A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.
A group of apolipoproteins that can readily exchange among the various classes of lipoproteins (HDL; VLDL; CHYLOMICRONS). After lipolysis of TRIGLYCERIDES on VLDL and chylomicrons, Apo-C proteins are normally transferred to HDL. The subtypes can modulate remnant binding to receptors, LECITHIN CHOLESTEROL ACYLTRANSFERASE, or LIPOPROTEIN LIPASE.
Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES.
A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS and CHYLOMICRON REMNANTS. Apo C-III, synthesized in the liver, is an inhibitor of LIPOPROTEIN LIPASE. Apo C-III modulates the binding of chylomicron remnants and VLDL to receptors (RECEPTORS, LDL) thus decreases the uptake of triglyceride-rich particles by the liver cells and subsequent degradation. The normal Apo C-III is glycosylated. There are several polymorphic forms with varying amounts of SIALIC ACID (Apo C-III-0, Apo C-III-1, and Apo C-III-2).
A 34-kDa glycosylated protein. A major and most common isoform of apolipoprotein E. Therefore, it is also known as apolipoprotein E (ApoE). In human, Apo E3 is a 299-amino acid protein with a cysteine at the 112 and an arginine at the 158 position. It is involved with the transport of TRIGLYCERIDES; PHOSPHOLIPIDS; CHOLESTEROL; and CHOLESTERYL ESTERS in and out of the cells.
Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA.
The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.
The second most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. It has a high lipid affinity and is known to displace APOLIPOPROTEIN A-I from HDL particles and generates a stable HDL complex. ApoA-II can modulate the activation of LECITHIN CHOLESTEROL ACYLTRANSFERASE in the presence of APOLIPOPROTEIN A-I, thus affecting HDL metabolism.
A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS. It contains a cofactor for LIPOPROTEIN LIPASE and activates several triacylglycerol lipases. The association of Apo C-II with plasma CHYLOMICRONS; VLDL, and HIGH-DENSITY LIPOPROTEINS is reversible and changes rapidly as a function of triglyceride metabolism. Clinically, Apo C-II deficiency is similar to lipoprotein lipase deficiency (HYPERLIPOPROTEINEMIA TYPE I) and is therefore called hyperlipoproteinemia type IB.
A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases.
A glycoprotein component of HIGH-DENSITY LIPOPROTEINS that transports small hydrophobic ligands including CHOLESTEROL and STEROLS. It occurs in the macromolecular complex with LECITHIN CHOLESTEROL ACYLTRANSFERASE. Apo D is expressed in and secreted from a variety of tissues such as liver, placenta, brain tissue and others.
A 6.6-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS; INTERMEDIATE-DENSITY LIPOPROTEINS; and HIGH-DENSITY LIPOPROTEINS. Apo C-I displaces APO E from lipoproteins, modulate their binding to receptors (RECEPTORS, LDL), and thereby decrease their clearance from plasma. Elevated Apo C-I levels are associated with HYPERLIPOPROTEINEMIA and ATHEROSCLEROSIS.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
A 513-kDa protein synthesized in the LIVER. It serves as the major structural protein of low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). It is the ligand for the LDL receptor (RECEPTORS, LDL) that promotes cellular binding and internalization of LDL particles.
A 241-kDa protein synthesized only in the INTESTINES. It serves as a structural protein of CHYLOMICRONS. Its exclusive association with chylomicron particles provides an indicator of intestinally derived lipoproteins in circulation. Apo B-48 is a shortened form of apo B-100 and lacks the LDL-receptor region.
Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol.
Intermediate-density subclass of the high-density lipoproteins, with particle sizes between 7 to 8 nm. As the larger lighter HDL2 lipoprotein, HDL3 lipoprotein is lipid-rich.
An autosomal recessively inherited disorder caused by mutation of ATP-BINDING CASSETTE TRANSPORTERS involved in cellular cholesterol removal (reverse-cholesterol transport). It is characterized by near absence of ALPHA-LIPOPROTEINS (high-density lipoproteins) in blood. The massive tissue deposition of cholesterol esters results in HEPATOMEGALY; SPLENOMEGALY; RETINITIS PIGMENTOSA; large orange tonsils; and often sensory POLYNEUROPATHY. The disorder was first found among inhabitants of Tangier Island in the Chesapeake Bay, MD.
An enzyme secreted from the liver into the plasma of many mammalian species. It catalyzes the esterification of the hydroxyl group of lipoprotein cholesterol by the transfer of a fatty acid from the C-2 position of lecithin. In familial lecithin:cholesterol acyltransferase deficiency disease, the absence of the enzyme results in an excess of unesterified cholesterol in plasma. EC 2.3.1.43.
A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues.
Chemical analysis based on the phenomenon whereby light, passing through a medium with dispersed particles of a different refractive index from that of the medium, is attenuated in intensity by scattering. In turbidimetry, the intensity of light transmitted through the medium, the unscattered light, is measured. In nephelometry, the intensity of the scattered light is measured, usually, but not necessarily, at right angles to the incident light beam.
A superfamily of large integral ATP-binding cassette membrane proteins whose expression pattern is consistent with a role in lipid (cholesterol) efflux. It is implicated in TANGIER DISEASE characterized by accumulation of cholesteryl ester in various tissues.
Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis.
Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point.
Cell surface proteins that bind lipoproteins with high affinity. Lipoprotein receptors in the liver and peripheral tissues mediate the regulation of plasma and cellular cholesterol metabolism and concentration. The receptors generally recognize the apolipoproteins of the lipoprotein complex, and binding is often a trigger for endocytosis.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
A class of lipoproteins that carry dietary CHOLESTEROL and TRIGLYCERIDES from the SMALL INTESTINE to the tissues. Their density (0.93-1.006 g/ml) is the same as that of VERY-LOW-DENSITY LIPOPROTEINS.
Cholesterol which is contained in or bound to low density lipoproteins (LDL), including CHOLESTEROL ESTERS and free cholesterol.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
Centrifugation with a centrifuge that develops centrifugal fields of more than 100,000 times gravity. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Conditions with abnormally low levels of LIPOPROTEINS in the blood. This may involve any of the lipoprotein subclasses, including ALPHA-LIPOPROTEINS (high-density lipoproteins); BETA-LIPOPROTEINS (low-density lipoproteins); and PREBETA-LIPOPROTEINS (very-low-density lipoproteins).
Low-density subclass of the high-density lipoproteins, with particle sizes between 8 to 13 nm.
A lipoprotein that resembles the LOW-DENSITY LIPOPROTEINS but with an extra protein moiety, APOPROTEIN (A) also known as APOLIPOPROTEIN (A), linked to APOLIPOPROTEIN B-100 on the LDL by one or two disulfide bonds. High plasma level of lipoprotein (a) is associated with increased risk of atherosclerotic cardiovascular disease.
The interstitial fluid that is in the LYMPHATIC SYSTEM.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The protein components of a number of complexes, such as enzymes (APOENZYMES), ferritin (APOFERRITINS), or lipoproteins (APOLIPOPROTEINS).
Conditions with excess LIPIDS in the blood.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34.
(Z)-9-Octadecenoic acid 1,2,3-propanetriyl ester.
A hypertriglyceridemia disorder, often with autosomal dominant inheritance. It is characterized by the persistent elevations of plasma TRIGLYCERIDES, endogenously synthesized and contained predominantly in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). In contrast, the plasma CHOLESTEROL and PHOSPHOLIPIDS usually remain within normal limits.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a choline moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and choline and 2 moles of fatty acids.
The rate dynamics in chemical or physical systems.
A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein.
Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation.
The specialty of ANALYTIC CHEMISTRY applied to assays of physiologically important substances found in blood, urine, tissues, and other biological fluids for the purpose of aiding the physician in making a diagnosis or following therapy.
Cholesterol which is contained in or bound to very low density lipoproteins (VLDL). High circulating levels of VLDL cholesterol are found in HYPERLIPOPROTEINEMIA TYPE IIB. The cholesterol on the VLDL is eventually delivered by LOW-DENSITY LIPOPROTEINS to the tissues after the catabolism of VLDL to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LDL.
A condition of elevated levels of TRIGLYCERIDES in the blood.
Proteins that bind to and transfer CHOLESTEROL ESTERS between LIPOPROTEINS such as LOW-DENSITY LIPOPROTEINS and HIGH-DENSITY LIPOPROTEINS.
A mixture of very-low-density lipoproteins (VLDL), particularly the triglyceride-poor VLDL, with slow diffuse electrophoretic mobilities in the beta and alpha2 regions which are similar to that of beta-lipoproteins (LDL) or alpha-lipoproteins (HDL). They can be intermediate (remnant) lipoproteins in the de-lipidation process, or remnants of mutant CHYLOMICRONS and VERY-LOW-DENSITY LIPOPROTEINS which cannot be metabolized completely as seen in FAMILIAL DYSBETALIPOPROTEINEMIA.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
A family of scavenger receptors that are predominately localized to CAVEOLAE of the PLASMA MEMBRANE and bind HIGH DENSITY LIPOPROTEINS.
Method of tissue preparation in which the tissue specimen is frozen and then dehydrated at low temperature in a high vacuum. This method is also used for dehydrating pharmaceutical and food products.
A semisynthetic alkylated ESTRADIOL with a 17-alpha-ethinyl substitution. It has high estrogenic potency when administered orally, and is often used as the estrogenic component in ORAL CONTRACEPTIVES.
Relating to the size of solids.
A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance.
An ACUTE PHASE REACTION protein present in low concentrations in normal sera, but found at higher concentrations in sera of older persons and in patients with AMYLOIDOSIS. It is the circulating precusor of amyloid A protein, which is found deposited in AA type AMYLOID FIBRILS.
Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
A severe type of hyperlipidemia, sometimes familial, that is characterized by the elevation of both plasma CHYLOMICRONS and TRIGLYCERIDES contained in VERY-LOW-DENSITY LIPOPROTEINS. Type V hyperlipoproteinemia is often associated with DIABETES MELLITUS and is not caused by reduced LIPOPROTEIN LIPASE activity as in HYPERLIPOPROTEINEMIA TYPE I .
An autosomal recessive disorder of lipid metabolism. It is caused by mutation of the microsomal triglyceride transfer protein that catalyzes the transport of lipids (TRIGLYCERIDES; CHOLESTEROL ESTERS; PHOSPHOLIPIDS) and is required in the secretion of BETA-LIPOPROTEINS (low density lipoproteins or LDL). Features include defective intestinal lipid absorption, very low serum cholesterol level, and near absent LDL.
A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes.
A large group of structurally diverse cell surface receptors that mediate endocytic uptake of modified LIPOPROTEINS. Scavenger receptors are expressed by MYELOID CELLS and some ENDOTHELIAL CELLS, and were originally characterized based on their ability to bind acetylated LOW-DENSITY LIPOPROTEINS. They can also bind a variety of other polyanionic ligand. Certain scavenger receptors can internalize micro-organisms as well as apoptotic cells.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
The sum of the weight of all the atoms in a molecule.
Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues.
An enzyme that catalyzes the formation of cholesterol esters by the direct transfer of the fatty acid group from a fatty acyl CoA derivative. This enzyme has been found in the adrenal gland, gonads, liver, intestinal mucosa, and aorta of many mammalian species. EC 2.3.1.26.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A subfamily in the family CEBIDAE that consists of four genera: CALLITHRIX (marmosets), CALLIMICO (Goeldi's monkey), LEONTOPITHECUS (lion tamarins), and SAGUINUS (long-tusked tamarins). The members of this family inhabit the tropical forests of South and Central America.
A highly dense subclass of the high-density lipoproteins, with particle sizes below 7 nm. They are also known as nascent HDL, composed of a few APOLIPOPROTEIN A-I molecules which are complexed with PHOSPHOLIPIDS. The lipid-poor pre-beta-HDL particles serve as progenitors of HDL3 and then HDL2 after absorption of free cholesterol from cell membranes, cholesterol esterification, and acquisition of apolipoproteins A-II, Cs, and E. Pre-beta-HDL initiate the reverse cholesterol transport process from cells to liver.
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3.
Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins.
Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking.
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.
Transport proteins that carry specific substances in the blood or across cell membranes.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An autosomal recessively inherited disorder caused by mutation of LECITHIN CHOLESTEROL ACYLTRANSFERASE that facilitates the esterification of lipoprotein cholesterol and subsequent removal from peripheral tissues to the liver. This defect results in low HDL-cholesterol level in blood and accumulation of free cholesterol in tissue leading to a triad of CORNEAL OPACITY, hemolytic anemia (ANEMIA, HEMOLYTIC), and PROTEINURIA.
A type of familial lipid metabolism disorder characterized by a variable pattern of elevated plasma CHOLESTEROL and/or TRIGLYCERIDES. Multiple genes on different chromosomes may be involved, such as the major late transcription factor (UPSTREAM STIMULATORY FACTORS) on CHROMOSOME 1.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Leukocyte differentiation antigens and major platelet membrane glycoproteins present on MONOCYTES; ENDOTHELIAL CELLS; PLATELETS; and mammary EPITHELIAL CELLS. They play major roles in CELL ADHESION; SIGNAL TRANSDUCTION; and regulation of angiogenesis. CD36 is a receptor for THROMBOSPONDINS and can act as a scavenger receptor that recognizes and transports oxidized LIPOPROTEINS and FATTY ACIDS.

Specific regional transcription of apolipoprotein E in human brain neurons. (1/5038)

In central nervous system injury and disease, apolipoprotein E (APOE, gene; apoE, protein) might be involved in neuronal injury and death indirectly through extracellular effects and/or more directly through intracellular effects on neuronal metabolism. Although intracellular effects could clearly be mediated by neuronal uptake of extracellular apoE, recent experiments in injury models in normal rodents and in mice transgenic for the human APOE gene suggest the additional possibility of intraneuronal synthesis. To examine whether APOE might be synthesized by human neurons, we performed in situ hybridization on paraffin-embedded and frozen brain sections from three nondemented controls and five Alzheimer's disease (AD) patients using digoxigenin-labeled antisense and sense cRNA probes to human APOE. Using the antisense APOE probes, we found the expected strong hybridization signal in glial cells as well as a generally fainter signal in selected neurons in cerebral cortex and hippocampus. In hippocampus, many APOE mRNA-containing neurons were observed in sectors CA1 to CA4 and the granule cell layer of the dentate gyrus. In these regions, APOE mRNA containing neurons could be observed adjacent to nonhybridizing neurons of the same cell class. APOE mRNA transcription in neurons is regionally specific. In cerebellar cortex, APOE mRNA was seen only in Bergmann glial cells and scattered astrocytes but not in Purkinje cells or granule cell neurons. ApoE immunocytochemical localization in semi-adjacent sections supported the selectivity of APOE transcription. These results demonstrate the expected result that APOE mRNA is transcribed and expressed in glial cells in human brain. The important new finding is that APOE mRNA is also transcribed and expressed in many neurons in frontal cortex and human hippocampus but not in neurons of cerebellar cortex from the same brains. This regionally specific human APOE gene expression suggests that synthesis of apoE might play a role in regional vulnerability of neurons in AD. These results also provide a direct anatomical context for hypotheses proposing a role for apoE isoforms on neuronal cytoskeletal stability and metabolism.  (+info)

Transcription factor AP-2 activity is modulated by protein kinase A-mediated phosphorylation. (2/5038)

We recently reported that APOE promoter activity is stimulated by cAMP, this effect being mediated by factor AP-2 [Garcia et al. (1996) J. Neurosci. 16, 7550-7556]. Here, we study whether cAMP-induced phosphorylation modulates the activity of AP-2. Recombinant AP-2 was phosphorylated in vitro by protein kinase A (PKA) at Ser239. Mutation of Ser239 to Ala abolished in vitro phosphorylation of AP-2 by PKA, but not the DNA binding activity of AP-2. Cotransfection studies showed that PKA stimulated the effect of AP-2 on the APOE promoter, but not that of the S239A mutant. Therefore, cAMP may modulate AP-2 activity by PKA-induced phosphorylation of this factor.  (+info)

Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. (3/5038)

Age of onset (AO) of Huntington disease (HD) is known to be correlated with the length of an expanded CAG repeat in the HD gene. Apolipoprotein E (APOE) genotype, in turn, is known to influence AO in Alzheimer disease, rendering the APOE gene a likely candidate to affect AO in other neurological diseases too. We therefore determined APOE genotype and normal CAG repeat length in the HD gene for 138 HD patients who were previously analysed with respect to CAG repeat length. Genotyping for APOE was performed blind to clinical information. In addition to highlighting the effect of the normal repeat length upon AO in maternally inherited HD and in male patients, we show that the APOE epsilon2epsilon3 genotype is associated with significantly earlier AO in males than in females. Such a sex difference in AO was not apparent for any of the other APOE genotypes. Our findings suggest that subtle differences in the course of the neurodegeneration in HD may allow interacting genes to exert gender specific effects upon AO.  (+info)

Competition of Abeta amyloid peptide and apolipoprotein E for receptor-mediated endocytosis. (4/5038)

The genetic polymorphism of apolipoprotein E (apoE) is associated with the age of onset and relative risk of Alzheimer's disease (AD). In contrast to apoE3, the wild type allele, apoE4 confers an increased risk of late-onset AD. We demonstrate that the beta-amyloid peptide isoforms Abeta (1-28), Abeta (1-40), and Abeta (1-43) compete for the cellular metabolism of apoE3 and apoE4 containing beta-very low density lipoproteins. An antibody raised against Abeta (1-28) cross-reacted with recombinant apoE. Epitope mapping revealed positive amino acid clusters as common epitopes of Abeta (13 through 17; HHQKL) and apoE (residues 144 through 148; LRKRL), both regions known to be heparin binding domains. Abeta in which amino acids 13 through 17 (HHQKL) were replaced by glycine (GGQGL) failed to compete with the cellular uptake of apoE enriched betaVLDL. These observations indicate that Abeta and apoE are taken up into cells by a common pathway involving heparan sulfate proteoglycans.  (+info)

Mass spectral study of polymorphism of the apolipoproteins of very low density lipoprotein. (5/5038)

New isoforms of apolipoprotein (apo)C-I and apoC-III have been detected in delipidated fractions from very low density lipoprotein (VLDL) using matrix-assisted laser desorption (MALDI) and electrospray ionization (ESI) mass spectrometry (MS). The cleavage sites of truncated apoC-III isoforms have also been identified. The VLDL fractions were isolated by fixed-angle single-spin ultracentrifugation using a self-generating sucrose density gradient and delipidated using a newly developed C18 solid phase extraction protocol. Fifteen apoC isoforms and apoE were identified in the MALDI spectra and the existence of the more abundant species was verified by ESI-MS. The relative intensities of the apoCs are closely correlated in three normolipidemic subjects. A fourth subject with type V hyperlipidemia exhibited an elevated apoC-III level and a suppressed level of the newly discovered truncated apoC-I isoform. ApoC-II was found to be particularly sensitive to in vitro oxidation. The dynamic range and specificity of the MALDI assay shows that the complete apoC isoform profile and apoE phenotype can be obtained in a single measurement from the delipidated VLDL fraction.  (+info)

beta-amyloid load is not influenced by the severity of cardiovascular disease in aged and demented patients. (6/5038)

BACKGROUND AND PURPOSE: This study was conducted to analyze the association between reported risk factors for Alzheimer's disease, apolipoprotein E epsilon4 allele, and cardiovascular disease and neuropathological changes essential for the diagnosis of Alzheimer's disease. METHODS: Our data are based on clinical and postmortem evaluations of a cohort of nondemented (n=118) and demented (n=107) individuals. A cardiovascular index was calculated at autopsy to estimate the extent of cardiovascular disease. Neuropathological lesions such as senile/neuritic plaques, neurofibrillary tangles, beta-amyloid load, cerebral amyloid angiopathy, and the load of paired helical filaments were determined. RESULTS: The aforementioned neuropathological lesions did not show any positive significant correlation with cardiovascular index. In contrast, the extent of Alzheimer's lesions was significantly higher in those nondemented and demented patients carrying the apolipoprotein E epsilon4 allele than in those without this allele. CONCLUSIONS: Our results demonstrate that the apolipoprotein E epsilon4 allele, but not cardiovascular disease, indeed influences the extent of Alzheimer's lesions seen in the brain tissue of demented patients as well as asymptomatic controls.  (+info)

Apo E phenotype and changes in serum lipids in adult patients during growth hormone replacement. (7/5038)

OBJECTIVE: To determine whether apo E phenotype influences changes in lipid profiles induced by growth hormone replacement in growth hormone (GH)-deficient adults. DESIGNS: Patients were treated for 6 months with recombinant human GH (hGH), given in a dose of 0.125 U/kg per week for 4 weeks followed by 0.25 U/kg per week thereafter. The effects on serum lipids and the influence of apo E phenotype were examined. METHODS: Thirty patients (aged 35.1+/-11.8 years: mean +/- S.D.) with adult growth hormone deficiency with included in the study. Fasting serum samples were analysed for apo E phenotype total cholesterol, high-density lipoprotein (HDL)-cholesterol, triglycerides, lipoprotein (a) (Lp(a)) and IGF-I. Low-density lipoprotein (LDL)-cholesterol was calculated using the Friedwald formula. RESULTS: Six months of replacement treatment with hGH resulted in a reduction in HDL-cholesterol from 0.90+/-0.10 to 0.68+/-0.08 mmol/l (P<0.01), and a small, non-significant reduction in total cholesterol from 6.14+/-0.40 to 5.99+/-0.35 mmol/l (P = 0.06). There was no significant change in the other lipid parameters. The decrease in HDL-cholesterol concentration was greater in patients carrying the apo E2 allele (0.40+/-0.07 mmol/l, P<0.05) than in patients homozygous for the apo E3 allele (0.23+/-0.04 mmol/l) and patients carrying the apo E4 allele (0.15+/-0.36 mmol/l). Patients with the apo E4 allele had lower baseline cholesterol concentrations than patients lacking the apo E4 allele, and this persisted after treatment with hGH (P<0.05). CONCLUSIONS: Apo E phenotype may be a determining factor in the response of HDL-cholesterol to hGH in GH-deficient adults.  (+info)

Iron-deficient diet reduces atherosclerotic lesions in apoE-deficient mice. (8/5038)

BACKGROUND: Iron deposition is evident in human atherosclerotic lesions, suggesting that iron may play a role in the development of atherosclerosis. To test this idea, the correlation between the extent of iron deposition and the severity of atherosclerosis in apolipoprotein E (apoE)-deficient mice was investigated. Furthermore, the effect of a low-iron diet on the progression of atherosclerotic lesions in these animals was evaluated. METHODS AND RESULTS: Iron deposition in tissues of apoE-deficient mice was examined by Perls' staining method. The results clearly demonstrated that iron deposits are present in atherosclerotic lesions and tissue sections of heart and liver in an age-dependent manner. When the young mice received a low-iron diet for 3 months, the hematocrit, serum iron, hemoglobin, and cholesterol concentrations were not significantly altered compared with those of littermates placed on a chow diet. However, the serum ferritin level of animals in the iron-restricted group was 27% to 30% lower than that of the control group in either sex. Furthermore, the lipoproteins isolated from the iron-restricted group exhibited greater resistance to copper-induced oxidation. Histological examination revealed that atherosclerotic lesions developed in mice fed a low-iron diet were significantly smaller than those found in control littermates. Likewise, the iron deposition as well as tissue iron content was much less in aortic tissues of the iron-restricted animals. Circulating autoantibodies to oxidized LDL and immunostains for epitopes of malondialdehyde-modified LDL detected on lesions were also significantly lower in mice fed a low-iron diet. CONCLUSIONS: Iron deposition is closely associated with the progression of atherosclerosis in apoE-deficient mice. Restriction in dietary iron intake leads to significant inhibition of lesion formation in these animals. These results suggest that the beneficial effect of a low-iron diet may be mediated, at least in part, by the reduction of iron deposition as well as LDL oxidation in vascular lesions.  (+info)

Apolipoprotein E (ApoE) is a protein involved in the metabolism of lipids, particularly cholesterol. It is produced primarily by the liver and is a component of several types of lipoproteins, including very low-density lipoproteins (VLDL) and high-density lipoproteins (HDL).

ApoE plays a crucial role in the transport and uptake of lipids in the body. It binds to specific receptors on cell surfaces, facilitating the delivery of lipids to cells for energy metabolism or storage. ApoE also helps to clear cholesterol from the bloodstream and is involved in the repair and maintenance of tissues.

There are three major isoforms of ApoE, designated ApoE2, ApoE3, and ApoE4, which differ from each other by only a few amino acids. These genetic variations can have significant effects on an individual's risk for developing certain diseases, particularly cardiovascular disease and Alzheimer's disease. For example, individuals who inherit the ApoE4 allele have an increased risk of developing Alzheimer's disease, while those with the ApoE2 allele may have a reduced risk.

In summary, Apolipoprotein E is a protein involved in lipid metabolism and transport, and genetic variations in this protein can influence an individual's risk for certain diseases.

Apolipoprotein C (apoC) is a group of proteins that are associated with lipoproteins, which are complex particles composed of lipids and proteins that play a crucial role in the transport and metabolism of lipids in the body. There are three main types of apoC proteins: apoC-I, apoC-II, and apoC-III.

ApoC-I is involved in the regulation of lipoprotein metabolism and has been shown to inhibit the activity of cholesteryl ester transfer protein (CETP), which is an enzyme that facilitates the transfer of cholesteryl esters from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL).

ApoC-II is a cofactor for lipoprotein lipase, an enzyme that hydrolyzes triglycerides in chylomicrons and VLDL, leading to the formation of smaller, denser lipoproteins. A deficiency in apoC-II can lead to hypertriglyceridemia, a condition characterized by elevated levels of triglycerides in the blood.

ApoC-III is also involved in the regulation of lipoprotein metabolism and has been shown to inhibit the activity of lipoprotein lipase and CETP. Elevated levels of apoC-III have been associated with an increased risk of cardiovascular disease, possibly due to its effects on lipoprotein metabolism.

In summary, apolipoprotein C is a group of proteins that are involved in the regulation of lipoprotein metabolism and have important roles in the transport and metabolism of lipids in the body.

Apolipoproteins are a group of proteins that are associated with lipids (fats) in the body and play a crucial role in the metabolism, transportation, and regulation of lipids. They are structural components of lipoprotein particles, which are complexes of lipids and proteins that transport lipids in the bloodstream.

There are several types of apolipoproteins, including ApoA, ApoB, ApoC, ApoD, ApoE, and others. Each type has a specific function in lipid metabolism. For example, ApoA is a major component of high-density lipoprotein (HDL), often referred to as "good cholesterol," and helps remove excess cholesterol from cells and tissues and transport it to the liver for excretion. ApoB, on the other hand, is a major component of low-density lipoprotein (LDL), or "bad cholesterol," and plays a role in the delivery of cholesterol to cells and tissues.

Abnormal levels of apolipoproteins or dysfunctional forms of these proteins have been linked to various diseases, including cardiovascular disease, Alzheimer's disease, and metabolic disorders such as diabetes. Therefore, measuring apolipoprotein levels in the blood can provide valuable information for diagnosing and monitoring these conditions.

Apolipoprotein C-III (APOC3) is a protein that is produced in the liver and circulates in the bloodstream. It is a component of certain lipoproteins, including very low-density lipoproteins (VLDL) and chylomicrons, which are responsible for transporting fat molecules, such as triglycerides and cholesterol, throughout the body.

APOC3 plays a role in regulating the metabolism of these lipoproteins. Specifically, it inhibits the activity of an enzyme called lipoprotein lipase, which breaks down triglycerides in VLDL and chylomicrons. As a result, high levels of APOC3 can lead to an increase in triglyceride levels in the blood, which is a risk factor for cardiovascular disease.

Genetic variations in the APOC3 gene have been associated with differences in triglyceride levels and risk of cardiovascular disease. Some studies have suggested that reducing APOC3 levels through genetic editing or other means may be a promising strategy for lowering triglycerides and reducing the risk of heart disease.

Apolipoprotein E3 (ApoE3) is one of the three major isoforms of apolipoprotein E (ApoE), a protein involved in the metabolism of lipids, particularly cholesterol. ApoE is produced by the APOE gene, which has three common alleles: ε2, ε3, and ε4. These alleles result in three main isoforms of the protein: ApoE2, ApoE3, and ApoE4.

ApoE3 is the most common isoform, found in approximately 77-78% of the population. It has a slightly different amino acid sequence compared to ApoE2 and ApoE4, which can affect its function. ApoE3 is thought to play a neutral or protective role in the risk of developing Alzheimer's disease and cardiovascular diseases, although some studies suggest that it may have a mildly favorable effect on lipid metabolism compared to ApoE4.

Apolipoprotein A (apoA) is a type of apolipoprotein that is primarily associated with high-density lipoproteins (HDL), often referred to as "good cholesterol." There are several subtypes of apoA, including apoA-I, apoA-II, and apoA-IV.

ApoA-I is the major protein component of HDL particles and plays a crucial role in reverse cholesterol transport, which is the process by which excess cholesterol is removed from tissues and delivered to the liver for excretion. Low levels of apoA-I have been linked to an increased risk of cardiovascular disease.

ApoA-II is another protein component of HDL particles, although its function is less well understood than that of apoA-I. Some studies suggest that apoA-II may play a role in regulating the metabolism of HDL particles.

ApoA-IV is found in both HDL and chylomicrons, which are lipoprotein particles that transport dietary lipids from the intestine to the liver. The function of apoA-IV is not well understood, but it may play a role in regulating appetite and energy metabolism.

Overall, apolipoproteins A are important components of HDL particles and play a critical role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

Lipoproteins are complex particles composed of multiple proteins and lipids (fats) that play a crucial role in the transport and metabolism of fat molecules in the body. They consist of an outer shell of phospholipids, free cholesterols, and apolipoproteins, enclosing a core of triglycerides and cholesteryl esters.

There are several types of lipoproteins, including:

1. Chylomicrons: These are the largest lipoproteins and are responsible for transporting dietary lipids from the intestines to other parts of the body.
2. Very-low-density lipoproteins (VLDL): Produced by the liver, VLDL particles carry triglycerides to peripheral tissues for energy storage or use.
3. Low-density lipoproteins (LDL): Often referred to as "bad cholesterol," LDL particles transport cholesterol from the liver to cells throughout the body. High levels of LDL in the blood can lead to plaque buildup in artery walls and increase the risk of heart disease.
4. High-density lipoproteins (HDL): Known as "good cholesterol," HDL particles help remove excess cholesterol from cells and transport it back to the liver for excretion or recycling. Higher levels of HDL are associated with a lower risk of heart disease.

Understanding lipoproteins and their roles in the body is essential for assessing cardiovascular health and managing risks related to heart disease and stroke.

Apolipoprotein B (ApoB) is a type of protein that plays a crucial role in the metabolism of lipids, particularly low-density lipoprotein (LDL) or "bad" cholesterol. ApoB is a component of LDL particles and serves as a ligand for the LDL receptor, which is responsible for the clearance of LDL from the bloodstream.

There are two main forms of ApoB: ApoB-100 and ApoB-48. ApoB-100 is found in LDL particles, very low-density lipoprotein (VLDL) particles, and chylomicrons, while ApoB-48 is only found in chylomicrons, which are produced in the intestines and responsible for transporting dietary lipids.

Elevated levels of ApoB are associated with an increased risk of cardiovascular disease (CVD), as they indicate a higher concentration of LDL particles in the bloodstream. Therefore, measuring ApoB levels can provide additional information about CVD risk beyond traditional lipid profile tests that only measure total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides.

Apolipoprotein A-I (ApoA-I) is a major protein component of high-density lipoproteins (HDL) in human plasma. It plays a crucial role in the metabolism and transport of lipids, particularly cholesterol, within the body. ApoA-I facilitates the formation of HDL particles, which are involved in the reverse transport of cholesterol from peripheral tissues to the liver for excretion. This process is known as reverse cholesterol transport and helps maintain appropriate cholesterol levels in the body. Low levels of ApoA-I or dysfunctional ApoA-I have been associated with an increased risk of developing cardiovascular diseases.

Apolipoprotein A-II (ApoA-II) is a protein component of high-density lipoproteins (HDL), often referred to as "good cholesterol." It is one of the major apolipoproteins in HDL and plays a role in the structure, metabolism, and function of HDL particles. ApoA-II is produced primarily in the liver and intestine and helps facilitate the transport of cholesterol from tissues to the liver for excretion. Additionally, ApoA-II has been shown to have anti-inflammatory properties and may play a role in the regulation of the immune response.

Apolipoprotein C-II (ApoC-II) is a type of apolipoprotein, which are proteins that bind to lipids to form lipoprotein complexes. ApoC-II is a component of several lipoproteins, including very low-density lipoproteins (VLDL) and chylomicrons, which are responsible for the transport of fat molecules, such as triglycerides and cholesterol, in the bloodstream.

ApoC-II plays a crucial role in the activation of lipoprotein lipase, an enzyme that breaks down triglycerides in VLDL and chylomicrons into fatty acids, which can then be taken up by cells for energy production or storage. Therefore, ApoC-II deficiency can lead to hypertriglyceridemia, a condition characterized by high levels of triglycerides in the blood.

In addition to its role in lipid metabolism, ApoC-II has been implicated in the development and progression of atherosclerosis, a chronic inflammatory disease that affects the arteries and can lead to serious cardiovascular complications, such as heart attack and stroke.

High-Density Lipoproteins (HDL) are a type of lipoprotein that play a crucial role in the transportation and metabolism of cholesterol in the body. They are often referred to as "good" cholesterol because they help remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. This process is known as reverse cholesterol transport.

HDLs are composed of a lipid core containing cholesteryl esters and triglycerides, surrounded by a shell of phospholipids, free cholesterol, and apolipoproteins, primarily apoA-I. The size and composition of HDL particles can vary, leading to the classification of different subclasses of HDL with varying functions and metabolic fates.

Elevated levels of HDL have been associated with a lower risk of developing cardiovascular diseases, while low HDL levels increase the risk. However, it is essential to consider that HDL function and quality may be more important than just the quantity in determining cardiovascular risk.

Apolipoprotein D (apoD) is a protein that is associated with high-density lipoprotein (HDL) particles in the blood. It is one of several apolipoproteins that are involved in the transport and metabolism of lipids, such as cholesterol and triglycerides, in the body.

ApoD is produced by the APOD gene and is found in various tissues, including the brain, where it is believed to play a role in protecting nerve cells from oxidative stress. It has also been studied for its potential role in Alzheimer's disease and other neurological disorders.

In addition to its role in lipid metabolism and neuroprotection, apoD has been shown to have anti-inflammatory properties and may be involved in the regulation of immune responses. However, more research is needed to fully understand the functions and mechanisms of action of this protein.

Apolipoprotein C-I (apoC-I) is a small protein component of lipoproteins, which are particles that transport all fat molecules (lipids), including cholesterol, in the bloodstream. ApoC-I is primarily produced in the liver and intestines and plays a crucial role in the metabolism of triglyceride-rich lipoproteins, such as very low-density lipoproteins (VLDL) and chylomicrons.

Apolipoprotein C-I has several functions:

1. Inhibition of lipoprotein lipase (LPL): ApoC-I inhibits the activity of LPL, an enzyme responsible for breaking down triglycerides in lipoproteins. This inhibition helps regulate the rate at which fatty acids are released from triglyceride-rich lipoproteins and taken up by cells for energy production or storage.
2. Activation of hepatic lipase (HL): ApoC-I activates HL, an enzyme involved in the catabolism of intermediate-density lipoproteins (IDL) and high-density lipoproteins (HDL). This activation aids in the clearance of these particles from the circulation.
3. Regulation of cholesterol efflux: ApoC-I may also play a role in regulating cholesterol efflux, the process by which excess cholesterol is removed from cells and transported to the liver for excretion.

Genetic variations in the APOC1 gene, which encodes apoC-I, have been associated with alterations in lipid metabolism and an increased risk of cardiovascular disease.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

VLDL (Very Low-Density Lipoproteins) are a type of lipoprotein that play a crucial role in the transport and metabolism of fat molecules, known as triglycerides, in the body. They are produced by the liver and consist of a core of triglycerides surrounded by a shell of proteins called apolipoproteins, phospholipids, and cholesterol.

VLDL particles are responsible for delivering fat molecules from the liver to peripheral tissues throughout the body, where they can be used as an energy source or stored for later use. During this process, VLDL particles lose triglycerides and acquire more cholesterol, transforming into intermediate-density lipoproteins (IDL) and eventually low-density lipoproteins (LDL), which are also known as "bad" cholesterol.

Elevated levels of VLDL in the blood can contribute to the development of cardiovascular disease due to their association with increased levels of triglycerides and LDL cholesterol, as well as decreased levels of high-density lipoproteins (HDL), which are considered "good" cholesterol.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Apolipoprotein B-100 (apoB-100) is a large protein component of low-density lipoprotein (LDL), also known as "bad cholesterol." It plays a crucial role in the metabolism and transport of fats and cholesterol in the body. ApoB-100 is responsible for the binding of LDL to specific receptors on cell surfaces, facilitating the uptake of lipoprotein particles by cells. Elevated levels of apoB-100 in the blood are associated with an increased risk of developing cardiovascular diseases, such as atherosclerosis and coronary artery disease.

Apolipoprotein B-48 (apoB-48) is a protein component of chylomicrons, which are lipoprotein particles responsible for carrying dietary fat and cholesterol from the intestines to other parts of the body. ApoB-48 is produced in the intestines and is a shorter version of apolipoprotein B-100 (apoB-100), which is a component of low-density lipoproteins (LDL) or "bad cholesterol."

Chylomicrons are assembled and secreted by intestinal cells after a meal, and apoB-48 is essential for the formation and function of these particles. ApoB-48-containing chylomicrons transport dietary lipids to various tissues, including the liver, where they contribute to the maintenance of lipid homeostasis.

Elevated levels of apoB-48 in the blood have been associated with an increased risk of cardiovascular disease, particularly in individuals with familial chylomicronemia syndrome (FCS), a rare genetic disorder characterized by severely elevated triglyceride levels due to impaired clearance of chylomicrons.

HDL (High-Density Lipoprotein) cholesterol is often referred to as "good" cholesterol. It is a type of lipoprotein that helps remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body. High levels of HDL cholesterol have been associated with a lower risk of heart disease and stroke.

HDL3 (High-Density Lipoprotein 3) is a type of lipoprotein that plays a role in the transport and metabolism of cholesterol in the body. HDLs are commonly known as "good cholesterol" because they help remove excess cholesterol from cells and carry it back to the liver, where it can be broken down and removed from the body.

HDL3 is one of the subclasses of HDL based on its density and size. It is denser than HDL2 but less dense than HDL1. HDL3 is smaller in size and contains a higher proportion of protein to lipid compared to other HDL subclasses. It is also more efficient in reverse cholesterol transport, which is the process of removing cholesterol from tissues and delivering it to the liver for excretion.

It's worth noting that while high levels of HDL are generally associated with a lower risk of heart disease, recent research suggests that the relationship between HDL and cardiovascular health may be more complex than previously thought.

Tangier Disease is a rare inherited genetic disorder characterized by the deficiency of a protein called ApoA-I and a dysfunctional form of ApoA-II, which are important components of high-density lipoprotein (HDL), also known as "good cholesterol." This results in significantly reduced levels of HDL in the blood and an accumulation of cholesteryl esters in various tissues, including the tonsils, lymph nodes, liver, spleen, and sometimes the peripheral nerves.

The condition is caused by mutations in the ABCA1 gene, which plays a crucial role in the reverse transport of cholesterol from tissues to the liver for excretion. The disease manifests with symptoms such as enlarged orange-colored tonsils, swollen lymph nodes, cloudy corneas, and an increased risk of peripheral neuropathy due to nerve damage.

Tangier Disease is inherited in an autosomal recessive pattern, meaning that an individual must inherit two defective copies of the gene (one from each parent) to develop the disease.

Phosphatidylcholine-Sterol O-Acyltransferase (PCOAT, also known as Sterol O-Acyltransferase 1 or SOAT1) is an enzyme that plays a crucial role in the regulation of cholesterol metabolism. It is located in the endoplasmic reticulum and is responsible for the transfer of acyl groups from phosphatidylcholine to cholesterol, forming cholesteryl esters. This enzymatic reaction results in the storage of excess cholesterol in lipid droplets, preventing its accumulation in the cell membrane and potentially contributing to the development of atherosclerosis if not properly regulated.

Defects or mutations in PCOAT can lead to disruptions in cholesterol homeostasis, which may contribute to various diseases such as cardiovascular disorders, metabolic syndrome, and neurodegenerative conditions. Therefore, understanding the function and regulation of this enzyme is essential for developing therapeutic strategies aimed at managing cholesterol-related disorders.

Low-density lipoproteins (LDL), also known as "bad cholesterol," are a type of lipoprotein that carry cholesterol and other fats from the liver to cells throughout the body. High levels of LDL in the blood can lead to the buildup of cholesterol in the walls of the arteries, which can increase the risk of heart disease and stroke.

Lipoproteins are complex particles composed of proteins (apolipoproteins) and lipids (cholesterol, triglycerides, and phospholipids) that are responsible for transporting fat molecules around the body in the bloodstream. LDL is one type of lipoprotein, along with high-density lipoproteins (HDL), very low-density lipoproteins (VLDL), and chylomicrons.

LDL particles are smaller than HDL particles and can easily penetrate the artery walls, leading to the formation of plaques that can narrow or block the arteries. Therefore, maintaining healthy levels of LDL in the blood is essential for preventing cardiovascular disease.

Nephelometry and turbidimetry are methods used in clinical laboratories to measure the amount of particles, such as proteins or cells, present in a liquid sample. The main difference between these two techniques lies in how they detect and quantify the particles.

1. Nephelometry: This is a laboratory method that measures the amount of light scattered by suspended particles in a liquid medium at a 90-degree angle to the path of the incident light. When light passes through a sample containing particles, some of the light is absorbed, while some is scattered in various directions. In nephelometry, a light beam is shone into the sample, and a detector measures the intensity of the scattered light at a right angle to the light source. The more particles present in the sample, the higher the intensity of scattered light, which correlates with the concentration of particles in the sample. Nephelometry is often used to measure the levels of immunoglobulins, complement components, and other proteins in serum or plasma.

2. Turbidimetry: This is another laboratory method that measures the amount of light blocked or absorbed by suspended particles in a liquid medium. In turbidimetry, a light beam is shone through the sample, and the intensity of the transmitted light is measured. The more particles present in the sample, the more light is absorbed or scattered, resulting in lower transmitted light intensity. Turbidimetric measurements are typically reported as percent transmittance, which is the ratio of the intensity of transmitted light to that of the incident light expressed as a percentage. Turbidimetry can be used to measure various substances, such as proteins, cells, and crystals, in body fluids like urine, serum, or plasma.

In summary, nephelometry measures the amount of scattered light at a 90-degree angle, while turbidimetry quantifies the reduction in transmitted light intensity due to particle presence. Both methods are useful for determining the concentration of particles in liquid samples and are commonly used in clinical laboratories for diagnostic purposes.

ATP Binding Cassette Transporter 1 (ABC Transporter 1 or ABCB1) is a protein that belongs to the superfamily of ATP-binding cassette (ABC) transporters. These proteins utilize the energy from ATP hydrolysis to transport various substrates across membranes.

The ABCB1 gene encodes for the P-glycoprotein (P-gp), a 170 kDa protein, which is an efflux transporter primarily located in the plasma membrane of various cell types, including epithelial and endothelial cells. P-gp plays a crucial role in limiting the absorption and facilitating the excretion of many drugs by actively pumping them out of cells, thereby contributing to multidrug resistance (MDR) in cancer cells.

P-gp has a broad substrate specificity and can transport various structurally diverse compounds, including chemotherapeutic agents, antibiotics, antiviral drugs, and natural toxins. Its expression is often upregulated in cancer cells, leading to reduced intracellular drug accumulation and decreased therapeutic efficacy. In addition to its role in drug resistance, P-gp also functions in the absorption, distribution, and excretion of drugs in normal tissues, particularly in the intestine, liver, and kidney.

Cholesteryl esters are formed when cholesterol, a type of lipid (fat) that is important for the normal functioning of the body, becomes combined with fatty acids through a process called esterification. This results in a compound that is more hydrophobic (water-repelling) than cholesterol itself, which allows it to be stored more efficiently in the body.

Cholesteryl esters are found naturally in foods such as animal fats and oils, and they are also produced by the liver and other cells in the body. They play an important role in the structure and function of cell membranes, and they are also precursors to the synthesis of steroid hormones, bile acids, and vitamin D.

However, high levels of cholesteryl esters in the blood can contribute to the development of atherosclerosis, a condition characterized by the buildup of plaque in the arteries, which can increase the risk of heart disease and stroke. Cholesteryl esters are typically measured as part of a lipid profile, along with other markers such as total cholesterol, HDL cholesterol, and triglycerides.

Isoelectric focusing (IEF) is a technique used in electrophoresis, which is a method for separating proteins or other molecules based on their electrical charges. In IEF, a mixture of ampholytes (molecules that can carry both positive and negative charges) is used to create a pH gradient within a gel matrix. When an electric field is applied, the proteins or molecules migrate through the gel until they reach the point in the gradient where their net charge is zero, known as their isoelectric point (pI). At this point, they focus into a sharp band and stop moving, resulting in a highly resolved separation of the different components based on their pI. This technique is widely used in protein research for applications such as protein identification, characterization, and purification.

Lipoprotein receptors are specialized proteins found on the surface of cells that play a crucial role in the metabolism of lipoproteins, which are complex particles composed of lipids and proteins. These receptors bind to specific lipoproteins in the bloodstream, facilitating their uptake into the cell for further processing.

There are several types of lipoprotein receptors, including:

1. LDL (Low-Density Lipoprotein) Receptor: This receptor is responsible for recognizing and internalizing LDL particles, which are rich in cholesterol. Once inside the cell, LDL particles release their cholesterol, which can then be used for various cellular functions or stored for later use. Defects in the LDL receptor can lead to elevated levels of LDL cholesterol in the blood and an increased risk of developing cardiovascular disease.
2. HDL (High-Density Lipoprotein) Receptor: This receptor is involved in the clearance of HDL particles from the bloodstream. HDL particles are responsible for transporting excess cholesterol from peripheral tissues to the liver, where it can be processed and eliminated from the body.
3. VLDL (Very Low-Density Lipoprotein) Receptor: This receptor recognizes and internalizes VLDL particles, which are produced by the liver and carry triglycerides and cholesterol to peripheral tissues. VLDL particles are subsequently converted into LDL particles in the bloodstream.
4. LRP (Low-Density Lipoprotein Receptor-Related Protein) Family: This family of receptors includes several members, such as LRP1 and LRP2, that play roles in various cellular processes, including lipid metabolism, protein trafficking, and cell signaling. They can bind to a variety of ligands, including lipoproteins, proteases, and extracellular matrix components.

In summary, lipoprotein receptors are essential for maintaining proper lipid metabolism and homeostasis by facilitating the uptake, processing, and elimination of lipoproteins in the body.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

Chylomicrons are a type of lipoprotein that are responsible for carrying dietary lipids, such as triglycerides and cholesterol, from the intestines to other parts of the body through the lymphatic system and bloodstream. They are the largest lipoproteins and are composed of an outer layer of phospholipids, free cholesterol, and apolipoproteins, which surrounds a core of triglycerides and cholesteryl esters. Chylomicrons are produced in the intestinal mucosa after a meal containing fat, and their production is stimulated by the hormone cholecystokinin. Once in the bloodstream, chylomicrons interact with other lipoproteins and enzymes to deliver their lipid cargo to various tissues, including muscle and adipose tissue, where they are used for energy or stored for later use.

LDL, or low-density lipoprotein, is often referred to as "bad" cholesterol. It is one of the lipoproteins that helps carry cholesterol throughout your body. High levels of LDL cholesterol can lead to a buildup of cholesterol in your arteries, which can increase the risk of heart disease and stroke.

Cholesterol is a type of fat (lipid) that is found in the cells of your body. Your body needs some cholesterol to function properly, but having too much can lead to health problems. LDL cholesterol is one of the two main types of cholesterol; the other is high-density lipoprotein (HDL), or "good" cholesterol.

It's important to keep your LDL cholesterol levels in a healthy range to reduce your risk of developing heart disease and stroke. A healthcare professional can help you determine what your target LDL cholesterol level should be based on your individual health status and risk factors.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

Ultracentrifugation is a medical and laboratory technique used for the separation of particles of different sizes, densities, or shapes from a mixture based on their sedimentation rates. This process involves the use of a specialized piece of equipment called an ultracentrifuge, which can generate very high centrifugal forces, much greater than those produced by a regular centrifuge.

In ultracentrifugation, a sample is placed in a special tube and spun at extremely high speeds, causing the particles within the sample to separate based on their size, shape, and density. The larger or denser particles will sediment faster and accumulate at the bottom of the tube, while smaller or less dense particles will remain suspended in the solution or sediment more slowly.

Ultracentrifugation is a valuable tool in various fields, including biochemistry, molecular biology, and virology. It can be used to purify and concentrate viruses, subcellular organelles, membrane fractions, ribosomes, DNA, and other macromolecules from complex mixtures. The technique can also provide information about the size, shape, and density of these particles, making it a crucial method for characterizing and studying their properties.

Hypolipoproteinemias are a group of genetic disorders characterized by low levels of lipoproteins in the blood. Lipoproteins are complex particles composed of proteins and lipids that play a crucial role in the transport and metabolism of fat molecules, such as cholesterol and triglycerides, in the body.

There are several types of hypolipoproteinemias, each associated with deficiencies in specific lipoproteins:

1. Hypobetalipoproteinemia: This disorder is characterized by low levels of beta-lipoproteins, also known as low-density lipoproteins (LDL), or "bad" cholesterol. It can lead to decreased absorption of fat-soluble vitamins and an increased risk of fatty liver disease.
2. Abetalipoproteinemia: This is a rare autosomal recessive disorder characterized by the absence of beta-lipoproteins and apolipoprotein B, which results in very low levels of LDL cholesterol and high-density lipoproteins (HDL), or "good" cholesterol. It can lead to fat malabsorption, neurological symptoms, and retinal degeneration.
3. Tangier disease: This disorder is caused by a deficiency in apolipoprotein A-I and results in low levels of HDL cholesterol. It can cause enlarged orange-colored tonsils, neuropathy, and an increased risk of coronary artery disease.
4. Familial hypoalphalipoproteinemia: This disorder is characterized by low levels of HDL cholesterol due to a deficiency in apolipoprotein A-I or A-II. It can increase the risk of premature coronary artery disease.

It's important to note that while some hypolipoproteinemias are associated with an increased risk of cardiovascular disease, others may actually protect against it due to reduced levels of atherogenic lipoproteins. Treatment for these disorders typically involves dietary modifications and supplementation of fat-soluble vitamins and essential fatty acids. In some cases, medication may be necessary to manage symptoms or prevent complications.

HDL2 (High-Density Lipoprotein 2) is a type of lipoprotein that plays a role in the transportation and metabolism of cholesterol in the body. HDL particles are responsible for picking up excess cholesterol from tissues and cells throughout the body and transporting it back to the liver, where it can be broken down and removed from the body. This process is known as reverse cholesterol transport.

HDL2 is one of the subclasses of HDL particles, which are classified based on their size, density, and composition. HDL2 particles are larger and denser than other HDL subclasses, such as HDL3. They have a higher proportion of cholesteryl esters to phospholipids and apolipoproteins compared to other HDL subclasses.

Elevated levels of HDL2 have been associated with a lower risk of cardiovascular disease, while low levels of HDL2 have been linked to an increased risk of heart disease. However, the exact role of HDL2 in cardiovascular health and disease is still being studied and understood.

Lymph is a colorless, transparent fluid that circulates throughout the lymphatic system, which is a part of the immune and circulatory systems. It consists of white blood cells called lymphocytes, proteins, lipids, glucose, electrolytes, hormones, and waste products. Lymph plays an essential role in maintaining fluid balance, absorbing fats from the digestive tract, and defending the body against infection by transporting immune cells to various tissues and organs. It is collected from tissues through lymph capillaries and flows through increasingly larger lymphatic vessels, ultimately returning to the bloodstream via the subclavian veins in the chest region.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Apoproteins are the protein components of lipoprotein complexes, which are responsible for transporting fat molecules, such as cholesterol and triglycerides, throughout the body. Apoproteins play a crucial role in the metabolism of lipids by acting as recognition signals that allow lipoproteins to interact with specific receptors on cell surfaces.

There are several different types of apoproteins, each with distinct functions. For example, apolipoprotein A-1 (apoA-1) is the major protein component of high-density lipoproteins (HDL), which are responsible for transporting excess cholesterol from tissues to the liver for excretion. Apolipoprotein B (apoB) is a large apoprotein found in low-density lipoproteins (LDL), very low-density lipoproteins (VLDL), and lipoprotein(a). ApoB plays a critical role in the assembly and secretion of VLDL from the liver, and it also mediates the uptake of LDL by cells.

Abnormalities in apoprotein levels or function can contribute to the development of various diseases, including cardiovascular disease, diabetes, and Alzheimer's disease. Therefore, measuring apoprotein levels in the blood can provide valuable information for diagnosing and monitoring these conditions.

Hyperlipidemias are a group of disorders characterized by an excess of lipids (fats) or lipoproteins in the blood. These include elevated levels of cholesterol, triglycerides, or both. Hyperlipidemias can be inherited (primary) or caused by other medical conditions (secondary). They are a significant risk factor for developing cardiovascular diseases, such as atherosclerosis and coronary artery disease.

There are two main types of lipids that are commonly measured in the blood: low-density lipoprotein (LDL) cholesterol, often referred to as "bad" cholesterol, and high-density lipoprotein (HDL) cholesterol, known as "good" cholesterol. High levels of LDL cholesterol can lead to the formation of plaques in the arteries, which can narrow or block them and increase the risk of heart attack or stroke. On the other hand, high levels of HDL cholesterol are protective because they help remove LDL cholesterol from the bloodstream.

Triglycerides are another type of lipid that can be measured in the blood. Elevated triglyceride levels can also contribute to the development of cardiovascular disease, particularly when combined with high LDL cholesterol and low HDL cholesterol levels.

Hyperlipidemias are typically diagnosed through a blood test that measures the levels of various lipids and lipoproteins in the blood. Treatment may include lifestyle changes, such as following a healthy diet, getting regular exercise, losing weight, and quitting smoking, as well as medication to lower lipid levels if necessary.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Immunodiffusion is a laboratory technique used in immunology to detect and measure the presence of specific antibodies or antigens in a sample. It is based on the principle of diffusion, where molecules move from an area of high concentration to an area of low concentration until they reach equilibrium. In this technique, a sample containing an unknown quantity of antigen or antibody is placed in a gel or agar medium that contains a known quantity of antibody or antigen, respectively.

The two substances then diffuse towards each other and form a visible precipitate at the point where they meet and reach equivalence, which indicates the presence and quantity of the specific antigen or antibody in the sample. There are several types of immunodiffusion techniques, including radial immunodiffusion (RID) and double immunodiffusion (Ouchterlony technique). These techniques are widely used in diagnostic laboratories to identify and measure various antigens and antibodies, such as those found in infectious diseases, autoimmune disorders, and allergic reactions.

Lipoprotein lipase (LPL) is an enzyme that plays a crucial role in the metabolism of lipids. It is responsible for breaking down triglycerides, which are the main constituent of dietary fats and chylomicrons, into fatty acids and glycerol. These products are then taken up by cells for energy production or storage.

LPL is synthesized in various tissues, including muscle and fat, where it is attached to the inner lining of blood vessels (endothelium). The enzyme is activated when it comes into contact with lipoprotein particles, such as chylomicrons and very-low-density lipoproteins (VLDL), which transport triglycerides in the bloodstream.

Deficiencies or mutations in LPL can lead to various metabolic disorders, including hypertriglyceridemia, a condition characterized by high levels of triglycerides in the blood. Conversely, overexpression of LPL has been associated with increased risk of atherosclerosis due to excessive uptake of fatty acids by macrophages and their conversion into foam cells, which contribute to plaque formation in the arteries.

Triolein is a type of triglyceride, which is a kind of fat molecule. More specifically, triolein is the triglyceride formed from three molecules of oleic acid, a common monounsaturated fatty acid. It is often used in scientific research and studies involving lipid metabolism, and it can be found in various vegetable oils and animal fats.

Hyperlipoproteinemia Type IV is a genetic disorder characterized by an increased level of very low-density lipoproteins (VLDL) in the blood. This leads to elevated levels of triglycerides, which are a type of fat found in the blood. The condition is also sometimes referred to as "Fredrickson Type IV."

People with Hyperlipoproteinemia Type IV have an increased risk of developing pancreatitis, a potentially life-threatening inflammation of the pancreas, due to high levels of triglycerides. They may also have an increased risk of cardiovascular disease due to elevated levels of VLDL and other atherogenic lipoproteins.

The condition is usually inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the disorder if one parent has it. However, some cases may be caused by mutations in multiple genes or by environmental factors such as obesity, diabetes, and excessive alcohol consumption.

Treatment for Hyperlipoproteinemia Type IV typically involves lifestyle modifications such as weight loss, exercise, and dietary changes to reduce triglyceride levels. In some cases, medication may be necessary to control the condition.

Phosphatidylcholines (PtdCho) are a type of phospholipids that are essential components of cell membranes in living organisms. They are composed of a hydrophilic head group, which contains a choline moiety, and two hydrophobic fatty acid chains. Phosphatidylcholines are crucial for maintaining the structural integrity and function of cell membranes, and they also serve as important precursors for the synthesis of signaling molecules such as acetylcholine. They can be found in various tissues and biological fluids, including blood, and are abundant in foods such as soybeans, eggs, and meat. Phosphatidylcholines have been studied for their potential health benefits, including their role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

ATP-binding cassette (ABC) transporters are a family of membrane proteins that utilize the energy from ATP hydrolysis to transport various substrates across extra- and intracellular membranes. These transporters play crucial roles in several biological processes, including detoxification, drug resistance, nutrient uptake, and regulation of cellular cholesterol homeostasis.

The structure of ABC transporters consists of two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP, and two transmembrane domains (TMDs) that form the substrate-translocation pathway. The NBDs are typically located adjacent to each other in the cytoplasm, while the TMDs can be either integral membrane domains or separate structures associated with the membrane.

The human genome encodes 48 distinct ABC transporters, which are classified into seven subfamilies (ABCA-ABCG) based on their sequence similarity and domain organization. Some well-known examples of ABC transporters include P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2).

Dysregulation or mutations in ABC transporters have been implicated in various diseases, such as cystic fibrosis, neurological disorders, and cancer. In cancer, overexpression of certain ABC transporters can contribute to drug resistance by actively effluxing chemotherapeutic agents from cancer cells, making them less susceptible to treatment.

Hyperlipoproteinemias are medical conditions characterized by elevated levels of lipoproteins in the blood. Lipoproteins are particles that consist of proteins and lipids, which are responsible for transporting all fat molecules, such as cholesterol and triglycerides, around the body within the water outside cells. These lipids cannot dissolve in the blood, so they must be carried by these lipoprotein particles.

There are several types of hyperlipoproteinemias, classified based on the type of lipoprotein that is elevated and the pattern of inheritance. The most commonly recognized classification system is the Fredrickson classification, which includes five main types:

1. Type I - characterized by an excess of chylomicrons, a type of lipoprotein that carries dietary lipids, leading to extremely high levels of triglycerides in the blood. This rare disorder is usually caused by genetic mutations.
2. Type II - divided into two subtypes:
a. Type IIa - characterized by elevated LDL (low-density lipoprotein), or "bad" cholesterol, levels and often associated with premature cardiovascular disease. This condition can be caused by genetic factors, lifestyle choices, or both.
b. Type IIb - marked by increased levels of both LDL cholesterol and VLDL (very low-density lipoprotein), which leads to elevated triglycerides and cholesterol in the blood. This subtype can also be influenced by genetic factors, lifestyle choices, or both.
3. Type III - known as broad beta disease or remnant removal disease, this condition is characterized by an abnormal accumulation of remnant particles from VLDL and IDL (intermediate-density lipoprotein) metabolism, leading to increased levels of both cholesterol and triglycerides. This disorder can be caused by genetic mutations or secondary factors like diabetes, obesity, or hypothyroidism.
4. Type IV - characterized by elevated VLDL particles and high triglyceride levels in the blood. This condition is often associated with metabolic syndrome, obesity, diabetes, and alcohol consumption.
5. Type V - marked by increased VLDL and chylomicrons (lipoprotein particles that transport dietary lipids) in the blood, leading to extremely high triglyceride levels. This rare condition can be caused by genetic factors or secondary factors like diabetes, obesity, alcohol consumption, or uncontrolled lipid absorption.

It is important to note that these types are not mutually exclusive and can coexist in various combinations. Additionally, lifestyle choices such as diet, exercise, smoking, and alcohol consumption can significantly impact lipoprotein levels and contribute to the development of dyslipidemia (abnormal lipid levels).

Clinical chemistry is a branch of medical laboratory science that deals with the chemical analysis of biological specimens such as blood, urine, and tissue samples to provide information about the health status of a patient. It involves the use of various analytical techniques and instruments to measure different chemicals, enzymes, hormones, and other substances in the body. The results of these tests help healthcare professionals diagnose and monitor diseases, evaluate therapy effectiveness, and make informed decisions about patient care. Clinical chemists work closely with physicians, nurses, and other healthcare providers to ensure accurate and timely test results, which are crucial for proper medical diagnosis and treatment.

VLDL, or very low-density lipoproteins, are a type of lipoprotein that carries triglycerides and cholesterol from the liver to other parts of the body. Cholesterol is a fatty substance found in the blood, and VLDL contains both triglycerides and cholesterol.

Cholesterol itself cannot dissolve in the blood and needs to be transported around the body by lipoproteins, which are protein molecules that encapsulate and carry fat molecules, such as cholesterol and triglycerides, through the bloodstream. VLDL is one of several types of lipoproteins, including low-density lipoproteins (LDL) and high-density lipoproteins (HDL).

Elevated levels of VLDL in the blood can contribute to the development of atherosclerosis, a condition characterized by the buildup of plaque in the arteries, which can increase the risk of heart disease and stroke. Therefore, maintaining healthy levels of VLDL and other lipoproteins is an important part of overall cardiovascular health.

Hypertriglyceridemia is a medical condition characterized by an elevated level of triglycerides in the blood. Triglycerides are a type of fat (lipid) found in your blood that can increase the risk of developing heart disease, especially when levels are very high.

In general, hypertriglyceridemia is defined as having triglyceride levels greater than 150 milligrams per deciliter (mg/dL) of blood. However, the specific definition of hypertriglyceridemia may vary depending on individual risk factors and medical history.

Hypertriglyceridemia can be caused by a variety of factors, including genetics, obesity, physical inactivity, excessive alcohol consumption, and certain medications. In some cases, it may also be a secondary consequence of other medical conditions such as diabetes or hypothyroidism. Treatment for hypertriglyceridemia typically involves lifestyle modifications such as dietary changes, increased exercise, and weight loss, as well as medication if necessary.

Cholesteryl ester transfer proteins (CETP) are a group of plasma proteins that play a role in the transport and metabolism of lipids, particularly cholesteryl esters and triglycerides, between different lipoprotein particles in the bloodstream. These proteins facilitate the transfer of cholesteryl esters from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL), while simultaneously promoting the transfer of triglycerides in the opposite direction, from VLDL and LDL to HDL.

The net effect of CETP activity is a decrease in HDL cholesterol levels and an increase in LDL and VLDL cholesterol levels. This shift in lipoprotein composition can contribute to the development of atherosclerosis and cardiovascular disease, as lower HDL cholesterol levels and higher LDL cholesterol levels are associated with increased risk for these conditions.

Inhibition of CETP has been investigated as a potential strategy for increasing HDL cholesterol levels and reducing the risk of cardiovascular disease. However, clinical trials with CETP inhibitors have shown mixed results, and further research is needed to determine their safety and efficacy in preventing cardiovascular events.

IDL, or intermediate-density lipoproteins, are a type of lipoprotein that is denser than low-density lipoproteins (LDL) but less dense than high-density lipoproteins (HDL). They are formed during the catabolism (breakdown) of VLDL (very low-density lipoproteins), another type of lipoprotein, by lipoprotein lipase, an enzyme that breaks down triglycerides in lipoproteins.

IDLs contain a higher proportion of cholesterol and apolipoprotein E (apoE) compared to VLDLs and LDLs. Some IDLs are taken up by the liver, while others are converted into LDL particles through the action of cholesteryl ester transfer protein (CETP), which exchanges triglycerides in LDL for cholesterol esters in IDL.

Elevated levels of IDLs in the blood may be a risk factor for cardiovascular disease, as they can contribute to the formation and accumulation of plaque in the arteries. However, IDLs are not typically measured in routine clinical testing, and their role in disease is not as well understood as that of LDL or HDL.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Scavenger receptors, class B (SR-B) are a type of scavenger receptors that play a crucial role in the cellular uptake and metabolism of lipids, particularly modified low-density lipoproteins (LDL), high-density lipoproteins (HDL), and other lipid-soluble molecules. They are membrane-bound glycoproteins that contain an extracellular domain with a characteristic structure, including cysteine-rich repeats and transmembrane domains.

The best-characterized member of this class is SR-B1 (also known as CD36b, SCARB1), which is widely expressed in various tissues, such as the liver, steroidogenic organs, macrophages, and endothelial cells. SR-B1 selectively binds to HDL and facilitates the transfer of cholesteryl esters from HDL particles into cells while allowing HDL to maintain its structural integrity and continue its function in reverse cholesterol transport.

SR-B1 has also been implicated in the uptake and degradation of oxidized LDL, contributing to the development of atherosclerosis. Additionally, SR-B1 is involved in several other cellular processes, including innate immunity, inflammation, and angiogenesis.

Other members of class B scavenger receptors include SR-BI, SR-B2 (also known as CLA-1 or LIMPII), SR-B3 (also known as CD36c or SCARB2), and SR-B4 (also known as CXorf24). These receptors have distinct expression patterns and functions but share structural similarities with SR-BI.

In summary, scavenger receptors, class B, are a group of membrane-bound glycoproteins that facilitate the cellular uptake and metabolism of lipids, particularly modified LDL and HDL particles. They play essential roles in maintaining lipid homeostasis and have implications in various pathological conditions, such as atherosclerosis and inflammation.

Freeze-drying, also known as lyophilization, is a method of preservation that involves the removal of water from a frozen product by sublimation, which is the direct transition of a solid to a gas. This process allows for the preservation of the original shape and structure of the material while significantly extending its shelf life. In medical contexts, freeze-drying can be used for various purposes, including the long-term storage of pharmaceuticals, vaccines, and diagnostic samples. The process helps maintain the efficacy and integrity of these materials until they are ready to be reconstituted with water and used.

Ethinyl estradiol is a synthetic form of the hormone estrogen that is often used in various forms of hormonal contraception, such as birth control pills. It works by preventing ovulation and thickening cervical mucus to make it more difficult for sperm to reach the egg. Ethinyl estradiol may also be used in combination with other hormones to treat menopausal symptoms or hormonal disorders.

It is important to note that while ethinyl estradiol can be an effective form of hormonal therapy, it can also carry risks and side effects, such as an increased risk of blood clots, stroke, and breast cancer. As with any medication, it should only be used under the guidance and supervision of a healthcare provider.

In the context of medical and health sciences, particle size generally refers to the diameter or dimension of particles, which can be in the form of solid particles, droplets, or aerosols. These particles may include airborne pollutants, pharmaceutical drugs, or medical devices such as nanoparticles used in drug delivery systems.

Particle size is an important factor to consider in various medical applications because it can affect the behavior and interactions of particles with biological systems. For example, smaller particle sizes can lead to greater absorption and distribution throughout the body, while larger particle sizes may be filtered out by the body's natural defense mechanisms. Therefore, understanding particle size and its implications is crucial for optimizing the safety and efficacy of medical treatments and interventions.

An immunoassay is a biochemical test that measures the presence or concentration of a specific protein, antibody, or antigen in a sample using the principles of antibody-antigen reactions. It is commonly used in clinical laboratories to diagnose and monitor various medical conditions such as infections, hormonal disorders, allergies, and cancer.

Immunoassays typically involve the use of labeled reagents, such as enzymes, radioisotopes, or fluorescent dyes, that bind specifically to the target molecule. The amount of label detected is proportional to the concentration of the target molecule in the sample, allowing for quantitative analysis.

There are several types of immunoassays, including enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), and chemiluminescent immunoassay (CLIA). Each type has its own advantages and limitations, depending on the sensitivity, specificity, and throughput required for a particular application.

Serum Amyloid A (SAA) protein is an acute phase protein produced primarily in the liver, although it can also be produced by other cells in response to inflammation. It is a member of the apolipoprotein family and is found in high-density lipoproteins (HDL) in the blood. SAA protein levels increase rapidly during the acute phase response to infection, trauma, or tissue damage, making it a useful biomarker for inflammation.

In addition to its role as an acute phase protein, SAA has been implicated in several disease processes, including atherosclerosis and amyloidosis. In amyloidosis, SAA can form insoluble fibrils that deposit in various tissues, leading to organ dysfunction. There are four subtypes of SAA in humans (SAA1, SAA2, SAA3, and SAA4), with SAA1 and SAA2 being the most responsive to inflammatory stimuli.

Dietary fats, also known as fatty acids, are a major nutrient that the body needs for energy and various functions. They are an essential component of cell membranes and hormones, and they help the body absorb certain vitamins. There are several types of dietary fats:

1. Saturated fats: These are typically solid at room temperature and are found in animal products such as meat, butter, and cheese, as well as tropical oils like coconut and palm oil. Consuming a high amount of saturated fats can raise levels of unhealthy LDL cholesterol and increase the risk of heart disease.
2. Unsaturated fats: These are typically liquid at room temperature and can be further divided into monounsaturated and polyunsaturated fats. Monounsaturated fats, found in foods such as olive oil, avocados, and nuts, can help lower levels of unhealthy LDL cholesterol while maintaining levels of healthy HDL cholesterol. Polyunsaturated fats, found in foods such as fatty fish, flaxseeds, and walnuts, have similar effects on cholesterol levels and also provide essential omega-3 and omega-6 fatty acids that the body cannot produce on its own.
3. Trans fats: These are unsaturated fats that have been chemically modified to be solid at room temperature. They are often found in processed foods such as baked goods, fried foods, and snack foods. Consuming trans fats can raise levels of unhealthy LDL cholesterol and lower levels of healthy HDL cholesterol, increasing the risk of heart disease.

It is recommended to limit intake of saturated and trans fats and to consume more unsaturated fats as part of a healthy diet.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Immunoelectrophoresis (IEP) is a laboratory technique used in the field of clinical pathology and immunology. It is a method for separating and identifying proteins, particularly immunoglobulins or antibodies, in a sample. This technique combines the principles of electrophoresis, which separates proteins based on their electric charge and size, with immunological reactions, which detect specific proteins using antigen-antibody interactions.

In IEP, a protein sample is first separated by electrophoresis in an agarose or agar gel matrix on a glass slide or in a test tube. After separation, an antibody specific to the protein of interest is layered on top of the gel and allowed to diffuse towards the separated proteins. This creates a reaction between the antigen (protein) and the antibody, forming a visible precipitate at the point where they meet. The precipitate line's position and intensity can then be analyzed to identify and quantify the protein of interest.

Immunoelectrophoresis is particularly useful in diagnosing various medical conditions, such as immunodeficiency disorders, monoclonal gammopathies (like multiple myeloma), and other plasma cell dyscrasias. It can help detect abnormal protein patterns, quantify specific immunoglobulins, and identify the presence of M-proteins or Bence Jones proteins, which are indicative of monoclonal gammopathies.

Hyperlipoproteinemia Type V is a rare genetic disorder characterized by an excess of lipids (fats) in the blood. It is caused by mutations in genes responsible for the metabolism of lipoproteins, which are particles that transport fat molecules, such as cholesterol and triglycerides, throughout the body.

In Hyperlipoproteinemia Type V, there is a significant increase in the levels of both chylomicrons (lipoprotein particles that carry dietary lipids) and very low-density lipoproteins (VLDLs, lipoprotein particles that carry endogenous lipids produced by the liver). This results in extremely high levels of triglycerides and moderately elevated levels of cholesterol in the blood.

Individuals with Hyperlipoproteinemia Type V are at an increased risk for developing pancreatitis (inflammation of the pancreas), eruptive xanthomas (small, yellowish bumps on the skin caused by cholesterol deposits), and hepatosplenomegaly (enlargement of the liver and spleen). The diagnosis is typically made based on clinical presentation, family history, and laboratory tests that measure lipid levels. Treatment often involves dietary modifications, weight loss, exercise, and medications to lower lipid levels in the blood.

Abetalipoproteinemia is a rare inherited genetic disorder that affects the way the body absorbs and metabolizes fats and fat-soluble vitamins. It is caused by mutations in the genes responsible for producing proteins involved in the formation and transport of beta-lipoproteins, which are necessary for the absorption of dietary fats and cholesterol from the intestines.

Individuals with abetalipoproteinemia are unable to produce adequate levels of these lipoproteins, leading to a deficiency in fat-soluble vitamins (A, D, E, and K) and an accumulation of fats in the intestines. This results in various symptoms such as steatorrhea (fatty, foul-smelling stools), malabsorption, diarrhea, failure to thrive, and neurological issues due to vitamin E deficiency.

The disorder is typically diagnosed in infancy or early childhood and requires lifelong dietary management, including a low-fat diet and supplementation with fat-soluble vitamins. Early intervention can help prevent the progression of neurological symptoms and improve overall prognosis.

Dimyristoylphosphatidylcholine (DMPC) is a type of phospholipid molecule that is commonly found in animal cell membranes. It is composed of two myristoyl fatty acid chains, a phosphate group, and a choline headgroup. DMPC has a gel-to-liquid crystalline phase transition temperature of around 23-25°C, which makes it a useful compound for studying the physical properties of lipid membranes and for creating model membrane systems in laboratory experiments.

Scavenger receptors are a class of cell surface receptors that play a crucial role in the recognition and clearance of various biomolecules, including modified self-molecules, pathogens, and apoptotic cells. These receptors are expressed mainly by phagocytic cells such as macrophages and dendritic cells, but they can also be found on other cell types, including endothelial cells and smooth muscle cells.

Scavenger receptors have broad specificity and can bind to a wide range of ligands, including oxidized low-density lipoprotein (oxLDL), polyanionic molecules, advanced glycation end products (AGEs), and pathogen-associated molecular patterns (PAMPs). The binding of ligands to scavenger receptors triggers various cellular responses, such as phagocytosis, endocytosis, signaling cascades, and the production of cytokines and chemokines.

Scavenger receptors are classified into several families based on their structural features and ligand specificity, including:

1. Class A (SR-A): This family includes SR-AI, SR-AII, and MARCO, which bind to oxLDL, bacteria, and apoptotic cells.
2. Class B (SR-B): This family includes SR-BI, CD36, and LIMPII, which bind to lipoproteins, phospholipids, and pathogens.
3. Class C (SR-C): This family includes DEC-205, MRC1, and LOX-1, which bind to various ligands, including apoptotic cells, bacteria, and oxLDL.
4. Class D (SR-D): This family includes SCARF1, which binds to PAMPs and damage-associated molecular patterns (DAMPs).
5. Class E (SR-E): This family includes CXCL16, which binds to chemokine CXCR6 and phosphatidylserine.

Scavenger receptors play a critical role in maintaining tissue homeostasis by removing damaged or altered molecules and cells, modulating immune responses, and regulating lipid metabolism. Dysregulation of scavenger receptor function has been implicated in various pathological conditions, including atherosclerosis, inflammation, infection, and cancer.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and peanut oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature with a slight odor. Oleic acid is an important component of human diet and has been shown to have various health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other industrial products.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Arteriosclerosis is a general term that describes the hardening and stiffening of the artery walls. It's a progressive condition that can occur as a result of aging, or it may be associated with certain risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a sedentary lifestyle.

The process of arteriosclerosis involves the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, in the inner lining of the artery walls. Over time, this buildup can cause the artery walls to thicken and harden, reducing the flow of oxygen-rich blood to the body's organs and tissues.

Arteriosclerosis can affect any of the body's arteries, but it is most commonly found in the coronary arteries that supply blood to the heart, the cerebral arteries that supply blood to the brain, and the peripheral arteries that supply blood to the limbs. When arteriosclerosis affects the coronary arteries, it can lead to heart disease, angina, or heart attack. When it affects the cerebral arteries, it can lead to stroke or transient ischemic attack (TIA). When it affects the peripheral arteries, it can cause pain, numbness, or weakness in the limbs, and in severe cases, gangrene and amputation.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Lipolysis is the process by which fat cells (adipocytes) break down stored triglycerides into glycerol and free fatty acids. This process occurs when the body needs to use stored fat as a source of energy, such as during fasting, exercise, or in response to certain hormonal signals. The breakdown products of lipolysis can be used directly by cells for energy production or can be released into the bloodstream and transported to other tissues for use. Lipolysis is regulated by several hormones, including adrenaline (epinephrine), noradrenaline (norepinephrine), cortisol, glucagon, and growth hormone, which act on lipases, enzymes that mediate the breakdown of triglycerides.

Sterol O-Acyltransferase (SOAT, also known as ACAT for Acyl-CoA:cholesterol acyltransferase) is an enzyme that plays a crucial role in cholesterol homeostasis within cells. Specifically, it catalyzes the reaction of esterifying free cholesterol with fatty acyl-coenzyme A (fatty acyl-CoA) to form cholesteryl esters. This enzymatic activity allows for the intracellular storage of excess cholesterol in lipid droplets, reducing the levels of free cholesterol in the cell and thus preventing its potential toxic effects on membranes and proteins. There are two isoforms of SOAT, SOAT1 and SOAT2, which exhibit distinct subcellular localization and functions. Dysregulation of SOAT activity has been implicated in various pathological conditions, including atherosclerosis and neurodegenerative disorders.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Callitrichinae is a subfamily of New World monkeys that includes marmosets and tamarins. These small primates are known for their claw-like nails (called "tegulae"), which they use for grooming and climbing, as well as their small size and social behavior. They are native to the forests of Central and South America. Some notable species in this subfamily include the common marmoset (Callithrix jacchus) and the golden lion tamarin (Leontopithecus rosalia).

High-density lipoproteins (HDL) are a type of lipoprotein that play a crucial role in the transportation and metabolism of cholesterol in the body. They are often referred to as "good cholesterol" because they help remove excess cholesterol from cells and tissues, transporting it back to the liver for excretion or recycling. This process is known as reverse cholesterol transport and helps maintain healthy cholesterol levels in the body.

Pre-beta HDLs are a specific subclass of HDL particles that are involved in the early stages of reverse cholesterol transport. These particles are smaller and denser than other HDL subclasses, and they have the unique ability to accept cholesterol from cells and tissues. Pre-beta HDLs are thought to be particularly efficient at initiating the reverse cholesterol transport process, making them an important component of healthy lipid metabolism.

It is worth noting that while pre-beta HDLs have been the subject of research interest due to their potential role in cardiovascular health, there is still much that is not fully understood about these particles. As such, a medical definition of "pre-beta HDL" may vary depending on the specific context and source of the information.

Lipase is an enzyme that is produced by the pancreas and found in the digestive system of most organisms. Its primary function is to catalyze the hydrolysis of fats (triglycerides) into smaller molecules, such as fatty acids and glycerol, which can then be absorbed by the intestines and utilized for energy or stored for later use.

In medical terms, lipase levels in the blood are often measured to diagnose or monitor conditions that affect the pancreas, such as pancreatitis (inflammation of the pancreas), pancreatic cancer, or cystic fibrosis. Elevated lipase levels may indicate damage to the pancreas and its ability to produce digestive enzymes.

Liposomes are artificially prepared, small, spherical vesicles composed of one or more lipid bilayers that enclose an aqueous compartment. They can encapsulate both hydrophilic and hydrophobic drugs, making them useful for drug delivery applications in the medical field. The lipid bilayer structure of liposomes is similar to that of biological membranes, which allows them to merge with and deliver their contents into cells. This property makes liposomes a valuable tool in delivering drugs directly to targeted sites within the body, improving drug efficacy while minimizing side effects.

LDL receptors (Low-Density Lipoprotein Receptors) are cell surface receptors that play a crucial role in the regulation of cholesterol homeostasis within the body. They are responsible for recognizing and binding to LDL particles, also known as "bad cholesterol," which are then internalized by the cell through endocytosis.

Once inside the cell, the LDL particles are broken down, releasing their cholesterol content, which can be used for various cellular processes such as membrane synthesis and hormone production. The LDL receptors themselves are recycled back to the cell surface, allowing for continued uptake of LDL particles.

Mutations in the LDL receptor gene can lead to a condition called familial hypercholesterolemia, which is characterized by high levels of LDL cholesterol in the blood and an increased risk of premature cardiovascular disease.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and grapeseed oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature. Oleic acid is an important component of human diet and has been shown to have potential health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other personal care products.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Lecithin:cholesterol acyltransferase (LCAT) deficiency is a genetic disorder that affects the metabolism of cholesterol in the body. LCAT is an enzyme that helps to convert cholesterol into a form that can be easily transported in the bloodstream.

In LCAT deficiency, the activity of this enzyme is reduced or absent, leading to an accumulation of cholesterol in various tissues and organs of the body. This can result in a range of symptoms, including corneal opacities (clouding of the clear outer layer of the eye), hemolytic anemia (destruction of red blood cells), proteinuria (excess protein in the urine), and kidney failure.

There are two main types of LCAT deficiency: a complete form, known as fish-eye disease, which is characterized by corneal opacities but few other symptoms; and an incomplete form, known as LCAT deficiency with systemic involvement, which can affect multiple organs and systems of the body.

LCAT deficiency is caused by mutations in the LCAT gene, which provides instructions for making the LCAT enzyme. Inheritance is autosomal recessive, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the disorder.

Familial Combined Hyperlipidemia (FCH) is a genetic disorder characterized by high levels of cholesterol and/or fats (lipids) in the blood. It is one of the most common inherited lipid disorders, affecting approximately 1 in 200 to 1 in 500 people.

FCH is caused by mutations in several genes involved in lipid metabolism, including the APOB, LDLR, and PCSK9 genes. These genetic defects lead to increased levels of low-density lipoprotein (LDL) cholesterol, triglycerides, or both in the blood.

Individuals with FCH may have elevated levels of total cholesterol, LDL cholesterol, and/or triglycerides, which can increase their risk for premature atherosclerosis and cardiovascular disease. The condition often presents in early adulthood and may manifest as mixed hyperlipidemia (high levels of both LDL cholesterol and triglycerides) or isolated hypercholesterolemia (high levels of LDL cholesterol only).

Familial combined hyperlipidemia is typically managed with lifestyle modifications, such as a heart-healthy diet, regular exercise, and weight management. Medications, such as statins, may also be prescribed to lower lipid levels and reduce the risk of cardiovascular disease. Regular monitoring of lipid levels is essential for effective management and prevention of complications associated with FCH.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

CD36 is a type of protein found on the surface of certain cells in the human body, including platelets, white blood cells (monocytes and macrophages), and fat (adipose) cells. It is a type of scavenger receptor that plays a role in various biological processes, such as:

1. Fatty acid uptake and metabolism: CD36 helps facilitate the transport of long-chain fatty acids into cells for energy production and storage.
2. Inflammation and immune response: CD36 is involved in the recognition and clearance of foreign substances (pathogens) and damaged or dying cells, which can trigger an immune response.
3. Angiogenesis: CD36 has been implicated in the regulation of blood vessel formation (angiogenesis), particularly during wound healing and tumor growth.
4. Atherosclerosis: CD36 has been associated with the development and progression of atherosclerosis, a condition characterized by the buildup of fats, cholesterol, and other substances in and on the artery walls. This is due to its role in the uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, leading to the formation of foam cells and the development of fatty streaks in the arterial wall.
5. Infectious diseases: CD36 has been identified as a receptor for various pathogens, including malaria parasites, HIV, and some bacteria, which can use this protein to gain entry into host cells.

As an antigen, CD36 is a molecule that can be targeted by the immune system to produce an immune response. Antibodies against CD36 have been found in various diseases, such as autoimmune disorders and certain infections. Modulation of CD36 activity has been suggested as a potential therapeutic strategy for several conditions, including atherosclerosis, diabetes, and infectious diseases.

... D Apolipoprotein E Apolipoprotein F Apolipoprotein H - a misnomer Apolipoprotein L Apolipoprotein M ... HuGENet Review Apolipoprotein AI Mutations and Information Apolipoproteins. Apo A1, B, C2. Apolipoproteins information This ... Apolipoprotein A (Apo-AI, Apo-A2, Apo-A4, and Apo-A5) Apolipoprotein B (Apo-B48 and Apo B-100) Apolipoprotein C (ApoC-I, apo ... Apolipoprotein F (apoF) is one of the minor apolipoprotein in blood plasma and it is a lipid transfer inhibit protein to ...
... is a protein that in humans is encoded by the APOL1 gene. Two transcript variants encoding two different ... APOL1 is a member of a family of apolipoproteins which also includes six other proteins and it is a member of bcl2 genes which ... G2 is an in-frame deletion of the two amino acid residues, N388 and Y389.[citation needed] Apolipoprotein L1 (apoL1) is a minor ... particles that also contain apolipoprotein A1 (APOA1) and the hemoglobin-binding, haptoglobin-related protein (HPR). The APOL1 ...
The gene, APOE, is mapped to chromosome 19 in a cluster with apolipoprotein C1 (APOC1) and the apolipoprotein C2 (APOC2). The ... "Genetic studies of human apolipoproteins. X. The effect of the apolipoprotein E polymorphism on quantitative levels of ... Apolipoprotein E (Apo-E) is a protein involved in the metabolism of fats in the body of mammals. A subtype is implicated in the ... Apolipoprotein E enhances proteolytic break-down of this peptide, both within and between cells. The isoform APOE-ε4 is not as ...
... is the primary apolipoprotein of chylomicrons, VLDL, Lp(a), IDL, and LDL particles (LDL-commonly known as "bad ... Apolipoprotein B (ApoB) is a protein that in humans is encoded by the APOB gene. It is commonly used to detect risk of ... Su Q, Tsai J, Xu E, Qiu W, Bereczki E, Santha M, Adeli K (2009). "Apolipoprotein B100 acts as a molecular link between lipid- ... MedlinePlus Encyclopedia: Apolipoprotein B100 Cromwell WC, Otvos JD, Keyes MJ, Pencina MJ, Sullivan L, Vasan RS, Wilson PW, ...
... (Apo-AI) is a protein that in humans is encoded by the APOA1 gene. As the major component of HDL particles, ... The encoded apolipoprotein AI, is a 28.1 kDa protein composed of 243 amino acids; 21 peptides have been observed through mass ... Apolipoprotein AI has also been isolated as a prostacyclin (PGI2) stabilizing factor, and thus may have an anticlotting effect ... Apolipoprotein AI is the major protein component of high density lipoprotein (HDL) particles in plasma. Chylomicrons secreted ...
... (Apo L) is found in high-density lipoprotein complexes that plays a central role in cholesterol transport. The ... reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for ...
In the field of molecular biology, apolipoprotein C is a family of four low molecular weight apolipoproteins, designated as C-I ... In the fasting state, the C apolipoproteins are mainly associated with HDL. During absorption of dietary fat, the C ... v t e (Articles with short description, Short description matches Wikidata, Apolipoproteins, All stub articles, Protein stubs) ... Mahley RW, Innerarity TL, Rall SC, Weisgraber KH (December 1984). "Plasma lipoproteins: apolipoprotein structure and function ...
... is the first chondroitine sulphate chain containing apolipoprotein. Apolipoproteins are proteins that binds to ... APOO is a member of the apolipoprotein family. The human, apolipoprotein O is a 198 amino acids protein that contains a 23 ... Apolipoprotein O also known as protein FAM121B is a protein that in humans is encoded by the APOO gene. ... 2009). "Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip". Am. J. Hum. ...
... (Apo-CII, or Apoc-II), or apolipoprotein C2 is a protein that in humans is encoded by the APOC2 gene. The ... 1989). "A nonsense mutation in the apolipoprotein C-IIPadova gene in a patient with apolipoprotein C-II deficiency". J. Clin. ... Connelly PW, Maguire GF, Little JA (1988). "Apolipoprotein CIISt. Michael. Familial apolipoprotein CII deficiency associated ... "Entrez Gene: APOC2 apolipoprotein C-II". Jackson RL, Baker HN, Gilliam EB, Gotto AM (1977). "Primary structure of very low ...
... , also known as apolipoprotein C4, is a protein that in humans is encoded by the APOC4 gene. APOC4 is a ... "Entrez Gene: apolipoprotein C-IV". Allan CM, Walker D, Segrest JP, Taylor JM (July 1995). "Identification and characterization ... 2008). "Expression of apolipoprotein C-IV is regulated by Ku antigen/peroxisome proliferator-activated receptor gamma complex ... 2002). "Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical ...
... is an autosomal dominant disorder resulting from a missense mutation which reduces the affinity of ...
In autoimmune disease, anti-apolipoprotein H (AAHA) antibodies, also called anti-β2 glycoprotein I antibodies, comprise a ...
The apolipoprotein B (apoB) 5′ UTR cis regulatory element is an RNA element located in the 5′ UTR of the human apoB mRNA. This ... Page for Apolipoprotein B (apoB) 5′ UTR cis-regulatory element at Rfam v t e (Articles with short description, Short ... Pontrelli L, Sidiropoulos KG, Adeli K (June 2004). "Translational control of apolipoprotein B mRNA: regulation via cis elements ...
1996). Apolipoprotein E and Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Berlin, Heidelberg: Springer ... "Maestre CV" (PDF). Maestre, Gladys Elena (1996). Apolipoproteins and Alzheimer's disease (Thesis). OCLC 36257436. Staff, M. D. ... "The apolipoprotein ?4 allele in patients with Alzheimer's disease". Annals of Neurology. 34 (5): 752-754. doi:10.1002/ana. ... "Apolipoprotein E and alzheimer's disease: Ethnic variation in genotypic risks". Annals of Neurology. 37 (2): 254-259. doi: ...
... apolipoprotein D; beta-lactoglobulin; complement component C8 gamma chain; crustacyanin; epididymal-retinoic acid binding ...
Apolipoprotein A-I Milano (also ETC-216, now MDCO-216) is a naturally occurring mutated variant of the apolipoprotein A1 ... Weisgraber KH, Rall SC, Bersot TP, Mahley RW, Franceschini G, Sirtori CR (25 February 1983). "Apolipoprotein A-IMilano. ...
Kim DH, Iijima H, Goto K, Sakai J, Ishii H, Kim HJ, Suzuki H, Kondo H, Saeki S, Yamamoto T (Jun 1996). "Human apolipoprotein E ... Apolipoprotein E (ApoE) plays an important role in phospholipid and cholesterol homeostasis. After binding ApoER2, ApoE is ... Riddell DR, Sun XM, Stannard AK, Soutar AK, Owen JS (2001). "Localization of apolipoprotein E receptor 2 to caveolae in the ... Herz J (June 2009). "Apolipoprotein E receptors in the nervous system". Curr. Opin. Lipidol. 20 (3): 190-6. doi:10.1097/MOL. ...
Xu, Ning; Dahlbäck, Björn (1999). "A Novel Human Apolipoprotein (ApoM)". Journal of Biological Chemistry. 274 (44): 31286-31290 ... "Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M". Proceedings of the National ...
"Genetic studies of human apolipoproteins. XVIII. apolipoprotein polymorphisms in Australian Aborigines", Human Biology, 63 (2 ...
"Entrez Gene: APOL3 apolipoprotein L, 3". Gaudet RG, Zhu S, Halder A, Kim BH, Bradfield CJ, Huang S, et al. (2021). "A human ... Apolipoprotein L3 is a protein that in humans is encoded by the APOL3 gene. Expressed in the gut, it has antibiotic properties ... This gene is a member of the apolipoprotein L gene family. The encoded protein is found in the cytoplasm, where it may affect ... Duchateau PN, Pullinger CR, Cho MH, Eng C, Kane JP (April 2001). "Apolipoprotein L gene family: tissue-specific expression, ...
Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector. ... Alzheimer's disease and apolipoprotein E (apoE). Uncovered the molecular pathways that link apoE and Alzheimer's disease, and ...
Apolipoprotein L2 is a protein that in humans is encoded by the APOL2 gene. This gene is a member of the apolipoprotein L gene ... "Entrez Gene: APOL2 apolipoprotein L, 2". "The Human Protein atlas Gene: APOL2 apolipoprotein L, 2". Liao W, Goh FY, Betts RJ, ... "The Human Protein atlas Gene: APOL2 apolipoprotein L, 2". Rao SK, Pavicevic Z, Du Z, Kim JG, Fan M, Jiao Y, Rosebush M, Samant ... "Nextprot Gene: APOL2 apolipoprotein L, 2". Luo, Audrey; Jung, Jeesun; Longley, Martha; Rosoff, Daniel B.; Charlet, Katrin; ...
Apolipoprotein L6 is a protein that in humans is encoded by the APOL6 gene. This gene is a member of the apolipoprotein L gene ... "Entrez Gene: APOL6 apolipoprotein L, 6". Human APOL6 genome location and APOL6 gene details page in the UCSC Genome Browser. ... Liu Z, Lu H, Jiang Z, Pastuszyn A, Hu CA (Jan 2005). "Apolipoprotein l6, a novel proapoptotic Bcl-2 homology 3-only protein, ... Page NM, Butlin DJ, Lomthaisong K, Lowry PJ (May 2001). "The human apolipoprotein L gene cluster: identification, ...
2003). "[Apolipoprotein E and bleomycin hydrolase. Polymorphisms: association with neurodegenerative diseases]". Ann. Biol. ...
Karathanasis SK (1985). "Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII, and AIV genes ... "Genetic polymorphism of human plasma apolipoprotein A-IV is due to nucleotide substitutions in the apolipoprotein A-IV gene". J ... Apolipoprotein A-IV (also known as apoA-IV, apoAIV, or apoA4) is plasma protein that is the product of the human gene APOA4. ... "Entrez Gene: APOA4 apolipoprotein A-IV". Luo CC, Li WH, Moore MN, Chan L (February 1986). "Structure and evolution of the ...
Katan MB (March 1986). "Apolipoprotein E isoforms, serum cholesterol, and cancer". Lancet. 1 (8479): 507-8. doi:10.1016/s0140- ...
"Apolipoprotein E", Wikipedia, 2020-09-05, retrieved 2020-09-11 Tolar, Martin; Hey, John; Power, Aidan; Abushakra, Susan (June ... Hauser, Paul S.; Ryan, Robert O. (October 2013). "Impact of Apolipoprotein E on Alzheimer's Disease". Current Alzheimer ...
"Entrez Gene: apolipoprotein B mRNA editing enzyme". Marino D, Perković M, Hain A, Jaguva Vasudevan AA, Hofmann H, Hanschmann KM ... C->U-editing enzyme APOBEC-4, also known as Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 4, is a protein ...
1999) showed that 2 cell surface receptors, very low density lipoprotein receptor (VLDLR; 192977) and apolipoprotein E receptor ... "Functional dissection of Reelin signaling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E ...
Zannis VI, Kan HY, Kritis A, Zanni E, Kardassis D (March 2001). "Transcriptional regulation of the human apolipoprotein genes ...
Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I". The Journal of Biological ... Apolipoprotein D (ApoD) is a component of HDL that has no marked similarity to other apolipoprotein sequences. It has a high ... "Entrez Gene: APOD apolipoprotein D". Muffat J, Walker DW (January 2010). "Apolipoprotein D: an overview of its role in aging ... Apolipoproteins+D at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Applied Research on Apolipoproteins ...
Apolipoprotein+H at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Apolipoprotein H and Applied Research ... The first four domains found in Apolipoprotein H resemble each other, however the fifth one appears to be different. This ... PDBe-KB provides an overview of all the structure information available in the PDB for Human Apolipoprotein H (B2G1) (Articles ... β2-glycoprotein 1, also known as beta-2 glycoprotein 1 and Apolipoprotein H (Apo-H), is a 38 kDa multifunctional plasma protein ...
... also known as apo-CIII, and apolipoprotein C3, is a protein that in humans is encoded by the APOC3 gene. ... Karathanasis SK (Oct 1985). "Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII, and AIV ... Apolipoprotein+C-III at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Human APOC3 genome location and ... Zannis VI, Cole FS, Jackson CL, Kurnit DM, Karathanasis SK (Jul 1985). "Distribution of apolipoprotein A-I, C-II, C-III, and E ...
Myklebost O, Rogne S (August 1986). "The gene for human apolipoprotein CI is located 4.3 kilobases away from the apolipoprotein ... "Two copies of the human apolipoprotein C-I gene are linked closely to the apolipoprotein E gene". The Journal of Biological ... Apolipoprotein C-I is a protein component of lipoproteins that in humans is encoded by the APOC1 gene. The protein encoded by ... "Entrez Gene: APOC1 apolipoprotein C-I". Puppione DL, Ryan CM, Bassilian S, Souda P, Xiao X, Ryder OA, Whitelegge JP (March 2010 ...
... is a protein that in humans is encoded by the APOA2 gene. It is the second most abundant protein of the ... "Entrez Gene: APOA2 apolipoprotein A-II". Pussinen PJ, Jauhiainen M, Metso J, Pyle LE, Marcel YL, Fidge NH, Ehnholm C (Jan 1998 ... Brewer HB, Lux SE, Ronan R, John KM (May 1972). "Amino acid sequence of human apoLp-Gln-II (apoA-II), an apolipoprotein ... The protein is found in plasma as a monomer, homodimer, or heterodimer with apolipoprotein D. ApoA-II regulates many steps in ...
Apolipoprotein M is an apolipoprotein and member of the lipocalin protein family that in humans is encoded by the APOM gene. It ... "The signal peptide anchors apolipoprotein M in plasma lipoproteins and prevents rapid clearance of apolipoprotein M from plasma ... "Entrez Gene: APOM apolipoprotein M". Christoffersen C, Ahnström J, Axler O, Christensen EI, Dahlbäck B, Nielsen LB (July 2008 ... Overview of all the structural information available in the PDB for UniProt: O95445 (Human Apolipoprotein M) at the PDBe-KB. v ...
The HDL donates apolipoprotein C-II (APOC2) and apolipoprotein E (APOE) to the nascent chylomicron and, thus, converts it to a ... The main apolipoprotein component is ApoB48. While circulating in blood, chylomicrons exchange components with high-density ... The triglycerides are then combined with phospholipids, cholesteryl esters, and apolipoprotein B48 (ApoB48) to form a nascent ... These triglycerides, along with phospholipids and cholesterol, are added to apolipoprotein B48 to form immature chylomicrons. ...
Apolipoprotein D Apolipoprotein E Apolipoprotein F Apolipoprotein H - a misnomer Apolipoprotein L Apolipoprotein M ... HuGENet Review Apolipoprotein AI Mutations and Information Apolipoproteins. Apo A1, B, C2. Apolipoproteins information This ... Apolipoprotein A (Apo-AI, Apo-A2, Apo-A4, and Apo-A5) Apolipoprotein B (Apo-B48 and Apo B-100) Apolipoprotein C (ApoC-I, apo ... Apolipoprotein F (apoF) is one of the minor apolipoprotein in blood plasma and it is a lipid transfer inhibit protein to ...
Cite this: Lipids, Apolipoproteins, and Vascular Disease: What to Measure? - Medscape - Nov 24, 2009. ... Either total and HDL cholesterol, or apolipoproteins, fasting or not, are equally accurate. ...
Apolipoprotein B100 (apoB100) is a protein that plays a role in moving cholesterol around your body. It is a form of low ... Apolipoprotein B100 (apoB100) is a protein that plays a role in moving cholesterol around your body. It is a form of low ... Apolipoprotein measurements may provide more detail about your risk for heart disease, but the added value of this test beyond ... Regulation and clearance of apolipoprotein B-containing lipoproteins. In: Ballantyne CM, ed. Clinical Lipidology: A Companion ...
Beta apolipoproteins. Beta apolipoproteins are the largest of the apolipoproteins. They are critically important for the ... Apolipoprotein B-100 deficiency. Intestinal steatosis despite apolipoprotein B-48 synthesis. J Clin Invest. 1985 Aug. 76(2):403 ... CMs, VLDL, and LDL carry apolipoproteins on their surface; these apolipoproteins have lipid-soluble segments, the beta ... The 2 beta apolipoproteins are B-100 and B-48. ApoB-100 is carried on VLDL and the lipoproteins derived from its metabolism, ...
Novel mechanism for defective receptor binding of apolipoprotein E2 in type III hyperlipoproteinemia.. Dong, L.M., Parkin, S., ... The defective binding of apolipoprotein (apo) E2 to lipoprotein receptors, an underlying cause of type III hyperlipoproteinemia ...
LBXAPB - Apolipoprotein (B) (mg/dL). Variable Name: LBXAPB. SAS Label: Apolipoprotein (B) (mg/dL). English Text: Apolipoprotein ... LBDAPBSI - Apolipoprotein (B) (g/L). Variable Name: LBDAPBSI. SAS Label: Apolipoprotein (B) (g/L). English Text: Apolipoprotein ... Apolipoprotein B (ApoB_G) Data File: ApoB_G.xpt First Published: January 2014. Last Revised: NA ... Apolipoprotein B is the main protein component of LDL and accounts for approximately 95% of the total protein content of LDL. ...
The ability of sAPP-α to activate microglia was blocked by prior incubation of the protein with apolipoprotein E3 but not ... apolipoprotein E4, a variant associated with an increased risk for Alzheimers6. A product of amyloidogenic β-APP processing ( ... Roses, A. D. Apolipoprotein E alleles as risk factors in Alzheimers disease. Annu. Rev. Med. 47, 387-400 (1996). ... Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimers disease in late onset families. Science 261, 921-923 ( ...
You have to enable JavaScript in your browsers settings in order to use the eReader.. Or try downloading the content offline. DOWNLOAD ...
Apolipoproteins E: A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS ... Apolipoproteins E (ApoE). Subscribe to New Research on Apolipoproteins E A class of protein components which can be found in ... ApoE; Apo E; Apo E Isoproteins; Apolipoprotein E Isoproteins; Apoprotein (E); Apoproteins E; Isoproteins, Apo E; Isoproteins, ...
NIDDK invention relates to cellular models of Apolipoprotein E. ... Cells expressing Apolipoprotein E & uses thereof (U.S. Patent ... Cells expressing Apolipoprotein E & uses thereof (U.S. Patent Number PCT/US2015/049674). This patent covers cellular models ... expressing variants of the human gene Apolipoprotein E. This invention not only allows for the evaluation of cellular ...
p>Learn about Meridians comprehensive solutions for diagnostic testing of Apolipoproteins. ... Apolipoprotein. Apolipoproteins are lipid transport proteins, helping to move lipids (and fat-soluble vitamins) in the body. ... Goat anti Apolipoprotein E. Polyclonal. Aff.Pur.. Goat. N/A. N/A. MG. G5C27-766. SDS. COA. Request Sample. ... Human Apolipoprotein AI. Antigen. Purified. Human Plasma HDL. N/A. N/A. MG. A95120H. SDS. COA. Request Sample. ...
Human apolipoprotein A-I prevents atherosclerosis associated with apolipoprotein[a] in transgenic mice. J Lipid Res 1994. 35: ... Apolipoprotein A-I transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest 1994. 94:899- ... Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the ... Generation of monoclonal antibodies specific for mouse apolipoprotein B-100 in apolipoprotein B-48-only mice. J Lipid Res 1999 ...
Apolipoprotein CIII Antibody Human Manufactured by Gentaur. Gentaur is the biggest antibody manufacturer worldwide. ... Apolipoprotein C-III, also known as apo-CIII, is a protein that in humans is encoded by the APOC3 gene. Apo-CIII is a component ... Immunogen Peptide corresponding to amino acids 37-48 of human Apolipoprotein C3 ...
Circulating Lipoprotein Lipids, Apolipoproteins and Ischemic Stroke Shuai Yuan 1 , Bowen Tang 2 , Jie Zheng 3 4 , Susanna C ... Circulating Lipoprotein Lipids, Apolipoproteins and Ischemic Stroke Shuai Yuan et al. Ann Neurol. 2020 Dec. ... Associations of apolipoprotein A‐I and LDL cholesterol with stroke and subtypes in multivariable inverse‐variance weighted ... Associations of apolipoprotein B, LDL cholesterol, and triglycerides with stroke and subtypes in multivariable inverse‐variance ...
To determine the associations between apolipoprotein E (APOE) genotypes and serum levels of glucose, total cholesterol, and ... Associations between apolipoprotein E genotypes and serum levels of glucose, cholesterol, and triglycerides in a cognitively ... Association between apolipoprotein E polymorphism and serum lipid and apolipoprotein levels with Alzheimers disease. Neurosci ... Association of apolipoprotein E genotypes with serum lipid profiles in a healthy population of Taiwan. Ann Clin Lab Sci. 2004; ...
Apolipoprotein e4 carrier status was associated with an increased risk for early postoperative delirium after controlling for ... Apolipoprotein E e4 allele increases the risk of early postoperative delirium in older patients undergoing noncardiac surgery ... Forty-six patients (24.2%) had at least one copy of the apolipoprotein e4 allele. The presence of one copy of the e4 allele was ... Conclusions: Apolipoprotein e4 carrier status was associated with an increased risk for early postoperative delirium after ...
Mouse Monoclonal Apolipoprotein B antibody [F2C4] (GTX15664). Validated in ICC/IF, IHC-P, IP, ELISA, IHC, RIA. Tested in Human ... There are currently no reviews for Apolipoprotein B antibody [F2C4] (GTX15664). Be the first to share your experience with this ... This gene product is the main apolipoprotein of chylomicrons and low density lipoproteins. It occurs in plasma as two main ... ICC/IF analysis of HepG2 cells using GTX15664 Apolipoprotein B antibody [F2C4]. Panel e is a no primary antibody control. ...
Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and ...
Apolipoprotein E (ApoE) is one of the major apolipoproteins in the central nervous system. Compared with ApoE2 and ApoE3, ... An updated meta-analysis: Apolipoprotein E genotypes and risk of primary open-angle glaucoma Rongfeng Liao,1,2 Minjie Ye,2 ... Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimers disease in late onset families. Science. 1993; 261:921- ... The apolipoprotein epsilon4 gene is associated with elevated risk of normal tension glaucoma. Mol Vis. 2002; 8:389-93. [PMID: ...
The Emerging Role of Apolipoproteins in the Pathogenesis and Treatment of Asthma ... CC Grand Rounds: The Emerging Role of Apolipoproteins in the Pathogenesis and Treatment of Asthma. Download VideoCast. You can ... CC Grand Rounds: The Emerging Role of Apolipoproteins in the Pathogenesis and Treatment of Asthma. For more information go to ... CC Grand Rounds: The Emerging Role of Apolipoproteins in the Pathogenesis and Treatment of Asthma. ...
Apolipoprotein B (apoB) levels are used to evaluate the risk for cardiovascular disease. The reference range of apoB levels in ... What is the reference range of apolipoprotein B (apoB)?. Which conditions are associated with low levels of apolipoprotein B ( ... What are the indications for apolipoprotein B (apoB) measurement?. What are considerations for apolipoprotein B (apoB) testing? ... encoded search term (Apolipoprotein B) and Apolipoprotein B What to Read Next on Medscape ...
Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimers disease in late onset families. Science. 1993 Aug 13; ...
The Role of Apolipoprotein E, Lipoprotein Receptors and CNS Lipid Homeostasis in Brain Aging and Alzheimers Disease (R01) PA-09 ... The Apolipoprotein E e4 allele of the Apolipoprotein E gene is the strongest risk factor for late onset AD identified to date; ... In spite of the fact that the discovery of Apolipoprotein E as an AD risk factor gene was made more than 15 years ago, the ... Purpose. This FOA encouarges multidisciplinary and interdisciplinary research to elucidate how Apolipoprotein E, lipoprotein ...
Double-Blind Crossover Study of the Cognitive Effects of Lorazepam in Healthy Apolipoprotein E (APOE)-ε4 Carriers. Cynthia M. ... cognitive effects of pharmacologically induced somnolence in cognitively normal carriers and noncarriers of the apolipoprotein ...
Immunoturbidimetric assays for measuring the apolipoproteins A1 and B using the Cobas Bio centrifugal analyser are described. ... Immunoturbidimetric assays for serum apolipoproteins A1 and B using Cobas Bio centrifugal analyser. ... Immunoturbidimetric assays for serum apolipoproteins A1 and B using Cobas Bio centrifugal analyser. ...
... apolipoprotein A4 (human). Find diseases associated with this biological target and compounds tested against it in bioassay ... Enrichment of apolipoprotein A-IV and apolipoprotein D in the HDL proteome is associated with HDL functions in diabetic kidney ... Title: Enrichment of apolipoprotein A-IV and apolipoprotein D in the HDL proteome is associated with HDL functions in diabetic ... Apolipoprotein A4 Defines the Villus-Crypt Border in Duodenal Specimens for Celiac Disease Morphometry. Title: Apolipoprotein ...
Usefulness of apolipoprotein B-depleted serum in cholesterol efflux capacity assays using immobilized liposome-bound gel beads ... apolipoprotein B-depleted serum, cardiovascular disease, cholesterol efflux capacity, high-density lipoprotein ... Enhancing apolipoprotein A-I-dependent cholesterol efflux elevates cholesterol export from macrophages in vivo ... One of the candidates for this purpose is the precipitation method, in which apolipoprotein (apo) B (apoB)-containing ...
  • Apolipoprotein E (apoE) plays an important role in the transport and uptake of cholesterol by way of its high affinity interaction with lipoprotein receptors, including the low-density lipoprotein (LDL) receptor. (wikipedia.org)
  • Recent findings with apoA1 and apoE suggest that the tertiary structures of these two members of the human exchangeable apolipoprotein gene family are related. (wikipedia.org)
  • Apolipoprotein E (APOE) gene variants have been reported to influence psoriasis risk. (hindawi.com)
  • Lipid metabolism in the epidermis may be regulated by the expression of apolipoprotein E (APOE), a glycoprotein which is synthesized in a wide variety of extrahepatic tissues including skin [ 27 - 29 ]. (hindawi.com)
  • Apolipoprotein E (APOE) is a lipid-transport protein abundantly expressed in most neurons in the central nervous system. (dovepress.com)
  • The apolipoprotein E (APOE) gene is located on chromosome 19 and encodes a glycoprotein that is 299 amino acids long. (dovepress.com)
  • The relation of hypercholesterolemia and apolipoprotein E (ApoE) to cerebral aneurysm formation, has been unclear until now. (spandidos-publications.com)
  • The apolipoprotein E (ApoE) polymorphism has been well studied in the adult human population, in part because the e4 allele is a known risk factor for Alzheimer's disease. (bmj.com)
  • Genetic analysis of families with Alzheimer disease has revealed a disease-associated variant of the APOE gene, which encodes apolipoprotein E, a transporter of lipids in the blood and central nervous system. (columbia.edu)
  • Objective: To evaluate associations between established differences in ICH risk by race/ethnicity and the variability in the risks of apolipoprotein E (APOE) ε4 alleles, the most potent genetic risk factor for ICH. (ox.ac.uk)
  • Methods: Aortic plaque deposition was assessed in streptozotocin-induced diabetic apolipoprotein E (Apoe) knockout (KO) and At 2 r (also known as Agtr2)/Apoe double-KO (DKO) mice. (monash.edu)
  • Apolipoprotein E (ApoE) is expressed as Molecular Biology of Neurodegenerative Diseases. (web.app)
  • APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. (web.app)
  • Apolipoprotein E spielt im Katabolismus von Chylomikronen, IDL und VLDL-Remnants wie auch von ApoE-reichem HDL eine wichtige Rolle. (web.app)
  • Apolipoprotein E (APOE) plays an important role in cholesterol transport and genetic variants in APOE have been linked to the risk of Alzheimer's disease. (web.app)
  • 2020-08-16 · The APOE gene provides instructions for making a protein called apolipoprotein E. This protein combines with fats (lipids) in the body to form molecules called lipoproteins. (web.app)
  • APOE / Apolipoprotein E Protein LS-G39871 is a Recombinant Human APOE / Apolipoprotein E produced in Human Cells Lys19-His317 with 6His, C-terminus tag(s). (web.app)
  • Thank you for your interest in NeuroMab™ Mouse Anti-Apolipoprotein E/APOE Monoclonal Antibody (CBP2519) . (creative-biolabs.com)
  • Background: We have previously demonstrated that estrogen could significantly enhance expression of apolipoprotein M (apoM), whereas the molecular basis of its mechanism is not fully elucidated yet. (lu.se)
  • In the article "Association between Apolipoprotein E Polymorphism and Clinical Outcome after Ischemic Stroke, Intracerebral Hemorrhage, and Subarachnoid Hemorrhage" [Cerebrovasc Dis 2022;51:313-322. (karger.com)
  • The apolipoprotein E polymorphism and the cholesterol-raising effect of coffee. (web.app)
  • Apolipoproteins are proteins that bind lipids (oil-soluble substances such as fats, cholesterol and fat soluble vitamins) to form lipoproteins. (wikipedia.org)
  • citation needed] Different lipoproteins contain different classes of apolipoproteins, which influence their function. (wikipedia.org)
  • Apolipoprotein A-I (apoA1) is the major structural protein component of high-density lipoproteins (HDL), although it is present in other lipoproteins in smaller amounts. (wikipedia.org)
  • Apolipoprotein A-IV (apoA4) is present in chylomicrons, very-low-density lipoproteins (VLDL), and HDL. (wikipedia.org)
  • Apolipoprotein B plays a particularly important role in lipoprotein transport being the primary organizing protein of many lipoproteins. (wikipedia.org)
  • Apolipoprotein C-III (apoC3) plays an important role in lipid metabolism specific in regulating the metabolism of triglyceride-rich lipoproteins (TRLs). (wikipedia.org)
  • Regulation and clearance of apolipoprotein B-containing lipoproteins. (medlineplus.gov)
  • Other apolipoproteins (A, C, D, E, and their subtypes) are soluble and are exchanged between lipoproteins during metabolism. (medscape.com)
  • Apolipoprotein AI (Apo AI) is one of the apoproteins of high-density lipoproteins (HDL). (southtees.nhs.uk)
  • Apolipoprotein E is the recognition site for receptors involved in the clearance of remnants of very low density lipoproteins and chylomicrons (summary by Blum, 2016). (web.app)
  • Apolipoprotein B100 (apoB100) is a building block of very low-density lipoproteins (VLDLs), intermediate-density lipoproteins (IDLs), and low-density lipoproteins (LDLs). (healthmatters.io)
  • Apolipoprotein E4 (apoE4), the major genetic risk factor of Alzheimer's disease (AD), is associated with enhanced brain inflammation. (nih.gov)
  • Apolipoprotein E4 (ApoE4) is the most important genetic risk factor for Alzheimer's disease (AD). (lu.se)
  • In lipid transport, apolipoproteins function as structural components of lipoprotein particles, ligands for cell-surface receptors and lipid transport proteins, and cofactors for enzymes (e.g. apolipoprotein C-II for lipoprotein lipase and apolipoprotein A-I (apoA1) for lecithin-cholesterol acyltransferase). (wikipedia.org)
  • Members of the apolipoprotein gene cluster (APOA1/C3/A4/A5) on human chromosome 11q23 play an important role in lipid metabolism. (doe.gov)
  • Apolipoprotein M (apoM) participates in the lipid metabolism and exhibit anti‑atherosclerotic functions and it is presented in high-density lipoprotein (HDL), low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). (wikipedia.org)
  • these apolipoproteins have lipid-soluble segments, the beta apolipoproteins, which remain part of the lipoprotein throughout its metabolism. (medscape.com)
  • Apo E (Apolipoprotein E) plays an important role in the metabolism of lipids in the plasma, and is also is a constituent of various plasma lipoprotein-lipid particles. (thermofisher.com)
  • ApoC-III (apolipoprotein C-III), an important regulator of lipoprotein metabolism, is strongly associated with hypertriglyceridaemia and the progression of CVD. (portlandpress.com)
  • Apolipoprotein (apo) E is a multifunctional protein with central roles in lipid metabolism, neurobiology, and neurodegenerative diseases. (web.app)
  • LDL and its major protein, apolipoprotein B, play an essential role in lipid transport and metabolism. (healthmatters.io)
  • Apolipoprotein B100 (apoB100) is a protein that plays a role in moving cholesterol around your body. (medlineplus.gov)
  • These particles consist of a core of cholesterol esters and triglycerides surrounded by a monolayer of free cholesterol, phospholipids, and proteins (apolipoproteins). (medscape.com)
  • Apolipoprotein A-I (apo A-I), the main protein component of high-density lipoprotein (HDL), reduces the risk for atherosclerosis by removing cholesterol from the membrane of foam cells. (edpsciences.org)
  • Apolipoprotein E is a monomeric protein secreted by the liver and responsible for the transport of plasma cholesterol and triglycerides. (edu.au)
  • Ala-Korpela, M 2019, ' The culprit is the carrier, not the loads: cholesterol, triglycerides and apolipoprotein B in atherosclerosis and coronary heart disease ', International Journal of Epidemiology , vol. 48, no. 5, pp. 1389-1392. (bris.ac.uk)
  • Maintaining normal levels of cholesterol is essential for the Apolipoprotein E has been found in amyloid plaques in the cerebral cortex of patients with Alzheimer's disease as well as in other types of amyloid. (web.app)
  • Apolipoprotein A is a protein carried in HDL ('good') cholesterol. (healthmatters.io)
  • Studies have shown that the ratio of apolipoprotein A-1:apolipoprotein B may correlate better with increased risk of coronary artery disease (CAD) than total cholesterol, and LDL:HDL ratio. (healthmatters.io)
  • The present study aimed to examine the association between discordant apolipoprotein B ( Apo B ) with low-density lipoprotein cholesterol (LDL-C) or non- high-density lipoprotein cholesterol (non-HDL-C) and cardiovascular disease (CVD) risk in the Chinese population and to determine whether adding information on Apo B to LDL-C and HDL-C improves CVD risk prediction. (bvsalud.org)
  • Subjects with hyperhomocysteinaemia had significantly elevated total cholesterol, LDL cholesterol, apolipoprotein A and apolipoprotein B and lower vitamin B levels compared with subjects with 12 normohomocysteinaemia. (who.int)
  • Hcy levels correlated with total cholesterol ( r = 0.09), apolipoprotein A ( r = 0.012), and B ( r = 0.013) levels and total/HDL cholesterol ratio ( r = -0.085). (who.int)
  • The apolipoprotein A-I gene is actively expressed in the rapidly myelinating avian peripheral nerve. (rupress.org)
  • The expression of the apolipoprotein A-I (apo A-I) gene was investigated in the myelinating sciatic nerve. (rupress.org)
  • However, because of their detergent-like (amphipathic) properties, apolipoproteins and other amphipathic molecules (such as phospholipids) can surround the lipids, creating a lipoprotein particle that is itself water-soluble, and can thus be carried through body fluids (i.e., blood, lymph). (wikipedia.org)
  • Major lipids, apolipoproteins, and risk of vascular disease. (ox.ac.uk)
  • CONTEXT: Associations of major lipids and apolipoproteins with the risk of vascular disease have not been reliably quantified. (ox.ac.uk)
  • OBJECTIVE: To assess major lipids and apolipoproteins in vascular risk. (ox.ac.uk)
  • Apolipoprotein E alleles, dyslipidemia, and coronary heart disease: the Framingham Off spring Study. (web.app)
  • Hundreds of genetic polymorphisms of the apolipoproteins have been described, and many of them alter their structure and function. (wikipedia.org)
  • Benn M, Nordestgaard BG, Jensen JS, Tybjaerg-Hansen A. Polymorphisms in apolipoprotein B and risk of ischemic stroke. (prosci-inc.com)
  • We tried to identify the interaction between dietary quality indices and apolipoprotein B Ins/Del and EcoR1 polymorphisms on cardio-metabolic risk factors in patients with type 2 diabetes mellitus (T2DM). (researchsquare.com)
  • In addition to stabilizing lipoprotein structure and solubilizing the lipid component, apolipoproteins interact with lipoprotein receptors and lipid transport proteins, thereby participating in lipoprotein uptake and clearance. (wikipedia.org)
  • Apolipoprotein H (ApoH), also known as beta 2‑Glycoprotein I/ beta 2-GPI, is a variably glycosylated member of the complement control superfamily of proteins with a molecular weight of aproximately 50 kDa (1, 2). (rndsystems.com)
  • 2002. Apolipoprotein E and other cerebrospinal fluid proteins differentiate ante mortem variant Creutzfeldt-Jakob disease from ante mortem sporadic Creutzfeldt-Jakob disease. (creative-biolabs.com)
  • Buy Human Apolipoprotein B-100 (ApoB-100) from Lee Biosolutions. (leebio.com)
  • The objective of this study was to develop an atheroprotective vaccine by targeting a peptide of the LDL protein constituent apolipoprotein B-100 (apoB-100) to the nasal mucosa to induce a protective mucosal immune response. (lu.se)
  • Adipokines and apolipoproteins are key regulators and potential biomarkers in obesity and associated diseases and their quantitative assessment is crucial for functional analyses to understand disease mechanisms. (uni-ulm.de)
  • Inhalation exposure of gas-metal arc stainless steel welding fume increased atherosclerotic lesions in apolipoprotein E knockout mice. (cdc.gov)
  • The following product was used in this experiment: Apolipoprotein E Polyclonal Antibody from Thermo Fisher Scientific, catalog # BS-4892R. (thermofisher.com)
  • PVDF membrane was probed with 0.25 µg/mL of Sheep Anti-Mouse/Rat Apolipoprotein H/ApoH Antigen Affinity-purified Polyclonal Antibody (Catalog # AF6575) followed by HRP-conjugated Anti-Sheep IgG Secondary Antibody (Catalog # HAF016 ). (rndsystems.com)
  • Apolipoprotein E Abnormal Function of Metalloproteins Underlies Most Neurodegenerative Diseases. (web.app)
  • Mouse Apolipoprotein B48 (apo-B48) ELISA Kit is Available at Gentaur Genprice with the fastest delivery. (joplink.net)
  • In an immunochemical reaction, Apolipoprotein B in the human serum sample form immune complexes with specific antibodies. (cdc.gov)
  • Thus, we established an MRM method to quantify 9 adipokines and 10 apolipoproteins in human serum. (uni-ulm.de)
  • In 50 serum samples from participants with either normal weight or obesity, we quantified 8 adipokines and 10 apolipoproteins. (uni-ulm.de)
  • 2011. High ability of apolipoprotein E4 to stabilize amyloid-β peptide oligomers, the pathological entities responsible for Alzheimer's disease. (creative-biolabs.com)
  • Apolipoprotein F (apoF) is one of the minor apolipoprotein in blood plasma and it is a lipid transfer inhibit protein to inhibit cholesteryl ester transfer protein-mediated transfers of cholesteryl esters and triglycerides. (wikipedia.org)
  • Familial hypercholesterolemia (FH) due to a founder variant in Apolipoprotein B (ApoB R3500Q ) is reported in 12% of the Pennsylvania Amish community. (clinicforspecialchildren.org)
  • Aoki T, Moriwaki T, Takagi Y, Kataoka H, Yang J, Nozaki K and Hashimoto N: The efficacy of apolipoprotein E deficiency in cerebral aneurysm formation. (spandidos-publications.com)
  • Low apoB levels may indicate Bassen-Kornzweig syndrome (abetalipoproteinemia), a very rare genetic condition characterized by apolipoprotein B deficiency. (medscape.com)
  • In addition, apolipoprotein B significantly decreased only in females (p = 0.002). (nih.gov)
  • Significantly different abundances were observed for five adipokines (adipsin, adiponectin, chemerin, leptin, vaspin) and four apolipoproteins (apo-B100/-C2/-C4/-D) between the body mass index (BMI) groups. (uni-ulm.de)
  • 1997) No association between apolipoprotein E epsilon4 allele and the age of onset in type I familial amyloid polyneuropathy. (web.app)
  • Apolipoprotein A4's (APOA4's) functions on HDL in humans are not well understood. (jci.org)
  • A unique feature of APOA4 is that it is an intestinal apolipoprotein secreted on HDL and chylomicrons. (jci.org)
  • Apolipoprotein AI is used in the evaluation of risk for atherosclerotic disease and the detection of Tangier disease. (southtees.nhs.uk)
  • In direct ELISAs, approximately 40% cross-reactivity with recombinant human Apolipoprotein H/ApoH is observed. (rndsystems.com)
  • Apolipoprotein B (apoB) is a structural protein that constitutes a major component of the very-low-density lipoprotein (VLDL), the intermediate-density lipoprotein (IDL), and the low-density lipoprotein (LDL). (medscape.com)
  • Apolipoprotein B is the main protein component of LDL and accounts for approximately 95% of the total protein content of LDL. (cdc.gov)
  • In summary, this multiplexed assay facilitated the investigation of relationships between adipokines or apolipoproteins and phenotypes or clinical parameters in large cohorts, which may contribute to disease prediction approaches in the future. (uni-ulm.de)
  • Apolipoprotein D (apoD) is a soluble carrier protein of lipophilic molecules in neurons and glial cells within the central and peripheral nervous system and apoD can also modulate the stability and oxidation status of these molecules. (wikipedia.org)
  • Apolipoprotein measurements may provide more detail about your risk for heart disease, but the added value of this test beyond a lipid panel is unknown. (medlineplus.gov)
  • Association of Apolipoprotein E With Intracerebral Hemorrhage Risk by Race/Ethnicity: A Meta-analysis. (ox.ac.uk)
  • In this way, apolipoprotein A can help to lower your risk for cardiovascular disease. (healthmatters.io)
  • Apolipoprotein B (apoB) levels are used to evaluate the risk for cardiovascular disease. (healthmatters.io)
  • Some evidence has shown that the capacity of the apoB/apoA-I ratio in assessing cardiovascular risk is strong and may be better than the use of apolipoprotein B alone. (medscape.com)
  • Apolipoprotein Particle and Cardiovascular Risk Prediction (from a Prospective Cohort Study). (bvsalud.org)
  • The sexual dimorphism observed in circulating levels of measured apolipoproteins following vitamin D correction may explain, in part, known sexual disparity in the events of cardiometabolic health. (nih.gov)
  • Macrophage-derived apolipoprotein (apo) E and multimers of a synthetic apo E-peptide display monokine-like functions by inhibiting mitogen- or antigen-driven lymphocyte proliferation. (jci.org)
  • Epistatic Interactions between apolipoprotein E and hemoglobin S Genes in regulation of malaria para. (edu.au)
  • The intensity of the scattered light is proportional to the concentration of Apolipoprotein B in the sample. (cdc.gov)
  • Detection of Rat and Mouse Apolipoprotein H/ApoH by Western Blot. (rndsystems.com)