthase (DAH7PS) is an enzyme that catalyzes the first step in the synthesis of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan. The reaction it catalyzes is the condensation of erythrose-4-phosphate and phosphoenolpyruvate to form 3-deoxy-D-arabino-hept-2-ulose-7-phosphate (DAHP), also known as 3-deoxy-7-phosphoheptulonate.

The reaction catalyzed by DAH7PS is the first step in the shikimate pathway, which is a seven-step metabolic route used by bacteria, fungi, algae, parasites, and plants to produce aromatic amino acids and other important compounds. Mammals do not have this pathway, so enzymes of the shikimate pathway are potential targets for the development of antibiotics and herbicides.

DAH7PS is a regulatory enzyme in the shikimate pathway, and its activity is feedback inhibited by the aromatic amino acids phenylalanine and tyrosine. This helps to regulate the flow of carbon into the aromatic amino acid biosynthetic pathway based on the needs of the cell.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Inositol 1,4,5-trisphosphate (IP3) is a intracellular signaling molecule that plays a crucial role in the release of calcium ions from the endoplasmic reticulum into the cytoplasm. It is a second messenger, which means it relays signals received by a cell's surface receptors to various effector proteins within the cell. IP3 is produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by activated phospholipase C (PLC) enzymes in response to extracellular signals such as hormones and neurotransmitters. The binding of IP3 to its receptor on the endoplasmic reticulum triggers the release of calcium ions, which then activates various cellular processes like gene expression, metabolism, and muscle contraction.

Lanthanum is not a medical term itself, but it is a chemical element with the symbol "La" and atomic number 57. It is a soft, ductile, silvery-white metal that belongs to the lanthanide series in the periodic table.

However, in medical contexts, lanthanum may be mentioned as a component of certain medications or medical devices. For example, lanthanum carbonate (trade name Fosrenol) is a medication used to treat hyperphosphatemia (elevated levels of phosphate in the blood) in patients with chronic kidney disease. Lanthanum carbonate works by binding to phosphate in the gastrointestinal tract, preventing its absorption into the bloodstream.

It is important to note that lanthanum compounds are not biologically active and do not have any specific medical effects on their own. Any medical uses of lanthanum are related to its physical or chemical properties, rather than its biological activity.

Fructose-bisphosphate aldolase is a crucial enzyme in the glycolytic pathway, which is a metabolic process that breaks down glucose to produce energy. This enzyme catalyzes the conversion of fructose-1,6-bisphosphate into two triose sugars: dihydroxyacetone phosphate and glyceraldehyde-3-phosphate.

There are two main types of aldolase isoenzymes in humans, classified as aldolase A (or muscle type) and aldolase B (or liver type). Fructose-bisphosphate aldolase refers specifically to aldolase A, which is primarily found in the muscles, brain, and red blood cells. Aldolase B, on the other hand, is predominantly found in the liver, kidney, and small intestine.

Deficiency or dysfunction of fructose-bisphosphate aldolase can lead to metabolic disorders, such as hereditary fructose intolerance, which results from a deficiency in another enzyme called aldolase B. However, it is essential to note that the term "fructose-bisphosphate aldolase" typically refers to aldolase A and not aldolase B.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

I'm sorry for any confusion, but "Fructosediphosphates" is not a recognized term in medicine or biochemistry. It's possible there may be a spelling mistake or misunderstanding in the term you're looking for.

If you meant "Fructose 1,6-bisphosphate," that is a key intermediate in carbohydrate metabolism. It's formed from fructose 6-phosphate in the process of glucose breakdown (glycolysis) and is then used in the generation of energy through the citric acid cycle.

If these terms are not what you were looking for, could you please provide more context or check the spelling? I'm here to help!

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Calcium sulfate is an inorganic compound with the chemical formula CaSO4. It is a white, odorless, and tasteless solid that is insoluble in alcohol but soluble in water. Calcium sulfate is commonly found in nature as the mineral gypsum, which is used in various industrial applications such as plaster, wallboard, and cement.

In the medical field, calcium sulfate may be used as a component of some pharmaceutical products or as a surgical material. For example, it can be used as a bone void filler to promote healing after bone fractures or surgeries. Calcium sulfate is also used in some dental materials and medical devices.

It's important to note that while calcium sulfate has various industrial and medical uses, it should not be taken as a dietary supplement or medication without the guidance of a healthcare professional.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Phosphoenolpyruvate (PEP) is a key intermediate in the glycolysis pathway and other metabolic processes. It is a high-energy molecule that plays a crucial role in the transfer of energy during cellular respiration. Specifically, PEP is formed from the breakdown of fructose-1,6-bisphosphate and is then converted to pyruvate, releasing energy that is used to generate ATP, a major source of energy for cells.

Medically, abnormal levels of PEP may indicate issues with cellular metabolism or energy production, which can be associated with various medical conditions such as diabetes, mitochondrial disorders, and other metabolic diseases. However, direct measurement of PEP levels in clinical settings is not commonly performed due to technical challenges. Instead, clinicians typically assess overall metabolic function through a variety of other tests and measures.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Lysophospholipid receptors are a type of cell surface receptors that bind and respond to lysophospholipids, which are a class of lipid molecules with a single fatty acid chain attached to a glycerol backbone. These receptors play important roles in various physiological processes, including cell proliferation, survival, and migration.

There are several subtypes of lysophospholipid receptors, including:

1. G protein-coupled receptors (GPCRs): Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two major lysophospholipids that bind to and activate GPCRs, which are seven-transmembrane domain receptors. These receptors are involved in various signaling pathways that regulate cellular responses such as proliferation, survival, and migration.
2. Enzyme-linked receptors: Lysophospholipids can also bind to enzyme-linked receptors, which contain intracellular tyrosine kinase domains. These receptors are involved in the activation of downstream signaling pathways that regulate cellular responses such as proliferation and survival.
3. Ion channels: Lysophospholipids can also bind to and modulate ion channel activity, which can affect various physiological processes such as neuronal excitability and muscle contraction.

Dysregulation of lysophospholipid receptor signaling has been implicated in various pathological conditions, including cancer, inflammation, and neurological disorders. Therefore, targeting these receptors has emerged as a potential therapeutic strategy for the treatment of these diseases.

Calcium hydroxide is an inorganic compound with the chemical formula Ca(OH)2. It is also known as slaked lime or hydrated lime. Calcium hydroxide is a white, odorless, tasteless, and alkaline powder that dissolves in water to form a caustic solution.

Medically, calcium hydroxide is used as an antacid to neutralize stomach acid and relieve symptoms of heartburn, indigestion, and upset stomach. It is also used as a topical agent to treat skin conditions such as poison ivy rash, sunburn, and minor burns. When applied to the skin, calcium hydroxide helps to reduce inflammation, neutralize irritants, and promote healing.

In dental applications, calcium hydroxide is used as a filling material for root canals and as a paste to treat tooth sensitivity. It has the ability to stimulate the formation of new dentin, which is the hard tissue that makes up the bulk of the tooth.

It's important to note that calcium hydroxide should be used with caution, as it can cause irritation and burns if it comes into contact with the eyes or mucous membranes. It should also be stored in a cool, dry place away from heat and open flames.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

UTP-Glucose-1-Phosphate Uridylyltransferase is an enzyme that catalyzes the reaction to form UDP-glucose from UTP and glucose-1-phosphate. This reaction plays a crucial role in the biosynthesis of various carbohydrates, glycoproteins, and glycolipids in the body. The enzyme is also known as UDP-glucose pyrophosphorylase or simply as UGPase.

The systematic name for this enzyme is glucose-1-phosphate:UTP uridylyltransferase, and its reaction can be represented as follows:
UTP + glucose-1-phosphate ⇌ UDP-glucose + pyrophosphate

The enzyme is widely distributed in nature and is found in various organisms, including bacteria, plants, and animals. In humans, UGPase is present in multiple tissues, such as the liver, kidney, and brain. Defects in this enzyme can lead to several metabolic disorders, highlighting its importance in maintaining normal bodily functions.

Glucosamine 6-phosphate N-acetyltransferase (GNA1, GNPNAT) is an enzyme involved in the biosynthesis of glycoproteins and proteoglycans. These are complex molecules made up of proteins combined with carbohydrates (sugars). They play crucial roles in various biological processes such as cell-cell recognition, cell signaling, and providing structural support to tissues and organs.

The enzyme Glucosamine 6-phosphate N-acetyltransferase specifically catalyzes the transfer of an acetyl group from acetyl-CoA to glucosamine 6-phosphate, forming N-acetylglucosamine 6-phosphate. This reaction is a critical step in the biosynthesis of glycoproteins and proteoglycans, as N-acetylglucosamine is a key component of these complex molecules.

Defects or mutations in the gene encoding Glucosamine 6-phosphate N-acetyltransferase can lead to congenital disorders of glycosylation (CDG), which are rare genetic diseases characterized by abnormal glycoprotein and proteoglycan synthesis. These disorders can result in a wide range of symptoms, including developmental delays, neurological impairments, and various physical abnormalities.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Physiologic calcification is the normal deposit of calcium salts in body tissues and organs. It is a natural process that occurs as part of the growth and development of the human body, as well as during the repair and remodeling of tissues.

Calcium is an essential mineral that plays a critical role in many bodily functions, including bone formation, muscle contraction, nerve impulse transmission, and blood clotting. In order to maintain proper levels of calcium in the body, excess calcium that is not needed for these functions may be deposited in various tissues as a normal part of the aging process.

Physiologic calcification typically occurs in areas such as the walls of blood vessels, the lungs, and the heart valves. While these calcifications are generally harmless, they can sometimes lead to complications, particularly if they occur in large amounts or in sensitive areas. For example, calcification of the coronary arteries can increase the risk of heart disease, while calcification of the lung tissue can cause respiratory symptoms.

It is important to note that pathologic calcification, on the other hand, refers to the abnormal deposit of calcium salts in tissues and organs, which can be caused by various medical conditions such as chronic kidney disease, hyperparathyroidism, and certain infections. Pathologic calcification is not a normal process and can lead to serious health complications if left untreated.

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Nifedipine is an antihypertensive and calcium channel blocker medication. It works by relaxing the muscles of the blood vessels, which helps to lower blood pressure and improve the supply of oxygen and nutrients to the heart. Nifedipine is used to treat high blood pressure (hypertension), angina (chest pain), and certain types of heart rhythm disorders.

In medical terms, nifedipine can be defined as: "A dihydropyridine calcium channel blocker that is used in the treatment of hypertension, angina pectoris, and Raynaud's phenomenon. It works by inhibiting the influx of calcium ions into vascular smooth muscle and cardiac muscle, which results in relaxation of the vascular smooth muscle and decreased workload on the heart."

Divalent cations are ions that carry a positive charge of +2. They are called divalent because they have two positive charges. Common examples of divalent cations include calcium (Ca²+), magnesium (Mg²+), and iron (Fe²+). These ions play important roles in various biological processes, such as muscle contraction, nerve impulse transmission, and bone metabolism. They can also interact with certain drugs and affect their absorption, distribution, and elimination in the body.

Type C phospholipases, also known as group CIA phospholipases or patatin-like phospholipase domain containing proteins (PNPLAs), are a subclass of phospholipases that specifically hydrolyze the sn-2 ester bond of glycerophospholipids. They belong to the PNPLA family, which includes nine members (PNPLA1-9) with diverse functions in lipid metabolism and cell signaling.

Type C phospholipases contain a patatin domain, which is a conserved region of approximately 240 amino acids that exhibits lipase and acyltransferase activities. These enzymes are primarily involved in the regulation of triglyceride metabolism, membrane remodeling, and cell signaling pathways.

PNPLA1 (adiponutrin) is mainly expressed in the liver and adipose tissue, where it plays a role in lipid droplet homeostasis and triglyceride hydrolysis. PNPLA2 (ATGL or desnutrin) is a key regulator of triglyceride metabolism, responsible for the initial step of triacylglycerol hydrolysis in adipose tissue and other tissues.

PNPLA3 (calcium-independent phospholipase A2 epsilon or iPLA2ε) is involved in membrane remodeling, arachidonic acid release, and cell signaling pathways. Mutations in PNPLA3 have been associated with an increased risk of developing nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease, and hepatic steatosis.

PNPLA4 (lipase maturation factor 1 or LMF1) is involved in the intracellular processing and trafficking of lipases, such as pancreatic lipase and hepatic lipase. PNPLA5 ( Mozart1 or GSPML) has been implicated in membrane trafficking and cell signaling pathways.

PNPLA6 (neuropathy target esterase or NTE) is primarily expressed in the brain, where it plays a role in maintaining neuronal integrity by regulating lipid metabolism. Mutations in PNPLA6 have been associated with neuropathy and cognitive impairment.

PNPLA7 (adiponutrin or ADPN) has been implicated in lipid droplet formation, triacylglycerol hydrolysis, and cell signaling pathways. Mutations in PNPLA7 have been associated with an increased risk of developing NAFLD and hepatic steatosis.

PNPLA8 (diglyceride lipase or DGLα) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA9 (calcium-independent phospholipase A2 gamma or iPLA2γ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA10 (calcium-independent phospholipase A2 delta or iPLA2δ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA11 (calcium-independent phospholipase A2 epsilon or iPLA2ε) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA12 (calcium-independent phospholipase A2 zeta or iPLA2ζ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA13 (calcium-independent phospholipase A2 eta or iPLA2η) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA14 (calcium-independent phospholipase A2 theta or iPLA2θ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA15 (calcium-independent phospholipase A2 iota or iPLA2ι) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA16 (calcium-independent phospholipase A2 kappa or iPLA2κ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA17 (calcium-independent phospholipase A2 lambda or iPLA2λ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA18 (calcium-independent phospholipase A2 mu or iPLA2μ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA19 (calcium-independent phospholipase A2 nu or iPLA2ν) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA20 (calcium-independent phospholipase A2 xi or iPLA2ξ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA21 (calcium-independent phospholipase A2 omicron or iPLA2ο) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA22 (calcium-independent phospholipase A2 pi or iPLA2π) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA23 (calcium-independent phospholipase A2 rho or iPLA2ρ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA24 (calcium-independent phospholipase A2 sigma or iPLA2σ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA25 (calcium-independent phospholipase A2 tau or iPLA2τ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA26 (calcium-independent phospholipase A2 upsilon or iPLA2υ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA27 (calcium-independent phospholipase A2 phi or iPLA2φ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA28 (calcium-independent phospholipase A2 chi or iPLA2χ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA29 (calcium-independent phospholipase A2 psi or iPLA2ψ) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA30 (calcium-independent phospholipase A2 omega or iPLA2ω) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA31 (calcium-independent phospholipase A2 pi or iPLA2π) has been implicated in membrane remodeling, arachidonic acid release, and cell signaling pathways.

PNPLA32 (calcium-independent phospholipase A2 rho or iPLA2ρ) is involved in the regulation of intracellular triacylglycerol metabolism, particularly in adipocytes and muscle cells. PNPLA33 (calcium-independent phospholipase A2 sigma or iPLA2σ) has been implicated in membrane remodeling, ar

Adenine nucleotides are molecules that consist of a nitrogenous base called adenine, which is linked to a sugar molecule (ribose in the case of adenosine monophosphate or AMP, and deoxyribose in the case of adenosine diphosphate or ADP and adenosine triphosphate or ATP) and one, two, or three phosphate groups. These molecules play a crucial role in energy transfer and metabolism within cells.

AMP contains one phosphate group, while ADP contains two phosphate groups, and ATP contains three phosphate groups. When a phosphate group is removed from ATP, energy is released, which can be used to power various cellular processes such as muscle contraction, nerve impulse transmission, and protein synthesis. The reverse reaction, in which a phosphate group is added back to ADP or AMP to form ATP, requires energy input and often involves the breakdown of nutrients such as glucose or fatty acids.

In addition to their role in energy metabolism, adenine nucleotides also serve as precursors for other important molecules, including DNA and RNA, coenzymes, and signaling molecules.

Apatite is a group of phosphate minerals, primarily consisting of fluorapatite, chlorapatite, and hydroxylapatite. They are important constituents of rocks and bones, and they have a wide range of applications in various industries. In the context of medicine, apatites are most notable for their presence in human teeth and bones.

Hydroxylapatite is the primary mineral component of tooth enamel, making up about 97% of its weight. It provides strength and hardness to the enamel, enabling it to withstand the forces of biting and chewing. Fluorapatite, a related mineral that contains fluoride ions instead of hydroxyl ions, is also present in tooth enamel and helps to protect it from acid erosion caused by bacteria and dietary acids.

Chlorapatite has limited medical relevance but can be found in some pathological calcifications in the body.

In addition to their natural occurrence in teeth and bones, apatites have been synthesized for various medical applications, such as bone graft substitutes, drug delivery systems, and tissue engineering scaffolds. These synthetic apatites are biocompatible and can promote bone growth and regeneration, making them useful in dental and orthopedic procedures.

Familial Hypophosphatemia is a genetic disorder characterized by low levels of phosphate in the blood (hypophosphatemia) due to impaired absorption of phosphates in the gut. This condition results from mutations in the SLC34A3 gene, which provides instructions for making a protein called NaPi-IIc, responsible for reabsorbing phosphates from the filtrate in the kidney tubules back into the bloodstream.

In familial hypophosphatemia, the impaired function of NaPi-IIc leads to excessive loss of phosphate through urine, resulting in hypophosphatemia. This condition can cause rickets (a softening and weakening of bones) in children and osteomalacia (softening of bones) in adults. Symptoms may include bowed legs, bone pain, muscle weakness, and short stature.

Familial Hypophosphatemia is inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Calcium pyrophosphate is a mineral compound made up of calcium and pyrophosphate ions. In the body, it can form crystals that deposit in joints, causing a type of arthritis known as calcium pyrophosphate deposition (CPPD) disease or pseudogout. CPPD disease is characterized by sudden attacks of joint pain and swelling, often in the knee or wrist. The condition is more common in older adults and can also occur in people with underlying medical conditions such as hyperparathyroidism, hemochromatosis, and hypophosphatasia. Calcium pyrophosphate crystals may also be found in the fluid around the heart (pericardial fluid) or in other tissues, but they do not always cause symptoms.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Fura-2 is not a medical term per se, but a chemical compound used in scientific research, particularly in the field of physiology and cell biology. Fura-2 is a calcium indicator dye that is commonly used to measure intracellular calcium concentrations in living cells. It works by binding to calcium ions (Ca²+) in the cytoplasm of cells, which causes a change in its fluorescence emission spectrum.

When excited with ultraviolet light at specific wavelengths, Fura-2 exhibits different fluorescence intensities depending on the concentration of calcium ions it has bound to. By measuring these changes in fluorescence intensity, researchers can quantify intracellular calcium levels and study how they change in response to various stimuli or experimental conditions.

While Fura-2 is not a medical term itself, understanding its function and use is essential for researchers working in the fields of physiology, pharmacology, neuroscience, and other biomedical disciplines.

Diphosphates, also known as pyrophosphates, are chemical compounds that contain two phosphate groups joined together by an oxygen atom. The general formula for a diphosphate is P~PO3~2-, where ~ represents a bond. Diphosphates play important roles in various biological processes, such as energy metabolism and cell signaling. In the context of nutrition, diphosphates can be found in some foods, including milk and certain vegetables.

Hexokinase is an enzyme that plays a crucial role in the initial step of glucose metabolism, which is the phosphorylation of glucose to form glucose-6-phosphate. This reaction is the first step in most glucose catabolic pathways, including glycolysis, pentose phosphate pathway, and glycogen synthesis.

Hexokinase has a high affinity for glucose, meaning it can bind and phosphorylate glucose even at low concentrations. This property makes hexokinase an important regulator of glucose metabolism in cells. There are four isoforms of hexokinase (I-IV) found in different tissues, with hexokinase IV (also known as glucokinase) being primarily expressed in the liver and pancreas.

In summary, hexokinase is a vital enzyme involved in glucose metabolism, catalyzing the conversion of glucose to glucose-6-phosphate, and playing a crucial role in regulating cellular energy homeostasis.

Citrates are the salts or esters of citric acid, a weak organic acid that is naturally found in many fruits and vegetables. In a medical context, citrates are often used as a buffering agent in intravenous fluids to help maintain the pH balance of blood and other bodily fluids. They are also used in various medical tests and treatments, such as in urine alkalinization and as an anticoagulant in kidney dialysis solutions. Additionally, citrate is a component of some dietary supplements and medications.

Bone substitutes are materials that are used to replace missing or damaged bone in the body. They can be made from a variety of materials, including natural bone from other parts of the body or from animals, synthetic materials, or a combination of both. The goal of using bone substitutes is to provide structural support and promote the growth of new bone tissue.

Bone substitutes are often used in dental, orthopedic, and craniofacial surgery to help repair defects caused by trauma, tumors, or congenital abnormalities. They can also be used to augment bone volume in procedures such as spinal fusion or joint replacement.

There are several types of bone substitutes available, including:

1. Autografts: Bone taken from another part of the patient's body, such as the hip or pelvis.
2. Allografts: Bone taken from a deceased donor and processed to remove any cells and infectious materials.
3. Xenografts: Bone from an animal source, typically bovine or porcine, that has been processed to remove any cells and infectious materials.
4. Synthetic bone substitutes: Materials such as calcium phosphate ceramics, bioactive glass, and polymer-based materials that are designed to mimic the properties of natural bone.

The choice of bone substitute material depends on several factors, including the size and location of the defect, the patient's medical history, and the surgeon's preference. It is important to note that while bone substitutes can provide structural support and promote new bone growth, they may not have the same strength or durability as natural bone. Therefore, they may not be suitable for all applications, particularly those that require high load-bearing capacity.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Kidney calculi, also known as kidney stones, are hard deposits made of minerals and salts that form inside your kidneys. They can range in size from a grain of sand to a golf ball. When they're small enough, they can be passed through your urine without causing too much discomfort. However, larger stones may block the flow of urine, causing severe pain and potentially leading to serious complications such as urinary tract infections or kidney damage if left untreated.

The formation of kidney calculi is often associated with factors like dehydration, high levels of certain minerals in your urine, family history, obesity, and certain medical conditions such as gout or inflammatory bowel disease. Symptoms of kidney stones typically include severe pain in the back, side, lower abdomen, or groin; nausea and vomiting; fever and chills if an infection is present; and blood in the urine. Treatment options depend on the size and location of the stone but may include medications to help pass the stone, shock wave lithotripsy to break up the stone, or surgical removal of the stone in severe cases.

Sodium-phosphate cotransporter proteins, type IIa (NaPi-IIa), are a subtype of membrane transport proteins that facilitate the active transport of sodium and phosphate ions across the cell membrane. They play a crucial role in maintaining phosphate homeostasis within the body by regulating the reabsorption of phosphate in the kidney's proximal tubules.

NaPi-IIa proteins are located on the brush border membrane of the proximal tubule cells and function to couple the movement of sodium ions down its electrochemical gradient into the cell with the influx of phosphate ions against its concentration gradient, from the lumen into the cell. This process is driven by the sodium-potassium ATPase pump, which maintains a low intracellular sodium concentration and a negative membrane potential.

NaPi-IIa proteins are encoded by the SLC34A1 gene in humans and are subject to regulation by various hormonal and physiological factors, such as parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and dietary phosphate intake. Dysregulation of NaPi-IIa function has been implicated in several kidney diseases and disorders of phosphate homeostasis, such as hyperphosphatemia and hypophosphatemic rickets.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

3-Phosphoshikimate 1-Carboxyvinyltransferase (PCT) is an enzyme that catalyzes the sixth step in the biosynthesis of aromatic amino acids in plants and microorganisms. The reaction it catalyzes is the conversion of 3-phosphoshikimate (3PSM) and phosphoenolpyruvate (PEP) to 5-enolpyruvylshikimate-3-phosphate (EPSP). This step is a key control point in the aromatic amino acid biosynthetic pathway, and the enzyme is the target of several herbicides, including glyphosate. The gene that encodes this enzyme is also used as a molecular marker for plant systematics and evolutionary studies.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Phosphorus isotopes are different forms of the element phosphorus that have different numbers of neutrons in their atomic nuclei, while the number of protons remains the same. The most common and stable isotope of phosphorus is 31P, which contains 15 protons and 16 neutrons. However, there are also several other isotopes of phosphorus that exist, including 32P and 33P, which are radioactive and have 15 protons and 17 or 18 neutrons, respectively. These radioactive isotopes are often used in medical research and treatment, such as in the form of radiopharmaceuticals to diagnose and treat various diseases.

Thapsigargin is not a medical term per se, but it is a chemical compound that has been studied in the field of medicine and biology. Thapsigargin is a substance that is derived from the plant Thapsia garganica, also known as the "deadly carrot." It is a powerful inhibitor of the sarcoendoplasmic reticulum calcium ATPase (SERCA) pump, which is responsible for maintaining calcium homeostasis within cells.

Thapsigargin has been studied for its potential use in cancer therapy due to its ability to induce cell death in certain types of cancer cells. However, its use as a therapeutic agent is still being investigated and is not yet approved for medical use. It should be noted that thapsigargin can also have toxic effects on normal cells, so its therapeutic use must be carefully studied and optimized to minimize harm to healthy tissues.

Sodium-phosphate cotransporter proteins, type III (NPTIII), are a subfamily of sodium-dependent phosphate transporters that play a crucial role in the regulation of phosphate homeostasis within the body. They are located primarily in the proximal tubule cells of the kidney and facilitate the active transport of inorganic phosphate (Pi) from the lumen into the cell, coupled with the movement of sodium ions (Na+) in the same direction.

The type III sodium-phosphate cotransporters consist of two isoforms, NaPi-IIa and NaPi-IIc, which are encoded by the SLC34A1 and SLC34A3 genes, respectively. These proteins have a molecular weight of approximately 80-90 kDa and contain 13 transmembrane domains, with both the N- and C-termini located intracellularly.

NaPi-IIa is responsible for the majority of sodium-dependent phosphate reabsorption in the kidney, while NaPi-IIc plays a modulatory role under conditions of high dietary phosphate intake or during development. Dysregulation of these cotransporters has been implicated in various pathological conditions, such as chronic kidney disease (CKD), tumoral calcinosis, and certain forms of hypophosphatemic rickets.

In summary, sodium-phosphate cotransporter proteins, type III, are essential for maintaining phosphate balance by mediating the active reabsorption of inorganic phosphate from the kidney tubular lumen into the bloodstream.

Paper chromatography is a type of chromatography technique that involves the separation and analysis of mixtures based on their components' ability to migrate differently upon capillary action on a paper medium. This simple and cost-effective method utilizes a paper, typically made of cellulose, as the stationary phase. The sample mixture is applied as a small spot near one end of the paper, and then the other end is dipped into a developing solvent or a mixture of solvents (mobile phase) in a shallow container.

As the mobile phase moves up the paper by capillary action, components within the sample mixture separate based on their partition coefficients between the stationary and mobile phases. The partition coefficient describes how much a component prefers to be in either the stationary or mobile phase. Components with higher partition coefficients in the mobile phase will move faster and further than those with lower partition coefficients.

Once separation is complete, the paper is dried and can be visualized under ultraviolet light or by using chemical reagents specific for the components of interest. The distance each component travels from the origin (point of application) and its corresponding solvent front position are measured, allowing for the calculation of Rf values (retardation factors). Rf is a dimensionless quantity calculated as the ratio of the distance traveled by the component to the distance traveled by the solvent front.

Rf = (distance traveled by component) / (distance traveled by solvent front)

Paper chromatography has been widely used in various applications, such as:

1. Identification and purity analysis of chemical compounds in pharmaceuticals, forensics, and research laboratories.
2. Separation and detection of amino acids, sugars, and other biomolecules in biological samples.
3. Educational purposes to demonstrate the principles of chromatography and separation techniques.

Despite its limitations, such as lower resolution compared to high-performance liquid chromatography (HPLC) and less compatibility with volatile or nonpolar compounds, paper chromatography remains a valuable tool for quick, qualitative analysis in various fields.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

Phosphorus metabolism disorders refer to a group of conditions that affect the body's ability to properly regulate the levels and utilization of phosphorus. Phosphorus is an essential mineral that plays a critical role in many biological processes, including energy production, bone formation, and nerve function.

Disorders of phosphorus metabolism can result from genetic defects, kidney dysfunction, vitamin D deficiency, or other medical conditions. These disorders can lead to abnormal levels of phosphorus in the blood, which can cause a range of symptoms, including muscle weakness, bone pain, seizures, and respiratory failure.

Examples of phosphorus metabolism disorders include:

1. Hypophosphatemia: This is a condition characterized by low levels of phosphorus in the blood. It can be caused by various factors, such as malnutrition, vitamin D deficiency, and kidney dysfunction.
2. Hyperphosphatemia: This is a condition characterized by high levels of phosphorus in the blood. It can be caused by kidney failure, tumor lysis syndrome, and certain medications.
3. Hereditary hypophosphatemic rickets: This is a genetic disorder that affects the body's ability to regulate vitamin D and phosphorus metabolism. It can lead to weakened bones and skeletal deformities.
4. Oncogenic osteomalacia: This is a rare condition that occurs when tumors produce substances that interfere with phosphorus metabolism, leading to bone pain and weakness.

Treatment for phosphorus metabolism disorders depends on the underlying cause of the disorder and may include dietary changes, supplements, medications, or surgery.

Transketolase is an enzyme found in most organisms, from bacteria to humans. It plays a crucial role in the pentose phosphate pathway (PPP), which is a metabolic pathway that runs alongside glycolysis in the cell cytoplasm. The PPP provides an alternative way of generating energy and also serves to provide building blocks for new cellular components, particularly nucleotides.

Transketolase functions by catalyzing the transfer of a two-carbon ketol group from a ketose (a sugar containing a ketone functional group) to an aldose (a sugar containing an aldehyde functional group). This reaction forms a new ketose and an aldose, effectively converting three-carbon sugars into five-carbon sugars, or vice versa.

In humans, transketolase is essential for the production of NADPH, an important reducing agent in the cell, and for the synthesis of certain amino acids and nucleotides. Deficiencies in this enzyme can lead to metabolic disorders such as pentosuria.

Phytic acid, also known as phytate in its salt form, is a natural substance found in plant-based foods such as grains, legumes, nuts, and seeds. It's a storage form of phosphorus for the plant and is often referred to as an "anti-nutrient" because it can bind to certain minerals like calcium, iron, magnesium, and zinc in the gastrointestinal tract and prevent their absorption. This can potentially lead to mineral deficiencies if a diet is consistently high in phytic acid-rich foods and low in mineral-rich foods. However, it's important to note that phytic acid also has antioxidant properties and may have health benefits when consumed as part of a balanced diet.

The bioavailability of minerals from phytic acid-rich foods can be improved through various methods such as soaking, sprouting, fermenting, or cooking, which can help break down some of the phytic acid and release the bound minerals.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Adenosine monophosphate (AMP) is a nucleotide that is the monophosphate ester of adenosine, consisting of the nitrogenous base adenine attached to the 1' carbon atom of ribose via a β-N9-glycosidic bond, which in turn is esterified to a phosphate group. It is an important molecule in biological systems as it plays a key role in cellular energy transfer and storage, serving as a precursor to other nucleotides such as ADP and ATP. AMP is also involved in various signaling pathways and can act as a neurotransmitter in the central nervous system.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Hypercalcemia is a medical condition characterized by an excess of calcium ( Ca2+ ) in the blood. While the normal range for serum calcium levels is typically between 8.5 to 10.2 mg/dL (milligrams per deciliter) or 2.14 to 2.55 mmol/L (millimoles per liter), hypercalcemia is generally defined as a serum calcium level greater than 10.5 mg/dL or 2.6 mmol/L.

Hypercalcemia can result from various underlying medical disorders, including primary hyperparathyroidism, malignancy (cancer), certain medications, granulomatous diseases, and excessive vitamin D intake or production. Symptoms of hypercalcemia may include fatigue, weakness, confusion, memory loss, depression, constipation, nausea, vomiting, increased thirst, frequent urination, bone pain, and kidney stones. Severe or prolonged hypercalcemia can lead to serious complications such as kidney failure, cardiac arrhythmias, and calcification of soft tissues. Treatment depends on the underlying cause and severity of the condition.

Glycerol, also known as glycerine or glycerin, is a simple polyol (a sugar alcohol) with a sweet taste and a thick, syrupy consistency. It is a colorless, odorless, viscous liquid that is slightly soluble in water and freely miscible with ethanol and ether.

In the medical field, glycerol is often used as a medication or supplement. It can be used as a laxative to treat constipation, as a source of calories and energy for people who cannot eat by mouth, and as a way to prevent dehydration in people with certain medical conditions.

Glycerol is also used in the production of various medical products, such as medications, skin care products, and vaccines. It acts as a humectant, which means it helps to keep things moist, and it can also be used as a solvent or preservative.

In addition to its medical uses, glycerol is also widely used in the food industry as a sweetener, thickening agent, and moisture-retaining agent. It is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA).

Acid phosphatase is a type of enzyme that is found in various tissues and organs throughout the body, including the prostate gland, red blood cells, bone, liver, spleen, and kidneys. This enzyme plays a role in several biological processes, such as bone metabolism and the breakdown of molecules like nucleotides and proteins.

Acid phosphatase is classified based on its optimum pH level for activity. Acid phosphatases have an optimal activity at acidic pH levels (below 7.0), while alkaline phosphatases have an optimal activity at basic or alkaline pH levels (above 7.0).

In clinical settings, measuring the level of acid phosphatase in the blood can be useful as a tumor marker for prostate cancer. Elevated acid phosphatase levels may indicate the presence of metastatic prostate cancer or disease progression. However, it is important to note that acid phosphatase is not specific to prostate cancer and can also be elevated in other conditions, such as bone diseases, liver disorders, and some benign conditions. Therefore, acid phosphatase should be interpreted in conjunction with other diagnostic tests and clinical findings for a more accurate diagnosis.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Osmolar concentration is a measure of the total number of solute particles (such as ions or molecules) dissolved in a solution per liter of solvent (usually water), which affects the osmotic pressure. It is expressed in units of osmoles per liter (osmol/L). Osmolarity and osmolality are related concepts, with osmolarity referring to the number of osmoles per unit volume of solution, typically measured in liters, while osmolality refers to the number of osmoles per kilogram of solvent. In clinical contexts, osmolar concentration is often used to describe the solute concentration of bodily fluids such as blood or urine.

Vitamin D is a fat-soluble secosteroid that is crucial for the regulation of calcium and phosphate levels in the body, which are essential for maintaining healthy bones and teeth. It can be synthesized by the human body when skin is exposed to ultraviolet-B (UVB) rays from sunlight, or it can be obtained through dietary sources such as fatty fish, fortified dairy products, and supplements. There are two major forms of vitamin D: vitamin D2 (ergocalciferol), which is found in some plants and fungi, and vitamin D3 (cholecalciferol), which is produced in the skin or obtained from animal-derived foods. Both forms need to undergo two hydroxylations in the body to become biologically active as calcitriol (1,25-dihydroxyvitamin D3), the hormonally active form of vitamin D. This activated form exerts its effects by binding to the vitamin D receptor (VDR) found in various tissues, including the small intestine, bone, kidney, and immune cells, thereby influencing numerous physiological processes such as calcium homeostasis, bone metabolism, cell growth, and immune function.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Hypocalcemia is a medical condition characterized by an abnormally low level of calcium in the blood. Calcium is a vital mineral that plays a crucial role in various bodily functions, including muscle contraction, nerve impulse transmission, and bone formation. Normal calcium levels in the blood usually range from 8.5 to 10.2 milligrams per deciliter (mg/dL). Hypocalcemia is typically defined as a serum calcium level below 8.5 mg/dL or, when adjusted for albumin (a protein that binds to calcium), below 8.4 mg/dL (ionized calcium).

Hypocalcemia can result from several factors, such as vitamin D deficiency, hypoparathyroidism (underactive parathyroid glands), kidney dysfunction, certain medications, and severe magnesium deficiency. Symptoms of hypocalcemia may include numbness or tingling in the fingers, toes, or lips; muscle cramps or spasms; seizures; and, in severe cases, cognitive impairment or cardiac arrhythmias. Treatment typically involves correcting the underlying cause and administering calcium and vitamin D supplements to restore normal calcium levels in the blood.

Phosphate Acetyltransferase (PAT) is an enzyme involved in the metabolism of certain amino acids. It catalyzes the transfer of a phosphate group from acetyl phosphate to a variety of acceptor molecules, including carbon, nitrogen, and sulfur nucleophiles. This reaction plays a crucial role in several biochemical pathways, such as the biosynthesis of certain amino acids, vitamins, and cofactors.

The systematic name for this enzyme is acetylphosphate-protein phosphotransferase. It belongs to the family of transferases, specifically those transferring phosphorus-containing groups. The gene that encodes this enzyme in humans is called PAT1 or CABYR. Defects in this gene have been associated with certain neurological disorders.

Edetic acid, also known as ethylenediaminetetraacetic acid (EDTA), is not a medical term per se, but a chemical compound with various applications in medicine. EDTA is a synthetic amino acid that acts as a chelating agent, which means it can bind to metallic ions and form stable complexes.

In medicine, EDTA is primarily used in the treatment of heavy metal poisoning, such as lead or mercury toxicity. It works by binding to the toxic metal ions in the body, forming a stable compound that can be excreted through urine. This helps reduce the levels of harmful metals in the body and alleviate their toxic effects.

EDTA is also used in some diagnostic tests, such as the determination of calcium levels in blood. Additionally, it has been explored as a potential therapy for conditions like atherosclerosis and Alzheimer's disease, although its efficacy in these areas remains controversial and unproven.

It is important to note that EDTA should only be administered under medical supervision due to its potential side effects and the need for careful monitoring of its use.

Crystallization is a process in which a substance transitions from a liquid or dissolved state to a solid state, forming a crystal lattice. In the medical context, crystallization can refer to the formation of crystals within the body, which can occur under certain conditions such as changes in pH, temperature, or concentration of solutes. These crystals can deposit in various tissues and organs, leading to the formation of crystal-induced diseases or disorders.

For example, in patients with gout, uric acid crystals can accumulate in joints, causing inflammation, pain, and swelling. Similarly, in nephrolithiasis (kidney stones), minerals in the urine can crystallize and form stones that can obstruct the urinary tract. Crystallization can also occur in other medical contexts, such as in the formation of dental calculus or plaque, and in the development of cataracts in the eye.

Vidarabine phosphate is a antiviral medication used to treat herpes simplex encephalitis, a severe form of brain infection caused by the herpes simplex virus. It works by inhibiting the replication of the virus in human cells. Vidarabine phosphate is the salt of vidarabine, which is a nucleoside analogue that gets incorporated into viral DNA during replication, leading to termination of the DNA chain and preventing further viral reproduction. It is administered through intravenous (IV) infusion in a hospital setting.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Terpenes are a large and diverse class of organic compounds produced by a variety of plants, including cannabis. They are responsible for the distinctive aromas and flavors found in different strains of cannabis. Terpenes have been found to have various therapeutic benefits, such as anti-inflammatory, analgesic, and antimicrobial properties. Some terpenes may also enhance the psychoactive effects of THC, the main psychoactive compound in cannabis. It's important to note that more research is needed to fully understand the potential medical benefits and risks associated with terpenes.

UDP-glucose-hexose-1-phosphate uridylyltransferase is an enzyme that plays a role in the metabolism of carbohydrates. The systematic name for this enzyme is UDP-glucose:alpha-D-hexose-1-phosphate uridylyltransferase.

This enzyme catalyzes the following reaction:
UDP-glucose + alpha-D-hexose 1-phosphate glucose 1-phosphate + UDP-alpha-D-hexose

In simpler terms, this enzyme helps to transfer a uridylyl group (UDP) from UDP-glucose to another hexose sugar that is attached to a phosphate group. This reaction allows for the interconversion of different sugars in the cell and plays a role in various metabolic pathways, including the synthesis of glycogen and other complex carbohydrates.

Deficiencies or mutations in this enzyme can lead to various genetic disorders, such as congenital disorder of glycosylation type IIb (CDGIIb) and polycystic kidney disease.

Fluorides are ionic compounds that contain the fluoride anion (F-). In the context of dental and public health, fluorides are commonly used in preventive measures to help reduce tooth decay. They can be found in various forms such as sodium fluoride, stannous fluoride, and calcium fluoride. When these compounds come into contact with saliva, they release fluoride ions that can be absorbed by tooth enamel. This process helps to strengthen the enamel and make it more resistant to acid attacks caused by bacteria in the mouth, which can lead to dental caries or cavities. Fluorides can be topically applied through products like toothpaste, mouth rinses, and fluoride varnishes, or systemically ingested through fluoridated water, salt, or supplements.

In the context of nutrition and health, minerals are inorganic elements that are essential for various bodily functions, such as nerve impulse transmission, muscle contraction, maintaining fluid and electrolyte balance, and bone structure. They are required in small amounts compared to macronutrients (carbohydrates, proteins, and fats) and are obtained from food and water.

Some of the major minerals include calcium, phosphorus, magnesium, sodium, potassium, and chloride, while trace minerals or microminerals are required in even smaller amounts and include iron, zinc, copper, manganese, iodine, selenium, and fluoride.

It's worth noting that the term "minerals" can also refer to geological substances found in the earth, but in medical terminology, it specifically refers to the essential inorganic elements required for human health.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Verapamil is a calcium channel blocker medication that is primarily used to treat hypertension (high blood pressure), angina (chest pain), and certain types of cardiac arrhythmias (irregular heart rhyats). It works by relaxing the smooth muscle cells in the walls of blood vessels, which causes them to dilate or widen, reducing the resistance to blood flow and thereby lowering blood pressure. Verapamil also slows down the conduction of electrical signals within the heart, which can help to regulate the heart rate and rhythm.

In addition to its cardiovascular effects, verapamil is sometimes used off-label for the treatment of other conditions such as migraine headaches, Raynaud's phenomenon, and certain types of tremors. It is available in various forms, including immediate-release tablets, extended-release capsules, and intravenous (IV) injection.

It is important to note that verapamil can interact with other medications, so it is essential to inform your healthcare provider about all the drugs you are taking before starting this medication. Additionally, verapamil should be used with caution in people with certain medical conditions, such as heart failure, liver disease, and low blood pressure.

PHEX (Phosphate Regulating Endopeptidase Homolog, X-Linked) is a gene that encodes for an enzyme called phosphate regulating neutral endopeptidase. This enzyme is primarily expressed in osteoblasts, which are cells responsible for bone formation.

The main function of the PHEX protein is to regulate the levels of a hormone called fibroblast growth factor 23 (FGF23) by breaking it down. FGF23 plays an essential role in maintaining phosphate homeostasis by regulating its reabsorption in the kidneys and its absorption from the gut.

Inactivating mutations in the PHEX gene can lead to X-linked hypophosphatemia (XLH), a genetic disorder characterized by low levels of phosphate in the blood, impaired bone mineralization, and rickets. In XLH, the production of FGF23 is increased due to the lack of regulation by PHEX, leading to excessive excretion of phosphate in the urine and decreased absorption from the gut. This results in hypophosphatemia, impaired bone mineralization, and other skeletal abnormalities.

Gluconates are a group of salts and esters derived from gluconic acid, a weak organic acid that is naturally produced in the human body during the metabolism of carbohydrates. In medical contexts, gluconates are often used as a source of the essential mineral ions, such as calcium, magnesium, and iron, which are necessary for various bodily functions.

Gluconate salts are commonly used in pharmaceutical and nutritional supplements because they are highly soluble in water, making them easy to absorb and utilize by the body. For example, calcium gluconate is a common treatment for hypocalcemia (low blood calcium levels), while magnesium gluconate is used to treat magnesium deficiency.

Gluconates may also be used as preservatives in some medical products, such as intravenous solutions and eye drops, due to their ability to inhibit the growth of bacteria and other microorganisms. Overall, gluconates are a versatile class of compounds with important applications in medicine and health.

Triose-phosphate isomerase (TPI) is a crucial enzyme in the glycolytic pathway, which is a metabolic process that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. TPI specifically catalyzes the reversible interconversion of the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). This interconversion is a vital step in maintaining the balance of metabolites in the glycolytic pathway.

The reaction catalyzed by TPI is as follows:

Dihydroxyacetone phosphate ↔ Glyceraldehyde 3-phosphate

Deficiency or mutations in the gene encoding triose-phosphate isomerase can lead to a severe autosomal recessive disorder known as Triose Phosphate Isomerase Deficiency (TID). This condition is characterized by chronic hemolytic anemia, neuromuscular symptoms, and shortened lifespan.

Intestinal absorption refers to the process by which the small intestine absorbs water, nutrients, and electrolytes from food into the bloodstream. This is a critical part of the digestive process, allowing the body to utilize the nutrients it needs and eliminate waste products. The inner wall of the small intestine contains tiny finger-like projections called villi, which increase the surface area for absorption. Nutrients are absorbed into the bloodstream through the walls of the capillaries in these villi, and then transported to other parts of the body for use or storage.

Nucleotidyltransferases are a class of enzymes that catalyze the transfer of nucleotides to an acceptor molecule, such as RNA or DNA. These enzymes play crucial roles in various biological processes, including DNA replication, repair, and recombination, as well as RNA synthesis and modification.

The reaction catalyzed by nucleotidyltransferases typically involves the donation of a nucleoside triphosphate (NTP) to an acceptor molecule, resulting in the formation of a phosphodiester bond between the nucleotides. The reaction can be represented as follows:

NTP + acceptor → NMP + pyrophosphate

where NTP is the nucleoside triphosphate donor and NMP is the nucleoside monophosphate product.

There are several subclasses of nucleotidyltransferases, including polymerases, ligases, and terminases. These enzymes have distinct functions and substrate specificities, but all share the ability to transfer nucleotides to an acceptor molecule.

Examples of nucleotidyltransferases include DNA polymerase, RNA polymerase, reverse transcriptase, telomerase, and ligase. These enzymes are essential for maintaining genome stability and function, and their dysregulation has been implicated in various diseases, including cancer and neurodegenerative disorders.

Manganese is not a medical condition, but it's an essential trace element that is vital for human health. Here is the medical definition of Manganese:

Manganese (Mn) is a trace mineral that is present in tiny amounts in the body. It is found mainly in bones, the liver, kidneys, and pancreas. Manganese helps the body form connective tissue, bones, blood clotting factors, and sex hormones. It also plays a role in fat and carbohydrate metabolism, calcium absorption, and blood sugar regulation. Manganese is also necessary for normal brain and nerve function.

The recommended dietary allowance (RDA) for manganese is 2.3 mg per day for adult men and 1.8 mg per day for adult women. Good food sources of manganese include nuts, seeds, legumes, whole grains, green leafy vegetables, and tea.

In some cases, exposure to high levels of manganese can cause neurological symptoms similar to Parkinson's disease, a condition known as manganism. However, this is rare and usually occurs in people who are occupationally exposed to manganese dust or fumes, such as welders.

Calcium metabolism disorders refer to a group of medical conditions that affect the body's ability to properly regulate the levels of calcium in the blood and tissues. Calcium is an essential mineral that plays a critical role in many bodily functions, including bone health, muscle contraction, nerve function, and blood clotting.

There are several types of calcium metabolism disorders, including:

1. Hypocalcemia: This is a condition characterized by low levels of calcium in the blood. It can be caused by various factors such as vitamin D deficiency, hypoparathyroidism, and certain medications. Symptoms may include muscle cramps, spasms, and tingling sensations in the fingers and toes.
2. Hypercalcemia: This is a condition characterized by high levels of calcium in the blood. It can be caused by various factors such as hyperparathyroidism, cancer, and certain medications. Symptoms may include fatigue, weakness, confusion, and kidney stones.
3. Osteoporosis: This is a condition characterized by weak and brittle bones due to low calcium levels in the bones. It can be caused by various factors such as aging, menopause, vitamin D deficiency, and certain medications. Symptoms may include bone fractures and loss of height.
4. Paget's disease: This is a condition characterized by abnormal bone growth and deformities due to disordered calcium metabolism. It can be caused by various factors such as genetics, age, and certain medications. Symptoms may include bone pain, fractures, and deformities.

Treatment for calcium metabolism disorders depends on the underlying cause of the condition. It may involve supplements, medication, dietary changes, or surgery. Proper diagnosis and management are essential to prevent complications such as kidney stones, bone fractures, and neurological damage.

Calcium-binding proteins (CaBPs) are a diverse group of proteins that have the ability to bind calcium ions (Ca^2+^) with high affinity and specificity. They play crucial roles in various cellular processes, including signal transduction, muscle contraction, neurotransmitter release, and protection against oxidative stress.

The binding of calcium ions to these proteins induces conformational changes that can either activate or inhibit their functions. Some well-known CaBPs include calmodulin, troponin C, S100 proteins, and parvalbumins. These proteins are essential for maintaining calcium homeostasis within cells and for mediating the effects of calcium as a second messenger in various cellular signaling pathways.

Calcitriol is the active form of vitamin D, also known as 1,25-dihydroxyvitamin D. It is a steroid hormone that plays a crucial role in regulating calcium and phosphate levels in the body to maintain healthy bones. Calcitriol is produced in the kidneys from its precursor, calcidiol (25-hydroxyvitamin D), which is derived from dietary sources or synthesized in the skin upon exposure to sunlight.

Calcitriol promotes calcium absorption in the intestines, helps regulate calcium and phosphate levels in the kidneys, and stimulates bone cells (osteoblasts) to form new bone tissue while inhibiting the activity of osteoclasts, which resorb bone. This hormone is essential for normal bone mineralization and growth, as well as for preventing hypocalcemia (low calcium levels).

In addition to its role in bone health, calcitriol has various other physiological functions, including modulating immune responses, cell proliferation, differentiation, and apoptosis. Calcitriol deficiency or resistance can lead to conditions such as rickets in children and osteomalacia or osteoporosis in adults.

Calcium citrate is a dietary supplement and medication that contains calcium in the form of calcium citrate malate. It is used to prevent and treat calcium deficiency, and as a dietary supplement for people who do not get enough calcium from their diets. Calcium citrate is also used to treat conditions caused by low levels of calcium in the blood, such as osteoporosis and certain types of muscle cramps. It works by increasing the amount of calcium in the body, which is necessary for many important functions, including bone formation and maintenance, muscle contraction, and nerve function. Calcium citrate is available in tablet and powder form, and it can be taken with or without food.

The Ryanodine Receptor (RyR) is a calcium release channel located on the sarcoplasmic reticulum (SR), a type of endoplasmic reticulum found in muscle cells. It plays a crucial role in excitation-contraction coupling, which is the process by which electrical signals are converted into mechanical responses in muscle fibers.

In more detail, when an action potential reaches the muscle fiber's surface membrane, it triggers the opening of voltage-gated L-type calcium channels (Dihydropyridine Receptors or DHPRs) in the sarcolemma (the cell membrane of muscle fibers). This influx of calcium ions into the cytoplasm causes a conformational change in the RyR, leading to its own opening and the release of stored calcium from the SR into the cytoplasm. The increased cytoplasmic calcium concentration then initiates muscle contraction through interaction with contractile proteins like actin and myosin.

There are three isoforms of RyR: RyR1, RyR2, and RyR3. RyR1 is primarily found in skeletal muscle, while RyR2 is predominantly expressed in cardiac muscle. Both RyR1 and RyR2 are large homotetrameric proteins with a molecular weight of approximately 2.2 million Daltons. They contain multiple domains including an ion channel pore, regulatory domains, and a foot structure that interacts with DHPRs. RyR3 is more widely distributed, being found in various tissues such as the brain, smooth muscle, and some types of neurons.

Dysfunction of these channels has been implicated in several diseases including malignant hyperthermia, central core disease, catecholaminergic polymorphic ventricular tachycardia (CPVT), and certain forms of heart failure.

Ketosis is a metabolic state characterized by elevated levels of ketone bodies in the blood or urine. Ketone bodies are molecules produced from fatty acids during the breakdown of fats for energy, particularly when carbohydrate intake is low. This process occurs naturally in our body, and it's a part of normal metabolism. However, ketosis becomes significant under certain conditions such as:

1. Diabetic ketoacidosis (DKA): A serious complication in people with diabetes, typically type 1 diabetes, which happens when there are extremely high levels of ketones and blood sugar due to insulin deficiency or a severe infection. DKA is a medical emergency that requires immediate treatment.
2. Starvation or fasting: When the body doesn't receive enough carbohydrates from food, it starts breaking down fats for energy, leading to ketosis. This can occur during prolonged fasting or starvation.
3. Low-carbohydrate diets (LCDs) or ketogenic diets: Diets that restrict carbohydrate intake and emphasize high fat and protein consumption can induce a state of nutritional ketosis, where ketone bodies are used as the primary energy source. This type of ketosis is not harmful and can be beneficial for weight loss and managing certain medical conditions like epilepsy.

It's important to note that there is a difference between diabetic ketoacidosis (DKA), which is a dangerous condition, and nutritional ketosis, which is a normal metabolic process and can be achieved through dietary means without negative health consequences for most individuals.

S100 calcium binding protein G, also known as calgranulin A or S100A8, is a member of the S100 family of proteins. These proteins are characterized by their ability to bind calcium ions and play a role in intracellular signaling and regulation of various cellular processes.

S100 calcium binding protein G forms a heterodimer with S100 calcium binding protein B (S100A9) and is involved in the inflammatory response, immune function, and tumor growth and progression. The S100A8/A9 heterocomplex has been shown to play a role in neutrophil activation and recruitment, as well as the regulation of cytokine production and cell proliferation.

Elevated levels of S100 calcium binding protein G have been found in various inflammatory conditions, such as rheumatoid arthritis, Crohn's disease, and psoriasis, as well as in several types of cancer, including breast, lung, and colon cancer. Therefore, it has been suggested that S100 calcium binding protein G may be a useful biomarker for the diagnosis and prognosis of these conditions.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Intracellular fluid (ICF) refers to the fluid that is contained within the cells of the body. It makes up about two-thirds of the total body water and is found in the cytosol, which is the liquid inside the cell's membrane. The intracellular fluid contains various ions, nutrients, waste products, and other molecules that are necessary for the proper functioning of the cell.

The main ions present in the ICF include potassium (K+), magnesium (Mg2+), and phosphate (HPO42-). The concentration of these ions inside the cell is different from their concentration outside the cell, which creates an electrochemical gradient that plays a crucial role in various physiological processes such as nerve impulse transmission, muscle contraction, and cell volume regulation.

Maintaining the balance of intracellular fluid is essential for normal cell function, and any disruption in this balance can lead to various health issues. Factors that can affect the ICF balance include changes in hydration status, electrolyte imbalances, and certain medical conditions such as kidney disease or heart failure.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Ribose is a simple carbohydrate, specifically a monosaccharide, which means it is a single sugar unit. It is a type of sugar known as a pentose, containing five carbon atoms. Ribose is a vital component of ribonucleic acid (RNA), one of the essential molecules in all living cells, involved in the process of transcribing and translating genetic information from DNA to proteins. The term "ribose" can also refer to any sugar alcohol derived from it, such as D-ribose or Ribitol.

Phosphoglucomutase (PGM) is an enzyme involved in carbohydrate metabolism, specifically in the glycolysis and gluconeogenesis pathways. It catalyzes the reversible conversion of glucose-6-phosphate (G6P) to glucose-1-phosphate (G1P), and vice versa.

In humans, there are three isoforms of phosphoglucomutase: PGM1, PGM2, and PGM3, which are encoded by different genes. These isoforms have distinct tissue distributions and functions. For example, PGM1 is widely expressed in various tissues, while PGM2 is primarily found in the brain and testis.

Phosphoglucomutase plays a crucial role in maintaining glucose homeostasis by interconverting G6P and G1P, which are precursors for glycogen synthesis and degradation, respectively. Deficiencies in phosphoglucomutase can lead to metabolic disorders such as muscle phosphorylase deficiency (McArdle disease) or type IV glycogen storage disease (GSD IV).

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Fluorescent dyes are substances that emit light upon excitation by absorbing light of a shorter wavelength. In a medical context, these dyes are often used in various diagnostic tests and procedures to highlight or mark certain structures or substances within the body. For example, fluorescent dyes may be used in imaging techniques such as fluorescence microscopy or fluorescence angiography to help visualize cells, tissues, or blood vessels. These dyes can also be used in flow cytometry to identify and sort specific types of cells. The choice of fluorescent dye depends on the specific application and the desired properties, such as excitation and emission spectra, quantum yield, and photostability.

Phosphoric diester hydrolases are a class of enzymes that catalyze the hydrolysis of phosphoric diester bonds. These enzymes are also known as phosphatases or nucleotidases. They play important roles in various biological processes, such as signal transduction, metabolism, and regulation of cellular activities.

Phosphoric diester hydrolases can be further classified into several subclasses based on their substrate specificity and catalytic mechanism. For example, alkaline phosphatases (ALPs) are a group of phosphoric diester hydrolases that preferentially hydrolyze phosphomonoester bonds in a variety of organic molecules, releasing phosphate ions and alcohols. On the other hand, nucleotidases are a subclass of phosphoric diester hydrolases that specifically hydrolyze the phosphodiester bonds in nucleotides, releasing nucleosides and phosphate ions.

Overall, phosphoric diester hydrolases are essential for maintaining the balance of various cellular processes by regulating the levels of phosphorylated molecules and nucleotides.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Sodium-phosphate cotransporter proteins, type IIb (NaPi-IIb), are membrane transport proteins found in the kidney's brush border membrane of proximal tubule cells. They play a crucial role in reabsorbing inorganic phosphate from the primary urine back into the bloodstream. These cotransporters facilitate the active transport of phosphate ions (PO4^3-) coupled with sodium ions (Na+) through the cell membrane, using the energy derived from the electrochemical gradient of sodium ions.

Type IIb sodium-phosphate cotransporters are specifically expressed in the kidney and contribute to maintaining phosphate homeostasis in the body. Disorders in NaPi-IIb function can lead to abnormal phosphate levels, which may be associated with various medical conditions such as hypophosphatemia or hyperphosphatemia.

Strontium is not a medical term, but it is a chemical element with the symbol Sr and atomic number 38. It is a soft silver-white or yellowish metallic element that is highly reactive chemically. In the medical field, strontium ranelate is a medication used to treat osteoporosis in postmenopausal women. It works by increasing the formation of new bone and decreasing bone resorption (breakdown).

It is important to note that strontium ranelate has been associated with an increased risk of cardiovascular events, such as heart attack and stroke, so it is not recommended for people with a history of these conditions. Additionally, the use of strontium supplements in high doses can be toxic and should be avoided.

Transferases are a class of enzymes that facilitate the transfer of specific functional groups (like methyl, acetyl, or phosphate groups) from one molecule (the donor) to another (the acceptor). This transfer of a chemical group can alter the physical or chemical properties of the acceptor molecule and is a crucial process in various metabolic pathways. Transferases play essential roles in numerous biological processes, such as biosynthesis, detoxification, and catabolism.

The classification of transferases is based on the type of functional group they transfer:

1. Methyltransferases - transfer a methyl group (-CH3)
2. Acetyltransferases - transfer an acetyl group (-COCH3)
3. Aminotransferases or Transaminases - transfer an amino group (-NH2 or -NHR, where R is a hydrogen atom or a carbon-containing group)
4. Glycosyltransferases - transfer a sugar moiety (a glycosyl group)
5. Phosphotransferases - transfer a phosphate group (-PO3H2)
6. Sulfotransferases - transfer a sulfo group (-SO3H)
7. Acyltransferases - transfer an acyl group (a fatty acid or similar molecule)

These enzymes are identified and named according to the systematic nomenclature of enzymes developed by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB). The naming convention includes the class of enzyme, the specific group being transferred, and the molecules involved in the transfer reaction. For example, the enzyme that transfers a phosphate group from ATP to glucose is named "glucokinase."

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Potassium compounds refer to substances that contain the element potassium (chemical symbol: K) combined with one or more other elements. Potassium is an alkali metal that has the atomic number 19 and is highly reactive, so it is never found in its free form in nature. Instead, it is always found combined with other elements in the form of potassium compounds.

Potassium compounds can be ionic or covalent, depending on the properties of the other element(s) with which it is combined. In general, potassium forms ionic compounds with nonmetals and covalent compounds with other metals. Ionic potassium compounds are formed when potassium donates one electron to a nonmetal, forming a positively charged potassium ion (K+) and a negatively charged nonmetal ion.

Potassium compounds have many important uses in medicine, industry, and agriculture. For example, potassium chloride is used as a salt substitute and to treat or prevent low potassium levels in the blood. Potassium citrate is used to treat kidney stones and to alkalinize urine. Potassium iodide is used to treat thyroid disorders and to protect the thyroid gland from radioactive iodine during medical imaging procedures.

It's important to note that some potassium compounds can be toxic or even fatal if ingested in large quantities, so they should only be used under the supervision of a healthcare professional.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Proton-phosphate symporters are a type of transport protein that facilitate the movement of phosphate ions (PO4−3) into cells in exchange for protons (H+). This means that they co-transport both protons and phosphate ions in the same direction, usually into the cell. The energy needed for this transport is derived from the concentration gradient of the protons, which moves down its electrochemical gradient and drives the uptake of phosphate ions against their own concentration gradient. These transporters play important roles in various physiological processes, including nutrient uptake, pH regulation, and signal transduction.

Trehalose is a type of disaccharide, which is a sugar made up of two monosaccharides. It consists of two glucose molecules joined together in a way that makes it more stable and resistant to breakdown by enzymes and heat. This property allows trehalose to be used as a protectant for biological materials during freeze-drying and storage, as well as a food additive as a sweetener and preservative.

Trehalose is found naturally in some plants, fungi, insects, and microorganisms, where it serves as a source of energy and protection against environmental stresses such as drought, heat, and cold. In recent years, there has been interest in the potential therapeutic uses of trehalose for various medical conditions, including neurodegenerative diseases, diabetes, and cancer.

Medically speaking, trehalose may be used in some pharmaceutical formulations as an excipient or stabilizer, and it is also being investigated as a potential therapeutic agent for various diseases. However, its use as a medical treatment is still not widely established, and further research is needed to determine its safety and efficacy.

Ion exchange chromatography is a type of chromatography technique used to separate and analyze charged molecules (ions) based on their ability to exchange bound ions in a solid resin or gel with ions of similar charge in the mobile phase. The stationary phase, often called an ion exchanger, contains fixed ated functional groups that can attract counter-ions of opposite charge from the sample mixture.

In this technique, the sample is loaded onto an ion exchange column containing the charged resin or gel. As the sample moves through the column, ions in the sample compete for binding sites on the stationary phase with ions already present in the column. The ions that bind most strongly to the stationary phase will elute (come off) slower than those that bind more weakly.

Ion exchange chromatography can be performed using either cation exchangers, which exchange positive ions (cations), or anion exchangers, which exchange negative ions (anions). The pH and ionic strength of the mobile phase can be adjusted to control the binding and elution of specific ions.

Ion exchange chromatography is widely used in various applications such as water treatment, protein purification, and chemical analysis.

Phosphatidic acids (PAs) are a type of phospholipid that are essential components of cell membranes. They are composed of a glycerol backbone linked to two fatty acid chains and a phosphate group. The phosphate group is esterified to another molecule, usually either serine, inositol, or choline, forming different types of phosphatidic acids.

PAs are particularly important as they serve as key regulators of many cellular processes, including signal transduction, membrane trafficking, and autophagy. They can act as signaling molecules by binding to and activating specific proteins, such as the enzyme phospholipase D, which generates second messengers involved in various signaling pathways.

PAs are also important intermediates in the synthesis of other phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. They are produced by the enzyme diacylglycerol kinase (DGK), which adds a phosphate group to diacylglycerol (DAG) to form PA.

Abnormal levels of PAs have been implicated in various diseases, including cancer, diabetes, and neurological disorders. Therefore, understanding the regulation and function of PAs is an active area of research with potential therapeutic implications.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

Acetates, in a medical context, most commonly refer to compounds that contain the acetate group, which is an functional group consisting of a carbon atom bonded to two hydrogen atoms and an oxygen atom (-COO-). An example of an acetate is sodium acetate (CH3COONa), which is a salt formed from acetic acid (CH3COOH) and is often used as a buffering agent in medical solutions.

Acetates can also refer to a group of medications that contain acetate as an active ingredient, such as magnesium acetate, which is used as a laxative, or calcium acetate, which is used to treat high levels of phosphate in the blood.

In addition, acetates can also refer to a process called acetylation, which is the addition of an acetyl group (-COCH3) to a molecule. This process can be important in the metabolism and regulation of various substances within the body.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

Ionophores are compounds that have the ability to form complexes with ions and facilitate their transportation across biological membranes. They can be either organic or inorganic molecules, and they play important roles in various physiological processes, including ion homeostasis, signal transduction, and antibiotic activity. In medicine and research, ionophores are used as tools to study ion transport, modulate cellular functions, and as therapeutic agents, especially in the treatment of bacterial and fungal infections.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Calcium-sensing receptors (CaSR) are a type of G protein-coupled receptor that play a crucial role in the regulation of extracellular calcium homeostasis. They are widely expressed in various tissues, including the parathyroid gland, kidney, and bone.

The primary function of CaSR is to detect changes in extracellular calcium concentrations and transmit signals to regulate the release of parathyroid hormone (PTH) from the parathyroid gland. When the concentration of extracellular calcium increases, CaSR is activated, which leads to a decrease in PTH secretion, thereby preventing further elevation of calcium levels. Conversely, when calcium levels decrease, CaSR is inhibited, leading to an increase in PTH release and restoration of normal calcium levels.

In addition to regulating calcium homeostasis, CaSR also plays a role in other physiological processes, including cell proliferation, differentiation, and apoptosis. Dysregulation of CaSR has been implicated in various diseases, such as hyperparathyroidism, hypoparathyroidism, and cancer. Therefore, understanding the function and regulation of CaSR is essential for developing new therapeutic strategies to treat these conditions.

Guanosine diphosphate mannose (GDP-mannose) is a nucleotide sugar that plays a crucial role in the biosynthesis of various glycans, including those found on proteins and lipids. It is formed from mannose-1-phosphate through the action of the enzyme mannose-1-phosphate guanylyltransferase, using guanosine triphosphate (GTP) as a source of energy.

GDP-mannose serves as a donor substrate for several glycosyltransferases involved in the biosynthesis of complex carbohydrates, such as those found in glycoproteins and glycolipids. It is also used in the synthesis of certain polysaccharides, like bacterial cell wall components.

Defects in the metabolism or utilization of GDP-mannose can lead to various genetic disorders, such as congenital disorders of glycosylation (CDG), which can affect multiple organ systems and present with a wide range of clinical manifestations.

Glucose-6-phosphatase is an enzyme that plays a crucial role in the regulation of glucose metabolism. It is primarily located in the endoplasmic reticulum of cells in liver, kidney, and intestinal mucosa. The main function of this enzyme is to remove the phosphate group from glucose-6-phosphate (G6P), converting it into free glucose, which can then be released into the bloodstream and used as a source of energy by cells throughout the body.

The reaction catalyzed by glucose-6-phosphatase is as follows:

Glucose-6-phosphate + H2O → Glucose + Pi (inorganic phosphate)

This enzyme is essential for maintaining normal blood glucose levels, particularly during periods of fasting or starvation. In these situations, the body needs to break down stored glycogen in the liver and convert it into glucose to supply energy to the brain and other vital organs. Glucose-6-phosphatase is a key enzyme in this process, allowing for the release of free glucose into the bloodstream.

Deficiencies or mutations in the gene encoding glucose-6-phosphatase can lead to several metabolic disorders, such as glycogen storage disease type I (von Gierke's disease) and other related conditions. These disorders are characterized by an accumulation of glycogen and/or fat in various organs, leading to impaired glucose metabolism, growth retardation, and increased risk of infection and liver dysfunction.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Calmodulin is a small, ubiquitous calcium-binding protein that plays a critical role in various intracellular signaling pathways. It functions as a calcium sensor, binding to and regulating the activity of numerous target proteins upon calcium ion (Ca^2+^) binding. Calmodulin is expressed in all eukaryotic cells and participates in many cellular processes, including muscle contraction, neurotransmitter release, gene expression, metabolism, and cell cycle progression.

The protein contains four EF-hand motifs that can bind Ca^2+^ ions. Upon calcium binding, conformational changes occur in the calmodulin structure, exposing hydrophobic surfaces that facilitate its interaction with target proteins. Calmodulin's targets include enzymes (such as protein kinases and phosphatases), ion channels, transporters, and cytoskeletal components. By modulating the activity of these proteins, calmodulin helps regulate essential cellular functions in response to changes in intracellular Ca^2+^ concentrations.

Calmodulin's molecular weight is approximately 17 kDa, and it consists of a single polypeptide chain with 148-150 amino acid residues. The protein can be found in both the cytoplasm and the nucleus of cells. In addition to its role as a calcium sensor, calmodulin has been implicated in various pathological conditions, including cancer, neurodegenerative diseases, and cardiovascular disorders.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Cell membrane permeability refers to the ability of various substances, such as molecules and ions, to pass through the cell membrane. The cell membrane, also known as the plasma membrane, is a thin, flexible barrier that surrounds all cells, controlling what enters and leaves the cell. Its primary function is to protect the cell's internal environment and maintain homeostasis.

The permeability of the cell membrane depends on its structure, which consists of a phospholipid bilayer interspersed with proteins. The hydrophilic (water-loving) heads of the phospholipids face outward, while the hydrophobic (water-fearing) tails face inward, creating a barrier that is generally impermeable to large, polar, or charged molecules.

However, specific proteins within the membrane, called channels and transporters, allow certain substances to cross the membrane. Channels are protein structures that span the membrane and provide a pore for ions or small uncharged molecules to pass through. Transporters, on the other hand, are proteins that bind to specific molecules and facilitate their movement across the membrane, often using energy in the form of ATP.

The permeability of the cell membrane can be influenced by various factors, such as temperature, pH, and the presence of certain chemicals or drugs. Changes in permeability can have significant consequences for the cell's function and survival, as they can disrupt ion balances, nutrient uptake, waste removal, and signal transduction.

Chemical precipitation is a process in which a chemical compound becomes a solid, insoluble form, known as a precipitate, from a liquid solution. This occurs when the concentration of the compound in the solution exceeds its solubility limit and forms a separate phase. The reaction that causes the formation of the precipitate can be a result of various factors such as changes in temperature, pH, or the addition of another chemical reagent.

In the medical field, chemical precipitation is used in diagnostic tests to detect and measure the presence of certain substances in body fluids, such as blood or urine. For example, a common test for kidney function involves adding a chemical reagent to a urine sample, which causes the excess protein in the urine to precipitate out of solution. The amount of precipitate formed can then be measured and used to diagnose and monitor kidney disease.

Chemical precipitation is also used in the treatment of certain medical conditions, such as heavy metal poisoning. In this case, a chelating agent is administered to bind with the toxic metal ions in the body, forming an insoluble compound that can be excreted through the urine or feces. This process helps to reduce the amount of toxic metals in the body and alleviate symptoms associated with poisoning.

Oxalates, also known as oxalic acid or oxalate salts, are organic compounds that contain the functional group called oxalate. Oxalates are naturally occurring substances found in various foods such as spinach, rhubarb, nuts, and seeds. They can also be produced by the body as a result of metabolism.

In the body, oxalates can bind with calcium and other minerals to form crystals, which can accumulate in various tissues and organs, including the kidneys. This can lead to the formation of kidney stones, which are a common health problem associated with high oxalate intake or increased oxalate production in the body.

It is important for individuals with a history of kidney stones or other kidney problems to monitor their oxalate intake and limit consumption of high-oxalate foods. Additionally, certain medical conditions such as hyperoxaluria, a rare genetic disorder that causes increased oxalate production in the body, may require medical treatment to reduce oxalate levels and prevent complications.

A pentose is a monosaccharide (simple sugar) that contains five carbon atoms. The name "pentose" comes from the Greek word "pente," meaning five, and "ose," meaning sugar. Pentoses play important roles in various biological processes, such as serving as building blocks for nucleic acids (DNA and RNA) and other biomolecules.

Some common pentoses include:

1. D-Ribose - A naturally occurring pentose found in ribonucleic acid (RNA), certain coenzymes, and energy-carrying molecules like adenosine triphosphate (ATP).
2. D-Deoxyribose - A pentose that lacks a hydroxyl (-OH) group on the 2' carbon atom, making it a key component of deoxyribonucleic acid (DNA).
3. Xylose - A naturally occurring pentose found in various plants and woody materials; it is used as a sweetener and food additive.
4. Arabinose - Another plant-derived pentose, arabinose can be found in various fruits, vegetables, and grains. It has potential applications in the production of biofuels and other bioproducts.
5. Lyxose - A less common pentose that can be found in some polysaccharides and glycoproteins.

Pentoses are typically less sweet than hexoses (six-carbon sugars) like glucose or fructose, but they still contribute to the overall sweetness of many foods and beverages.

An ion is an atom or molecule that has gained or lost one or more electrons, resulting in a net electric charge. Cations are positively charged ions, which have lost electrons, while anions are negatively charged ions, which have gained electrons. Ions can play a significant role in various physiological processes within the human body, including enzyme function, nerve impulse transmission, and maintenance of acid-base balance. They also contribute to the formation of salts and buffer systems that help regulate fluid composition and pH levels in different bodily fluids.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Patch-clamp techniques are a group of electrophysiological methods used to study ion channels and other electrical properties of cells. These techniques were developed by Erwin Neher and Bert Sakmann, who were awarded the Nobel Prize in Physiology or Medicine in 1991 for their work. The basic principle of patch-clamp techniques involves creating a high resistance seal between a glass micropipette and the cell membrane, allowing for the measurement of current flowing through individual ion channels or groups of channels.

There are several different configurations of patch-clamp techniques, including:

1. Cell-attached configuration: In this configuration, the micropipette is attached to the outer surface of the cell membrane, and the current flowing across a single ion channel can be measured. This configuration allows for the study of the properties of individual channels in their native environment.
2. Whole-cell configuration: Here, the micropipette breaks through the cell membrane, creating a low resistance electrical connection between the pipette and the inside of the cell. This configuration allows for the measurement of the total current flowing across all ion channels in the cell membrane.
3. Inside-out configuration: In this configuration, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the inner surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in isolation from other cellular components.
4. Outside-out configuration: Here, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the outer surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in their native environment, but with the ability to control the composition of the extracellular solution.

Patch-clamp techniques have been instrumental in advancing our understanding of ion channel function and have contributed to numerous breakthroughs in neuroscience, pharmacology, and physiology.

Dihydropyridines are a class of compounds that contain a core structure of two fused rings, each containing six carbon atoms, with a hydrogen atom attached to each of the two central carbon atoms. They are commonly used in pharmaceuticals, particularly as calcium channel blockers in the treatment of cardiovascular diseases.

Calcium channel blockers, including dihydropyridines, work by blocking the influx of calcium ions into cardiac and vascular smooth muscle cells. This leads to relaxation of the muscles, resulting in decreased peripheral resistance and reduced blood pressure. Dihydropyridines are known for their potent vasodilatory effects and include medications such as nifedipine, amlodipine, and felodipine.

It is important to note that while dihydropyridines can be effective in treating hypertension and angina, they may also have side effects such as headache, dizziness, and peripheral edema. Additionally, they may interact with other medications, so it is essential to consult a healthcare provider before starting or changing any medication regimen.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Protein Kinase C (PKC) is a family of serine-threonine kinases that play crucial roles in various cellular signaling pathways. These enzymes are activated by second messengers such as diacylglycerol (DAG) and calcium ions (Ca2+), which result from the activation of cell surface receptors like G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs).

Once activated, PKC proteins phosphorylate downstream target proteins, thereby modulating their activities. This regulation is involved in numerous cellular processes, including cell growth, differentiation, apoptosis, and membrane trafficking. There are at least 10 isoforms of PKC, classified into three subfamilies based on their second messenger requirements and structural features: conventional (cPKC; α, βI, βII, and γ), novel (nPKC; δ, ε, η, and θ), and atypical (aPKC; ζ and ι/λ). Dysregulation of PKC signaling has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

Dolichol monophosphate mannose (Dol-P-Man) is a type of glycosyl donor that plays a crucial role in the process of protein glycosylation within the endoplasmic reticulum (ER) of eukaryotic cells. Protein glycosylation is the enzymatic attachment of oligosaccharide chains to proteins, which can significantly affect their structure, stability, and function.

Dolichol monophosphate mannose consists of a dolichol molecule, a long-chain polyisoprenoid alcohol, linked to a mannose sugar via a phosphate group. The dolichol component serves as a lipid anchor, allowing Dol-P-Man to participate in the synthesis of oligosaccharides on the cytoplasmic side of the ER membrane.

In the first step of the process, mannose is transferred from a donor molecule, guanosine diphosphate mannose (GDP-Man), to dolichol phosphate (Dol-P) by the enzyme alpha-1,2-mannosyltransferase. This reaction forms Dol-P-Man, which then serves as a substrate for further glycosylation reactions in the ER lumen.

In summary, Dolichol monophosphate mannose is an essential intermediate in the biosynthesis of N-linked oligosaccharides, contributing to the proper folding and functioning of proteins within eukaryotic cells.

Lactates, also known as lactic acid, are compounds that are produced by muscles during intense exercise or other conditions of low oxygen supply. They are formed from the breakdown of glucose in the absence of adequate oxygen to complete the full process of cellular respiration. This results in the production of lactate and a hydrogen ion, which can lead to a decrease in pH and muscle fatigue.

In a medical context, lactates may be measured in the blood as an indicator of tissue oxygenation and metabolic status. Elevated levels of lactate in the blood, known as lactic acidosis, can indicate poor tissue perfusion or hypoxia, and may be seen in conditions such as sepsis, cardiac arrest, and severe shock. It is important to note that lactates are not the primary cause of acidemia (low pH) in lactic acidosis, but rather a marker of the underlying process.

Mersalyl is not a medical condition or diagnosis, but rather a pharmaceutical compound. It is a type of organic mercurial salt that was historically used in medicine as a diuretic and an antimicrobial agent. However, its use has been largely discontinued due to the toxic effects of mercury on the human body. Therefore, there isn't a medical definition for 'Mersalyl'.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Microsomes are subcellular membranous vesicles that are obtained as a byproduct during the preparation of cellular homogenates. They are not naturally occurring structures within the cell, but rather formed due to fragmentation of the endoplasmic reticulum (ER) during laboratory procedures. Microsomes are widely used in various research and scientific studies, particularly in the fields of biochemistry and pharmacology.

Microsomes are rich in enzymes, including the cytochrome P450 system, which is involved in the metabolism of drugs, toxins, and other xenobiotics. These enzymes play a crucial role in detoxifying foreign substances and eliminating them from the body. As such, microsomes serve as an essential tool for studying drug metabolism, toxicity, and interactions, allowing researchers to better understand and predict the effects of various compounds on living organisms.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Ionomycin is not a medical term per se, but it is a chemical compound used in medical and biological research. Ionomycin is a type of ionophore, which is a molecule that can transport ions across cell membranes. Specifically, ionomycin is known to transport calcium ions (Ca²+).

In medical research, ionomycin is often used to study the role of calcium in various cellular processes, such as signal transduction, gene expression, and muscle contraction. It can be used to selectively increase intracellular calcium concentrations in experiments, allowing researchers to observe the effects on cell function. Ionomycin is also used in the study of calcium-dependent enzymes and channels.

It's important to note that ionomycin is not used as a therapeutic agent in clinical medicine due to its potential toxicity and narrow range of applications.

Pyruvate is a negatively charged ion or group of atoms, called anion, with the chemical formula C3H3O3-. It is formed from the decomposition of glucose and other sugars in the process of cellular respiration. Pyruvate plays a crucial role in the metabolic pathways that generate energy for cells.

In the cytoplasm, pyruvate is produced through glycolysis, where one molecule of glucose is broken down into two molecules of pyruvate, releasing energy and producing ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

In the mitochondria, pyruvate can be further metabolized through the citric acid cycle (also known as the Krebs cycle) to produce more ATP. The process involves the conversion of pyruvate into acetyl-CoA, which then enters the citric acid cycle and undergoes a series of reactions that generate energy in the form of ATP, NADH, and FADH2 (reduced flavin adenine dinucleotide).

Overall, pyruvate is an important intermediate in cellular respiration and plays a central role in the production of energy for cells.

Diltiazem is a calcium channel blocker medication that is used to treat hypertension (high blood pressure), angina (chest pain), and certain heart rhythm disorders. It works by relaxing the muscles of the blood vessels, which lowers blood pressure and improves blood flow to the heart. Diltiazem may also be used to reduce the risk of heart attack in patients with coronary artery disease.

The medication is available in various forms, including immediate-release tablets, extended-release tablets, and extended-release capsules. It is usually taken orally, one to three times a day, depending on the formulation and the individual patient's needs. Diltiazem may cause side effects such as dizziness, headache, nausea, and constipation.

It is important to follow the dosage instructions provided by your healthcare provider and to inform them of any other medications you are taking, as well as any medical conditions you have, before starting diltiazem.

Zinc phosphate cement is a type of dental cement that is created through the chemical reaction between zinc oxide and a phosphoric acid solution. It is commonly used as a base or liner under dental restorations such as crowns, bridges, and fillings. The setting process of zinc phosphate cement involves the formation of a hard, stable material that can effectively bond to tooth structure and provide a solid foundation for dental restorations.

Zinc phosphate cement has several desirable properties, including good compressive strength, resistance to dissolution in oral fluids, and low solubility in water. It is also relatively easy to manipulate and handle during dental procedures. However, it does have some limitations, such as a potential for shrinkage during setting, which can lead to marginal gaps and microleakage. Additionally, zinc phosphate cement may not be as durable or long-lasting as some newer types of dental cements.

Overall, zinc phosphate cement remains a widely used and reliable choice for many dental applications, particularly in cases where a strong, stable foundation is required for dental restorations.

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a type of calcium ion channel found in the endoplasmic reticulum (ER) membrane of many cell types. They play a crucial role in intracellular calcium signaling and are activated by the second messenger molecule, inositol 1,4,5-trisphosphate (IP3).

IP3 is produced by enzymatic cleavage of the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in response to extracellular signals such as hormones and neurotransmitters. When IP3 binds to the IP3R, it triggers a conformational change that opens the channel, allowing calcium ions to flow from the ER into the cytosol. This increase in cytosolic calcium can then activate various cellular processes such as gene expression, protein synthesis, and cell survival or death pathways.

There are three isoforms of IP3Rs (IP3R1, IP3R2, and IP3R3) that differ in their tissue distribution, regulation, and sensitivity to IP3. Dysregulation of IP3R-mediated calcium signaling has been implicated in various pathological conditions, including neurological disorders, cardiovascular diseases, and cancer.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Second messenger systems are a type of intracellular signaling pathway that allows cells to respond to external signals, such as hormones and neurotransmitters. When an extracellular signal binds to a specific receptor on the cell membrane, it activates a G-protein or an enzyme associated with the receptor. This activation leads to the production of a second messenger molecule inside the cell, which then propagates the signal and triggers various intracellular responses.

Examples of second messengers include cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), inositol trisphosphate (IP3), diacylglycerol (DAG), and calcium ions (Ca2+). These second messengers activate or inhibit various downstream effectors, such as protein kinases, ion channels, and gene transcription factors, leading to changes in cellular functions, such as metabolism, gene expression, cell growth, differentiation, and apoptosis.

Second messenger systems play crucial roles in many physiological processes, including sensory perception, neurotransmission, hormonal regulation, immune response, and development. Dysregulation of these systems can contribute to various diseases, such as cancer, diabetes, cardiovascular disease, and neurological disorders.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Phosphofructokinase-2 (PFK-2) is an enzyme that plays a crucial role in regulating the rate of glycolysis, which is the metabolic pathway responsible for the conversion of glucose into energy. PFK-2 catalyzes the phosphorylation of fructose-6-phosphate to form fructose-1,6-bisphosphate and subsequently fructose-2,6-bisphosphate (F-2,6-BP). F-2,6-BP is a potent allosteric activator of another enzyme called phosphofructokinase-1 (PFK-1), which is the rate-limiting enzyme in glycolysis.

PFK-2 exists as a complex with another enzyme, fructose-2,6-bisphosphatase (FBPase-2), and together they form a bifunctional enzyme called PFK-2/FBPase-2. This enzyme can reversibly convert F-6-P to F-2,6-BP and vice versa depending on the cellular energy status. When cells have high energy levels, FBPase-2 is activated, which leads to a decrease in F-2,6-BP levels and an inhibition of glycolysis. Conversely, when cells require more energy, PFK-2 is activated, leading to an increase in F-2,6-BP levels and an activation of glycolysis.

Regulation of PFK-2 activity occurs through various mechanisms, including allosteric regulation by metabolites such as AMP, citrate, and phosphate, as well as covalent modification by protein kinases and phosphatases. Dysregulation of PFK-2 has been implicated in several diseases, including diabetes, cancer, and neurological disorders.

Citric acid is a weak organic acid that is widely found in nature, particularly in citrus fruits such as lemons and oranges. Its chemical formula is C6H8O7, and it exists in a form known as a tribasic acid, which means it can donate three protons in chemical reactions.

In the context of medical definitions, citric acid may be mentioned in relation to various physiological processes, such as its role in the Krebs cycle (also known as the citric acid cycle), which is a key metabolic pathway involved in energy production within cells. Additionally, citric acid may be used in certain medical treatments or therapies, such as in the form of citrate salts to help prevent the formation of kidney stones. It may also be used as a flavoring agent or preservative in various pharmaceutical preparations.

Phosphatidylinositol 4,5-Diphosphate (PIP2) is a phospholipid molecule that plays a crucial role as a secondary messenger in various cell signaling pathways. It is a constituent of the inner leaflet of the plasma membrane and is formed by the phosphorylation of Phosphatidylinositol 4-Phosphate (PIP) at the 5th position of the inositol ring by enzyme Phosphoinositide kinase.

PIP2 is involved in several cellular processes, including regulation of ion channels, cytoskeleton dynamics, and membrane trafficking. It also acts as a substrate for the generation of two important secondary messengers, Inositol 1,4,5-Trisphosphate (IP3) and Diacylglycerol (DAG), which are produced by the action of Phospholipase C enzyme in response to various extracellular signals. These second messengers then mediate a variety of cellular responses such as calcium mobilization, gene expression, and cell proliferation.

The endoplasmic reticulum (ER) is a network of interconnected tubules and sacs that are present in the cytoplasm of eukaryotic cells. It is a continuous membranous organelle that plays a crucial role in the synthesis, folding, modification, and transport of proteins and lipids.

The ER has two main types: rough endoplasmic reticulum (RER) and smooth endoplasmic reticulum (SER). RER is covered with ribosomes, which give it a rough appearance, and is responsible for protein synthesis. On the other hand, SER lacks ribosomes and is involved in lipid synthesis, drug detoxification, calcium homeostasis, and steroid hormone production.

In summary, the endoplasmic reticulum is a vital organelle that functions in various cellular processes, including protein and lipid metabolism, calcium regulation, and detoxification.

Glucosyltransferases (GTs) are a group of enzymes that catalyze the transfer of a glucose molecule from an activated donor to an acceptor molecule, resulting in the formation of a glycosidic bond. These enzymes play crucial roles in various biological processes, including the biosynthesis of complex carbohydrates, cell wall synthesis, and protein glycosylation. In some cases, GTs can also contribute to bacterial pathogenesis by facilitating the attachment of bacteria to host tissues through the formation of glucans, which are polymers of glucose molecules.

GTs can be classified into several families based on their sequence similarities and catalytic mechanisms. The donor substrates for GTs are typically activated sugars such as UDP-glucose, TDP-glucose, or GDP-glucose, which serve as the source of the glucose moiety that is transferred to the acceptor molecule. The acceptor can be a wide range of molecules, including other sugars, proteins, lipids, or small molecules.

In the context of human health and disease, GTs have been implicated in various pathological conditions, such as cancer, inflammation, and microbial infections. For example, some GTs can modify proteins on the surface of cancer cells, leading to increased cell proliferation, migration, and invasion. Additionally, GTs can contribute to bacterial resistance to antibiotics by modifying the structure of bacterial cell walls or by producing biofilms that protect bacteria from host immune responses and antimicrobial agents.

Overall, Glucosyltransferases are essential enzymes involved in various biological processes, and their dysregulation has been associated with several human diseases. Therefore, understanding the structure, function, and regulation of GTs is crucial for developing novel therapeutic strategies to target these enzymes and treat related pathological conditions.

Glyceraldehyde is a triose, a simple sugar consisting of three carbon atoms. It is a clear, colorless, sweet-tasting liquid that is used as a sweetener and preservative in the food industry. In the medical field, glyceraldehyde is used in research and diagnostics, particularly in the study of carbohydrate metabolism and enzyme function.

Glyceraldehyde is also an important intermediate in the glycolytic pathway, which is a series of reactions that convert glucose into pyruvate, producing ATP and NADH as energy-rich compounds. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an enzyme that catalyzes the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate in this pathway.

In addition, glyceraldehyde has been studied for its potential role in the development of diabetic complications and other diseases associated with carbohydrate metabolism disorders.

Glucuronidase is an enzyme that catalyzes the hydrolysis of glucuronic acid from various substrates, including molecules that have been conjugated with glucuronic acid as part of the detoxification process in the body. This enzyme plays a role in the breakdown and elimination of certain drugs, toxins, and endogenous compounds, such as bilirubin. It is found in various tissues and organisms, including humans, bacteria, and insects. In clinical contexts, glucuronidase activity may be measured to assess liver function or to identify the presence of certain bacterial infections.

A cation is a type of ion, which is a charged particle, that has a positive charge. In chemistry and biology, cations are formed when a neutral atom loses one or more electrons during chemical reactions. The removal of electrons results in the atom having more protons than electrons, giving it a net positive charge.

Cations are important in many biological processes, including nerve impulse transmission, muscle contraction, and enzyme function. For example, sodium (Na+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) are all essential cations that play critical roles in various physiological functions.

In medical contexts, cations can also be relevant in the diagnosis and treatment of various conditions. For instance, abnormal levels of certain cations, such as potassium or calcium, can indicate specific diseases or disorders. Additionally, medications used to treat various conditions may work by altering cation concentrations or activity within the body.

Ion transport refers to the active or passive movement of ions, such as sodium (Na+), potassium (K+), chloride (Cl-), and calcium (Ca2+) ions, across cell membranes. This process is essential for various physiological functions, including nerve impulse transmission, muscle contraction, and maintenance of resting membrane potential.

Ion transport can occur through several mechanisms, including:

1. Diffusion: the passive movement of ions down their concentration gradient, from an area of high concentration to an area of low concentration.
2. Facilitated diffusion: the passive movement of ions through specialized channels or transporters in the cell membrane.
3. Active transport: the energy-dependent movement of ions against their concentration gradient, requiring the use of ATP. This process is often mediated by ion pumps, such as the sodium-potassium pump (Na+/K+-ATPase).
4. Co-transport or symport: the coupled transport of two or more different ions or molecules in the same direction, often driven by an electrochemical gradient.
5. Counter-transport or antiport: the coupled transport of two or more different ions or molecules in opposite directions, also often driven by an electrochemical gradient.

Abnormalities in ion transport can lead to various medical conditions, such as cystic fibrosis (which involves defective chloride channel function), hypertension (which may be related to altered sodium transport), and certain forms of heart disease (which can result from abnormal calcium handling).

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

Fluorescence spectrometry is a type of analytical technique used to investigate the fluorescent properties of a sample. It involves the measurement of the intensity of light emitted by a substance when it absorbs light at a specific wavelength and then re-emits it at a longer wavelength. This process, known as fluorescence, occurs because the absorbed energy excites electrons in the molecules of the substance to higher energy states, and when these electrons return to their ground state, they release the excess energy as light.

Fluorescence spectrometry typically measures the emission spectrum of a sample, which is a plot of the intensity of emitted light versus the wavelength of emission. This technique can be used to identify and quantify the presence of specific fluorescent molecules in a sample, as well as to study their photophysical properties.

Fluorescence spectrometry has many applications in fields such as biochemistry, environmental science, and materials science. For example, it can be used to detect and measure the concentration of pollutants in water samples, to analyze the composition of complex biological mixtures, or to study the properties of fluorescent nanomaterials.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

The precipitate will either be "amorphous tricalcium phosphate", ATCP, or calcium deficient hydroxyapatite, CDHA, Ca9(HPO4)(PO4 ... It cannot be precipitated directly from aqueous solution. Typically double decomposition reactions are employed, involving a ... Calcium phosphate is one of the main combustion products of bone (see bone ash). Calcium phosphate is also commonly derived ... Tricalcium phosphate (sometimes abbreviated TCP), more commonly known as Calcium phosphate, is a calcium salt of phosphoric ...
ACP is generally categorized into either "amorphous tricalcium phosphate" (ATCP) or calcium-deficient hydroxyapatite (CDHA). ... In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the ... The concentration of calcium phosphate is higher in milk than in serum, but it rarely forms deposits of insoluble phosphates. ... CDHA is sometimes termed "apatitic calcium triphosphate." The composition of amorphous calcium phosphate is CaxHy(PO4)z·nH2O, ...
2 Tetracalcium phosphate is a component used in the formation of some hydroxyapatite calcium phosphate cements that used for ... Tetracalcium phosphate cannot be prepared in aqueous solution, any precipitates having the correct Ca/P ratio contain hydroxide ... Tetracalcium phosphate is the compound Ca4(PO4)2O, (4CaO·P2O5). It is the most basic of the calcium phosphates, and has a Ca/P ... Tetracalcium phosphate is a component in some calcium phosphate cements that have medical applications. ...
... aqueous)}->{CaCO3(v)}+{CO2}\!{\uparrow }+H2O}}}} The calcium carbonate that forms through this reaction precipitates. Due to ... Phosphates (hydroxyapatite); Magnetite or nickel ferrite (NiFe2O4) from extremely pure, low-iron water. The deposition rate by ... and the poorly soluble calcium carbonate, the following chemical equation may be written: Ca ( HCO 3 ) 2 ( aqueous ) ⟶ CaCO 3 ... calcium carbonate or calcium sulfate) Particulate fouling, i.e., accumulation of particles, typically colloidal particles, on a ...
Calcium amended-hydroxyapatite is the most recent defluoridation technique in which aqueous calcium is amended to the fluoride ... Sulphates, phosphates, and bicarbonates also result in ionic competition in this method. Relatively high cost is a disadvantage ... In this novel defluoridation technique, amending aqueous calcium successfully prevents the dissolution of hydroxyapatite during ... In addition to these features, this ″calcium amended-hydroxyapatite″ defluoridation technique provides calcium-enriched ...
It builds a 3-D bio-matrix with binding sites for calcium ions serving as nucleation point for hydroxyapatite (tooth mineral) ... Around the newly formed matrix de-novo enamel-crystals are formed from calcium phosphate present in saliva. Through the ... In aqueous oral care gels the peptide is present as matrix. It binds directly as matrix to the tooth mineral and forms a stable ... Medicine portal Amorphous calcium phosphate (Recaldent) Remineralisation of teeth Oligopeptide Biomimetic materials Fluoride ...
Medicine portal Calcium lactate Calcium phosphate Tooth development Toothpaste Tooth enamel Featherstone, J. D. B. (2008). " ... It builds a 3-D bio-matrix with binding sites for Calcium-ions serving as nucleation point for hydroxyapatite (tooth mineral) ... In aqueous oral care gels the peptide is present as matrix. It binds directly as matrix to the tooth mineral and forms a stable ... Remineralization occurs on a daily basis after attack by acids from food, through the presence of calcium, phosphate and ...
... calcium amended-hydroxyapatite″ defluoridation technique was suggested to overcome the phosphate leaching from hydroxyapatite. ... Amending aqueous calcium to suppress hydroxyapatite dissolution in defluoridation". Journal of Environmental Management. 245: ... The sites occupied solely by phosphate anions in stoichiometric hydroxyapatite, are occupied by phosphate or hydrogen phosphate ... Hydroxylapatite is a constituent of calcium phosphate kidney stones. Remineralisation of tooth enamel involves the ...
In the wet process, a phosphate-containing mineral such as calcium hydroxyapatite and fluorapatite are treated with sulfuric ... such as ammonium phosphate fertilizers Christensen, J. H.; Reed, R. B. (1955). "Design and Analysis Data-Density of Aqueous ... Removal of all three H+ ions gives the phosphate ion PO3−4. Removal of one or two protons gives dihydrogen phosphate ion H2PO−4 ... Soft drinks containing phosphoric acid, which would include Coca-Cola, are sometimes called phosphate sodas or phosphates. ...
The main component of bone is hydroxyapatite (ca. 70%) (mineralized calcium phosphate). Apart from bone targeting, PASA has ... In a subsequent step the resulting polysuccinimide is treated with aqueous sodium hydroxide, which yields partial opening of ... PASA has ability to inhibit deposition of calcium carbonate, calcium sulfate, barium sulfate, and calcium phosphate and can be ... Its high affinity with calcium has been exploited for targeting various forms of drug-containing carriers to the bone. ...
These structures are made of crystalline calcium phosphate in the form of hydroxyapatite. The hard dense enamel of mammalian ... and di-phosphate ions can be selectively crystallised from aqueous solution by setting the pH value to either 4.7 or 9.8. In ... If it is assumed that the phosphate minerals in phosphate rock are mainly hydroxyapatite and fluoroapatite, phosphate minerals ... H 3PO 4 Phosphoric acid [H 2PO 4]− Dihydrogen phosphate [HPO 4]2− Hydrogen phosphate [PO 4]3− Phosphate or orthophosphate In ...
The most common biogenic phosphate is hydroxyapatite (HA), a calcium phosphate (Ca10(PO4)6(OH)2) and a naturally occurring form ... Biological materials are assembled in aqueous environments under mild conditions by using macromolecules. Organic ... S, silica; C, calcium carbonate; P, calcium phosphate; I, iron (magnetite/goethite); X, calcium oxalate; SO4, sulfates (calcium ... Calcium carbonates and calcium phosphates are usually crystalline, but silica organisms (sponges, diatoms...) are always non- ...
... and is an acid anhydride of phosphate. It is unstable in aqueous solution and hydrolyzes into inorganic phosphate: P 2O4− 7 + ... Biochemistry Bone Calcium pyrophosphate Calcium pyrophosphate dihydrate deposition disease Catalysis DNA High energy phosphate ... and urine at levels sufficient to block calcification and may be a natural inhibitor of hydroxyapatite formation in ... Phosphate. Encyclopedia of Earth. Topic ed. Andy Jorgensen. Ed.-in-Chief C.J.Cleveland. National Council for Science and the ...
... allowing the calcium to join the fluoride and phosphate and diffuse into the tooth substrate, forming polysalts, which ... An aqueous solution of maleic acid polymer or maleic/acrylic copolymer with tartaric acid can also be used to form a glass- ... During initial dissolution, both the glass particles and the hydroxyapatite structure are affected, and thus as the acid is ... chemically welded together at the interface into a calcium phosphate polyalkenoate bond. In addition, the polymer chains are ...
Hydroxyapatite, calcium carbonate, silica, calcium oxalate, whitlockite, and monosodium urate are examples of minerals found in ... In bone, studies have shown that calcium phosphate nucleates within the hole area of the collagen fibrils and then grows in ... The technique occurs at low temperature and in an aqueous environment. Self-assembling films form templates that effect the ... The mineral nucleates, inside the hole area of the collagen fibrils, as thin layers of calcium phosphate, which then grow to ...
Its composition varies depending on how it is made; however, it consists mainly of tricalcium phosphate (or hydroxyapatite) 57- ... 80%, calcium carbonate 6-10% and carbon 7-10%. It is primarily used for filtration and decolorisation. Bone char is primarily ... "an efficient low cost material to remove lead from aqueous effluent"". Journal of Hazardous Materials. 101 (1): 55-64. doi: ... The tricalcium phosphate in bone char can be used to remove fluoride and metal ions from water, making it useful for the ...
"Compressive strength and processing of camphene-based freeze cast calcium phosphate scaffolds with aligned pores". Materials ... By subjecting an aqueous slurry to a directional temperature gradient, ice crystals will nucleate on one side of the slurry and ... "Freeze casting of hydroxyapatite scaffolds for bone tissue engineering". Biomaterials. 27 (32): 5480-5489. arXiv:1710.04392. ... "Dynamics of the Freezing Front During the Solidification of a Colloidal Alumina Aqueous Suspension:In Situ X-Ray Radiography, ...
hydroxyapatite, biphasic calcium phosphate, calcium sulfate), in that it is the only one with anti-infective and angiogenic ... which makes Bioglass highly reactive to aqueous medium and bioactive. High bioactivity is the main advantage of Bioglass, while ... Mineralization in which the calcium phosphate layer gradually transforms into crystalline hydroxyapatite, that mimics the ... calcium and phosphate ion deficient solution showed a developed layer of hydroxyapatite similar to the observed hydroxyapatite ...
... hydroxyapatite, and tricalcium phosphate. Nanoparticles, largely due to their size related physical properties, are highly ... The swelling property of NC gels allows them to collect the surrounding aqueous solution instead of being dissolved by it, ... Some of them, like calcium and silicon, help with preventing bone loss and skeletal development. Others, like nanoclays, ... and hydroxyapatite nanoparticles". Biomacromolecules. 12 (5): 1641-1650. doi:10.1021/bm200027z. PMID 21413708. Retrieved 2015- ...
... and hydroxyapatite Ca5(PO4)3OH. These minerals are converted into water-soluble phosphate salts by treatment with sulfuric ( ... Liquid fertilizers comprise anhydrous ammonia, aqueous solutions of ammonia, aqueous solutions of ammonium nitrate or urea. ... Calcium ammonium nitrate (Ca(NO3)2 · NH4 · 10 H2O), reportedly holding few percent of the nitrogen fertilizer market (4% in ... Phosphate rocks contain high levels of fluoride. Consequently, the widespread use of phosphate fertilizers has increased soil ...
It can reduce dentin hypersensitivity by blocking open dentinal tubules and by supplying calcium (Ca2+) and phosphate (PO43−) ... Nanoscale hydroxyapatite crystals form a layered structure with the deposited collagen at the surface of the implant. Following ... This material in an aqueous environment could have an antibacterial property that is advantageous in periodontal surgical ... The 45S5 name signifies glass with 45 weight % of SiO2 and 5:1 molar ratio of calcium to phosphorus. This high ratio of calcium ...
... and polymer and calcium phosphate coatings with chlorhexidine. Antibiotic coatings provide another way of preventing the growth ... Some coatings which accomplish this include chlorhexidine incorporated hydroxyapatite coatings, chlorhexidine-containing ... by simply immersing the surface in an aqueous solution containing the polymer. For a process like this, grafting density ... It was also noted that antimicrobial agents such as Novaron AG 300 (Silver sodium hydrogen zirconium phosphate) do not inhibit ...
Eanes ED, Hailer AW (January 1987). "Calcium phosphate precipitation in aqueous suspensions of phosphatidylserine-containing ... whereas PS in growth plate vesicles is necessary for the nucleation of hydroxyapatite crystals and subsequent bone ... PC is a zwitterionic headgroup, as it has a negative charge on the phosphate group and a positive charge on the amine but, ... One of the critical roles of calcium in the body is regulating membrane fusion. Third, a destabilization must form at one point ...
When the liquid solution of chitosan-glycerol phosphate, containing the drug, enters the body through a syringe injection, it ... Subsequent changes occur in cell membranes, chromatin, DNA, calcium, MAP kinase, oxidative burst, reactive oxygen species, ... 2013). "Strong adhesion and cohesion of chitosan in aqueous solutions". Langmuir. 29 (46): 14222-14229. doi:10.1021/la403124u. ... Self-assembled collagen fibers/hydroxyapatite nanocrystals". Journal of Biomedical Materials Research. 67 (2): 618-25. doi: ...
Natural crystalline calcium carbonate ISO 3262-6:1998 Part 6: Precipitated calcium carbonate ISO 3262-7:1998 Part 7: Dolomite ... 1976 Aqueous hydrofluoric acid for industrial use - Sampling and methods of test ISO 3140:2019 Essential oil of sweet orange ... Methods for chemical analysis of hydroxyapatite powders [Under development; originally planned ISO 3180 merged into ISO 3179] ... 1977 Capsulated dental silicate and silico-phosphate filling materials [Withdrawn: replaced with ISO 9917] ISO 3852:2007 Iron ...
The precipitate will either be "amorphous tricalcium phosphate", ATCP, or calcium deficient hydroxyapatite, CDHA, Ca9(HPO4)(PO4 ... It cannot be precipitated directly from aqueous solution. Typically double decomposition reactions are employed, involving a ... Calcium phosphate is one of the main combustion products of bone (see bone ash). Calcium phosphate is also commonly derived ... Tricalcium phosphate (sometimes abbreviated TCP), more commonly known as Calcium phosphate, is a calcium salt of phosphoric ...
... and calcium hydroxyl phosphate (hydroxyapatite). ... relationships between aqueous chemistry and crystal shape. ... Chemical systems of study include zinc oxide and the biominerals calcium carbonate (calcite) ...
The conversion of calcium phosphate into calcium diphosphate through cyanate in an aqueous suspension, discovered by Miller and ... The reaction is initiated through the disproportionation of calcium hydrogen phosphate to give hydroxylapatite and calcium ... The Conversion of Calcium Hydrogenphosphate into Calcium Diphosphate by Cyanate - a Prebiotic Key Reaction ?. ... dihydrogen phosphate, which reacts with cyanate via carbamoylphosphate to yield calcium diphosphate and urea. In particular, it ...
Calcium deficient hydroxyapatite, Calcium phosphates, Hydroxyapatite, In-vitro, Infections, Nanopillars, Pseudomonas aeruginosa ... Since cells were grown on membranes permeable to ions and proteins, they could share the same aqueous environment with CDHA, ... JTD Keywords: bactericidal, calcium deficient hydroxyapatite, calcium phosphates, nanopillars, pseudomonas aeruginosa, ... like those obtained in calcium phosphate cements, are very different from the conventional calcium phosphate ceramics, both in ...
Literature data on equilibria between solid calcium phosphates having the apatite structure and aqueous solutions containing Na ... or octocalciumphosphate or more or less finely dispersed calcite and supersaturated with respect to pure hydroxylapatite. ...
Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 1995 Apr;29(4): ... Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater 2009 Jun;4(3): ... Effect of in-office bleaching with 35% hydrogen peroxide with and without addition of calcium on the enamel surface. Microsc ... Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. ...
... typically hydroxyapatite (HA), by solution-precipitation reactions in aqueous phosphate solution, has been commonly reported. ... This paper describes the structural and compositional characteristics of the calcium phosphate material formed during the early ... in aqueous phosphate solution. Disks of H12 glass were reacted with 0.25M K2HPO4 solution with a starting pH57.0 at 371C. The ... of brushite has not been reported in previous studies of converting bioactive silicate and borate glasses in aqueous phosphate ...
Chimie et solubilité des phosphates ce calcium en milieux aqueux. Synthèse de phosphates de calcium, en particulier ... Evidence of a transient phase during the hydrolysis of calcium-deficient hydroxyapatite. E. F. Bres; T. Duhoo; N. Leroy; J. ... Low temperature aqueous synthesis (LTAS) of BaTiO3: a statistical design of experiment approach. M. Viviani; J. Lemaître; M. T ... The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Lu; M. Descamps; J. Dejou; G. Koubi; P. Hardouin et ...
What is hydroxyapatite? (1968, by E. C. Moreno, T. M. Gregory, and W. E. Brown). ... How to coat implant materials with brushite, via aqueous solutions, instead of apatite, at room temperature instead of 37 C?. ... Biomimetic synthesis of calcium phosphate-based biomaterials for hard tissue regeneration. * Calcium phosphate-biopolymer ( ... apatitic calcium phosphate nanoparticles. + Apatite-like calcium phosphate nanopowders having a BET surface area of 900 m2/g ...
... acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate Ca(NO3)(2),4H(2)O] and diammonium hydrogen ... phosphate (NH4)(2)H PO4]. Keeping solid loading constant at 30wt% and changing the composition of the original slurry of ... Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate ... First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2 ...
Koutsoukos et al., "Precipitation of calcium carbonate in aqueous solutions". J Chem Soc., Faraday Trans. 1, Physical Chemistry ... Varma et al., "Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method". Biomaterials (1999) ... Monmaturapoj et al., "Influence of preparation method on hydroxyapatite porous scaffolds". Bull Mater Sci. (2011) 34(7): 1733- ... Calcium sulfate 80 g Municipal water 16000 g Inoculant: Ecovative Strain ID 2880 g 045-08-003 spawn ...
... the aim of this study was to evaluate in vitro the color change of coronal tooth structure after placing various calcium ... Variation in the composition of calcium silicate-based pulp capping materials could influence the discoloration potential of ... TotalFill is a premixed bioceramic material consisting of calcium silicate, zirconium oxide, tantalum oxide, calcium phosphate ... and the liquid consists of calcium chloride which is a setting accelerator and water-reducing agent in aqueous solution [12]. ...
GREEN SYNTHESIS OF CALCIUM AND PHOSPHATE COMPOUNDS BY VARYING pH VALUE AND Ca/P ATOMIC RATIO USING AQUEOUS PRECIPITATIONS. Chen ... THE INTERACTION OF STANNOUS FLUORIDE WITH SYNTHETIC HYDROXYAPATITE: MODELING THE ANTICARIES EFFECT. Turner D., Czarnecka B., ...
Functionalization of calcium phosphates for biomedical applications has been proposed as a strategy to enrich the good ... On this basis, hydroxyapatite was synthesized with increasing contents of (9R)-9-hydroxystearate, up to â ¼8.6 wt %. The ... to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite ... The possibility to functionalize calcium phosphates with bioactive agents is a promising strategy to design innovative ...
... the soil pore water becomes less saturated with phosphates and calcium, and adsorption becomes a more important phosphate ... They found that precipitation of the phosphate mineral hydroxyapatite is very likely immediately after effluent is released to ... Precipitation is theoretically not limited as long as sufficient aqueous concentrations of mineral components are available and ... Thus, understanding how phosphate moves in the drain field is the key to determining the ultimate fate of phosphate from septic ...
HAP: hydroxyapatite, α-TCP: α-tricalcium phosphate, β-TCP: β-tricalcium phosphate, ACP: amorphous phosphate calcium. The ... The chemical composition of ACPs depends on pH value and the concentration of calcium and phosphate ions in aqueous solution. ... amorphous calcium phosphate (ACP), octacalcium phosphate (OCP), dicalcium phosphate anhydrous (DCPA), dibasic calcium phosphate ... Amorphous Calcium Phosphates. Amorphous calcium phosphates (ACPs) are a special phase of CaP with various chemical compositions ...
Tri-calcium phosphate and TiO{sub 2}. XRD, SEM, BET, optical microscopy and UV-vis spectrophotometer were applied to ... Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents journal, ... Lead-Calcium Hydroxyapatite: Cation Effects in the Oxidative Coupling of Methane journal, January 1995 * Matsumura, Yasuyuki; ... Crystal Structure of Calcium-Deficient Carbonated Hydroxyapatite. Thermal Decomposition journal, September 2001 * Ivanova, T. I ...
Six groups with different hydroxyapatite whiskers mass fractions were taken into account in order to be compared with the ... In addition, biocompatibility test showed less cytotoxic effect with the addition of 20 wt% of hydroxyapatite in ... Data obtained show better interfacial interaction with filler/matrix until 20 wt% of hydroxyapatite whiskers ... After this threshold, the mechanical performances decrease dramatically due to both the hydroxyapatite agglomerates formation ...
We developed a mineral cross-linking strategy to prepare a biopolymer-based nanoparticle using calcium phosphate (CaP) as a ... aqueous solution and phosphate buffered solution for further mineral cross-linking. XRD and FT-IR studies revealed that the ... XRD and FT-IR studies revealed that the resultant nanoparticles were produced by mineral cross-linkages of hydroxyapatite (HAp ... N2 - We developed a mineral cross-linking strategy to prepare a biopolymer-based nanoparticle using calcium phosphate (CaP) as ...
A Study on development of machinable calcium phosphate based bio-composites with zirconia, boron oxide and lanthanum oxide. ... A two-phase aqueous-organic system was used to degrade benzene, toluene and phenol, individually and as mixture by Pseudomonas ... mechanical and biological properties of pure hydroxyapatite and composites of hydroxyapatite with zirconia, boron oxide and ... Hydroxyapatite was synthesized via precipitation method and sintered at 1100°C for 1 h. It was observed that relative density ...
Many modern orthopaedic implants are coated with calcium phosphate to improve the host tissue response to the implants. Despite ... is the most commercially popular calcium phosphate coating for biomedical implants [1]. Hydroxyapatite and other calcium ... Apatite coatings deposited by an aqueous low-temperature method typically have a fine scale microstructure containing submicron ... 2009) Characterization of Thin Calcium Phosphate Coating. In León B and Jansen J, eds., Thin Calcium Phosphate Coatings for ...
Slobodyanik, Immobilization of cesium from aqueous solution using nanoparticles of synthetic calcium phosphates, Chemistry ... of human mesenchymal stem cells with a nano-hydroxyapatite-collagen scaffold containing DNA-functionalised calcium phosphate ... 193] K. Ganesan, M. Epple, Calcium phosphate nanoparticles as nuclei for the preparation of colloidal calcium phytate, New ... Calcium phosphate nanoparticles: colloidally stabilized and made fluorescing by a phosphate-function-alized porphyrin, Journal ...
Transformation Behaviour of Salts Composed of Calcium Ions and Phosphate Esters with Different Linear Alkyl Chain Structures in ... Evaluation of Drug-Loading Ability of Poly(Lactic Acid)/Hydroxyapatite Core-Shell Particles. Materials, 14(8), 1959(11 pages) ( ... Phase Separation Behavior of Aqueous Poly(N-isopropylacrylamide) Solutions Studied by Scattering Experiments. Langmuir, in ... Preparation of Layered Calcium Silicate Organically Modified with Two Types of Functional Groups for Varying Chemical Stability ...
Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique , ... In this study, PEO was performed over commercially Ti-6Al-4V alloy pellets in an aqueous electrolyte containing calcium acetate ... AuNPs were simply synthesized and encapsulated by addition a boiling aqueous solution of HAuCl 4 to aqueous solutions of A 1, A ... The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various ...
"Silicon-substituted hydroxyapatite thin films. In:", Thin Calcium Phosphate Coatings for Medical Implants, in press ... "Dispersant Selection for Aqueous Medium Pressure Injection Moulding of Anhydrous Dicalcium Phosphate", Journal of the American ... "The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA)", Journal of Materials ... "Towards a model of the mineral-organic interface in bone: NMR of the structure of synthetic glycosaminoglycan-calcium phosphate ...
Over time, the CaHA microspheres are broken down into calcium and phosphate ions by the phagocytes.10 Further evidence for the ... aqueous carboxymethylcellulose gel carrier.[4] The soluble carrier gel evenly distributes the Radiesse CaHA microspheres ... Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for ... Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is ...
HYDROXYAPATITE (HA). Hydroxyapatite (HA) is a compound of calcium phosphate with a composition of Ca10 (PO4)6 (OH)2 and has a ... Cd 2+ and Ni 2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arabian J Chem. 2012;5: ... 8 Calcium phosphates i.e. hydroxyapatite and β-tricalcium phosphate and their mixtures have also been used to grit blast ... 23 Calcium phosphates are osteoconductive and biocompatible and have shown to be resorbable with time.27-31 Calcium phosphate ...
Calcium phosphate hydroxide,Durapatite,Hydroxylapatite; Linear Formula: 3Ca3(PO4)2 · Ca(OH)2; find Sigma-Aldrich-04238 MSDS, ... Hydroxyapatite puriss., meets analytical specification of Ph. Eur., BP, FCC, E341, ≥90% (calculated on glowed substance); CAS ... Hydroxyapatite from two sources was electrophoretically deposited onto flat titanium plate material. Depending upon the ...
JTD Keywords: Calcium phosphate, Hydroxyapatite, Ion sorption, Iridium oxide, Sensors, Animals, Biocompatible Materials, Bone ... for precise spatial and temporal characterization of different aqueous environments around calcium phosphate-based biomaterials ... We have shownthat calcium releasing platforms such as calcium phosphate nano-particles (NPs) stimulate in vitro and in vivo ... JTD Keywords: angiogenesis, bioactive materials, bone regeneration, bone-formation, calcium-phosphate, extracellular calcium, ...
  • XRD and FT-IR studies revealed that the resultant nanoparticles were produced by mineral cross-linkages of hydroxyapatite (HAp) and the crystal amount and properties such as morphology and crystallinity could be well-controlled by the reaction conditions. (elsevierpure.com)
  • After removal of the surfactants, we carried out the alternative dialysis of nanoparticles against CaCl2 aqueous solution and phosphate buffered solution for further mineral cross-linking. (elsevierpure.com)
  • This approach allowed to prepare apatite nanoparticles as a single hydroxyapatite phase when the used Tb3+ concentrations were (i) ≤ 0.005 M at all maturation times or (ii) = 0.010 M with 4 h of maturation. (bvsalud.org)
  • It is also used as a nutritional supplement and occurs naturally in cow milk,[citation needed] although the most common and economical forms for supplementation are calcium carbonate (which should be taken with food) and calcium citrate (which can be taken without food). (wikipedia.org)
  • Chemical systems of study include zinc oxide and the biominerals calcium carbonate (calcite) and calcium hydroxyl phosphate (hydroxyapatite). (winthrop.edu)
  • Barnes DH, Jugdaosingh R, Kiamil S, Best SM (2 011) Shelf Life and Chemical Stability of Calcium Phosphate Coatings Applied to Poly Carbonate Urethane Substrates. (omicsonline.org)
  • This paper examines the chemical stability of CaP coatings that were applied to a poly carbonate urethane (PCU) substrate by an aqueous, low temperature technique. (omicsonline.org)
  • Calcium sulphate (CaSO 4 ) and calcium carbonate (CaCO 3 ) are the other two popular choices of crosslinkers, however due to their lower solubility within an aqueous solution the gelation time is slower. (nature.com)
  • It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂). (waset.org)
  • Contribution à l'étude des mécanismes d'entartrage: Influence de la matière humique dans l'inhibition de la croissance cristalline du carbonate de calcium, INSA Toulouse (1994). (waset.org)
  • 9] A. Kamari, F. Gharagheizi, A. Bahadori and A.H. Mohammadi, Determination of the Equilibrated Calcium Carbonate (Calcite) Scaling in Aqueous Phase Using a Reliable Approach. (waset.org)
  • Fifty percent of plasma calcium is ionized, 40% is bound to proteins (90% of which binds to albumin), and 10% circulates bound to anions (eg, phosphate, carbonate, citrate, lactate, sulfate). (medscape.com)
  • It is also known as tribasic calcium phosphate and bone phosphate of lime (BPL). (wikipedia.org)
  • Calcium phosphate is one of the main combustion products of bone (see bone ash). (wikipedia.org)
  • Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. (csircentral.net)
  • Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. (encyclopedia.pub)
  • Hydroxyapatite, a type of calcium phosphate that is similar to the mineral component of bone, is the most commercially popular calcium phosphate coating for biomedical implants [ 1 ]. (omicsonline.org)
  • Hydroxyapatite and other calcium phosphate coatings have been investigated extensively for clinical applications due to their ability to form a direct bond with living bone, a property often referred to as "bioactivity" [ 2 ]. (omicsonline.org)
  • 11 Calcium phosphate-coated implants have been described in the literature which demonstrate early direct bone attachment to the hydroxyapatite surface and this occursas quickly as one month post-operatively. (com.pk)
  • Bone substrates like hydroxyapatite and tricalcium phosphate have been widely used for promoting spinal fusion and reducing the complications caused by autograft. (biomedcentral.com)
  • The micro-CT result from the posterolateral fusion model showed whitlockite had slightly but significantly higher percent bone volume than tricalcium phosphate, though none of the materials formed successful fusion with surrounding bone tissue. (biomedcentral.com)
  • Whitlockite had a potential of being a better bone substrate hydroxyapatite and tricalcium phosphate in spinal fusion with low risk of inducing ectopic ossification. (biomedcentral.com)
  • Calcium is necessary for bone mineralization and is an important cofactor for hormonal secretion in endocrine organs. (medscape.com)
  • PTH stimulates osteoclastic bone reabsorption and distal tubular calcium reabsorption and mediates 1,25-dihydroxyvitamin D (1,25[OH] 2 D) intestinal calcium absorption. (medscape.com)
  • [ 5 ] Vitamin D stimulates intestinal absorption of calcium, regulates PTH release by the chief cells, and mediates PTH-stimulated bone reabsorption. (medscape.com)
  • Calcitonin lowers calcium by targeting bone, renal, and GI losses. (medscape.com)
  • Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. (encyclopedia.pub)
  • A systematic evaluation of mechanical and biocompatibility properties of different volume fractions of hydroxyapatite whiskers in comparison with three commercial dental composites filled with micro- and nanosilica particles was carried out. (hindawi.com)
  • Six groups with different hydroxyapatite whiskers mass fractions were taken into account in order to be compared with the performances of silica particles based composites group. (hindawi.com)
  • With this aim, different mass fraction of hydroxyapatite based composites and three commercial composites loaded with silica particles were tested and compared in order to verify the effective enhancement in both biocompatibility and mechanical properties. (hindawi.com)
  • Composites with varied proportions of beta-Ca-3(PO4)(2) and ZnO were obtained through an in situ aqueous precipitation method under slightly basic (pH approximate to 8) conditions. (ua.pt)
  • Hydroxyapatite-PMMA composites. (dokumen.pub)
  • Hydroxyapatite-PS composites. (dokumen.pub)
  • Calcium phosphate refers to numerous materials consisting of calcium ions (Ca2+) together with orthophosphates (PO3− 4), metaphosphates or pyrophosphates (P 2O4− 7) and occasionally oxide and hydroxide ions. (wikipedia.org)
  • Tricalcium phosphate (sometimes abbreviated TCP), more commonly known as Calcium phosphate, is a calcium salt of phosphoric acid with the chemical formula Ca3(PO4)2. (wikipedia.org)
  • Most commercial samples of "tricalcium phosphate" are in fact hydroxyapatite. (wikipedia.org)
  • Much of the "tricalcium phosphate" on the market is actually powdered hydroxyapatite. (wikipedia.org)
  • Tricalcium phosphate is produced commercially by treating hydroxyapatite with phosphoric acid and slaked lime. (wikipedia.org)
  • The precipitate will either be "amorphous tricalcium phosphate", ATCP, or calcium deficient hydroxyapatite, CDHA, Ca9(HPO4)(PO4)5(OH), (note CDHA is sometimes termed apatitic calcium triphosphate). (wikipedia.org)
  • Crystalline tricalcium phosphate can be obtained by calcining the precipitate. (wikipedia.org)
  • β-Tricalcium phosphate has a crystallographic density of 3.066 g cm−3 while the high temperature forms are less dense, α-tricalcium phosphate has a density of 2.866 g cm−3 and α′-tricalcium phosphate has a density of 2.702 g cm−3 All forms have complex structures consisting of tetrahedral phosphate centers linked through oxygen to the calcium ions. (wikipedia.org)
  • Tricalcium phosphate occurs naturally in several forms, including: as a rock in Morocco, Israel, Philippines, Egypt, and Kola (Russia) and in smaller quantities in some other countries. (wikipedia.org)
  • Biphasic calcium phosphate, BCP, was originally reported as tricalcium phosphate, but X-Ray diffraction techniques showed that the material was an intimate mixture of two phases, hydroxyapatite (HA) and β-tricalcium phosphate. (wikipedia.org)
  • Tricalcium phosphate is used in powdered spices as an anticaking agent, e.g. to prevent table salt from caking. (wikipedia.org)
  • In this study, we compared the osteoinductivity of whitlockite, hydroxyapatite, and tricalcium phosphate porous particles with SD rat spine posterolateral fusion model and investigated whether whitlockite could induce ectopic ossification with SD rat abdominal pouch model. (biomedcentral.com)
  • 2 The phosphate rock is converted to phosphoric acid (H 3 PO 4 ) which is used to produce phosphate fertilizers. (rsc.org)
  • In the wet phosphoric acid process, the phosphate rock is reacted with sulfuric acid (H 2 SO 4 ), producing gypsum (CaSO 4 ·2H 2 O) and aqueous phosphoric acid (reaction (1) ). (rsc.org)
  • The high temperature forms each have two types of columns, one containing only calcium ions and the other both calcium and phosphate. (wikipedia.org)
  • Literature data on equilibria between solid calcium phosphates having the apatite structure and aqueous solutions containing Na + and CO 3 2- ions were reexamined in view of the present data about the complexation of ions in such systems. (degruyter.com)
  • Additionally, xylitol is associated with calcium in aqueous solution, to inhibit the dissolution of calcium and/or phosphate ions from enamel and to act as a carrier of the calcium required for enamel remineralisation. (hismileteeth.com)
  • Despite numerous studies on the dissolution properties of calcium phosphate (CaP) coatings, the coating "shelf life" (i.e. the chemical stability of these coatings prior to implantation), has not been investigated adequately, particularly for CaP coatings applied to polymeric substrates. (omicsonline.org)
  • Calcium phosphate (CaP) coatings are applied to the surface of a range of orthopaedic implants to enhance the interfacial bonding between the implant and host tissue. (omicsonline.org)
  • Numerous prior studies have investigated the dissolution of CaP coatings, such as hydroxyapatite, in conditions designed to simulate physiological conditions, i.e. typically at pH 7.4 and at ~37 °C [ 3 - 7 ]. (omicsonline.org)
  • This paper discusses the processes of grit-blasting, plasma spraying, acid-etching, anodization and implant surface coatings with hydroxyapatite. (com.pk)
  • Ahmed F, Rashid H, Farookhi S, Verma V, Mulyar Y, Khalifa M, Sheikh Z. Surface modifications of endosseous dental implants by incorporation of roughness and hydroxyapatite coatings. (com.pk)
  • Hydroxyapatite (HAp) coatings with and without octacalcium phosphate (OCP) were uniformly formed on pure magnesium by a hydrothermal treatment using a Ca-EDTA solution. (elsevierpure.com)
  • It was demonstrated that the crystal phase and microstructure of the calcium phosphate-coatings can vary with the pH of the treatment solution. (elsevierpure.com)
  • It is revealed that the degree of protection afforded by calcium phosphate-coatings varies with their crystal phase and microstructure. (elsevierpure.com)
  • Title: Budget-impact model for colonoscopy cost calculation and comparison between 2 litre PEG+ASC and sodium picosulphate with magnesium citrate or sodium phosphate oral bowel cleansing agents. (aablocks.com)
  • The developed process achieves around 70% phosphorus recovery as an industrial-grade (19 wt% P) dicalcium phosphate dihydrate product with minimal iron, magnesium, and aluminum contamination, while also producing value-added calcium sulfate dihydrate (gypsum) and iron/magnesium byproducts. (rsc.org)
  • Calcium levels are also affected by magnesium and phosphorus. (medscape.com)
  • An example is: Ca10−δ(PO4)6−δ(HPO4)δ(OH)2−δ → (1−δ) Ca10(PO4)6(OH)2 + 3δ Ca3(PO4)2 β-TCP can contain impurities, for example calcium pyrophosphate, CaP2O7 and apatite. (wikipedia.org)
  • Recalculations showed that all solutions were undersaturated or just saturated with respect to either brushite or octocalciumphosphate or more or less finely dispersed calcite and supersaturated with respect to pure hydroxylapatite. (degruyter.com)
  • Many modern orthopaedic implants are coated with calcium phosphate to improve the host tissue response to the implants. (omicsonline.org)
  • The conversion of bioactive glass to a calcium phosphate material, typically hydroxyapatite (HA), by solution-precipitation reactions in aqueous phosphate solution, has been commonly reported. (mst.edu)
  • For IC, the dentin layer was removed, leaving the enamel that was crushed, and autoclaved for chemical quantification (calcium, fluorine, and phosphorus). (thejcdp.com)
  • Phosphorus does not exist in elemental form in the natural environment because elemental P is extremely reactive and readily combines with oxygen (O) to form phosphate (PO 4 ). (ufl.edu)
  • ICP-OES was used to measure the calcium and phosphorus concentrations of the immersion solution. (omicsonline.org)
  • Phosphorus supplements are usually produced from high-grade phosphate rock concentrates (28-40 wt% P 2 O 5 ). (rsc.org)
  • The main role of phosphate supplements is to deliver soluble and bioavailable phosphorus to plants and livestock as crop fertilizers or animal feed additives. (rsc.org)
  • The analysis of the scale reveals that it is rich in calcium and phosphorus. (waset.org)
  • In this study, we develop an integrated process for the direct recovery and separation of dicalcium phosphate dihydrate for fertilizer and livestock feed additive production from a low-grade (2.0 wt% P) iron-rich (19.7 wt% Fe) phosphate ore. (rsc.org)
  • 40% P 2 O 5 ), while livestock feed additives are usually in the form of dicalcium phosphate (CaHPO 4 ), monocalcium phosphate (Ca(H 2 PO 4 ) 2 ), or defluorinated phosphate (Ca 3 (PO 4 ) 2 ). (rsc.org)
  • Hydroxyapatite (HAP, Ca 10 (PO 4 ) 6 (OH) 2 ) has a hexagonal prismatic structure that exposes two crystalline surfaces: prism-faceted a- and basal-faceted c-surfaces. (osti.gov)
  • article{osti_1543698, title = {Effects of Controlled Crystalline Surface of Hydroxyapatite on Methane Oxidation Reactions}, author = {Oh, Su Cheun and Xu, Jiayi and Tran, Dat T. and Liu, Bin and Liu, Dongxia}, abstractNote = {Hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has a hexagonal prismatic structure that exposes two crystalline surfaces: prism-faceted a- and basal-faceted c-surfaces. (osti.gov)
  • it is hydroxyapatite if the extra ion is mainly hydroxide. (wikipedia.org)
  • Data obtained show better interfacial interaction with filler/matrix until 20 wt% of hydroxyapatite whiskers partially replaced silica particles filler. (hindawi.com)
  • For this reason, in the recent five years hydroxyapatite particles and whiskers have been added as novel bioactive and biocompatible reinforcing filler in dental restorations. (hindawi.com)
  • This information is of primary interest in order to achieve a final consistency and specific formulation of hydroxyapatite whiskers mixed with silica particles filler in resin composite. (hindawi.com)
  • In particular, six different ratios of hydroxyapatite/silica particles were investigated. (hindawi.com)
  • This early-stage formation of brushite has not been reported in previous studies of converting bioactive silicate and borate glasses in aqueous phosphate solution. (mst.edu)
  • Variation in the composition of calcium silicate-based pulp capping materials could influence the discoloration potential of some of these materials, thus affecting the color and aesthetic appearance of the coronal tooth structure. (biomedcentral.com)
  • Therefore the aim of this study was to evaluate in vitro the color change of coronal tooth structure after placing various calcium silicate-based materials in the pulp chamber in the presence or absence of blood. (biomedcentral.com)
  • Title: Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. (aablocks.com)
  • She continues a hydrothermal program at Winthrop, the main objective on the relationships between aqueous chemistry and crystal shape. (winthrop.edu)
  • In addition, biocompatibility test showed less cytotoxic effect with the addition of 20 wt% of hydroxyapatite in comparison with higher rates. (hindawi.com)
  • To overcome the present lack in the literature about hydroxyapatite based composite, we proposed a systematic analysis of the mechanical and biocompatibility performances of them in comparison with commercial dental composite. (hindawi.com)
  • The aim of this study was to investigate the microstructure, microhardness and biocompatibility properties of nano hydroxyapatite (HA) doped with a constant yttrium (Y3+) and varying fluoride (F-) compositions. (metu.edu.tr)
  • The current study focused on doping of hydroxyapatite (HA) with constant yttrium (Y3+) and varying fluoride (F-) compositions to investigate its microstructure, microhardness, and biocompatibility. (metu.edu.tr)
  • First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate Ca(NO3)(2),4H(2)O] and diammonium hydrogen phosphate (NH4)(2)H PO4]. (csircentral.net)
  • In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. (bvsalud.org)
  • The calcium phosphates have been assigned European food additive number E341. (wikipedia.org)
  • and the liquid consists of calcium chloride which is a setting accelerator and water-reducing agent in aqueous solution [ 12 ]. (biomedcentral.com)
  • Title: Calcium chloride and sodium phosphate in neonatal parenteral nutrition containing TrophAmine: precipitation studies and aluminum content. (aablocks.com)
  • At present the most frequent choice of ionic crosslinker is Calcium Chloride (CaCl 2 ) as it typically leads to rapid gelation due to its high solubility in aqueous solutions 21 . (nature.com)
  • The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. (waset.org)
  • Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. (csircentral.net)
  • Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. (jcadonline.com)
  • It cannot be precipitated directly from aqueous solution. (wikipedia.org)
  • This paper describes the structural and compositional characteristics of the calcium phosphate material formed during the early-stage conversion (o5 h) of a borosilicate glass (designated H12) in aqueous phosphate solution. (mst.edu)
  • Early Stages of Calcium Phosphate Formation on Bioactive Borosilicate Glass in Aqueous Phosphate Solution," Journal of the American Ceramic Society , John Wiley & Sons, May 2008. (mst.edu)
  • aqueous solution and phosphate buffered solution for further mineral cross-linking. (elsevierpure.com)
  • Typically double decomposition reactions are employed, involving a soluble phosphate and calcium salts, e.g. (wikipedia.org)
  • The process combines leaching using dilute sulfuric acid (0.29 M) and selective precipitation using calcium oxide. (rsc.org)
  • Nanocrystalline and nanostructured TiO2-Cr2O3 thin films and powders were prepared by a facile and straightforward aqueous particulate sol-gel route at low temperature of 400°C. The prepared sols showed a narrow particle size distribution with hydrodynamic diameter in the range of 17.7 nm to 19.0 nm. (sharif.edu)
  • Some physicochemical characteristics influence the erosivity of food like the type of acid, pH, titratable acidity, chelating potential, calcium and phosphate concentration, temperature and adhesion 4 . (bvsalud.org)
  • In addition, hydroxyapatite whiskers (wHA) have been considered the best option as reinforcing filler in comparison with other whiskers based on carbon, ceramic, glass, metal, and polymer due to the absence of cytotoxicity effects [ 12 , 13 ]. (hindawi.com)
  • 10 https://en.wikipedia.org/wiki/Ceramic (accessed in March 2018). (ceramic-science.com)
  • Chemical Properties of Calcium Phosphate" Encyclopedia , https://encyclopedia.pub/entry/31249 (accessed December 02, 2023). (encyclopedia.pub)
  • Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today's market. (jcadonline.com)
  • Synthesis of Hybrid Polyphenol/Hydroxyapatite Nanomaterials with Anti-Radical Properties. (upmc.fr)
  • Hydroxyapatite: Structure and properties. (dokumen.pub)
  • affects the ability of certain strains to adhere to the hydroxyapatite surface and decreases caries and plaque formation. (hismileteeth.com)
  • Effects of bleaching agents containing fluoride and calcium on human enamel. (thejcdp.com)
  • As the main biomineral component in enamel and dentine, hydroxyapatite is responsible for their higher mechanical performances. (hindawi.com)
  • Calcium phosphate is also commonly derived from inorganic sources such as mineral rock. (wikipedia.org)
  • We developed a mineral cross-linking strategy to prepare a biopolymer-based nanoparticle using calcium phosphate (CaP) as a cross-linker. (elsevierpure.com)
  • 1,4-6 The P 2 O 5 grade, mineral form, and calcium content of these products are critical for their effective performance in their target applications and their market value. (rsc.org)
  • Inorganic Phosphate is contributed by detergents and household cleaning products such as soaps. (ufl.edu)
  • Acute acidemia decreases calcium binding to albumin, whereas alkalemia increases binding, which decreases ionized calcium. (medscape.com)
  • Clinical signs and symptoms are observed only with decreases in ionized calcium concentration (normally 4.5-5.5 mg/dL). (medscape.com)
  • Méthodologie expérimentale : plans statistiques d'expérience, en particulier dans le domaine des biomatériaux (planification d'expériences in vitro et in vivo). (epfl.ch)
  • Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. (jcadonline.com)
  • In fact, it was shown that the incorporation of hydroxyapatite with whiskers morphology can provide larger load transfer and favor toughening mechanisms, thus, increasing flexural modulus and fracture toughness of resins in comparison with conventional silica based fillers [ 6 - 11 ]. (hindawi.com)
  • The content of P2O5 in most calcium phosphate rocks is 30% to 40% P2O5 by weight. (wikipedia.org)
  • Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. (jcadonline.com)
  • In wastewater, P exists as one of several possible phosphate compounds including orthophosphate, polyphosphates, and organic phosphate (Crites and Tchobanoglous 1998). (ufl.edu)
  • 2. Organic Phosphate is contributed by human excreta (feces) and food residues. (ufl.edu)
  • Organic phosphates are present in sugars, phospholipids, and nucleotides. (ufl.edu)
  • A two-phase aqueous-organic system was used to degrade benzene, toluene and phenol, individually and as mixture by Pseudomonas putida F1 (ATCC 700007). (metu.edu.tr)
  • Title: Comparison of patient acceptance of sodium phosphate versus polyethylene glycol plus sodium picosulfate for colon cleansing in Japanese. (aablocks.com)
  • Early Stages of Calcium Phosphate Formation on Bioactive Borosilicate " by Yadong Li, B. Sonny Bal et al. (mst.edu)
  • After this threshold, the mechanical performances decrease dramatically due to both the hydroxyapatite agglomerates formation and the low degree of resin conversion. (hindawi.com)