Apoproteins
Apolipoproteins
Lipoproteins, HDL
Lipoproteins, VLDL
Lipoproteins
Chylomicrons
Apolipoproteins A
Immunoelectrophoresis
Light-Harvesting Protein Complexes
Apolipoproteins B
Lipoproteins, LDL
Apolipoprotein A-I
Ultracentrifugation
Apolipoprotein A-II
Chlorophyll
Electrophoresis, Polyacrylamide Gel
Apolipoproteins C
Tetranitromethane
Lipoproteins, HDL3
Dimethyl Suberimidate
Photosynthetic Reaction Center Complex Proteins
Imidoesters
Pulmonary Surfactant-Associated Proteins
Cholesterol
Chlorophyll Binding Proteins
Complement C9
Apolipoprotein C-III
Liver
Hypolipoproteinemias
Apolipoprotein C-II
Aurintricarboxylic Acid
Phospholipids
Lipids
Pulmonary Surfactants
Chloroplasts
Apolipoproteins E
Amino Acids
Photosystem I Protein Complex
Phycocyanin
Cholesterol Esters
Chromatography, Gel
Immunodiffusion
Photosystem II Protein Complex
Hyperlipoproteinemias
Iron-Sulfur Proteins
Complement Membrane Attack Complex
Isoelectric Focusing
Plant Proteins
Apoenzymes
Centrifugation, Density Gradient
Carbon-Carbon Ligases
Lipoprotein Lipase
Immunosorbent Techniques
Rats, Inbred Strains
Cholesterol, VLDL
Radioimmunoassay
Amino Acid Sequence
Cholesterol, HDL
Phosphatidylcholines
Microscopy, Electron
Chickens
Molecular Sequence Data
Chromatography, Affinity
Lipid Metabolism
Chemistry
Chemical Phenomena
Carrier Proteins
Heme
Dietary Fats
Spectrum Analysis
Cholesterol, LDL
Protein Binding
Plants
Binding Sites
Rabbits
Oxidation-Reduction
The binding of human lactoferrin to mouse peritoneal cells. (1/1461)
Human iron-saturated Lf (FeLf), which was labeled with 125I or 50Fe, was found to combine with the membrane of mouse peritoneal cells (MPC) which consisted of 70% macrophages. The following experimental data suggested the involvement of a specific receptor. (a) The binding of FeLf to MPC reached a saturation point. (b) The binding of radioactive FeLf was inhibited by preincubating the cells with cold FeLf but not with human Tf, human aggregated and nonaggregated IgG, or beef heart cytochrome c (c) Succinylation and carbamylation of FeLf resulted in a loss of its inhibiting activity on the binding of radioactive FeLf. Removal of neuraminic acid from FeLf increased its inhibitory activity. (d) The ability of apoLf to inhibit the binding of FeLf to MPC was significantly lower than that of FeLf. The existence of a Lf receptor capable of concentrating Lf released from neutrophils on the membrane of macrophages could explain the apparent blockade of the release of iron from the reticuloendothelial system, which accounts for the hyposideremia of inflammation. A receptor for FeLf was also found on mouse peritoneal lymphocytes. The affinity constant of FeLf for both lymphocytes and macrophages was 0.9 X 12(6) liter/mol. Howerver, macrophages bound three times more FeLf molecules (20 X 10(6)) per cell than did lymphocytes (7 X 10(6)). (+info)Folding of apocytochrome c induced by the interaction with negatively charged lipid micelles proceeds via a collapsed intermediate state. (2/1461)
Unfolded apocytochrome c acquires an alpha-helical conformation upon interaction with lipid. Folding kinetic results below and above the lipid's CMC, together with energy transfer measurements of lipid bound states, and salt-induced compact states in solution, show that the folding transition of apocytochrome c from the unfolded state in solution to a lipid-inserted helical conformation proceeds via a collapsed intermediate state (I(C)). This initial compact state is driven by a hydrophobic collapse of the polypeptide chain in the absence of the heme group and may represent a heme-free analogue of an early compact intermediate detected on the folding pathway of cytochrome c in solution. Insertion into the lipid phase occurs via an unfolding step of I(C) through a more extended state associated with the membrane surface (I(S)). While I(C) appears to be as compact as salt-induced compact states in solution with substantial alpha-helix content, the final lipid-inserted state (Hmic) is as compact as the unfolded state in solution at pH 5 and has an alpha-helix content which resembles that of native cytochrome c. (+info)Specificity of native-like interhelical hydrophobic contacts in the apomyoglobin intermediate. (3/1461)
On exposure to mildly acidic conditions, apomyoglobin forms a partially folded intermediate, I. The A, B, G, and H helices are significantly structured in this equilibrium intermediate, whereas the remainder of the protein is largely unfolded. We report here the effects of mutations at helix pairing sites on the stability of I in three classes of mutants that: (i) truncate hydrophobic side chains in native helix packing sites, (ii) truncate hydrophobic side chains not involved in interhelical contacts, and (iii) extend hydrophobic side chains at residues not involved in interhelical contacts. Class I mutants significantly decrease the stability and cooperativity of folding of the intermediate. Class II and III mutants show smaller effects on stability and have little effect on cooperativity. Qualitatively similar results to those found in I were obtained for all three classes of mutants in native myoglobin (N), demonstrating that hydrophobic burial is fairly specific to native helix packing sites in I as well as in N. These results suggest that hydrophobic burial along native-like interhelical contacts is important for the formation of the cooperatively folded intermediate. (+info)Energy-based de novo protein folding by conformational space annealing and an off-lattice united-residue force field: application to the 10-55 fragment of staphylococcal protein A and to apo calbindin D9K. (4/1461)
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time. (+info)Thermodynamic studies on anion binding to apotransferrin and to recombinant transferrin N-lobe half molecules. (5/1461)
Equilibrium constants for the binding of anions to apotransferrin, to the recombinant N-lobe half transferrin molecule (Tf/2N), and to a series of mutants of Tf/2N have been determined by difference UV titrations of samples in 0.1 M Hepes buffer at pH 7.4 and 25 degrees C. The anions included in this study are phosphate, sulfate, bicarbonate, pyrophosphate, methylenediphosphonic acid, and ethylenediphosphonic acid. There are no significant differences between anion binding to Tf/2N and anion binding to the N-lobe of apotransferrin. The binding of simple anions like phosphate appears to be essentially equivalent for the two apotransferrin binding sites. The binding of pyrophosphate and the diphosphonates is inequivalent, and the studies on the recombinant Tf/2N show that the stronger binding is associated with the N-terminal site. Anion binding constants for phosphate, pyrophosphate, and the diphosphonates with the N-lobe mutants K206A, K296A, and R124A have been determined. Anion binding tends to be weakest for the K296A mutant, but the variation in log K values among the three mutants is surprisingly small. It appears that the side chains of K206, K296, and R124 all make comparable contributions to anion binding. There are significant variations in the intensities of the peaks in the difference UV spectra that are generated by the titrations of the mutant apoproteins with these anions. These differences appear to be related more to variations in the molar extinction coefficients of the anion-protein complexes rather than to differences in binding constants. (+info)Suppressor analysis of mutations in the 5'-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae. (6/1461)
The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover. (+info)Quench-flow experiments combined with mass spectrometry show apomyoglobin folds through and obligatory intermediate. (7/1461)
Folding of apomyoglobin is characterized by formation of a compact intermediate that contains substantial helicity. To determine whether this intermediate is obligatory or whether the protein can fold directly into the native state via an alternate parallel pathway, we have combined quench-flow hydrogen-exchange pulse labeling techniques with electrospray ionization mass spectrometry. The mass spectra of apomyoglobin obtained at various refolding times suggest that apomyoglobin indeed folds through a single pathway containing an obligatory intermediate with a significant hydrogen-bonded secondary structure content. (+info)The compact and expanded denatured conformations of apomyoglobin in the methanol-water solvent. (8/1461)
We have performed a detailed study of methanol-induced conformational transitions of horse heart apomyoglobin (apoMb) to investigate the existence of the compact and expanded denatured states. A combination of far- and near-ultraviolet circular dichroism, NMR spectroscopy, and small-angle X-ray scattering (SAXS) was used, allowing a phase diagram to be constructed as a function of pH and the methanol concentration. The phase diagram contains four conformational states, the native (N), acid-denatured (U(A)), compact denatured (I(M)), and expanded helical denatured (H) states, and indicates that the compact denatured state (I(M)) is stable under relatively mild denaturing conditions, whereas the expanded denatured states (U(A) and H) are realized under extreme conditions of pH (strong electric repulsion) or alcohol concentration (weak hydrophobic interaction). The results of this study, together with many previous studies in the literature, indicate the general existence of the compact denatured states not only in the salt-pH plane but also in the alcohol-pH plane. Furthermore, to determine the general feature of the H conformation we used several proteins including ubiquitin, ribonuclease A, alpha-lactalbumin, beta-lactoglobulin, and Streptomyces subtilisin inhibitor (SSI) in addition to apoMb. SAXS studies of these proteins in 60% methanol showed that the H states of these all proteins have expanded and nonglobular conformations. The qualitative agreement of the experimental data with computer-simulated Kratky profiles also supports this structural feature of the H state. (+info)There are several types of blood protein disorders, including:
1. Hemophilia A: a deficiency of factor VIII, which is necessary for blood clotting.
2. Hemophilia B: a deficiency of factor IX, also involved in blood clotting.
3. Von Willebrand disease: a deficiency of von Willebrand factor, which helps to platelets stick together and form blood clots.
4. Protein C deficiency: a lack of protein C, an anticoagulant protein that helps to prevent blood clots.
5. Protein S deficiency: a lack of protein S, another anticoagulant protein that helps to prevent blood clots.
6. Antithrombin III deficiency: a lack of antithrombin III, a protein that prevents the formation of blood clots.
7. Fibrinogen deficiency: a lack of fibrinogen, a protein that is essential for blood clotting.
8. Dysproteinemia: an abnormal amount or type of proteins in the blood, which can lead to various symptoms and complications.
Symptoms of blood protein disorders can vary depending on the specific condition and the severity of the deficiency. Common symptoms include easy bruising or bleeding, frequent nosebleeds, prolonged bleeding after injuries or surgery, and joint pain or swelling.
Treatment for blood protein disorders typically involves replacing the missing protein or managing symptoms with medication or lifestyle changes. In some cases, gene therapy may be an option to correct the underlying genetic defect.
It's important for individuals with blood protein disorders to work closely with their healthcare provider to manage their condition and prevent complications such as joint damage, infections, and bleeding episodes.
The most common form of hypolipoproteinemia is familial hypobetalipoproteinemia (FHBL), which is caused by mutations in the gene encoding apoB, a protein component of low-density lipoproteins (LDL). People with FHBL have extremely low levels of LDL cholesterol and often develop symptoms such as fatty liver disease, liver cirrhosis, and cardiovascular disease.
Another form of hypolipoproteinemia is familial hypoalphalipoproteinemia (FHAL), which is caused by mutations in the gene encoding apoA-I, a protein component of high-density lipoproteins (HDL). People with FHAL have low levels of HDL cholesterol and often develop symptoms such as cardiovascular disease and premature coronary artery disease.
Hypolipoproteinemia can be diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment for the disorder typically involves managing associated symptoms and reducing lipid levels through diet, exercise, and medication. In some cases, liver transplantation may be necessary.
Prevention of hypolipoproteinemia is challenging, as it is often inherited in an autosomal recessive pattern, meaning that both parents must be carriers of the mutated gene to pass it on to their children. However, genetic counseling and testing can help identify carriers and allow for informed family planning.
Overall, hypolipoproteinemia is a rare and complex group of disorders that affect lipid metabolism and transport. While treatment and management options are available, prevention and early diagnosis are key to reducing the risk of complications associated with these disorders.
There are several types of hyperlipoproteinemias, each with distinct clinical features and laboratory findings. The most common forms include:
1. Familial hypercholesterolemia (FH): This is the most common type of hyperlipoproteinemia, caused by mutations in the LDLR gene that codes for the low-density lipoprotein receptor. FH is characterized by extremely high levels of low-density lipoprotein (LDL) cholesterol in the blood, which can lead to premature cardiovascular disease, including heart attacks and strokes.
2. Familial hypobetalipoproteinemia (FHBL): This rare disorder is caused by mutations in the APOB100 gene that codes for a protein involved in lipid metabolism. FHBL is characterized by very low levels of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, as well as a deficiency of Apolipoprotein B-100, a protein that helps transport lipids in the blood.
3. Hypertriglyceridemia: This condition is caused by mutations in genes that regulate triglyceride metabolism, leading to extremely high levels of triglycerides in the blood. Hypertriglyceridemia can increase the risk of pancreatitis and other health problems.
4. Lipoprotein lipase deficiency: This rare disorder is caused by mutations in the LPL gene that codes for the enzyme lipoprotein lipase, which helps break down triglycerides in the blood. Lipoprotein lipase deficiency can lead to very high levels of triglycerides and cholesterol in the blood, increasing the risk of pancreatitis and other health problems.
5. Familial dyslipidemia: This is a group of rare inherited disorders that affect lipid metabolism and can cause extremely high or low levels of various types of cholesterol and triglycerides in the blood. Some forms of familial dyslipidemia are caused by mutations in genes that code for enzymes involved in lipid metabolism, while others may be caused by unknown factors.
6. Chylomicronemia: This rare disorder is characterized by extremely high levels of chylomicrons (type of triglyceride-rich lipoprotein) in the blood, which can increase the risk of pancreatitis and other health problems. The exact cause of chylomicronemia is not fully understood, but it may be related to genetic mutations or other factors that affect lipid metabolism.
7. Hyperchylomicronemia: This rare disorder is similar to chylomicronemia, but it is characterized by extremely high levels of chylomicrons in the blood, as well as very low levels of HDL (good) cholesterol. Hyperchylomicronemia can increase the risk of pancreatitis and other health problems.
8. Hypoalphalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein A-I (ApoA-I), a protein that plays a key role in lipid metabolism and helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypoalphalipoproteinemia can increase the risk of pancreatitis and other health problems.
9. Hypobetalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein B (ApoB), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypobetalipoproteinemia can increase the risk of pancreatitis and other health problems.
10. Sitosterolemia: This rare genetic disorder is caused by mutations in the gene that codes for sterol-CoA-desmethylase (SCD), an enzyme involved in the metabolism of plant sterols. Sitosterolemia can cause elevated levels of plant sterols and sitosterol in the blood, which can increase the risk of pancreatitis and other health problems.
11. Familial hyperchylomicronemia type 1 (FHMC1): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC1 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
12. Familial hyperchylomicronemia type 2 (FHMC2): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein A-IV (APOA4), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC2 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
13. Lipoprotein (a) deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein (a), a protein that helps to regulate the levels of lipoproteins in the blood. Lipoprotein (a) deficiency can cause low levels of lipoprotein (a) and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
14. Chylomicron retention disease: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of chylomicrons in the blood. Chylomicron retention disease can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
15. Hypertriglyceridemia-apolipoprotein C-II deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of triglycerides in the blood. Hypertriglyceridemia-apolipoprotein C-II deficiency can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
16. Familial partial lipodystrophy (FPLD): This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the arms, legs, and buttocks. FPLD can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
17. Lipodystrophy: This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the face, arms, and legs. Lipodystrophy can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
18. Abetalipoproteinemia: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein B, a protein that helps to regulate the levels of lipids in the blood. Abetalipoproteinemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
19. Chylomicronemia: This rare genetic disorder is characterized by the presence of excessively large amounts of chylomicrons (type of lipid particles) in the blood. Chylomicronemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
20. Hyperlipidemia due to medications: Certain medications, such as corticosteroids and some anticonvulsants, can cause elevated levels of lipids in the blood.
It's important to note that many of these disorders are rare and may not be common causes of high triglycerides. Additionally, there may be other causes of high triglycerides that are not listed here. It's important to talk to a healthcare provider for proper evaluation and diagnosis if you have concerns about your triglyceride levels.
There are several types of hyperlipidemia, including:
1. High cholesterol: This is the most common type of hyperlipidemia and is characterized by elevated levels of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol.
2. High triglycerides: This type of hyperlipidemia is characterized by elevated levels of triglycerides in the blood. Triglycerides are a type of fat found in the blood that is used for energy.
3. Low high-density lipoprotein (HDL) cholesterol: HDL cholesterol is known as "good" cholesterol because it helps remove excess cholesterol from the bloodstream and transport it to the liver for excretion. Low levels of HDL cholesterol can contribute to hyperlipidemia.
Symptoms of hyperlipidemia may include xanthomas (fatty deposits on the skin), corneal arcus (a cloudy ring around the iris of the eye), and tendon xanthomas (tender lumps under the skin). However, many people with hyperlipidemia have no symptoms at all.
Hyperlipidemia can be diagnosed through a series of blood tests that measure the levels of different types of cholesterol and triglycerides in the blood. Treatment for hyperlipidemia typically involves dietary changes, such as reducing intake of saturated fats and cholesterol, and increasing physical activity. Medications such as statins, fibric acid derivatives, and bile acid sequestrants may also be prescribed to lower cholesterol levels.
In severe cases of hyperlipidemia, atherosclerosis (hardening of the arteries) can occur, which can lead to cardiovascular disease, including heart attacks and strokes. Therefore, it is important to diagnose and treat hyperlipidemia early on to prevent these complications.
Apoprotein
ApoA-1 Milano
Retinal
Drosophila melanogaster
Rhodopsin
Opsin
Andre Francis Palmer
Apolipoprotein
Free radical damage to DNA
Cytochrome c family
Surfactant protein A2
Aplysioviolin
Surfactant protein A1
Cooperia oncophora
Hepatocyte
CYP2A6
Genetic association
Candidate gene
Light-harvesting complex
Succinate dehydrogenase
Transferrin
Serum amyloid A1
Holoprotein
Lipid-lowering agent
Brian Andrew Hills
Enzyme
Lipoprotein lipase deficiency
Chylomicron retention disease
Autumn leaf color
APOA5
A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A...
Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes.
A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A...
Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2',3' cGAMP Signaling
OPN1MW gene: MedlinePlus Genetics
Pediatric Lipid Disorders in Clinical Practice: Background, Pathophysiology
Guidelines for School and Community Programs to Promote
Lifelong Physical Activity Among Young People
Effects of a Supplement Containing Apoaequorin on Verbal Learning in Older Adults in the Community - PubMed
Publication Detail
Biomarkers Search
Structural basis for the ligand promiscuity of the neofunctionalized, carotenoid-binding fasciclin domain protein AstaP |...
Guidelines for School and Community Programs to Promote Lifelong Physical Activity Among Young People
Academic Success Week 07 - Lipid Metabolism & System-based Practice - ProProfs Quiz
SCOPe 2.07: Domain d4y28a : 4y28 A
The Nobel Prize in Physiology or Medicine 1985 - Press release - NobelPrize.org
Lexical Tools
DailyMed - FENOFIBRATE tablet
NIH Guide: RESEARCH ON ATHEROSCLEROSIS LESIONS USING HUMAN TISSUES COLLECTED IN PDAY/RFEHA
Coreg CR and Alcohol/Food Interactions - Drugs.com
PAR-06-288: Molecular Probes for Microscopy of Cells (R01)
MeSH Browser
JCI -
Volume 93, Issue 3
Research Festival | Intramural Research Program | National Institutes of Health
Enzyme - wikidoc
Far-Red Light Absorbing Photosynthetic Pigments in Cyanobacteria: Steady-State Fluorescence Detection, Time-Resolved...
Donald S. Fredrickson, M.D. | National Institutes of Health (NIH)
NIOSHTIC-2 Search Results - Full View
Search Results For Health And Wellness: tamp Results found: 25
Surfactant apoprotein A expression2
- It was noteworthy that the disease-free interval in patients with high surfactant apoprotein A expression was significantly better than in patients with low surfactant apoprotein A expression (P=0.03), and no recurrence or death occurred in patients with high surfactant apoprotein A expression. (nih.gov)
- High MUC1 expression on the surface is an important characteristic of a micropapillary pattern, and reduced surfactant apoprotein A expression in the micropapillary pattern may be an excellent indicator for poor prognosis in small-size lung adenocarcinoma. (nih.gov)
Secreted protein1
- We have defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. (escholarship.org)
High-density lip3
- When the chylomicrons are reduced in TG content, they become remnants that are rapidly cleared by the liver (apoprotein E binds to the LDL receptor [LDL-R]). At this time, apoprotein C-II is passed to high-density lipoprotein (HDL) particles in the circulation. (medscape.com)
- Potential for increasing high-density lipoprotein cholesterol, subfractions HDL2-C and HDL3-C, and apoprotein AI among middle-age women. (uchicago.edu)
- In the first, high density lipoprotein apoproteins were radioiodinated in situ in the lipoprotein particle (endogenous apoprotein labeling) while in the second, individually labeled apolipoprotein A-I or A-II was incorporated into the particle by in vitro incubation (exogenous apoprotein labeling). (houstonmethodist.org)
Proteins2
- However, these lipids can be transported throughout the bloodstream as lipoproteins when packaged with phospholipids and proteins (apoproteins). (medscape.com)
- Research findings of Dr. Fredrickson and colleagues have also included the discovery of several previously unknown apolipo-proteins, and new knowledge including descriptions concerning the structure and function of various apoproteins. (nih.gov)
Chylomicron3
- Apoprotein B-48 is a chylomicron structural protein. (medscape.com)
- Defects in apoprotein C-II or LPL can lead to defects in chylomicron clearance. (medscape.com)
- From NCBI Gene: The protein encoded by this gene is a major apoprotein of the chylomicron. (nih.gov)
Catabolic1
- With regard to 125 I-LDL turnover, FH homozygotes, who possess two doses of the mutant FH gene, exhibited a threefold increase in the rate of apoLDL synthesis while the fractional catabolic rate (FCR) for the apoprotein was only about one-third of normal. (elsevierpure.com)
Lipoproteins1
- Lipoproteins have an outer core of cholesterol, phospholipids, and apoproteins and an inner core composed of TG and cholesterol ester (CE). (medscape.com)
Receptors1
- The oily core is shielded from the aqueous plasma by a coat composed of unesterified cholesterol, phospholipid and one large protein molecule, apoprotein B. The apoprotein B molecule moors the LDL to specific receptors on the cell surface - the LDL-receptor. (nobelprize.org)
Cholesterol1
- The core is surrounded by a surface coat composed of 800 molecules of phospholipid, 500 molecules of unesterified cholesterol and one large protein molecule, apoprotein B, which moors the LDL to the receptor on the cell surface. (nobelprize.org)
Expression1
- 9. Mucin apoprotein expression in COPD. (nih.gov)
Normal1
- Both hypertrophied and normal alveolar type II cells from all exposure groups contained immunohistochemically detectable lysozyme and surfactant apoprotein. (cdc.gov)
Surfactant5
- A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A expression in the micropapillary pattern is an excellent indicator of a poor prognosis. (nih.gov)
- It was noteworthy that the disease-free interval in patients with high surfactant apoprotein A expression was significantly better than in patients with low surfactant apoprotein A expression (P=0.03), and no recurrence or death occurred in patients with high surfactant apoprotein A expression. (nih.gov)
- High MUC1 expression on the surface is an important characteristic of a micropapillary pattern, and reduced surfactant apoprotein A expression in the micropapillary pattern may be an excellent indicator for poor prognosis in small-size lung adenocarcinoma. (nih.gov)
- Surfactant is a complex lipoprotein (see the image below) composed of six phospholipids and four apoproteins. (medscape.com)
- Among the four surfactant apoproteins identified, surfactant protein B (SP-B) and SP-C are two small hydrophobic proteins that make up 2-4% of the surfactant mass and are present in commercially available surfactant preparations. (medscape.com)
High1
- 9. Inhibition of the lytic action of cell-bound terminal complement components by human high density lipoproteins and apoproteins. (nih.gov)
Patients2
- Nov. 4, 2003 - Infusion of the Milano apoprotein A rapidly causes regression of atherosclerosis in patients with acute coronary syndromes (ACS), according to the results of a preliminary randomized trial published in the Nov. 5 issue of The Journal of the American Medical Association. (medscape.com)
- Nous avons réalisé un essai en double aveugle contre placebo sur 50 patients atteints de diabète de type 2 randomisés pour recevoir 2 g/jour d'acides gras oméga 3 purifiés ou un placebo pendant 10 semaines. (who.int)