Apolipoproteins C
Apolipoproteins
Apolipoproteins A
Apolipoproteins B
Apolipoprotein A-I
Apolipoprotein A-II
Apolipoproteins E
Apolipoprotein C-II
Apolipoprotein C-III
Lipoproteins, HDL
Apolipoproteins D
Lipoproteins
Apolipoprotein C-I
Cholesterol
Lipoproteins, VLDL
Lipids
Apolipoprotein B-100
Apolipoprotein B-48
Cholesterol, HDL
Lipoproteins, HDL3
Tangier Disease
Phosphatidylcholine-Sterol O-Acyltransferase
Lipoproteins, LDL
Nephelometry and Turbidimetry
ATP Binding Cassette Transporter 1
Cholesterol Esters
Isoelectric Focusing
Receptors, Lipoprotein
Lipid Metabolism
Chylomicrons
Cholesterol, LDL
Phospholipids
Ultracentrifugation
Hypolipoproteinemias
Lipoproteins, HDL2
Lipoprotein(a)
Electrophoresis, Polyacrylamide Gel
Apoproteins
Liver
Immunodiffusion
Lipoprotein Lipase
Hyperlipoproteinemia Type IV
Phosphatidylcholines
ATP-Binding Cassette Transporters
Hyperlipoproteinemias
Apolipoprotein E3
Chemistry, Clinical
Cholesterol, VLDL
Cholesterol Ester Transfer Proteins
Lipoproteins, IDL
Reference Values
Scavenger Receptors, Class B
Freeze Drying
Ethinyl Estradiol
Immunoassay
Serum Amyloid A Protein
Dietary Fats
Microscopy, Electron
Immunoelectrophoresis
Hyperlipoproteinemia Type V
Abetalipoproteinemia
Dimyristoylphosphatidylcholine
Receptors, Scavenger
Amino Acid Sequence
Oleic Acid
Chromatography, Gel
Arteriosclerosis
Biological Transport
Lipolysis
Sterol O-Acyltransferase
Rats, Inbred Strains
Callitrichinae
High-Density Lipoproteins, Pre-beta
Lipase
Liposomes
Receptors, LDL
Oleic Acids
Carrier Proteins
Molecular Sequence Data
Lecithin Acyltransferase Deficiency
Hyperlipidemia, Familial Combined
Protein Binding
Antigens, CD36
Butter
Hyperlipoproteinemia Type II
Esterification
Glycoproteins
Emulsions
Salmonidae
Reversal of hyperlipidaemia in apolipoprotein C1 transgenic mice by adenovirus-mediated gene delivery of the low-density-lipoprotein receptor, but not by the very-low-density-lipoprotein receptor. (1/546)
We have shown previously that human apolipoprotein (apo)C1 transgenic mice exhibit hyperlipidaemia, due primarily to an impaired clearance of very-low-density lipoprotein (VLDL) particles from the circulation. In the absence of at least the low-density-lipoprotein receptor (LDLR), it was shown that APOC1 overexpression in transgenic mice inhibited the hepatic uptake of VLDL via the LDLR-related protein. In the present study, we have now examined the effect of apoC1 on the binding of lipoproteins to both the VLDL receptor (VLDLR) and the LDLR. The binding specificity of the VLDLR and LDLR for apoC1-enriched lipoprotein particles was examined in vivo through adenovirus-mediated gene transfer of the VLDLR and the LDLR [giving rise to adenovirus-containing (Ad)-VLDLR and Ad-LDLR respectively] in APOC1 transgenic mice, LDLR-deficient (LDLR-/-) mice and wild-type mice. Remarkably, Ad-VLDLR treatment did not reduce hyperlipidaemia in transgenic mice overexpressing human APOC1, irrespective of both the level of transgenic expression and the presence of the LDLR, whereas Ad-VLDLR treatment did reverse hyperlipidaemia in LDLR-/- and wild-type mice. On the other hand, Ad-LDLR treatment strongly decreased plasma lipid levels in these APOC1 transgenic mice. These results suggest that apoC1 inhibits the clearance of lipoprotein particles via the VLDLR, but not via the LDLR. This hypothesis is corroborated by in vitro binding studies. Chinese hamster ovary (CHO) cells expressing the VLDLR (CHO-VLDLR) or LDLR (CHO-LDLR) bound less APOC1 transgenic VLDL than wild-type VLDL. Intriguingly, however, enrichment with apoE enhanced dose-dependently the binding of wild-type VLDL to CHO-VLDLR cells (up to 5-fold), whereas apoE did not enhance the binding of APOC1 transgenic VLDL to these cells. In contrast, for binding to CHO-LDLR cells, both wild-type and APOC1 transgenic VLDL were stimulated upon enrichment with apoE. From these studies, we conclude that apoC1 specifically inhibits the apoE-mediated binding of triacylglycerol-rich lipoprotein particles to the VLDLR, whereas apoC1-enriched lipoproteins can still bind to the LDLR. The variability in specificity of these lipoprotein receptors for apoC1-containing lipoprotein particles provides further evidence for a regulatory role of apoC1 in the delivery of lipoprotein constituents to different tissues on which these receptors are located. (+info)Allele-specific differences in apolipoprotein C-III mRNA expression in human liver. (2/546)
BACKGROUND: Sequence variations at the apolipoprotein (apo)C-III gene locus have been associated with increased plasma triglycerides. In particular, the S2 allele of an SstI polymorphism in the 3' untranslated region has been associated with hypertriglyceridemia in many populations. The aim of this study was to determine whether the variant S2 allele is related to increased mRNA expression in vivo. METHODS: We measured allele-specific apoC-III expression in liver biopsies of five obese subjects, using restriction isotyping and a primer extension method, both based on the SstI polymorphism. RESULTS: The expression of mRNA by the S1 and S2 alleles was similar in two patients, whereas the mRNA encoded by the S2 allele was 14%, 26%, and 29% more abundant than the wild-type mRNA in the remaining three patients. Because other polymorphisms at the apoC-III gene locus have been implicated in the S2-associated hypertriglyceridemia, we determined apoC-III haplotypes comprising promoter polymorphisms at -935, -641, -630, -625, -482, -455, as well as the SstI sites and a BbvI site, both located in the 3' untranslated region. None of these polymorphisms nor any haplotype exhibited a perfect association with allele-specific expression, but variation at the T-482C site correlated in four of five subjects with the relative allele abundance. CONCLUSION: These data provide preliminary evidence for allele-specific differences in apoC-III mRNA expression in vivo and suggest that such differences may contribute to associations of apoC-III gene polymorphisms with hypertriglyceridemia. (+info)Vitamin A is linked to the expression of the AI-CIII-AIV gene cluster in familial combined hyperlipidemia. (3/546)
There is growing evidence of the capacity of vitamin A to regulate the expression of the genetic region that encodes apolipoproteins (apo) A-I, C-III, and A-IV. This region in turn has been proposed to modulate the expression of hyperlipidemia in the commonest genetic form of dyslipidemia, familial combined hyperlipidemia (FCHL). The hypothesis tested here was whether vitamin A (retinol), by controlling the expression of the AI-CIII-AIV gene cluster, plays a role in modulating the hyperlipidemic phenotype in FCHL. We approached the subject by studying three genetic variants of this region: a C1100-T transition in exon 3 of the apoC-III gene, a G3206-T transversion in exon 4 of the apoC-III gene, and a G-75-A substitution in the promoter region of the apoA-I gene. The association between plasma vitamin A concentrations and differences in the plasma concentrations of apolipoproteins A-I and C-III based on the different genotypes was assessed in 48 FCHL patients and 74 of their normolipidemic relatives. The results indicated that the subjects carrying genetic variants associated with increased concentrations of apoA-I and C-III (C1100-T and G-75-A) also presented increased plasma concentrations of vitamin A. This was only observed among the FCHL patients, which suggested that certain characteristics of these patients contributed to this association. The G3206-T was not associated with changes in either apolipoprotein concentrations or in vitamin A. In summary, we report a relationship between genetically determined elevations of proteins of the AI-CIII-AIV gene cluster and vitamin A in FCHL patients. More studies will be needed to confirm that vitamin A plays a role in FCHL which might also be important for its potential application to therapeutical approaches. (+info)Mass spectral study of polymorphism of the apolipoproteins of very low density lipoprotein. (4/546)
New isoforms of apolipoprotein (apo)C-I and apoC-III have been detected in delipidated fractions from very low density lipoprotein (VLDL) using matrix-assisted laser desorption (MALDI) and electrospray ionization (ESI) mass spectrometry (MS). The cleavage sites of truncated apoC-III isoforms have also been identified. The VLDL fractions were isolated by fixed-angle single-spin ultracentrifugation using a self-generating sucrose density gradient and delipidated using a newly developed C18 solid phase extraction protocol. Fifteen apoC isoforms and apoE were identified in the MALDI spectra and the existence of the more abundant species was verified by ESI-MS. The relative intensities of the apoCs are closely correlated in three normolipidemic subjects. A fourth subject with type V hyperlipidemia exhibited an elevated apoC-III level and a suppressed level of the newly discovered truncated apoC-I isoform. ApoC-II was found to be particularly sensitive to in vitro oxidation. The dynamic range and specificity of the MALDI assay shows that the complete apoC isoform profile and apoE phenotype can be obtained in a single measurement from the delipidated VLDL fraction. (+info)Kinetics and mechanism of exchange of apolipoprotein C-III molecules from very low density lipoprotein particles. (5/546)
Transfer of apolipoprotein (apo) molecules between lipoprotein particles is an important factor in modulating the metabolism of the particles. Although the phenomenon is well established, the kinetics and molecular mechanism of passive apo exchange/transfer have not been defined in detail. In this study, the kinetic parameters governing the movement of radiolabeled apoC molecules from human very low density lipoprotein (VLDL) to high density lipoprotein (HDL3) particles were measured using a manganese phosphate precipitation assay to rapidly separate the two types of lipoprotein particles. In the case of VLDL labeled with human [14C]apoCIII1, a large fraction of the apoCIII1 transfers to HDL3 within 1 minute of mixing the two lipoproteins at either 4 degrees or 37 degrees C. As the diameter of the VLDL donor particles is decreased from 42-59 to 23-25 nm, the size of this rapidly transferring apoCIII1 pool increases from about 50% to 85%. There is also a pool of apoCIII1 existing on the donor VLDL particles that transfers more slowly. This slow transfer follows a monoexponential rate equation; for 35-40 nm donor VLDL particles the pool size is approximately 20% and the t1/2 is approximately 3 h. The flux of apoCIII molecules between VLDL and HDL3 is bidirectional and all of the apoCIII seems to be available for exchange so that equilibrium is attained. It is likely that the two kinetic pools of apoCIII are related to conformational variations of individual apo molecules on the surface of VLDL particles. The rate of slow transfer of apoCIII1 from donor VLDL (35-40 nm) to acceptor HDL3 is unaffected by an increase in the acceptor to donor ratio, indicating that the transfer is not dependent on collisions between donor and acceptor particles. Consistent with this, apoCIII1 molecules can transfer from donor VLDL to acceptor HDL3 particles across a 50 kDa molecular mass cutoff semipermeable membrane separating the lipoprotein particles. These results indicate that apoC molecules transfer between VLDL and HDL3 particles by an aqueous diffusion mechanism. (+info)CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression. (6/546)
Hepatocyte nuclear factor-4 (HNF-4) is a liver-enriched transcription factor that is crucial in the regulation of a large number of genes involved in glucose, cholesterol, and fatty acid metabolism and in determining the hepatic phenotype. We have previously shown that HNF-4 contains transcription activation functions at the N terminus (AF-1) and the C terminus (AF-2) which work synergistically to confer full HNF-4 activity. Here, we show that HNF-4 recruits the CREB-binding protein (CBP) coactivator on promoters of genes that contain functional HNF-4 sites. HNF-4 interacts with the N-terminal region of CBP (amino acids 1-771) and the C-terminal region of CBP (amino acids 1812-2441). The two activating functions of HNF-4, AF-1 and AF-2, interact with the N terminus and the N and C terminus of CBP, respectively. In addition, we show that in contrast to the other nuclear hormone receptors the interaction between HNF-4 and CBP is ligand-independent. Recruitment of CBP by HNF-4 results in an enhancement of the transcriptional activity of the latter. CBP does not activate gene expression in the absence of HNF-4, and dominant negative forms of HNF-4 prevent transcriptional activation by CBP, suggesting that the mere recruitment of CBP by HNF-4 is not sufficient for enhancement of gene expression. These findings demonstrate that CBP acts as a transcriptional coactivator for HNF-4 and provide new insights into the regulatory function of HNF-4. (+info)Characterization of remnant-like particles isolated by immunoaffinity gel from the plasma of type III and type IV hyperlipoproteinemic patients. (7/546)
Previous studies have investigated the potential atherogenicity and thrombogenicity of triglyceride-rich lipoprotein (TRL) remnants by isolating them from plasma within a remnant-like particle (RLP) fraction, using an immunoaffinity gel containing specific anti-apoB-100 and anti-apoA-I antibodies. In order to characterize lipoproteins in this RLP fraction and to determine to what extent their composition varies from one individual to another, we have used automated gel filtration chromatography to determine the size heterogeneity of RLP isolated from normolipidemic control subjects (n = 8), and from type III (n = 6) and type IV (n = 9) hyperlipoproteinemic patients, who by selection had similarly elevated levels of plasma triglyceride (406 +/- 43 and 397 +/- 35 mg/dl, respectively). Plasma RLP triglyceride, cholesterol, apoB, apoC-III, and apoE concentrations were elevated 2- to 6-fold (P < 0. 05) in hyperlipoproteinemic patients compared to controls. RLP fractions of type III patients were enriched in cholesterol and apoE compared to those of type IV patients, and RLP of type IV patients were enriched in triglyceride and apoC-III relative to those of normolipidemic subjects. In normolipidemic subjects, the majority of RLP had a size similar to LDL or HDL. The RLP of hyperlipoproteinemic patients were, however, larger and were similar in size to TRL, or were intermediate in size (i.e., ISL) between that of TRL and LDL. Compared to controls, ISL in the RLP fraction of type III patients were enriched in apoE relative to apoC-III, whereas in type IV patients they were enriched in apoC-III relative to apoE. These results demonstrate that: 1) RLP are heterogeneous in size and composition in both normolipidemic and hypertriglyceridemic subjects, and 2) the apoE and apoC-III composition of RLP is different in type III compared to type IV hyperlipoproteinemic patients. (+info)Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. (8/546)
To investigate the metabolism of nascent HDLs, apoA1/phosphatidylcholine (apoA1/PC) discs were infused IV over 4 hours into 7 healthy men. Plasma total apoA1 and phospholipid (PL) concentrations increased during the infusions. The rise in plasma apoA1 was greatest in small prebeta-migrating particles not present in the infusate. Total HDL unesterified cholesterol (UC) also increased simultaneously. After stopping the infusion, the concentrations of apoA1, PL, HDL UC, and small prebeta HDLs decreased, whereas those of HDL cholesteryl ester (CE) and large alpha-migrating apoA1 containing HDLs increased. ApoB-containing lipoproteins became enriched in CEs. Addition of apoA1/PC discs to whole blood at 37 degrees C in vitro also generated small prebeta HDLs, but did not augment the transfer of UC from erythrocytes to plasma. We conclude that the disc infusions increased the intravascular production of small prebeta HDLs in vivo, and that this was associated with an increase in the efflux and esterification of UC derived from fixed tissues. The extent to which the increase in tissue cholesterol efflux was dependent on that in prebeta HDL production could not be determined. Infusion of discs also reduced the plasma apoB and apoA2 concentrations, and increased plasma triglycerides and apoC3. Thus, nascent HDL secretion may have a significant impact on prebeta HDL production, reverse cholesterol transport and lipoprotein metabolism in humans. (+info)People with Tangier disease often have extremely high levels of low-density lipoprotein (LDL) cholesterol, which can lead to the development of cardiovascular disease at an early age. The disorder is caused by mutations in the gene that codes for a protein called ATP-binding cassette transporter 1 (ABC1), which plays a critical role in the transport of cholesterol and other lipids in the body.
The symptoms of Tangier disease can vary depending on the severity of the disorder, but may include:
* High levels of LDL cholesterol
* Low levels of HDL cholesterol
* Abnormal liver function tests
* Yellowing of the skin and eyes (jaundice)
* Fatigue
* Weakness
* Muscle cramps
* Heart disease
* Stroke
Tangier disease is usually diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment for the disorder typically involves a combination of dietary modifications, medications, and lipid-lowering therapy to reduce the levels of LDL cholesterol and increase the levels of HDL cholesterol. In some cases, a liver transplant may be necessary to treat the liver damage that can occur as a result of the disorder.
The most common form of hypolipoproteinemia is familial hypobetalipoproteinemia (FHBL), which is caused by mutations in the gene encoding apoB, a protein component of low-density lipoproteins (LDL). People with FHBL have extremely low levels of LDL cholesterol and often develop symptoms such as fatty liver disease, liver cirrhosis, and cardiovascular disease.
Another form of hypolipoproteinemia is familial hypoalphalipoproteinemia (FHAL), which is caused by mutations in the gene encoding apoA-I, a protein component of high-density lipoproteins (HDL). People with FHAL have low levels of HDL cholesterol and often develop symptoms such as cardiovascular disease and premature coronary artery disease.
Hypolipoproteinemia can be diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment for the disorder typically involves managing associated symptoms and reducing lipid levels through diet, exercise, and medication. In some cases, liver transplantation may be necessary.
Prevention of hypolipoproteinemia is challenging, as it is often inherited in an autosomal recessive pattern, meaning that both parents must be carriers of the mutated gene to pass it on to their children. However, genetic counseling and testing can help identify carriers and allow for informed family planning.
Overall, hypolipoproteinemia is a rare and complex group of disorders that affect lipid metabolism and transport. While treatment and management options are available, prevention and early diagnosis are key to reducing the risk of complications associated with these disorders.
There are several types of hyperlipidemia, including:
1. High cholesterol: This is the most common type of hyperlipidemia and is characterized by elevated levels of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol.
2. High triglycerides: This type of hyperlipidemia is characterized by elevated levels of triglycerides in the blood. Triglycerides are a type of fat found in the blood that is used for energy.
3. Low high-density lipoprotein (HDL) cholesterol: HDL cholesterol is known as "good" cholesterol because it helps remove excess cholesterol from the bloodstream and transport it to the liver for excretion. Low levels of HDL cholesterol can contribute to hyperlipidemia.
Symptoms of hyperlipidemia may include xanthomas (fatty deposits on the skin), corneal arcus (a cloudy ring around the iris of the eye), and tendon xanthomas (tender lumps under the skin). However, many people with hyperlipidemia have no symptoms at all.
Hyperlipidemia can be diagnosed through a series of blood tests that measure the levels of different types of cholesterol and triglycerides in the blood. Treatment for hyperlipidemia typically involves dietary changes, such as reducing intake of saturated fats and cholesterol, and increasing physical activity. Medications such as statins, fibric acid derivatives, and bile acid sequestrants may also be prescribed to lower cholesterol levels.
In severe cases of hyperlipidemia, atherosclerosis (hardening of the arteries) can occur, which can lead to cardiovascular disease, including heart attacks and strokes. Therefore, it is important to diagnose and treat hyperlipidemia early on to prevent these complications.
The condition is caused by mutations in genes that code for enzymes involved in lipid metabolism, such as ACY1 and APOB100. These mutations lead to a deficiency in the breakdown and transport of lipids in the body, resulting in the accumulation of chylomicrons and other lipoproteins in the blood.
Symptoms of hyperlipoproteinemia Type IV can include abdominal pain, fatigue, and joint pain, as well as an increased risk of pancreatitis and cardiovascular disease. Treatment typically involves a combination of dietary modifications, such as reducing intake of saturated fats and cholesterol, and medications to lower lipid levels. In severe cases, liver transplantation may be necessary.
Hyperlipoproteinemia Type IV is a rare disorder, and the prevalence is not well-defined. However, it is estimated to affect approximately 1 in 100,000 individuals worldwide. The condition can be diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis.
In summary, hyperlipoproteinemia Type IV is a rare genetic disorder that affects the metabolism of lipids and lipoproteins in the body, leading to elevated levels of chylomicrons and other lipoproteins in the blood, as well as low levels of HDL. The condition can cause a range of symptoms and is typically treated with dietary modifications and medications.
There are several types of hyperlipoproteinemias, each with distinct clinical features and laboratory findings. The most common forms include:
1. Familial hypercholesterolemia (FH): This is the most common type of hyperlipoproteinemia, caused by mutations in the LDLR gene that codes for the low-density lipoprotein receptor. FH is characterized by extremely high levels of low-density lipoprotein (LDL) cholesterol in the blood, which can lead to premature cardiovascular disease, including heart attacks and strokes.
2. Familial hypobetalipoproteinemia (FHBL): This rare disorder is caused by mutations in the APOB100 gene that codes for a protein involved in lipid metabolism. FHBL is characterized by very low levels of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, as well as a deficiency of Apolipoprotein B-100, a protein that helps transport lipids in the blood.
3. Hypertriglyceridemia: This condition is caused by mutations in genes that regulate triglyceride metabolism, leading to extremely high levels of triglycerides in the blood. Hypertriglyceridemia can increase the risk of pancreatitis and other health problems.
4. Lipoprotein lipase deficiency: This rare disorder is caused by mutations in the LPL gene that codes for the enzyme lipoprotein lipase, which helps break down triglycerides in the blood. Lipoprotein lipase deficiency can lead to very high levels of triglycerides and cholesterol in the blood, increasing the risk of pancreatitis and other health problems.
5. Familial dyslipidemia: This is a group of rare inherited disorders that affect lipid metabolism and can cause extremely high or low levels of various types of cholesterol and triglycerides in the blood. Some forms of familial dyslipidemia are caused by mutations in genes that code for enzymes involved in lipid metabolism, while others may be caused by unknown factors.
6. Chylomicronemia: This rare disorder is characterized by extremely high levels of chylomicrons (type of triglyceride-rich lipoprotein) in the blood, which can increase the risk of pancreatitis and other health problems. The exact cause of chylomicronemia is not fully understood, but it may be related to genetic mutations or other factors that affect lipid metabolism.
7. Hyperchylomicronemia: This rare disorder is similar to chylomicronemia, but it is characterized by extremely high levels of chylomicrons in the blood, as well as very low levels of HDL (good) cholesterol. Hyperchylomicronemia can increase the risk of pancreatitis and other health problems.
8. Hypoalphalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein A-I (ApoA-I), a protein that plays a key role in lipid metabolism and helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypoalphalipoproteinemia can increase the risk of pancreatitis and other health problems.
9. Hypobetalipoproteinemia: This rare disorder is characterized by extremely low levels of apolipoprotein B (ApoB), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. Hypobetalipoproteinemia can increase the risk of pancreatitis and other health problems.
10. Sitosterolemia: This rare genetic disorder is caused by mutations in the gene that codes for sterol-CoA-desmethylase (SCD), an enzyme involved in the metabolism of plant sterols. Sitosterolemia can cause elevated levels of plant sterols and sitosterol in the blood, which can increase the risk of pancreatitis and other health problems.
11. Familial hyperchylomicronemia type 1 (FHMC1): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC1 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
12. Familial hyperchylomicronemia type 2 (FHMC2): This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein A-IV (APOA4), a protein that helps to regulate the levels of various types of cholesterol and triglycerides in the blood. FHMC2 can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
13. Lipoprotein (a) deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein (a), a protein that helps to regulate the levels of lipoproteins in the blood. Lipoprotein (a) deficiency can cause low levels of lipoprotein (a) and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
14. Chylomicron retention disease: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of chylomicrons in the blood. Chylomicron retention disease can cause elevated levels of chylomicrons and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
15. Hypertriglyceridemia-apolipoprotein C-II deficiency: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein C-II (APOC2), a protein that helps to regulate the levels of triglycerides in the blood. Hypertriglyceridemia-apolipoprotein C-II deficiency can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
16. Familial partial lipodystrophy (FPLD): This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the arms, legs, and buttocks. FPLD can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
17. Lipodystrophy: This rare genetic disorder is characterized by the loss of fat tissue in certain areas of the body, such as the face, arms, and legs. Lipodystrophy can cause elevated levels of lipids in the blood, which can increase the risk of pancreatitis and other health problems.
18. Abetalipoproteinemia: This rare genetic disorder is caused by mutations in the gene that codes for apolipoprotein B, a protein that helps to regulate the levels of lipids in the blood. Abetalipoproteinemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
19. Chylomicronemia: This rare genetic disorder is characterized by the presence of excessively large amounts of chylomicrons (type of lipid particles) in the blood. Chylomicronemia can cause elevated levels of triglycerides and other lipids in the blood, which can increase the risk of pancreatitis and other health problems.
20. Hyperlipidemia due to medications: Certain medications, such as corticosteroids and some anticonvulsants, can cause elevated levels of lipids in the blood.
It's important to note that many of these disorders are rare and may not be common causes of high triglycerides. Additionally, there may be other causes of high triglycerides that are not listed here. It's important to talk to a healthcare provider for proper evaluation and diagnosis if you have concerns about your triglyceride levels.
There are several causes of hypertriglyceridemia, including:
* Genetics: Some people may inherit a tendency to have high triglyceride levels due to genetic mutations that affect the genes involved in triglyceride metabolism.
* Obesity: Excess body weight is associated with higher triglyceride levels, as there is more fat available for energy.
* Diabetes: Both type 1 and type 2 diabetes can lead to high triglyceride levels due to insulin resistance and altered glucose metabolism.
* High-carbohydrate diet: Consuming high amounts of carbohydrates, particularly refined or simple carbohydrates, can cause a spike in blood triglycerides.
* Alcohol consumption: Drinking too much alcohol can increase triglyceride levels in the blood.
* Certain medications: Some drugs, such as anabolic steroids and some antidepressants, can raise triglyceride levels.
* Underlying medical conditions: Certain medical conditions, such as hypothyroidism, kidney disease, and polycystic ovary syndrome (PCOS), can also contribute to high triglyceride levels.
Hypertriglyceridemia is typically diagnosed with a blood test that measures the level of triglycerides in the blood. Treatment options for hypertriglyceridemia depend on the underlying cause of the condition, but may include lifestyle modifications such as weight loss, dietary changes, and medications to lower triglyceride levels.
People with hyperlipoproteinemia type V often have a history of low birth weight and growth retardation, and may experience a range of health problems including fatigue, muscle weakness, and liver disease. The disorder is usually inherited in an autosomal recessive pattern, meaning that a person must inherit two copies of the mutated gene - one from each parent - to develop the condition.
Treatment for hyperlipoproteinemia type V typically involves a combination of dietary changes and medication. Dietary recommendations may include avoiding foods high in saturated fats and cholesterol, and increasing intake of unsaturated fats, such as those found in nuts and vegetable oils. Medications may include drugs that raise HDL levels or lower LDL levels, such as niacin or statins. In severe cases, liver transplantation may be necessary.
In summary, hyperlipoproteinemia type V is a rare genetic disorder that affects the metabolism of lipids and lipoproteins in the body, leading to extremely low levels of LDL cholesterol and high levels of HDL cholesterol. Treatment typically involves a combination of dietary changes and medication, and may include liver transplantation in severe cases.
The main symptom of abetalipoproteinemia is a complete absence of chylomicrons, which are small particles that carry triglycerides and other lipids in the bloodstream. This results in low levels of triglycerides and other lipids in the blood, as well as an impaired ability to absorb vitamins and other nutrients from food.
Abetalipoproteinemia is usually diagnosed during infancy or early childhood, when symptoms such as fatigue, weakness, and poor growth become apparent. The disorder can be identified through blood tests that measure lipid levels and genetic analysis.
Treatment for abetalipoproteinemia typically involves a combination of dietary changes and supplements to ensure adequate nutrition and prevent complications such as malnutrition and liver disease. In some cases, medications may be prescribed to lower triglyceride levels or improve the absorption of fat-soluble vitamins.
The prognosis for abetalipoproteinemia varies depending on the severity of the disorder and the presence of any complications. In general, early diagnosis and appropriate treatment can help to manage symptoms and prevent long-term health problems. However, some individuals with abetalipoproteinemia may experience ongoing health issues throughout their lives.
Arteriosclerosis can affect any artery in the body, but it is most commonly seen in the arteries of the heart, brain, and legs. It is a common condition that affects millions of people worldwide and is often associated with aging and other factors such as high blood pressure, high cholesterol, diabetes, and smoking.
There are several types of arteriosclerosis, including:
1. Atherosclerosis: This is the most common type of arteriosclerosis and occurs when plaque builds up inside the arteries.
2. Arteriolosclerosis: This type affects the small arteries in the body and can cause decreased blood flow to organs such as the kidneys and brain.
3. Medial sclerosis: This type affects the middle layer of the artery wall and can cause stiffness and narrowing of the arteries.
4. Intimal sclerosis: This type occurs when plaque builds up inside the innermost layer of the artery wall, causing it to become thick and less flexible.
Symptoms of arteriosclerosis can include chest pain, shortness of breath, leg pain or cramping during exercise, and numbness or weakness in the limbs. Treatment for arteriosclerosis may include lifestyle changes such as a healthy diet and regular exercise, as well as medications to lower blood pressure and cholesterol levels. In severe cases, surgery may be necessary to open up or bypass blocked arteries.
The primary symptom of LCAT deficiency is a high level of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, in the blood. This can lead to the development of cholesterol deposits in the skin, eyes, and other tissues, which can cause a range of health problems including xanthomas (yellowish patches on the skin), corneal arcus (a cloudy ring around the cornea of the eye), and xanthelasma (yellowish patches on the eyelids).
Treatment for LCAT deficiency typically involves a combination of dietary changes, such as reducing intake of saturated fats and cholesterol, and medication to lower cholesterol levels. In some cases, liver transplantation may be necessary.
Prevention of LCAT deficiency is not possible, as it is a genetic disorder that is inherited in an autosomal recessive pattern. This means that a child must inherit two copies of the mutated LCAT gene, one from each parent, to develop the condition. However, early detection and treatment can help manage the symptoms and prevent complications.
The diagnosis of LCAT deficiency is based on a combination of clinical features, laboratory tests, and genetic analysis. Laboratory tests may include measurements of lipid levels in the blood, as well as assays for LCAT enzyme activity. Genetic testing can identify the presence of mutations in the LCAT gene that cause the condition.
Overall, LCAT deficiency is a rare and potentially serious genetic disorder that affects the body's ability to metabolize cholesterol and other fats. Early diagnosis and treatment can help manage the symptoms and prevent complications, but there is currently no cure for the condition.
The condition is caused by mutations in genes that code for proteins involved in lipid metabolism, such as the low-density lipoprotein receptor gene (LDLR), apolipoprotein A-1 gene (APOA1), and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. These mutations can lead to the overproduction or underexpression of certain lipids, leading to the characteristic lipid abnormalities seen in HeFH.
HeFH is usually inherited in an autosomal dominant manner, meaning that a single copy of the mutated gene is enough to cause the condition. However, some cases may be caused by recessive inheritance or de novo mutations. The condition can affect both children and adults, and it is important for individuals with HeFH to be monitored closely by a healthcare provider to manage their lipid levels and reduce the risk of cardiovascular disease.
Treatment for HeFH typically involves a combination of dietary modifications, such as reducing saturated fat intake and increasing fiber and omega-3 fatty acid intake, and medications, such as statins, to lower cholesterol levels. In some cases, apheresis or liver transplantation may be necessary to reduce lipid levels. Early detection and management of HeFH can help prevent or delay the development of cardiovascular disease, which is the leading cause of death worldwide.
The condition is caused by mutations in the genes that code for proteins involved in cholesterol transport and metabolism, such as the low-density lipoprotein receptor gene (LDLR) or the PCSK9 gene. These mutations lead to a decrease in the ability of the liver to remove excess cholesterol from the bloodstream, resulting in high levels of LDL cholesterol and low levels of HDL cholesterol.
Hyperlipoproteinemia type II is usually inherited in an autosomal dominant pattern, meaning that a single copy of the mutated gene is enough to cause the condition. However, some cases can be caused by spontaneous mutations or incomplete penetrance, where not all individuals with the mutated gene develop the condition.
Symptoms of hyperlipoproteinemia type II can include xanthomas (yellowish deposits of cholesterol in the skin), corneal arcus (a white, waxy deposit on the iris of the eye), and tendon xanthomas (small, soft deposits of cholesterol under the skin). Treatment typically involves a combination of dietary changes and medication to lower LDL cholesterol levels and increase HDL cholesterol levels. In severe cases, liver transplantation may be necessary.
Hyperlipoproteinemia type II is a serious condition that can lead to cardiovascular disease, including heart attacks, strokes, and peripheral artery disease. Early diagnosis and treatment are important to prevent or delay the progression of the disease and reduce the risk of complications.
Apolipoprotein
Apolipoprotein L1
Apolipoprotein D
Apolipoprotein H
Apolipoprotein E
Apolipoprotein B
Apolipoprotein AI
Apolipoprotein L
Apolipoprotein C
Apolipoprotein O
Apolipoprotein C-II
Apolipoprotein C-IV
Apolipoprotein B deficiency
Anti-apolipoprotein antibodies
Apolipoprotein C-III
Apolipoprotein C-I
Apolipoprotein A-II
Apolipoprotein B (apoB) 5′ UTR cis-regulatory element
Gladys Maestre
Lipocalin
ApoA-1 Milano
Low-density lipoprotein receptor-related protein 8
APOM
Björn Dahlbäck
Susan Serjeantson
APOL3
Gladstone Institutes
APOL2
APOL6
Chylomicron
Genetic association of apolipoprotein E with age-related macular degeneration
NHANES 2011-2012:
Apolipoprotein B Data Documentation, Codebook, and Frequencies
Apolipoprotein B100: MedlinePlus Medical Encyclopedia
Anti-Apolipoprotein B antibody [F2C13] (GTX15663) | GeneTex
Longitudinal SPECT study in Alzheimer's disease: relation to apolipoprotein E polymorphism | Journal of Neurology, Neurosurgery...
RePub, Erasmus University Repository:
Serum levels of apolipoproteins and incident type 2 diabetes: A prospective cohort study
Genetic Variation Associated with Differences in the Response of Plasma Apolipoprotein B Levels to Dietary Fibre | Clinical...
Knowledge of the Biological Actions of Extra Virgin Olive Oil Gained From Mice Lacking Apolipoprotein E | Revista Española de...
WHO EMRO | Effects of omega-3 fatty acid supplements on serum lipids, apolipoproteins and malondialdehyde in type 2 diabetes...
Cell autonomous mechanisms of Apolipoprotein E isoform-dependent neurodegeneration - JPND Neurodegenerative Disease Research
Apolipoproteins A | Profiles RNS
The role of apolipoprotein N-acyl transferase, Lnt, in the lipidation of factor H binding protein of Neisseria meningitidis...
APolipoprotein II Archives - Xcode Life
T3DB: Apolipoprotein D
Apolipoprotein Evaluation - True Health Labs
Hypertriglyceridemia: Practice Essentials, Pathophysiology, Etiology
Alzheimer Disease in Down Syndrome: Overview, Pathophysiology/Risk Factors, Epidemiology
Apolipoprotein A-1 - Own Your Labs
Apolipoprotein A | UCLA Health Library, Los Angeles, CA
Recombinant Human Apolipoprotein C-II Protein - enQuire BioReagents
CIENCIASMEDICASNEWS: Apolipoprotein E polymorphism in cerebrovascular & coronary heart diseases.
Human APOL1(Apolipoprotein L) ELISA Kit - Jemsec International NGS
What is Apolipoprotein B (Apo B)? - Dr Mike MacDonald
China good quality Infectious Disease Rapid Tests on sales
Apolipoprotein A 1 Apo A 1 Lab Test Online In USA
Molecular Genetics 01 - Apolipoprotein E (E2, E3, E4) - INSTAND e.V.
Modulation of Apolipoprotein D levels in human pregnancy and association with gestational weight gain | Reproductive Biology...
Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis....
Apolipoprotein A2 isoforms associated with exocrine pancreatic insufficiency in early chronic pancreatitis. | J Gastroenterol...
OHIO Open Library - Student Research and Creative Activity Expo: Apolipoprotein A4 Regulates Lipid Metabolism
Alleles2
- 5-8 The apolipoprotein E gene, located on chromosome 19, has three major alleles: ε2, ε3, and ε4. (bmj.com)
- There was no significant variation in the reduction of plasma total cholesterol, low-density lipoprotein cholesterol or apolipoprotein B concentrations for alleles of other genes tested. (portlandpress.com)
Gene5
- This gene product is the main apolipoprotein of chylomicrons and low density lipoproteins. (genetex.com)
- Genotypes were determined using DNA markers for the low-density lipoprotein receptor, apolipoprotein B, apolipoprotein CIII and hepatic lipase gene loci. (portlandpress.com)
- Apolipoprotein A5 gene variants and the risk of coronary heart disease: a case-control study and meta-analysis. (uchicago.edu)
- Hypertriglyceridemia and the apolipoprotein CIII gene locus: lack of association with the variant insulin response element in Italian school children. (uchicago.edu)
- In a mutant with markedly reduced binding, the transposon was located in the lnt gene which encodes apolipoprotein N-acyl transferase, Lnt, responsible for the addition of the third fatty acid to apolipoproteins prior to their sorting to the outer membrane. (nottingham.ac.uk)
ApoE3
- Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an important regulator of cholesterol and lipid transport, appears to be associated with neurodegeneration. (nih.gov)
- We studied the association of HDL cholesterol (HDL-C), apoA1, apoCIII, apoD, and apoE as well as the ratios of apolipoproteins with apoA1 with the risk of T2D. (eur.nl)
- The benefits of being cognitively engaged were even seen among apolipoprotein E ( APOE ) ε4 carriers. (medscape.com)
Serum3
- In an immunochemical reaction, Apolipoprotein B in the human serum sample form immune complexes with specific antibodies. (cdc.gov)
- Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Apolipoprotein L (APOL1) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids. (jemsec.com)
- Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Apolipoprotein L (APOL1) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids with no significant corss-reactivity with analogues from other species. (jemsec.com)
Cholesterol3
- Apolipoprotein B100 (apoB100) is a protein that plays a role in moving cholesterol around your body. (medlineplus.gov)
- The role of apolipoprotein E (apo E) in lipid metabolism and cholesterol transport is well established. (blogspot.com)
- They consist of three main components: triglycerides, cholesterol, and apolipoprotein (apo). (drmikemacdonald.com)
Lipoproteins2
- Regulation and clearance of apolipoprotein B-containing lipoproteins. (medlineplus.gov)
- Month-to-month variability of lipids, lipoproteins, and apolipoproteins and the impact of acute infection in adolescents. (uchicago.edu)
Polymorphism3
- The effect of apolipoprotein E polymorphism on cerebral perfusion was studied. (bmj.com)
- CONCLUSION Apolipoprotein E polymorphism is involved in the pathogenesis and heterogeneity of Alzheimer's disease as the most severe cerebral hypoperfusion was found in the ε4 allele subgroups. (bmj.com)
- CIENCIASMEDICASNEWS: Apolipoprotein E polymorphism in cerebrovascular & coronary heart diseases. (blogspot.com)
Isoforms3
- Different binding properties of the apolipoprotein isoforms to β-amyloid and tau protein also suggests that it is involved in the pathogenesis of Alzheimer's disease. (bmj.com)
- Apolipoprotein A2 isoforms associated with exocrine pancreatic insufficiency in early chronic pancreatitis. (bvsalud.org)
- Apolipoprotein A2 (apoA2) isoforms have been reported to undergo the aberrant processing in pancreatic cancer and pancreatic risk populations compared with that in healthy subjects . (bvsalud.org)
ApoB2
- The analyst should use the special sampling weights in this file to analyze Apolipoprotein B (ApoB). (cdc.gov)
- ApoB stands for "apolipoprotein B," it is found on VLDL, IDL, and LDL particles. (drmikemacdonald.com)
Allele2
Fasting1
- Fasting blood lipid, lipoprotein and apolipoprotein concentrations were measured at the start and end of the 2 week metabolic period. (portlandpress.com)
MeSH1
- Apolipoproteins A" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (uchicago.edu)
Genetic1
- 4. Thus, genetic variability is associated with inter-individual differences in the fibre-related reduction in plasma apolipoprotein B and apolipoprotein B-containing lipoprotein concentrations. (portlandpress.com)
Concentration1
- The intensity of the scattered light is proportional to the concentration of Apolipoprotein B in the sample. (cdc.gov)
Proportional1
- Second, Cox proportional hazard models were used to examine whether apolipoproteins predict the risk for T2D among individuals free of diabetes at baseline. (eur.nl)
Protein component2
- Apolipoprotein B is the main protein component of LDL and accounts for approximately 95% of the total protein content of LDL. (cdc.gov)
- Balbin M, Freije JM, Fueyo A, Sanchez LM, Lopez-Otin C: Apolipoprotein D is the major protein component in cyst fluid from women with human breast gross cystic disease. (t3db.ca)
Predict1
- Lysophosphatidic acid and apolipoprotein A1 predict increased risk of developing World Trade Center-lung injury: a nested case-control study. (cdc.gov)
Alzheimer's2
- Apolipoprotein E is present in senile plaques, neurofibrillary tangles, and cerebrovascular amyloid, the major neuropathological changes seen in Alzheimer's disease. (bmj.com)
- Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease. (bvsalud.org)
Human6
- Elements in the C terminus of apolipoprotein [a] responsible for the binding to the tenth type III module of human fibronectin. (uchicago.edu)
- Lysine-phosphatidylcholine adducts in kringle V impart unique immunological and potential pro-inflammatory properties to human apolipoprotein(a). (uchicago.edu)
- Cloning and expression of human apolipoprotein D cDNA. (t3db.ca)
- Yang CY, Gu ZW, Blanco-Vaca F, Gaskell SJ, Yang M, Massey JB, Gotto AM Jr, Pownall HJ: Structure of human apolipoprotein D: locations of the intermolecular and intramolecular disulfide links. (t3db.ca)
- Holzfeind P, Merschak P, Dieplinger H, Redl B: The human lacrimal gland synthesizes apolipoprotein D mRNA in addition to tear prealbumin mRNA, both species encoding members of the lipocalin superfamily. (t3db.ca)
- A DNA sequence encoding the Homo sapiens (Human) Apolipoprotein C-II, was expressed in the hosts and tags indicated. (enquirebio.com)
Risk2
- Apolipoprotein measurements may provide more detail about your risk for heart disease, but the added value of this test beyond a lipid panel is unknown. (medlineplus.gov)
- OBJECTIVE We aimed to investigate the role of serumlevels of various apolipoproteins on the risk for type 2 diabetes (T2D). (eur.nl)
Role1
- There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. (bvsalud.org)
Levels2
- As such, we hypothesized that apoC-II and apolipoprotein C-III (apoC-III) levels were related to BP abnormalities and CVD in children suffering from mild-to-moderate CKD. (frontiersin.org)
- All apolipoproteins, ratios, and HDL-C levels were naturally logtransformed to reach normal distribution. (eur.nl)
Major1
- This graph shows the total number of publications written about "Apolipoproteins A" by people in this website by year, and whether "Apolipoproteins A" was a major or minor topic of these publications. (uchicago.edu)
Plasma2
- 1. We hypothesized that differences within genes whose protein products are involved in apolipoprotein B metabolism could influence the response of plasma apolipoprotein B-containing lipoprotein concentrations to increases in dietary fibre. (portlandpress.com)
- 3. Reductions in plasma concentrations of apolipoprotein B were significantly different depending on genotype determined with a low-density lipoprotein receptor DNA marker ( P = 0.03). (portlandpress.com)
Type1
- Nous avons réalisé un essai en double aveugle contre placebo sur 50 patients atteints de diabète de type 2 randomisés pour recevoir 2 g/jour d'acides gras oméga 3 purifiés ou un placebo pendant 10 semaines. (who.int)
Patients1
- These apolipoproteins are low in atherosclerotic patients. (uchicago.edu)
Comparison1
- Beta 2-glycoprotein-1 (apolipoprotein H) excretion in chronic renal tubular disorders: comparison with other protein markers of tubular malfunction. (bmj.com)