The protein components of a number of complexes, such as enzymes (APOENZYMES), ferritin (APOFERRITINS), or lipoproteins (APOLIPOPROTEINS).
Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES.
A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases.
The protein components of enzyme complexes (HOLOENZYMES). An apoenzyme is the holoenzyme minus any cofactors (ENZYME COFACTORS) or prosthetic groups required for the enzymatic function.
A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.
Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues.
Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE.
A class of lipoproteins that carry dietary CHOLESTEROL and TRIGLYCERIDES from the SMALL INTESTINE to the tissues. Their density (0.93-1.006 g/ml) is the same as that of VERY-LOW-DENSITY LIPOPROTEINS.
The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.
Compounds with triple bonds to each side of a double bond. Many of these are CYTOTOXINS and are researched for use as CYTOTOXIC ANTIBIOTICS.
The interstitial fluid that is in the LYMPHATIC SYSTEM.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.
The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins.
Four PYRROLES joined by one-carbon units linking position 2 of one to position 5 of the next. The conjugated bond system results in PIGMENTATION.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
The rate dynamics in chemical or physical systems.
Open chain tetrapyrroles that function as light harvesting chromophores in PHYCOBILIPROTEINS.
The metal-free blue phycobilin pigment in a conjugated chromoprotein of blue-green algae. It functions as light-absorbing substance together with chlorophylls.
A low-molecular-weight (16,000) iron-free flavoprotein containing one molecule of flavin mononucleotide (FMN) and isolated from bacteria grown on an iron-deficient medium. It can replace ferredoxin in all the electron-transfer functions in which the latter is known to serve in bacterial cells.
A carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration.
Intermediate-density subclass of the high-density lipoproteins, with particle sizes between 7 to 8 nm. As the larger lighter HDL2 lipoprotein, HDL3 lipoprotein is lipid-rich.
Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis.
A group of apolipoproteins that can readily exchange among the various classes of lipoproteins (HDL; VLDL; CHYLOMICRONS). After lipolysis of TRIGLYCERIDES on VLDL and chylomicrons, Apo-C proteins are normally transferred to HDL. The subtypes can modulate remnant binding to receptors, LECITHIN CHOLESTEROL ACYLTRANSFERASE, or LIPOPROTEIN LIPASE.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Low-density subclass of the high-density lipoproteins, with particle sizes between 8 to 13 nm.
Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI.
An enzyme that catalyzes the conversion of urea and water to carbon dioxide and ammonia. EC 3.5.1.5.
A blue-green biliprotein widely distributed in the plant kingdom.
Centrifugation with a centrifuge that develops centrifugal fields of more than 100,000 times gravity. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An autosomal recessive disorder of lipid metabolism. It is caused by mutation of the microsomal triglyceride transfer protein that catalyzes the transport of lipids (TRIGLYCERIDES; CHOLESTEROL ESTERS; PHOSPHOLIPIDS) and is required in the secretion of BETA-LIPOPROTEINS (low density lipoproteins or LDL). Features include defective intestinal lipid absorption, very low serum cholesterol level, and near absent LDL.
The sum of the weight of all the atoms in a molecule.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The second most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. It has a high lipid affinity and is known to displace APOLIPOPROTEIN A-I from HDL particles and generates a stable HDL complex. ApoA-II can modulate the activation of LECITHIN CHOLESTEROL ACYLTRANSFERASE in the presence of APOLIPOPROTEIN A-I, thus affecting HDL metabolism.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX.
Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms.
Proteins found in the LUNG that act as PULMONARY SURFACTANTS.
A species of HELICOBACTER commonly associated with STOMACH DISEASES in FERRETS.
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
An enzyme secreted from the liver into the plasma of many mammalian species. It catalyzes the esterification of the hydroxyl group of lipoprotein cholesterol by the transfer of a fatty acid from the C-2 position of lecithin. In familial lecithin:cholesterol acyltransferase deficiency disease, the absence of the enzyme results in an excess of unesterified cholesterol in plasma. EC 2.3.1.43.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
A major cytochrome P-450 enzyme which is inducible by PHENOBARBITAL in both the LIVER and SMALL INTESTINE. It is active in the metabolism of compounds like pentoxyresorufin, TESTOSTERONE, and ANDROSTENEDIONE. This enzyme, encoded by CYP2B1 gene, also mediates the activation of CYCLOPHOSPHAMIDE and IFOSFAMIDE to MUTAGENS.
A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
A 513-kDa protein synthesized in the LIVER. It serves as the major structural protein of low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). It is the ligand for the LDL receptor (RECEPTORS, LDL) that promotes cellular binding and internalization of LDL particles.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
An enediyne that alkylates DNA and RNA like MITOMYCIN does, so it is cytotoxic.
A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS and CHYLOMICRON REMNANTS. Apo C-III, synthesized in the liver, is an inhibitor of LIPOPROTEIN LIPASE. Apo C-III modulates the binding of chylomicron remnants and VLDL to receptors (RECEPTORS, LDL) thus decreases the uptake of triglyceride-rich particles by the liver cells and subsequent degradation. The normal Apo C-III is glycosylated. There are several polymorphic forms with varying amounts of SIALIC ACID (Apo C-III-0, Apo C-III-1, and Apo C-III-2).
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
Conditions with excess LIPIDS in the blood.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
Conditions with abnormally low levels of LIPOPROTEINS in the blood. This may involve any of the lipoprotein subclasses, including ALPHA-LIPOPROTEINS (high-density lipoproteins); BETA-LIPOPROTEINS (low-density lipoproteins); and PREBETA-LIPOPROTEINS (very-low-density lipoproteins).
Cholesterol present in food, especially in animal products.
A hypertriglyceridemia disorder, often with autosomal dominant inheritance. It is characterized by the persistent elevations of plasma TRIGLYCERIDES, endogenously synthesized and contained predominantly in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). In contrast, the plasma CHOLESTEROL and PHOSPHOLIPIDS usually remain within normal limits.
A 241-kDa protein synthesized only in the INTESTINES. It serves as a structural protein of CHYLOMICRONS. Its exclusive association with chylomicron particles provides an indicator of intestinally derived lipoproteins in circulation. Apo B-48 is a shortened form of apo B-100 and lacks the LDL-receptor region.
Gram-negative, capsulated, gas-producing rods found widely in nature. Both motile and non-motile strains exist. The species is closely related to KLEBSIELLA PNEUMONIAE and is frequently associated with nosocomial infections
A lipoprotein that resembles the LOW-DENSITY LIPOPROTEINS but with an extra protein moiety, APOPROTEIN (A) also known as APOLIPOPROTEIN (A), linked to APOLIPOPROTEIN B-100 on the LDL by one or two disulfide bonds. High plasma level of lipoprotein (a) is associated with increased risk of atherosclerotic cardiovascular disease.
A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539)
Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed)
Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation.
A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a choline moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and choline and 2 moles of fatty acids.
Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II.
An opaque, milky-white fluid consisting mainly of emulsified fats that passes through the lacteals of the small intestines into the lymphatic system.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A potent liver poison. In rats, bromotrichloromethane produces about three times the degree of liver microsomal lipid peroxidation as does carbon tetrachloride.
Fats containing one or more double bonds, as from oleic acid, an unsaturated fatty acid.
Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
1,3,6,7-Tetramethyl-4,5-dicarboxyethyl-2,8-divinylbilenone. Biosynthesized from hemoglobin as a precursor of bilirubin. Occurs in the bile of AMPHIBIANS and of birds, but not in normal human bile or serum.
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
Linear TETRAPYRROLES that give a characteristic color to BILE including: BILIRUBIN; BILIVERDIN; and bilicyanin.
A family of gram-negative bacteria, in the phylum FIRMICUTES.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Transport proteins that carry specific substances in the blood or across cell membranes.
Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
A hemoglobin-like oxygen-binding hemeprotein present in the nitrogen-fixing root nodules of leguminous plants. The red pigment has a molecular weight approximately 1/4 that of hemoglobin and has been suggested to act as an oxido-reduction catalyst in symbiotic nitrogen fixation.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55.
A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking.
Proteins found in any species of bacterium.
A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
The metal-free red phycobilin pigment in a conjugated chromoprotein of red algae. It functions as a light-absorbing substance together with chlorophylls.
Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands.
An FAD-dependent peroxisomal flavoenzyme, this catalyzes the oxidative deamination of D-ASPARTATE to OXALOACETATE and AMMONIA using oxygen as electron acceptor.
Cytoplasm stored in an egg that contains nutritional reserves for the developing embryo. It is rich in polysaccharides, lipids, and proteins.
Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms.
Cell surface proteins that bind lipoproteins with high affinity. Lipoprotein receptors in the liver and peripheral tissues mediate the regulation of plasma and cellular cholesterol metabolism and concentration. The receptors generally recognize the apolipoproteins of the lipoprotein complex, and binding is often a trigger for endocytosis.
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34.
An allylic compound that acts as a suicide inactivator of CYTOCHROME P450 by covalently binding to its heme moiety or surrounding protein.
Immunoelectrophoresis in which a second electrophoretic transport is performed on the initially separated antigen fragments into an antibody-containing medium in a direction perpendicular to the first electrophoresis.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.
A form of SILICON DIOXIDE composed of skeletons of prehistoric aquatic plants which is used for its ABSORPTION quality, taking up 1.5-4 times its weight in water. The microscopic sharp edges are useful for insect control but can also be an inhalation hazard. It has been used in baked goods and animal feed. Kieselguhr is German for flint + earthy sediment.
A glycoprotein component of HIGH-DENSITY LIPOPROTEINS that transports small hydrophobic ligands including CHOLESTEROL and STEROLS. It occurs in the macromolecular complex with LECITHIN CHOLESTEROL ACYLTRANSFERASE. Apo D is expressed in and secreted from a variety of tissues such as liver, placenta, brain tissue and others.
Proteins prepared by recombinant DNA technology.
Photosensitive proteins expressed in the ROD PHOTORECEPTOR CELLS. They are the protein components of rod photoreceptor pigments such as RHODOPSIN.
The force acting on the surface of a liquid, tending to minimize the area of the surface. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
Rhodopsins found in the PURPLE MEMBRANE of halophilic archaea such as HALOBACTERIUM HALOBIUM. Bacteriorhodopsins function as an energy transducers, converting light energy into electrochemical energy via PROTON PUMPS.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA.
A plant genus of the family POACEAE. The EDIBLE GRAIN, barley, is widely used as food.
Electrophoresis in which agar or agarose gel is used as the diffusion medium.
Measurement of the intensity and quality of fluorescence.
A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
A semisynthetic alkylated ESTRADIOL with a 17-alpha-ethinyl substitution. It has high estrogenic potency when administered orally, and is often used as the estrogenic component in ORAL CONTRACEPTIVES.
Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
An order of photosynthetic bacteria representing a physiological community of predominantly aquatic bacteria.
A method of gel filtration chromatography using agarose, the non-ionic component of agar, for the separation of compounds with molecular weights up to several million.
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A layer of the peritoneum which attaches the abdominal viscera to the ABDOMINAL WALL and conveys their blood vessels and nerves.
Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein.
Catalytically active enzymes that are formed by the combination of an apoenzyme (APOENZYMES) and its appropriate cofactors and prosthetic groups.
A proteolytic enzyme obtained from Streptomyces griseus.
A class of enzymes that catalyze the cleavage of C-C, C-O, and C-N, and other bonds by other means than by hydrolysis or oxidation. (Enzyme Nomenclature, 1992) EC 4.
Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen.
The general name for a group of fat-soluble pigments found in green, yellow, and leafy vegetables, and yellow fruits. They are aliphatic hydrocarbons consisting of a polyisoprene backbone.
A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
A copper-containing plant protein that is a fundamental link in the electron transport chain of green plants during the photosynthetic conversion of light energy by photophosphorylation into the potential energy of chemical bonds.
The primary plant photoreceptor responsible for perceiving and mediating responses to far-red light. It is a PROTEIN-SERINE-THREONINE KINASE that is translocated to the CELL NUCLEUS in response to light signals.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
An enzyme of the transferase class that catalyzes condensation of the succinyl group from succinyl coenzyme A with glycine to form delta-aminolevulinate. It is a pyridoxyal phosphate protein and the reaction occurs in mitochondria as the first step of the heme biosynthetic pathway. The enzyme is a key regulatory enzyme in heme biosynthesis. In liver feedback is inhibited by heme. EC 2.3.1.37.
The absence of light.
Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol.
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Oil from ZEA MAYS or corn plant.
A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS. It contains a cofactor for LIPOPROTEIN LIPASE and activates several triacylglycerol lipases. The association of Apo C-II with plasma CHYLOMICRONS; VLDL, and HIGH-DENSITY LIPOPROTEINS is reversible and changes rapidly as a function of triglyceride metabolism. Clinically, Apo C-II deficiency is similar to lipoprotein lipase deficiency (HYPERLIPOPROTEINEMIA TYPE I) and is therefore called hyperlipoproteinemia type IB.
An autosomal recessively inherited disorder characterized by the accumulation of intermediate-density lipoprotein (IDL or broad-beta-lipoprotein). IDL has a CHOLESTEROL to TRIGLYCERIDES ratio greater than that of VERY-LOW-DENSITY LIPOPROTEINS. This disorder is due to mutation of APOLIPOPROTEINS E, a receptor-binding component of VLDL and CHYLOMICRONS, resulting in their reduced clearance and high plasma levels of both cholesterol and triglycerides.
Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point.
Treatment process involving the injection of fluid into an organ or tissue.
An autosomal recessively inherited disorder caused by mutation of LECITHIN CHOLESTEROL ACYLTRANSFERASE that facilitates the esterification of lipoprotein cholesterol and subsequent removal from peripheral tissues to the liver. This defect results in low HDL-cholesterol level in blood and accumulation of free cholesterol in tissue leading to a triad of CORNEAL OPACITY, hemolytic anemia (ANEMIA, HEMOLYTIC), and PROTEINURIA.
Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes.
A large multisubunit protein complex found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to catalyze the splitting of WATER into DIOXYGEN and of reducing equivalents of HYDROGEN.
A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis.
A large group of cytochrome P-450 (heme-thiolate) monooxygenases that complex with NAD(P)H-FLAVIN OXIDOREDUCTASE in numerous mixed-function oxidations of aromatic compounds. They catalyze hydroxylation of a broad spectrum of substrates and are important in the metabolism of steroids, drugs, and toxins such as PHENOBARBITAL, carcinogens, and insecticides.
Cholesterol which is contained in or bound to low density lipoproteins (LDL), including CHOLESTEROL ESTERS and free cholesterol.
Condensation products of aromatic amines and aldehydes forming azomethines substituted on the N atom, containing the general formula R-N:CHR. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.
An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Organic compounds that contain the (-NH2OH) radical.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS.
Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.
A colorless inorganic compound (HONH2) used in organic synthesis and as a reducing agent, due to its ability to donate nitric oxide.
A standard reagent for the determination of reactive sulfhydryl groups by absorbance measurements. It is used primarily for the determination of sulfhydryl and disulfide groups in proteins. The color produced is due to the formation of a thio anion, 3-carboxyl-4-nitrothiophenolate.
A PULMONARY ALVEOLI-filling disease, characterized by dense phospholipoproteinaceous deposits in the alveoli, cough, and DYSPNEA. This disease is often related to, congenital or acquired, impaired processing of PULMONARY SURFACTANTS by alveolar macrophages, a process dependent on GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR.
A large multisubunit protein complex that is found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to drive electron transfer reactions that result in either the reduction of NADP to NADPH or the transport of PROTONS across the membrane.
A heterotrimeric GTP-binding protein that mediates the light activation signal from photolyzed rhodopsin to cyclic GMP phosphodiesterase and is pivotal in the visual excitation process. Activation of rhodopsin on the outer membrane of rod and cone cells causes GTP to bind to transducin followed by dissociation of the alpha subunit-GTP complex from the beta/gamma subunits of transducin. The alpha subunit-GTP complex activates the cyclic GMP phosphodiesterase which catalyzes the hydrolysis of cyclic GMP to 5'-GMP. This leads to closure of the sodium and calcium channels and therefore hyperpolarization of the rod cells. EC 3.6.1.-.
Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group.
Constituent composed of protein and phospholipid that is widely distributed in many tissues. It serves as a cofactor with factor VIIa to activate factor X in the extrinsic pathway of blood coagulation.
Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations.
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis.
The protein components of ferritins. Apoferritins are shell-like structures containing nanocavities and ferroxidase activities. Apoferritin shells are composed of 24 subunits, heteropolymers in vertebrates and homopolymers in bacteria. In vertebrates, there are two types of subunits, light chain and heavy chain. The heavy chain contains the ferroxidase activity.
An individual in which both alleles at a given locus are identical.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.

The main symptom of abetalipoproteinemia is a complete absence of chylomicrons, which are small particles that carry triglycerides and other lipids in the bloodstream. This results in low levels of triglycerides and other lipids in the blood, as well as an impaired ability to absorb vitamins and other nutrients from food.

Abetalipoproteinemia is usually diagnosed during infancy or early childhood, when symptoms such as fatigue, weakness, and poor growth become apparent. The disorder can be identified through blood tests that measure lipid levels and genetic analysis.

Treatment for abetalipoproteinemia typically involves a combination of dietary changes and supplements to ensure adequate nutrition and prevent complications such as malnutrition and liver disease. In some cases, medications may be prescribed to lower triglyceride levels or improve the absorption of fat-soluble vitamins.

The prognosis for abetalipoproteinemia varies depending on the severity of the disorder and the presence of any complications. In general, early diagnosis and appropriate treatment can help to manage symptoms and prevent long-term health problems. However, some individuals with abetalipoproteinemia may experience ongoing health issues throughout their lives.

There are several types of hyperlipidemia, including:

1. High cholesterol: This is the most common type of hyperlipidemia and is characterized by elevated levels of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol.
2. High triglycerides: This type of hyperlipidemia is characterized by elevated levels of triglycerides in the blood. Triglycerides are a type of fat found in the blood that is used for energy.
3. Low high-density lipoprotein (HDL) cholesterol: HDL cholesterol is known as "good" cholesterol because it helps remove excess cholesterol from the bloodstream and transport it to the liver for excretion. Low levels of HDL cholesterol can contribute to hyperlipidemia.

Symptoms of hyperlipidemia may include xanthomas (fatty deposits on the skin), corneal arcus (a cloudy ring around the iris of the eye), and tendon xanthomas (tender lumps under the skin). However, many people with hyperlipidemia have no symptoms at all.

Hyperlipidemia can be diagnosed through a series of blood tests that measure the levels of different types of cholesterol and triglycerides in the blood. Treatment for hyperlipidemia typically involves dietary changes, such as reducing intake of saturated fats and cholesterol, and increasing physical activity. Medications such as statins, fibric acid derivatives, and bile acid sequestrants may also be prescribed to lower cholesterol levels.

In severe cases of hyperlipidemia, atherosclerosis (hardening of the arteries) can occur, which can lead to cardiovascular disease, including heart attacks and strokes. Therefore, it is important to diagnose and treat hyperlipidemia early on to prevent these complications.

The most common form of hypolipoproteinemia is familial hypobetalipoproteinemia (FHBL), which is caused by mutations in the gene encoding apoB, a protein component of low-density lipoproteins (LDL). People with FHBL have extremely low levels of LDL cholesterol and often develop symptoms such as fatty liver disease, liver cirrhosis, and cardiovascular disease.

Another form of hypolipoproteinemia is familial hypoalphalipoproteinemia (FHAL), which is caused by mutations in the gene encoding apoA-I, a protein component of high-density lipoproteins (HDL). People with FHAL have low levels of HDL cholesterol and often develop symptoms such as cardiovascular disease and premature coronary artery disease.

Hypolipoproteinemia can be diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment for the disorder typically involves managing associated symptoms and reducing lipid levels through diet, exercise, and medication. In some cases, liver transplantation may be necessary.

Prevention of hypolipoproteinemia is challenging, as it is often inherited in an autosomal recessive pattern, meaning that both parents must be carriers of the mutated gene to pass it on to their children. However, genetic counseling and testing can help identify carriers and allow for informed family planning.

Overall, hypolipoproteinemia is a rare and complex group of disorders that affect lipid metabolism and transport. While treatment and management options are available, prevention and early diagnosis are key to reducing the risk of complications associated with these disorders.

The condition is caused by mutations in genes that code for enzymes involved in lipid metabolism, such as ACY1 and APOB100. These mutations lead to a deficiency in the breakdown and transport of lipids in the body, resulting in the accumulation of chylomicrons and other lipoproteins in the blood.

Symptoms of hyperlipoproteinemia Type IV can include abdominal pain, fatigue, and joint pain, as well as an increased risk of pancreatitis and cardiovascular disease. Treatment typically involves a combination of dietary modifications, such as reducing intake of saturated fats and cholesterol, and medications to lower lipid levels. In severe cases, liver transplantation may be necessary.

Hyperlipoproteinemia Type IV is a rare disorder, and the prevalence is not well-defined. However, it is estimated to affect approximately 1 in 100,000 individuals worldwide. The condition can be diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis.

In summary, hyperlipoproteinemia Type IV is a rare genetic disorder that affects the metabolism of lipids and lipoproteins in the body, leading to elevated levels of chylomicrons and other lipoproteins in the blood, as well as low levels of HDL. The condition can cause a range of symptoms and is typically treated with dietary modifications and medications.

There are several types of hyperlipoproteinemias, each with distinct clinical features and laboratory findings. The most common forms include:

1. Familial hypercholesterolemia (FH): This is the most common type of hyperlipoproteinemia, caused by mutations in the LDLR gene that codes for the low-density lipoprotein receptor. FH is characterized by extremely high levels of low-density lipoprotein (LDL) cholesterol in the blood, which can lead to premature cardiovascular disease, including heart attacks and strokes.
2. Familial hypobetalipoproteinemia (FHBL): This rare disorder is caused by mutations in the APOB100 gene that codes for a protein involved in lipid metabolism. FHBL is characterized by very low levels of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, as well as a deficiency of Apolipoprotein B-100, a protein that helps transport lipids in the blood.
3. Hypertriglyceridemia: This condition is caused by mutations in genes that regulate triglyceride metabolism, leading to extremely high levels of triglycerides in the blood. Hypertriglyceridemia can increase the risk of pancreatitis and other health problems.
4. Lipoprotein lipase deficiency: This rare disorder is caused by mutations in the LPL gene that codes for the enzyme lipoprotein lipase, which helps break down triglycerides in the blood. Lipoprotein lipase deficiency can lead to very high levels of triglycerides and cholesterol in the blood, increasing the risk of pancreatitis and other health problems.
5. Familial dyslipidemia: This is a group of rare inherited disorders that affect lipid metabolism and can cause extremely high or low levels of various types of cholesterol and triglycerides in the blood. Some forms of familial dyslipidemia are caused by mutations in genes that code for enzymes involved in lipid metabolism, while others may be caused by unknown factors.
6. Chylomicronemia: This rare disorder is characterized by extremely high levels of chylomicrons (type of triglyceride-rich lipoprotein) in the blood, which can increase the risk of pancreatitis and other health problems. The exact cause of chylomicronemia is not fully understood, but it may be related to genetic mutations or other factors that affect lipid metabolism.
7. Hyperchylomicronemia: This rare disorder is similar to chylomicronemia, but it is characterized by extremely high levels of chylomicrons in the blood, as well as very low levels of HDL (good) cholesterol. Hyperchylomicronemia can increase the risk of pancreatitis and other health problems.
8. Hypoalphalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein A-I (ApoA-I), a protein that plays a key role in lipid metabolism and helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypoalphalipoproteinemia can increase the risk of pancreatitis and other health problems.
9. Hypobetalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein B (ApoB), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypobetalipoproteinemia can increase the risk of pancreatitis and other health problems.
10. Sitosterolemia: This rare genetic disorder is caused by mutations in the gene that codes for sterol-CoA-desmethylase (SCD), an enzyme involved in the metabolism of plant sterols. Sitosterolemia can cause elevated levels of plant sterols and sitosterol in the blood, which can increase the risk of pancreatitis and other health problems.
11. Familial hyperchylomicronemia type 1 (FHMC1): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC1 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
12. Familial hyperchylomicronemia type 2 (FHMC2): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein A-IV (APOA4), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC2 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
13. Lipoprotein (a) deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein (a), a protein that helps to regulate the levels of lipoproteins in the blood. Lipoprotein (a) deficiency can cause low levels of lipoprotein (a) and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
14. Chylomicron retention disease: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of chylomicrons in the blood. Chylomicron retention disease can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
15. Hypertriglyceridemia-apolipoprotein C-II deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of triglycerides in the blood. Hypertriglyceridemia-apolipoprotein C-II deficiency can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
16. Familial partial lipodystrophy (FPLD): This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the arms, legs, and buttocks. FPLD can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
17. Lipodystrophy: This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the face, arms, and legs. Lipodystrophy can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
18. Abetalipoproteinemia: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein B, a protein that helps to regulate the levels of lipids in the blood. Abetalipoproteinemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
19. Chylomicronemia: This rare genetic disorder is characterized by the presence of excessively large amounts of chylomicrons (type of lipid particles) in the blood. Chylomicronemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
20. Hyperlipidemia due to medications: Certain medications, such as corticosteroids and some anticonvulsants, can cause elevated levels of lipids in the blood.

It's important to note that many of these disorders are rare and may not be common causes of high triglycerides. Additionally, there may be other causes of high triglycerides that are not listed here. It's important to talk to a healthcare provider for proper evaluation and diagnosis if you have concerns about your triglyceride levels.

There are several types of blood protein disorders, including:

1. Hemophilia A: a deficiency of factor VIII, which is necessary for blood clotting.
2. Hemophilia B: a deficiency of factor IX, also involved in blood clotting.
3. Von Willebrand disease: a deficiency of von Willebrand factor, which helps to platelets stick together and form blood clots.
4. Protein C deficiency: a lack of protein C, an anticoagulant protein that helps to prevent blood clots.
5. Protein S deficiency: a lack of protein S, another anticoagulant protein that helps to prevent blood clots.
6. Antithrombin III deficiency: a lack of antithrombin III, a protein that prevents the formation of blood clots.
7. Fibrinogen deficiency: a lack of fibrinogen, a protein that is essential for blood clotting.
8. Dysproteinemia: an abnormal amount or type of proteins in the blood, which can lead to various symptoms and complications.

Symptoms of blood protein disorders can vary depending on the specific condition and the severity of the deficiency. Common symptoms include easy bruising or bleeding, frequent nosebleeds, prolonged bleeding after injuries or surgery, and joint pain or swelling.

Treatment for blood protein disorders typically involves replacing the missing protein or managing symptoms with medication or lifestyle changes. In some cases, gene therapy may be an option to correct the underlying genetic defect.

It's important for individuals with blood protein disorders to work closely with their healthcare provider to manage their condition and prevent complications such as joint damage, infections, and bleeding episodes.

The condition is caused by mutations in the genes that code for proteins involved in lipid metabolism, such as the LDL receptor gene or the apoB100 gene. These mutations lead to a deficiency of functional LDL receptors on the surface of liver cells, which results in reduced clearance of LDL cholesterol from the blood and increased levels of LDL-C.

The main symptom of hyperlipoproteinemia type III is very high levels of LDL-C (>500 mg/dL) and low levels of HDL-C (<20 mg/dL). Other signs and symptoms may include xanthomas (fatty deposits in the skin), corneal arcus (a cloudy ring around the cornea of the eye), and an increased risk of cardiovascular disease.

Treatment for hyperlipoproteinemia type III typically involves a combination of dietary changes, such as reducing intake of saturated fats and cholesterol, and medications, such as statins or other lipid-lowering drugs, to lower LDL-C levels. In severe cases, a liver transplant may be necessary.

Hyperlipoproteinemia type III is an autosomal dominant disorder, meaning that a single copy of the mutated gene is enough to cause the condition. It is important to identify and treat individuals with this condition early to prevent or delay the development of cardiovascular disease.

The primary symptom of LCAT deficiency is a high level of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, in the blood. This can lead to the development of cholesterol deposits in the skin, eyes, and other tissues, which can cause a range of health problems including xanthomas (yellowish patches on the skin), corneal arcus (a cloudy ring around the cornea of the eye), and xanthelasma (yellowish patches on the eyelids).

Treatment for LCAT deficiency typically involves a combination of dietary changes, such as reducing intake of saturated fats and cholesterol, and medication to lower cholesterol levels. In some cases, liver transplantation may be necessary.

Prevention of LCAT deficiency is not possible, as it is a genetic disorder that is inherited in an autosomal recessive pattern. This means that a child must inherit two copies of the mutated LCAT gene, one from each parent, to develop the condition. However, early detection and treatment can help manage the symptoms and prevent complications.

The diagnosis of LCAT deficiency is based on a combination of clinical features, laboratory tests, and genetic analysis. Laboratory tests may include measurements of lipid levels in the blood, as well as assays for LCAT enzyme activity. Genetic testing can identify the presence of mutations in the LCAT gene that cause the condition.

Overall, LCAT deficiency is a rare and potentially serious genetic disorder that affects the body's ability to metabolize cholesterol and other fats. Early diagnosis and treatment can help manage the symptoms and prevent complications, but there is currently no cure for the condition.

Arteriosclerosis can affect any artery in the body, but it is most commonly seen in the arteries of the heart, brain, and legs. It is a common condition that affects millions of people worldwide and is often associated with aging and other factors such as high blood pressure, high cholesterol, diabetes, and smoking.

There are several types of arteriosclerosis, including:

1. Atherosclerosis: This is the most common type of arteriosclerosis and occurs when plaque builds up inside the arteries.
2. Arteriolosclerosis: This type affects the small arteries in the body and can cause decreased blood flow to organs such as the kidneys and brain.
3. Medial sclerosis: This type affects the middle layer of the artery wall and can cause stiffness and narrowing of the arteries.
4. Intimal sclerosis: This type occurs when plaque builds up inside the innermost layer of the artery wall, causing it to become thick and less flexible.

Symptoms of arteriosclerosis can include chest pain, shortness of breath, leg pain or cramping during exercise, and numbness or weakness in the limbs. Treatment for arteriosclerosis may include lifestyle changes such as a healthy diet and regular exercise, as well as medications to lower blood pressure and cholesterol levels. In severe cases, surgery may be necessary to open up or bypass blocked arteries.

The primary symptom of PAP is shortness of breath (dyspnea), which can range from mild to severe and may be accompanied by coughing, wheezing, and chest tightness. PAP can also lead to respiratory failure, which can be life-threatening if left untreated.

The diagnosis of PAP is based on a combination of clinical symptoms, physical examination findings, and diagnostic tests such as chest radiographs (X-rays), computed tomography (CT) scans, and lung biopsy. A lung biopsy is the most definitive test for PAP, allowing for the identification of characteristic pathological features such as the accumulation of lipoproteinaceous material within the air spaces of the lungs.

Treatment options for PAP include surgical lung biopsy to obtain a definitive diagnosis and monitor disease progression, chest radiation therapy to reduce symptoms and slow disease progression, and medications such as corticosteroids to modulate the immune system and reduce inflammation. In severe cases, lung transplantation may be necessary.

The prognosis for PAP varies depending on the severity of the disease and response to treatment. With appropriate therapy, many patients with PAP can achieve stabilization of their symptoms and improved lung function. However, some patients may experience recurrent episodes of disease exacerbation and may require long-term management and monitoring.

There are several types of hypercholesterolemia, including:

1. Familial hypercholesterolemia: This is an inherited condition that causes high levels of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, in the blood.
2. Non-familial hypercholesterolemia: This type of hypercholesterolemia is not inherited and can be caused by a variety of factors, such as a high-fat diet, lack of exercise, obesity, and certain medical conditions, such as hypothyroidism or polycystic ovary syndrome (PCOS).
3. Mixed hypercholesterolemia: This type of hypercholesterolemia is characterized by high levels of both LDL and high-density lipoprotein (HDL) cholesterol in the blood.

The diagnosis of hypercholesterolemia is typically made based on a physical examination, medical history, and laboratory tests, such as a lipid profile, which measures the levels of different types of cholesterol and triglycerides in the blood. Treatment for hypercholesterolemia usually involves lifestyle changes, such as a healthy diet and regular exercise, and may also include medication, such as statins, to lower cholesterol levels.

The condition is caused by mutations in the genes that code for proteins involved in cholesterol transport and metabolism, such as the low-density lipoprotein receptor gene (LDLR) or the PCSK9 gene. These mutations lead to a decrease in the ability of the liver to remove excess cholesterol from the bloodstream, resulting in high levels of LDL cholesterol and low levels of HDL cholesterol.

Hyperlipoproteinemia type II is usually inherited in an autosomal dominant pattern, meaning that a single copy of the mutated gene is enough to cause the condition. However, some cases can be caused by spontaneous mutations or incomplete penetrance, where not all individuals with the mutated gene develop the condition.

Symptoms of hyperlipoproteinemia type II can include xanthomas (yellowish deposits of cholesterol in the skin), corneal arcus (a white, waxy deposit on the iris of the eye), and tendon xanthomas (small, soft deposits of cholesterol under the skin). Treatment typically involves a combination of dietary changes and medication to lower LDL cholesterol levels and increase HDL cholesterol levels. In severe cases, liver transplantation may be necessary.

Hyperlipoproteinemia type II is a serious condition that can lead to cardiovascular disease, including heart attacks, strokes, and peripheral artery disease. Early diagnosis and treatment are important to prevent or delay the progression of the disease and reduce the risk of complications.

Look up apoprotein or apoproteins in Wiktionary, the free dictionary. Apoprotein may refer to: Apoenzyme, the protein part of ... that is a constituent of the plasma lipoprotein This disambiguation page lists articles associated with the title Apoprotein. ...
1985). "AIMilano apoprotein identification of the complete kindred and evidence of a dominant genetic transmission". Am. J. Hum ... Franceschini G, Sirtori CR, Capurso A, Weisgraber KH, Mahley RW (1980). "A-IMilano apoprotein. Decreased high density ...
... is a holoprotein composed of two distinct units, the apoprotein that is called apoaequorin, which has an approximate ... It was later discovered that the apoprotein can stably bind coelenterazine-2-hydroperoxide, and oxygen is required for the ... recombinant expression yields only the apoprotein. Therefore it is necessary to add coelenterazine into the culture medium of ...
"Apoprotein manufacturing and methods for protein purification". Office of Innovation and Economic Development. Ohio State ...
Opsin refers strictly to the apoprotein (without bound retinal). When an opsin binds retinal to form a holoprotein, it is ...
The chromophore is unreactive when bound to the apoprotein. Upon its release, it reacts to form 1,4-didehydrobenzene and ... Chromoprotein enediynes are characterized by an unstable chromophore enediyne bound to an apoprotein. ...
Transport of the apoprotein from the cytoplasm to the periplasm happens via the Sec translocation system. CcmH is used by the ... Apoprotein transport occurs via the Sec translocon as well. Fungal, vertebrate and invertebrate mitochondria produce cytochrome ...
"Isolation and characterization of the human pulmonary surfactant apoprotein gene". Nature. 317 (6035): 361-3. Bibcode:1985Natur ...
Rüdiger, Wolfhart; O'Carra, Pádraig (1969). "Studies on the Structures and Apoprotein Linkages of the Phycobilins". European ...
"Isolation and characterization of the human pulmonary surfactant apoprotein gene". Nature. 317 (6035): 361-3. Bibcode:1985Natur ...
ApoB is an integral apoprotein whereas the others are peripheral apoproteins. Apolipoprotein synthesis such as ApoA4 in ...
Rees, A; Shoulders, CC; Stocks, J; Galton, DJ; Baralle, FE (1983). "DNA polymorphism adjacent to human apoprotein A1 gene: ...
Significant interindividual variability in CYP2A6 apoprotein and mRNA levels has been observed. CYP2A6 is known to be inducible ...
"DNA polymorphism adjacent to human apoprotein A-1 gene: relation to hypertriglyceridaemia". Lancet. 321 (8322): 444-446. doi: ...
Rees A, Shoulders CC, Stocks J, Galton DJ, Baralle FE (February 1983). "DNA polymorphism adjacent to human apoprotein A-1 gene ...
... are the chromophores that bind through a covalent thioether bond to their apoproteins at cysteins residues. The apoprotein with ...
After translation, SDHA subunit is translocated as apoprotein into the mitochondrial matrix. Subsequently, one of the first ...
"Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors". Current Biology. 29 (17): 2961-2969.e4. doi ...
September 2019). "Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors". Current Biology. 29 (17 ...
During the decay of Meta II, the Schiff base link that normally holds all-trans-retinal and the apoprotein opsin (aporhodopsin ... September 2019). "Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors". Current Biology. 29 (17 ... consisting of retinal and an apoprotein, he called it opsin, which today would be described more narrowly as apo-rhodopsin. ...
September 2019). "Chromophore-Independent Roles of Opsin Apoproteins in Drosophila Mechanoreceptors". Current Biology. 29 (17 ...
When not bound to iron, transferrin is known as "apotransferrin" (see also apoprotein). Transferrins are glycoproteins that are ...
"Amino acid sequence of amyloid-related apoprotein (apoSAA1) from human high-density lipoprotein". Biochemistry. 21 (14): 3298- ...
A holoprotein or conjugated protein is an apoprotein combined with its prosthetic group. Some enzymes do not need additional ... 17 Enzymes that require a cofactor but do not have one bound are called apoenzymes or apoproteins. An enzyme together with the ...
Apoprotein-B inhibitor mipomersen (approved by the FDA in 2013 homozygous familial hypercholesterolemia.). Bempedoic acid, an ...
Hills, BA (1994). "Release of surfactant and a myelin proteolipid apoprotein in spinal tissue by decompression". Undersea & ...
Primary hyperlipoproteinemia Familial apoprotein CII deficiency List of cutaneous conditions Santamarina-Fojo, S (1998). " ...
February 1987). "Malabsorption, hypocholesterolemia, and fat-filled enterocytes with increased intestinal apoprotein B. ...
... at which point breakdown of the apoprotein occurs. An important enzyme in the breakdown of the apoprotein is FtsH6, which ... Chlorophyll is located in the thylakoid membrane of the chloroplast and it is composed of an apoprotein along with several ...
Nabika T, Nasreen S, Kobayashi S, Masuda J (December 2002). "The genetic effect of the apoprotein AV gene on the serum ...
photopigment apoprotein. Additional Information & Resources. Tests Listed in the Genetic Testing Registry. *Tests of OPN1MW ...
Apoproteins / chemistry * Apoproteins / genetics * Binding Sites * Conserved Sequence * Crystallography, X-Ray * Guanine ...
Additional physical education and plasma lipids and apoproteins: a 3-year intervention study. Pediatr Exercise Sci 1994;6:128- ...
5d), SynAstaP could be obtained only as an apoprotein lacking any absorbance in the visible spectral region (Fig. 5e). Thus, ... We expressed the 13C/15N-labeled AstaPo1 apoprotein and complexed it with the unlabeled chemically pure AXT. After extensive ... The poor quality of NMR spectra and limited stability of the apoprotein did not allow direct structure determination. However, ...
Additional physical education and plasma lipids and apoproteins: a 3-year intervention study. Pediatr Exercise Sci 1994;6:128- ...
Purified apo A-I, the major apoprotein of HDL, increased ET-1 secretion and translation approximately 85% as potently as HDL. ...
Valimaki M, Maass L, Harno K, Nikkila EA "Lipoprotein lipids and apoproteins during beta-blocker administration: comparison of ...
... or surfactant apoprotein A (Dako, https://www.agilent.com), followed by the anti-SARS-CoV nucleocapsid antibody (Novus ...
L-Proline and L-Lysine tend to form a barrierlike layer around the apoprotein (a) particle, helping to push it away from the ... Researchers have recently identified a particle associated with LDL called apoprotein (a) which is believed to be a main ...
Specifically, the lipoproteins apoprotein B (ApoB)-48 and ApoB-100 are deficient because of either abnormal assembly or ...
Enzymes that require a cofactor but do not have one bound are called apoenzymes or apoproteins. An apoenzyme together with its ...
There were no significant differences in fasting serum lipoproteins, glucose, insulin, HbA1c, apoproteins and MDA at baseline ...
Apoprotein (B). Apoproteins B. Tree number(s):. D10.532.091.300. D12.776.070.400.300. D12.776.521.120.300. ...
Creatine kinase-MB, troponin-I, troponin-T, T3, thyroxine, apoprotein-B, and homocysteine all exhibited a noteworthy difference ... Comparison of Creatine Kinase-MB, Troponin-I, Troponin-T, Triiodothyronine, Thyroxine, Apoprotein-B and Homocysteine between ... apoprotein-B, p=0.008; and homocysteine, p=0.039. It has been found that significant differences exist between smokers and non- ...
Human Apoprotein A2 (apo - A2) ELISA. QY-E05618 Qayee Biotechnology 96T. EUR 433.2 ...
Characteristics associated with apoprotein and lipoprotein lipid levels in middle-aged women. Arteriosclerosis. 1988 Sep-Oct; 8 ... Potential for increasing high-density lipoprotein cholesterol, subfractions HDL2-C and HDL3-C, and apoprotein AI among middle- ...
... or afford protection against either mercurial since over-expressed heme-dependent torC may be in the apoprotein form [58]. ...
Apoprotein C-II Term UI T096121. LexicalTag NON. ThesaurusID NLM (2007). Apolipoprotein C-2 Term UI T096119. LexicalTag NON. ... Apoproteins [D12.776.070] * Apolipoproteins [D12.776.070.400] * Apolipoproteins C [D12.776.070.400.400] * Apolipoprotein C-I [ ... Apoprotein C-II Registry Number. 0. Previous Indexing. Apolipoproteins C (1977-2006). See Also. Hyperlipoproteinemia Type I. ...
臺北醫學大學為提昇學術研究及教學在統計分析方面的水準,特依臺北醫學大學研究
In the first, high density lipoprotein apoproteins were radioiodinated in situ in the lipoprotein particle (endogenous ... In the first, high density lipoprotein apoproteins were radioiodinated in situ in the lipoprotein particle (endogenous ... In the first, high density lipoprotein apoproteins were radioiodinated in situ in the lipoprotein particle (endogenous ... In the first, high density lipoprotein apoproteins were radioiodinated in situ in the lipoprotein particle (endogenous ...
The association of Apoprotein E polymorphisms with recurrent pregnancy loss. American journal of reproductive immunology (New ...
Such proteins are known as conjugated proteins". The protein part is known as "apoprotein". The non-protein component is ...
... phraseologic apoprotein provided sildenafil generic cost that chuckleheads carnified underneath viagra zoll yourselves self- ...
Serum apoproteins A and B and the lecithin: Cholesterol acyl transferase activities in liver cirrhosis and hepatic coma ...
Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site ...
Familial amyloid polyneuropathy Familial apoprotein CII deficiency Familial combined hyperlipidemia (multiple-type ... ...
  • Valimaki M, Maass L, Harno K, Nikkila EA "Lipoprotein lipids and apoproteins during beta-blocker administration: comparison of penbutolol and atenolol. (drugs.com)
  • Potential for increasing high-density lipoprotein cholesterol, subfractions HDL2-C and HDL3-C, and apoprotein AI among middle-age women. (uchicago.edu)
  • Characteristics associated with apoprotein and lipoprotein lipid levels in middle-aged women. (uchicago.edu)
  • In the first, high density lipoprotein apoproteins were radioiodinated in situ in the lipoprotein particle (endogenous apoprotein labeling) while in the second, individually labeled apolipoprotein A-I or A-II was incorporated into the particle by in vitro incubation (exogenous apoprotein labeling). (houstonmethodist.org)
  • Lipids and apoproteins are analyzed on the Roche Diagnostics c501 automated chemistry analyzer. (wustl.edu)
  • A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A expression in the micropapillary pattern is an excellent indicator of a poor prognosis. (nih.gov)
  • It was noteworthy that the disease-free interval in patients with high surfactant apoprotein A expression was significantly better than in patients with low surfactant apoprotein A expression (P=0.03), and no recurrence or death occurred in patients with high surfactant apoprotein A expression. (nih.gov)
  • High MUC1 expression on the surface is an important characteristic of a micropapillary pattern, and reduced surfactant apoprotein A expression in the micropapillary pattern may be an excellent indicator for poor prognosis in small-size lung adenocarcinoma. (nih.gov)
  • Surfactant is a complex lipoprotein (see the image below) composed of six phospholipids and four apoproteins. (medscape.com)
  • Among the four surfactant apoproteins identified, surfactant protein B (SP-B) and SP-C are two small hydrophobic proteins that make up 2-4% of the surfactant mass and are present in commercially available surfactant preparations. (medscape.com)
  • 19. Combined status of MUC1 mucin and surfactant apoprotein A expression can predict the outcome of patients with small-size lung adenocarcinoma. (nih.gov)
  • Research findings of Dr. Fredrickson and colleagues have also included the discovery of several previously unknown apolipo-proteins, and new knowledge including descriptions concerning the structure and function of various apoproteins. (nih.gov)
  • Nov. 4, 2003 - Infusion of the Milano apoprotein A rapidly causes regression of atherosclerosis in patients with acute coronary syndromes (ACS), according to the results of a preliminary randomized trial published in the Nov. 5 issue of The Journal of the American Medical Association. (medscape.com)
  • Nous avons réalisé un essai en double aveugle contre placebo sur 50 patients atteints de diabète de type 2 randomisés pour recevoir 2 g/jour d'acides gras oméga 3 purifiés ou un placebo pendant 10 semaines. (who.int)